1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/rmap.h> 24 #include "internal.h" 25 26 /* 27 * Regular page slots are stabilized by the page lock even without the tree 28 * itself locked. These unlocked entries need verification under the tree 29 * lock. 30 */ 31 static inline void __clear_shadow_entry(struct address_space *mapping, 32 pgoff_t index, void *entry) 33 { 34 XA_STATE(xas, &mapping->i_pages, index); 35 36 xas_set_update(&xas, workingset_update_node); 37 if (xas_load(&xas) != entry) 38 return; 39 xas_store(&xas, NULL); 40 } 41 42 static void clear_shadow_entries(struct address_space *mapping, 43 struct folio_batch *fbatch, pgoff_t *indices) 44 { 45 int i; 46 47 /* Handled by shmem itself, or for DAX we do nothing. */ 48 if (shmem_mapping(mapping) || dax_mapping(mapping)) 49 return; 50 51 spin_lock(&mapping->host->i_lock); 52 xa_lock_irq(&mapping->i_pages); 53 54 for (i = 0; i < folio_batch_count(fbatch); i++) { 55 struct folio *folio = fbatch->folios[i]; 56 57 if (xa_is_value(folio)) 58 __clear_shadow_entry(mapping, indices[i], folio); 59 } 60 61 xa_unlock_irq(&mapping->i_pages); 62 if (mapping_shrinkable(mapping)) 63 inode_add_lru(mapping->host); 64 spin_unlock(&mapping->host->i_lock); 65 } 66 67 /* 68 * Unconditionally remove exceptional entries. Usually called from truncate 69 * path. Note that the folio_batch may be altered by this function by removing 70 * exceptional entries similar to what folio_batch_remove_exceptionals() does. 71 */ 72 static void truncate_folio_batch_exceptionals(struct address_space *mapping, 73 struct folio_batch *fbatch, pgoff_t *indices) 74 { 75 int i, j; 76 bool dax; 77 78 /* Handled by shmem itself */ 79 if (shmem_mapping(mapping)) 80 return; 81 82 for (j = 0; j < folio_batch_count(fbatch); j++) 83 if (xa_is_value(fbatch->folios[j])) 84 break; 85 86 if (j == folio_batch_count(fbatch)) 87 return; 88 89 dax = dax_mapping(mapping); 90 if (!dax) { 91 spin_lock(&mapping->host->i_lock); 92 xa_lock_irq(&mapping->i_pages); 93 } 94 95 for (i = j; i < folio_batch_count(fbatch); i++) { 96 struct folio *folio = fbatch->folios[i]; 97 pgoff_t index = indices[i]; 98 99 if (!xa_is_value(folio)) { 100 fbatch->folios[j++] = folio; 101 continue; 102 } 103 104 if (unlikely(dax)) { 105 dax_delete_mapping_entry(mapping, index); 106 continue; 107 } 108 109 __clear_shadow_entry(mapping, index, folio); 110 } 111 112 if (!dax) { 113 xa_unlock_irq(&mapping->i_pages); 114 if (mapping_shrinkable(mapping)) 115 inode_add_lru(mapping->host); 116 spin_unlock(&mapping->host->i_lock); 117 } 118 fbatch->nr = j; 119 } 120 121 /** 122 * folio_invalidate - Invalidate part or all of a folio. 123 * @folio: The folio which is affected. 124 * @offset: start of the range to invalidate 125 * @length: length of the range to invalidate 126 * 127 * folio_invalidate() is called when all or part of the folio has become 128 * invalidated by a truncate operation. 129 * 130 * folio_invalidate() does not have to release all buffers, but it must 131 * ensure that no dirty buffer is left outside @offset and that no I/O 132 * is underway against any of the blocks which are outside the truncation 133 * point. Because the caller is about to free (and possibly reuse) those 134 * blocks on-disk. 135 */ 136 void folio_invalidate(struct folio *folio, size_t offset, size_t length) 137 { 138 const struct address_space_operations *aops = folio->mapping->a_ops; 139 140 if (aops->invalidate_folio) 141 aops->invalidate_folio(folio, offset, length); 142 } 143 EXPORT_SYMBOL_GPL(folio_invalidate); 144 145 /* 146 * If truncate cannot remove the fs-private metadata from the page, the page 147 * becomes orphaned. It will be left on the LRU and may even be mapped into 148 * user pagetables if we're racing with filemap_fault(). 