~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/swapfile.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/mm/swapfile.c
  4  *
  5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6  *  Swap reorganised 29.12.95, Stephen Tweedie
  7  */
  8 
  9 #include <linux/blkdev.h>
 10 #include <linux/mm.h>
 11 #include <linux/sched/mm.h>
 12 #include <linux/sched/task.h>
 13 #include <linux/hugetlb.h>
 14 #include <linux/mman.h>
 15 #include <linux/slab.h>
 16 #include <linux/kernel_stat.h>
 17 #include <linux/swap.h>
 18 #include <linux/vmalloc.h>
 19 #include <linux/pagemap.h>
 20 #include <linux/namei.h>
 21 #include <linux/shmem_fs.h>
 22 #include <linux/blk-cgroup.h>
 23 #include <linux/random.h>
 24 #include <linux/writeback.h>
 25 #include <linux/proc_fs.h>
 26 #include <linux/seq_file.h>
 27 #include <linux/init.h>
 28 #include <linux/ksm.h>
 29 #include <linux/rmap.h>
 30 #include <linux/security.h>
 31 #include <linux/backing-dev.h>
 32 #include <linux/mutex.h>
 33 #include <linux/capability.h>
 34 #include <linux/syscalls.h>
 35 #include <linux/memcontrol.h>
 36 #include <linux/poll.h>
 37 #include <linux/oom.h>
 38 #include <linux/swapfile.h>
 39 #include <linux/export.h>
 40 #include <linux/swap_slots.h>
 41 #include <linux/sort.h>
 42 #include <linux/completion.h>
 43 #include <linux/suspend.h>
 44 #include <linux/zswap.h>
 45 #include <linux/plist.h>
 46 
 47 #include <asm/tlbflush.h>
 48 #include <linux/swapops.h>
 49 #include <linux/swap_cgroup.h>
 50 #include "internal.h"
 51 #include "swap.h"
 52 
 53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
 54                                  unsigned char);
 55 static void free_swap_count_continuations(struct swap_info_struct *);
 56 
 57 static DEFINE_SPINLOCK(swap_lock);
 58 static unsigned int nr_swapfiles;
 59 atomic_long_t nr_swap_pages;
 60 /*
 61  * Some modules use swappable objects and may try to swap them out under
 62  * memory pressure (via the shrinker). Before doing so, they may wish to
 63  * check to see if any swap space is available.
 64  */
 65 EXPORT_SYMBOL_GPL(nr_swap_pages);
 66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
 67 long total_swap_pages;
 68 static int least_priority = -1;
 69 unsigned long swapfile_maximum_size;
 70 #ifdef CONFIG_MIGRATION
 71 bool swap_migration_ad_supported;
 72 #endif  /* CONFIG_MIGRATION */
 73 
 74 static const char Bad_file[] = "Bad swap file entry ";
 75 static const char Unused_file[] = "Unused swap file entry ";
 76 static const char Bad_offset[] = "Bad swap offset entry ";
 77 static const char Unused_offset[] = "Unused swap offset entry ";
 78 
 79 /*
 80  * all active swap_info_structs
 81  * protected with swap_lock, and ordered by priority.
 82  */
 83 static PLIST_HEAD(swap_active_head);
 84 
 85 /*
 86  * all available (active, not full) swap_info_structs
 87  * protected with swap_avail_lock, ordered by priority.
 88  * This is used by folio_alloc_swap() instead of swap_active_head
 89  * because swap_active_head includes all swap_info_structs,
 90  * but folio_alloc_swap() doesn't need to look at full ones.
 91  * This uses its own lock instead of swap_lock because when a
 92  * swap_info_struct changes between not-full/full, it needs to
 93  * add/remove itself to/from this list, but the swap_info_struct->lock
 94  * is held and the locking order requires swap_lock to be taken
 95  * before any swap_info_struct->lock.
 96  */
 97 static struct plist_head *swap_avail_heads;
 98 static DEFINE_SPINLOCK(swap_avail_lock);
 99 
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101 
102 static DEFINE_MUTEX(swapon_mutex);
103 
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107 
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109 
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112         if (type >= MAX_SWAPFILES)
113                 return NULL;
114 
115         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117 
118 static inline unsigned char swap_count(unsigned char ent)
119 {
120         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
121 }
122 
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY             0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED           0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL               0x4
132 
133 /*
134  * returns number of pages in the folio that backs the swap entry. If positive,
135  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
136  * folio was associated with the swap entry.
137  */
138 static int __try_to_reclaim_swap(struct swap_info_struct *si,
139                                  unsigned long offset, unsigned long flags)
140 {
141         swp_entry_t entry = swp_entry(si->type, offset);
142         struct folio *folio;
143         int ret = 0;
144 
145         folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
146         if (IS_ERR(folio))
147                 return 0;
148         /*
149          * When this function is called from scan_swap_map_slots() and it's
150          * called by vmscan.c at reclaiming folios. So we hold a folio lock
151          * here. We have to use trylock for avoiding deadlock. This is a special
152          * case and you should use folio_free_swap() with explicit folio_lock()
153          * in usual operations.
154          */
155         if (folio_trylock(folio)) {
156                 if ((flags & TTRS_ANYWAY) ||
157                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
158                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
159                         ret = folio_free_swap(folio);
160                 folio_unlock(folio);
161         }
162         ret = ret ? folio_nr_pages(folio) : -folio_nr_pages(folio);
163         folio_put(folio);
164         return ret;
165 }
166 
167 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
168 {
169         struct rb_node *rb = rb_first(&sis->swap_extent_root);
170         return rb_entry(rb, struct swap_extent, rb_node);
171 }
172 
173 static inline struct swap_extent *next_se(struct swap_extent *se)
174 {
175         struct rb_node *rb = rb_next(&se->rb_node);
176         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
177 }
178 
179 /*
180  * swapon tell device that all the old swap contents can be discarded,
181  * to allow the swap device to optimize its wear-levelling.
182  */
183 static int discard_swap(struct swap_info_struct *si)
184 {
185         struct swap_extent *se;
186         sector_t start_block;
187         sector_t nr_blocks;
188         int err = 0;
189 
190         /* Do not discard the swap header page! */
191         se = first_se(si);
192         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
193         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
194         if (nr_blocks) {
195                 err = blkdev_issue_discard(si->bdev, start_block,
196                                 nr_blocks, GFP_KERNEL);
197                 if (err)
198                         return err;
199                 cond_resched();
200         }
201 
202         for (se = next_se(se); se; se = next_se(se)) {
203                 start_block = se->start_block << (PAGE_SHIFT - 9);
204                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
205 
206                 err = blkdev_issue_discard(si->bdev, start_block,
207                                 nr_blocks, GFP_KERNEL);
208                 if (err)
209                         break;
210 
211                 cond_resched();
212         }
213         return err;             /* That will often be -EOPNOTSUPP */
214 }
215 
216 static struct swap_extent *
217 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
218 {
219         struct swap_extent *se;
220         struct rb_node *rb;
221 
222         rb = sis->swap_extent_root.rb_node;
223         while (rb) {
224                 se = rb_entry(rb, struct swap_extent, rb_node);
225                 if (offset < se->start_page)
226                         rb = rb->rb_left;
227                 else if (offset >= se->start_page + se->nr_pages)
228                         rb = rb->rb_right;
229                 else
230                         return se;
231         }
232         /* It *must* be present */
233         BUG();
234 }
235 
236 sector_t swap_folio_sector(struct folio *folio)
237 {
238         struct swap_info_struct *sis = swp_swap_info(folio->swap);
239         struct swap_extent *se;
240         sector_t sector;
241         pgoff_t offset;
242 
243         offset = swp_offset(folio->swap);
244         se = offset_to_swap_extent(sis, offset);
245         sector = se->start_block + (offset - se->start_page);
246         return sector << (PAGE_SHIFT - 9);
247 }
248 
249 /*
250  * swap allocation tell device that a cluster of swap can now be discarded,
251  * to allow the swap device to optimize its wear-levelling.
252  */
253 static void discard_swap_cluster(struct swap_info_struct *si,
254                                  pgoff_t start_page, pgoff_t nr_pages)
255 {
256         struct swap_extent *se = offset_to_swap_extent(si, start_page);
257 
258         while (nr_pages) {
259                 pgoff_t offset = start_page - se->start_page;
260                 sector_t start_block = se->start_block + offset;
261                 sector_t nr_blocks = se->nr_pages - offset;
262 
263                 if (nr_blocks > nr_pages)
264                         nr_blocks = nr_pages;
265                 start_page += nr_blocks;
266                 nr_pages -= nr_blocks;
267 
268                 start_block <<= PAGE_SHIFT - 9;
269                 nr_blocks <<= PAGE_SHIFT - 9;
270                 if (blkdev_issue_discard(si->bdev, start_block,
271                                         nr_blocks, GFP_NOIO))
272                         break;
273 
274                 se = next_se(se);
275         }
276 }
277 
278 #ifdef CONFIG_THP_SWAP
279 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
280 
281 #define swap_entry_order(order) (order)
282 #else
283 #define SWAPFILE_CLUSTER        256
284 
285 /*
286  * Define swap_entry_order() as constant to let compiler to optimize
287  * out some code if !CONFIG_THP_SWAP
288  */
289 #define swap_entry_order(order) 0
290 #endif
291 #define LATENCY_LIMIT           256
292 
293 static inline void cluster_set_flag(struct swap_cluster_info *info,
294         unsigned int flag)
295 {
296         info->flags = flag;
297 }
298 
299 static inline unsigned int cluster_count(struct swap_cluster_info *info)
300 {
301         return info->data;
302 }
303 
304 static inline void cluster_set_count(struct swap_cluster_info *info,
305                                      unsigned int c)
306 {
307         info->data = c;
308 }
309 
310 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
311                                          unsigned int c, unsigned int f)
312 {
313         info->flags = f;
314         info->data = c;
315 }
316 
317 static inline unsigned int cluster_next(struct swap_cluster_info *info)
318 {
319         return info->data;
320 }
321 
322 static inline void cluster_set_next(struct swap_cluster_info *info,
323                                     unsigned int n)
324 {
325         info->data = n;
326 }
327 
328 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
329                                          unsigned int n, unsigned int f)
330 {
331         info->flags = f;
332         info->data = n;
333 }
334 
335 static inline bool cluster_is_free(struct swap_cluster_info *info)
336 {
337         return info->flags & CLUSTER_FLAG_FREE;
338 }
339 
340 static inline bool cluster_is_null(struct swap_cluster_info *info)
341 {
342         return info->flags & CLUSTER_FLAG_NEXT_NULL;
343 }
344 
345 static inline void cluster_set_null(struct swap_cluster_info *info)
346 {
347         info->flags = CLUSTER_FLAG_NEXT_NULL;
348         info->data = 0;
349 }
350 
351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352                                                      unsigned long offset)
353 {
354         struct swap_cluster_info *ci;
355 
356         ci = si->cluster_info;
357         if (ci) {
358                 ci += offset / SWAPFILE_CLUSTER;
359                 spin_lock(&ci->lock);
360         }
361         return ci;
362 }
363 
364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366         if (ci)
367                 spin_unlock(&ci->lock);
368 }
369 
370 /*
371  * Determine the locking method in use for this device.  Return
372  * swap_cluster_info if SSD-style cluster-based locking is in place.
373  */
374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375                 struct swap_info_struct *si, unsigned long offset)
376 {
377         struct swap_cluster_info *ci;
378 
379         /* Try to use fine-grained SSD-style locking if available: */
380         ci = lock_cluster(si, offset);
381         /* Otherwise, fall back to traditional, coarse locking: */
382         if (!ci)
383                 spin_lock(&si->lock);
384 
385         return ci;
386 }
387 
388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389                                                struct swap_cluster_info *ci)
390 {
391         if (ci)
392                 unlock_cluster(ci);
393         else
394                 spin_unlock(&si->lock);
395 }
396 
397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399         return cluster_is_null(&list->head);
400 }
401 
402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404         return cluster_next(&list->head);
405 }
406 
407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409         cluster_set_null(&list->head);
410         cluster_set_null(&list->tail);
411 }
412 
413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414                                   struct swap_cluster_info *ci,
415                                   unsigned int idx)
416 {
417         if (cluster_list_empty(list)) {
418                 cluster_set_next_flag(&list->head, idx, 0);
419                 cluster_set_next_flag(&list->tail, idx, 0);
420         } else {
421                 struct swap_cluster_info *ci_tail;
422                 unsigned int tail = cluster_next(&list->tail);
423 
424                 /*
425                  * Nested cluster lock, but both cluster locks are
426                  * only acquired when we held swap_info_struct->lock
427                  */
428                 ci_tail = ci + tail;
429                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430                 cluster_set_next(ci_tail, idx);
431                 spin_unlock(&ci_tail->lock);
432                 cluster_set_next_flag(&list->tail, idx, 0);
433         }
434 }
435 
436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437                                            struct swap_cluster_info *ci)
438 {
439         unsigned int idx;
440 
441         idx = cluster_next(&list->head);
442         if (cluster_next(&list->tail) == idx) {
443                 cluster_set_null(&list->head);
444                 cluster_set_null(&list->tail);
445         } else
446                 cluster_set_next_flag(&list->head,
447                                       cluster_next(&ci[idx]), 0);
448 
449         return idx;
450 }
451 
452 /* Add a cluster to discard list and schedule it to do discard */
453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454                 unsigned int idx)
455 {
456         /*
457          * If scan_swap_map_slots() can't find a free cluster, it will check
458          * si->swap_map directly. To make sure the discarding cluster isn't
459          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
460          * It will be cleared after discard
461          */
462         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464 
465         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466 
467         schedule_work(&si->discard_work);
468 }
469 
470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472         struct swap_cluster_info *ci = si->cluster_info;
473 
474         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475         cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477 
478 /*
479  * Doing discard actually. After a cluster discard is finished, the cluster
480  * will be added to free cluster list. caller should hold si->lock.
