~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/vma.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 
  3 /*
  4  * VMA-specific functions.
  5  */
  6 
  7 #include "vma_internal.h"
  8 #include "vma.h"
  9 
 10 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
 11 {
 12         struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
 13 
 14         if (!mpol_equal(vmg->policy, vma_policy(vma)))
 15                 return false;
 16         /*
 17          * VM_SOFTDIRTY should not prevent from VMA merging, if we
 18          * match the flags but dirty bit -- the caller should mark
 19          * merged VMA as dirty. If dirty bit won't be excluded from
 20          * comparison, we increase pressure on the memory system forcing
 21          * the kernel to generate new VMAs when old one could be
 22          * extended instead.
 23          */
 24         if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
 25                 return false;
 26         if (vma->vm_file != vmg->file)
 27                 return false;
 28         if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
 29                 return false;
 30         if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
 31                 return false;
 32         return true;
 33 }
 34 
 35 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 36                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
 37 {
 38         /*
 39          * The list_is_singular() test is to avoid merging VMA cloned from
 40          * parents. This can improve scalability caused by anon_vma lock.
 41          */
 42         if ((!anon_vma1 || !anon_vma2) && (!vma ||
 43                 list_is_singular(&vma->anon_vma_chain)))
 44                 return true;
 45         return anon_vma1 == anon_vma2;
 46 }
 47 
 48 /* Are the anon_vma's belonging to each VMA compatible with one another? */
 49 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1,
 50                                             struct vm_area_struct *vma2)
 51 {
 52         return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL);
 53 }
 54 
 55 /*
 56  * init_multi_vma_prep() - Initializer for struct vma_prepare
 57  * @vp: The vma_prepare struct
 58  * @vma: The vma that will be altered once locked
 59  * @next: The next vma if it is to be adjusted
 60  * @remove: The first vma to be removed
 61  * @remove2: The second vma to be removed
 62  */
 63 static void init_multi_vma_prep(struct vma_prepare *vp,
 64                                 struct vm_area_struct *vma,
 65                                 struct vm_area_struct *next,
 66                                 struct vm_area_struct *remove,
 67                                 struct vm_area_struct *remove2)
 68 {
 69         memset(vp, 0, sizeof(struct vma_prepare));
 70         vp->vma = vma;
 71         vp->anon_vma = vma->anon_vma;
 72         vp->remove = remove;
 73         vp->remove2 = remove2;
 74         vp->adj_next = next;
 75         if (!vp->anon_vma && next)
 76                 vp->anon_vma = next->anon_vma;
 77 
 78         vp->file = vma->vm_file;
 79         if (vp->file)
 80                 vp->mapping = vma->vm_file->f_mapping;
 81 
 82 }
 83 
 84 /*
 85  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 86  * in front of (at a lower virtual address and file offset than) the vma.
 87  *
 88  * We cannot merge two vmas if they have differently assigned (non-NULL)
 89  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 90  *
 91  * We don't check here for the merged mmap wrapping around the end of pagecache
 92  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
 93  * wrap, nor mmaps which cover the final page at index -1UL.
 94  *
 95  * We assume the vma may be removed as part of the merge.
 96  */
 97 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
 98 {
 99         pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
100 
101         if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
102             is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) {
103                 if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
104                         return true;
105         }
106 
107         return false;
108 }
109 
110 /*
111  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
112  * beyond (at a higher virtual address and file offset than) the vma.
113  *
114  * We cannot merge two vmas if they have differently assigned (non-NULL)
115  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
116  *
117  * We assume that vma is not removed as part of the merge.
118  */
119 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
120 {
121         if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
122             is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) {
123                 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
124                         return true;
125         }
126         return false;
127 }
128 
129 static void __vma_link_file(struct vm_area_struct *vma,
130                             struct address_space *mapping)
131 {
132         if (vma_is_shared_maywrite(vma))
133                 mapping_allow_writable(mapping);
134 
135         flush_dcache_mmap_lock(mapping);
136         vma_interval_tree_insert(vma, &mapping->i_mmap);
137         flush_dcache_mmap_unlock(mapping);
138 }
139 
140 /*
141  * Requires inode->i_mapping->i_mmap_rwsem
142  */
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144                                       struct address_space *mapping)
145 {
146         if (vma_is_shared_maywrite(vma))
147                 mapping_unmap_writable(mapping);
148 
149         flush_dcache_mmap_lock(mapping);
150         vma_interval_tree_remove(vma, &mapping->i_mmap);
151         flush_dcache_mmap_unlock(mapping);
152 }
153 
154 /*
155  * vma_prepare() - Helper function for handling locking VMAs prior to altering
156  * @vp: The initialized vma_prepare struct
157  */
158 static void vma_prepare(struct vma_prepare *vp)
159 {
160         if (vp->file) {
161                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
162 
163                 if (vp->adj_next)
164                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
165                                       vp->adj_next->vm_end);
166 
167                 i_mmap_lock_write(vp->mapping);
168                 if (vp->insert && vp->insert->vm_file) {
169                         /*
170                          * Put into interval tree now, so instantiated pages
171                          * are visible to arm/parisc __flush_dcache_page
172                          * throughout; but we cannot insert into address
173                          * space until vma start or end is updated.
174                          */
175                         __vma_link_file(vp->insert,
176                                         vp->insert->vm_file->f_mapping);
177                 }
178         }
179 
180         if (vp->anon_vma) {
181                 anon_vma_lock_write(vp->anon_vma);
182                 anon_vma_interval_tree_pre_update_vma(vp->vma);
183                 if (vp->adj_next)
184                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
185         }
186 
187         if (vp->file) {
188                 flush_dcache_mmap_lock(vp->mapping);
189                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
190                 if (vp->adj_next)
191                         vma_interval_tree_remove(vp->adj_next,
192                                                  &vp->mapping->i_mmap);
193         }
194 
195 }
196 
197 /*
198  * vma_complete- Helper function for handling the unlocking after altering VMAs,
199  * or for inserting a VMA.
200  *
201  * @vp: The vma_prepare struct
202  * @vmi: The vma iterator
203  * @mm: The mm_struct
204  */
205 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
206                          struct mm_struct *mm)
207 {
208         if (vp->file) {
209                 if (vp->adj_next)
210                         vma_interval_tree_insert(vp->adj_next,
211                                                  &vp->mapping->i_mmap);
212                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
213                 flush_dcache_mmap_unlock(vp->mapping);
214         }
215 
216         if (vp->remove && vp->file) {
217                 __remove_shared_vm_struct(vp->remove, vp->mapping);
218                 if (vp->remove2)
219                         __remove_shared_vm_struct(vp->remove2, vp->mapping);
220         } else if (vp->insert) {
221                 /*
222                  * split_vma has split insert from vma, and needs
223                  * us to insert it before dropping the locks
224                  * (it may either follow vma or precede it).
225                  */
226                 vma_iter_store(vmi, vp->insert);
227                 mm->map_count++;
228         }
229 
230         if (vp->anon_vma) {
231                 anon_vma_interval_tree_post_update_vma(vp->vma);
232                 if (vp->adj_next)
233                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
234                 anon_vma_unlock_write(vp->anon_vma);
235         }
236 
237         if (vp->file) {
238                 i_mmap_unlock_write(vp->mapping);
239                 uprobe_mmap(vp->vma);
240 
241                 if (vp->adj_next)
242                         uprobe_mmap(vp->adj_next);
243         }
244 
245         if (vp->remove) {
246 again:
247                 vma_mark_detached(vp->remove, true);
248                 if (vp->file) {
249                         uprobe_munmap(vp->remove, vp->remove->vm_start,
250                                       vp->remove->vm_end);
251                         fput(vp->file);
252                 }
253                 if (vp->remove->anon_vma)
254                         anon_vma_merge(vp->vma, vp->remove);
255                 mm->map_count--;
256                 mpol_put(vma_policy(vp->remove));
257                 if (!vp->remove2)
258                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
259                 vm_area_free(vp->remove);
260 
261                 /*
262                  * In mprotect's case 6 (see comments on vma_merge),
263                  * we are removing both mid and next vmas
264                  */
265                 if (vp->remove2) {
266                         vp->remove = vp->remove2;
267                         vp->remove2 = NULL;
268                         goto again;
269                 }
270         }
271         if (vp->insert && vp->file)
272                 uprobe_mmap(vp->insert);
273 }
274 
275 /*
276  * init_vma_prep() - Initializer wrapper for vma_prepare struct
277  * @vp: The vma_prepare struct
278  * @vma: The vma that will be altered once locked
279  */
280 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
281 {
282         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
283 }
284 
285 /*
286  * Can the proposed VMA be merged with the left (previous) VMA taking into
287  * account the start position of the proposed range.
