1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 #include <linux/plist.h> 46 47 #include <asm/tlbflush.h> 48 #include <linux/swapops.h> 49 #include <linux/swap_cgroup.h> 50 #include "internal.h" 51 #include "swap.h" 52 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 54 unsigned char); 55 static void free_swap_count_continuations(struct swap_info_struct *); 56 57 static DEFINE_SPINLOCK(swap_lock); 58 static unsigned int nr_swapfiles; 59 atomic_long_t nr_swap_pages; 60 /* 61 * Some modules use swappable objects and may try to swap them out under 62 * memory pressure (via the shrinker). Before doing so, they may wish to 63 * check to see if any swap space is available. 64 */ 65 EXPORT_SYMBOL_GPL(nr_swap_pages); 66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 67 long total_swap_pages; 68 static int least_priority = -1; 69 unsigned long swapfile_maximum_size; 70 #ifdef CONFIG_MIGRATION 71 bool swap_migration_ad_supported; 72 #endif /* CONFIG_MIGRATION */ 73 74 static const char Bad_file[] = "Bad swap file entry "; 75 static const char Unused_file[] = "Unused swap file entry "; 76 static const char Bad_offset[] = "Bad swap offset entry "; 77 static const char Unused_offset[] = "Unused swap offset entry "; 78 79 /* 80 * all active swap_info_structs 81 * protected with swap_lock, and ordered by priority. 82 */ 83 static PLIST_HEAD(swap_active_head); 84 85 /* 86 * all available (active, not full) swap_info_structs 87 * protected with swap_avail_lock, ordered by priority. 88 * This is used by folio_alloc_swap() instead of swap_active_head 89 * because swap_active_head includes all swap_info_structs, 90 * but folio_alloc_swap() doesn't need to look at full ones. 91 * This uses its own lock instead of swap_lock because when a 92 * swap_info_struct changes between not-full/full, it needs to 93 * add/remove itself to/from this list, but the swap_info_struct->lock 94 * is held and the locking order requires swap_lock to be taken 95 * before any swap_info_struct->lock. 96 */ 97 static struct plist_head *swap_avail_heads; 98 static DEFINE_SPINLOCK(swap_avail_lock); 99 100 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 101 102 static DEFINE_MUTEX(swapon_mutex); 103 104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 105 /* Activity counter to indicate that a swapon or swapoff has occurred */ 106 static atomic_t proc_poll_event = ATOMIC_INIT(0); 107 108 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 109 110 static struct swap_info_struct *swap_type_to_swap_info(int type) 111 { 112 if (type >= MAX_SWAPFILES) 113 return NULL; 114 115 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 116 } 117 118 static inline unsigned char swap_count(unsigned char ent) 119 { 120 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 121 } 122 123 /* Reclaim the swap entry anyway if possible */ 124 #define TTRS_ANYWAY 0x1 125 /* 126 * Reclaim the swap entry if there are no more mappings of the 127 * corresponding page 128 */ 129 #define TTRS_UNMAPPED 0x2 130 /* Reclaim the swap entry if swap is getting full*/ 131 #define TTRS_FULL 0x4 132 133 /* 134 * returns number of pages in the folio that backs the swap entry. If positive, 135 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no 136 * folio was associated with the swap entry. 137 */ 138 static int __try_to_reclaim_swap(struct swap_info_struct *si, 139 unsigned long offset, unsigned long flags) 140 { 141 swp_entry_t entry = swp_entry(si->type, offset); 142 struct folio *folio; 143 int ret = 0; 144 145 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 146 if (IS_ERR(folio)) 147 return 0; 148 /* 149 * When this function is called from scan_swap_map_slots() and it's 150 * called by vmscan.c at reclaiming folios. So we hold a folio lock 151 * here. We have to use trylock for avoiding deadlock. This is a special 152 * case and you should use folio_free_swap() with explicit folio_lock() 153 * in usual operations. 154 */ 155 if (folio_trylock(folio)) { 156 if ((flags & TTRS_ANYWAY) || 157 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 158 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 159 ret = folio_free_swap(folio); 160 folio_unlock(folio); 161 } 162 ret = ret ? folio_nr_pages(folio) : -folio_nr_pages(folio); 163 folio_put(folio); 164 return ret; 165 } 166 167 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 168 { 169 struct rb_node *rb = rb_first(&sis->swap_extent_root); 170 return rb_entry(rb, struct swap_extent, rb_node); 171 } 172 173 static inline struct swap_extent *next_se(struct swap_extent *se) 174 { 175 struct rb_node *rb = rb_next(&se->rb_node); 176 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 177 } 178 179 /* 180 * swapon tell device that all the old swap contents can be discarded, 181 * to allow the swap device to optimize its wear-levelling. 182 */ 183 static int discard_swap(struct swap_info_struct *si) 184 { 185 struct swap_extent *se; 186 sector_t start_block; 187 sector_t nr_blocks; 188 int err = 0; 189 190 /* Do not discard the swap header page! */ 191 se = first_se(si); 192 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 193 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 194 if (nr_blocks) { 195 err = blkdev_issue_discard(si->bdev, start_block, 196 nr_blocks, GFP_KERNEL); 197 if (err) 198 return err; 199 cond_resched(); 200 } 201 202 for (se = next_se(se); se; se = next_se(se)) { 203 start_block = se->start_block << (PAGE_SHIFT - 9); 204 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 205 206 err = blkdev_issue_discard(si->bdev, start_block, 207 nr_blocks, GFP_KERNEL); 208 if (err) 209 break; 210 211 cond_resched(); 212 } 213 return err; /* That will often be -EOPNOTSUPP */ 214 } 215 216 static struct swap_extent * 217 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 218 { 219 struct swap_extent *se; 220 struct rb_node *rb; 221 222 rb = sis->swap_extent_root.rb_node; 223 while (rb) { 224 se = rb_entry(rb, struct swap_extent, rb_node); 225 if (offset < se->start_page) 226 rb = rb->rb_left; 227 else if (offset >= se->start_page + se->nr_pages) 228 rb = rb->rb_right; 229 else 230 return se; 231 } 232 /* It *must* be present */ 233 BUG(); 234 } 235 236 sector_t swap_folio_sector(struct folio *folio) 237 { 238 struct swap_info_struct *sis = swp_swap_info(folio->swap); 239 struct swap_extent *se; 240 sector_t sector; 241 pgoff_t offset; 242 243 offset = swp_offset(folio->swap); 244 se = offset_to_swap_extent(sis, offset); 245 sector = se->start_block + (offset - se->start_page); 246 return sector << (PAGE_SHIFT - 9); 247 } 248 249 /* 250 * swap allocation tell device that a cluster of swap can now be discarded, 251 * to allow the swap device to optimize its wear-levelling. 252 */ 253 static void discard_swap_cluster(struct swap_info_struct *si, 254 pgoff_t start_page, pgoff_t nr_pages) 255 { 256 struct swap_extent *se = offset_to_swap_extent(si, start_page); 257 258 while (nr_pages) { 259 pgoff_t offset = start_page - se->start_page; 260 sector_t start_block = se->start_block + offset; 261 sector_t nr_blocks = se->nr_pages - offset; 262 263 if (nr_blocks > nr_pages) 264 nr_blocks = nr_pages; 265 start_page += nr_blocks; 266 nr_pages -= nr_blocks; 267 268 start_block <<= PAGE_SHIFT - 9; 269 nr_blocks <<= PAGE_SHIFT - 9; 270 if (blkdev_issue_discard(si->bdev, start_block, 271 nr_blocks, GFP_NOIO)) 272 break; 273 274 se = next_se(se); 275 } 276 } 277 278 #ifdef CONFIG_THP_SWAP 279 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 280 281 #define swap_entry_order(order) (order) 282 #else 283 #define SWAPFILE_CLUSTER 256 284 285 /* 286 * Define swap_entry_order() as constant to let compiler to optimize 287 * out some code if !CONFIG_THP_SWAP 288 */ 289 #define swap_entry_order(order) 0 290 #endif 291 #define LATENCY_LIMIT 256 292 293 static inline void cluster_set_flag(struct swap_cluster_info *info, 294 unsigned int flag) 295 { 296 info->flags = flag; 297 } 298 299 static inline unsigned int cluster_count(struct swap_cluster_info *info) 300 { 301 return info->data; 302 } 303 304 static inline void cluster_set_count(struct swap_cluster_info *info, 305 unsigned int c) 306 { 307 info->data = c; 308 } 309 310 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 311 unsigned int c, unsigned int f) 312 { 313 info->flags = f; 314 info->data = c; 315 } 316 317 static inline unsigned int cluster_next(struct swap_cluster_info *info) 318 { 319 return info->data; 320 } 321 322 static inline void cluster_set_next(struct swap_cluster_info *info, 323 unsigned int n) 324 { 325 info->data = n; 326 } 327 328 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 329 unsigned int n, unsigned int f) 330 { 331 info->flags = f; 332 info->data = n; 333 } 334 335 static inline bool cluster_is_free(struct swap_cluster_info *info) 336 { 337 return info->flags & CLUSTER_FLAG_FREE; 338 } 339 340 static inline bool cluster_is_null(struct swap_cluster_info *info) 341 { 342 return info->flags & CLUSTER_FLAG_NEXT_NULL; 343 } 344 345 static inline void cluster_set_null(struct swap_cluster_info *info) 346 { 347 info->flags = CLUSTER_FLAG_NEXT_NULL; 348 info->data = 0; 349 } 350 351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 352 unsigned long offset) 353 { 354 struct swap_cluster_info *ci; 355 356 ci = si->cluster_info; 357 if (ci) { 358 ci += offset / SWAPFILE_CLUSTER; 359 spin_lock(&ci->lock); 360 } 361 return ci; 362 } 363 364 static inline void unlock_cluster(struct swap_cluster_info *ci) 365 { 366 if (ci) 367 spin_unlock(&ci->lock); 368 } 369 370 /* 371 * Determine the locking method in use for this device. Return 372 * swap_cluster_info if SSD-style cluster-based locking is in place. 373 */ 374 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 375 struct swap_info_struct *si, unsigned long offset) 376 { 377 struct swap_cluster_info *ci; 378 379 /* Try to use fine-grained SSD-style locking if available: */ 380 ci = lock_cluster(si, offset); 381 /* Otherwise, fall back to traditional, coarse locking: */ 382 if (!ci) 383 spin_lock(&si->lock); 384 385 return ci; 386 } 387 388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 389 struct swap_cluster_info *ci) 390 { 391 if (ci) 392 unlock_cluster(ci); 393 else 394 spin_unlock(&si->lock); 395 } 396 397 static inline bool cluster_list_empty(struct swap_cluster_list *list) 398 { 399 return cluster_is_null(&list->head); 400 } 401 402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 403 { 404 return cluster_next(&list->head); 405 } 406 407 static void cluster_list_init(struct swap_cluster_list *list) 408 { 409 cluster_set_null(&list->head); 410 cluster_set_null(&list->tail); 411 } 412 413 static void cluster_list_add_tail(struct swap_cluster_list *list, 414 struct swap_cluster_info *ci, 415 unsigned int idx) 416 { 417 if (cluster_list_empty(list)) { 418 cluster_set_next_flag(&list->head, idx, 0); 419 cluster_set_next_flag(&list->tail, idx, 0); 420 } else { 421 struct swap_cluster_info *ci_tail; 422 unsigned int tail = cluster_next(&list->tail); 423 424 /* 425 * Nested cluster lock, but both cluster locks are 426 * only acquired when we held swap_info_struct->lock 427 */ 428 ci_tail = ci + tail; 429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 430 cluster_set_next(ci_tail, idx); 431 spin_unlock(&ci_tail->lock); 432 cluster_set_next_flag(&list->tail, idx, 0); 433 } 434 } 435 436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 437 struct swap_cluster_info *ci) 438 { 439 unsigned int idx; 440 441 idx = cluster_next(&list->head); 442 if (cluster_next(&list->tail) == idx) { 443 cluster_set_null(&list->head); 444 cluster_set_null(&list->tail); 445 } else 446 cluster_set_next_flag(&list->head, 447 cluster_next(&ci[idx]), 0); 448 449 return idx; 450 } 451 452 /* Add a cluster to discard list and schedule it to do discard */ 453 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 454 unsigned int idx) 455 { 456 /* 457 * If scan_swap_map_slots() can't find a free cluster, it will check 458 * si->swap_map directly. To make sure the discarding cluster isn't 459 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 460 * It will be cleared after discard 461 */ 462 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 463 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 464 465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 466 467 schedule_work(&si->discard_work); 468 } 469 470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 471 { 472 struct swap_cluster_info *ci = si->cluster_info; 473 474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 475 cluster_list_add_tail(&si->free_clusters, ci, idx); 476 } 477 478 /* 479 * Doing discard actually. After a cluster discard is finished, the cluster 480 * will be added to free cluster list. caller should hold si->lock. 481 */ 482 static void swap_do_scheduled_discard(struct swap_info_struct *si) 483 { 484 struct swap_cluster_info *info, *ci; 485 unsigned int idx; 486 487 info = si->cluster_info; 488 489 while (!cluster_list_empty(&si->discard_clusters)) { 490 idx = cluster_list_del_first(&si->discard_clusters, info); 491 spin_unlock(&si->lock); 492 493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 494 SWAPFILE_CLUSTER); 495 496 spin_lock(&si->lock); 497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 498 __free_cluster(si, idx); 499 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 500 0, SWAPFILE_CLUSTER); 501 unlock_cluster(ci); 502 } 503 } 504 505 static void swap_discard_work(struct work_struct *work) 506 { 507 struct swap_info_struct *si; 508 509 si = container_of(work, struct swap_info_struct, discard_work); 510 511 spin_lock(&si->lock); 512 swap_do_scheduled_discard(si); 513 spin_unlock(&si->lock); 514 } 515 516 static void swap_users_ref_free(struct percpu_ref *ref) 517 { 518 struct swap_info_struct *si; 519 520 si = container_of(ref, struct swap_info_struct, users); 521 complete(&si->comp); 522 } 523 524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 525 { 526 struct swap_cluster_info *ci = si->cluster_info; 527 528 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 529 cluster_list_del_first(&si->free_clusters, ci); 530 cluster_set_count_flag(ci + idx, 0, 0); 531 } 532 533 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 534 { 535 struct swap_cluster_info *ci = si->cluster_info + idx; 536 537 VM_BUG_ON(cluster_count(ci) != 0); 538 /* 539 * If the swap is discardable, prepare discard the cluster 540 * instead of free it immediately. The cluster will be freed 541 * after discard. 