481 */
482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484         struct swap_cluster_info *info, *ci;
485         unsigned int idx;
486 
487         info = si->cluster_info;
488 
489         while (!cluster_list_empty(&si->discard_clusters)) {
490                 idx = cluster_list_del_first(&si->discard_clusters, info);
491                 spin_unlock(&si->lock);
492 
493                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494                                 SWAPFILE_CLUSTER);
495 
496                 spin_lock(&si->lock);
497                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498                 __free_cluster(si, idx);
499                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500                                 0, SWAPFILE_CLUSTER);
501                 unlock_cluster(ci);
502         }
503 }
504 
505 static void swap_discard_work(struct work_struct *work)
506 {
507         struct swap_info_struct *si;
508 
509         si = container_of(work, struct swap_info_struct, discard_work);
510 
511         spin_lock(&si->lock);
512         swap_do_scheduled_discard(si);
513         spin_unlock(&si->lock);
514 }
515 
516 static void swap_users_ref_free(struct percpu_ref *ref)
517 {
518         struct swap_info_struct *si;
519 
520         si = container_of(ref, struct swap_info_struct, users);
521         complete(&si->comp);
522 }
523 
524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
525 {
526         struct swap_cluster_info *ci = si->cluster_info;
527 
528         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
529         cluster_list_del_first(&si->free_clusters, ci);
530         cluster_set_count_flag(ci + idx, 0, 0);
531 }
532 
533 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
534 {
535         struct swap_cluster_info *ci = si->cluster_info + idx;
536 
537         VM_BUG_ON(cluster_count(ci) != 0);
538         /*
539          * If the swap is discardable, prepare discard the cluster
540          * instead of free it immediately. The cluster will be freed
541          * after discard.
542          */
543         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
544             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
545                 swap_cluster_schedule_discard(si, idx);
546                 return;
547         }
548 
549         __free_cluster(si, idx);
550 }
551 
552 /*
553  * The cluster corresponding to page_nr will be used. The cluster will be
554  * removed from free cluster list and its usage counter will be increased by
555  * count.
556  */
557 static void add_cluster_info_page(struct swap_info_struct *p,
558         struct swap_cluster_info *cluster_info, unsigned long page_nr,
559         unsigned long count)
560 {
561         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
562 
563         if (!cluster_info)
564                 return;
565         if (cluster_is_free(&cluster_info[idx]))
566                 alloc_cluster(p, idx);
567 
568         VM_BUG_ON(cluster_count(&cluster_info[idx]) + count > SWAPFILE_CLUSTER);
569         cluster_set_count(&cluster_info[idx],
570                 cluster_count(&cluster_info[idx]) + count);
571 }
572 
573 /*
574  * The cluster corresponding to page_nr will be used. The cluster will be
575  * removed from free cluster list and its usage counter will be increased by 1.
576  */
577 static void inc_cluster_info_page(struct swap_info_struct *p,
578         struct swap_cluster_info *cluster_info, unsigned long page_nr)
579 {
580         add_cluster_info_page(p, cluster_info, page_nr, 1);
581 }
582 
583 /*
584  * The cluster corresponding to page_nr decreases one usage. If the usage
585  * counter becomes 0, which means no page in the cluster is in using, we can
586  * optionally discard the cluster and add it to free cluster list.
587  */
588 static void dec_cluster_info_page(struct swap_info_struct *p,
589         struct swap_cluster_info *cluster_info, unsigned long page_nr)
590 {
591         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
592 
593         if (!cluster_info)
594                 return;
595 
596         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
597         cluster_set_count(&cluster_info[idx],
598                 cluster_count(&cluster_info[idx]) - 1);
599 
600         if (cluster_count(&cluster_info[idx]) == 0)
601                 free_cluster(p, idx);
602 }
603 
604 /*
605  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
606  * cluster list. Avoiding such abuse to avoid list corruption.
607  */
608 static bool
609 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
610         unsigned long offset, int order)
611 {
612         struct percpu_cluster *percpu_cluster;
613         bool conflict;
614 
615         offset /= SWAPFILE_CLUSTER;
616         conflict = !cluster_list_empty(&si->free_clusters) &&
617                 offset != cluster_list_first(&si->free_clusters) &&
618                 cluster_is_free(&si->cluster_info[offset]);
619 
620         if (!conflict)
621                 return false;
622 
623         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
624         percpu_cluster->next[order] = SWAP_NEXT_INVALID;
625         return true;
626 }
627 
628 static inline bool swap_range_empty(char *swap_map, unsigned int start,
629                                     unsigned int nr_pages)
630 {
631         unsigned int i;
632 
633         for (i = 0; i < nr_pages; i++) {
634                 if (swap_map[start + i])
635                         return false;
636         }
637 
638         return true;
639 }
640 
641 /*
642  * Try to get swap entries with specified order from current cpu's swap entry
643  * pool (a cluster). This might involve allocating a new cluster for current CPU
644  * too.
645  */
646 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
647         unsigned long *offset, unsigned long *scan_base, int order)
648 {
649         unsigned int nr_pages = 1 << order;
650         struct percpu_cluster *cluster;
651         struct swap_cluster_info *ci;
652         unsigned int tmp, max;
653 
654 new_cluster:
655         cluster = this_cpu_ptr(si->percpu_cluster);
656         tmp = cluster->next[order];
657         if (tmp == SWAP_NEXT_INVALID) {
658                 if (!cluster_list_empty(&si->free_clusters)) {
659                         tmp = cluster_next(&si->free_clusters.head) *
660                                         SWAPFILE_CLUSTER;
661                 } else if (!cluster_list_empty(&si->discard_clusters)) {
662                         /*
663                          * we don't have free cluster but have some clusters in
664                          * discarding, do discard now and reclaim them, then
665                          * reread cluster_next_cpu since we dropped si->lock
666                          */
667                         swap_do_scheduled_discard(si);
668                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
669                         *offset = *scan_base;
670                         goto new_cluster;
671                 } else
672                         return false;
673         }
674 
675         /*
676          * Other CPUs can use our cluster if they can't find a free cluster,
677          * check if there is still free entry in the cluster, maintaining
678          * natural alignment.
679          */
680         max = min_t(unsigned long, si->max, ALIGN(tmp + 1, SWAPFILE_CLUSTER));
681         if (tmp < max) {
682                 ci = lock_cluster(si, tmp);
683                 while (tmp < max) {
684                         if (swap_range_empty(si->swap_map, tmp, nr_pages))
685                                 break;
686                         tmp += nr_pages;
687                 }
688                 unlock_cluster(ci);
689         }
690         if (tmp >= max) {
691                 cluster->next[order] = SWAP_NEXT_INVALID;
692                 goto new_cluster;
693         }
694         *offset = tmp;
695         *scan_base = tmp;
696         tmp += nr_pages;
697         cluster->next[order] = tmp < max ? tmp : SWAP_NEXT_INVALID;
698         return true;
699 }
700 
701 static void __del_from_avail_list(struct swap_info_struct *p)
702 {
703         int nid;
704 
705         assert_spin_locked(&p->lock);
706         for_each_node(nid)
707                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
708 }
709 
710 static void del_from_avail_list(struct swap_info_struct *p)
711 {
712         spin_lock(&swap_avail_lock);
713         __del_from_avail_list(p);
714         spin_unlock(&swap_avail_lock);
715 }
716 
717 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
718                              unsigned int nr_entries)
719 {
720         unsigned int end = offset + nr_entries - 1;
721 
722         if (offset == si->lowest_bit)
723                 si->lowest_bit += nr_entries;
724         if (end == si->highest_bit)
725                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
726         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
727         if (si->inuse_pages == si->pages) {
728                 si->lowest_bit = si->max;
729                 si->highest_bit = 0;
730                 del_from_avail_list(si);
731         }
732 }
733 
734 static void add_to_avail_list(struct swap_info_struct *p)
735 {
736         int nid;
737 
738         spin_lock(&swap_avail_lock);
739         for_each_node(nid)
740                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
741         spin_unlock(&swap_avail_lock);
742 }
743 
744 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
745                             unsigned int nr_entries)
746 {
747         unsigned long begin = offset;
748         unsigned long end = offset + nr_entries - 1;
749         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
750 
751         if (offset < si->lowest_bit)
752                 si->lowest_bit = offset;
753         if (end > si->highest_bit) {
754                 bool was_full = !si->highest_bit;
755 
756                 WRITE_ONCE(si->highest_bit, end);
757                 if (was_full && (si->flags & SWP_WRITEOK))
758                         add_to_avail_list(si);
759         }
760         if (si->flags & SWP_BLKDEV)
761                 swap_slot_free_notify =
762                         si->bdev->bd_disk->fops->swap_slot_free_notify;
763         else
764                 swap_slot_free_notify = NULL;
765         while (offset <= end) {
766                 arch_swap_invalidate_page(si->type, offset);
767                 if (swap_slot_free_notify)
768                         swap_slot_free_notify(si->bdev, offset);
769                 offset++;
770         }
771         clear_shadow_from_swap_cache(si->type, begin, end);
772 
773         /*
774          * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
775          * only after the above cleanups are done.
776          */
777         smp_wmb();
778         atomic_long_add(nr_entries, &nr_swap_pages);
779         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
780 }
781 
782 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
783 {
784         unsigned long prev;
785 
786         if (!(si->flags & SWP_SOLIDSTATE)) {
787                 si->cluster_next = next;
788                 return;
789         }
790 
791         prev = this_cpu_read(*si->cluster_next_cpu);
792         /*
793          * Cross the swap address space size aligned trunk, choose
794          * another trunk randomly to avoid lock contention on swap
795          * address space if possible.
796          */
797         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
798             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
799                 /* No free swap slots available */
800                 if (si->highest_bit <= si->lowest_bit)
801                         return;
802                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
803                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
804                 next = max_t(unsigned int, next, si->lowest_bit);
805         }
806         this_cpu_write(*si->cluster_next_cpu, next);
807 }
808 
809 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
810                                              unsigned long offset)
811 {
812         if (data_race(!si->swap_map[offset])) {
813                 spin_lock(&si->lock);
814                 return true;
815         }
816 
817         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
818                 spin_lock(&si->lock);
819                 return true;
820         }
821 
822         return false;
823 }
824 
825 static int scan_swap_map_slots(struct swap_info_struct *si,
826                                unsigned char usage, int nr,
827                                swp_entry_t slots[], int order)
828 {
829         struct swap_cluster_info *ci;
830         unsigned long offset;
831         unsigned long scan_base;
832         unsigned long last_in_cluster = 0;
833         int latency_ration = LATENCY_LIMIT;
834         unsigned int nr_pages = 1 << order;
835         int n_ret = 0;
836         bool scanned_many = false;
837 
838         /*
839          * We try to cluster swap pages by allocating them sequentially
840          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
841          * way, however, we resort to first-free allocation, starting
842          * a new cluster.  This prevents us from scattering swap pages
843          * all over the entire swap partition, so that we reduce
844          * overall disk seek times between swap pages.  -- sct
845          * But we do now try to find an empty cluster.  -Andrea
846          * And we let swap pages go all over an SSD partition.  Hugh
847          */
848 
849         if (order > 0) {
850                 /*
851                  * Should not even be attempting large allocations when huge
852                  * page swap is disabled.  Warn and fail the allocation.
853                  */
854                 if (!IS_ENABLED(CONFIG_THP_SWAP) ||
855                     nr_pages > SWAPFILE_CLUSTER) {
856                         VM_WARN_ON_ONCE(1);
857                         return 0;
858                 }
859 
860                 /*
861                  * Swapfile is not block device or not using clusters so unable
862                  * to allocate large entries.
863                  */
864                 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
865                         return 0;
866         }
867 
868         si->flags += SWP_SCANNING;
869         /*
870          * Use percpu scan base for SSD to reduce lock contention on
871          * cluster and swap cache.  For HDD, sequential access is more
872          * important.
873          */
874         if (si->flags & SWP_SOLIDSTATE)
875                 scan_base = this_cpu_read(*si->cluster_next_cpu);
876         else
877                 scan_base = si->cluster_next;
878         offset = scan_base;
879 
880         /* SSD algorithm */
881         if (si->cluster_info) {
882                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) {
883                         if (order > 0)
884                                 goto no_page;
885                         goto scan;
886                 }
887         } else if (unlikely(!si->cluster_nr--)) {
888                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
889                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
890                         goto checks;
891                 }
892 
893                 spin_unlock(&si->lock);
894 
895                 /*
896                  * If seek is expensive, start searching for new cluster from
897                  * start of partition, to minimize the span of allocated swap.
898                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
899                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
900                  */
901                 scan_base = offset = si->lowest_bit;
902                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
903 
904                 /* Locate the first empty (unaligned) cluster */
905                 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
906                         if (si->swap_map[offset])
907                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
908                         else if (offset == last_in_cluster) {
909                                 spin_lock(&si->lock);
910                                 offset -= SWAPFILE_CLUSTER - 1;
911                                 si->cluster_next = offset;
912                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
913                                 goto checks;
914                         }
915                         if (unlikely(--latency_ration < 0)) {
916                                 cond_resched();
917                                 latency_ration = LATENCY_LIMIT;
918                         }
919                 }
920 
921                 offset = scan_base;
922                 spin_lock(&si->lock);
923                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
924         }
925 
926 checks:
927         if (si->cluster_info) {
928                 while (scan_swap_map_ssd_cluster_conflict(si, offset, order)) {
929                 /* take a break if we already got some slots */
930                         if (n_ret)
931                                 goto done;
932                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
933                                                         &scan_base, order)) {
934                                 if (order > 0)
935                                         goto no_page;
936                                 goto scan;
937                         }
938                 }
939         }
940         if (!(si->flags & SWP_WRITEOK))
941                 goto no_page;
942         if (!si->highest_bit)
943                 goto no_page;
944         if (offset > si->highest_bit)
945                 scan_base = offset = si->lowest_bit;
946 
947         ci = lock_cluster(si, offset);
948         /* reuse swap entry of cache-only swap if not busy. */
949         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
950                 int swap_was_freed;
951                 unlock_cluster(ci);
952                 spin_unlock(&si->lock);
953                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
954                 spin_lock(&si->lock);
955                 /* entry was freed successfully, try to use this again */
956                 if (swap_was_freed > 0)
957                         goto checks;
958                 goto scan; /* check next one */
959         }
960 
961         if (si->swap_map[offset]) {
962                 unlock_cluster(ci);
963                 if (!n_ret)
964                         goto scan;
965                 else
966                         goto done;
967         }
968         memset(si->swap_map + offset, usage, nr_pages);
969         add_cluster_info_page(si, si->cluster_info, offset, nr_pages);
970         unlock_cluster(ci);
971 
972         swap_range_alloc(si, offset, nr_pages);
973         slots[n_ret++] = swp_entry(si->type, offset);
974 
975         /* got enough slots or reach max slots? */
976         if ((n_ret == nr) || (offset >= si->highest_bit))
977                 goto done;
978 
979         /* search for next available slot */
980 
981         /* time to take a break? */
982         if (unlikely(--latency_ration < 0)) {
983                 if (n_ret)
984                         goto done;
985                 spin_unlock(&si->lock);
986                 cond_resched();
987                 spin_lock(&si->lock);
988                 latency_ration = LATENCY_LIMIT;
989         }
990 
991         /* try to get more slots in cluster */
992         if (si->cluster_info) {
993                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order))
994                         goto checks;
995                 if (order > 0)
996                         goto done;
997         } else if (si->cluster_nr && !si->swap_map[++offset]) {
998                 /* non-ssd case, still more slots in cluster? */
999                 --si->cluster_nr;
1000                 goto checks;
1001         }
1002 
1003         /*
1004          * Even if there's no free clusters available (fragmented),
1005          * try to scan a little more quickly with lock held unless we
1006          * have scanned too many slots already.