288  */
289 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
290 
291 {
292         return vmg->prev && vmg->prev->vm_end == vmg->start &&
293                 can_vma_merge_after(vmg);
294 }
295 
296 /*
297  * Can the proposed VMA be merged with the right (next) VMA taking into
298  * account the end position of the proposed range.
299  *
300  * In addition, if we can merge with the left VMA, ensure that left and right
301  * anon_vma's are also compatible.
302  */
303 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
304                                 bool can_merge_left)
305 {
306         if (!vmg->next || vmg->end != vmg->next->vm_start ||
307             !can_vma_merge_before(vmg))
308                 return false;
309 
310         if (!can_merge_left)
311                 return true;
312 
313         /*
314          * If we can merge with prev (left) and next (right), indicating that
315          * each VMA's anon_vma is compatible with the proposed anon_vma, this
316          * does not mean prev and next are compatible with EACH OTHER.
317          *
318          * We therefore check this in addition to mergeability to either side.
319          */
320         return are_anon_vmas_compatible(vmg->prev, vmg->next);
321 }
322 
323 /*
324  * Close a vm structure and free it.
325  */
326 void remove_vma(struct vm_area_struct *vma, bool unreachable)
327 {
328         might_sleep();
329         vma_close(vma);
330         if (vma->vm_file)
331                 fput(vma->vm_file);
332         mpol_put(vma_policy(vma));
333         if (unreachable)
334                 __vm_area_free(vma);
335         else
336                 vm_area_free(vma);
337 }
338 
339 /*
340  * Get rid of page table information in the indicated region.
341  *
342  * Called with the mm semaphore held.
343  */
344 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
345                 struct vm_area_struct *prev, struct vm_area_struct *next)
346 {
347         struct mm_struct *mm = vma->vm_mm;
348         struct mmu_gather tlb;
349 
350         lru_add_drain();
351         tlb_gather_mmu(&tlb, mm);
352         update_hiwater_rss(mm);
353         unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
354                    /* mm_wr_locked = */ true);
355         mas_set(mas, vma->vm_end);
356         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
357                       next ? next->vm_start : USER_PGTABLES_CEILING,
358                       /* mm_wr_locked = */ true);
359         tlb_finish_mmu(&tlb);
360 }
361 
362 /*
363  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
364  * has already been checked or doesn't make sense to fail.
365  * VMA Iterator will point to the original VMA.
366  */
367 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
368                        unsigned long addr, int new_below)
369 {
370         struct vma_prepare vp;
371         struct vm_area_struct *new;
372         int err;
373 
374         WARN_ON(vma->vm_start >= addr);
375         WARN_ON(vma->vm_end <= addr);
376 
377         if (vma->vm_ops && vma->vm_ops->may_split) {
378                 err = vma->vm_ops->may_split(vma, addr);
379                 if (err)
380                         return err;
381         }
382 
383         new = vm_area_dup(vma);
384         if (!new)
385                 return -ENOMEM;
386 
387         if (new_below) {
388                 new->vm_end = addr;
389         } else {
390                 new->vm_start = addr;
391                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
392         }
393 
394         err = -ENOMEM;
395         vma_iter_config(vmi, new->vm_start, new->vm_end);
396         if (vma_iter_prealloc(vmi, new))
397                 goto out_free_vma;
398 
399         err = vma_dup_policy(vma, new);
400         if (err)
401                 goto out_free_vmi;
402 
403         err = anon_vma_clone(new, vma);
404         if (err)
405                 goto out_free_mpol;
406 
407         if (new->vm_file)
408                 get_file(new->vm_file);
409 
410         if (new->vm_ops && new->vm_ops->open)
411                 new->vm_ops->open(new);
412 
413         vma_start_write(vma);
414         vma_start_write(new);
415 
416         init_vma_prep(&vp, vma);
417         vp.insert = new;
418         vma_prepare(&vp);
419         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
420 
421         if (new_below) {
422                 vma->vm_start = addr;
423                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
424         } else {
425                 vma->vm_end = addr;
426         }
427 
428         /* vma_complete stores the new vma */
429         vma_complete(&vp, vmi, vma->vm_mm);
430         validate_mm(vma->vm_mm);
431 
432         /* Success. */
433         if (new_below)
434                 vma_next(vmi);
435         else
436                 vma_prev(vmi);
437 
438         return 0;
439 
440 out_free_mpol:
441         mpol_put(vma_policy(new));
442 out_free_vmi:
443         vma_iter_free(vmi);
444 out_free_vma:
445         vm_area_free(new);
446         return err;
447 }
448 
449 /*
450  * Split a vma into two pieces at address 'addr', a new vma is allocated
451  * either for the first part or the tail.
452  */
453 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
454                      unsigned long addr, int new_below)
455 {
456         if (vma->vm_mm->map_count >= sysctl_max_map_count)
457                 return -ENOMEM;
458 
459         return __split_vma(vmi, vma, addr, new_below);
460 }
461 
462 /*
463  * vma has some anon_vma assigned, and is already inserted on that
464  * anon_vma's interval trees.
465  *
466  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
467  * vma must be removed from the anon_vma's interval trees using
468  * anon_vma_interval_tree_pre_update_vma().
469  *
470  * After the update, the vma will be reinserted using
471  * anon_vma_interval_tree_post_update_vma().
472  *
473  * The entire update must be protected by exclusive mmap_lock and by
474  * the root anon_vma's mutex.
475  */
476 void
477 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
478 {
479         struct anon_vma_chain *avc;
480 
481         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
483 }
484 
485 void
486 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
487 {
488         struct anon_vma_chain *avc;
489 
490         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
491                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
492 }
493 
494 /*
495  * dup_anon_vma() - Helper function to duplicate anon_vma
496  * @dst: The destination VMA
497  * @src: The source VMA
498  * @dup: Pointer to the destination VMA when successful.
499  *
500  * Returns: 0 on success.
501  */
502 static int dup_anon_vma(struct vm_area_struct *dst,
503                         struct vm_area_struct *src, struct vm_area_struct **dup)
504 {
505         /*
506          * Easily overlooked: when mprotect shifts the boundary, make sure the
507          * expanding vma has anon_vma set if the shrinking vma had, to cover any
508          * anon pages imported.
509          */
510         if (src->anon_vma && !dst->anon_vma) {
511                 int ret;
512 
513                 vma_assert_write_locked(dst);
514                 dst->anon_vma = src->anon_vma;
515                 ret = anon_vma_clone(dst, src);
516                 if (ret)
517                         return ret;
518 
519                 *dup = dst;
520         }
521 
522         return 0;
523 }
524 
525 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
526 void validate_mm(struct mm_struct *mm)
527 {
528         int bug = 0;
529         int i = 0;
530         struct vm_area_struct *vma;
531         VMA_ITERATOR(vmi, mm, 0);
532 
533         mt_validate(&mm->mm_mt);
534         for_each_vma(vmi, vma) {
535 #ifdef CONFIG_DEBUG_VM_RB
536                 struct anon_vma *anon_vma = vma->anon_vma;
537                 struct anon_vma_chain *avc;
538 #endif
539                 unsigned long vmi_start, vmi_end;
540                 bool warn = 0;
541 
542                 vmi_start = vma_iter_addr(&vmi);
543                 vmi_end = vma_iter_end(&vmi);
544                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
545                         warn = 1;
546 
547                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
548                         warn = 1;
549 
550                 if (warn) {
551                         pr_emerg("issue in %s\n", current->comm);
552                         dump_stack();
553                         dump_vma(vma);
554                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
555                                  vmi_start, vmi_end - 1);
556                         vma_iter_dump_tree(&vmi);
557                 }
558 
559 #ifdef CONFIG_DEBUG_VM_RB
560                 if (anon_vma) {
561                         anon_vma_lock_read(anon_vma);
562                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
563                                 anon_vma_interval_tree_verify(avc);
564                         anon_vma_unlock_read(anon_vma);
565                 }
566 #endif
567                 i++;
568         }
569         if (i != mm->map_count) {
570                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
571                 bug = 1;
572         }
573         VM_BUG_ON_MM(bug, mm);
574 }
575 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
576 
577 /* Actually perform the VMA merge operation. */
578 static int commit_merge(struct vma_merge_struct *vmg,
579                         struct vm_area_struct *adjust,
580                         struct vm_area_struct *remove,
581                         struct vm_area_struct *remove2,
582                         long adj_start,
583                         bool expanded)
584 {
585         struct vma_prepare vp;
586 
587         init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2);
588 
589         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
590                    vp.anon_vma != adjust->anon_vma);
591 
592         if (expanded) {
593                 /* Note: vma iterator must be pointing to 'start'. */
594                 vma_iter_config(vmg->vmi, vmg->start, vmg->end);
595         } else {
596                 vma_iter_config(vmg->vmi, adjust->vm_start + adj_start,
597                                 adjust->vm_end);
598         }
599 
600         if (vma_iter_prealloc(vmg->vmi, vmg->vma))
601                 return -ENOMEM;
602 
603         vma_prepare(&vp);
604         vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start);
605         vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff);
606 
607         if (expanded)
608                 vma_iter_store(vmg->vmi, vmg->vma);
609 
610         if (adj_start) {
611                 adjust->vm_start += adj_start;
612                 adjust->vm_pgoff += PHYS_PFN(adj_start);
613                 if (adj_start < 0) {
614                         WARN_ON(expanded);
615                         vma_iter_store(vmg->vmi, adjust);
616                 }
617         }
618 
619         vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm);
620 
621         return 0;
622 }
623 
624 /* We can only remove VMAs when merging if they do not have a close hook. */
625 static bool can_merge_remove_vma(struct vm_area_struct *vma)
626 {
627         return !vma->vm_ops || !vma->vm_ops->close;
628 }
629 
630 /*
631  * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
632  * attributes modified.