542 */ 543 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 544 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 545 swap_cluster_schedule_discard(si, idx); 546 return; 547 } 548 549 __free_cluster(si, idx); 550 } 551 552 /* 553 * The cluster corresponding to page_nr will be used. The cluster will be 554 * removed from free cluster list and its usage counter will be increased by 555 * count. 556 */ 557 static void add_cluster_info_page(struct swap_info_struct *p, 558 struct swap_cluster_info *cluster_info, unsigned long page_nr, 559 unsigned long count) 560 { 561 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 562 563 if (!cluster_info) 564 return; 565 if (cluster_is_free(&cluster_info[idx])) 566 alloc_cluster(p, idx); 567 568 VM_BUG_ON(cluster_count(&cluster_info[idx]) + count > SWAPFILE_CLUSTER); 569 cluster_set_count(&cluster_info[idx], 570 cluster_count(&cluster_info[idx]) + count); 571 } 572 573 /* 574 * The cluster corresponding to page_nr will be used. The cluster will be 575 * removed from free cluster list and its usage counter will be increased by 1. 576 */ 577 static void inc_cluster_info_page(struct swap_info_struct *p, 578 struct swap_cluster_info *cluster_info, unsigned long page_nr) 579 { 580 add_cluster_info_page(p, cluster_info, page_nr, 1); 581 } 582 583 /* 584 * The cluster corresponding to page_nr decreases one usage. If the usage 585 * counter becomes 0, which means no page in the cluster is in using, we can 586 * optionally discard the cluster and add it to free cluster list. 587 */ 588 static void dec_cluster_info_page(struct swap_info_struct *p, 589 struct swap_cluster_info *cluster_info, unsigned long page_nr) 590 { 591 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 592 593 if (!cluster_info) 594 return; 595 596 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 597 cluster_set_count(&cluster_info[idx], 598 cluster_count(&cluster_info[idx]) - 1); 599 600 if (cluster_count(&cluster_info[idx]) == 0) 601 free_cluster(p, idx); 602 } 603 604 /* 605 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 606 * cluster list. Avoiding such abuse to avoid list corruption. 607 */ 608 static bool 609 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 610 unsigned long offset, int order) 611 { 612 struct percpu_cluster *percpu_cluster; 613 bool conflict; 614 615 offset /= SWAPFILE_CLUSTER; 616 conflict = !cluster_list_empty(&si->free_clusters) && 617 offset != cluster_list_first(&si->free_clusters) && 618 cluster_is_free(&si->cluster_info[offset]); 619 620 if (!conflict) 621 return false; 622 623 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 624 percpu_cluster->next[order] = SWAP_NEXT_INVALID; 625 return true; 626 } 627 628 static inline bool swap_range_empty(char *swap_map, unsigned int start, 629 unsigned int nr_pages) 630 { 631 unsigned int i; 632 633 for (i = 0; i < nr_pages; i++) { 634 if (swap_map[start + i]) 635 return false; 636 } 637 638 return true; 639 } 640 641 /* 642 * Try to get swap entries with specified order from current cpu's swap entry 643 * pool (a cluster). This might involve allocating a new cluster for current CPU 644 * too. 645 */ 646 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 647 unsigned long *offset, unsigned long *scan_base, int order) 648 { 649 unsigned int nr_pages = 1 << order; 650 struct percpu_cluster *cluster; 651 struct swap_cluster_info *ci; 652 unsigned int tmp, max; 653 654 new_cluster: 655 cluster = this_cpu_ptr(si->percpu_cluster); 656 tmp = cluster->next[order]; 657 if (tmp == SWAP_NEXT_INVALID) { 658 if (!cluster_list_empty(&si->free_clusters)) { 659 tmp = cluster_next(&si->free_clusters.head) * 660 SWAPFILE_CLUSTER; 661 } else if (!cluster_list_empty(&si->discard_clusters)) { 662 /* 663 * we don't have free cluster but have some clusters in 664 * discarding, do discard now and reclaim them, then 665 * reread cluster_next_cpu since we dropped si->lock 666 */ 667 swap_do_scheduled_discard(si); 668 *scan_base = this_cpu_read(*si->cluster_next_cpu); 669 *offset = *scan_base; 670 goto new_cluster; 671 } else 672 return false; 673 } 674 675 /* 676 * Other CPUs can use our cluster if they can't find a free cluster, 677 * check if there is still free entry in the cluster, maintaining 678 * natural alignment. 679 */ 680 max = min_t(unsigned long, si->max, ALIGN(tmp + 1, SWAPFILE_CLUSTER)); 681 if (tmp < max) { 682 ci = lock_cluster(si, tmp); 683 while (tmp < max) { 684 if (swap_range_empty(si->swap_map, tmp, nr_pages)) 685 break; 686 tmp += nr_pages; 687 } 688 unlock_cluster(ci); 689 } 690 if (tmp >= max) { 691 cluster->next[order] = SWAP_NEXT_INVALID; 692 goto new_cluster; 693 } 694 *offset = tmp; 695 *scan_base = tmp; 696 tmp += nr_pages; 697 cluster->next[order] = tmp < max ? tmp : SWAP_NEXT_INVALID; 698 return true; 699 } 700 701 static void __del_from_avail_list(struct swap_info_struct *p) 702 { 703 int nid; 704 705 assert_spin_locked(&p->lock); 706 for_each_node(nid) 707 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 708 } 709 710 static void del_from_avail_list(struct swap_info_struct *p) 711 { 712 spin_lock(&swap_avail_lock); 713 __del_from_avail_list(p); 714 spin_unlock(&swap_avail_lock); 715 } 716 717 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 718 unsigned int nr_entries) 719 { 720 unsigned int end = offset + nr_entries - 1; 721 722 if (offset == si->lowest_bit) 723 si->lowest_bit += nr_entries; 724 if (end == si->highest_bit) 725 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 726 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 727 if (si->inuse_pages == si->pages) { 728 si->lowest_bit = si->max; 729 si->highest_bit = 0; 730 del_from_avail_list(si); 731 } 732 } 733 734 static void add_to_avail_list(struct swap_info_struct *p) 735 { 736 int nid; 737 738 spin_lock(&swap_avail_lock); 739 for_each_node(nid) 740 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 741 spin_unlock(&swap_avail_lock); 742 } 743 744 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 745 unsigned int nr_entries) 746 { 747 unsigned long begin = offset; 748 unsigned long end = offset + nr_entries - 1; 749 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 750 751 if (offset < si->lowest_bit) 752 si->lowest_bit = offset; 753 if (end > si->highest_bit) { 754 bool was_full = !si->highest_bit; 755 756 WRITE_ONCE(si->highest_bit, end); 757 if (was_full && (si->flags & SWP_WRITEOK)) 758 add_to_avail_list(si); 759 } 760 if (si->flags & SWP_BLKDEV) 761 swap_slot_free_notify = 762 si->bdev->bd_disk->fops->swap_slot_free_notify; 763 else 764 swap_slot_free_notify = NULL; 765 while (offset <= end) { 766 arch_swap_invalidate_page(si->type, offset); 767 if (swap_slot_free_notify) 768 swap_slot_free_notify(si->bdev, offset); 769 offset++; 770 } 771 clear_shadow_from_swap_cache(si->type, begin, end); 772 773 /* 774 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0 775 * only after the above cleanups are done. 776 */ 777 smp_wmb(); 778 atomic_long_add(nr_entries, &nr_swap_pages); 779 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 780 } 781 782 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 783 { 784 unsigned long prev; 785 786 if (!(si->flags & SWP_SOLIDSTATE)) { 787 si->cluster_next = next; 788 return; 789 } 790 791 prev = this_cpu_read(*si->cluster_next_cpu); 792 /* 793 * Cross the swap address space size aligned trunk, choose 794 * another trunk randomly to avoid lock contention on swap 795 * address space if possible. 796 */ 797 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 798 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 799 /* No free swap slots available */ 800 if (si->highest_bit <= si->lowest_bit) 801 return; 802 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 803 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 804 next = max_t(unsigned int, next, si->lowest_bit); 805 } 806 this_cpu_write(*si->cluster_next_cpu, next); 807 } 808 809 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 810 unsigned long offset) 811 { 812 if (data_race(!si->swap_map[offset])) { 813 spin_lock(&si->lock); 814 return true; 815 } 816 817 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 818 spin_lock(&si->lock); 819 return true; 820 } 821 822 return false; 823 } 824 825 static int scan_swap_map_slots(struct swap_info_struct *si, 826 unsigned char usage, int nr, 827 swp_entry_t slots[], int order) 828 { 829 struct swap_cluster_info *ci; 830 unsigned long offset; 831 unsigned long scan_base; 832 unsigned long last_in_cluster = 0; 833 int latency_ration = LATENCY_LIMIT; 834 unsigned int nr_pages = 1 << order; 835 int n_ret = 0; 836 bool scanned_many = false; 837 838 /* 839 * We try to cluster swap pages by allocating them sequentially 840 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 841 * way, however, we resort to first-free allocation, starting 842 * a new cluster. This prevents us from scattering swap pages 843 * all over the entire swap partition, so that we reduce 844 * overall disk seek times between swap pages. -- sct 845 * But we do now try to find an empty cluster. -Andrea 846 * And we let swap pages go all over an SSD partition. Hugh 847 */ 848 849 if (order > 0) { 850 /* 851 * Should not even be attempting large allocations when huge 852 * page swap is disabled. Warn and fail the allocation. 853 */ 854 if (!IS_ENABLED(CONFIG_THP_SWAP) || 855 nr_pages > SWAPFILE_CLUSTER) { 856 VM_WARN_ON_ONCE(1); 857 return 0; 858 } 859 860 /* 861 * Swapfile is not block device or not using clusters so unable 862 * to allocate large entries. 863 */ 864 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info) 865 return 0; 866 } 867 868 si->flags += SWP_SCANNING; 869 /* 870 * Use percpu scan base for SSD to reduce lock contention on 871 * cluster and swap cache. For HDD, sequential access is more 872 * important. 873 */ 874 if (si->flags & SWP_SOLIDSTATE) 875 scan_base = this_cpu_read(*si->cluster_next_cpu); 876 else 877 scan_base = si->cluster_next; 878 offset = scan_base; 879 880 /* SSD algorithm */ 881 if (si->cluster_info) { 882 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) { 883 if (order > 0) 884 goto no_page; 885 goto scan; 886 } 887 } else if (unlikely(!si->cluster_nr--)) { 888 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 889 si->cluster_nr = SWAPFILE_CLUSTER - 1; 890 goto checks; 891 } 892 893 spin_unlock(&si->lock); 894 895 /* 896 * If seek is expensive, start searching for new cluster from 897 * start of partition, to minimize the span of allocated swap. 898 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 899 * case, just handled by scan_swap_map_try_ssd_cluster() above. 900 */ 901 scan_base = offset = si->lowest_bit; 902 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 903 904 /* Locate the first empty (unaligned) cluster */ 905 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) { 906 if (si->swap_map[offset]) 907 last_in_cluster = offset + SWAPFILE_CLUSTER; 908 else if (offset == last_in_cluster) { 909 spin_lock(&si->lock); 910 offset -= SWAPFILE_CLUSTER - 1; 911 si->cluster_next = offset; 912 si->cluster_nr = SWAPFILE_CLUSTER - 1; 913 goto checks; 914 } 915 if (unlikely(--latency_ration < 0)) { 916 cond_resched(); 917 latency_ration = LATENCY_LIMIT; 918 } 919 } 920 921 offset = scan_base; 922 spin_lock(&si->lock); 923 si->cluster_nr = SWAPFILE_CLUSTER - 1; 924 } 925 926 checks: 927 if (si->cluster_info) { 928 while (scan_swap_map_ssd_cluster_conflict(si, offset, order)) { 929 /* take a break if we already got some slots */ 930 if (n_ret) 931 goto done; 932 if (!scan_swap_map_try_ssd_cluster(si, &offset, 933 &scan_base, order)) { 934 if (order > 0) 935 goto no_page; 936 goto scan; 937 } 938 } 939 } 940 if (!