1007          */
1008         if (!scanned_many) {
1009                 unsigned long scan_limit;
1010 
1011                 if (offset < scan_base)
1012                         scan_limit = scan_base;
1013                 else
1014                         scan_limit = si->highest_bit;
1015                 for (; offset <= scan_limit && --latency_ration > 0;
1016                      offset++) {
1017                         if (!si->swap_map[offset])
1018                                 goto checks;
1019                 }
1020         }
1021 
1022 done:
1023         if (order == 0)
1024                 set_cluster_next(si, offset + 1);
1025         si->flags -= SWP_SCANNING;
1026         return n_ret;
1027 
1028 scan:
1029         VM_WARN_ON(order > 0);
1030         spin_unlock(&si->lock);
1031         while (++offset <= READ_ONCE(si->highest_bit)) {
1032                 if (unlikely(--latency_ration < 0)) {
1033                         cond_resched();
1034                         latency_ration = LATENCY_LIMIT;
1035                         scanned_many = true;
1036                 }
1037                 if (swap_offset_available_and_locked(si, offset))
1038                         goto checks;
1039         }
1040         offset = si->lowest_bit;
1041         while (offset < scan_base) {
1042                 if (unlikely(--latency_ration < 0)) {
1043                         cond_resched();
1044                         latency_ration = LATENCY_LIMIT;
1045                         scanned_many = true;
1046                 }
1047                 if (swap_offset_available_and_locked(si, offset))
1048                         goto checks;
1049                 offset++;
1050         }
1051         spin_lock(&si->lock);
1052 
1053 no_page:
1054         si->flags -= SWP_SCANNING;
1055         return n_ret;
1056 }
1057 
1058 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1059 {
1060         unsigned long offset = idx * SWAPFILE_CLUSTER;
1061         struct swap_cluster_info *ci;
1062 
1063         ci = lock_cluster(si, offset);
1064         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1065         cluster_set_count_flag(ci, 0, 0);
1066         free_cluster(si, idx);
1067         unlock_cluster(ci);
1068         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1069 }
1070 
1071 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1072 {
1073         int order = swap_entry_order(entry_order);
1074         unsigned long size = 1 << order;
1075         struct swap_info_struct *si, *next;
1076         long avail_pgs;
1077         int n_ret = 0;
1078         int node;
1079 
1080         spin_lock(&swap_avail_lock);
1081 
1082         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1083         if (avail_pgs <= 0) {
1084                 spin_unlock(&swap_avail_lock);
1085                 goto noswap;
1086         }
1087 
1088         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1089 
1090         atomic_long_sub(n_goal * size, &nr_swap_pages);
1091 
1092 start_over:
1093         node = numa_node_id();
1094         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1095                 /* requeue si to after same-priority siblings */
1096                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1097                 spin_unlock(&swap_avail_lock);
1098                 spin_lock(&si->lock);
1099                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1100                         spin_lock(&swap_avail_lock);
1101                         if (plist_node_empty(&si->avail_lists[node])) {
1102                                 spin_unlock(&si->lock);
1103                                 goto nextsi;
1104                         }
1105                         WARN(!si->highest_bit,
1106                              "swap_info %d in list but !highest_bit\n",
1107                              si->type);
1108                         WARN(!(si->flags & SWP_WRITEOK),
1109                              "swap_info %d in list but !SWP_WRITEOK\n",
1110                              si->type);
1111                         __del_from_avail_list(si);
1112                         spin_unlock(&si->lock);
1113                         goto nextsi;
1114                 }
1115                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1116                                             n_goal, swp_entries, order);
1117                 spin_unlock(&si->lock);
1118                 if (n_ret || size > 1)
1119                         goto check_out;
1120                 cond_resched();
1121 
1122                 spin_lock(&swap_avail_lock);
1123 nextsi:
1124                 /*
1125                  * if we got here, it's likely that si was almost full before,
1126                  * and since scan_swap_map_slots() can drop the si->lock,
1127                  * multiple callers probably all tried to get a page from the
1128                  * same si and it filled up before we could get one; or, the si
1129                  * filled up between us dropping swap_avail_lock and taking
1130                  * si->lock. Since we dropped the swap_avail_lock, the
1131                  * swap_avail_head list may have been modified; so if next is
1132                  * still in the swap_avail_head list then try it, otherwise
1133                  * start over if we have not gotten any slots.
1134                  */
1135                 if (plist_node_empty(&next->avail_lists[node]))
1136                         goto start_over;
1137         }
1138 
1139         spin_unlock(&swap_avail_lock);
1140 
1141 check_out:
1142         if (n_ret < n_goal)
1143                 atomic_long_add((long)(n_goal - n_ret) * size,
1144                                 &nr_swap_pages);
1145 noswap:
1146         return n_ret;
1147 }
1148 
1149 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1150 {
1151         struct swap_info_struct *p;
1152         unsigned long offset;
1153 
1154         if (!entry.val)
1155                 goto out;
1156         p = swp_swap_info(entry);
1157         if (!p)
1158                 goto bad_nofile;
1159         if (data_race(!(p->flags & SWP_USED)))
1160                 goto bad_device;
1161         offset = swp_offset(entry);
1162         if (offset >= p->max)
1163                 goto bad_offset;
1164         if (data_race(!p->swap_map[swp_offset(entry)]))
1165                 goto bad_free;
1166         return p;
1167 
1168 bad_free:
1169         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1170         goto out;
1171 bad_offset:
1172         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1173         goto out;
1174 bad_device:
1175         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1176         goto out;
1177 bad_nofile:
1178         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1179 out:
1180         return NULL;
1181 }
1182 
1183 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1184                                         struct swap_info_struct *q)
1185 {
1186         struct swap_info_struct *p;
1187 
1188         p = _swap_info_get(entry);
1189 
1190         if (p != q) {
1191                 if (q != NULL)
1192                         spin_unlock(&q->lock);
1193                 if (p != NULL)
1194                         spin_lock(&p->lock);
1195         }
1196         return p;
1197 }
1198 
1199 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1200                                               unsigned long offset,
1201                                               unsigned char usage)
1202 {
1203         unsigned char count;
1204         unsigned char has_cache;
1205 
1206         count = p->swap_map[offset];
1207 
1208         has_cache = count & SWAP_HAS_CACHE;
1209         count &= ~SWAP_HAS_CACHE;
1210 
1211         if (usage == SWAP_HAS_CACHE) {
1212                 VM_BUG_ON(!has_cache);
1213                 has_cache = 0;
1214         } else if (count == SWAP_MAP_SHMEM) {
1215                 /*
1216                  * Or we could insist on shmem.c using a special
1217                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1218                  */
1219                 count = 0;
1220         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1221                 if (count == COUNT_CONTINUED) {
1222                         if (swap_count_continued(p, offset, count))
1223                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1224                         else
1225                                 count = SWAP_MAP_MAX;
1226                 } else
1227                         count--;
1228         }
1229 
1230         usage = count | has_cache;
1231         if (usage)
1232                 WRITE_ONCE(p->swap_map[offset], usage);
1233         else
1234                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1235 
1236         return usage;
1237 }
1238 
1239 /*
1240  * When we get a swap entry, if there aren't some other ways to
1241  * prevent swapoff, such as the folio in swap cache is locked, RCU
1242  * reader side is locked, etc., the swap entry may become invalid
1243  * because of swapoff.  Then, we need to enclose all swap related
1244  * functions with get_swap_device() and put_swap_device(), unless the
1245  * swap functions call get/put_swap_device() by themselves.
1246  *
1247  * RCU reader side lock (including any spinlock) is sufficient to
1248  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1249  * before freeing data structures.
1250  *
1251  * Check whether swap entry is valid in the swap device.  If so,
1252  * return pointer to swap_info_struct, and keep the swap entry valid
1253  * via preventing the swap device from being swapoff, until
1254  * put_swap_device() is called.  Otherwise return NULL.
1255  *
1256  * Notice that swapoff or swapoff+swapon can still happen before the
1257  * percpu_ref_tryget_live() in get_swap_device() or after the
1258  * percpu_ref_put() in put_swap_device() if there isn't any other way
1259  * to prevent swapoff.  The caller must be prepared for that.  For
1260  * example, the following situation is possible.
1261  *
1262  *   CPU1                               CPU2
1263  *   do_swap_page()
1264  *     ...                              swapoff+swapon
1265  *     __read_swap_cache_async()
1266  *       swapcache_prepare()
1267  *         __swap_duplicate()
1268  *           // check swap_map
1269  *     // verify PTE not changed
1270  *
1271  * In __swap_duplicate(), the swap_map need to be checked before
1272  * changing partly because the specified swap entry may be for another
1273  * swap device which has been swapoff.  And in do_swap_page(), after
1274  * the page is read from the swap device, the PTE is verified not
1275  * changed with the page table locked to check whether the swap device
1276  * has been swapoff or swapoff+swapon.
1277  */
1278 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1279 {
1280         struct swap_info_struct *si;
1281         unsigned long offset;
1282 
1283         if (!entry.val)
1284                 goto out;
1285         si = swp_swap_info(entry);
1286         if (!si)
1287                 goto bad_nofile;
1288         if (!percpu_ref_tryget_live(&si->users))
1289                 goto out;
1290         /*
1291          * Guarantee the si->users are checked before accessing other
1292          * fields of swap_info_struct.
1293          *
1294          * Paired with the spin_unlock() after setup_swap_info() in
1295          * enable_swap_info().
1296          */
1297         smp_rmb();
1298         offset = swp_offset(entry);
1299         if (offset >= si->max)
1300                 goto put_out;
1301 
1302         return si;
1303 bad_nofile:
1304         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1305 out:
1306         return NULL;
1307 put_out:
1308         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1309         percpu_ref_put(&si->users);
1310         return NULL;
1311 }
1312 
1313 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1314                                        swp_entry_t entry)
1315 {
1316         struct swap_cluster_info *ci;
1317         unsigned long offset = swp_offset(entry);
1318         unsigned char usage;
1319 
1320         ci = lock_cluster_or_swap_info(p, offset);
1321         usage = __swap_entry_free_locked(p, offset, 1);
1322         unlock_cluster_or_swap_info(p, ci);
1323         if (!usage)
1324                 free_swap_slot(entry);
1325 
1326         return usage;
1327 }
1328 
1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1330 {
1331         struct swap_cluster_info *ci;
1332         unsigned long offset = swp_offset(entry);
1333         unsigned char count;
1334 
1335         ci = lock_cluster(p, offset);
1336         count = p->swap_map[offset];
1337         VM_BUG_ON(count != SWAP_HAS_CACHE);
1338         p->swap_map[offset] = 0;
1339         dec_cluster_info_page(p, p->cluster_info, offset);
1340         unlock_cluster(ci);
1341 
1342         mem_cgroup_uncharge_swap(entry, 1);
1343         swap_range_free(p, offset, 1);
1344 }
1345 
1346 static void cluster_swap_free_nr(struct swap_info_struct *sis,
1347                 unsigned long offset, int nr_pages)
1348 {
1349         struct swap_cluster_info *ci;
1350         DECLARE_BITMAP(to_free, BITS_PER_LONG) = { 0 };
1351         int i, nr;
1352 
1353         ci = lock_cluster_or_swap_info(sis, offset);
1354         while (nr_pages) {
1355                 nr = min(BITS_PER_LONG, nr_pages);
1356                 for (i = 0; i < nr; i++) {
1357                         if (!__swap_entry_free_locked(sis, offset + i, 1))
1358                                 bitmap_set(to_free, i, 1);
1359                 }
1360                 if (!bitmap_empty(to_free, BITS_PER_LONG)) {
1361                         unlock_cluster_or_swap_info(sis, ci);
1362                         for_each_set_bit(i, to_free, BITS_PER_LONG)
1363                                 free_swap_slot(swp_entry(sis->type, offset + i));
1364                         if (nr == nr_pages)
1365                                 return;
1366                         bitmap_clear(to_free, 0, BITS_PER_LONG);
1367                         ci = lock_cluster_or_swap_info(sis, offset);
1368                 }
1369                 offset += nr;
1370                 nr_pages -= nr;
1371         }
1372         unlock_cluster_or_swap_info(sis, ci);
1373 }
1374 
1375 /*
1376  * Caller has made sure that the swap device corresponding to entry
1377  * is still around or has not been recycled.
1378  */
1379 void swap_free_nr(swp_entry_t entry, int nr_pages)
1380 {
1381         int nr;
1382         struct swap_info_struct *sis;
1383         unsigned long offset = swp_offset(entry);
1384 
1385         sis = _swap_info_get(entry);
1386         if (!sis)
1387                 return;
1388 
1389         while (nr_pages) {
1390                 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1391                 cluster_swap_free_nr(sis, offset, nr);
1392                 offset += nr;
1393                 nr_pages -= nr;
1394         }
1395 }
1396 
1397 /*
1398  * Called after dropping swapcache to decrease refcnt to swap entries.
1399  */
1400 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1401 {
1402         unsigned long offset = swp_offset(entry);
1403         unsigned long idx = offset / SWAPFILE_CLUSTER;
1404         struct swap_cluster_info *ci;
1405         struct swap_info_struct *si;
1406         unsigned char *map;
1407         unsigned int i, free_entries = 0;
1408         unsigned char val;
1409         int size = 1 << swap_entry_order(folio_order(folio));
1410 
1411         si = _swap_info_get(entry);
1412         if (!si)
1413                 return;
1414 
1415         ci = lock_cluster_or_swap_info(si, offset);
1416         if (size == SWAPFILE_CLUSTER) {
1417                 map = si->swap_map + offset;
1418                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1419                         val = map[i];
1420                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1421                         if (val == SWAP_HAS_CACHE)
1422                                 free_entries++;
1423                 }
1424                 if (free_entries == SWAPFILE_CLUSTER) {
1425                         unlock_cluster_or_swap_info(si, ci);
1426                         spin_lock(&si->lock);
1427                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1428                         swap_free_cluster(si, idx);
1429                         spin_unlock(&si->lock);
1430                         return;
1431                 }
1432         }
1433         for (i = 0; i < size; i++, entry.val++) {
1434                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1435                         unlock_cluster_or_swap_info(si, ci);
1436                         free_swap_slot(entry);
1437                         if (i == size - 1)
1438                                 return;
1439                         lock_cluster_or_swap_info(si, offset);
1440                 }
1441         }
1442         unlock_cluster_or_swap_info(si, ci);
1443 }
1444 
1445 static int swp_entry_cmp(const void *ent1, const void *ent2)
1446 {
1447         const swp_entry_t *e1 = ent1, *e2 = ent2;
1448 
1449         return (int)swp_type(*e1) - (int)swp_type(*e2);
1450 }
1451 
1452 void swapcache_free_entries(swp_entry_t *entries, int n)
1453 {
1454         struct swap_info_struct *p, *prev;
1455         int i;
1456 
1457         if (n <= 0)
1458                 return;
1459 
1460         prev = NULL;
1461         p = NULL;
1462 
1463         /*
1464          * Sort swap entries by swap device, so each lock is only taken once.