633  *
634  * @vmg: Describes the modifications being made to a VMA and associated
635  *       metadata.
636  *
637  * When the attributes of a range within a VMA change, then it might be possible
638  * for immediately adjacent VMAs to be merged into that VMA due to having
639  * identical properties.
640  *
641  * This function checks for the existence of any such mergeable VMAs and updates
642  * the maple tree describing the @vmg->vma->vm_mm address space to account for
643  * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge.
644  *
645  * As part of this operation, if a merge occurs, the @vmg object will have its
646  * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
647  * calls to this function should reset these fields.
648  *
649  * Returns: The merged VMA if merge succeeds, or NULL otherwise.
650  *
651  * ASSUMPTIONS:
652  * - The caller must assign the VMA to be modifed to @vmg->vma.
653  * - The caller must have set @vmg->prev to the previous VMA, if there is one.
654  * - The caller must not set @vmg->next, as we determine this.
655  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
656  * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end).
657  */
658 static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg)
659 {
660         struct vm_area_struct *vma = vmg->vma;
661         struct vm_area_struct *prev = vmg->prev;
662         struct vm_area_struct *next, *res;
663         struct vm_area_struct *anon_dup = NULL;
664         struct vm_area_struct *adjust = NULL;
665         unsigned long start = vmg->start;
666         unsigned long end = vmg->end;
667         bool left_side = vma && start == vma->vm_start;
668         bool right_side = vma && end == vma->vm_end;
669         int err = 0;
670         long adj_start = 0;
671         bool merge_will_delete_vma, merge_will_delete_next;
672         bool merge_left, merge_right, merge_both;
673         bool expanded;
674 
675         mmap_assert_write_locked(vmg->mm);
676         VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */
677         VM_WARN_ON(vmg->next); /* We set this. */
678         VM_WARN_ON(prev && start <= prev->vm_start);
679         VM_WARN_ON(start >= end);
680         /*
681          * If vma == prev, then we are offset into a VMA. Otherwise, if we are
682          * not, we must span a portion of the VMA.
683          */
684         VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) ||
685                            vmg->end > vma->vm_end));
686         /* The vmi must be positioned within vmg->vma. */
687         VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start &&
688                             vma_iter_addr(vmg->vmi) < vma->vm_end));
689 
690         vmg->state = VMA_MERGE_NOMERGE;
691 
692         /*
693          * If a special mapping or if the range being modified is neither at the
694          * furthermost left or right side of the VMA, then we have no chance of
695          * merging and should abort.
696          */
697         if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
698                 return NULL;
699 
700         if (left_side)
701                 merge_left = can_vma_merge_left(vmg);
702         else
703                 merge_left = false;
704 
705         if (right_side) {
706                 next = vmg->next = vma_iter_next_range(vmg->vmi);
707                 vma_iter_prev_range(vmg->vmi);
708 
709                 merge_right = can_vma_merge_right(vmg, merge_left);
710         } else {
711                 merge_right = false;
712                 next = NULL;
713         }
714 
715         if (merge_left)         /* If merging prev, position iterator there. */
716                 vma_prev(vmg->vmi);
717         else if (!merge_right)  /* If we have nothing to merge, abort. */
718                 return NULL;
719 
720         merge_both = merge_left && merge_right;
721         /* If we span the entire VMA, a merge implies it will be deleted. */
722         merge_will_delete_vma = left_side && right_side;
723 
724         /*
725          * If we need to remove vma in its entirety but are unable to do so,
726          * we have no sensible recourse but to abort the merge.
727          */
728         if (merge_will_delete_vma && !can_merge_remove_vma(vma))
729                 return NULL;
730 
731         /*
732          * If we merge both VMAs, then next is also deleted. This implies
733          * merge_will_delete_vma also.
734          */
735         merge_will_delete_next = merge_both;
736 
737         /*
738          * If we cannot delete next, then we can reduce the operation to merging
739          * prev and vma (thereby deleting vma).
740          */
741         if (merge_will_delete_next && !can_merge_remove_vma(next)) {
742                 merge_will_delete_next = false;
743                 merge_right = false;
744                 merge_both = false;
745         }
746 
747         /* No matter what happens, we will be adjusting vma. */
748         vma_start_write(vma);
749 
750         if (merge_left)
751                 vma_start_write(prev);
752 
753         if (merge_right)
754                 vma_start_write(next);
755 
756         if (merge_both) {
757                 /*
758                  *         |<----->|
759                  * |-------*********-------|
760                  *   prev     vma     next
761                  *  extend   delete  delete
762                  */
763 
764                 vmg->vma = prev;
765                 vmg->start = prev->vm_start;
766                 vmg->end = next->vm_end;
767                 vmg->pgoff = prev->vm_pgoff;
768 
769                 /*
770                  * We already ensured anon_vma compatibility above, so now it's
771                  * simply a case of, if prev has no anon_vma object, which of
772                  * next or vma contains the anon_vma we must duplicate.
773                  */
774                 err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup);
775         } else if (merge_left) {
776                 /*
777                  *         |<----->| OR
778                  *         |<--------->|
779                  * |-------*************
780                  *   prev       vma
781                  *  extend shrink/delete
782                  */
783 
784                 vmg->vma = prev;
785                 vmg->start = prev->vm_start;
786                 vmg->pgoff = prev->vm_pgoff;
787 
788                 if (!merge_will_delete_vma) {
789                         adjust = vma;
790                         adj_start = vmg->end - vma->vm_start;
791                 }
792 
793                 err = dup_anon_vma(prev, vma, &anon_dup);
794         } else { /* merge_right */
795                 /*
796                  *     |<----->| OR
797                  * |<--------->|
798                  * *************-------|
799                  *      vma       next
800                  * shrink/delete extend
801                  */
802 
803                 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
804 
805                 VM_WARN_ON(!merge_right);
806                 /* If we are offset into a VMA, then prev must be vma. */
807                 VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev);
808 
809                 if (merge_will_delete_vma) {
810                         vmg->vma = next;
811                         vmg->end = next->vm_end;
812                         vmg->pgoff = next->vm_pgoff - pglen;
813                 } else {
814                         /*
815                          * We shrink vma and expand next.
816                          *
817                          * IMPORTANT: This is the ONLY case where the final
818                          * merged VMA is NOT vmg->vma, but rather vmg->next.