149 * 150 * We need to bail out if page->mapping is no longer equal to the original 151 * mapping. This happens a) when the VM reclaimed the page while we waited on 152 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 153 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 154 */ 155 static void truncate_cleanup_folio(struct folio *folio) 156 { 157 if (folio_mapped(folio)) 158 unmap_mapping_folio(folio); 159 160 if (folio_needs_release(folio)) 161 folio_invalidate(folio, 0, folio_size(folio)); 162 163 /* 164 * Some filesystems seem to re-dirty the page even after 165 * the VM has canceled the dirty bit (eg ext3 journaling). 166 * Hence dirty accounting check is placed after invalidation. 167 */ 168 folio_cancel_dirty(folio); 169 folio_clear_mappedtodisk(folio); 170 } 171 172 int truncate_inode_folio(struct address_space *mapping, struct folio *folio) 173 { 174 if (folio->mapping != mapping) 175 return -EIO; 176 177 truncate_cleanup_folio(folio); 178 filemap_remove_folio(folio); 179 return 0; 180 } 181 182 /* 183 * Handle partial folios. The folio may be entirely within the 184 * range if a split has raced with us. If not, we zero the part of the 185 * folio that's within the [start, end] range, and then split the folio if 186 * it's large. split_page_range() will discard pages which now lie beyond 187 * i_size, and we rely on the caller to discard pages which lie within a 188 * newly created hole. 189 * 190 * Returns false if splitting failed so the caller can avoid 191 * discarding the entire folio which is stubbornly unsplit. 192 */ 193 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end) 194 { 195 loff_t pos = folio_pos(folio); 196 unsigned int offset, length; 197 198 if (pos < start) 199 offset = start - pos; 200 else 201 offset = 0; 202 length = folio_size(folio); 203 if (pos + length <= (u64)end) 204 length = length - offset; 205 else 206 length = end + 1 - pos - offset; 207 208 folio_wait_writeback(folio); 209 if (length == folio_size(folio)) { 210 truncate_inode_folio(folio->mapping, folio); 211 return true; 212 } 213 214 /* 215 * We may be zeroing pages we're about to discard, but it avoids 216 * doing a complex calculation here, and then doing the zeroing 217 * anyway if the page split fails. 218 */ 219 if (!mapping_inaccessible(folio->mapping)) 220 folio_zero_range(folio, offset, length); 221 222 if (folio_needs_release(folio)) 223 folio_invalidate(folio, offset, length); 224 if (!folio_test_large(folio)) 225 return true; 226 if (split_folio(folio) == 0) 227 return true; 228 if (folio_test_dirty(folio)) 229 return false; 230 truncate_inode_folio(folio->mapping, folio); 231 return true; 232 } 233 234 /* 235 * Used to get rid of pages on hardware memory corruption. 236 */ 237 int generic_error_remove_folio(struct address_space *mapping, 238 struct folio *folio) 239 { 240 if (!mapping) 241 return -EINVAL; 242 /* 243 * Only punch for normal data pages for now. 244 * Handling other types like directories would need more auditing. 245 */ 246 if (!S_ISREG(mapping->host->i_mode)) 247 return -EIO; 248 return truncate_inode_folio(mapping, folio); 249 } 250 EXPORT_SYMBOL(generic_error_remove_folio); 251 252 /** 253 * mapping_evict_folio() - Remove an unused folio from the page-cache. 254 * @mapping: The mapping this folio belongs to. 255 * @folio: The folio to remove. 256 * 257 * Safely remove one folio from the page cache. 258 * It only drops clean, unused folios. 259 * 260 * Context: Folio must be locked. 261 * Return: The number of pages successfully removed. 