1465          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1466          * so low that it isn't necessary to optimize further.
1467          */
1468         if (nr_swapfiles > 1)
1469                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1470         for (i = 0; i < n; ++i) {
1471                 p = swap_info_get_cont(entries[i], prev);
1472                 if (p)
1473                         swap_entry_free(p, entries[i]);
1474                 prev = p;
1475         }
1476         if (p)
1477                 spin_unlock(&p->lock);
1478 }
1479 
1480 int __swap_count(swp_entry_t entry)
1481 {
1482         struct swap_info_struct *si = swp_swap_info(entry);
1483         pgoff_t offset = swp_offset(entry);
1484 
1485         return swap_count(si->swap_map[offset]);
1486 }
1487 
1488 /*
1489  * How many references to @entry are currently swapped out?
1490  * This does not give an exact answer when swap count is continued,
1491  * but does include the high COUNT_CONTINUED flag to allow for that.
1492  */
1493 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1494 {
1495         pgoff_t offset = swp_offset(entry);
1496         struct swap_cluster_info *ci;
1497         int count;
1498 
1499         ci = lock_cluster_or_swap_info(si, offset);
1500         count = swap_count(si->swap_map[offset]);
1501         unlock_cluster_or_swap_info(si, ci);
1502         return count;
1503 }
1504 
1505 /*
1506  * How many references to @entry are currently swapped out?
1507  * This considers COUNT_CONTINUED so it returns exact answer.
1508  */
1509 int swp_swapcount(swp_entry_t entry)
1510 {
1511         int count, tmp_count, n;
1512         struct swap_info_struct *p;
1513         struct swap_cluster_info *ci;
1514         struct page *page;
1515         pgoff_t offset;
1516         unsigned char *map;
1517 
1518         p = _swap_info_get(entry);
1519         if (!p)
1520                 return 0;
1521 
1522         offset = swp_offset(entry);
1523 
1524         ci = lock_cluster_or_swap_info(p, offset);
1525 
1526         count = swap_count(p->swap_map[offset]);
1527         if (!(count & COUNT_CONTINUED))
1528                 goto out;
1529 
1530         count &= ~COUNT_CONTINUED;
1531         n = SWAP_MAP_MAX + 1;
1532 
1533         page = vmalloc_to_page(p->swap_map + offset);
1534         offset &= ~PAGE_MASK;
1535         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1536 
1537         do {
1538                 page = list_next_entry(page, lru);
1539                 map = kmap_local_page(page);
1540                 tmp_count = map[offset];
1541                 kunmap_local(map);
1542 
1543                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1544                 n *= (SWAP_CONT_MAX + 1);
1545         } while (tmp_count & COUNT_CONTINUED);
1546 out:
1547         unlock_cluster_or_swap_info(p, ci);
1548         return count;
1549 }
1550 
1551 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1552                                          swp_entry_t entry, int order)
1553 {
1554         struct swap_cluster_info *ci;
1555         unsigned char *map = si->swap_map;
1556         unsigned int nr_pages = 1 << order;
1557         unsigned long roffset = swp_offset(entry);
1558         unsigned long offset = round_down(roffset, nr_pages);
1559         int i;
1560         bool ret = false;
1561 
1562         ci = lock_cluster_or_swap_info(si, offset);
1563         if (!ci || nr_pages == 1) {
1564                 if (swap_count(map[roffset]))
1565                         ret = true;
1566                 goto unlock_out;
1567         }
1568         for (i = 0; i < nr_pages; i++) {
1569                 if (swap_count(map[offset + i])) {
1570                         ret = true;
1571                         break;
1572                 }
1573         }
1574 unlock_out:
1575         unlock_cluster_or_swap_info(si, ci);
1576         return ret;
1577 }
1578 
1579 static bool folio_swapped(struct folio *folio)
1580 {
1581         swp_entry_t entry = folio->swap;
1582         struct swap_info_struct *si = _swap_info_get(entry);
1583 
1584         if (!si)
1585                 return false;
1586 
1587         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1588                 return swap_swapcount(si, entry) != 0;
1589 
1590         return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1591 }
1592 
1593 /**
1594  * folio_free_swap() - Free the swap space used for this folio.
1595  * @folio: The folio to remove.
1596  *
1597  * If swap is getting full, or if there are no more mappings of this folio,
1598  * then call folio_free_swap to free its swap space.
1599  *
1600  * Return: true if we were able to release the swap space.
1601  */
1602 bool folio_free_swap(struct folio *folio)
1603 {
1604         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1605 
1606         if (!folio_test_swapcache(folio))
1607                 return false;
1608         if (folio_test_writeback(folio))
1609                 return false;
1610         if (folio_swapped(folio))
1611                 return false;
1612 
1613         /*
1614          * Once hibernation has begun to create its image of memory,
1615          * there's a danger that one of the calls to folio_free_swap()
1616          * - most probably a call from __try_to_reclaim_swap() while
1617          * hibernation is allocating its own swap pages for the image,
1618          * but conceivably even a call from memory reclaim - will free
1619          * the swap from a folio which has already been recorded in the
1620          * image as a clean swapcache folio, and then reuse its swap for
1621          * another page of the image.  On waking from hibernation, the
1622          * original folio might be freed under memory pressure, then
1623          * later read back in from swap, now with the wrong data.
1624          *
1625          * Hibernation suspends storage while it is writing the image
1626          * to disk so check that here.
1627          */
1628         if (pm_suspended_storage())
1629                 return false;
1630 
1631         delete_from_swap_cache(folio);
1632         folio_set_dirty(folio);
1633         return true;
1634 }
1635 
1636 /**
1637  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1638  *                            reclaim their cache if no more references remain.
1639  * @entry: First entry of range.
1640  * @nr: Number of entries in range.
1641  *
1642  * For each swap entry in the contiguous range, release a reference. If any swap
1643  * entries become free, try to reclaim their underlying folios, if present. The
1644  * offset range is defined by [entry.offset, entry.offset + nr).
1645  */
1646 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1647 {
1648         const unsigned long start_offset = swp_offset(entry);
1649         const unsigned long end_offset = start_offset + nr;
1650         unsigned int type = swp_type(entry);
1651         struct swap_info_struct *si;
1652         bool any_only_cache = false;
1653         unsigned long offset;
1654         unsigned char count;
1655 
1656         if (non_swap_entry(entry))
1657                 return;
1658 
1659         si = get_swap_device(entry);
1660         if (!si)
1661                 return;
1662 
1663         if (WARN_ON(end_offset > si->max))
1664                 goto out;
1665 
1666         /*
1667          * First free all entries in the range.
1668          */
1669         for (offset = start_offset; offset < end_offset; offset++) {
1670                 if (data_race(si->swap_map[offset])) {
1671                         count = __swap_entry_free(si, swp_entry(type, offset));
1672                         if (count == SWAP_HAS_CACHE)
1673                                 any_only_cache = true;
1674                 } else {
1675                         WARN_ON_ONCE(1);
1676                 }
1677         }
1678 
1679         /*
1680          * Short-circuit the below loop if none of the entries had their
1681          * reference drop to zero.
1682          */
1683         if (!any_only_cache)
1684                 goto out;
1685 
1686         /*
1687          * Now go back over the range trying to reclaim the swap cache. This is
1688          * more efficient for large folios because we will only try to reclaim
1689          * the swap once per folio in the common case. If we do
1690          * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1691          * latter will get a reference and lock the folio for every individual
1692          * page but will only succeed once the swap slot for every subpage is
1693          * zero.
1694          */
1695         for (offset = start_offset; offset < end_offset; offset += nr) {
1696                 nr = 1;
1697                 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1698                         /*
1699                          * Folios are always naturally aligned in swap so
1700                          * advance forward to the next boundary. Zero means no
1701                          * folio was found for the swap entry, so advance by 1
1702                          * in this case. Negative value means folio was found
1703                          * but could not be reclaimed. Here we can still advance
1704                          * to the next boundary.
1705                          */
1706                         nr = __try_to_reclaim_swap(si, offset,
1707                                               TTRS_UNMAPPED | TTRS_FULL);
1708                         if (nr == 0)
1709                                 nr = 1;
1710                         else if (nr < 0)
1711                                 nr = -nr;
1712                         nr = ALIGN(offset + 1, nr) - offset;
1713                 }
1714         }
1715 
1716 out:
1717         put_swap_device(si);
1718 }
1719 
1720 #ifdef CONFIG_HIBERNATION
1721 
1722 swp_entry_t get_swap_page_of_type(int type)
1723 {
1724         struct swap_info_struct *si = swap_type_to_swap_info(type);
1725         swp_entry_t entry = {0};
1726 
1727         if (!si)
1728                 goto fail;
1729 
1730         /* This is called for allocating swap entry, not cache */
1731         spin_lock(&si->lock);
1732         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1733                 atomic_long_dec(&nr_swap_pages);
1734         spin_unlock(&si->lock);
1735 fail:
1736         return entry;
1737 }
1738 
1739 /*
1740  * Find the swap type that corresponds to given device (if any).
1741  *
1742  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1743  * from 0, in which the swap header is expected to be located.
1744  *
1745  * This is needed for the suspend to disk (aka swsusp).
1746  */
1747 int swap_type_of(dev_t device, sector_t offset)
1748 {
1749         int type;
1750 
1751         if (!device)
1752                 return -1;
1753 
1754         spin_lock(&swap_lock);
1755         for (type = 0; type < nr_swapfiles; type++) {
1756                 struct swap_info_struct *sis = swap_info[type];
1757 
1758                 if (!(sis->flags & SWP_WRITEOK))
1759                         continue;
1760 
1761                 if (device == sis->bdev->bd_dev) {
1762                         struct swap_extent *se = first_se(sis);
1763 
1764                         if (se->start_block == offset) {
1765                                 spin_unlock(&swap_lock);
1766                                 return type;
1767                         }
1768                 }
1769         }
1770         spin_unlock(&swap_lock);
1771         return -ENODEV;
1772 }
1773 
1774 int find_first_swap(dev_t *device)
1775 {
1776         int type;
1777 
1778         spin_lock(&swap_lock);
1779         for (type = 0; type < nr_swapfiles; type++) {
1780                 struct swap_info_struct *sis = swap_info[type];
1781 
1782                 if (!(sis->flags & SWP_WRITEOK))
1783                         continue;
1784                 *device = sis->bdev->bd_dev;
1785                 spin_unlock(&swap_lock);
1786                 return type;
1787         }
1788         spin_unlock(&swap_lock);
1789         return -ENODEV;
1790 }
1791 
1792 /*
1793  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1794  * corresponding to given index in swap_info (swap type).
1795  */
1796 sector_t swapdev_block(int type, pgoff_t offset)
1797 {
1798         struct swap_info_struct *si = swap_type_to_swap_info(type);
1799         struct swap_extent *se;
1800 
1801         if (!si || !(si->flags & SWP_WRITEOK))
1802                 return 0;
1803         se = offset_to_swap_extent(si, offset);
1804         return se->start_block + (offset - se->start_page);
1805 }
1806 
1807 /*
1808  * Return either the total number of swap pages of given type, or the number
1809  * of free pages of that type (depending on @free)
1810  *
1811  * This is needed for software suspend
1812  */
1813 unsigned int count_swap_pages(int type, int free)
1814 {
1815         unsigned int n = 0;
1816 
1817         spin_lock(&swap_lock);
1818         if ((unsigned int)type < nr_swapfiles) {
1819                 struct swap_info_struct *sis = swap_info[type];
1820 
1821                 spin_lock(&sis->lock);
1822                 if (sis->flags & SWP_WRITEOK) {
1823                         n = sis->pages;
1824                         if (free)
1825                                 n -= sis->inuse_pages;
1826                 }
1827                 spin_unlock(&sis->lock);
1828         }
1829         spin_unlock(&swap_lock);
1830         return n;
1831 }
1832 #endif /* CONFIG_HIBERNATION */
1833 
1834 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1835 {
1836         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1837 }
1838 
1839 /*
1840  * No need to decide whether this PTE shares the swap entry with others,
1841  * just let do_wp_page work it out if a write is requested later - to
1842  * force COW, vm_page_prot omits write permission from any private vma.
1843  */
1844 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1845                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1846 {
1847         struct page *page;
1848         struct folio *swapcache;
1849         spinlock_t *ptl;
1850         pte_t *pte, new_pte, old_pte;
1851         bool hwpoisoned = false;
1852         int ret = 1;
1853 
1854         swapcache = folio;
1855         folio = ksm_might_need_to_copy(folio, vma, addr);
1856         if (unlikely(!folio))
1857                 return -ENOMEM;
1858         else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1859                 hwpoisoned = true;
1860                 folio = swapcache;
1861         }
1862 
1863         page = folio_file_page(folio, swp_offset(entry));
1864         if (PageHWPoison(page))
1865                 hwpoisoned = true;
1866 
1867         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1868         if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1869                                                 swp_entry_to_pte(entry)))) {
1870                 ret = 0;
1871                 goto out;
1872         }
1873 
1874         old_pte = ptep_get(pte);
1875 
1876         if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1877                 swp_entry_t swp_entry;
1878 
1879                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1880                 if (hwpoisoned) {
1881                         swp_entry = make_hwpoison_entry(page);
1882                 } else {
1883                         swp_entry = make_poisoned_swp_entry();
1884                 }
1885                 new_pte = swp_entry_to_pte(swp_entry);
1886                 ret = 0;
1887                 goto setpte;
1888         }
1889 
1890         /*
1891          * Some architectures may have to restore extra metadata to the page
1892          * when reading from swap. This metadata may be indexed by swap entry
1893          * so this must be called before swap_free().
1894          */
1895         arch_swap_restore(folio_swap(entry, folio), folio);
1896 
1897         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1898         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1899         folio_get(folio);
1900         if (folio == swapcache) {
1901                 rmap_t rmap_flags = RMAP_NONE;
1902 
1903                 /*
1904                  * See do_swap_page(): writeback would be problematic.
1905                  * However, we do a folio_wait_writeback() just before this
1906                  * call and have the folio locked.