819                          */
820 
821                         vmg->start = vma->vm_start;
822                         vmg->end = start;
823                         vmg->pgoff = vma->vm_pgoff;
824 
825                         adjust = next;
826                         adj_start = -(vma->vm_end - start);
827                 }
828 
829                 err = dup_anon_vma(next, vma, &anon_dup);
830         }
831 
832         if (err)
833                 goto abort;
834 
835         /*
836          * In nearly all cases, we expand vmg->vma. There is one exception -
837          * merge_right where we partially span the VMA. In this case we shrink
838          * the end of vmg->vma and adjust the start of vmg->next accordingly.
839          */
840         expanded = !merge_right || merge_will_delete_vma;
841 
842         if (commit_merge(vmg, adjust,
843                          merge_will_delete_vma ? vma : NULL,
844                          merge_will_delete_next ? next : NULL,
845                          adj_start, expanded)) {
846                 if (anon_dup)
847                         unlink_anon_vmas(anon_dup);
848 
849                 vmg->state = VMA_MERGE_ERROR_NOMEM;
850                 return NULL;
851         }
852 
853         res = merge_left ? prev : next;
854         khugepaged_enter_vma(res, vmg->flags);
855 
856         vmg->state = VMA_MERGE_SUCCESS;
857         return res;
858 
859 abort:
860         vma_iter_set(vmg->vmi, start);
861         vma_iter_load(vmg->vmi);
862         vmg->state = VMA_MERGE_ERROR_NOMEM;
863         return NULL;
864 }
865 
866 /*
867  * vma_merge_new_range - Attempt to merge a new VMA into address space
868  *
869  * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
870  *       (exclusive), which we try to merge with any adjacent VMAs if possible.
871  *
872  * We are about to add a VMA to the address space starting at @vmg->start and
873  * ending at @vmg->end. There are three different possible scenarios:
874  *
875  * 1. There is a VMA with identical properties immediately adjacent to the
876  *    proposed new VMA [@vmg->start, @vmg->end) either before or after it -
877  *    EXPAND that VMA:
878  *
879  * Proposed:       |-----|  or  |-----|
880  * Existing:  |----|                  |----|
881  *
882  * 2. There are VMAs with identical properties immediately adjacent to the
883  *    proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
884  *    EXPAND the former and REMOVE the latter:
885  *
886  * Proposed:       |-----|
887  * Existing:  |----|     |----|
888  *
889  * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
890  *    VMAs do not have identical attributes - NO MERGE POSSIBLE.
891  *
892  * In instances where we can merge, this function returns the expanded VMA which
893  * will have its range adjusted accordingly and the underlying maple tree also
894  * adjusted.
895  *
896  * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
897  *          to the VMA we expanded.
898  *
899  * This function adjusts @vmg to provide @vmg->next if not already specified,
900  * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
901  *
902  * ASSUMPTIONS:
903  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
904  * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
905      other than VMAs that will be unmapped should the operation succeed.
906  * - The caller must have specified the previous vma in @vmg->prev.
907  * - The caller must have specified the next vma in @vmg->next.
908  * - The caller must have positioned the vmi at or before the gap.
909  */
910 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
911 {
912         struct vm_area_struct *prev = vmg->prev;
913         struct vm_area_struct *next = vmg->next;
914         unsigned long start = vmg->start;
915         unsigned long end = vmg->end;
916         pgoff_t pgoff = vmg->pgoff;
917         pgoff_t pglen = PHYS_PFN(end - start);
918         bool can_merge_left, can_merge_right;
919         bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND;
920 
921         mmap_assert_write_locked(vmg->mm);
922         VM_WARN_ON(vmg->vma);
923         /* vmi must point at or before the gap. */
924         VM_WARN_ON(vma_iter_addr(vmg->vmi) > end);
925 
926         vmg->state = VMA_MERGE_NOMERGE;
927 
928         /* Special VMAs are unmergeable, also if no prev/next. */
929         if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
930                 return NULL;
931 
932         can_merge_left = can_vma_merge_left(vmg);
933         can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left);
934 
935         /* If we can merge with the next VMA, adjust vmg accordingly. */
936         if (can_merge_right) {
937                 vmg->end = next->vm_end;
938                 vmg->vma = next;
939                 vmg->pgoff = next->vm_pgoff - pglen;
940         }
941 
942         /* If we can merge with the previous VMA, adjust vmg accordingly. */
943         if (can_merge_left) {
944                 vmg->start = prev->vm_start;
945                 vmg->vma = prev;
946                 vmg->pgoff = prev->vm_pgoff;
947 
948                 /*
949                  * If this merge would result in removal of the next VMA but we
950                  * are not permitted to do so, reduce the operation to merging
951                  * prev and vma.
952                  */
953                 if (can_merge_right && !can_merge_remove_vma(next))
954                         vmg->end = end;
955 
956                 /* In expand-only case we are already positioned at prev. */
957                 if (!just_expand) {
958                         /* Equivalent to going to the previous range. */
959                         vma_prev(vmg->vmi);
960                 }
961         }
962 
963         /*
964          * Now try to expand adjacent VMA(s). This takes care of removing the
965          * following VMA if we have VMAs on both sides.
966          */
967         if (vmg->vma && !vma_expand(vmg)) {
968                 khugepaged_enter_vma(vmg->vma, vmg->flags);
969                 vmg->state = VMA_MERGE_SUCCESS;
970                 return vmg->vma;
971         }
972 
973         /* If expansion failed, reset state. Allows us to retry merge later. */
974         if (!just_expand) {
975                 vmg->vma = NULL;
976                 vmg->start = start;
977                 vmg->end = end;
978                 vmg->pgoff = pgoff;
979                 if (vmg->vma == prev)
980                         vma_iter_set(vmg->vmi, start);
981         }
982 
983         return NULL;
984 }
985 
986 /*
987  * vma_expand - Expand an existing VMA
988  *
989  * @vmg: Describes a VMA expansion operation.
990  *
991  * Expand @vma to vmg->start and vmg->end.  Can expand off the start and end.
992  * Will expand over vmg->next if it's different from vmg->vma and vmg->end ==
993  * vmg->next->vm_end.  Checking if the vmg->vma can expand and merge with
994  * vmg->next needs to be handled by the caller.
995  *
996  * Returns: 0 on success.
997  *
998  * ASSUMPTIONS:
999  * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock.
1000  * - The caller must have set @vmg->vma and @vmg->next.
1001  */
1002 int vma_expand(struct vma_merge_struct *vmg)
1003 {
1004         struct vm_area_struct *anon_dup = NULL;
1005         bool remove_next = false;
1006         struct vm_area_struct *vma = vmg->vma;
1007         struct vm_area_struct *next = vmg->next;
1008 
1009         mmap_assert_write_locked(vmg->mm);
1010 
1011         vma_start_write(vma);
1012         if (next && (vma != next) && (vmg->end == next->vm_end)) {
1013                 int ret;
1014 
1015                 remove_next = true;
1016                 /* This should already have been checked by this point. */
1017                 VM_WARN_ON(!can_merge_remove_vma(next));
1018                 vma_start_write(next);
1019                 ret = dup_anon_vma(vma, next, &anon_dup);
1020                 if (ret)
1021                         return ret;
1022         }
1023 
1024         /* Not merging but overwriting any part of next is not handled. */
1025         VM_WARN_ON(next && !remove_next &&
1026                   next != vma && vmg->end > next->vm_start);
1027         /* Only handles expanding */
1028         VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end);
1029 
1030         if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true))
1031                 goto nomem;
1032 
1033         return 0;
1034 
1035 nomem:
1036         vmg->state = VMA_MERGE_ERROR_NOMEM;
1037         if (anon_dup)
1038                 unlink_anon_vmas(anon_dup);
1039         return -ENOMEM;
1040 }
1041 
1042 /*
1043  * vma_shrink() - Reduce an existing VMAs memory area
1044  * @vmi: The vma iterator
1045  * @vma: The VMA to modify
1046  * @start: The new start
1047  * @end: The new end
1048  *
1049  * Returns: 0 on success, -ENOMEM otherwise
1050  */
1051 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1052                unsigned long start, unsigned long end, pgoff_t pgoff)
1053 {
1054         struct vma_prepare vp;
1055 
1056         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1057 
1058         if (vma->vm_start < start)
1059                 vma_iter_config(vmi, vma->vm_start, start);
1060         else
1061                 vma_iter_config(vmi, end, vma->vm_end);
1062 
1063         if (vma_iter_prealloc(vmi, NULL))
1064                 return -ENOMEM;
1065 
1066         vma_start_write(vma);
1067 
1068         init_vma_prep(&vp, vma);
1069         vma_prepare(&vp);
1070         vma_adjust_trans_huge(vma, start, end, 0);
1071 
1072         vma_iter_clear(vmi);
1073         vma_set_range(vma, start, end, pgoff);
1074         vma_complete(&vp, vmi, vma->vm_mm);
1075         validate_mm(vma->vm_mm);
1076         return 0;
1077 }
1078 
1079 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1080                     struct ma_state *mas_detach, bool mm_wr_locked)
1081 {
1082         struct mmu_gather tlb;
1083 
1084         if (!vms->clear_ptes) /* Nothing to do */
1085                 return;
1086 
1087         /*
1088          * We can free page tables without write-locking mmap_lock because VMAs
1089          * were isolated before we downgraded mmap_lock.
