1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * VMA-specific functions. 5 */ 6 7 #include "vma_internal.h" 8 #include "vma.h" 9 10 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) 11 { 12 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; 13 14 if (!mpol_equal(vmg->policy, vma_policy(vma))) 15 return false; 16 /* 17 * VM_SOFTDIRTY should not prevent from VMA merging, if we 18 * match the flags but dirty bit -- the caller should mark 19 * merged VMA as dirty. If dirty bit won't be excluded from 20 * comparison, we increase pressure on the memory system forcing 21 * the kernel to generate new VMAs when old one could be 22 * extended instead. 23 */ 24 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) 25 return false; 26 if (vma->vm_file != vmg->file) 27 return false; 28 if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx)) 29 return false; 30 if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name)) 31 return false; 32 return true; 33 } 34 35 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1, 36 struct anon_vma *anon_vma2, struct vm_area_struct *vma) 37 { 38 /* 39 * The list_is_singular() test is to avoid merging VMA cloned from 40 * parents. This can improve scalability caused by anon_vma lock. 41 */ 42 if ((!anon_vma1 || !anon_vma2) && (!vma || 43 list_is_singular(&vma->anon_vma_chain))) 44 return true; 45 return anon_vma1 == anon_vma2; 46 } 47 48 /* Are the anon_vma's belonging to each VMA compatible with one another? */ 49 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1, 50 struct vm_area_struct *vma2) 51 { 52 return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL); 53 } 54 55 /* 56 * init_multi_vma_prep() - Initializer for struct vma_prepare 57 * @vp: The vma_prepare struct 58 * @vma: The vma that will be altered once locked 59 * @next: The next vma if it is to be adjusted 60 * @remove: The first vma to be removed 61 * @remove2: The second vma to be removed 62 */ 63 static void init_multi_vma_prep(struct vma_prepare *vp, 64 struct vm_area_struct *vma, 65 struct vm_area_struct *next, 66 struct vm_area_struct *remove, 67 struct vm_area_struct *remove2) 68 { 69 memset(vp, 0, sizeof(struct vma_prepare)); 70 vp->vma = vma; 71 vp->anon_vma = vma->anon_vma; 72 vp->remove = remove; 73 vp->remove2 = remove2; 74 vp->adj_next = next; 75 if (!vp->anon_vma && next) 76 vp->anon_vma = next->anon_vma; 77 78 vp->file = vma->vm_file; 79 if (vp->file) 80 vp->mapping = vma->vm_file->f_mapping; 81 82 } 83 84 /* 85 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 86 * in front of (at a lower virtual address and file offset than) the vma. 87 * 88 * We cannot merge two vmas if they have differently assigned (non-NULL) 89 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 90 * 91 * We don't check here for the merged mmap wrapping around the end of pagecache 92 * indices (16TB on ia32) because do_mmap() does not permit mmap's which 93 * wrap, nor mmaps which cover the final page at index -1UL. 94 * 95 * We assume the vma may be removed as part of the merge. 96 */ 97 static bool can_vma_merge_before(struct vma_merge_struct *vmg) 98 { 99 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 100 101 if (is_mergeable_vma(vmg, /* merge_next = */ true) && 102 is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) { 103 if (vmg->next->vm_pgoff == vmg->pgoff + pglen) 104 return true; 105 } 106 107 return false; 108 } 109 110 /* 111 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) 112 * beyond (at a higher virtual address and file offset than) the vma. 113 * 114 * We cannot merge two vmas if they have differently assigned (non-NULL) 115 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. 116 * 117 * We assume that vma is not removed as part of the merge. 