1907                  */
1908                 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1909                 if (pte_swp_exclusive(old_pte))
1910                         rmap_flags |= RMAP_EXCLUSIVE;
1911                 /*
1912                  * We currently only expect small !anon folios, which are either
1913                  * fully exclusive or fully shared. If we ever get large folios
1914                  * here, we have to be careful.
1915                  */
1916                 if (!folio_test_anon(folio)) {
1917                         VM_WARN_ON_ONCE(folio_test_large(folio));
1918                         VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
1919                         folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
1920                 } else {
1921                         folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1922                 }
1923         } else { /* ksm created a completely new copy */
1924                 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
1925                 folio_add_lru_vma(folio, vma);
1926         }
1927         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1928         if (pte_swp_soft_dirty(old_pte))
1929                 new_pte = pte_mksoft_dirty(new_pte);
1930         if (pte_swp_uffd_wp(old_pte))
1931                 new_pte = pte_mkuffd_wp(new_pte);
1932 setpte:
1933         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1934         swap_free(entry);
1935 out:
1936         if (pte)
1937                 pte_unmap_unlock(pte, ptl);
1938         if (folio != swapcache) {
1939                 folio_unlock(folio);
1940                 folio_put(folio);
1941         }
1942         return ret;
1943 }
1944 
1945 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1946                         unsigned long addr, unsigned long end,
1947                         unsigned int type)
1948 {
1949         pte_t *pte = NULL;
1950         struct swap_info_struct *si;
1951 
1952         si = swap_info[type];
1953         do {
1954                 struct folio *folio;
1955                 unsigned long offset;
1956                 unsigned char swp_count;
1957                 swp_entry_t entry;
1958                 int ret;
1959                 pte_t ptent;
1960 
1961                 if (!pte++) {
1962                         pte = pte_offset_map(pmd, addr);
1963                         if (!pte)
1964                                 break;
1965                 }
1966 
1967                 ptent = ptep_get_lockless(pte);
1968 
1969                 if (!is_swap_pte(ptent))
1970                         continue;
1971 
1972                 entry = pte_to_swp_entry(ptent);
1973                 if (swp_type(entry) != type)
1974                         continue;
1975 
1976                 offset = swp_offset(entry);
1977                 pte_unmap(pte);
1978                 pte = NULL;
1979 
1980                 folio = swap_cache_get_folio(entry, vma, addr);
1981                 if (!folio) {
1982                         struct page *page;
1983                         struct vm_fault vmf = {
1984                                 .vma = vma,
1985                                 .address = addr,
1986                                 .real_address = addr,
1987                                 .pmd = pmd,
1988                         };
1989 
1990                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1991                                                 &vmf);
1992                         if (page)
1993                                 folio = page_folio(page);
1994                 }
1995                 if (!folio) {
1996                         swp_count = READ_ONCE(si->swap_map[offset]);
1997                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1998                                 continue;
1999                         return -ENOMEM;
2000                 }
2001 
2002                 folio_lock(folio);
2003                 folio_wait_writeback(folio);
2004                 ret = unuse_pte(vma, pmd, addr, entry, folio);
2005                 if (ret < 0) {
2006                         folio_unlock(folio);
2007                         folio_put(folio);
2008                         return ret;
2009                 }
2010 
2011                 folio_free_swap(folio);
2012                 folio_unlock(folio);
2013                 folio_put(folio);
2014         } while (addr += PAGE_SIZE, addr != end);
2015 
2016         if (pte)
2017                 pte_unmap(pte);
2018         return 0;
2019 }
2020 
2021 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2022                                 unsigned long addr, unsigned long end,
2023                                 unsigned int type)
2024 {
2025         pmd_t *pmd;
2026         unsigned long next;
2027         int ret;
2028 
2029         pmd = pmd_offset(pud, addr);
2030         do {
2031                 cond_resched();
2032                 next = pmd_addr_end(addr, end);
2033                 ret = unuse_pte_range(vma, pmd, addr, next, type);
2034                 if (ret)
2035                         return ret;
2036         } while (pmd++, addr = next, addr != end);
2037         return 0;
2038 }
2039 
2040 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2041                                 unsigned long addr, unsigned long end,
2042                                 unsigned int type)
2043 {
2044         pud_t *pud;
2045         unsigned long next;
2046         int ret;
2047 
2048         pud = pud_offset(p4d, addr);
2049         do {
2050                 next = pud_addr_end(addr, end);
2051                 if (pud_none_or_clear_bad(pud))
2052                         continue;
2053                 ret = unuse_pmd_range(vma, pud, addr, next, type);
2054                 if (ret)
2055                         return ret;
2056         } while (pud++, addr = next, addr != end);
2057         return 0;
2058 }
2059 
2060 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2061                                 unsigned long addr, unsigned long end,
2062                                 unsigned int type)
2063 {
2064         p4d_t *p4d;
2065         unsigned long next;
2066         int ret;
2067 
2068         p4d = p4d_offset(pgd, addr);
2069         do {
2070                 next = p4d_addr_end(addr, end);
2071                 if (p4d_none_or_clear_bad(p4d))
2072                         continue;
2073                 ret = unuse_pud_range(vma, p4d, addr, next, type);
2074                 if (ret)
2075                         return ret;
2076         } while (p4d++, addr = next, addr != end);
2077         return 0;
2078 }
2079 
2080 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2081 {
2082         pgd_t *pgd;
2083         unsigned long addr, end, next;
2084         int ret;
2085 
2086         addr = vma->vm_start;
2087         end = vma->vm_end;
2088 
2089         pgd = pgd_offset(vma->vm_mm, addr);
2090         do {
2091                 next = pgd_addr_end(addr, end);
2092                 if (pgd_none_or_clear_bad(pgd))
2093                         continue;
2094                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2095                 if (ret)
2096                         return ret;
2097         } while (pgd++, addr = next, addr != end);
2098         return 0;
2099 }
2100 
2101 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2102 {
2103         struct vm_area_struct *vma;
2104         int ret = 0;
2105         VMA_ITERATOR(vmi, mm, 0);
2106 
2107         mmap_read_lock(mm);
2108         for_each_vma(vmi, vma) {
2109                 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2110                         ret = unuse_vma(vma, type);
2111                         if (ret)
2112                                 break;
2113                 }
2114 
2115                 cond_resched();
2116         }
2117         mmap_read_unlock(mm);
2118         return ret;
2119 }
2120 
2121 /*
2122  * Scan swap_map from current position to next entry still in use.
2123  * Return 0 if there are no inuse entries after prev till end of
2124  * the map.
2125  */
2126 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2127                                         unsigned int prev)
2128 {
2129         unsigned int i;
2130         unsigned char count;
2131 
2132         /*
2133          * No need for swap_lock here: we're just looking
2134          * for whether an entry is in use, not modifying it; false
2135          * hits are okay, and sys_swapoff() has already prevented new
2136          * allocations from this area (while holding swap_lock).
2137          */
2138         for (i = prev + 1; i < si->max; i++) {
2139                 count = READ_ONCE(si->swap_map[i]);
2140                 if (count && swap_count(count) != SWAP_MAP_BAD)
2141                         break;
2142                 if ((i % LATENCY_LIMIT) == 0)
2143                         cond_resched();
2144         }
2145 
2146         if (i == si->max)
2147                 i = 0;
2148 
2149         return i;
2150 }
2151 
2152 static int try_to_unuse(unsigned int type)
2153 {
2154         struct mm_struct *prev_mm;
2155         struct mm_struct *mm;
2156         struct list_head *p;
2157         int retval = 0;
2158         struct swap_info_struct *si = swap_info[type];
2159         struct folio *folio;
2160         swp_entry_t entry;
2161         unsigned int i;
2162 
2163         if (!READ_ONCE(si->inuse_pages))
2164                 goto success;
2165 
2166 retry:
2167         retval = shmem_unuse(type);
2168         if (retval)
2169                 return retval;
2170 
2171         prev_mm = &init_mm;
2172         mmget(prev_mm);
2173 
2174         spin_lock(&mmlist_lock);
2175         p = &init_mm.mmlist;
2176         while (READ_ONCE(si->inuse_pages) &&
2177                !signal_pending(current) &&
2178                (p = p->next) != &init_mm.mmlist) {
2179 
2180                 mm = list_entry(p, struct mm_struct, mmlist);
2181                 if (!mmget_not_zero(mm))
2182                         continue;
2183                 spin_unlock(&mmlist_lock);
2184                 mmput(prev_mm);
2185                 prev_mm = mm;
2186                 retval = unuse_mm(mm, type);
2187                 if (retval) {
2188                         mmput(prev_mm);
2189                         return retval;
2190                 }
2191 
2192                 /*
2193                  * Make sure that we aren't completely killing
2194                  * interactive performance.
2195                  */
2196                 cond_resched();
2197                 spin_lock(&mmlist_lock);
2198         }
2199         spin_unlock(&mmlist_lock);
2200 
2201         mmput(prev_mm);
2202 
2203         i = 0;
2204         while (READ_ONCE(si->inuse_pages) &&
2205                !signal_pending(current) &&
2206                (i = find_next_to_unuse(si, i)) != 0) {
2207 
2208                 entry = swp_entry(type, i);
2209                 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2210                 if (IS_ERR(folio))
2211                         continue;
2212 
2213                 /*
2214                  * It is conceivable that a racing task removed this folio from
2215                  * swap cache just before we acquired the page lock. The folio
2216                  * might even be back in swap cache on another swap area. But
2217                  * that is okay, folio_free_swap() only removes stale folios.
2218                  */
2219                 folio_lock(folio);
2220                 folio_wait_writeback(folio);
2221                 folio_free_swap(folio);
2222                 folio_unlock(folio);
2223                 folio_put(folio);
2224         }
2225 
2226         /*
2227          * Lets check again to see if there are still swap entries in the map.
2228          * If yes, we would need to do retry the unuse logic again.
2229          * Under global memory pressure, swap entries can be reinserted back
2230          * into process space after the mmlist loop above passes over them.
2231          *
2232          * Limit the number of retries? No: when mmget_not_zero()
2233          * above fails, that mm is likely to be freeing swap from
2234          * exit_mmap(), which proceeds at its own independent pace;
2235          * and even shmem_writepage() could have been preempted after
2236          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2237          * and robust (though cpu-intensive) just to keep retrying.
2238          */
2239         if (READ_ONCE(si->inuse_pages)) {
2240                 if (!signal_pending(current))
2241                         goto retry;
2242                 return -EINTR;
2243         }
2244 
2245 success:
2246         /*
2247          * Make sure that further cleanups after try_to_unuse() returns happen
2248          * after swap_range_free() reduces si->inuse_pages to 0.
2249          */
2250         smp_mb();
2251         return 0;
2252 }
2253 
2254 /*
2255  * After a successful try_to_unuse, if no swap is now in use, we know
2256  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2257  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2258  * added to the mmlist just after page_duplicate - before would be racy.
2259  */
2260 static void drain_mmlist(void)
2261 {
2262         struct list_head *p, *next;
2263         unsigned int type;
2264 
2265         for (type = 0; type < nr_swapfiles; type++)
2266                 if (swap_info[type]->inuse_pages)
2267                         return;
2268         spin_lock(&mmlist_lock);
2269         list_for_each_safe(p, next, &init_mm.mmlist)
2270                 list_del_init(p);
2271         spin_unlock(&mmlist_lock);
2272 }
2273 
2274 /*
2275  * Free all of a swapdev's extent information
2276  */
2277 static void destroy_swap_extents(struct swap_info_struct *sis)
2278 {
2279         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2280                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2281                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2282 
2283                 rb_erase(rb, &sis->swap_extent_root);
2284                 kfree(se);
2285         }
2286 
2287         if (sis->flags & SWP_ACTIVATED) {
2288                 struct file *swap_file = sis->swap_file;
2289                 struct address_space *mapping = swap_file->f_mapping;
2290 
2291                 sis->flags &= ~SWP_ACTIVATED;
2292                 if (mapping->a_ops->swap_deactivate)
2293                         mapping->a_ops->swap_deactivate(swap_file);
2294         }
2295 }
2296 
2297 /*
2298  * Add a block range (and the corresponding page range) into this swapdev's
2299  * extent tree.
2300  *
2301  * This function rather assumes that it is called in ascending page order.
2302  */
2303 int
2304 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2305                 unsigned long nr_pages, sector_t start_block)
2306 {
2307         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2308         struct swap_extent *se;
2309         struct swap_extent *new_se;
2310 
2311         /*
2312          * place the new node at the right most since the
2313          * function is called in ascending page order.
2314          */
2315         while (*link) {
2316                 parent = *link;
2317                 link = &parent->rb_right;
2318         }
2319 
2320         if (parent) {
2321                 se = rb_entry(parent, struct swap_extent, rb_node);
2322                 BUG_ON(se->start_page + se->nr_pages != start_page);
2323                 if (se->start_block + se->nr_pages == start_block) {
2324                         /* Merge it */
2325                         se->nr_pages += nr_pages;
2326                         return 0;
2327                 }
2328         }
2329 
2330         /* No merge, insert a new extent. */
2331         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2332         if (new_se == NULL)
2333                 return -ENOMEM;
2334         new_se->start_page = start_page;
2335         new_se->nr_pages = nr_pages;
2336         new_se->start_block = start_block;
2337 
2338         rb_link_node(&new_se->rb_node, parent, link);
2339         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2340         return 1;
2341 }
2342 EXPORT_SYMBOL_GPL(add_swap_extent);
2343 
2344 /*
2345  * A `swap extent' is a simple thing which maps a contiguous range of pages
2346  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2347  * built at swapon time and is then used at swap_writepage/swap_read_folio
2348  * time for locating where on disk a page belongs.
2349  *
2350  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2351  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2352  * swap files identically.
2353  *
2354  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2355  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2356  * swapfiles are handled *identically* after swapon time.
2357  *
2358  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2359  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2360  * blocks are found which do not fall within the PAGE_SIZE alignment
2361  * requirements, they are simply tossed out - we will never use those blocks
2362  * for swapping.
2363  *
2364  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2365  * prevents users from writing to the swap device, which will corrupt memory.
2366  *
2367  * The amount of disk space which a single swap extent represents varies.
2368  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2369  * extents in the rbtree. - akpm.