1090          */
1091         mas_set(mas_detach, 1);
1092         lru_add_drain();
1093         tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1094         update_hiwater_rss(vms->vma->vm_mm);
1095         unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1096                    vms->vma_count, mm_wr_locked);
1097 
1098         mas_set(mas_detach, 1);
1099         /* start and end may be different if there is no prev or next vma. */
1100         free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1101                       vms->unmap_end, mm_wr_locked);
1102         tlb_finish_mmu(&tlb);
1103         vms->clear_ptes = false;
1104 }
1105 
1106 void vms_clean_up_area(struct vma_munmap_struct *vms,
1107                 struct ma_state *mas_detach)
1108 {
1109         struct vm_area_struct *vma;
1110 
1111         if (!vms->nr_pages)
1112                 return;
1113 
1114         vms_clear_ptes(vms, mas_detach, true);
1115         mas_set(mas_detach, 0);
1116         mas_for_each(mas_detach, vma, ULONG_MAX)
1117                 vma_close(vma);
1118 }
1119 
1120 /*
1121  * vms_complete_munmap_vmas() - Finish the munmap() operation
1122  * @vms: The vma munmap struct
1123  * @mas_detach: The maple state of the detached vmas
1124  *
1125  * This updates the mm_struct, unmaps the region, frees the resources
1126  * used for the munmap() and may downgrade the lock - if requested.  Everything
1127  * needed to be done once the vma maple tree is updated.
1128  */
1129 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1130                 struct ma_state *mas_detach)
1131 {
1132         struct vm_area_struct *vma;
1133         struct mm_struct *mm;
1134 
1135         mm = current->mm;
1136         mm->map_count -= vms->vma_count;
1137         mm->locked_vm -= vms->locked_vm;
1138         if (vms->unlock)
1139                 mmap_write_downgrade(mm);
1140 
1141         if (!vms->nr_pages)
1142                 return;
1143 
1144         vms_clear_ptes(vms, mas_detach, !vms->unlock);
1145         /* Update high watermark before we lower total_vm */
1146         update_hiwater_vm(mm);
1147         /* Stat accounting */
1148         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1149         /* Paranoid bookkeeping */
1150         VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1151         VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1152         VM_WARN_ON(vms->data_vm > mm->data_vm);
1153         mm->exec_vm -= vms->exec_vm;
1154         mm->stack_vm -= vms->stack_vm;
1155         mm->data_vm -= vms->data_vm;
1156 
1157         /* Remove and clean up vmas */
1158         mas_set(mas_detach, 0);
1159         mas_for_each(mas_detach, vma, ULONG_MAX)
1160                 remove_vma(vma, /* unreachable = */ false);
1161 
1162         vm_unacct_memory(vms->nr_accounted);
1163         validate_mm(mm);
1164         if (vms->unlock)
1165                 mmap_read_unlock(mm);
1166 
1167         __mt_destroy(mas_detach->tree);
1168 }
1169 
1170 /*
1171  * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1172  * for removal at a later date.  Handles splitting first and last if necessary
1173  * and marking the vmas as isolated.
1174  *
1175  * @vms: The vma munmap struct
1176  * @mas_detach: The maple state tracking the detached tree
1177  *
1178  * Return: 0 on success, error otherwise
1179  */
1180 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1181                 struct ma_state *mas_detach)
1182 {
1183         struct vm_area_struct *next = NULL;
1184         int error;
1185 
1186         /*
1187          * If we need to split any vma, do it now to save pain later.
1188          * Does it split the first one?
1189          */
1190         if (vms->start > vms->vma->vm_start) {
1191 
1192                 /*
1193                  * Make sure that map_count on return from munmap() will
1194                  * not exceed its limit; but let map_count go just above
1195                  * its limit temporarily, to help free resources as expected.
1196                  */
1197                 if (vms->end < vms->vma->vm_end &&
1198                     vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1199                         error = -ENOMEM;
1200                         goto map_count_exceeded;
1201                 }
1202 
1203                 /* Don't bother splitting the VMA if we can't unmap it anyway */
1204                 if (!can_modify_vma(vms->vma)) {
1205                         error = -EPERM;
1206                         goto start_split_failed;
1207                 }
1208 
1209                 error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1210                 if (error)
1211                         goto start_split_failed;
1212         }
1213         vms->prev = vma_prev(vms->vmi);
1214         if (vms->prev)
1215                 vms->unmap_start = vms->prev->vm_end;
1216 
1217         /*
1218          * Detach a range of VMAs from the mm. Using next as a temp variable as
1219          * it is always overwritten.
1220          */
1221         for_each_vma_range(*(vms->vmi), next, vms->end) {
1222                 long nrpages;
1223 
1224                 if (!can_modify_vma(next)) {
1225                         error = -EPERM;
1226                         goto modify_vma_failed;
1227                 }
1228                 /* Does it split the end? */
1229                 if (next->vm_end > vms->end) {
1230                         error = __split_vma(vms->vmi, next, vms->end, 0);
1231                         if (error)
1232                                 goto end_split_failed;
1233                 }
1234                 vma_start_write(next);
1235                 mas_set(mas_detach, vms->vma_count++);
1236                 error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1237                 if (error)
1238                         goto munmap_gather_failed;
1239 
1240                 vma_mark_detached(next, true);
1241                 nrpages = vma_pages(next);
1242 
1243                 vms->nr_pages += nrpages;
1244                 if (next->vm_flags & VM_LOCKED)
1245                         vms->locked_vm += nrpages;
1246 
1247                 if (next->vm_flags & VM_ACCOUNT)
1248                         vms->nr_accounted += nrpages;
1249 
1250                 if (is_exec_mapping(next->vm_flags))
1251                         vms->exec_vm += nrpages;
1252                 else if (is_stack_mapping(next->vm_flags))
1253                         vms->stack_vm += nrpages;
1254                 else if (is_data_mapping(next->vm_flags))
1255                         vms->data_vm += nrpages;
1256 
1257                 if (unlikely(vms->uf)) {
1258                         /*
1259                          * If userfaultfd_unmap_prep returns an error the vmas
1260                          * will remain split, but userland will get a
1261                          * highly unexpected error anyway. This is no
1262                          * different than the case where the first of the two
1263                          * __split_vma fails, but we don't undo the first
1264                          * split, despite we could. This is unlikely enough
1265                          * failure that it's not worth optimizing it for.
1266                          */
1267                         error = userfaultfd_unmap_prep(next, vms->start,
1268                                                        vms->end, vms->uf);
1269                         if (error)
1270                                 goto userfaultfd_error;
1271                 }
1272 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1273                 BUG_ON(next->vm_start < vms->start);
1274                 BUG_ON(next->vm_start > vms->end);
1275 #endif
1276         }
1277 
1278         vms->next = vma_next(vms->vmi);
1279         if (vms->next)
1280                 vms->unmap_end = vms->next->vm_start;
1281 
1282 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1283         /* Make sure no VMAs are about to be lost. */
1284         {
1285                 MA_STATE(test, mas_detach->tree, 0, 0);
1286                 struct vm_area_struct *vma_mas, *vma_test;
1287                 int test_count = 0;
1288 
1289                 vma_iter_set(vms->vmi, vms->start);
1290                 rcu_read_lock();
1291                 vma_test = mas_find(&test, vms->vma_count - 1);
1292                 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1293                         BUG_ON(vma_mas != vma_test);
1294                         test_count++;
1295                         vma_test = mas_next(&test, vms->vma_count - 1);
1296                 }
1297                 rcu_read_unlock();
1298                 BUG_ON(vms->vma_count != test_count);
1299         }
1300 #endif
1301 
1302         while (vma_iter_addr(vms->vmi) > vms->start)
1303                 vma_iter_prev_range(vms->vmi);
1304 
1305         vms->clear_ptes = true;
1306         return 0;
1307 
1308 userfaultfd_error:
1309 munmap_gather_failed:
1310 end_split_failed:
1311 modify_vma_failed:
1312         reattach_vmas(mas_detach);
1313 start_split_failed:
1314 map_count_exceeded:
1315         return error;
1316 }
1317 
1318 /*
1319  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1320  * @vmi: The vma iterator
1321  * @vma: The starting vm_area_struct
1322  * @mm: The mm_struct
1323  * @start: The aligned start address to munmap.