118 */ 119 static bool can_vma_merge_after(struct vma_merge_struct *vmg) 120 { 121 if (is_mergeable_vma(vmg, /* merge_next = */ false) && 122 is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) { 123 if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff) 124 return true; 125 } 126 return false; 127 } 128 129 static void __vma_link_file(struct vm_area_struct *vma, 130 struct address_space *mapping) 131 { 132 if (vma_is_shared_maywrite(vma)) 133 mapping_allow_writable(mapping); 134 135 flush_dcache_mmap_lock(mapping); 136 vma_interval_tree_insert(vma, &mapping->i_mmap); 137 flush_dcache_mmap_unlock(mapping); 138 } 139 140 /* 141 * Requires inode->i_mapping->i_mmap_rwsem 142 */ 143 static void __remove_shared_vm_struct(struct vm_area_struct *vma, 144 struct address_space *mapping) 145 { 146 if (vma_is_shared_maywrite(vma)) 147 mapping_unmap_writable(mapping); 148 149 flush_dcache_mmap_lock(mapping); 150 vma_interval_tree_remove(vma, &mapping->i_mmap); 151 flush_dcache_mmap_unlock(mapping); 152 } 153 154 /* 155 * vma_prepare() - Helper function for handling locking VMAs prior to altering 156 * @vp: The initialized vma_prepare struct 157 */ 158 static void vma_prepare(struct vma_prepare *vp) 159 { 160 if (vp->file) { 161 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end); 162 163 if (vp->adj_next) 164 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start, 165 vp->adj_next->vm_end); 166 167 i_mmap_lock_write(vp->mapping); 168 if (vp->insert && vp->insert->vm_file) { 169 /* 170 * Put into interval tree now, so instantiated pages 171 * are visible to arm/parisc __flush_dcache_page 172 * throughout; but we cannot insert into address 173 * space until vma start or end is updated. 174 */ 175 __vma_link_file(vp->insert, 176 vp->insert->vm_file->f_mapping); 177 } 178 } 179 180 if (vp->anon_vma) { 181 anon_vma_lock_write(vp->anon_vma); 182 anon_vma_interval_tree_pre_update_vma(vp->vma); 183 if (vp->adj_next) 184 anon_vma_interval_tree_pre_update_vma(vp->adj_next); 185 } 186 187 if (vp->file) { 188 flush_dcache_mmap_lock(vp->mapping); 189 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap); 190 if (vp->adj_next) 191 vma_interval_tree_remove(vp->adj_next, 192 &vp->mapping->i_mmap); 193 } 194 195 } 196 197 /* 198 * vma_complete- Helper function for handling the unlocking after altering VMAs, 199 * or for inserting a VMA. 200 * 201 * @vp: The vma_prepare struct 202 * @vmi: The vma iterator 203 * @mm: The mm_struct 204 */ 205 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, 206 struct mm_struct *mm) 207 { 208 if (vp->file) { 209 if (vp->adj_next) 210 vma_interval_tree_insert(vp->adj_next, 211 &vp->mapping->i_mmap); 212 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap); 213 flush_dcache_mmap_unlock(vp->mapping); 214 } 215 216 if (vp->remove && vp->file) { 217 __remove_shared_vm_struct(vp->remove, vp->mapping); 218 if (vp->remove2) 219 __remove_shared_vm_struct(vp->remove2, vp->mapping); 220 } else if (vp->insert) { 221 /* 222 * split_vma has split insert from vma, and needs 223 * us to insert it before dropping the locks 224 * (it may either follow vma or precede it). 225 */ 226 vma_iter_store(vmi, vp->insert); 227 mm->map_count++; 228 } 229 230 if (vp->anon_vma) { 231 anon_vma_interval_tree_post_update_vma(vp->vma); 232 if (vp->adj_next) 233 anon_vma_interval_tree_post_update_vma(vp->adj_next); 234 anon_vma_unlock_write(vp->anon_vma); 235 } 236 237 if (vp->file) { 238 i_mmap_unlock_write(vp->mapping); 239 uprobe_mmap(vp->vma); 240 241 if (vp->adj_next) 242 uprobe_mmap(vp->adj_next); 243 } 244 245 if (vp->remove) { 246 again: 247 vma_mark_detached(vp->remove, true); 248 if (vp->file) { 249 uprobe_munmap(vp->remove, vp->remove->vm_start, 250 vp->remove->vm_end); 251 fput(vp->file); 252 } 253 if (vp->remove->anon_vma) 254 anon_vma_merge(vp->vma, vp->remove); 255 mm->map_count--; 256 mpol_put(vma_policy(vp->remove)); 257 if (!vp->remove2) 258 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); 259 vm_area_free(vp->remove); 260 261 /* 262 * In mprotect's case 6 (see comments on vma_merge), 263 * we are removing both mid and next vmas 264 */ 265 if (vp->remove2) { 266 vp->remove = vp->remove2; 267 vp->remove2 = NULL; 268 goto again; 269 } 270 } 271 if (vp->insert && vp->file) 272 uprobe_mmap(vp->insert); 273 } 274 275 /* 276 * init_vma_prep() - Initializer wrapper for vma_prepare struct 277 * @vp: The vma_prepare struct 278 * @vma: The vma that will be altered once locked 279 */ 280 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) 281 { 282 init_multi_vma_prep(vp, vma, NULL, NULL, NULL); 283 } 284 285 /* 286 * Can the proposed VMA be merged with the left (previous) VMA taking into 287 * account the start position of the proposed range. 