(si->flags & SWP_WRITEOK)) 941 goto no_page; 942 if (!si->highest_bit) 943 goto no_page; 944 if (offset > si->highest_bit) 945 scan_base = offset = si->lowest_bit; 946 947 ci = lock_cluster(si, offset); 948 /* reuse swap entry of cache-only swap if not busy. */ 949 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 950 int swap_was_freed; 951 unlock_cluster(ci); 952 spin_unlock(&si->lock); 953 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 954 spin_lock(&si->lock); 955 /* entry was freed successfully, try to use this again */ 956 if (swap_was_freed > 0) 957 goto checks; 958 goto scan; /* check next one */ 959 } 960 961 if (si->swap_map[offset]) { 962 unlock_cluster(ci); 963 if (!n_ret) 964 goto scan; 965 else 966 goto done; 967 } 968 memset(si->swap_map + offset, usage, nr_pages); 969 add_cluster_info_page(si, si->cluster_info, offset, nr_pages); 970 unlock_cluster(ci); 971 972 swap_range_alloc(si, offset, nr_pages); 973 slots[n_ret++] = swp_entry(si->type, offset); 974 975 /* got enough slots or reach max slots? */ 976 if ((n_ret == nr) || (offset >= si->highest_bit)) 977 goto done; 978 979 /* search for next available slot */ 980 981 /* time to take a break? */ 982 if (unlikely(--latency_ration < 0)) { 983 if (n_ret) 984 goto done; 985 spin_unlock(&si->lock); 986 cond_resched(); 987 spin_lock(&si->lock); 988 latency_ration = LATENCY_LIMIT; 989 } 990 991 /* try to get more slots in cluster */ 992 if (si->cluster_info) { 993 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) 994 goto checks; 995 if (order > 0) 996 goto done; 997 } else if (si->cluster_nr && !si->swap_map[++offset]) { 998 /* non-ssd case, still more slots in cluster? */ 999 --si->cluster_nr; 1000 goto checks; 1001 } 1002 1003 /* 1004 * Even if there's no free clusters available (fragmented), 1005 * try to scan a little more quickly with lock held unless we 1006 * have scanned too many slots already. 1007 */ 1008 if (!scanned_many) { 1009 unsigned long scan_limit; 1010 1011 if (offset < scan_base) 1012 scan_limit = scan_base; 1013 else 1014 scan_limit = si->highest_bit; 1015 for (; offset <= scan_limit && --latency_ration > 0; 1016 offset++) { 1017 if (!si->swap_map[offset]) 1018 goto checks; 1019 } 1020 } 1021 1022 done: 1023 if (order == 0) 1024 set_cluster_next(si, offset + 1); 1025 si->flags -= SWP_SCANNING; 1026 return n_ret; 1027 1028 scan: 1029 VM_WARN_ON(order > 0); 1030 spin_unlock(&si->lock); 1031 while (++offset <= READ_ONCE(si->highest_bit)) { 1032 if (unlikely(--latency_ration < 0)) { 1033 cond_resched(); 1034 latency_ration = LATENCY_LIMIT; 1035 scanned_many = true; 1036 } 1037 if (swap_offset_available_and_locked(si, offset)) 1038 goto checks; 1039 } 1040 offset = si->lowest_bit; 1041 while (offset < scan_base) { 1042 if (unlikely(--latency_ration < 0)) { 1043 cond_resched(); 1044 latency_ration = LATENCY_LIMIT; 1045 scanned_many = true; 1046 } 1047 if (swap_offset_available_and_locked(si, offset)) 1048 goto checks; 1049 offset++; 1050 } 1051 spin_lock(&si->lock); 1052 1053 no_page: 1054 si->flags -= SWP_SCANNING; 1055 return n_ret; 1056 } 1057 1058 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1059 { 1060 unsigned long offset = idx * SWAPFILE_CLUSTER; 1061 struct swap_cluster_info *ci; 1062 1063 ci = lock_cluster(si, offset); 1064 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1065 cluster_set_count_flag(ci, 0, 0); 1066 free_cluster(si, idx); 1067 unlock_cluster(ci); 1068 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1069 } 1070 1071 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order) 1072 { 1073 int order = swap_entry_order(entry_order); 1074 unsigned long size = 1 << order; 1075 struct swap_info_struct *si, *next; 1076 long avail_pgs; 1077 int n_ret = 0; 1078 int node; 1079 1080 spin_lock(&swap_avail_lock); 1081 1082 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1083 if (avail_pgs <= 0) { 1084 spin_unlock(&swap_avail_lock); 1085 goto noswap; 1086 } 1087 1088 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1089 1090 atomic_long_sub(n_goal * size, &nr_swap_pages); 1091 1092 start_over: 1093 node = numa_node_id(); 1094 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1095 /* requeue si to after same-priority siblings */ 1096 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1097 spin_unlock(&swap_avail_lock); 1098 spin_lock(&si->lock); 1099 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1100 spin_lock(&swap_avail_lock); 1101 if (plist_node_empty(&si->avail_lists[node])) { 1102 spin_unlock(&si->lock); 1103 goto nextsi; 1104 } 1105 WARN(!si->highest_bit, 1106 "swap_info %d in list but !highest_bit\n", 1107 si->type); 1108 WARN(!(si->flags & SWP_WRITEOK), 1109 "swap_info %d in list but !SWP_WRITEOK\n", 1110 si->type); 1111 __del_from_avail_list(si); 1112 spin_unlock(&si->lock); 1113 goto nextsi; 1114 } 1115 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1116 n_goal, swp_entries, order); 1117 spin_unlock(&si->lock); 1118 if (n_ret || size > 1) 1119 goto check_out; 1120 cond_resched(); 1121 1122 spin_lock(&swap_avail_lock); 1123 nextsi: 1124 /* 1125 * if we got here, it's likely that si was almost full before, 1126 * and since scan_swap_map_slots() can drop the si->lock, 1127 * multiple callers probably all tried to get a page from the 1128 * same si and it filled up before we could get one; or, the si 1129 * filled up between us dropping swap_avail_lock and taking 1130 * si->lock. Since we dropped the swap_avail_lock, the 1131 * swap_avail_head list may have been modified; so if next is 1132 * still in the swap_avail_head list then try it, otherwise 1133 * start over if we have not gotten any slots. 1134 */ 1135 if (plist_node_empty(&next->avail_lists[node])) 1136 goto start_over; 1137 } 1138 1139 spin_unlock(&swap_avail_lock); 1140 1141 check_out: 1142 if (n_ret < n_goal) 1143 atomic_long_add((long)(n_goal - n_ret) * size, 1144 &nr_swap_pages); 1145 noswap: 1146 return n_ret; 1147 } 1148 1149 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1150 { 1151 struct swap_info_struct *p; 1152 unsigned long offset; 1153 1154 if (!entry.val) 1155 goto out; 1156 p = swp_swap_info(entry); 1157 if (!p) 1158 goto bad_nofile; 1159 if (data_race(!(p->flags & SWP_USED))) 1160 goto bad_device; 1161 offset = swp_offset(entry); 1162 if (offset >= p->max) 1163 goto bad_offset; 1164 if (data_race(!p->swap_map[swp_offset(entry)])) 1165 goto bad_free; 1166 return p; 1167 1168 bad_free: 1169 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1170 goto out; 1171 bad_offset: 1172 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1173 goto out; 1174 bad_device: 1175 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1176 goto out; 1177 bad_nofile: 1178 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1179 out: 1180 return NULL; 1181 } 1182 1183 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1184 struct swap_info_struct *q) 1185 { 1186 struct swap_info_struct *p; 1187 1188 p = _swap_info_get(entry); 1189 1190 if (p != q) { 1191 if (q != NULL) 1192 spin_unlock(&q->lock); 1193 if (p != NULL) 1194 spin_lock(&p->lock); 1195 } 1196 return p; 1197 } 1198 1199 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1200 unsigned long offset, 1201 unsigned char usage) 1202 { 1203 unsigned char count; 1204 unsigned char has_cache; 1205 1206 count = p->swap_map[offset]; 1207 1208 has_cache = count & SWAP_HAS_CACHE; 1209 count &= ~SWAP_HAS_CACHE; 1210 1211 if (usage == SWAP_HAS_CACHE) { 1212 VM_BUG_ON(!has_cache); 1213 has_cache = 0; 1214 } else if (count == SWAP_MAP_SHMEM) { 1215 /* 1216 * Or we could insist on shmem.c using a special 1217 * swap_shmem_free() and free_shmem_swap_and_cache()... 1218 */ 1219 count = 0; 1220 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1221 if (count == COUNT_CONTINUED) { 1222 if (swap_count_continued(p, offset, count)) 1223 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1224 else 1225 count = SWAP_MAP_MAX; 1226 } else 1227 count--; 1228 } 1229 1230 usage = count | has_cache; 1231 if (usage) 1232 WRITE_ONCE(p->swap_map[offset], usage); 1233 else 1234 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1235 1236 return usage; 1237 } 1238 1239 /* 1240 * When we get a swap entry, if there aren't some other ways to 1241 * prevent swapoff, such as the folio in swap cache is locked, RCU 1242 * reader side is locked, etc., the swap entry may become invalid 1243 * because of swapoff. Then, we need to enclose all swap related 1244 * functions with get_swap_device() and put_swap_device(), unless the 1245 * swap functions call get/put_swap_device() by themselves. 1246 * 1247 * RCU reader side lock (including any spinlock) is sufficient to 1248 * prevent swapoff, because synchronize_rcu() is called in swapoff() 1249 * before freeing data structures. 1250 * 1251 * Check whether swap entry is valid in the swap device. If so, 1252 * return pointer to swap_info_struct, and keep the swap entry valid 1253 * via preventing the swap device from being swapoff, until 1254 * put_swap_device() is called. Otherwise return NULL. 1255 * 1256 * Notice that swapoff or swapoff+swapon can still happen before the 1257 * percpu_ref_tryget_live() in get_swap_device() or after the 1258 * percpu_ref_put() in put_swap_device() if there isn't any other way 1259 * to prevent swapoff. The caller must be prepared for that. For 1260 * example, the following situation is possible. 1261 * 1262 * CPU1 CPU2 1263 * do_swap_page() 1264 * ... swapoff+swapon 1265 * __read_swap_cache_async() 1266 * swapcache_prepare() 1267 * __swap_duplicate() 1268 * // check swap_map 1269 * // verify PTE not changed 1270 * 1271 * In __swap_duplicate(), the swap_map need to be checked before 1272 * changing partly because the specified swap entry may be for another 1273 * swap device which has been swapoff. And in do_swap_page(), after 1274 * the page is read from the swap device, the PTE is verified not 1275 * changed with the page table locked to check whether the swap device 1276 * has been swapoff or swapoff+swapon. 1277 */ 1278 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1279 { 1280 struct swap_info_struct *si; 1281 unsigned long offset; 1282 1283 if (!entry.val) 1284 goto out; 1285 si = swp_swap_info(entry); 1286 if (!si) 1287 goto bad_nofile; 1288 if (!percpu_ref_tryget_live(&si->users)) 1289 goto out; 1290 /* 1291 * Guarantee the si->users are checked before accessing other 1292 * fields of swap_info_struct. 1293 * 1294 * Paired with the spin_unlock() after setup_swap_info() in 1295 * enable_swap_info(). 1296 */ 1297 smp_rmb(); 1298 offset = swp_offset(entry); 1299 if (offset >= si->max) 1300 goto put_out; 1301 1302 return si; 1303 bad_nofile: 1304 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1305 out: 1306 return NULL; 1307 put_out: 1308 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1309 percpu_ref_put(&si->users); 1310 return NULL; 1311 } 1312 1313 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1314 swp_entry_t entry) 1315 { 1316 struct swap_cluster_info *ci; 1317 unsigned long offset = swp_offset(entry); 1318 unsigned char usage; 1319 1320 ci = lock_cluster_or_swap_info(p, offset); 1321 usage = __swap_entry_free_locked(p, offset, 1); 1322 unlock_cluster_or_swap_info(p, ci); 1323 if (!usage) 1324 free_swap_slot(entry); 1325 1326 return usage; 1327 } 1328 1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1330 { 1331 struct swap_cluster_info *ci; 1332 unsigned long offset = swp_offset(entry); 1333 unsigned char count; 1334 1335 ci = lock_cluster(p, offset); 1336 count = p->swap_map[offset]; 1337 VM_BUG_ON(count != SWAP_HAS_CACHE); 1338 p->swap_map[offset] = 0; 1339 dec_cluster_info_page(p, p->cluster_info, offset); 1340 unlock_cluster(ci); 1341 1342 mem_cgroup_uncharge_swap(entry, 1); 1343 swap_range_free(p, offset, 1); 1344 } 1345 1346 static void cluster_swap_free_nr(struct swap_info_struct *sis, 1347 unsigned long offset, int nr_pages) 1348 { 1349 struct swap_cluster_info *ci; 1350 DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 }; 1351 int i, nr; 1352 1353 ci = lock_cluster_or_swap_info(sis, offset); 1354 while (nr_pages) { 1355 nr = min(BITS_PER_LONG, nr_pages); 1356 for (i = 0; i < nr; i++) { 1357 if (!__swap_entry_free_locked(sis, offset + i, 1)) 1358 bitmap_set(to_free, i, 1); 1359 } 1360 if (!bitmap_empty(to_free, BITS_PER_LONG)) { 1361 unlock_cluster_or_swap_info(sis, ci); 1362 for_each_set_bit(i, to_free, BITS_PER_LONG) 1363 free_swap_slot(swp_entry(sis->type, offset + i)); 1364 if (nr == nr_pages) 1365 return; 1366 bitmap_clear(to_free, 0, BITS_PER_LONG); 1367 ci = lock_cluster_or_swap_info(sis, offset); 1368 } 1369 offset += nr; 1370 nr_pages -= nr; 1371 } 1372 unlock_cluster_or_swap_info(sis, ci); 1373 } 1374 1375 /* 1376 * Caller has made sure that the swap device corresponding to entry 1377 * is still around or has not been recycled. 1378 */ 1379 void swap_free_nr(swp_entry_t entry, int nr_pages) 1380 { 1381 int nr; 1382 struct swap_info_struct *sis; 1383 unsigned long offset = swp_offset(entry); 1384 1385 sis = _swap_info_get(entry); 1386 if (!sis) 1387 return; 1388 1389 while (nr_pages) { 1390 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER); 1391 cluster_swap_free_nr(sis, offset, nr); 1392 offset += nr; 1393 nr_pages -= nr; 1394 } 1395 } 1396 1397 /* 1398 * Called after dropping swapcache to decrease refcnt to swap entries. 