2370  */
2371 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2372 {
2373         struct file *swap_file = sis->swap_file;
2374         struct address_space *mapping = swap_file->f_mapping;
2375         struct inode *inode = mapping->host;
2376         int ret;
2377 
2378         if (S_ISBLK(inode->i_mode)) {
2379                 ret = add_swap_extent(sis, 0, sis->max, 0);
2380                 *span = sis->pages;
2381                 return ret;
2382         }
2383 
2384         if (mapping->a_ops->swap_activate) {
2385                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2386                 if (ret < 0)
2387                         return ret;
2388                 sis->flags |= SWP_ACTIVATED;
2389                 if ((sis->flags & SWP_FS_OPS) &&
2390                     sio_pool_init() != 0) {
2391                         destroy_swap_extents(sis);
2392                         return -ENOMEM;
2393                 }
2394                 return ret;
2395         }
2396 
2397         return generic_swapfile_activate(sis, swap_file, span);
2398 }
2399 
2400 static int swap_node(struct swap_info_struct *p)
2401 {
2402         struct block_device *bdev;
2403 
2404         if (p->bdev)
2405                 bdev = p->bdev;
2406         else
2407                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2408 
2409         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2410 }
2411 
2412 static void setup_swap_info(struct swap_info_struct *p, int prio,
2413                             unsigned char *swap_map,
2414                             struct swap_cluster_info *cluster_info)
2415 {
2416         int i;
2417 
2418         if (prio >= 0)
2419                 p->prio = prio;
2420         else
2421                 p->prio = --least_priority;
2422         /*
2423          * the plist prio is negated because plist ordering is
2424          * low-to-high, while swap ordering is high-to-low
2425          */
2426         p->list.prio = -p->prio;
2427         for_each_node(i) {
2428                 if (p->prio >= 0)
2429                         p->avail_lists[i].prio = -p->prio;
2430                 else {
2431                         if (swap_node(p) == i)
2432                                 p->avail_lists[i].prio = 1;
2433                         else
2434                                 p->avail_lists[i].prio = -p->prio;
2435                 }
2436         }
2437         p->swap_map = swap_map;
2438         p->cluster_info = cluster_info;
2439 }
2440 
2441 static void _enable_swap_info(struct swap_info_struct *p)
2442 {
2443         p->flags |= SWP_WRITEOK;
2444         atomic_long_add(p->pages, &nr_swap_pages);
2445         total_swap_pages += p->pages;
2446 
2447         assert_spin_locked(&swap_lock);
2448         /*
2449          * both lists are plists, and thus priority ordered.
2450          * swap_active_head needs to be priority ordered for swapoff(),
2451          * which on removal of any swap_info_struct with an auto-assigned
2452          * (i.e. negative) priority increments the auto-assigned priority
2453          * of any lower-priority swap_info_structs.
2454          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2455          * which allocates swap pages from the highest available priority
2456          * swap_info_struct.
2457          */
2458         plist_add(&p->list, &swap_active_head);
2459 
2460         /* add to available list iff swap device is not full */
2461         if (p->highest_bit)
2462                 add_to_avail_list(p);
2463 }
2464 
2465 static void enable_swap_info(struct swap_info_struct *p, int prio,
2466                                 unsigned char *swap_map,
2467                                 struct swap_cluster_info *cluster_info)
2468 {
2469         spin_lock(&swap_lock);
2470         spin_lock(&p->lock);
2471         setup_swap_info(p, prio, swap_map, cluster_info);
2472         spin_unlock(&p->lock);
2473         spin_unlock(&swap_lock);
2474         /*
2475          * Finished initializing swap device, now it's safe to reference it.
2476          */
2477         percpu_ref_resurrect(&p->users);
2478         spin_lock(&swap_lock);
2479         spin_lock(&p->lock);
2480         _enable_swap_info(p);
2481         spin_unlock(&p->lock);
2482         spin_unlock(&swap_lock);
2483 }
2484 
2485 static void reinsert_swap_info(struct swap_info_struct *p)
2486 {
2487         spin_lock(&swap_lock);
2488         spin_lock(&p->lock);
2489         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2490         _enable_swap_info(p);
2491         spin_unlock(&p->lock);
2492         spin_unlock(&swap_lock);
2493 }
2494 
2495 static bool __has_usable_swap(void)
2496 {
2497         return !plist_head_empty(&swap_active_head);
2498 }
2499 
2500 bool has_usable_swap(void)
2501 {
2502         bool ret;
2503 
2504         spin_lock(&swap_lock);
2505         ret = __has_usable_swap();
2506         spin_unlock(&swap_lock);
2507         return ret;
2508 }
2509 
2510 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2511 {
2512         struct swap_info_struct *p = NULL;
2513         unsigned char *swap_map;
2514         struct swap_cluster_info *cluster_info;
2515         struct file *swap_file, *victim;
2516         struct address_space *mapping;
2517         struct inode *inode;
2518         struct filename *pathname;
2519         int err, found = 0;
2520 
2521         if (!capable(CAP_SYS_ADMIN))
2522                 return -EPERM;
2523 
2524         BUG_ON(!current->mm);
2525 
2526         pathname = getname(specialfile);
2527         if (IS_ERR(pathname))
2528                 return PTR_ERR(pathname);
2529 
2530         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2531         err = PTR_ERR(victim);
2532         if (IS_ERR(victim))
2533                 goto out;
2534 
2535         mapping = victim->f_mapping;
2536         spin_lock(&swap_lock);
2537         plist_for_each_entry(p, &swap_active_head, list) {
2538                 if (p->flags & SWP_WRITEOK) {
2539                         if (p->swap_file->f_mapping == mapping) {
2540                                 found = 1;
2541                                 break;
2542                         }
2543                 }
2544         }
2545         if (!found) {
2546                 err = -EINVAL;
2547                 spin_unlock(&swap_lock);
2548                 goto out_dput;
2549         }
2550         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2551                 vm_unacct_memory(p->pages);
2552         else {
2553                 err = -ENOMEM;
2554                 spin_unlock(&swap_lock);
2555                 goto out_dput;
2556         }
2557         spin_lock(&p->lock);
2558         del_from_avail_list(p);
2559         if (p->prio < 0) {
2560                 struct swap_info_struct *si = p;
2561                 int nid;
2562 
2563                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2564                         si->prio++;
2565                         si->list.prio--;
2566                         for_each_node(nid) {
2567                                 if (si->avail_lists[nid].prio != 1)
2568                                         si->avail_lists[nid].prio--;
2569                         }
2570                 }
2571                 least_priority++;
2572         }
2573         plist_del(&p->list, &swap_active_head);
2574         atomic_long_sub(p->pages, &nr_swap_pages);
2575         total_swap_pages -= p->pages;
2576         p->flags &= ~SWP_WRITEOK;
2577         spin_unlock(&p->lock);
2578         spin_unlock(&swap_lock);
2579 
2580         disable_swap_slots_cache_lock();
2581 
2582         set_current_oom_origin();
2583         err = try_to_unuse(p->type);
2584         clear_current_oom_origin();
2585 
2586         if (err) {
2587                 /* re-insert swap space back into swap_list */
2588                 reinsert_swap_info(p);
2589                 reenable_swap_slots_cache_unlock();
2590                 goto out_dput;
2591         }
2592 
2593         reenable_swap_slots_cache_unlock();
2594 
2595         /*
2596          * Wait for swap operations protected by get/put_swap_device()
2597          * to complete.  Because of synchronize_rcu() here, all swap
2598          * operations protected by RCU reader side lock (including any
2599          * spinlock) will be waited too.  This makes it easy to
2600          * prevent folio_test_swapcache() and the following swap cache
2601          * operations from racing with swapoff.
2602          */
2603         percpu_ref_kill(&p->users);
2604         synchronize_rcu();
2605         wait_for_completion(&p->comp);
2606 
2607         flush_work(&p->discard_work);
2608 
2609         destroy_swap_extents(p);
2610         if (p->flags & SWP_CONTINUED)
2611                 free_swap_count_continuations(p);
2612 
2613         if (!p->bdev || !bdev_nonrot(p->bdev))
2614                 atomic_dec(&nr_rotate_swap);
2615 
2616         mutex_lock(&swapon_mutex);
2617         spin_lock(&swap_lock);
2618         spin_lock(&p->lock);
2619         drain_mmlist();
2620 
2621         /* wait for anyone still in scan_swap_map_slots */
2622         p->highest_bit = 0;             /* cuts scans short */
2623         while (p->flags >= SWP_SCANNING) {
2624                 spin_unlock(&p->lock);
2625                 spin_unlock(&swap_lock);
2626                 schedule_timeout_uninterruptible(1);
2627                 spin_lock(&swap_lock);
2628                 spin_lock(&p->lock);
2629         }
2630 
2631         swap_file = p->swap_file;
2632         p->swap_file = NULL;
2633         p->max = 0;
2634         swap_map = p->swap_map;
2635         p->swap_map = NULL;
2636         cluster_info = p->cluster_info;
2637         p->cluster_info = NULL;
2638         spin_unlock(&p->lock);
2639         spin_unlock(&swap_lock);
2640         arch_swap_invalidate_area(p->type);
2641         zswap_swapoff(p->type);
2642         mutex_unlock(&swapon_mutex);
2643         free_percpu(p->percpu_cluster);
2644         p->percpu_cluster = NULL;
2645         free_percpu(p->cluster_next_cpu);
2646         p->cluster_next_cpu = NULL;
2647         vfree(swap_map);
2648         kvfree(cluster_info);
2649         /* Destroy swap account information */
2650         swap_cgroup_swapoff(p->type);
2651         exit_swap_address_space(p->type);
2652 
2653         inode = mapping->host;
2654 
2655         inode_lock(inode);
2656         inode->i_flags &= ~S_SWAPFILE;
2657         inode_unlock(inode);
2658         filp_close(swap_file, NULL);
2659 
2660         /*
2661          * Clear the SWP_USED flag after all resources are freed so that swapon
2662          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2663          * not hold p->lock after we cleared its SWP_WRITEOK.
2664          */
2665         spin_lock(&swap_lock);
2666         p->flags = 0;
2667         spin_unlock(&swap_lock);
2668 
2669         err = 0;
2670         atomic_inc(&proc_poll_event);
2671         wake_up_interruptible(&proc_poll_wait);
2672 
2673 out_dput:
2674         filp_close(victim, NULL);
2675 out:
2676         putname(pathname);
2677         return err;
2678 }
2679 
2680 #ifdef CONFIG_PROC_FS
2681 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2682 {
2683         struct seq_file *seq = file->private_data;
2684 
2685         poll_wait(file, &proc_poll_wait, wait);
2686 
2687         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2688                 seq->poll_event = atomic_read(&proc_poll_event);
2689                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2690         }
2691 
2692         return EPOLLIN | EPOLLRDNORM;
2693 }
2694 
2695 /* iterator */
2696 static void *swap_start(struct seq_file *swap, loff_t *pos)
2697 {
2698         struct swap_info_struct *si;
2699         int type;
2700         loff_t l = *pos;
2701 
2702         mutex_lock(&swapon_mutex);
2703 
2704         if (!l)
2705                 return SEQ_START_TOKEN;
2706 
2707         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2708                 if (!(si->flags & SWP_USED) || !si->swap_map)
2709                         continue;
2710                 if (!--l)
2711                         return si;
2712         }
2713 
2714         return NULL;
2715 }
2716 
2717 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2718 {
2719         struct swap_info_struct *si = v;
2720         int type;
2721 
2722         if (v == SEQ_START_TOKEN)
2723                 type = 0;
2724         else
2725                 type = si->type + 1;
2726 
2727         ++(*pos);
2728         for (; (si = swap_type_to_swap_info(type)); type++) {
2729                 if (!(si->flags & SWP_USED) || !si->swap_map)
2730                         continue;
2731                 return si;
2732         }
2733 
2734         return NULL;
2735 }
2736 
2737 static void swap_stop(struct seq_file *swap, void *v)
2738 {
2739         mutex_unlock(&swapon_mutex);
2740 }
2741 
2742 static int swap_show(struct seq_file *swap, void *v)
2743 {
2744         struct swap_info_struct *si = v;
2745         struct file *file;
2746         int len;
2747         unsigned long bytes, inuse;
2748 
2749         if (si == SEQ_START_TOKEN) {
2750                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2751                 return 0;
2752         }
2753 
2754         bytes = K(si->pages);
2755         inuse = K(READ_ONCE(si->inuse_pages));
2756 
2757         file = si->swap_file;
2758         len = seq_file_path(swap, file, " \t\n\\");
2759         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2760                         len < 40 ? 40 - len : 1, " ",
2761                         S_ISBLK(file_inode(file)->i_mode) ?
2762                                 "partition" : "file\t",
2763                         bytes, bytes < 10000000 ? "\t" : "",
2764                         inuse, inuse < 10000000 ? "\t" : "",
2765                         si->prio);
2766         return 0;
2767 }
2768 
2769 static const struct seq_operations swaps_op = {
2770         .start =        swap_start,
2771         .next =         swap_next,
2772         .stop =         swap_stop,
2773         .show =         swap_show
2774 };
2775 
2776 static int swaps_open(struct inode *inode, struct file *file)
2777 {
2778         struct seq_file *seq;
2779         int ret;
2780 
2781         ret = seq_open(file, &swaps_op);
2782         if (ret)
2783                 return ret;
2784 
2785         seq = file->private_data;
2786         seq->poll_event = atomic_read(&proc_poll_event);
2787         return 0;
2788 }
2789 
2790 static const struct proc_ops swaps_proc_ops = {
2791         .proc_flags     = PROC_ENTRY_PERMANENT,
2792         .proc_open      = swaps_open,
2793         .proc_read      = seq_read,
2794         .proc_lseek     = seq_lseek,
2795         .proc_release   = seq_release,
2796         .proc_poll      = swaps_poll,
2797 };
2798 
2799 static int __init procswaps_init(void)
2800 {
2801         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2802         return 0;
2803 }
2804 __initcall(procswaps_init);
2805 #endif /* CONFIG_PROC_FS */
2806 
2807 #ifdef MAX_SWAPFILES_CHECK
2808 static int __init max_swapfiles_check(void)
2809 {
2810         MAX_SWAPFILES_CHECK();
2811         return 0;
2812 }
2813 late_initcall(max_swapfiles_check);
2814 #endif
2815 
2816 static struct swap_info_struct *alloc_swap_info(void)
2817 {
2818         struct swap_info_struct *p;
2819         struct swap_info_struct *defer = NULL;
2820         unsigned int type;
2821         int i;
2822 
2823         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2824         if (!p)
2825                 return ERR_PTR(-ENOMEM);
2826 
2827         if (percpu_ref_init(&p->users, swap_users_ref_free,
2828                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2829                 kvfree(p);
2830                 return ERR_PTR(-ENOMEM);
2831         }
2832 
2833         spin_lock(&swap_lock);
2834         for (type = 0; type < nr_swapfiles; type++) {
2835                 if (!(swap_info[type]->flags & SWP_USED))
2836                         break;
2837         }
2838         if (type >= MAX_SWAPFILES) {
2839                 spin_unlock(&swap_lock);
2840                 percpu_ref_exit(&p->users);
2841                 kvfree(p);
2842                 return ERR_PTR(-EPERM);
2843         }
2844         if (type >= nr_swapfiles) {
2845                 p->type = type;
2846                 /*
2847                  * Publish the swap_info_struct after initializing it.