288 */ 289 static bool can_vma_merge_left(struct vma_merge_struct *vmg) 290 291 { 292 return vmg->prev && vmg->prev->vm_end == vmg->start && 293 can_vma_merge_after(vmg); 294 } 295 296 /* 297 * Can the proposed VMA be merged with the right (next) VMA taking into 298 * account the end position of the proposed range. 299 * 300 * In addition, if we can merge with the left VMA, ensure that left and right 301 * anon_vma's are also compatible. 302 */ 303 static bool can_vma_merge_right(struct vma_merge_struct *vmg, 304 bool can_merge_left) 305 { 306 if (!vmg->next || vmg->end != vmg->next->vm_start || 307 !can_vma_merge_before(vmg)) 308 return false; 309 310 if (!can_merge_left) 311 return true; 312 313 /* 314 * If we can merge with prev (left) and next (right), indicating that 315 * each VMA's anon_vma is compatible with the proposed anon_vma, this 316 * does not mean prev and next are compatible with EACH OTHER. 317 * 318 * We therefore check this in addition to mergeability to either side. 319 */ 320 return are_anon_vmas_compatible(vmg->prev, vmg->next); 321 } 322 323 /* 324 * Close a vm structure and free it. 325 */ 326 void remove_vma(struct vm_area_struct *vma, bool unreachable) 327 { 328 might_sleep(); 329 vma_close(vma); 330 if (vma->vm_file) 331 fput(vma->vm_file); 332 mpol_put(vma_policy(vma)); 333 if (unreachable) 334 __vm_area_free(vma); 335 else 336 vm_area_free(vma); 337 } 338 339 /* 340 * Get rid of page table information in the indicated region. 341 * 342 * Called with the mm semaphore held. 343 */ 344 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, 345 struct vm_area_struct *prev, struct vm_area_struct *next) 346 { 347 struct mm_struct *mm = vma->vm_mm; 348 struct mmu_gather tlb; 349 350 lru_add_drain(); 351 tlb_gather_mmu(&tlb, mm); 352 update_hiwater_rss(mm); 353 unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end, 354 /* mm_wr_locked = */ true); 355 mas_set(mas, vma->vm_end); 356 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, 357 next ? next->vm_start : USER_PGTABLES_CEILING, 358 /* mm_wr_locked = */ true); 359 tlb_finish_mmu(&tlb); 360 } 361 362 /* 363 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it 364 * has already been checked or doesn't make sense to fail. 365 * VMA Iterator will point to the original VMA. 366 */ 367 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 368 unsigned long addr, int new_below) 369 { 370 struct vma_prepare vp; 371 struct vm_area_struct *new; 372 int err; 373 374 WARN_ON(vma->vm_start >= addr); 375 WARN_ON(vma->vm_end <= addr); 376 377 if (vma->vm_ops && vma->vm_ops->may_split) { 378 err = vma->vm_ops->may_split(vma, addr); 379 if (err) 380 return err; 381 } 382 383 new = vm_area_dup(vma); 384 if (!new) 385 return -ENOMEM; 386 387 if (new_below) { 388 new->vm_end = addr; 389 } else { 390 new->vm_start = addr; 391 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); 392 } 393 394 err = -ENOMEM; 395 vma_iter_config(vmi, new->vm_start, new->vm_end); 396 if (vma_iter_prealloc(vmi, new)) 397 goto out_free_vma; 398 399 err = vma_dup_policy(vma, new); 400 if (err) 401 goto out_free_vmi; 402 403 err = anon_vma_clone(new, vma); 404 if (err) 405 goto out_free_mpol; 406 407 if (new->vm_file) 408 get_file(new->vm_file); 409 410 if (new->vm_ops && new->vm_ops->open) 411 new->vm_ops->open(new); 412 413 vma_start_write(vma); 414 vma_start_write(new); 415 416 init_vma_prep(&vp, vma); 417 vp.insert = new; 418 vma_prepare(&vp); 419 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); 420 421 if (new_below) { 422 vma->vm_start = addr; 423 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; 424 } else { 425 vma->vm_end = addr; 426 } 427 428 /* vma_complete stores the new vma */ 429 vma_complete(&vp, vmi, vma->vm_mm); 430 validate_mm(vma->vm_mm); 431 432 /* Success. */ 433 if (new_below) 434 vma_next(vmi); 435 else 436 vma_prev(vmi); 437 438 return 0; 439 440 out_free_mpol: 441 mpol_put(vma_policy(new)); 442 out_free_vmi: 443 vma_iter_free(vmi); 444 out_free_vma: 445 vm_area_free(new); 446 return err; 447 } 448 449 /* 450 * Split a vma into two pieces at address 'addr', a new vma is allocated 451 * either for the first part or the tail. 452 */ 453 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, 454 unsigned long addr, int new_below) 455 { 456 if (vma->vm_mm->map_count >= sysctl_max_map_count) 457 return -ENOMEM; 458 459 return __split_vma(vmi, vma, addr, new_below); 460 } 461 462 /* 463 * vma has some anon_vma assigned, and is already inserted on that 464 * anon_vma's interval trees. 465 * 466 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the 467 * vma must be removed from the anon_vma's interval trees using 468 * anon_vma_interval_tree_pre_update_vma(). 469 * 470 * After the update, the vma will be reinserted using 471 * anon_vma_interval_tree_post_update_vma(). 472 * 473 * The entire update must be protected by exclusive mmap_lock and by 474 * the root anon_vma's mutex. 475 */ 476 void 477 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) 478 { 479 struct anon_vma_chain *avc; 480 481 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 482 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); 483 } 484 485 void 486 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) 487 { 488 struct anon_vma_chain *avc; 489 490 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 491 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); 492 } 493 494 /* 495 * dup_anon_vma() - Helper function to duplicate anon_vma 496 * @dst: The destination VMA 497 * @src: The source VMA 498 * @dup: Pointer to the destination VMA when successful. 499 * 500 * Returns: 0 on success. 501 */ 502 static int dup_anon_vma(struct vm_area_struct *dst, 503 struct vm_area_struct *src, struct vm_area_struct **dup) 504 { 505 /* 506 * Easily overlooked: when mprotect shifts the boundary, make sure the 507 * expanding vma has anon_vma set if the shrinking vma had, to cover any 508 * anon pages imported. 509 */ 510 if (src->anon_vma && !dst->anon_vma) { 511 int ret; 512 513 vma_assert_write_locked(dst); 514 dst->anon_vma = src->anon_vma; 515 ret = anon_vma_clone(dst, src); 516 if (ret) 517 return ret; 518 519 *dup = dst; 520 } 521 522 return 0; 523 } 524 525 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 526 void validate_mm(struct mm_struct *mm) 527 { 528 int bug = 0; 529 int i = 0; 530 struct vm_area_struct *vma; 531 VMA_ITERATOR(vmi, mm, 0); 532 533 mt_validate(&mm->mm_mt); 534 for_each_vma(vmi, vma) { 535 #ifdef CONFIG_DEBUG_VM_RB 536 struct anon_vma *anon_vma = vma->anon_vma; 537 struct anon_vma_chain *avc; 538 #endif 539 unsigned long vmi_start, vmi_end; 540 bool warn = 0; 541 542 vmi_start = vma_iter_addr(&vmi); 543 vmi_end = vma_iter_end(&vmi); 544 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) 545 warn = 1; 546 547 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) 548 warn = 1; 549 550 if (warn) { 551 pr_emerg("issue in %s\n", current->comm); 552 dump_stack(); 553 dump_vma(vma); 554 pr_emerg("tree range: %px start %lx end %lx\n", vma, 555 vmi_start, vmi_end - 1); 556 vma_iter_dump_tree(&vmi); 557 } 558 559 #ifdef CONFIG_DEBUG_VM_RB 560 if (anon_vma) { 561 anon_vma_lock_read(anon_vma); 562 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 563 anon_vma_interval_tree_verify(avc); 564 anon_vma_unlock_read(anon_vma); 565 } 566 #endif 567 i++; 568 } 569 if (i != mm->map_count) { 570 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i); 571 bug = 1; 572 } 573 VM_BUG_ON_MM(bug, mm); 574 } 575 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ 576 577 /* Actually