1399 */ 1400 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1401 { 1402 unsigned long offset = swp_offset(entry); 1403 unsigned long idx = offset / SWAPFILE_CLUSTER; 1404 struct swap_cluster_info *ci; 1405 struct swap_info_struct *si; 1406 unsigned char *map; 1407 unsigned int i, free_entries = 0; 1408 unsigned char val; 1409 int size = 1 << swap_entry_order(folio_order(folio)); 1410 1411 si = _swap_info_get(entry); 1412 if (!si) 1413 return; 1414 1415 ci = lock_cluster_or_swap_info(si, offset); 1416 if (size == SWAPFILE_CLUSTER) { 1417 map = si->swap_map + offset; 1418 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1419 val = map[i]; 1420 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1421 if (val == SWAP_HAS_CACHE) 1422 free_entries++; 1423 } 1424 if (free_entries == SWAPFILE_CLUSTER) { 1425 unlock_cluster_or_swap_info(si, ci); 1426 spin_lock(&si->lock); 1427 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1428 swap_free_cluster(si, idx); 1429 spin_unlock(&si->lock); 1430 return; 1431 } 1432 } 1433 for (i = 0; i < size; i++, entry.val++) { 1434 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1435 unlock_cluster_or_swap_info(si, ci); 1436 free_swap_slot(entry); 1437 if (i == size - 1) 1438 return; 1439 lock_cluster_or_swap_info(si, offset); 1440 } 1441 } 1442 unlock_cluster_or_swap_info(si, ci); 1443 } 1444 1445 static int swp_entry_cmp(const void *ent1, const void *ent2) 1446 { 1447 const swp_entry_t *e1 = ent1, *e2 = ent2; 1448 1449 return (int)swp_type(*e1) - (int)swp_type(*e2); 1450 } 1451 1452 void swapcache_free_entries(swp_entry_t *entries, int n) 1453 { 1454 struct swap_info_struct *p, *prev; 1455 int i; 1456 1457 if (n <= 0) 1458 return; 1459 1460 prev = NULL; 1461 p = NULL; 1462 1463 /* 1464 * Sort swap entries by swap device, so each lock is only taken once. 1465 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1466 * so low that it isn't necessary to optimize further. 1467 */ 1468 if (nr_swapfiles > 1) 1469 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1470 for (i = 0; i < n; ++i) { 1471 p = swap_info_get_cont(entries[i], prev); 1472 if (p) 1473 swap_entry_free(p, entries[i]); 1474 prev = p; 1475 } 1476 if (p) 1477 spin_unlock(&p->lock); 1478 } 1479 1480 int __swap_count(swp_entry_t entry) 1481 { 1482 struct swap_info_struct *si = swp_swap_info(entry); 1483 pgoff_t offset = swp_offset(entry); 1484 1485 return swap_count(si->swap_map[offset]); 1486 } 1487 1488 /* 1489 * How many references to @entry are currently swapped out? 1490 * This does not give an exact answer when swap count is continued, 1491 * but does include the high COUNT_CONTINUED flag to allow for that. 1492 */ 1493 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1494 { 1495 pgoff_t offset = swp_offset(entry); 1496 struct swap_cluster_info *ci; 1497 int count; 1498 1499 ci = lock_cluster_or_swap_info(si, offset); 1500 count = swap_count(si->swap_map[offset]); 1501 unlock_cluster_or_swap_info(si, ci); 1502 return count; 1503 } 1504 1505 /* 1506 * How many references to @entry are currently swapped out? 1507 * This considers COUNT_CONTINUED so it returns exact answer. 1508 */ 1509 int swp_swapcount(swp_entry_t entry) 1510 { 1511 int count, tmp_count, n; 1512 struct swap_info_struct *p; 1513 struct swap_cluster_info *ci; 1514 struct page *page; 1515 pgoff_t offset; 1516 unsigned char *map; 1517 1518 p = _swap_info_get(entry); 1519 if (!p) 1520 return 0; 1521 1522 offset = swp_offset(entry); 1523 1524 ci = lock_cluster_or_swap_info(p, offset); 1525 1526 count = swap_count(p->swap_map[offset]); 1527 if (!(count & COUNT_CONTINUED)) 1528 goto out; 1529 1530 count &= ~COUNT_CONTINUED; 1531 n = SWAP_MAP_MAX + 1; 1532 1533 page = vmalloc_to_page(p->swap_map + offset); 1534 offset &= ~PAGE_MASK; 1535 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1536 1537 do { 1538 page = list_next_entry(page, lru); 1539 map = kmap_local_page(page); 1540 tmp_count = map[offset]; 1541 kunmap_local(map); 1542 1543 count += (tmp_count & ~COUNT_CONTINUED) * n; 1544 n *= (SWAP_CONT_MAX + 1); 1545 } while (tmp_count & COUNT_CONTINUED); 1546 out: 1547 unlock_cluster_or_swap_info(p, ci); 1548 return count; 1549 } 1550 1551 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1552 swp_entry_t entry, int order) 1553 { 1554 struct swap_cluster_info *ci; 1555 unsigned char *map = si->swap_map; 1556 unsigned int nr_pages = 1 << order; 1557 unsigned long roffset = swp_offset(entry); 1558 unsigned long offset = round_down(roffset, nr_pages); 1559 int i; 1560 bool ret = false; 1561 1562 ci = lock_cluster_or_swap_info(si, offset); 1563 if (!ci || nr_pages == 1) { 1564 if (swap_count(map[roffset])) 1565 ret = true; 1566 goto unlock_out; 1567 } 1568 for (i = 0; i < nr_pages; i++) { 1569 if (swap_count(map[offset + i])) { 1570 ret = true; 1571 break; 1572 } 1573 } 1574 unlock_out: 1575 unlock_cluster_or_swap_info(si, ci); 1576 return ret; 1577 } 1578 1579 static bool folio_swapped(struct folio *folio) 1580 { 1581 swp_entry_t entry = folio->swap; 1582 struct swap_info_struct *si = _swap_info_get(entry); 1583 1584 if (!si) 1585 return false; 1586 1587 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1588 return swap_swapcount(si, entry) != 0; 1589 1590 return swap_page_trans_huge_swapped(si, entry, folio_order(folio)); 1591 } 1592 1593 /** 1594 * folio_free_swap() - Free the swap space used for this folio. 1595 * @folio: The folio to remove. 1596 * 1597 * If swap is getting full, or if there are no more mappings of this folio, 1598 * then call folio_free_swap to free its swap space. 1599 * 1600 * Return: true if we were able to release the swap space. 1601 */ 1602 bool folio_free_swap(struct folio *folio) 1603 { 1604 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1605 1606 if (!folio_test_swapcache(folio)) 1607 return false; 1608 if (folio_test_writeback(folio)) 1609 return false; 1610 if (folio_swapped(folio)) 1611 return false; 1612 1613 /* 1614 * Once hibernation has begun to create its image of memory, 1615 * there's a danger that one of the calls to folio_free_swap() 1616 * - most probably a call from __try_to_reclaim_swap() while 1617 * hibernation is allocating its own swap pages for the image, 1618 * but conceivably even a call from memory reclaim - will free 1619 * the swap from a folio which has already been recorded in the 1620 * image as a clean swapcache folio, and then reuse its swap for 1621 * another page of the image. On waking from hibernation, the 1622 * original folio might be freed under memory pressure, then 1623 * later read back in from swap, now with the wrong data. 1624 * 1625 * Hibernation suspends storage while it is writing the image 1626 * to disk so check that here. 1627 */ 1628 if (pm_suspended_storage()) 1629 return false; 1630 1631 delete_from_swap_cache(folio); 1632 folio_set_dirty(folio); 1633 return true; 1634 } 1635 1636 /** 1637 * free_swap_and_cache_nr() - Release reference on range of swap entries and 1638 * reclaim their cache if no more references remain. 1639 * @entry: First entry of range. 1640 * @nr: Number of entries in range. 1641 * 1642 * For each swap entry in the contiguous range, release a reference. If any swap 1643 * entries become free, try to reclaim their underlying folios, if present. The 1644 * offset range is defined by [entry.offset, entry.offset + nr). 1645 */ 1646 void free_swap_and_cache_nr(swp_entry_t entry, int nr) 1647 { 1648 const unsigned long start_offset = swp_offset(entry); 1649 const unsigned long end_offset = start_offset + nr; 1650 unsigned int type = swp_type(entry); 1651 struct swap_info_struct *si; 1652 bool any_only_cache = false; 1653 unsigned long offset; 1654 unsigned char count; 1655 1656 if (non_swap_entry(entry)) 1657 return; 1658 1659 si = get_swap_device(entry); 1660 if (!si) 1661 return; 1662 1663 if (WARN_ON(end_offset > si->max)) 1664 goto out; 1665 1666 /* 1667 * First free all entries in the range. 1668 */ 1669 for (offset = start_offset; offset < end_offset; offset++) { 1670 if (data_race(si->swap_map[offset])) { 1671 count = __swap_entry_free(si, swp_entry(type, offset)); 1672 if (count == SWAP_HAS_CACHE) 1673 any_only_cache = true; 1674 } else { 1675 WARN_ON_ONCE(1); 1676 } 1677 } 1678 1679 /* 1680 * Short-circuit the below loop if none of the entries had their 1681 * reference drop to zero. 1682 */ 1683 if (!any_only_cache) 1684 goto out; 1685 1686 /* 1687 * Now go back over the range trying to reclaim the swap cache. This is 1688 * more efficient for large folios because we will only try to reclaim 1689 * the swap once per folio in the common case. If we do 1690 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the 1691 * latter will get a reference and lock the folio for every individual 1692 * page but will only succeed once the swap slot for every subpage is 1693 * zero. 1694 */ 1695 for (offset = start_offset; offset < end_offset; offset += nr) { 1696 nr = 1; 1697 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 1698 /* 1699 * Folios are always naturally aligned in swap so 1700 * advance forward to the next boundary. Zero means no 1701 * folio was found for the swap entry, so advance by 1 1702 * in this case. Negative value means folio was found 1703 * but could not be reclaimed. Here we can still advance 1704 * to the next boundary. 1705 */ 1706 nr = __try_to_reclaim_swap(si, offset, 1707 TTRS_UNMAPPED | TTRS_FULL); 1708 if (nr == 0) 1709 nr = 1; 1710 else if (nr < 0) 1711 nr = -nr; 1712 nr = ALIGN(offset + 1, nr) - offset; 1713 } 1714 } 1715 1716 out: 1717 put_swap_device(si); 1718 } 1719 1720 #ifdef CONFIG_HIBERNATION 1721 1722 swp_entry_t get_swap_page_of_type(int type) 1723 { 1724 struct swap_info_struct *si = swap_type_to_swap_info(type); 1725 swp_entry_t entry = {0}; 1726 1727 if (!si) 1728 goto fail; 1729 1730 /* This is called for allocating swap entry, not cache */ 1731 spin_lock(&si->lock); 1732 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0)) 1733 atomic_long_dec(&nr_swap_pages); 1734 spin_unlock(&si->lock); 1735 fail: 1736 return entry; 1737 } 1738 1739 /* 1740 * Find the swap type that corresponds to given device (if any). 1741 * 1742 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1743 * from 0, in which the swap header is expected to be located. 1744 * 1745 * This is needed for the suspend to disk (aka swsusp). 1746 */ 1747 int swap_type_of(dev_t device, sector_t offset) 1748 { 1749 int type; 1750 1751 if (!device) 1752 return -1; 1753 1754 spin_lock(&swap_lock); 1755 for (type = 0; type < nr_swapfiles; type++) { 1756 struct swap_info_struct *sis = swap_info[type]; 1757 1758 if (!(sis->flags & SWP_WRITEOK)) 1759 continue; 1760 1761 if (device == sis->bdev->bd_dev) { 1762 struct swap_extent *se = first_se(sis); 1763 1764 if (se->start_block == offset) { 1765 spin_unlock(&swap_lock); 1766 return type; 1767 } 1768 } 1769 } 1770 spin_unlock(&swap_lock); 1771 return -ENODEV; 1772 } 1773 1774 int find_first_swap(dev_t *device) 1775 { 1776 int type; 1777 1778 spin_lock(&swap_lock); 1779 for (type = 0; type < nr_swapfiles; type++) { 1780 struct swap_info_struct *sis = swap_info[type]; 1781 1782 if (!(sis->flags & SWP_WRITEOK)) 1783 continue; 1784 *device = sis->bdev->bd_dev; 1785 spin_unlock(&swap_lock); 1786 return type; 1787 } 1788 spin_unlock(&swap_lock); 1789 return -ENODEV; 1790 } 1791 1792 /* 1793 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1794 * corresponding to given index in swap_info (swap type). 1795 */ 1796 sector_t swapdev_block(int type, pgoff_t offset) 1797 { 1798 struct swap_info_struct *si = swap_type_to_swap_info(type); 1799 struct swap_extent *se; 1800 1801 if (!si || !(si->flags & SWP_WRITEOK)) 1802 return 0; 1803 se = offset_to_swap_extent(si, offset); 1804 return se->start_block + (offset - se->start_page); 1805 } 1806 1807 /* 1808 * Return either the total number of swap pages of given type, or the number 1809 * of free pages of that type (depending on @free) 1810 * 1811 * This is needed for software suspend 1812 */ 1813 unsigned int count_swap_pages(int type, int free) 1814 { 1815 unsigned int n = 0; 1816 1817 spin_lock(&swap_lock); 1818 if ((unsigned int)type < nr_swapfiles) { 1819 struct swap_info_struct *sis = swap_info[type]; 1820 1821 spin_lock(&sis->lock); 1822 if (sis->flags & SWP_WRITEOK) { 1823 n = sis->pages; 1824 if (free) 1825 n -= sis->inuse_pages; 1826 } 1827 spin_unlock(&sis->lock); 1828 } 1829 spin_unlock(&swap_lock); 1830 return n; 1831 } 1832 #endif /* CONFIG_HIBERNATION */ 1833 1834 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1835 { 1836 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1837 } 1838 1839 /* 1840 * No need to decide whether this PTE shares the swap entry with others, 1841 * just let do_wp_page work it out if a write is requested later - to 1842 * force COW, vm_page_prot omits write permission from any private vma. 1843 */ 1844 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1845 unsigned long addr, swp_entry_t entry, struct folio *folio) 1846 { 1847 struct page *page; 1848 struct folio *swapcache; 1849 spinlock_t *ptl; 1850 pte_t *pte, new_pte, old_pte; 1851 bool hwpoisoned = false; 1852 int ret = 1; 1853 1854 swapcache = folio; 1855 folio = ksm_might_need_to_copy(folio, vma, addr); 1856 if (unlikely(!folio)) 1857 return -ENOMEM; 1858 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 1859 hwpoisoned = true; 1860 folio = swapcache; 1861 } 1862 1863 page = folio_file_page(folio, swp_offset(entry)); 1864 if (PageHWPoison(page)) 1865 hwpoisoned = true; 1866 1867 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1868 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1869 swp_entry_to_pte(entry)))) { 1870 ret = 0; 1871 goto out; 1872 } 1873 1874 old_pte = ptep_get(pte); 1875 1876 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) { 1877 swp_entry_t swp_entry; 1878 1879 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1880 if (hwpoisoned) { 1881 swp_entry = make_hwpoison_entry(page); 1882 } else { 1883 swp_entry = make_poisoned_swp_entry(); 1884 } 1885 new_pte = swp_entry_to_pte(swp_entry); 1886 ret = 0; 1887 goto setpte; 1888 } 1889 1890 /* 1891 * Some architectures may have to restore extra metadata to the page 1892 * when reading from swap. This metadata may be indexed by swap entry 1893 * so this must be called before swap_free(). 