262 */ 263 long mapping_evict_folio(struct address_space *mapping, struct folio *folio) 264 { 265 /* The page may have been truncated before it was locked */ 266 if (!mapping) 267 return 0; 268 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 269 return 0; 270 /* The refcount will be elevated if any page in the folio is mapped */ 271 if (folio_ref_count(folio) > 272 folio_nr_pages(folio) + folio_has_private(folio) + 1) 273 return 0; 274 if (!filemap_release_folio(folio, 0)) 275 return 0; 276 277 return remove_mapping(mapping, folio); 278 } 279 280 /** 281 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 282 * @mapping: mapping to truncate 283 * @lstart: offset from which to truncate 284 * @lend: offset to which to truncate (inclusive) 285 * 286 * Truncate the page cache, removing the pages that are between 287 * specified offsets (and zeroing out partial pages 288 * if lstart or lend + 1 is not page aligned). 289 * 290 * Truncate takes two passes - the first pass is nonblocking. It will not 291 * block on page locks and it will not block on writeback. The second pass 292 * will wait. This is to prevent as much IO as possible in the affected region. 293 * The first pass will remove most pages, so the search cost of the second pass 294 * is low. 295 * 296 * We pass down the cache-hot hint to the page freeing code. Even if the 297 * mapping is large, it is probably the case that the final pages are the most 298 * recently touched, and freeing happens in ascending file offset order. 299 * 300 * Note that since ->invalidate_folio() accepts range to invalidate 301 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 302 * page aligned properly. 303 */ 304 void truncate_inode_pages_range(struct address_space *mapping, 305 loff_t lstart, loff_t lend) 306 { 307 pgoff_t start; /* inclusive */ 308 pgoff_t end; /* exclusive */ 309 struct folio_batch fbatch; 310 pgoff_t indices[PAGEVEC_SIZE]; 311 pgoff_t index; 312 int i; 313 struct folio *folio; 314 bool same_folio; 315 316 if (mapping_empty(mapping)) 317 return; 318 319 /* 320 * 'start' and 'end' always covers the range of pages to be fully 321 * truncated. Partial pages are covered with 'partial_start' at the 322 * start of the range and 'partial_end' at the end of the range. 323 * Note that 'end' is exclusive while 'lend' is inclusive. 324 */ 325 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 326 if (lend == -1) 327 /* 328 * lend == -1 indicates end-of-file so we have to set 'end' 329 * to the highest possible pgoff_t and since the type is 330 * unsigned we're using -1. 331 */ 332 end = -1; 333 else 334 end = (lend + 1) >> PAGE_SHIFT; 335 336 folio_batch_init(&fbatch); 337 index = start; 338 while (index < end && find_lock_entries(mapping, &index, end - 1, 339 &fbatch, indices)) { 340 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 341 for (i = 0; i < folio_batch_count(&fbatch); i++) 342 truncate_cleanup_folio(fbatch.folios[i]); 343 delete_from_page_cache_batch(mapping, &fbatch); 344 for (i = 0; i < folio_batch_count(&fbatch); i++) 345 folio_unlock(fbatch.folios[i]); 346 folio_batch_release(&fbatch); 347 cond_resched(); 348 } 349 350 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 351 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0); 352 if (!IS_ERR(folio)) { 353 same_folio = lend < folio_pos(folio) + folio_size(folio); 354 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 355 start = folio_next_index(folio); 356 if (same_folio) 357 end = folio->index; 358 } 359 folio_unlock(folio); 360 folio_put(folio); 361 folio = NULL; 362 } 363 364 if (!same_folio) { 365 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT, 366 FGP_LOCK, 0); 367 if (!IS_ERR(folio)) { 368 if (!truncate_inode_partial_folio(folio, lstart, lend)) 369 end = folio->index; 370 folio_unlock(folio); 371 folio_put(folio); 372 } 373 } 374 375 index = start; 376 while (index < end) { 377 cond_resched(); 378 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 379 indices)) { 380 /* If all gone from start onwards, we're done */ 381 if (index == start) 382 break; 383 /* Otherwise restart to make sure all gone */ 384 index = start; 385 continue; 386 } 387 388 for (i = 0; i < folio_batch_count(&fbatch); i++) { 389 struct folio *folio = fbatch.folios[i]; 390 391 /* We