perform the VMA merge operation. */ 578 static int commit_merge(struct vma_merge_struct *vmg, 579 struct vm_area_struct *adjust, 580 struct vm_area_struct *remove, 581 struct vm_area_struct *remove2, 582 long adj_start, 583 bool expanded) 584 { 585 struct vma_prepare vp; 586 587 init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2); 588 589 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && 590 vp.anon_vma != adjust->anon_vma); 591 592 if (expanded) { 593 /* Note: vma iterator must be pointing to 'start'. */ 594 vma_iter_config(vmg->vmi, vmg->start, vmg->end); 595 } else { 596 vma_iter_config(vmg->vmi, adjust->vm_start + adj_start, 597 adjust->vm_end); 598 } 599 600 if (vma_iter_prealloc(vmg->vmi, vmg->vma)) 601 return -ENOMEM; 602 603 vma_prepare(&vp); 604 vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start); 605 vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff); 606 607 if (expanded) 608 vma_iter_store(vmg->vmi, vmg->vma); 609 610 if (adj_start) { 611 adjust->vm_start += adj_start; 612 adjust->vm_pgoff += PHYS_PFN(adj_start); 613 if (adj_start < 0) { 614 WARN_ON(expanded); 615 vma_iter_store(vmg->vmi, adjust); 616 } 617 } 618 619 vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm); 620 621 return 0; 622 } 623 624 /* We can only remove VMAs when merging if they do not have a close hook. */ 625 static bool can_merge_remove_vma(struct vm_area_struct *vma) 626 { 627 return !vma->vm_ops || !vma->vm_ops->close; 628 } 629 630 /* 631 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its 632 * attributes modified. 633 * 634 * @vmg: Describes the modifications being made to a VMA and associated 635 * metadata. 636 * 637 * When the attributes of a range within a VMA change, then it might be possible 638 * for immediately adjacent VMAs to be merged into that VMA due to having 639 * identical properties. 640 * 641 * This function checks for the existence of any such mergeable VMAs and updates 642 * the maple tree describing the @vmg->vma->vm_mm address space to account for 643 * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge. 644 * 645 * As part of this operation, if a merge occurs, the @vmg object will have its 646 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent 647 * calls to this function should reset these fields. 648 * 649 * Returns: The merged VMA if merge succeeds, or NULL otherwise. 650 * 651 * ASSUMPTIONS: 652 * - The caller must assign the VMA to be modifed to @vmg->vma. 653 * - The caller must have set @vmg->prev to the previous VMA, if there is one. 654 * - The caller must not set @vmg->next, as we determine this. 655 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 656 * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end). 657 */ 658 static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg) 659 { 660 struct vm_area_struct *vma = vmg->vma; 661 struct vm_area_struct *prev = vmg->prev; 662 struct vm_area_struct *next, *res; 663 struct vm_area_struct *anon_dup = NULL; 664 struct vm_area_struct *adjust = NULL; 665 unsigned long start = vmg->start; 666 unsigned long end = vmg->end; 667 bool left_side = vma && start == vma->vm_start; 668 bool right_side = vma && end == vma->vm_end; 669 int err = 0; 670 long adj_start = 0; 671 bool merge_will_delete_vma, merge_will_delete_next; 672 bool merge_left, merge_right, merge_both; 673 bool expanded; 674 675 mmap_assert_write_locked(vmg->mm); 676 VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */ 677 VM_WARN_ON(vmg->next); /* We set this. */ 678 VM_WARN_ON(prev && start <= prev->vm_start); 679 VM_WARN_ON(start >= end); 680 /* 681 * If vma == prev, then we are offset into a VMA. Otherwise, if we are 682 * not, we must span a portion of the VMA. 683 */ 684 VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) || 685 vmg->end > vma->vm_end)); 686 /* The vmi must be positioned within vmg->vma. */ 687 VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start && 688 vma_iter_addr(vmg->vmi) < vma->vm_end)); 689 690 vmg->state = VMA_MERGE_NOMERGE; 691 692 /* 693 * If a special mapping or if the range being modified is neither at the 694 * furthermost left or right side of the VMA, then we have no chance of 695 * merging and should abort. 