1894 */ 1895 arch_swap_restore(folio_swap(entry, folio), folio); 1896 1897 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1898 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1899 folio_get(folio); 1900 if (folio == swapcache) { 1901 rmap_t rmap_flags = RMAP_NONE; 1902 1903 /* 1904 * See do_swap_page(): writeback would be problematic. 1905 * However, we do a folio_wait_writeback() just before this 1906 * call and have the folio locked. 1907 */ 1908 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 1909 if (pte_swp_exclusive(old_pte)) 1910 rmap_flags |= RMAP_EXCLUSIVE; 1911 /* 1912 * We currently only expect small !anon folios, which are either 1913 * fully exclusive or fully shared. If we ever get large folios 1914 * here, we have to be careful. 1915 */ 1916 if (!folio_test_anon(folio)) { 1917 VM_WARN_ON_ONCE(folio_test_large(folio)); 1918 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 1919 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags); 1920 } else { 1921 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags); 1922 } 1923 } else { /* ksm created a completely new copy */ 1924 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 1925 folio_add_lru_vma(folio, vma); 1926 } 1927 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1928 if (pte_swp_soft_dirty(old_pte)) 1929 new_pte = pte_mksoft_dirty(new_pte); 1930 if (pte_swp_uffd_wp(old_pte)) 1931 new_pte = pte_mkuffd_wp(new_pte); 1932 setpte: 1933 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1934 swap_free(entry); 1935 out: 1936 if (pte) 1937 pte_unmap_unlock(pte, ptl); 1938 if (folio != swapcache) { 1939 folio_unlock(folio); 1940 folio_put(folio); 1941 } 1942 return ret; 1943 } 1944 1945 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1946 unsigned long addr, unsigned long end, 1947 unsigned int type) 1948 { 1949 pte_t *pte = NULL; 1950 struct swap_info_struct *si; 1951 1952 si = swap_info[type]; 1953 do { 1954 struct folio *folio; 1955 unsigned long offset; 1956 unsigned char swp_count; 1957 swp_entry_t entry; 1958 int ret; 1959 pte_t ptent; 1960 1961 if (!pte++) { 1962 pte = pte_offset_map(pmd, addr); 1963 if (!pte) 1964 break; 1965 } 1966 1967 ptent = ptep_get_lockless(pte); 1968 1969 if (!is_swap_pte(ptent)) 1970 continue; 1971 1972 entry = pte_to_swp_entry(ptent); 1973 if (swp_type(entry) != type) 1974 continue; 1975 1976 offset = swp_offset(entry); 1977 pte_unmap(pte); 1978 pte = NULL; 1979 1980 folio = swap_cache_get_folio(entry, vma, addr); 1981 if (!folio) { 1982 struct page *page; 1983 struct vm_fault vmf = { 1984 .vma = vma, 1985 .address = addr, 1986 .real_address = addr, 1987 .pmd = pmd, 1988 }; 1989 1990 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1991 &vmf); 1992 if (page) 1993 folio = page_folio(page); 1994 } 1995 if (!folio) { 1996 swp_count = READ_ONCE(si->swap_map[offset]); 1997 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1998 continue; 1999 return -ENOMEM; 2000 } 2001 2002 folio_lock(folio); 2003 folio_wait_writeback(folio); 2004 ret = unuse_pte(vma, pmd, addr, entry, folio); 2005 if (ret < 0) { 2006 folio_unlock(folio); 2007 folio_put(folio); 2008 return ret; 2009 } 2010 2011 folio_free_swap(folio); 2012 folio_unlock(folio); 2013 folio_put(folio); 2014 } while (addr += PAGE_SIZE, addr != end); 2015 2016 if (pte) 2017 pte_unmap(pte); 2018 return 0; 2019 } 2020 2021 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2022 unsigned long addr, unsigned long end, 2023 unsigned int type) 2024 { 2025 pmd_t *pmd; 2026 unsigned long next; 2027 int ret; 2028 2029 pmd = pmd_offset(pud, addr); 2030 do { 2031 cond_resched(); 2032 next = pmd_addr_end(addr, end); 2033 ret = unuse_pte_range(vma, pmd, addr, next, type); 2034 if (ret) 2035 return ret; 2036 } while (pmd++, addr = next, addr != end); 2037 return 0; 2038 } 2039 2040 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2041 unsigned long addr, unsigned long end, 2042 unsigned int type) 2043 { 2044 pud_t *pud; 2045 unsigned long next; 2046 int ret; 2047 2048 pud = pud_offset(p4d, addr); 2049 do { 2050 next = pud_addr_end(addr, end); 2051 if (pud_none_or_clear_bad(pud)) 2052 continue; 2053 ret = unuse_pmd_range(vma, pud, addr, next, type); 2054 if (ret) 2055 return ret; 2056 } while (pud++, addr = next, addr != end); 2057 return 0; 2058 } 2059 2060 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2061 unsigned long addr, unsigned long end, 2062 unsigned int type) 2063 { 2064 p4d_t *p4d; 2065 unsigned long next; 2066 int ret; 2067 2068 p4d = p4d_offset(pgd, addr); 2069 do { 2070 next = p4d_addr_end(addr, end); 2071 if (p4d_none_or_clear_bad(p4d)) 2072 continue; 2073 ret = unuse_pud_range(vma, p4d, addr, next, type); 2074 if (ret) 2075 return ret; 2076 } while (p4d++, addr = next, addr != end); 2077 return 0; 2078 } 2079 2080 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2081 { 2082 pgd_t *pgd; 2083 unsigned long addr, end, next; 2084 int ret; 2085 2086 addr = vma->vm_start; 2087 end = vma->vm_end; 2088 2089 pgd = pgd_offset(vma->vm_mm, addr); 2090 do { 2091 next = pgd_addr_end(addr, end); 2092 if (pgd_none_or_clear_bad(pgd)) 2093 continue; 2094 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2095 if (ret) 2096 return ret; 2097 } while (pgd++, addr = next, addr != end); 2098 return 0; 2099 } 2100 2101 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2102 { 2103 struct vm_area_struct *vma; 2104 int ret = 0; 2105 VMA_ITERATOR(vmi, mm, 0); 2106 2107 mmap_read_lock(mm); 2108 for_each_vma(vmi, vma) { 2109 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) { 2110 ret = unuse_vma(vma, type); 2111 if (ret) 2112 break; 2113 } 2114 2115 cond_resched(); 2116 } 2117 mmap_read_unlock(mm); 2118 return ret; 2119 } 2120 2121 /* 2122 * Scan swap_map from current position to next entry still in use. 2123 * Return 0 if there are no inuse entries after prev till end of 2124 * the map. 2125 */ 2126 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2127 unsigned int prev) 2128 { 2129 unsigned int i; 2130 unsigned char count; 2131 2132 /* 2133 * No need for swap_lock here: we're just looking 2134 * for whether an entry is in use, not modifying it; false 2135 * hits are okay, and sys_swapoff() has already prevented new 2136 * allocations from this area (while holding swap_lock). 2137 */ 2138 for (i = prev + 1; i < si->max; i++) { 2139 count = READ_ONCE(si->swap_map[i]); 2140 if (count && swap_count(count) != SWAP_MAP_BAD) 2141 break; 2142 if ((i % LATENCY_LIMIT) == 0) 2143 cond_resched(); 2144 } 2145 2146 if (i == si->max) 2147 i = 0; 2148 2149 return i; 2150 } 2151 2152 static int try_to_unuse(unsigned int type) 2153 { 2154 struct mm_struct *prev_mm; 2155 struct mm_struct *mm; 2156 struct list_head *p; 2157 int retval = 0; 2158 struct swap_info_struct *si = swap_info[type]; 2159 struct folio *folio; 2160 swp_entry_t entry; 2161 unsigned int i; 2162 2163 if (!READ_ONCE(si->inuse_pages)) 2164 goto success; 2165 2166 retry: 2167 retval = shmem_unuse(type); 2168 if (retval) 2169 return retval; 2170 2171 prev_mm = &init_mm; 2172 mmget(prev_mm); 2173 2174 spin_lock(&mmlist_lock); 2175 p = &init_mm.mmlist; 2176 while (READ_ONCE(si->inuse_pages) && 2177 !signal_pending(current) && 2178 (p = p->next) != &init_mm.mmlist) { 2179 2180 mm = list_entry(p, struct mm_struct, mmlist); 2181 if (!mmget_not_zero(mm)) 2182 continue; 2183 spin_unlock(&mmlist_lock); 2184 mmput(prev_mm); 2185 prev_mm = mm; 2186 retval = unuse_mm(mm, type); 2187 if (retval) { 2188 mmput(prev_mm); 2189 return retval; 2190 } 2191 2192 /* 2193 * Make sure that we aren't completely killing 2194 * interactive performance. 2195 */ 2196 cond_resched(); 2197 spin_lock(&mmlist_lock); 2198 } 2199 spin_unlock(&mmlist_lock); 2200 2201 mmput(prev_mm); 2202 2203 i = 0; 2204 while (READ_ONCE(si->inuse_pages) && 2205 !signal_pending(current) && 2206 (i = find_next_to_unuse(si, i)) != 0) { 2207 2208 entry = swp_entry(type, i); 2209 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry)); 2210 if (IS_ERR(folio)) 2211 continue; 2212 2213 /* 2214 * It is conceivable that a racing task removed this folio from 2215 * swap cache just before we acquired the page lock. The folio 2216 * might even be back in swap cache on another swap area. But 2217 * that is okay, folio_free_swap() only removes stale folios. 2218 */ 2219 folio_lock(folio); 2220 folio_wait_writeback(folio); 2221 folio_free_swap(folio); 2222 folio_unlock(folio); 2223 folio_put(folio); 2224 } 2225 2226 /* 2227 * Lets check again to see if there are still swap entries in the map. 2228 * If yes, we would need to do retry the unuse logic again. 2229 * Under global memory pressure, swap entries can be reinserted back 2230 * into process space after the mmlist loop above passes over them. 2231 * 2232 * Limit the number of retries? No: when mmget_not_zero() 2233 * above fails, that mm is likely to be freeing swap from 2234 * exit_mmap(), which proceeds at its own independent pace; 2235 * and even shmem_writepage() could have been preempted after 2236 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2237 * and robust (though cpu-intensive) just to keep retrying. 2238 */ 2239 if (READ_ONCE(si->inuse_pages)) { 2240 if (!signal_pending(current)) 2241 goto retry; 2242 return -EINTR; 2243 } 2244 2245 success: 2246 /* 2247 * Make sure that further cleanups after try_to_unuse() returns happen 2248 * after swap_range_free() reduces si->inuse_pages to 0. 2249 */ 2250 smp_mb(); 2251 return 0; 2252 } 2253 2254 /* 2255 * After a successful try_to_unuse, if no swap is now in use, we know 2256 * we can empty the mmlist. swap_lock must be held on entry and exit. 2257 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2258 * added to the mmlist just after page_duplicate - before would be racy. 2259 */ 2260 static void drain_mmlist(void) 2261 { 2262 struct list_head *p, *next; 2263 unsigned int type; 2264 2265 for (type = 0; type < nr_swapfiles; type++) 2266 if (swap_info[type]->inuse_pages) 2267 return; 2268 spin_lock(&mmlist_lock); 2269 list_for_each_safe(p, next, &init_mm.mmlist) 2270 list_del_init(p); 2271 spin_unlock(&mmlist_lock); 2272 } 2273 2274 /* 2275 * Free all of a swapdev's extent information 2276 */ 2277 static void destroy_swap_extents(struct swap_info_struct *sis) 2278 { 2279 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2280 struct rb_node *rb = sis->swap_extent_root.rb_node; 2281 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2282 2283 rb_erase(rb, &sis->swap_extent_root); 2284 kfree(se); 2285 } 2286 2287 if (sis->flags & SWP_ACTIVATED) { 2288 struct file *swap_file = sis->swap_file; 2289 struct address_space *mapping = swap_file->f_mapping; 2290 2291 sis->flags &= ~SWP_ACTIVATED; 2292 if (mapping->a_ops->swap_deactivate) 2293 mapping->a_ops->swap_deactivate(swap_file); 2294 } 2295 } 2296 2297 /* 2298 * Add a block range (and the corresponding page range) into this swapdev's 2299 * extent tree. 2300 * 2301 * This function rather assumes that it is called in ascending page order. 2302 */ 2303 int 2304 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2305 unsigned long nr_pages, sector_t start_block) 2306 { 2307 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2308 struct swap_extent *se; 2309 struct swap_extent *new_se; 2310 2311 /* 2312 * place the new node at the right most since the 2313 * function is called in ascending page order. 2314 */ 2315 while (*link) { 2316 parent = *link; 2317 link = &parent->rb_right; 2318 } 2319 2320 if (parent) { 2321 se = rb_entry(parent, struct swap_extent, rb_node); 2322 BUG_ON(se->start_page + se->nr_pages != start_page); 2323 if (se->start_block + se->nr_pages == start_block) { 2324 /* Merge it */ 2325 se->nr_pages += nr_pages; 2326 return 0; 2327 } 2328 } 2329 2330 /* No merge, insert a new extent. */ 2331 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2332 if (new_se == NULL) 2333 return -ENOMEM; 2334 new_se->start_page = start_page; 2335 new_se->nr_pages = nr_pages; 2336 new_se->start_block = start_block; 2337 2338 rb_link_node(&new_se->rb_node, parent, link); 2339 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2340 return 1; 2341 } 2342 EXPORT_SYMBOL_GPL(add_swap_extent); 2343 2344 /* 2345 * A `swap extent' is a simple thing which maps a contiguous range of pages 2346 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2347 * built at swapon time and is then used at swap_writepage/swap_read_folio 2348 * time for locating where on disk a page belongs. 2349 * 2350 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2351 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2352 * swap files identically. 2353 * 2354 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2355 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2356 * swapfiles are handled *identically* after swapon time. 2357 * 2358 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2359 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2360 * blocks are found which do not fall within the PAGE_SIZE alignment 2361 * requirements, they are simply tossed out - we will never use those blocks 2362 * for swapping. 