2848                  * Note that kvzalloc() above zeroes all its fields.
2849                  */
2850                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2851                 nr_swapfiles++;
2852         } else {
2853                 defer = p;
2854                 p = swap_info[type];
2855                 /*
2856                  * Do not memset this entry: a racing procfs swap_next()
2857                  * would be relying on p->type to remain valid.
2858                  */
2859         }
2860         p->swap_extent_root = RB_ROOT;
2861         plist_node_init(&p->list, 0);
2862         for_each_node(i)
2863                 plist_node_init(&p->avail_lists[i], 0);
2864         p->flags = SWP_USED;
2865         spin_unlock(&swap_lock);
2866         if (defer) {
2867                 percpu_ref_exit(&defer->users);
2868                 kvfree(defer);
2869         }
2870         spin_lock_init(&p->lock);
2871         spin_lock_init(&p->cont_lock);
2872         init_completion(&p->comp);
2873 
2874         return p;
2875 }
2876 
2877 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2878 {
2879         if (S_ISBLK(inode->i_mode)) {
2880                 p->bdev = I_BDEV(inode);
2881                 /*
2882                  * Zoned block devices contain zones that have a sequential
2883                  * write only restriction.  Hence zoned block devices are not
2884                  * suitable for swapping.  Disallow them here.
2885                  */
2886                 if (bdev_is_zoned(p->bdev))
2887                         return -EINVAL;
2888                 p->flags |= SWP_BLKDEV;
2889         } else if (S_ISREG(inode->i_mode)) {
2890                 p->bdev = inode->i_sb->s_bdev;
2891         }
2892 
2893         return 0;
2894 }
2895 
2896 
2897 /*
2898  * Find out how many pages are allowed for a single swap device. There
2899  * are two limiting factors:
2900  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2901  * 2) the number of bits in the swap pte, as defined by the different
2902  * architectures.
2903  *
2904  * In order to find the largest possible bit mask, a swap entry with
2905  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2906  * decoded to a swp_entry_t again, and finally the swap offset is
2907  * extracted.
2908  *
2909  * This will mask all the bits from the initial ~0UL mask that can't
2910  * be encoded in either the swp_entry_t or the architecture definition
2911  * of a swap pte.
2912  */
2913 unsigned long generic_max_swapfile_size(void)
2914 {
2915         return swp_offset(pte_to_swp_entry(
2916                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2917 }
2918 
2919 /* Can be overridden by an architecture for additional checks. */
2920 __weak unsigned long arch_max_swapfile_size(void)
2921 {
2922         return generic_max_swapfile_size();
2923 }
2924 
2925 static unsigned long read_swap_header(struct swap_info_struct *p,
2926                                         union swap_header *swap_header,
2927                                         struct inode *inode)
2928 {
2929         int i;
2930         unsigned long maxpages;
2931         unsigned long swapfilepages;
2932         unsigned long last_page;
2933 
2934         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2935                 pr_err("Unable to find swap-space signature\n");
2936                 return 0;
2937         }
2938 
2939         /* swap partition endianness hack... */
2940         if (swab32(swap_header->info.version) == 1) {
2941                 swab32s(&swap_header->info.version);
2942                 swab32s(&swap_header->info.last_page);
2943                 swab32s(&swap_header->info.nr_badpages);
2944                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2945                         return 0;
2946                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2947                         swab32s(&swap_header->info.badpages[i]);
2948         }
2949         /* Check the swap header's sub-version */
2950         if (swap_header->info.version != 1) {
2951                 pr_warn("Unable to handle swap header version %d\n",
2952                         swap_header->info.version);
2953                 return 0;
2954         }
2955 
2956         p->lowest_bit  = 1;
2957         p->cluster_next = 1;
2958         p->cluster_nr = 0;
2959 
2960         maxpages = swapfile_maximum_size;
2961         last_page = swap_header->info.last_page;
2962         if (!last_page) {
2963                 pr_warn("Empty swap-file\n");
2964                 return 0;
2965         }
2966         if (last_page > maxpages) {
2967                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2968                         K(maxpages), K(last_page));
2969         }
2970         if (maxpages > last_page) {
2971                 maxpages = last_page + 1;
2972                 /* p->max is an unsigned int: don't overflow it */
2973                 if ((unsigned int)maxpages == 0)
2974                         maxpages = UINT_MAX;
2975         }
2976         p->highest_bit = maxpages - 1;
2977 
2978         if (!maxpages)
2979                 return 0;
2980         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2981         if (swapfilepages && maxpages > swapfilepages) {
2982                 pr_warn("Swap area shorter than signature indicates\n");
2983                 return 0;
2984         }
2985         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2986                 return 0;
2987         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2988                 return 0;
2989 
2990         return maxpages;
2991 }
2992 
2993 #define SWAP_CLUSTER_INFO_COLS                                          \
2994         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2995 #define SWAP_CLUSTER_SPACE_COLS                                         \
2996         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2997 #define SWAP_CLUSTER_COLS                                               \
2998         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2999 
3000 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3001                                         union swap_header *swap_header,
3002                                         unsigned char *swap_map,
3003                                         struct swap_cluster_info *cluster_info,
3004                                         unsigned long maxpages,
3005                                         sector_t *span)
3006 {
3007         unsigned int j, k;
3008         unsigned int nr_good_pages;
3009         int nr_extents;
3010         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3011         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3012         unsigned long i, idx;
3013 
3014         nr_good_pages = maxpages - 1;   /* omit header page */
3015 
3016         cluster_list_init(&p->free_clusters);
3017         cluster_list_init(&p->discard_clusters);
3018 
3019         for (i = 0; i < swap_header->info.nr_badpages; i++) {
3020                 unsigned int page_nr = swap_header->info.badpages[i];
3021                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3022                         return -EINVAL;
3023                 if (page_nr < maxpages) {
3024                         swap_map[page_nr] = SWAP_MAP_BAD;
3025                         nr_good_pages--;
3026                         /*
3027                          * Haven't marked the cluster free yet, no list
3028                          * operation involved
3029                          */
3030                         inc_cluster_info_page(p, cluster_info, page_nr);
3031                 }
3032         }
3033 
3034         /* Haven't marked the cluster free yet, no list operation involved */
3035         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3036                 inc_cluster_info_page(p, cluster_info, i);
3037 
3038         if (nr_good_pages) {
3039                 swap_map[0] = SWAP_MAP_BAD;
3040                 /*
3041                  * Not mark the cluster free yet, no list
3042                  * operation involved
3043                  */
3044                 inc_cluster_info_page(p, cluster_info, 0);
3045                 p->max = maxpages;
3046                 p->pages = nr_good_pages;
3047                 nr_extents = setup_swap_extents(p, span);
3048                 if (nr_extents < 0)
3049                         return nr_extents;
3050                 nr_good_pages = p->pages;
3051         }
3052         if (!nr_good_pages) {
3053                 pr_warn("Empty swap-file\n");
3054                 return -EINVAL;
3055         }
3056 
3057         if (!cluster_info)
3058                 return nr_extents;
3059 
3060 
3061         /*
3062          * Reduce false cache line sharing between cluster_info and
3063          * sharing same address space.
3064          */
3065         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3066                 j = (k + col) % SWAP_CLUSTER_COLS;
3067                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3068                         idx = i * SWAP_CLUSTER_COLS + j;
3069                         if (idx >= nr_clusters)
3070                                 continue;
3071                         if (cluster_count(&cluster_info[idx]))
3072                                 continue;
3073                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3074                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3075                                               idx);
3076                 }
3077         }
3078         return nr_extents;
3079 }
3080 
3081 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3082 {
3083         struct swap_info_struct *p;
3084         struct filename *name;
3085         struct file *swap_file = NULL;
3086         struct address_space *mapping;
3087         struct dentry *dentry;
3088         int prio;
3089         int error;
3090         union swap_header *swap_header;
3091         int nr_extents;
3092         sector_t span;
3093         unsigned long maxpages;
3094         unsigned char *swap_map = NULL;
3095         struct swap_cluster_info *cluster_info = NULL;
3096         struct page *page = NULL;
3097         struct inode *inode = NULL;
3098         bool inced_nr_rotate_swap = false;
3099 
3100         if (swap_flags & ~SWAP_FLAGS_VALID)
3101                 return -EINVAL;
3102 
3103         if (!capable(CAP_SYS_ADMIN))
3104                 return -EPERM;
3105 
3106         if (!swap_avail_heads)
3107                 return -ENOMEM;
3108 
3109         p = alloc_swap_info();
3110         if (IS_ERR(p))
3111                 return PTR_ERR(p);
3112 
3113         INIT_WORK(&p->discard_work, swap_discard_work);
3114 
3115         name = getname(specialfile);
3116         if (IS_ERR(name)) {
3117                 error = PTR_ERR(name);
3118                 name = NULL;
3119                 goto bad_swap;
3120         }
3121         swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3122         if (IS_ERR(swap_file)) {
3123                 error = PTR_ERR(swap_file);
3124                 swap_file = NULL;
3125                 goto bad_swap;
3126         }
3127 
3128         p->swap_file = swap_file;
3129         mapping = swap_file->f_mapping;
3130         dentry = swap_file->f_path.dentry;
3131         inode = mapping->host;
3132 
3133         error = claim_swapfile(p, inode);
3134         if (unlikely(error))
3135                 goto bad_swap;
3136 
3137         inode_lock(inode);
3138         if (d_unlinked(dentry) || cant_mount(dentry)) {
3139                 error = -ENOENT;
3140                 goto bad_swap_unlock_inode;
3141         }
3142         if (IS_SWAPFILE(inode)) {
3143                 error = -EBUSY;
3144                 goto bad_swap_unlock_inode;
3145         }
3146 
3147         /*
3148          * Read the swap header.
3149          */
3150         if (!mapping->a_ops->read_folio) {
3151                 error = -EINVAL;
3152                 goto bad_swap_unlock_inode;
3153         }
3154         page = read_mapping_page(mapping, 0, swap_file);
3155         if (IS_ERR(page)) {
3156                 error = PTR_ERR(page);
3157                 goto bad_swap_unlock_inode;
3158         }
3159         swap_header = kmap(page);
3160 
3161         maxpages = read_swap_header(p, swap_header, inode);
3162         if (unlikely(!maxpages)) {
3163                 error = -EINVAL;
3164                 goto bad_swap_unlock_inode;
3165         }
3166 
3167         /* OK, set up the swap map and apply the bad block list */
3168         swap_map = vzalloc(maxpages);
3169         if (!swap_map) {
3170                 error = -ENOMEM;
3171                 goto bad_swap_unlock_inode;
3172         }
3173 
3174         if (p->bdev && bdev_stable_writes(p->bdev))
3175                 p->flags |= SWP_STABLE_WRITES;
3176 
3177         if (p->bdev && bdev_synchronous(p->bdev))
3178                 p->flags |= SWP_SYNCHRONOUS_IO;
3179 
3180         if (p->bdev && bdev_nonrot(p->bdev)) {
3181                 int cpu, i;
3182                 unsigned long ci, nr_cluster;
3183 
3184                 p->flags |= SWP_SOLIDSTATE;
3185                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3186                 if (!p->cluster_next_cpu) {
3187                         error = -ENOMEM;
3188                         goto bad_swap_unlock_inode;
3189                 }
3190                 /*
3191                  * select a random position to start with to help wear leveling
3192                  * SSD
3193                  */
3194                 for_each_possible_cpu(cpu) {
3195                         per_cpu(*p->cluster_next_cpu, cpu) =
3196                                 get_random_u32_inclusive(1, p->highest_bit);
3197                 }
3198                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3199 
3200                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3201                                         GFP_KERNEL);
3202                 if (!cluster_info) {
3203                         error = -ENOMEM;
3204                         goto bad_swap_unlock_inode;
3205                 }
3206 
3207                 for (ci = 0; ci < nr_cluster; ci++)
3208                         spin_lock_init(&((cluster_info + ci)->lock));
3209 
3210                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3211                 if (!p->percpu_cluster) {
3212                         error = -ENOMEM;
3213                         goto bad_swap_unlock_inode;
3214                 }
3215                 for_each_possible_cpu(cpu) {
3216                         struct percpu_cluster *cluster;
3217 
3218                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3219                         for (i = 0; i < SWAP_NR_ORDERS; i++)
3220                                 cluster->next[i] = SWAP_NEXT_INVALID;
3221                 }
3222         } else {
3223                 atomic_inc(&nr_rotate_swap);
3224                 inced_nr_rotate_swap = true;
3225         }
3226 
3227         error = swap_cgroup_swapon(p->type, maxpages);
3228         if (error)
3229                 goto bad_swap_unlock_inode;
3230 
3231         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3232                 cluster_info, maxpages, &span);
3233         if (unlikely(nr_extents < 0)) {
3234                 error = nr_extents;
3235                 goto bad_swap_unlock_inode;
3236         }
3237 
3238         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3239             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3240                 /*
3241                  * When discard is enabled for swap with no particular
3242                  * policy flagged, we set all swap discard flags here in
3243                  * order to sustain backward compatibility with older
3244                  * swapon(8) releases.
3245                  */
3246                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3247                              SWP_PAGE_DISCARD);
3248 
3249                 /*
3250                  * By flagging sys_swapon, a sysadmin can tell us to
3251                  * either do single-time area discards only, or to just
3252                  * perform discards for released swap page-clusters.
3253                  * Now it's time to adjust the p->flags accordingly.
3254                  */
3255                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3256                         p->flags &= ~SWP_PAGE_DISCARD;
3257                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3258                         p->flags &= ~SWP_AREA_DISCARD;
3259 
3260                 /* issue a swapon-time discard if it's still required */
3261                 if (p->flags & SWP_AREA_DISCARD) {
3262                         int err = discard_swap(p);
3263                         if (unlikely(err))
3264                                 pr_err("swapon: discard_swap(%p): %d\n",
3265                                         p, err);
3266                 }
3267         }
3268 
3269         error = init_swap_address_space(p->type, maxpages);
3270         if (error)
3271                 goto bad_swap_unlock_inode;
3272 
3273         error = zswap_swapon(p->type, maxpages);
3274         if (error)
3275                 goto free_swap_address_space;
3276 
3277         /*
3278          * Flush any pending IO and dirty mappings before we start using this
3279          * swap device.