rely upon deletion not changing page->index */ 392 393 if (xa_is_value(folio)) 394 continue; 395 396 folio_lock(folio); 397 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 398 folio_wait_writeback(folio); 399 truncate_inode_folio(mapping, folio); 400 folio_unlock(folio); 401 } 402 truncate_folio_batch_exceptionals(mapping, &fbatch, indices); 403 folio_batch_release(&fbatch); 404 } 405 } 406 EXPORT_SYMBOL(truncate_inode_pages_range); 407 408 /** 409 * truncate_inode_pages - truncate *all* the pages from an offset 410 * @mapping: mapping to truncate 411 * @lstart: offset from which to truncate 412 * 413 * Called under (and serialised by) inode->i_rwsem and 414 * mapping->invalidate_lock. 415 * 416 * Note: When this function returns, there can be a page in the process of 417 * deletion (inside __filemap_remove_folio()) in the specified range. Thus 418 * mapping->nrpages can be non-zero when this function returns even after 419 * truncation of the whole mapping. 420 */ 421 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 422 { 423 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 424 } 425 EXPORT_SYMBOL(truncate_inode_pages); 426 427 /** 428 * truncate_inode_pages_final - truncate *all* pages before inode dies 429 * @mapping: mapping to truncate 430 * 431 * Called under (and serialized by) inode->i_rwsem. 432 * 433 * Filesystems have to use this in the .evict_inode path to inform the 434 * VM that this is the final truncate and the inode is going away. 435 */ 436 void truncate_inode_pages_final(struct address_space *mapping) 437 { 438 /* 439 * Page reclaim can not participate in regular inode lifetime 440 * management (can't call iput()) and thus can race with the 441 * inode teardown. Tell it when the address space is exiting, 442 * so that it does not install eviction information after the 443 * final truncate has begun. 444 */ 445 mapping_set_exiting(mapping); 446 447 if (!mapping_empty(mapping)) { 448 /* 449 * As truncation uses a lockless tree lookup, cycle 450 * the tree lock to make sure any ongoing tree 451 * modification that does not see AS_EXITING is 452 * completed before starting the final truncate. 453 */ 454 xa_lock_irq(&mapping->i_pages); 455 xa_unlock_irq(&mapping->i_pages); 456 } 457 458 truncate_inode_pages(mapping, 0); 459 } 460 EXPORT_SYMBOL(truncate_inode_pages_final); 461 462 /** 463 * mapping_try_invalidate - Invalidate all the evictable folios of one inode 464 * @mapping: the address_space which holds the folios to invalidate 465 * @start: the offset 'from' which to invalidate 466 * @end: the offset 'to' which to invalidate (inclusive) 467 * @nr_failed: How many folio invalidations failed 468 * 469 * This function is similar to invalidate_mapping_pages(), except that it 470 * returns the number of folios which could not be evicted in @nr_failed. 471 */ 472 unsigned long mapping_try_invalidate(struct address_space *mapping, 473 pgoff_t start, pgoff_t end, unsigned long *nr_failed) 474 { 475 pgoff_t indices[PAGEVEC_SIZE]; 476 struct folio_batch fbatch; 477 pgoff_t index = start; 478 unsigned long ret; 479 unsigned long count = 0; 480 int i; 481 bool xa_has_values = false; 482 483 folio_batch_init(&fbatch); 484 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) { 485 for (i = 0; i < folio_batch_count(&fbatch); i++) { 486 struct folio *folio = fbatch.folios[i]; 487 488 /* We rely upon deletion not changing folio->index */ 489 490 if (xa_is_value(folio)) { 491 xa_has_values = true; 492 count++; 493 continue; 494 } 495 496 ret = mapping_evict_folio(mapping, folio); 497 folio_unlock(folio); 498 /* 499 * Invalidation is a hint that the folio is no longer 500 * of interest and try to speed up its reclaim. 