696 */ 697 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) 698 return NULL; 699 700 if (left_side) 701 merge_left = can_vma_merge_left(vmg); 702 else 703 merge_left = false; 704 705 if (right_side) { 706 next = vmg->next = vma_iter_next_range(vmg->vmi); 707 vma_iter_prev_range(vmg->vmi); 708 709 merge_right = can_vma_merge_right(vmg, merge_left); 710 } else { 711 merge_right = false; 712 next = NULL; 713 } 714 715 if (merge_left) /* If merging prev, position iterator there. */ 716 vma_prev(vmg->vmi); 717 else if (!merge_right) /* If we have nothing to merge, abort. */ 718 return NULL; 719 720 merge_both = merge_left && merge_right; 721 /* If we span the entire VMA, a merge implies it will be deleted. */ 722 merge_will_delete_vma = left_side && right_side; 723 724 /* 725 * If we need to remove vma in its entirety but are unable to do so, 726 * we have no sensible recourse but to abort the merge. 727 */ 728 if (merge_will_delete_vma && !can_merge_remove_vma(vma)) 729 return NULL; 730 731 /* 732 * If we merge both VMAs, then next is also deleted. This implies 733 * merge_will_delete_vma also. 734 */ 735 merge_will_delete_next = merge_both; 736 737 /* 738 * If we cannot delete next, then we can reduce the operation to merging 739 * prev and vma (thereby deleting vma). 740 */ 741 if (merge_will_delete_next && !can_merge_remove_vma(next)) { 742 merge_will_delete_next = false; 743 merge_right = false; 744 merge_both = false; 745 } 746 747 /* No matter what happens, we will be adjusting vma. */ 748 vma_start_write(vma); 749 750 if (merge_left) 751 vma_start_write(prev); 752 753 if (merge_right) 754 vma_start_write(next); 755 756 if (merge_both) { 757 /* 758 * |<----->| 759 * |-------*********-------| 760 * prev vma next 761 * extend delete delete 762 */ 763 764 vmg->vma = prev; 765 vmg->start = prev->vm_start; 766 vmg->end = next->vm_end; 767 vmg->pgoff = prev->vm_pgoff; 768 769 /* 770 * We already ensured anon_vma compatibility above, so now it's 771 * simply a case of, if prev has no anon_vma object, which of 772 * next or vma contains the anon_vma we must duplicate. 773 */ 774 err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup); 775 } else if (merge_left) { 776 /* 777 * |<----->| OR 778 * |<--------->| 779 * |-------************* 780 * prev vma 781 * extend shrink/delete 782 */ 783 784 vmg->vma = prev; 785 vmg->start = prev->vm_start; 786 vmg->pgoff = prev->vm_pgoff; 787 788 if (!merge_will_delete_vma) { 789 adjust = vma; 790 adj_start = vmg->end - vma->vm_start; 791 } 792 793 err = dup_anon_vma(prev, vma, &anon_dup); 794 } else { /* merge_right */ 795 /* 796 * |<----->| OR 797 * |<--------->| 798 * *************-------| 799 * vma next 800 * shrink/delete extend 801 */ 802 803 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); 804 805 VM_WARN_ON(!merge_right); 806 /* If we are offset into a VMA, then prev must be vma. */ 807 VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev); 808 809 if (merge_will_delete_vma) { 810 vmg->vma = next; 811 vmg->end = next->vm_end; 812 vmg->pgoff = next->vm_pgoff - pglen; 813 } else { 814 /* 815 * We shrink vma and expand next. 816 * 817 * IMPORTANT: This is the ONLY case where the final 818 * merged VMA is NOT vmg->vma, but rather vmg->next. 819 */ 820 821 vmg->start = vma->vm_start; 822 vmg->end = start; 823 vmg->pgoff = vma->vm_pgoff; 824 825 adjust = next; 826 adj_start = -(vma->vm_end - start); 827 } 828 829 err = dup_anon_vma(next, vma, &anon_dup); 830 } 831 832 if (err) 833 goto abort; 834 835 /* 836 * In nearly all cases, we expand vmg->vma. There is one exception - 837 * merge_right where we partially span the VMA. In this case we shrink 838 * the end of vmg->vma and adjust the start of vmg->next accordingly. 