2363 * 2364 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2365 * prevents users from writing to the swap device, which will corrupt memory. 2366 * 2367 * The amount of disk space which a single swap extent represents varies. 2368 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2369 * extents in the rbtree. - akpm. 2370 */ 2371 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2372 { 2373 struct file *swap_file = sis->swap_file; 2374 struct address_space *mapping = swap_file->f_mapping; 2375 struct inode *inode = mapping->host; 2376 int ret; 2377 2378 if (S_ISBLK(inode->i_mode)) { 2379 ret = add_swap_extent(sis, 0, sis->max, 0); 2380 *span = sis->pages; 2381 return ret; 2382 } 2383 2384 if (mapping->a_ops->swap_activate) { 2385 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2386 if (ret < 0) 2387 return ret; 2388 sis->flags |= SWP_ACTIVATED; 2389 if ((sis->flags & SWP_FS_OPS) && 2390 sio_pool_init() != 0) { 2391 destroy_swap_extents(sis); 2392 return -ENOMEM; 2393 } 2394 return ret; 2395 } 2396 2397 return generic_swapfile_activate(sis, swap_file, span); 2398 } 2399 2400 static int swap_node(struct swap_info_struct *p) 2401 { 2402 struct block_device *bdev; 2403 2404 if (p->bdev) 2405 bdev = p->bdev; 2406 else 2407 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2408 2409 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2410 } 2411 2412 static void setup_swap_info(struct swap_info_struct *p, int prio, 2413 unsigned char *swap_map, 2414 struct swap_cluster_info *cluster_info) 2415 { 2416 int i; 2417 2418 if (prio >= 0) 2419 p->prio = prio; 2420 else 2421 p->prio = --least_priority; 2422 /* 2423 * the plist prio is negated because plist ordering is 2424 * low-to-high, while swap ordering is high-to-low 2425 */ 2426 p->list.prio = -p->prio; 2427 for_each_node(i) { 2428 if (p->prio >= 0) 2429 p->avail_lists[i].prio = -p->prio; 2430 else { 2431 if (swap_node(p) == i) 2432 p->avail_lists[i].prio = 1; 2433 else 2434 p->avail_lists[i].prio = -p->prio; 2435 } 2436 } 2437 p->swap_map = swap_map; 2438 p->cluster_info = cluster_info; 2439 } 2440 2441 static void _enable_swap_info(struct swap_info_struct *p) 2442 { 2443 p->flags |= SWP_WRITEOK; 2444 atomic_long_add(p->pages, &nr_swap_pages); 2445 total_swap_pages += p->pages; 2446 2447 assert_spin_locked(&swap_lock); 2448 /* 2449 * both lists are plists, and thus priority ordered. 2450 * swap_active_head needs to be priority ordered for swapoff(), 2451 * which on removal of any swap_info_struct with an auto-assigned 2452 * (i.e. negative) priority increments the auto-assigned priority 2453 * of any lower-priority swap_info_structs. 2454 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2455 * which allocates swap pages from the highest available priority 2456 * swap_info_struct. 2457 */ 2458 plist_add(&p->list, &swap_active_head); 2459 2460 /* add to available list iff swap device is not full */ 2461 if (p->highest_bit) 2462 add_to_avail_list(p); 2463 } 2464 2465 static void enable_swap_info(struct swap_info_struct *p, int prio, 2466 unsigned char *swap_map, 2467 struct swap_cluster_info *cluster_info) 2468 { 2469 spin_lock(&swap_lock); 2470 spin_lock(&p->lock); 2471 setup_swap_info(p, prio, swap_map, cluster_info); 2472 spin_unlock(&p->lock); 2473 spin_unlock(&swap_lock); 2474 /* 2475 * Finished initializing swap device, now it's safe to reference it. 2476 */ 2477 percpu_ref_resurrect(&p->users); 2478 spin_lock(&swap_lock); 2479 spin_lock(&p->lock); 2480 _enable_swap_info(p); 2481 spin_unlock(&p->lock); 2482 spin_unlock(&swap_lock); 2483 } 2484 2485 static void reinsert_swap_info(struct swap_info_struct *p) 2486 { 2487 spin_lock(&swap_lock); 2488 spin_lock(&p->lock); 2489 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2490 _enable_swap_info(p); 2491 spin_unlock(&p->lock); 2492 spin_unlock(&swap_lock); 2493 } 2494 2495 static bool __has_usable_swap(void) 2496 { 2497 return !plist_head_empty(&swap_active_head); 2498 } 2499 2500 bool has_usable_swap(void) 2501 { 2502 bool ret; 2503 2504 spin_lock(&swap_lock); 2505 ret = __has_usable_swap(); 2506 spin_unlock(&swap_lock); 2507 return ret; 2508 } 2509 2510 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2511 { 2512 struct swap_info_struct *p = NULL; 2513 unsigned char *swap_map; 2514 struct swap_cluster_info *cluster_info; 2515 struct file *swap_file, *victim; 2516 struct address_space *mapping; 2517 struct inode *inode; 2518 struct filename *pathname; 2519 int err, found = 0; 2520 2521 if (!capable(CAP_SYS_ADMIN)) 2522 return -EPERM; 2523 2524 BUG_ON(!current->mm); 2525 2526 pathname = getname(specialfile); 2527 if (IS_ERR(pathname)) 2528 return PTR_ERR(pathname); 2529 2530 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2531 err = PTR_ERR(victim); 2532 if (IS_ERR(victim)) 2533 goto out; 2534 2535 mapping = victim->f_mapping; 2536 spin_lock(&swap_lock); 2537 plist_for_each_entry(p, &swap_active_head, list) { 2538 if (p->flags & SWP_WRITEOK) { 2539 if (p->swap_file->f_mapping == mapping) { 2540 found = 1; 2541 break; 2542 } 2543 } 2544 } 2545 if (!found) { 2546 err = -EINVAL; 2547 spin_unlock(&swap_lock); 2548 goto out_dput; 2549 } 2550 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2551 vm_unacct_memory(p->pages); 2552 else { 2553 err = -ENOMEM; 2554 spin_unlock(&swap_lock); 2555 goto out_dput; 2556 } 2557 spin_lock(&p->lock); 2558 del_from_avail_list(p); 2559 if (p->prio < 0) { 2560 struct swap_info_struct *si = p; 2561 int nid; 2562 2563 plist_for_each_entry_continue(si, &swap_active_head, list) { 2564 si->prio++; 2565 si->list.prio--; 2566 for_each_node(nid) { 2567 if (si->avail_lists[nid].prio != 1) 2568 si->avail_lists[nid].prio--; 2569 } 2570 } 2571 least_priority++; 2572 } 2573 plist_del(&p->list, &swap_active_head); 2574 atomic_long_sub(p->pages, &nr_swap_pages); 2575 total_swap_pages -= p->pages; 2576 p->flags &= ~SWP_WRITEOK; 2577 spin_unlock(&p->lock); 2578 spin_unlock(&swap_lock); 2579 2580 disable_swap_slots_cache_lock(); 2581 2582 set_current_oom_origin(); 2583 err = try_to_unuse(p->type); 2584 clear_current_oom_origin(); 2585 2586 if (err) { 2587 /* re-insert swap space back into swap_list */ 2588 reinsert_swap_info(p); 2589 reenable_swap_slots_cache_unlock(); 2590 goto out_dput; 2591 } 2592 2593 reenable_swap_slots_cache_unlock(); 2594 2595 /* 2596 * Wait for swap operations protected by get/put_swap_device() 2597 * to complete. Because of synchronize_rcu() here, all swap 2598 * operations protected by RCU reader side lock (including any 2599 * spinlock) will be waited too. This makes it easy to 2600 * prevent folio_test_swapcache() and the following swap cache 2601 * operations from racing with swapoff. 2602 */ 2603 percpu_ref_kill(&p->users); 2604 synchronize_rcu(); 2605 wait_for_completion(&p->comp); 2606 2607 flush_work(&p->discard_work); 2608 2609 destroy_swap_extents(p); 2610 if (p->flags & SWP_CONTINUED) 2611 free_swap_count_continuations(p); 2612 2613 if (!p->bdev || !bdev_nonrot(p->bdev)) 2614 atomic_dec(&nr_rotate_swap); 2615 2616 mutex_lock(&swapon_mutex); 2617 spin_lock(&swap_lock); 2618 spin_lock(&p->lock); 2619 drain_mmlist(); 2620 2621 /* wait for anyone still in scan_swap_map_slots */ 2622 p->highest_bit = 0; /* cuts scans short */ 2623 while (p->flags >= SWP_SCANNING) { 2624 spin_unlock(&p->lock); 2625 spin_unlock(&swap_lock); 2626 schedule_timeout_uninterruptible(1); 2627 spin_lock(&swap_lock); 2628 spin_lock(&p->lock); 2629 } 2630 2631 swap_file = p->swap_file; 2632 p->swap_file = NULL; 2633 p->max = 0; 2634 swap_map = p->swap_map; 2635 p->swap_map = NULL; 2636 cluster_info = p->cluster_info; 2637 p->cluster_info = NULL; 2638 spin_unlock(&p->lock); 2639 spin_unlock(&swap_lock); 2640 arch_swap_invalidate_area(p->type); 2641 zswap_swapoff(p->type); 2642 mutex_unlock(&swapon_mutex); 2643 free_percpu(p->percpu_cluster); 2644 p->percpu_cluster = NULL; 2645 free_percpu(p->cluster_next_cpu); 2646 p->cluster_next_cpu = NULL; 2647 vfree(swap_map); 2648 kvfree(cluster_info); 2649 /* Destroy swap account information */ 2650 swap_cgroup_swapoff(p->type); 2651 exit_swap_address_space(p->type); 2652 2653 inode = mapping->host; 2654 2655 inode_lock(inode); 2656 inode->i_flags &= ~S_SWAPFILE; 2657 inode_unlock(inode); 2658 filp_close(swap_file, NULL); 2659 2660 /* 2661 * Clear the SWP_USED flag after all resources are freed so that swapon 2662 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2663 * not hold p->lock after we cleared its SWP_WRITEOK. 2664 */ 2665 spin_lock(&swap_lock); 2666 p->flags = 0; 2667 spin_unlock(&swap_lock); 2668 2669 err = 0; 2670 atomic_inc(&proc_poll_event); 2671 wake_up_interruptible(&proc_poll_wait); 2672 2673 out_dput: 2674 filp_close(victim, NULL); 2675 out: 2676 putname(pathname); 2677 return err; 2678 } 2679 2680 #ifdef CONFIG_PROC_FS 2681 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2682 { 2683 struct seq_file *seq = file->private_data; 2684 2685 poll_wait(file, &proc_poll_wait, wait); 2686 2687 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2688 seq->poll_event = atomic_read(&proc_poll_event); 2689 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2690 } 2691 2692 return EPOLLIN | EPOLLRDNORM; 2693 } 2694 2695 /* iterator */ 2696 static void *swap_start(struct seq_file *swap, loff_t *pos) 2697 { 2698 struct swap_info_struct *si; 2699 int type; 2700 loff_t l = *pos; 2701 2702 mutex_lock(&swapon_mutex); 2703 2704 if (!l) 2705 return SEQ_START_TOKEN; 2706 2707 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2708 if (!(si->flags & SWP_USED) || !si->swap_map) 2709 continue; 2710 if (!--l) 2711 return si; 2712 } 2713 2714 return NULL; 2715 } 2716 2717 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2718 { 2719 struct swap_info_struct *si = v; 2720 int type; 2721 2722 if (v == SEQ_START_TOKEN) 2723 type = 0; 2724 else 2725 type = si->type + 1; 2726 2727 ++(*pos); 2728 for (; (si = swap_type_to_swap_info(type)); type++) { 2729 if (!(si->flags & SWP_USED) || !si->swap_map) 2730 continue; 2731 return si; 2732 } 2733 2734 return NULL; 2735 } 2736 2737 static void swap_stop(struct seq_file *swap, void *v) 2738 { 2739 mutex_unlock(&swapon_mutex); 2740 } 2741 2742 static int swap_show(struct seq_file *swap, void *v) 2743 { 2744 struct swap_info_struct *si = v; 2745 struct file *file; 2746 int len; 2747 unsigned long bytes, inuse; 2748 2749 if (si == SEQ_START_TOKEN) { 2750 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2751 return 0; 2752 } 2753 2754 bytes = K(si->pages); 2755 inuse = K(READ_ONCE(si->inuse_pages)); 2756 2757 file = si->swap_file; 2758 len = seq_file_path(swap, file, " \t\n\\"); 2759 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2760 len < 40 ? 40 - len : 1, " ", 2761 S_ISBLK(file_inode(file)->i_mode) ? 2762 "partition" : "file\t", 2763 bytes, bytes < 10000000 ? "\t" : "", 2764 inuse, inuse < 10000000 ? "\t" : "", 2765 si->prio); 2766 return 0; 2767 } 2768 2769 static const struct seq_operations swaps_op = { 2770 .start = swap_start, 2771 .next = swap_next, 2772 .stop = swap_stop, 2773 .show = swap_show 2774 }; 2775 2776 static int swaps_open(struct inode *inode, struct file *file) 2777 { 2778 struct seq_file *seq; 2779 int ret; 2780 2781 ret = seq_open(file, &swaps_op); 2782 if (ret) 2783 return ret; 2784 2785 seq = file->private_data; 2786 seq->poll_event = atomic_read(&proc_poll_event); 2787 return 0; 2788 } 2789 2790 static const struct proc_ops swaps_proc_ops = { 2791 .proc_flags = PROC_ENTRY_PERMANENT, 2792 .proc_open = swaps_open, 2793 .proc_read = seq_read, 2794 .proc_lseek = seq_lseek, 2795 .proc_release = seq_release, 2796 .proc_poll = swaps_poll, 2797 }; 2798 2799 static int __init procswaps_init(void) 2800 { 2801 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2802 return 0; 2803 } 2804 __initcall(procswaps_init); 2805 #endif /* CONFIG_PROC_FS */ 2806 2807 #ifdef MAX_SWAPFILES_CHECK 2808 static int __init max_swapfiles_check(void) 2809 { 2810 MAX_SWAPFILES_CHECK(); 2811 return 0; 2812 } 2813 late_initcall(max_swapfiles_check); 2814 #endif 2815 2816 static struct swap_info_struct *alloc_swap_info(void) 2817 { 2818 struct swap_info_struct *p; 2819 struct swap_info_struct *defer = NULL; 2820 unsigned int type; 2821 int i; 2822 2823 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2824 if (!p) 2825 return ERR_PTR(-ENOMEM); 2826 2827 if (percpu_ref_init(&p->users, swap_users_ref_free, 2828 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2829 kvfree(p); 2830 return ERR_PTR(-ENOMEM); 2831 } 2832 2833 spin_lock(&swap_lock); 2834 for (type = 0; type < nr_swapfiles; type++) { 2835 if (!(swap_info[type]->flags & SWP_USED)) 2836 break; 2837 } 2838 if (type >= MAX_SWAPFILES) { 2839 spin_unlock(&swap_lock); 2840 percpu_ref_exit(&p->users); 2841 kvfree(p); 2842 return ERR_PTR(-EPERM); 2843 } 2844 if (type >= nr_swapfiles) { 2845 p->type = type; 2846 /* 2847 * Publish the swap_info_struct after initializing it. 2848 * Note that kvzalloc() above zeroes all its fields. 2849 */ 2850 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2851 nr_swapfiles++; 2852 } else { 2853 defer = p; 2854 p = swap_info[type]; 2855 /* 2856 * Do not memset this entry: a racing procfs swap_next() 2857 * would be relying on p->type to remain valid. 