1324  * @end: The aligned end address to munmap.
1325  * @uf: The userfaultfd list_head
1326  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
1327  * success.
1328  *
1329  * Return: 0 on success and drops the lock if so directed, error and leaves the
1330  * lock held otherwise.
1331  */
1332 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1333                 struct mm_struct *mm, unsigned long start, unsigned long end,
1334                 struct list_head *uf, bool unlock)
1335 {
1336         struct maple_tree mt_detach;
1337         MA_STATE(mas_detach, &mt_detach, 0, 0);
1338         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1339         mt_on_stack(mt_detach);
1340         struct vma_munmap_struct vms;
1341         int error;
1342 
1343         init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1344         error = vms_gather_munmap_vmas(&vms, &mas_detach);
1345         if (error)
1346                 goto gather_failed;
1347 
1348         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1349         if (error)
1350                 goto clear_tree_failed;
1351 
1352         /* Point of no return */
1353         vms_complete_munmap_vmas(&vms, &mas_detach);
1354         return 0;
1355 
1356 clear_tree_failed:
1357         reattach_vmas(&mas_detach);
1358 gather_failed:
1359         validate_mm(mm);
1360         return error;
1361 }
1362 
1363 /*
1364  * do_vmi_munmap() - munmap a given range.
1365  * @vmi: The vma iterator
1366  * @mm: The mm_struct
1367  * @start: The start address to munmap
1368  * @len: The length of the range to munmap
1369  * @uf: The userfaultfd list_head
1370  * @unlock: set to true if the user wants to drop the mmap_lock on success
1371  *
1372  * This function takes a @mas that is either pointing to the previous VMA or set
1373  * to MA_START and sets it up to remove the mapping(s).  The @len will be
1374  * aligned.
1375  *
1376  * Return: 0 on success and drops the lock if so directed, error and leaves the
1377  * lock held otherwise.
1378  */
1379 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1380                   unsigned long start, size_t len, struct list_head *uf,
1381                   bool unlock)
1382 {
1383         unsigned long end;
1384         struct vm_area_struct *vma;
1385 
1386         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1387                 return -EINVAL;
1388 
1389         end = start + PAGE_ALIGN(len);
1390         if (end == start)
1391                 return -EINVAL;
1392 
1393         /* Find the first overlapping VMA */
1394         vma = vma_find(vmi, end);
1395         if (!vma) {
1396                 if (unlock)
1397                         mmap_write_unlock(mm);
1398                 return 0;
1399         }
1400 
1401         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1402 }
1403 
1404 /*
1405  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1406  * context and anonymous VMA name within the range [start, end).
1407  *
1408  * As a result, we might be able to merge the newly modified VMA range with an
1409  * adjacent VMA with identical properties.
1410  *
1411  * If no merge is possible and the range does not span the entirety of the VMA,
1412  * we then need to split the VMA to accommodate the change.
1413  *
1414  * The function returns either the merged VMA, the original VMA if a split was
1415  * required instead, or an error if the split failed.
1416  */
1417 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1418 {
1419         struct vm_area_struct *vma = vmg->vma;
1420         struct vm_area_struct *merged;
1421 
1422         /* First, try to merge. */
1423         merged = vma_merge_existing_range(vmg);
1424         if (merged)
1425                 return merged;
1426 
1427         /* Split any preceding portion of the VMA. */
1428         if (vma->vm_start < vmg->start) {
1429                 int err = split_vma(vmg->vmi, vma, vmg->start, 1);
1430 
1431                 if (err)
1432                         return ERR_PTR(err);
1433         }
1434 
1435         /* Split any trailing portion of the VMA. */
1436         if (vma->vm_end > vmg->end) {
1437                 int err = split_vma(vmg->vmi, vma, vmg->end, 0);
1438 
1439                 if (err)
1440                         return ERR_PTR(err);
1441         }
1442 
1443         return vma;
1444 }
1445 
1446 struct vm_area_struct *vma_modify_flags(
1447         struct vma_iterator *vmi, struct vm_area_struct *prev,
1448         struct vm_area_struct *vma, unsigned long start, unsigned long end,
1449         unsigned long new_flags)
1450 {
1451         VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1452 
1453         vmg.flags = new_flags;
1454 
1455         return vma_modify(&vmg);
1456 }
1457 
1458 struct vm_area_struct
1459 *vma_modify_flags_name(struct vma_iterator *vmi,
1460                        struct vm_area_struct *prev,
1461                        struct vm_area_struct *vma,
1462                        unsigned long start,
1463                        unsigned long end,
1464                        unsigned long new_flags,
1465                        struct anon_vma_name *new_name)
1466 {
1467         VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1468 
1469         vmg.flags = new_flags;
1470         vmg.anon_name = new_name;
1471 
1472         return vma_modify(&vmg);
1473 }
1474 
1475 struct vm_area_struct
1476 *vma_modify_policy(struct vma_iterator *vmi,
1477                    struct vm_area_struct *prev,
1478                    struct vm_area_struct *vma,
1479                    unsigned long start, unsigned long end,
1480                    struct mempolicy *new_pol)
1481 {
1482         VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1483 
1484         vmg.policy = new_pol;
1485 
1486         return vma_modify(&vmg);
1487 }
1488 
1489 struct vm_area_struct
1490 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1491                        struct vm_area_struct *prev,
1492                        struct vm_area_struct *vma,
1493                        unsigned long start, unsigned long end,
1494                        unsigned long new_flags,
1495                        struct vm_userfaultfd_ctx new_ctx)
1496 {
1497         VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1498 
1499         vmg.flags = new_flags;
1500         vmg.uffd_ctx = new_ctx;
1501 
1502         return vma_modify(&vmg);
1503 }
1504 
1505 /*
1506  * Expand vma by delta bytes, potentially merging with an immediately adjacent
1507  * VMA with identical properties.
1508  */
1509 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1510                                         struct vm_area_struct *vma,
1511                                         unsigned long delta)
1512 {
1513         VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1514 
1515         vmg.next = vma_iter_next_rewind(vmi, NULL);
1516         vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */
1517 
1518         return vma_merge_new_range(&vmg);
1519 }
1520 
1521 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1522 {
1523         vb->count = 0;
1524 }
1525 
1526 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1527 {
1528         struct address_space *mapping;
1529         int i;
1530 
1531         mapping = vb->vmas[0]->vm_file->f_mapping;
1532         i_mmap_lock_write(mapping);
1533         for (i = 0; i < vb->count; i++) {
1534                 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1535                 __remove_shared_vm_struct(vb->vmas[i], mapping);
1536         }
1537         i_mmap_unlock_write(mapping);
1538 
1539         unlink_file_vma_batch_init(vb);
1540 }
1541 
1542 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1543                                struct vm_area_struct *vma)
1544 {
1545         if (vma->vm_file == NULL)
1546                 return;
1547 
1548         if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1549             vb->count == ARRAY_SIZE(vb->vmas))
1550                 unlink_file_vma_batch_process(vb);
1551 
1552         vb->vmas[vb->count] = vma;
1553         vb->count++;
1554 }
1555 
1556 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1557 {
1558         if (vb->count > 0)
1559                 unlink_file_vma_batch_process(vb);
1560 }
1561 
1562 /*
1563  * Unlink a file-based vm structure from its interval tree, to hide
1564  * vma from rmap and vmtruncate before freeing its page tables.