839 */ 840 expanded = !merge_right || merge_will_delete_vma; 841 842 if (commit_merge(vmg, adjust, 843 merge_will_delete_vma ? vma : NULL, 844 merge_will_delete_next ? next : NULL, 845 adj_start, expanded)) { 846 if (anon_dup) 847 unlink_anon_vmas(anon_dup); 848 849 vmg->state = VMA_MERGE_ERROR_NOMEM; 850 return NULL; 851 } 852 853 res = merge_left ? prev : next; 854 khugepaged_enter_vma(res, vmg->flags); 855 856 vmg->state = VMA_MERGE_SUCCESS; 857 return res; 858 859 abort: 860 vma_iter_set(vmg->vmi, start); 861 vma_iter_load(vmg->vmi); 862 vmg->state = VMA_MERGE_ERROR_NOMEM; 863 return NULL; 864 } 865 866 /* 867 * vma_merge_new_range - Attempt to merge a new VMA into address space 868 * 869 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end 870 * (exclusive), which we try to merge with any adjacent VMAs if possible. 871 * 872 * We are about to add a VMA to the address space starting at @vmg->start and 873 * ending at @vmg->end. There are three different possible scenarios: 874 * 875 * 1. There is a VMA with identical properties immediately adjacent to the 876 * proposed new VMA [@vmg->start, @vmg->end) either before or after it - 877 * EXPAND that VMA: 878 * 879 * Proposed: |-----| or |-----| 880 * Existing: |----| |----| 881 * 882 * 2. There are VMAs with identical properties immediately adjacent to the 883 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - 884 * EXPAND the former and REMOVE the latter: 885 * 886 * Proposed: |-----| 887 * Existing: |----| |----| 888 * 889 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those 890 * VMAs do not have identical attributes - NO MERGE POSSIBLE. 891 * 892 * In instances where we can merge, this function returns the expanded VMA which 893 * will have its range adjusted accordingly and the underlying maple tree also 894 * adjusted. 895 * 896 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer 897 * to the VMA we expanded. 898 * 899 * This function adjusts @vmg to provide @vmg->next if not already specified, 900 * and adjusts [@vmg->start, @vmg->end) to span the expanded range. 901 * 902 * ASSUMPTIONS: 903 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. 904 * - The caller must have determined that [@vmg->start, @vmg->end) is empty, 905 other than VMAs that will be unmapped should the operation succeed. 906 * - The caller must have specified the previous vma in @vmg->prev. 907 * - The caller must have specified the next vma in @vmg->next. 908 * - The caller must have positioned the vmi at or before the gap. 909 */ 910 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) 911 { 912 struct vm_area_struct *prev = vmg->prev; 913 struct vm_area_struct *next = vmg->next; 914 unsigned long start = vmg->start; 915 unsigned long end = vmg->end; 916 pgoff_t pgoff = vmg->pgoff; 917 pgoff_t pglen = PHYS_PFN(end - start); 918 bool can_merge_left, can_merge_right; 919 bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND; 920 921 mmap_assert_write_locked(vmg->mm); 922 VM_WARN_ON(vmg->vma); 923 /* vmi must point at or before the gap. */ 924 VM_WARN_ON(vma_iter_addr(vmg->vmi) > end); 925 926 vmg->state = VMA_MERGE_NOMERGE; 927 928 /* Special VMAs are unmergeable, also if no prev/next. */ 929 if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) 930 return NULL; 931 932 can_merge_left = can_vma_merge_left(vmg); 933 can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left); 934 935 /* If we can merge with the next VMA, adjust vmg accordingly. */ 936 if (can_merge_right) { 937 vmg->end = next->vm_end; 938 vmg->vma = next; 939 vmg->pgoff = next->vm_pgoff - pglen; 940 } 941 942 /* If we can merge with the previous VMA, adjust vmg accordingly. */ 943 if (can_merge_left) { 944 vmg->start = prev->vm_start; 945 vmg->vma = prev; 946 vmg->pgoff = prev->vm_pgoff; 947 948 /* 949 * If this merge would result in removal of the next VMA but we 950 * are not permitted to do so, reduce the operation to merging 951 * prev and vma. 952 */ 953 if (can_merge_right && !can_merge_remove_vma(next)) 954 vmg->end = end; 955 956 /* In expand-only case we are already positioned at prev. */ 957 if (!just_expand) { 958 /* Equivalent to going to the previous range. */ 959 vma_prev(vmg->vmi); 960 } 961 } 962 963 /* 964 * Now try to expand adjacent VMA(s). This takes care of removing the 965 * following VMA if we have VMAs on both sides. 