2858 */ 2859 } 2860 p->swap_extent_root = RB_ROOT; 2861 plist_node_init(&p->list, 0); 2862 for_each_node(i) 2863 plist_node_init(&p->avail_lists[i], 0); 2864 p->flags = SWP_USED; 2865 spin_unlock(&swap_lock); 2866 if (defer) { 2867 percpu_ref_exit(&defer->users); 2868 kvfree(defer); 2869 } 2870 spin_lock_init(&p->lock); 2871 spin_lock_init(&p->cont_lock); 2872 init_completion(&p->comp); 2873 2874 return p; 2875 } 2876 2877 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2878 { 2879 if (S_ISBLK(inode->i_mode)) { 2880 p->bdev = I_BDEV(inode); 2881 /* 2882 * Zoned block devices contain zones that have a sequential 2883 * write only restriction. Hence zoned block devices are not 2884 * suitable for swapping. Disallow them here. 2885 */ 2886 if (bdev_is_zoned(p->bdev)) 2887 return -EINVAL; 2888 p->flags |= SWP_BLKDEV; 2889 } else if (S_ISREG(inode->i_mode)) { 2890 p->bdev = inode->i_sb->s_bdev; 2891 } 2892 2893 return 0; 2894 } 2895 2896 2897 /* 2898 * Find out how many pages are allowed for a single swap device. There 2899 * are two limiting factors: 2900 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2901 * 2) the number of bits in the swap pte, as defined by the different 2902 * architectures. 2903 * 2904 * In order to find the largest possible bit mask, a swap entry with 2905 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2906 * decoded to a swp_entry_t again, and finally the swap offset is 2907 * extracted. 2908 * 2909 * This will mask all the bits from the initial ~0UL mask that can't 2910 * be encoded in either the swp_entry_t or the architecture definition 2911 * of a swap pte. 2912 */ 2913 unsigned long generic_max_swapfile_size(void) 2914 { 2915 return swp_offset(pte_to_swp_entry( 2916 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2917 } 2918 2919 /* Can be overridden by an architecture for additional checks. */ 2920 __weak unsigned long arch_max_swapfile_size(void) 2921 { 2922 return generic_max_swapfile_size(); 2923 } 2924 2925 static unsigned long read_swap_header(struct swap_info_struct *p, 2926 union swap_header *swap_header, 2927 struct inode *inode) 2928 { 2929 int i; 2930 unsigned long maxpages; 2931 unsigned long swapfilepages; 2932 unsigned long last_page; 2933 2934 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2935 pr_err("Unable to find swap-space signature\n"); 2936 return 0; 2937 } 2938 2939 /* swap partition endianness hack... */ 2940 if (swab32(swap_header->info.version) == 1) { 2941 swab32s(&swap_header->info.version); 2942 swab32s(&swap_header->info.last_page); 2943 swab32s(&swap_header->info.nr_badpages); 2944 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2945 return 0; 2946 for (i = 0; i < swap_header->info.nr_badpages; i++) 2947 swab32s(&swap_header->info.badpages[i]); 2948 } 2949 /* Check the swap header's sub-version */ 2950 if (swap_header->info.version != 1) { 2951 pr_warn("Unable to handle swap header version %d\n", 2952 swap_header->info.version); 2953 return 0; 2954 } 2955 2956 p->lowest_bit = 1; 2957 p->cluster_next = 1; 2958 p->cluster_nr = 0; 2959 2960 maxpages = swapfile_maximum_size; 2961 last_page = swap_header->info.last_page; 2962 if (!last_page) { 2963 pr_warn("Empty swap-file\n"); 2964 return 0; 2965 } 2966 if (last_page > maxpages) { 2967 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2968 K(maxpages), K(last_page)); 2969 } 2970 if (maxpages > last_page) { 2971 maxpages = last_page + 1; 2972 /* p->max is an unsigned int: don't overflow it */ 2973 if ((unsigned int)maxpages == 0) 2974 maxpages = UINT_MAX; 2975 } 2976 p->highest_bit = maxpages - 1; 2977 2978 if (!maxpages) 2979 return 0; 2980 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2981 if (swapfilepages && maxpages > swapfilepages) { 2982 pr_warn("Swap area shorter than signature indicates\n"); 2983 return 0; 2984 } 2985 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2986 return 0; 2987 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2988 return 0; 2989 2990 return maxpages; 2991 } 2992 2993 #define SWAP_CLUSTER_INFO_COLS \ 2994 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2995 #define SWAP_CLUSTER_SPACE_COLS \ 2996 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2997 #define SWAP_CLUSTER_COLS \ 2998 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2999 3000 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3001 union swap_header *swap_header, 3002 unsigned char *swap_map, 3003 struct swap_cluster_info *cluster_info, 3004 unsigned long maxpages, 3005 sector_t *span) 3006 { 3007 unsigned int j, k; 3008 unsigned int nr_good_pages; 3009 int nr_extents; 3010 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3011 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3012 unsigned long i, idx; 3013 3014 nr_good_pages = maxpages - 1; /* omit header page */ 3015 3016 cluster_list_init(&p->free_clusters); 3017 cluster_list_init(&p->discard_clusters); 3018 3019 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3020 unsigned int page_nr = swap_header->info.badpages[i]; 3021 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3022 return -EINVAL; 3023 if (page_nr < maxpages) { 3024 swap_map[page_nr] = SWAP_MAP_BAD; 3025 nr_good_pages--; 3026 /* 3027 * Haven't marked the cluster free yet, no list 3028 * operation involved 3029 */ 3030 inc_cluster_info_page(p, cluster_info, page_nr); 3031 } 3032 } 3033 3034 /* Haven't marked the cluster free yet, no list operation involved */ 3035 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3036 inc_cluster_info_page(p, cluster_info, i); 3037 3038 if (nr_good_pages) { 3039 swap_map[0] = SWAP_MAP_BAD; 3040 /* 3041 * Not mark the cluster free yet, no list 3042 * operation involved 3043 */ 3044 inc_cluster_info_page(p, cluster_info, 0); 3045 p->max = maxpages; 3046 p->pages = nr_good_pages; 3047 nr_extents = setup_swap_extents(p, span); 3048 if (nr_extents < 0) 3049 return nr_extents; 3050 nr_good_pages = p->pages; 3051 } 3052 if (!nr_good_pages) { 3053 pr_warn("Empty swap-file\n"); 3054 return -EINVAL; 3055 } 3056 3057 if (!cluster_info) 3058 return nr_extents; 3059 3060 3061 /* 3062 * Reduce false cache line sharing between cluster_info and 3063 * sharing same address space. 3064 */ 3065 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3066 j = (k + col) % SWAP_CLUSTER_COLS; 3067 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3068 idx = i * SWAP_CLUSTER_COLS + j; 3069 if (idx >= nr_clusters) 3070 continue; 3071 if (cluster_count(&cluster_info[idx])) 3072 continue; 3073 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3074 cluster_list_add_tail(&p->free_clusters, cluster_info, 3075 idx); 3076 } 3077 } 3078 return nr_extents; 3079 } 3080 3081 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3082 { 3083 struct swap_info_struct *p; 3084 struct filename *name; 3085 struct file *swap_file = NULL; 3086 struct address_space *mapping; 3087 struct dentry *dentry; 3088 int prio; 3089 int error; 3090 union swap_header *swap_header; 3091 int nr_extents; 3092 sector_t span; 3093 unsigned long maxpages; 3094 unsigned char *swap_map = NULL; 3095 struct swap_cluster_info *cluster_info = NULL; 3096 struct page *page = NULL; 3097 struct inode *inode = NULL; 3098 bool inced_nr_rotate_swap = false; 3099 3100 if (swap_flags & ~SWAP_FLAGS_VALID) 3101 return -EINVAL; 3102 3103 if (!capable(CAP_SYS_ADMIN)) 3104 return -EPERM; 3105 3106 if (!swap_avail_heads) 3107 return -ENOMEM; 3108 3109 p = alloc_swap_info(); 3110 if (IS_ERR(p)) 3111 return PTR_ERR(p); 3112 3113 INIT_WORK(&p->discard_work, swap_discard_work); 3114 3115 name = getname(specialfile); 3116 if (IS_ERR(name)) { 3117 error = PTR_ERR(name); 3118 name = NULL; 3119 goto bad_swap; 3120 } 3121 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0); 3122 if (IS_ERR(swap_file)) { 3123 error = PTR_ERR(swap_file); 3124 swap_file = NULL; 3125 goto bad_swap; 3126 } 3127 3128 p->swap_file = swap_file; 3129 mapping = swap_file->f_mapping; 3130 dentry = swap_file->f_path.dentry; 3131 inode = mapping->host; 3132 3133 error = claim_swapfile(p, inode); 3134 if (unlikely(error)) 3135 goto bad_swap; 3136 3137 inode_lock(inode); 3138 if (d_unlinked(dentry) || cant_mount(dentry)) { 3139 error = -ENOENT; 3140 goto bad_swap_unlock_inode; 3141 } 3142 if (IS_SWAPFILE(inode)) { 3143 error = -EBUSY; 3144 goto bad_swap_unlock_inode; 3145 } 3146 3147 /* 3148 * Read the swap header. 3149 */ 3150 if (!mapping->a_ops->read_folio) { 3151 error = -EINVAL; 3152 goto bad_swap_unlock_inode; 3153 } 3154 page = read_mapping_page(mapping, 0, swap_file); 3155 if (IS_ERR(page)) { 3156 error = PTR_ERR(page); 3157 goto bad_swap_unlock_inode; 3158 } 3159 swap_header = kmap(page); 3160 3161 maxpages = read_swap_header(p, swap_header, inode); 3162 if (unlikely(!maxpages)) { 3163 error = -EINVAL; 3164 goto bad_swap_unlock_inode; 3165 } 3166 3167 /* OK, set up the swap map and apply the bad block list */ 3168 swap_map = vzalloc(maxpages); 3169 if (!swap_map) { 3170 error = -ENOMEM; 3171 goto bad_swap_unlock_inode; 3172 } 3173 3174 if (p->bdev && bdev_stable_writes(p->bdev)) 3175 p->flags |= SWP_STABLE_WRITES; 3176 3177 if (p->bdev && bdev_synchronous(p->bdev)) 3178 p->flags |= SWP_SYNCHRONOUS_IO; 3179 3180 if (p->bdev && bdev_nonrot(p->bdev)) { 3181 int cpu, i; 3182 unsigned long ci, nr_cluster; 3183 3184 p->flags |= SWP_SOLIDSTATE; 3185 p->cluster_next_cpu = alloc_percpu(unsigned int); 3186 if (!p->cluster_next_cpu) { 3187 error = -ENOMEM; 3188 goto bad_swap_unlock_inode; 3189 } 3190 /* 3191 * select a random position to start with to help wear leveling 3192 * SSD 3193 */ 3194 for_each_possible_cpu(cpu) { 3195 per_cpu(*p->cluster_next_cpu, cpu) = 3196 get_random_u32_inclusive(1, p->highest_bit); 3197 } 3198 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3199 3200 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3201 GFP_KERNEL); 3202 if (!cluster_info) { 3203 error = -ENOMEM; 3204 goto bad_swap_unlock_inode; 3205 } 3206 3207 for (ci = 0; ci < nr_cluster; ci++) 3208 spin_lock_init(&((cluster_info + ci)->lock)); 3209 3210 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3211 if (!p->percpu_cluster) { 3212 error = -ENOMEM; 3213 goto bad_swap_unlock_inode; 3214 } 3215 for_each_possible_cpu(cpu) { 3216 struct percpu_cluster *cluster; 3217 3218 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3219 for (i = 0; i < SWAP_NR_ORDERS; i++) 3220 cluster->next[i] = SWAP_NEXT_INVALID; 3221 } 3222 } else { 3223 atomic_inc(&nr_rotate_swap); 3224 inced_nr_rotate_swap = true; 3225 } 3226 3227 error = swap_cgroup_swapon(p->type, maxpages); 3228 if (error) 3229 goto bad_swap_unlock_inode; 3230 3231 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3232 cluster_info, maxpages, &span); 3233 if (unlikely(nr_extents < 0)) { 3234 error = nr_extents; 3235 goto bad_swap_unlock_inode; 3236 } 3237 3238 if ((swap_flags & SWAP_FLAG_DISCARD) && 3239 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3240 /* 3241 * When discard is enabled for swap with no particular 3242 * policy flagged, we set all swap discard flags here in 3243 * order to sustain backward compatibility with older 3244 * swapon(8) releases. 3245 */ 3246 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3247 SWP_PAGE_DISCARD); 3248 3249 /* 3250 * By flagging sys_swapon, a sysadmin can tell us to 3251 * either do single-time area discards only, or to just 3252 * perform discards for released swap page-clusters. 3253 * Now it's time to adjust the p->flags accordingly. 3254 */ 3255 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3256 p->flags &= ~SWP_PAGE_DISCARD; 3257 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3258 p->flags &= ~SWP_AREA_DISCARD; 3259 3260 /* issue a swapon-time discard if it's still required */ 3261 if (p->flags & SWP_AREA_DISCARD) { 3262 int err = discard_swap(p); 3263 if (unlikely(err)) 3264 pr_err("swapon: discard_swap(%p): %d\n", 3265 p, err); 3266 } 3267 } 3268 3269 error = init_swap_address_space(p->type, maxpages); 3270 if (error) 3271 goto bad_swap_unlock_inode; 3272 3273 error = zswap_swapon(p->type, maxpages); 3274 if (error) 3275 goto free_swap_address_space; 3276 3277 /* 3278 * Flush any pending IO and dirty mappings before we start using this 3279 * swap device. 3280 */ 3281 inode->i_flags |= S_SWAPFILE; 3282 error = inode_drain_writes(inode); 3283 if (error) { 3284 inode->i_flags &= ~S_SWAPFILE; 3285 goto free_swap_zswap; 3286 } 3287 3288 mutex_lock(&swapon_mutex); 3289 prio = -1; 3290 if (swap_flags & SWAP_FLAG_PREFER) 3291 prio = 3292 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3293 enable_swap_info(p, prio, swap_map, cluster_info); 3294 3295 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3296 K(p->pages), name->name, p->prio, nr_extents, 3297 K((unsigned long long)span), 3298 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3299 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3300 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3301 (p->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3302 3303 mutex_unlock(&swapon_mutex); 3304 atomic_inc(&proc_poll_event); 3305 wake_up_interruptible(&proc_poll_wait); 3306 3307 error = 0; 3308 goto out; 3309 free_swap_zswap: 3310 zswap_swapoff(p->type); 3311 free_swap_address_space: 3312 exit_swap_address_space(p->type); 3313 bad_swap_unlock_inode: 3314 inode_unlock(inode); 3315 bad_swap: 3316 free_percpu(p->percpu_cluster); 3317 p->percpu_cluster = NULL; 3318 free_percpu(p->cluster_next_cpu); 3319 p->cluster_next_cpu = NULL; 3320 inode = NULL; 3321 destroy_swap_extents(p); 3322 swap_cgroup_swapoff(p->type); 3323 spin_lock(&swap_lock); 3324 p->swap_file = NULL; 3325 p->flags = 0; 3326 spin_unlock(&swap_lock); 3327 vfree(swap_map); 3328 kvfree(cluster_info); 3329 if (inced_nr_rotate_swap) 3330 atomic_dec(&nr_rotate_swap); 3331 if (swap_file) 3332 filp_close(swap_file, NULL); 3333 out: 3334 if (page && !IS_ERR(page)) { 3335 kunmap(page); 3336 put_page(page); 3337 } 3338 if (name) 3339 putname(name); 3340 if (inode) 3341 inode_unlock(inode); 3342 if (!error) 3343 enable_swap_slots_cache(); 3344 return error; 3345 } 3346 3347 void si_swapinfo(struct sysinfo *val) 3348 { 3349 unsigned int type; 3350 unsigned long nr_to_be_unused = 0; 3351 3352 spin_lock(&swap_lock); 3353 for (type = 0; type < nr_swapfiles; type++) { 3354 struct swap_info_struct *si = swap_info[type]; 3355 3356 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3357 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3358 } 3359 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3360 val->totalswap = total_swap_pages + nr_to_be_unused; 3361 spin_unlock(&swap_lock); 3362 } 3363 3364 /* 3365 * Verify that a swap entry is valid and increment its swap map count. 