501 */ 502 if (!ret) { 503 deactivate_file_folio(folio); 504 /* Likely in the lru cache of a remote CPU */ 505 if (nr_failed) 506 (*nr_failed)++; 507 } 508 count += ret; 509 } 510 511 if (xa_has_values) 512 clear_shadow_entries(mapping, &fbatch, indices); 513 514 folio_batch_remove_exceptionals(&fbatch); 515 folio_batch_release(&fbatch); 516 cond_resched(); 517 } 518 return count; 519 } 520 521 /** 522 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode 523 * @mapping: the address_space which holds the cache to invalidate 524 * @start: the offset 'from' which to invalidate 525 * @end: the offset 'to' which to invalidate (inclusive) 526 * 527 * This function removes pages that are clean, unmapped and unlocked, 528 * as well as shadow entries. It will not block on IO activity. 529 * 530 * If you want to remove all the pages of one inode, regardless of 531 * their use and writeback state, use truncate_inode_pages(). 532 * 533 * Return: The number of indices that had their contents invalidated 534 */ 535 unsigned long invalidate_mapping_pages(struct address_space *mapping, 536 pgoff_t start, pgoff_t end) 537 { 538 return mapping_try_invalidate(mapping, start, end, NULL); 539 } 540 EXPORT_SYMBOL(invalidate_mapping_pages); 541 542 /* 543 * This is like mapping_evict_folio(), except it ignores the folio's 544 * refcount. We do this because invalidate_inode_pages2() needs stronger 545 * invalidation guarantees, and cannot afford to leave folios behind because 546 * shrink_folio_list() has a temp ref on them, or because they're transiently 547 * sitting in the folio_add_lru() caches. 548 */ 549 static int invalidate_complete_folio2(struct address_space *mapping, 550 struct folio *folio) 551 { 552 if (folio->mapping != mapping) 553 return 0; 554 555 if (!filemap_release_folio(folio, GFP_KERNEL)) 556 return 0; 557 558 spin_lock(&mapping->host->i_lock); 559 xa_lock_irq(&mapping->i_pages); 560 if (folio_test_dirty(folio)) 561 goto failed; 562 563 BUG_ON(folio_has_private(folio)); 564 __filemap_remove_folio(folio, NULL); 565 xa_unlock_irq(&mapping->i_pages); 566 if (mapping_shrinkable(mapping)) 567 inode_add_lru(mapping->host); 568 spin_unlock(&mapping->host->i_lock); 569 570 filemap_free_folio(mapping, folio); 571 return 1; 572 failed: 573 xa_unlock_irq(&mapping->i_pages); 574 spin_unlock(&mapping->host->i_lock); 575 return 0; 576 } 577 578 static int folio_launder(struct address_space *mapping, struct folio *folio) 579 { 580 if (!folio_test_dirty(folio)) 581 return 0; 582 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL) 583 return 0; 584 return mapping->a_ops->launder_folio(folio); 585 } 586 587 /** 588 * invalidate_inode_pages2_range - remove range of pages from an address_space 589 * @mapping: the address_space 590 * @start: the page offset 'from' which to invalidate 591 * @end: the page offset 'to' which to invalidate (inclusive) 592 * 593 * Any pages which are found to be mapped into pagetables are unmapped prior to 594 * invalidation. 595 * 596 * Return: -EBUSY if any pages could not be invalidated. 597 */ 598 int invalidate_inode_pages2_range(struct address_space *mapping, 599 pgoff_t start, pgoff_t end) 600 { 601 pgoff_t indices[PAGEVEC_SIZE]; 602 struct folio_batch fbatch; 603 pgoff_t index; 604 int i; 605 int ret = 0; 606 int ret2 = 0; 607 int did_range_unmap = 0; 608 bool xa_has_values = false; 609 610 if (mapping_empty(mapping)) 611 return 0; 612 613 folio_batch_init(&fbatch); 614 index = start; 615 while (find_get_entries(mapping, &index, end, &fbatch, indices)) { 616 for (i = 0; i < folio_batch_count(&fbatch); i++) { 617 struct folio *folio = fbatch.folios[i]; 618 619 /* We rely upon deletion not changing folio->index */ 620 621 if (xa_is_value(folio)) { 622 xa_has_values = true; 623 if (dax_mapping(mapping) && 624 !dax_invalidate_mapping_entry_sync(mapping, indices[i])) 625 ret = -EBUSY; 626 continue; 627 } 628 629 if (!did_range_unmap && folio_mapped(folio)) { 630 /* 631 * If folio is mapped, before taking its lock, 632 * zap the rest of