1565  */
1566 void unlink_file_vma(struct vm_area_struct *vma)
1567 {
1568         struct file *file = vma->vm_file;
1569 
1570         if (file) {
1571                 struct address_space *mapping = file->f_mapping;
1572 
1573                 i_mmap_lock_write(mapping);
1574                 __remove_shared_vm_struct(vma, mapping);
1575                 i_mmap_unlock_write(mapping);
1576         }
1577 }
1578 
1579 void vma_link_file(struct vm_area_struct *vma)
1580 {
1581         struct file *file = vma->vm_file;
1582         struct address_space *mapping;
1583 
1584         if (file) {
1585                 mapping = file->f_mapping;
1586                 i_mmap_lock_write(mapping);
1587                 __vma_link_file(vma, mapping);
1588                 i_mmap_unlock_write(mapping);
1589         }
1590 }
1591 
1592 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1593 {
1594         VMA_ITERATOR(vmi, mm, 0);
1595 
1596         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1597         if (vma_iter_prealloc(&vmi, vma))
1598                 return -ENOMEM;
1599 
1600         vma_start_write(vma);
1601         vma_iter_store(&vmi, vma);
1602         vma_link_file(vma);
1603         mm->map_count++;
1604         validate_mm(mm);
1605         return 0;
1606 }
1607 
1608 /*
1609  * Copy the vma structure to a new location in the same mm,
1610  * prior to moving page table entries, to effect an mremap move.
1611  */
1612 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1613         unsigned long addr, unsigned long len, pgoff_t pgoff,
1614         bool *need_rmap_locks)
1615 {
1616         struct vm_area_struct *vma = *vmap;
1617         unsigned long vma_start = vma->vm_start;
1618         struct mm_struct *mm = vma->vm_mm;
1619         struct vm_area_struct *new_vma;
1620         bool faulted_in_anon_vma = true;
1621         VMA_ITERATOR(vmi, mm, addr);
1622         VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1623 
1624         /*
1625          * If anonymous vma has not yet been faulted, update new pgoff
1626          * to match new location, to increase its chance of merging.
1627          */
1628         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1629                 pgoff = addr >> PAGE_SHIFT;
1630                 faulted_in_anon_vma = false;
1631         }
1632 
1633         new_vma = find_vma_prev(mm, addr, &vmg.prev);
1634         if (new_vma && new_vma->vm_start < addr + len)
1635                 return NULL;    /* should never get here */
1636 
1637         vmg.vma = NULL; /* New VMA range. */
1638         vmg.pgoff = pgoff;
1639         vmg.next = vma_iter_next_rewind(&vmi, NULL);
1640         new_vma = vma_merge_new_range(&vmg);
1641 
1642         if (new_vma) {
1643                 /*
1644                  * Source vma may have been merged into new_vma
1645                  */
1646                 if (unlikely(vma_start >= new_vma->vm_start &&
1647                              vma_start < new_vma->vm_end)) {
1648                         /*
1649                          * The only way we can get a vma_merge with
1650                          * self during an mremap is if the vma hasn't
1651                          * been faulted in yet and we were allowed to
1652                          * reset the dst vma->vm_pgoff to the
1653                          * destination address of the mremap to allow
1654                          * the merge to happen. mremap must change the
1655                          * vm_pgoff linearity between src and dst vmas
1656                          * (in turn preventing a vma_merge) to be
1657                          * safe. It is only safe to keep the vm_pgoff
1658                          * linear if there are no pages mapped yet.
1659                          */
1660                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1661                         *vmap = vma = new_vma;
1662                 }
1663                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1664         } else {
1665                 new_vma = vm_area_dup(vma);
1666                 if (!new_vma)
1667                         goto out;
1668                 vma_set_range(new_vma, addr, addr + len, pgoff);
1669                 if (vma_dup_policy(vma, new_vma))
1670                         goto out_free_vma;
1671                 if (anon_vma_clone(new_vma, vma))
1672                         goto out_free_mempol;
1673                 if (new_vma->vm_file)
1674                         get_file(new_vma->vm_file);
1675                 if (new_vma->vm_ops && new_vma->vm_ops->open)
1676                         new_vma->vm_ops->open(new_vma);
1677                 if (vma_link(mm, new_vma))
1678                         goto out_vma_link;
1679                 *need_rmap_locks = false;
1680         }
1681         return new_vma;
1682 
1683 out_vma_link:
1684         vma_close(new_vma);
1685 
1686         if (new_vma->vm_file)
1687                 fput(new_vma->vm_file);
1688 
1689         unlink_anon_vmas(new_vma);
1690 out_free_mempol:
1691         mpol_put(vma_policy(new_vma));
1692 out_free_vma:
1693         vm_area_free(new_vma);
1694 out:
1695         return NULL;
1696 }
1697 
1698 /*
1699  * Rough compatibility check to quickly see if it's even worth looking
1700  * at sharing an anon_vma.
1701  *
1702  * They need to have the same vm_file, and the flags can only differ
1703  * in things that mprotect may change.
1704  *
1705  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1706  * we can merge the two vma's. For example, we refuse to merge a vma if
1707  * there is a vm_ops->close() function, because that indicates that the
1708  * driver is doing some kind of reference counting. But that doesn't
1709  * really matter for the anon_vma sharing case.
1710  */
1711 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1712 {
1713         return a->vm_end == b->vm_start &&
1714                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1715                 a->vm_file == b->vm_file &&
1716                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1717                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1718 }
1719 
1720 /*
1721  * Do some basic sanity checking to see if we can re-use the anon_vma
1722  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1723  * the same as 'old', the other will be the new one that is trying
1724  * to share the anon_vma.
1725  *
1726  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1727  * the anon_vma of 'old' is concurrently in the process of being set up
1728  * by another page fault trying to merge _that_. But that's ok: if it
1729  * is being set up, that automatically means that it will be a singleton
1730  * acceptable for merging, so we can do all of this optimistically. But
1731  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1732  *
1733  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1734  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1735  * is to return an anon_vma that is "complex" due to having gone through
1736  * a fork).
1737  *
1738  * We also make sure that the two vma's are compatible (adjacent,
1739  * and with the same memory policies). That's all stable, even with just
1740  * a read lock on the mmap_lock.
1741  */
1742 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1743                                           struct vm_area_struct *a,
1744                                           struct vm_area_struct *b)
1745 {
1746         if (anon_vma_compatible(a, b)) {
1747                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1748 
1749                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1750                         return anon_vma;
1751         }
1752         return NULL;
1753 }
1754 
1755 /*
1756  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1757  * neighbouring vmas for a suitable anon_vma, before it goes off
1758  * to allocate a new anon_vma.  It checks because a repetitive
1759  * sequence of mprotects and faults may otherwise lead to distinct
1760  * anon_vmas being allocated, preventing vma merge in subsequent
1761  * mprotect.
1762  */
1763 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1764 {
1765         struct anon_vma *anon_vma = NULL;
1766         struct vm_area_struct *prev, *next;
1767         VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1768 
1769         /* Try next first. */
1770         next = vma_iter_load(&vmi);
1771         if (next) {
1772                 anon_vma = reusable_anon_vma(next, vma, next);
1773                 if (anon_vma)
1774                         return anon_vma;
1775         }
1776 
1777         prev = vma_prev(&vmi);
1778         VM_BUG_ON_VMA(prev != vma, vma);
1779         prev = vma_prev(&vmi);
1780         /* Try prev next. */
1781         if (prev)
1782                 anon_vma = reusable_anon_vma(prev, prev, vma);
1783 
1784         /*
1785          * We might reach here with anon_vma == NULL if we can't find
1786          * any reusable anon_vma.
1787          * There's no absolute need to look only at touching neighbours:
1788          * we could search further afield for "compatible" anon_vmas.
1789          * But it would probably just be a waste of time searching,
1790          * or lead to too many vmas hanging off the same anon_vma.
1791          * We're trying to allow mprotect remerging later on,
1792          * not trying to minimize memory used for anon_vmas.
1793          */
1794         return anon_vma;
1795 }
1796 
1797 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1798 {
1799         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1800 }
1801 
1802 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1803 {
1804         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1805                 (VM_WRITE | VM_SHARED);
1806 }
1807 
1808 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1809 {
1810         /* No managed pages to writeback. */
1811         if (vma->vm_flags & VM_PFNMAP)
1812                 return false;
1813 
1814         return vma->vm_file && vma->vm_file->f_mapping &&
1815                 mapping_can_writeback(vma->vm_file->f_mapping);
1816 }
1817 
1818 /*
1819  * Does this VMA require the underlying folios to have their dirty state
1820  * tracked?