3366 * 3367 * Returns error code in following case. 3368 * - success -> 0 3369 * - swp_entry is invalid -> EINVAL 3370 * - swp_entry is migration entry -> EINVAL 3371 * - swap-cache reference is requested but there is already one. -> EEXIST 3372 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3373 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3374 */ 3375 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3376 { 3377 struct swap_info_struct *p; 3378 struct swap_cluster_info *ci; 3379 unsigned long offset; 3380 unsigned char count; 3381 unsigned char has_cache; 3382 int err; 3383 3384 p = swp_swap_info(entry); 3385 3386 offset = swp_offset(entry); 3387 ci = lock_cluster_or_swap_info(p, offset); 3388 3389 count = p->swap_map[offset]; 3390 3391 /* 3392 * swapin_readahead() doesn't check if a swap entry is valid, so the 3393 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3394 */ 3395 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3396 err = -ENOENT; 3397 goto unlock_out; 3398 } 3399 3400 has_cache = count & SWAP_HAS_CACHE; 3401 count &= ~SWAP_HAS_CACHE; 3402 err = 0; 3403 3404 if (usage == SWAP_HAS_CACHE) { 3405 3406 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3407 if (!has_cache && count) 3408 has_cache = SWAP_HAS_CACHE; 3409 else if (has_cache) /* someone else added cache */ 3410 err = -EEXIST; 3411 else /* no users remaining */ 3412 err = -ENOENT; 3413 3414 } else if (count || has_cache) { 3415 3416 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3417 count += usage; 3418 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3419 err = -EINVAL; 3420 else if (swap_count_continued(p, offset, count)) 3421 count = COUNT_CONTINUED; 3422 else 3423 err = -ENOMEM; 3424 } else 3425 err = -ENOENT; /* unused swap entry */ 3426 3427 if (!err) 3428 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3429 3430 unlock_out: 3431 unlock_cluster_or_swap_info(p, ci); 3432 return err; 3433 } 3434 3435 /* 3436 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3437 * (in which case its reference count is never incremented). 3438 */ 3439 void swap_shmem_alloc(swp_entry_t entry) 3440 { 3441 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3442 } 3443 3444 /* 3445 * Increase reference count of swap entry by 1. 3446 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3447 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3448 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3449 * might occur if a page table entry has got corrupted. 3450 */ 3451 int swap_duplicate(swp_entry_t entry) 3452 { 3453 int err = 0; 3454 3455 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3456 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3457 return err; 3458 } 3459 3460 /* 3461 * @entry: swap entry for which we allocate swap cache. 3462 * 3463 * Called when allocating swap cache for existing swap entry, 3464 * This can return error codes. Returns 0 at success. 3465 * -EEXIST means there is a swap cache. 3466 * Note: return code is different from swap_duplicate(). 3467 */ 3468 int swapcache_prepare(swp_entry_t entry) 3469 { 3470 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3471 } 3472 3473 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry) 3474 { 3475 struct swap_cluster_info *ci; 3476 unsigned long offset = swp_offset(entry); 3477 unsigned char usage; 3478 3479 ci = lock_cluster_or_swap_info(si, offset); 3480 usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE); 3481 unlock_cluster_or_swap_info(si, ci); 3482 if (!usage) 3483 free_swap_slot(entry); 3484 } 3485 3486 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3487 { 3488 return swap_type_to_swap_info(swp_type(entry)); 3489 } 3490 3491 /* 3492 * out-of-line methods to avoid include hell. 3493 */ 3494 struct address_space *swapcache_mapping(struct folio *folio) 3495 { 3496 return swp_swap_info(folio->swap)->swap_file->f_mapping; 3497 } 3498 EXPORT_SYMBOL_GPL(swapcache_mapping); 3499 3500 pgoff_t __folio_swap_cache_index(struct folio *folio) 3501 { 3502 return swap_cache_index(folio->swap); 3503 } 3504 EXPORT_SYMBOL_GPL(__folio_swap_cache_index); 3505 3506 /* 3507 * add_swap_count_continuation - called when a swap count is duplicated 3508 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3509 * page of the original vmalloc'ed swap_map, to hold the continuation count 3510 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3511 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3512 * 3513 * These continuation pages are seldom referenced: the common paths all work 3514 * on the original swap_map, only referring to a continuation page when the 3515 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3516 * 3517 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3518 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3519 * can be called after dropping locks. 3520 */ 3521 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3522 { 3523 struct swap_info_struct *si; 3524 struct swap_cluster_info *ci; 3525 struct page *head; 3526 struct page *page; 3527 struct page *list_page; 3528 pgoff_t offset; 3529 unsigned char count; 3530 int ret = 0; 3531 3532 /* 3533 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3534 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3535 */ 3536 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3537 3538 si = get_swap_device(entry); 3539 if (!si) { 3540 /* 3541 * An acceptable race has occurred since the failing 3542 * __swap_duplicate(): the swap device may be swapoff 3543 */ 3544 goto outer; 3545 } 3546 spin_lock(&si->lock); 3547 3548 offset = swp_offset(entry); 3549 3550 ci = lock_cluster(si, offset); 3551 3552 count = swap_count(si->swap_map[offset]); 3553 3554 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3555 /* 3556 * The higher the swap count, the more likely it is that tasks 3557 * will race to add swap count continuation: we need to avoid 3558 * over-provisioning. 3559 */ 3560 goto out; 3561 } 3562 3563 if (!page) { 3564 ret = -ENOMEM; 3565 goto out; 3566 } 3567 3568 head = vmalloc_to_page(si->swap_map + offset); 3569 offset &= ~PAGE_MASK; 3570 3571 spin_lock(&si->cont_lock); 3572 /* 3573 * Page allocation does not initialize the page's lru field, 3574 * but it does always reset its private field. 3575 */ 3576 if (!page_private(head)) { 3577 BUG_ON(count & COUNT_CONTINUED); 3578 INIT_LIST_HEAD(&head->lru); 3579 set_page_private(head, SWP_CONTINUED); 3580 si->flags |= SWP_CONTINUED; 3581 } 3582 3583 list_for_each_entry(list_page, &head->lru, lru) { 3584 unsigned char *map; 3585 3586 /* 3587 * If the previous map said no continuation, but we've found 3588 * a continuation page, free our allocation and use this one. 3589 */ 3590 if (!(count & COUNT_CONTINUED)) 3591 goto out_unlock_cont; 3592 3593 map = kmap_local_page(list_page) + offset; 3594 count = *map; 3595 kunmap_local(map); 3596 3597 /* 3598 * If this continuation count now has some space in it, 3599 * free our allocation and use this one. 3600 */ 3601 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3602 goto out_unlock_cont; 3603 } 3604 3605 list_add_tail(&page->lru, &head->lru); 3606 page = NULL; /* now it's attached, don't free it */ 3607 out_unlock_cont: 3608 spin_unlock(&si->cont_lock); 3609 out: 3610 unlock_cluster(ci); 3611 spin_unlock(&si->lock); 3612 put_swap_device(si); 3613 outer: 3614 if (page) 3615 __free_page(page); 3616 return ret; 3617 } 3618 3619 /* 3620 * swap_count_continued - when the original swap_map count is incremented 3621 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3622 * into, carry if so, or else fail until a new continuation page is allocated; 3623 * when the original swap_map count is decremented from 0 with continuation, 3624 * borrow from the continuation and report whether it still holds more. 3625 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3626 * lock. 3627 */ 3628 static bool swap_count_continued(struct swap_info_struct *si, 3629 pgoff_t offset, unsigned char count) 3630 { 3631 struct page *head; 3632 struct page *page; 3633 unsigned char *map; 3634 bool ret; 3635 3636 head = vmalloc_to_page(si->swap_map + offset); 3637 if (page_private(head) != SWP_CONTINUED) { 3638 BUG_ON(count & COUNT_CONTINUED); 3639 return false; /* need to add count continuation */ 3640 } 3641 3642 spin_lock(&si->cont_lock); 3643 offset &= ~PAGE_MASK; 3644 page = list_next_entry(head, lru); 3645 map = kmap_local_page(page) + offset; 3646 3647 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3648 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3649 3650 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3651 /* 3652 * Think of how you add 1 to 999 3653 */ 3654 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3655 kunmap_local(map); 3656 page = list_next_entry(page, lru); 3657 BUG_ON(page == head); 3658 map = kmap_local_page(page) + offset; 3659 } 3660 if (*map == SWAP_CONT_MAX) { 3661 kunmap_local(map); 3662 page = list_next_entry(page, lru); 3663 if (page == head) { 3664 ret = false; /* add count continuation */ 3665 goto out; 3666 } 3667 map = kmap_local_page(page) + offset; 3668 init_map: *map = 0; /* we didn't zero the page */ 3669 } 3670 *map += 1; 3671 kunmap_local(map); 3672 while ((page = list_prev_entry(page, lru)) != head) { 3673 map = kmap_local_page(page) + offset; 3674 *map = COUNT_CONTINUED; 3675 kunmap_local(map); 3676 } 3677 ret = true; /* incremented */ 3678 3679 } else { /* decrementing */ 3680 /* 3681 * Think of how you subtract 1 from 1000 3682 */ 3683 BUG_ON(count != COUNT_CONTINUED); 3684 while (*map == COUNT_CONTINUED) { 3685 kunmap_local(map); 3686 page = list_next_entry(page, lru); 3687 BUG_ON(page == head); 3688 map = kmap_local_page(page) + offset; 3689 } 3690 BUG_ON(*map == 0); 3691 *map -= 1; 3692 if (*map == 0) 3693 count = 0; 3694 kunmap_local(map); 3695 while ((page = list_prev_entry(page, lru)) != head) { 3696 map = kmap_local_page(page) + offset; 3697 *map = SWAP_CONT_MAX | count; 3698 count = COUNT_CONTINUED; 3699 kunmap_local(map); 3700 } 3701 ret = count == COUNT_CONTINUED; 3702 } 3703 out: 3704 spin_unlock(&si->cont_lock); 3705 return ret; 3706 } 3707 3708 /* 3709 * free_swap_count_continuations - swapoff free all the continuation pages 3710 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3711 */ 3712 static void free_swap_count_continuations(struct swap_info_struct *si) 3713 { 3714 pgoff_t offset; 3715 3716 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3717 struct page *head; 3718 head = vmalloc_to_page(si->swap_map + offset); 3719 if (page_private(head)) { 3720 struct page *page, *next; 3721 3722 list_for_each_entry_safe(page, next, &head->lru, lru) { 3723 list_del(&page->lru); 3724 __free_page(page); 3725 } 3726 } 3727 } 3728 } 3729 3730 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3731 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3732 { 3733 struct swap_info_struct *si, *next; 3734 int nid = folio_nid(folio); 3735 3736 if (!(gfp & __GFP_IO)) 3737 return; 3738 3739 if (!__has_usable_swap()) 3740 return; 3741 3742 if (!blk_cgroup_congested()) 3743 return; 3744 3745 /* 3746 * We've already scheduled a throttle, avoid taking the global swap 3747 * lock. 3748 */ 3749 if (current->throttle_disk) 3750 return; 3751 3752 spin_lock(&swap_avail_lock); 3753 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3754 avail_lists[nid]) { 3755 if (si->bdev) { 3756 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3757 break; 3758 } 3759 } 3760 spin_unlock(&swap_avail_lock); 3761 } 3762 #endif 3763 3764 static int __init swapfile_init(void) 3765 { 3766 int nid; 3767 3768 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3769 GFP_KERNEL); 3770 if (!swap_avail_heads) { 3771 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3772 return -ENOMEM; 3773 } 3774 3775 for_each_node(nid) 3776 plist_head_init(&swap_avail_heads[nid]); 3777 3778 swapfile_maximum_size = arch_max_swapfile_size(); 3779 3780 #ifdef CONFIG_MIGRATION 3781 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3782 swap_migration_ad_supported = true; 3783 #endif /* CONFIG_MIGRATION */ 3784 3785 return 0; 3786 } 3787 subsys_initcall(swapfile_init); 3788
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.