the file in one hit. 633 */ 634 unmap_mapping_pages(mapping, indices[i], 635 (1 + end - indices[i]), false); 636 did_range_unmap = 1; 637 } 638 639 folio_lock(folio); 640 if (unlikely(folio->mapping != mapping)) { 641 folio_unlock(folio); 642 continue; 643 } 644 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio); 645 folio_wait_writeback(folio); 646 647 if (folio_mapped(folio)) 648 unmap_mapping_folio(folio); 649 BUG_ON(folio_mapped(folio)); 650 651 ret2 = folio_launder(mapping, folio); 652 if (ret2 == 0) { 653 if (!invalidate_complete_folio2(mapping, folio)) 654 ret2 = -EBUSY; 655 } 656 if (ret2 < 0) 657 ret = ret2; 658 folio_unlock(folio); 659 } 660 661 if (xa_has_values) 662 clear_shadow_entries(mapping, &fbatch, indices); 663 664 folio_batch_remove_exceptionals(&fbatch); 665 folio_batch_release(&fbatch); 666 cond_resched(); 667 } 668 /* 669 * For DAX we invalidate page tables after invalidating page cache. We 670 * could invalidate page tables while invalidating each entry however 671 * that would be expensive. And doing range unmapping before doesn't 672 * work as we have no cheap way to find whether page cache entry didn't 673 * get remapped later. 674 */ 675 if (dax_mapping(mapping)) { 676 unmap_mapping_pages(mapping, start, end - start + 1, false); 677 } 678 return ret; 679 } 680 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 681 682 /** 683 * invalidate_inode_pages2 - remove all pages from an address_space 684 * @mapping: the address_space 685 * 686 * Any pages which are found to be mapped into pagetables are unmapped prior to 687 * invalidation. 688 * 689 * Return: -EBUSY if any pages could not be invalidated. 690 */ 691 int invalidate_inode_pages2(struct address_space *mapping) 692 { 693 return invalidate_inode_pages2_range(mapping, 0, -1); 694 } 695 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 696 697 /** 698 * truncate_pagecache - unmap and remove pagecache that has been truncated 699 * @inode: inode 700 * @newsize: new file size 701 * 702 * inode's new i_size must already be written before truncate_pagecache 703 * is called. 704 * 705 * This function should typically be called before the filesystem 706 * releases resources associated with the freed range (eg. deallocates 707 * blocks). This way, pagecache will always stay logically coherent 708 * with on-disk format, and the filesystem would not have to deal with 709 * situations such as writepage being called for a page that has already 710 * had its underlying blocks deallocated. 711 */ 712 void truncate_pagecache(struct inode *inode, loff_t newsize) 713 { 714 struct address_space *mapping = inode->i_mapping; 715 loff_t holebegin = round_up(newsize, PAGE_SIZE); 716 717 /* 718 * unmap_mapping_range is called twice, first simply for 719 * efficiency so that truncate_inode_pages does fewer 720 * single-page unmaps. However after this first call, and 721 * before truncate_inode_pages finishes, it is possible for 722 * private pages to be COWed, which remain after 723 * truncate_inode_pages finishes, hence the second 724 * unmap_mapping_range call must be made for correctness. 725 */ 726 unmap_mapping_range(mapping, holebegin, 0, 1); 727 truncate_inode_pages(mapping, newsize); 728 unmap_mapping_range(mapping, holebegin, 0, 1); 729 } 730 EXPORT_SYMBOL(truncate_pagecache); 731 732 /** 733 * truncate_setsize - update inode and pagecache for a new file size 734 * @inode: inode 735 * @newsize: new file size 736 * 737 * truncate_setsize updates i_size and performs pagecache truncation (if 738 * necessary) to @newsize. It will be typically be called from the filesystem's 739 * setattr function when ATTR_SIZE is passed in. 740 * 741 * Must be called with a lock serializing truncates and writes (generally 742 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem 743 * specific block truncation has been performed. 