3280          */
3281         inode->i_flags |= S_SWAPFILE;
3282         error = inode_drain_writes(inode);
3283         if (error) {
3284                 inode->i_flags &= ~S_SWAPFILE;
3285                 goto free_swap_zswap;
3286         }
3287 
3288         mutex_lock(&swapon_mutex);
3289         prio = -1;
3290         if (swap_flags & SWAP_FLAG_PREFER)
3291                 prio =
3292                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3293         enable_swap_info(p, prio, swap_map, cluster_info);
3294 
3295         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3296                 K(p->pages), name->name, p->prio, nr_extents,
3297                 K((unsigned long long)span),
3298                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3299                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3300                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3301                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3302 
3303         mutex_unlock(&swapon_mutex);
3304         atomic_inc(&proc_poll_event);
3305         wake_up_interruptible(&proc_poll_wait);
3306 
3307         error = 0;
3308         goto out;
3309 free_swap_zswap:
3310         zswap_swapoff(p->type);
3311 free_swap_address_space:
3312         exit_swap_address_space(p->type);
3313 bad_swap_unlock_inode:
3314         inode_unlock(inode);
3315 bad_swap:
3316         free_percpu(p->percpu_cluster);
3317         p->percpu_cluster = NULL;
3318         free_percpu(p->cluster_next_cpu);
3319         p->cluster_next_cpu = NULL;
3320         inode = NULL;
3321         destroy_swap_extents(p);
3322         swap_cgroup_swapoff(p->type);
3323         spin_lock(&swap_lock);
3324         p->swap_file = NULL;
3325         p->flags = 0;
3326         spin_unlock(&swap_lock);
3327         vfree(swap_map);
3328         kvfree(cluster_info);
3329         if (inced_nr_rotate_swap)
3330                 atomic_dec(&nr_rotate_swap);
3331         if (swap_file)
3332                 filp_close(swap_file, NULL);
3333 out:
3334         if (page && !IS_ERR(page)) {
3335                 kunmap(page);
3336                 put_page(page);
3337         }
3338         if (name)
3339                 putname(name);
3340         if (inode)
3341                 inode_unlock(inode);
3342         if (!error)
3343                 enable_swap_slots_cache();
3344         return error;
3345 }
3346 
3347 void si_swapinfo(struct sysinfo *val)
3348 {
3349         unsigned int type;
3350         unsigned long nr_to_be_unused = 0;
3351 
3352         spin_lock(&swap_lock);
3353         for (type = 0; type < nr_swapfiles; type++) {
3354                 struct swap_info_struct *si = swap_info[type];
3355 
3356                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3357                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3358         }
3359         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3360         val->totalswap = total_swap_pages + nr_to_be_unused;
3361         spin_unlock(&swap_lock);
3362 }
3363 
3364 /*
3365  * Verify that a swap entry is valid and increment its swap map count.
3366  *
3367  * Returns error code in following case.
3368  * - success -> 0
3369  * - swp_entry is invalid -> EINVAL
3370  * - swp_entry is migration entry -> EINVAL
3371  * - swap-cache reference is requested but there is already one. -> EEXIST
3372  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3373  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3374  */
3375 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3376 {
3377         struct swap_info_struct *p;
3378         struct swap_cluster_info *ci;
3379         unsigned long offset;
3380         unsigned char count;
3381         unsigned char has_cache;
3382         int err;
3383 
3384         p = swp_swap_info(entry);
3385 
3386         offset = swp_offset(entry);
3387         ci = lock_cluster_or_swap_info(p, offset);
3388 
3389         count = p->swap_map[offset];
3390 
3391         /*
3392          * swapin_readahead() doesn't check if a swap entry is valid, so the
3393          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3394          */
3395         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3396                 err = -ENOENT;
3397                 goto unlock_out;
3398         }
3399 
3400         has_cache = count & SWAP_HAS_CACHE;
3401         count &= ~SWAP_HAS_CACHE;
3402         err = 0;
3403 
3404         if (usage == SWAP_HAS_CACHE) {
3405 
3406                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3407                 if (!has_cache && count)
3408                         has_cache = SWAP_HAS_CACHE;
3409                 else if (has_cache)             /* someone else added cache */
3410                         err = -EEXIST;
3411                 else                            /* no users remaining */
3412                         err = -ENOENT;
3413 
3414         } else if (count || has_cache) {
3415 
3416                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3417                         count += usage;
3418                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3419                         err = -EINVAL;
3420                 else if (swap_count_continued(p, offset, count))
3421                         count = COUNT_CONTINUED;
3422                 else
3423                         err = -ENOMEM;
3424         } else
3425                 err = -ENOENT;                  /* unused swap entry */
3426 
3427         if (!err)
3428                 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3429 
3430 unlock_out:
3431         unlock_cluster_or_swap_info(p, ci);
3432         return err;
3433 }
3434 
3435 /*
3436  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3437  * (in which case its reference count is never incremented).
3438  */
3439 void swap_shmem_alloc(swp_entry_t entry)
3440 {
3441         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3442 }
3443 
3444 /*
3445  * Increase reference count of swap entry by 1.
3446  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3447  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3448  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3449  * might occur if a page table entry has got corrupted.
3450  */
3451 int swap_duplicate(swp_entry_t entry)
3452 {
3453         int err = 0;
3454 
3455         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3456                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3457         return err;
3458 }
3459 
3460 /*
3461  * @entry: swap entry for which we allocate swap cache.
3462  *
3463  * Called when allocating swap cache for existing swap entry,
3464  * This can return error codes. Returns 0 at success.
3465  * -EEXIST means there is a swap cache.
3466  * Note: return code is different from swap_duplicate().
3467  */
3468 int swapcache_prepare(swp_entry_t entry)
3469 {
3470         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3471 }
3472 
3473 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3474 {
3475         struct swap_cluster_info *ci;
3476         unsigned long offset = swp_offset(entry);
3477         unsigned char usage;
3478 
3479         ci = lock_cluster_or_swap_info(si, offset);
3480         usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3481         unlock_cluster_or_swap_info(si, ci);
3482         if (!usage)
3483                 free_swap_slot(entry);
3484 }
3485 
3486 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3487 {
3488         return swap_type_to_swap_info(swp_type(entry));
3489 }
3490 
3491 /*
3492  * out-of-line methods to avoid include hell.
3493  */
3494 struct address_space *swapcache_mapping(struct folio *folio)
3495 {
3496         return swp_swap_info(folio->swap)->swap_file->f_mapping;
3497 }
3498 EXPORT_SYMBOL_GPL(swapcache_mapping);
3499 
3500 pgoff_t __folio_swap_cache_index(struct folio *folio)
3501 {
3502         return swap_cache_index(folio->swap);
3503 }
3504 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3505 
3506 /*
3507  * add_swap_count_continuation - called when a swap count is duplicated
3508  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3509  * page of the original vmalloc'ed swap_map, to hold the continuation count
3510  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3511  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3512  *
3513  * These continuation pages are seldom referenced: the common paths all work
3514  * on the original swap_map, only referring to a continuation page when the
3515  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3516  *
3517  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3518  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3519  * can be called after dropping locks.
3520  */
3521 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3522 {
3523         struct swap_info_struct *si;
3524         struct swap_cluster_info *ci;
3525         struct page *head;
3526         struct page *page;
3527         struct page *list_page;
3528         pgoff_t offset;
3529         unsigned char count;
3530         int ret = 0;
3531 
3532         /*
3533          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3534          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3535          */
3536         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3537 
3538         si = get_swap_device(entry);
3539         if (!si) {
3540                 /*
3541                  * An acceptable race has occurred since the failing
3542                  * __swap_duplicate(): the swap device may be swapoff
3543                  */
3544                 goto outer;
3545         }
3546         spin_lock(&si->lock);
3547 
3548         offset = swp_offset(entry);
3549 
3550         ci = lock_cluster(si, offset);
3551 
3552         count = swap_count(si->swap_map[offset]);
3553 
3554         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3555                 /*
3556                  * The higher the swap count, the more likely it is that tasks
3557                  * will race to add swap count continuation: we need to avoid
3558                  * over-provisioning.
3559                  */
3560                 goto out;
3561         }
3562 
3563         if (!page) {
3564                 ret = -ENOMEM;
3565                 goto out;
3566         }
3567 
3568         head = vmalloc_to_page(si->swap_map + offset);
3569         offset &= ~PAGE_MASK;
3570 
3571         spin_lock(&si->cont_lock);
3572         /*
3573          * Page allocation does not initialize the page's lru field,
3574          * but it does always reset its private field.
3575          */
3576         if (!page_private(head)) {
3577                 BUG_ON(count & COUNT_CONTINUED);
3578                 INIT_LIST_HEAD(&head->lru);
3579                 set_page_private(head, SWP_CONTINUED);
3580                 si->flags |= SWP_CONTINUED;
3581         }
3582 
3583         list_for_each_entry(list_page, &head->lru, lru) {
3584                 unsigned char *map;
3585 
3586                 /*
3587                  * If the previous map said no continuation, but we've found
3588                  * a continuation page, free our allocation and use this one.
3589                  */
3590                 if (!(count & COUNT_CONTINUED))
3591                         goto out_unlock_cont;
3592 
3593                 map = kmap_local_page(list_page) + offset;
3594                 count = *map;
3595                 kunmap_local(map);
3596 
3597                 /*
3598                  * If this continuation count now has some space in it,
3599                  * free our allocation and use this one.
3600                  */
3601                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3602                         goto out_unlock_cont;
3603         }
3604 
3605         list_add_tail(&page->lru, &head->lru);
3606         page = NULL;                    /* now it's attached, don't free it */
3607 out_unlock_cont:
3608         spin_unlock(&si->cont_lock);
3609 out:
3610         unlock_cluster(ci);
3611         spin_unlock(&si->lock);
3612         put_swap_device(si);
3613 outer:
3614         if (page)
3615                 __free_page(page);
3616         return ret;
3617 }
3618 
3619 /*
3620  * swap_count_continued - when the original swap_map count is incremented
3621  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3622  * into, carry if so, or else fail until a new continuation page is allocated;
3623  * when the original swap_map count is decremented from 0 with continuation,
3624  * borrow from the continuation and report whether it still holds more.
3625  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3626  * lock.
3627  */
3628 static bool swap_count_continued(struct swap_info_struct *si,
3629                                  pgoff_t offset, unsigned char count)
3630 {
3631         struct page *head;
3632         struct page *page;
3633         unsigned char *map;
3634         bool ret;
3635 
3636         head = vmalloc_to_page(si->swap_map + offset);
3637         if (page_private(head) != SWP_CONTINUED) {
3638                 BUG_ON(count & COUNT_CONTINUED);
3639                 return false;           /* need to add count continuation */
3640         }
3641 
3642         spin_lock(&si->cont_lock);
3643         offset &= ~PAGE_MASK;
3644         page = list_next_entry(head, lru);
3645         map = kmap_local_page(page) + offset;
3646 
3647         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3648                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3649 
3650         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3651                 /*
3652                  * Think of how you add 1 to 999
3653                  */
3654                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3655                         kunmap_local(map);
3656                         page = list_next_entry(page, lru);
3657                         BUG_ON(page == head);
3658                         map = kmap_local_page(page) + offset;
3659                 }
3660                 if (*map == SWAP_CONT_MAX) {
3661                         kunmap_local(map);
3662                         page = list_next_entry(page, lru);
3663                         if (page == head) {
3664                                 ret = false;    /* add count continuation */
3665                                 goto out;
3666                         }
3667                         map = kmap_local_page(page) + offset;
3668 init_map:               *map = 0;               /* we didn't zero the page */
3669                 }
3670                 *map += 1;
3671                 kunmap_local(map);
3672                 while ((page = list_prev_entry(page, lru)) != head) {
3673                         map = kmap_local_page(page) + offset;
3674                         *map = COUNT_CONTINUED;
3675                         kunmap_local(map);
3676                 }
3677                 ret = true;                     /* incremented */
3678 
3679         } else {                                /* decrementing */
3680                 /*
3681                  * Think of how you subtract 1 from 1000
3682                  */
3683                 BUG_ON(count != COUNT_CONTINUED);
3684                 while (*map == COUNT_CONTINUED) {
3685                         kunmap_local(map);
3686                         page = list_next_entry(page, lru);
3687                         BUG_ON(page == head);
3688                         map = kmap_local_page(page) + offset;
3689                 }
3690                 BUG_ON(*map == 0);
3691                 *map -= 1;
3692                 if (*map == 0)
3693                         count = 0;
3694                 kunmap_local(map);
3695                 while ((page = list_prev_entry(page, lru)) != head) {
3696                         map = kmap_local_page(page) + offset;
3697                         *map = SWAP_CONT_MAX | count;
3698                         count = COUNT_CONTINUED;
3699                         kunmap_local(map);
3700                 }
3701                 ret = count == COUNT_CONTINUED;
3702         }
3703 out:
3704         spin_unlock(&si->cont_lock);
3705         return ret;
3706 }
3707 
3708 /*
3709  * free_swap_count_continuations - swapoff free all the continuation pages
3710  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3711  */
3712 static void free_swap_count_continuations(struct swap_info_struct *si)
3713 {
3714         pgoff_t offset;
3715 
3716         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3717                 struct page *head;
3718                 head = vmalloc_to_page(si->swap_map + offset);
3719                 if (page_private(head)) {
3720                         struct page *page, *next;
3721 
3722                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3723                                 list_del(&page->lru);
3724                                 __free_page(page);
3725                         }
3726                 }
3727         }
3728 }
3729 
3730 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3731 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3732 {
3733         struct swap_info_struct *si, *next;
3734         int nid = folio_nid(folio);
3735 
3736         if (!(gfp & __GFP_IO))
3737                 return;
3738 
3739         if (!__has_usable_swap())
3740                 return;
3741 
3742         if (!blk_cgroup_congested())
3743                 return;
3744 
3745         /*
3746          * We've already scheduled a throttle, avoid taking the global swap
3747          * lock.
3748          */
3749         if (current->throttle_disk)
3750                 return;
3751 
3752         spin_lock(&swap_avail_lock);
3753         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3754                                   avail_lists[nid]) {
3755                 if (si->bdev) {
3756                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3757                         break;
3758                 }
3759         }
3760         spin_unlock(&swap_avail_lock);
3761 }
3762 #endif
3763 
3764 static int __init swapfile_init(void)
3765 {
3766         int nid;
3767 
3768         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3769                                          GFP_KERNEL);
3770         if (!swap_avail_heads) {
3771                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3772                 return -ENOMEM;
3773         }
3774 
3775         for_each_node(nid)
3776                 plist_head_init(&swap_avail_heads[nid]);
3777 
3778         swapfile_maximum_size = arch_max_swapfile_size();
3779 
3780 #ifdef CONFIG_MIGRATION
3781         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3782                 swap_migration_ad_supported = true;
3783 #endif  /* CONFIG_MIGRATION */
3784 
3785         return 0;
3786 }
3787 subsys_initcall(swapfile_init);
3788 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php