1821  */
1822 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1823 {
1824         /* Only shared, writable VMAs require dirty tracking. */
1825         if (!vma_is_shared_writable(vma))
1826                 return false;
1827 
1828         /* Does the filesystem need to be notified? */
1829         if (vm_ops_needs_writenotify(vma->vm_ops))
1830                 return true;
1831 
1832         /*
1833          * Even if the filesystem doesn't indicate a need for writenotify, if it
1834          * can writeback, dirty tracking is still required.
1835          */
1836         return vma_fs_can_writeback(vma);
1837 }
1838 
1839 /*
1840  * Some shared mappings will want the pages marked read-only
1841  * to track write events. If so, we'll downgrade vm_page_prot
1842  * to the private version (using protection_map[] without the
1843  * VM_SHARED bit).
1844  */
1845 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1846 {
1847         /* If it was private or non-writable, the write bit is already clear */
1848         if (!vma_is_shared_writable(vma))
1849                 return false;
1850 
1851         /* The backer wishes to know when pages are first written to? */
1852         if (vm_ops_needs_writenotify(vma->vm_ops))
1853                 return true;
1854 
1855         /* The open routine did something to the protections that pgprot_modify
1856          * won't preserve? */
1857         if (pgprot_val(vm_page_prot) !=
1858             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1859                 return false;
1860 
1861         /*
1862          * Do we need to track softdirty? hugetlb does not support softdirty
1863          * tracking yet.
1864          */
1865         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1866                 return true;
1867 
1868         /* Do we need write faults for uffd-wp tracking? */
1869         if (userfaultfd_wp(vma))
1870                 return true;
1871 
1872         /* Can the mapping track the dirty pages? */
1873         return vma_fs_can_writeback(vma);
1874 }
1875 
1876 static DEFINE_MUTEX(mm_all_locks_mutex);
1877 
1878 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
1879 {
1880         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
1881                 /*
1882                  * The LSB of head.next can't change from under us
1883                  * because we hold the mm_all_locks_mutex.
1884                  */
1885                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
1886                 /*
1887                  * We can safely modify head.next after taking the
1888                  * anon_vma->root->rwsem. If some other vma in this mm shares
1889                  * the same anon_vma we won't take it again.
1890                  *
1891                  * No need of atomic instructions here, head.next
1892                  * can't change from under us thanks to the
1893                  * anon_vma->root->rwsem.
1894                  */
1895                 if (__test_and_set_bit(0, (unsigned long *)
1896                                        &anon_vma->root->rb_root.rb_root.rb_node))
1897                         BUG();
1898         }
1899 }
1900 
1901 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
1902 {
1903         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
1904                 /*
1905                  * AS_MM_ALL_LOCKS can't change from under us because
1906                  * we hold the mm_all_locks_mutex.
1907                  *
1908                  * Operations on ->flags have to be atomic because
1909                  * even if AS_MM_ALL_LOCKS is stable thanks to the
1910                  * mm_all_locks_mutex, there may be other cpus
1911                  * changing other bitflags in parallel to us.
1912                  */
1913                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
1914                         BUG();
1915                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
1916         }
1917 }
1918 
1919 /*
1920  * This operation locks against the VM for all pte/vma/mm related
1921  * operations that could ever happen on a certain mm. This includes
1922  * vmtruncate, try_to_unmap, and all page faults.
1923  *
1924  * The caller must take the mmap_lock in write mode before calling
1925  * mm_take_all_locks(). The caller isn't allowed to release the
1926  * mmap_lock until mm_drop_all_locks() returns.
1927  *
1928  * mmap_lock in write mode is required in order to block all operations
1929  * that could modify pagetables and free pages without need of
1930  * altering the vma layout. It's also needed in write mode to avoid new
1931  * anon_vmas to be associated with existing vmas.
1932  *
1933  * A single task can't take more than one mm_take_all_locks() in a row
1934  * or it would deadlock.
1935  *
1936  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
1937  * mapping->flags avoid to take the same lock twice, if more than one
1938  * vma in this mm is backed by the same anon_vma or address_space.
1939  *
1940  * We take locks in following order, accordingly to comment at beginning
1941  * of mm/rmap.c:
1942  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
1943  *     hugetlb mapping);
1944  *   - all vmas marked locked
1945  *   - all i_mmap_rwsem locks;
1946  *   - all anon_vma->rwseml
1947  *
1948  * We can take all locks within these types randomly because the VM code
1949  * doesn't nest them and we protected from parallel mm_take_all_locks() by
1950  * mm_all_locks_mutex.
1951  *
1952  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
1953  * that may have to take thousand of locks.
1954  *
1955  * mm_take_all_locks() can fail if it's interrupted by signals.
1956  */
1957 int mm_take_all_locks(struct mm_struct *mm)
1958 {
1959         struct vm_area_struct *vma;
1960         struct anon_vma_chain *avc;
1961         VMA_ITERATOR(vmi, mm, 0);
1962 
1963         mmap_assert_write_locked(mm);
1964 
1965         mutex_lock(&mm_all_locks_mutex);
1966 
1967         /*
1968          * vma_start_write() does not have a complement in mm_drop_all_locks()
1969          * because vma_start_write() is always asymmetrical; it marks a VMA as
1970          * being written to until mmap_write_unlock() or mmap_write_downgrade()
1971          * is reached.
1972          */
1973         for_each_vma(vmi, vma) {
1974                 if (signal_pending(current))
1975                         goto out_unlock;
1976                 vma_start_write(vma);
1977         }
1978 
1979         vma_iter_init(&vmi, mm, 0);
1980         for_each_vma(vmi, vma) {
1981                 if (signal_pending(current))
1982                         goto out_unlock;
1983                 if (vma->vm_file && vma->vm_file->f_mapping &&
1984                                 is_vm_hugetlb_page(vma))
1985                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
1986         }
1987 
1988         vma_iter_init(&vmi, mm, 0);
1989         for_each_vma(vmi, vma) {
1990                 if (signal_pending(current))
1991                         goto out_unlock;
1992                 if (vma->vm_file && vma->vm_file->f_mapping &&
1993                                 !is_vm_hugetlb_page(vma))
1994                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
1995         }
1996 
1997         vma_iter_init(&vmi, mm, 0);
1998         for_each_vma(vmi, vma) {
1999                 if (signal_pending(current))
2000                         goto out_unlock;
2001                 if (vma->anon_vma)
2002                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2003                                 vm_lock_anon_vma(mm, avc->anon_vma);
2004         }
2005 
2006         return 0;
2007 
2008 out_unlock:
2009         mm_drop_all_locks(mm);
2010         return -EINTR;
2011 }
2012 
2013 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2014 {
2015         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2016                 /*
2017                  * The LSB of head.next can't change to 0 from under
2018                  * us because we hold the mm_all_locks_mutex.
2019                  *
2020                  * We must however clear the bitflag before unlocking
2021                  * the vma so the users using the anon_vma->rb_root will
2022                  * never see our bitflag.
2023                  *
2024                  * No need of atomic instructions here, head.next
2025                  * can't change from under us until we release the
2026                  * anon_vma->root->rwsem.
2027                  */
2028                 if (!__test_and_clear_bit(0, (unsigned long *)
2029                                           &anon_vma->root->rb_root.rb_root.rb_node))
2030                         BUG();
2031                 anon_vma_unlock_write(anon_vma);
2032         }
2033 }
2034 
2035 static void vm_unlock_mapping(struct address_space *mapping)
2036 {
2037         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2038                 /*
2039                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2040                  * because we hold the mm_all_locks_mutex.
2041                  */
2042                 i_mmap_unlock_write(mapping);
2043                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2044                                         &mapping->flags))
2045                         BUG();
2046         }
2047 }
2048 
2049 /*
2050  * The mmap_lock cannot be released by the caller until
2051  * mm_drop_all_locks() returns.
2052  */
2053 void mm_drop_all_locks(struct mm_struct *mm)
2054 {
2055         struct vm_area_struct *vma;
2056         struct anon_vma_chain *avc;
2057         VMA_ITERATOR(vmi, mm, 0);
2058 
2059         mmap_assert_write_locked(mm);
2060         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2061 
2062         for_each_vma(vmi, vma) {
2063                 if (vma->anon_vma)
2064                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2065                                 vm_unlock_anon_vma(avc->anon_vma);
2066                 if (vma->vm_file && vma->vm_file->f_mapping)
2067                         vm_unlock_mapping(vma->vm_file->f_mapping);
2068         }
2069 
2070         mutex_unlock(&mm_all_locks_mutex);
2071 }
2072 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php