744 */ 745 void truncate_setsize(struct inode *inode, loff_t newsize) 746 { 747 loff_t oldsize = inode->i_size; 748 749 i_size_write(inode, newsize); 750 if (newsize > oldsize) 751 pagecache_isize_extended(inode, oldsize, newsize); 752 truncate_pagecache(inode, newsize); 753 } 754 EXPORT_SYMBOL(truncate_setsize); 755 756 /** 757 * pagecache_isize_extended - update pagecache after extension of i_size 758 * @inode: inode for which i_size was extended 759 * @from: original inode size 760 * @to: new inode size 761 * 762 * Handle extension of inode size either caused by extending truncate or 763 * by write starting after current i_size. We mark the page straddling 764 * current i_size RO so that page_mkwrite() is called on the first 765 * write access to the page. The filesystem will update its per-block 766 * information before user writes to the page via mmap after the i_size 767 * has been changed. 768 * 769 * The function must be called after i_size is updated so that page fault 770 * coming after we unlock the folio will already see the new i_size. 771 * The function must be called while we still hold i_rwsem - this not only 772 * makes sure i_size is stable but also that userspace cannot observe new 773 * i_size value before we are prepared to store mmap writes at new inode size. 774 */ 775 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 776 { 777 int bsize = i_blocksize(inode); 778 loff_t rounded_from; 779 struct folio *folio; 780 781 WARN_ON(to > inode->i_size); 782 783 if (from >= to || bsize >= PAGE_SIZE) 784 return; 785 /* Page straddling @from will not have any hole block created? */ 786 rounded_from = round_up(from, bsize); 787 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 788 return; 789 790 folio = filemap_lock_folio(inode->i_mapping, from / PAGE_SIZE); 791 /* Folio not cached? Nothing to do */ 792 if (IS_ERR(folio)) 793 return; 794 /* 795 * See folio_clear_dirty_for_io() for details why folio_mark_dirty() 796 * is needed. 797 */ 798 if (folio_mkclean(folio)) 799 folio_mark_dirty(folio); 800 folio_unlock(folio); 801 folio_put(folio); 802 } 803 EXPORT_SYMBOL(pagecache_isize_extended); 804 805 /** 806 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 807 * @inode: inode 808 * @lstart: offset of beginning of hole 809 * @lend: offset of last byte of hole 810 * 811 * This function should typically be called before the filesystem 812 * releases resources associated with the freed range (eg. deallocates 813 * blocks). This way, pagecache will always stay logically coherent 814 * with on-disk format, and the filesystem would not have to deal with 815 * situations such as writepage being called for a page that has already 816 * had its underlying blocks deallocated. 817 */ 818 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 819 { 820 struct address_space *mapping = inode->i_mapping; 821 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 822 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 823 /* 824 * This rounding is currently just for example: unmap_mapping_range 825 * expands its hole outwards, whereas we want it to contract the hole 826 * inwards. However, existing callers of truncate_pagecache_range are 827 * doing their own page rounding first. Note that unmap_mapping_range 828 * allows holelen 0 for all, and we allow lend -1 for end of file. 829 */ 830 831 /* 832 * Unlike in truncate_pagecache, unmap_mapping_range is called only 833 * once (before truncating pagecache), and without "even_cows" flag: 834 * hole-punching should not remove private COWed pages from the hole. 835 */ 836 if ((u64)unmap_end > (u64)unmap_start) 837 unmap_mapping_range(mapping, unmap_start, 838 1 + unmap_end - unmap_start, 0); 839 truncate_inode_pages_range(mapping, lstart, lend); 840 } 841 EXPORT_SYMBOL(truncate_pagecache_range); 842
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.