966 */ 967 if (vmg->vma && !vma_expand(vmg)) { 968 khugepaged_enter_vma(vmg->vma, vmg->flags); 969 vmg->state = VMA_MERGE_SUCCESS; 970 return vmg->vma; 971 } 972 973 /* If expansion failed, reset state. Allows us to retry merge later. */ 974 if (!just_expand) { 975 vmg->vma = NULL; 976 vmg->start = start; 977 vmg->end = end; 978 vmg->pgoff = pgoff; 979 if (vmg->vma == prev) 980 vma_iter_set(vmg->vmi, start); 981 } 982 983 return NULL; 984 } 985 986 /* 987 * vma_expand - Expand an existing VMA 988 * 989 * @vmg: Describes a VMA expansion operation. 990 * 991 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. 992 * Will expand over vmg->next if it's different from vmg->vma and vmg->end == 993 * vmg->next->vm_end. Checking if the vmg->vma can expand and merge with 994 * vmg->next needs to be handled by the caller. 995 * 996 * Returns: 0 on success. 997 * 998 * ASSUMPTIONS: 999 * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock. 1000 * - The caller must have set @vmg->vma and @vmg->next. 1001 */ 1002 int vma_expand(struct vma_merge_struct *vmg) 1003 { 1004 struct vm_area_struct *anon_dup = NULL; 1005 bool remove_next = false; 1006 struct vm_area_struct *vma = vmg->vma; 1007 struct vm_area_struct *next = vmg->next; 1008 1009 mmap_assert_write_locked(vmg->mm); 1010 1011 vma_start_write(vma); 1012 if (next && (vma != next) && (vmg->end == next->vm_end)) { 1013 int ret; 1014 1015 remove_next = true; 1016 /* This should already have been checked by this point. */ 1017 VM_WARN_ON(!can_merge_remove_vma(next)); 1018 vma_start_write(next); 1019 ret = dup_anon_vma(vma, next, &anon_dup); 1020 if (ret) 1021 return ret; 1022 } 1023 1024 /* Not merging but overwriting any part of next is not handled. */ 1025 VM_WARN_ON(next && !remove_next && 1026 next != vma && vmg->end > next->vm_start); 1027 /* Only handles expanding */ 1028 VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end); 1029 1030 if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true)) 1031 goto nomem; 1032 1033 return 0; 1034 1035 nomem: 1036 vmg->state = VMA_MERGE_ERROR_NOMEM; 1037 if (anon_dup) 1038 unlink_anon_vmas(anon_dup); 1039 return -ENOMEM; 1040 } 1041 1042 /* 1043 * vma_shrink() - Reduce an existing VMAs memory area 1044 * @vmi: The vma iterator 1045 * @vma: The VMA to modify 1046 * @start: The new start 1047 * @end: The new end 1048 * 1049 * Returns: 0 on success, -ENOMEM otherwise 1050 */ 1051 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 1052 unsigned long start, unsigned long end, pgoff_t pgoff) 1053 { 1054 struct vma_prepare vp; 1055 1056 WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); 1057 1058 if (vma->vm_start < start) 1059 vma_iter_config(vmi, vma->vm_start, start); 1060 else 1061 vma_iter_config(vmi, end, vma->vm_end); 1062 1063 if (vma_iter_prealloc(vmi, NULL)) 1064 return -ENOMEM; 1065 1066 vma_start_write(vma); 1067 1068 init_vma_prep(&vp, vma); 1069 vma_prepare(&vp); 1070 vma_adjust_trans_huge(vma, start, end, 0); 1071 1072 vma_iter_clear(vmi); 1073 vma_set_range(vma, start, end, pgoff); 1074 vma_complete(&vp, vmi, vma->vm_mm); 1075 validate_mm(vma->vm_mm); 1076 return 0; 1077 } 1078 1079 static inline void vms_clear_ptes(struct vma_munmap_struct *vms, 1080 struct ma_state *mas_detach, bool mm_wr_locked) 1081 { 1082 struct mmu_gather tlb; 1083 1084 if (!vms->clear_ptes) /* Nothing to do */ 1085 return; 1086 1087 /* 1088 * We can free page tables without write-locking mmap_lock because VMAs 1089 * were isolated before we downgraded mmap_lock. 1090 */ 1091 mas_set(mas_detach, 1); 1092 lru_add_drain(); 1093 tlb_gather_mmu(&tlb, vms->vma->vm_mm); 1094 update_hiwater_rss(vms->vma->vm_mm); 1095 unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end, 1096 vms->vma_count, mm_wr_locked); 1097 1098 mas_set(mas_detach, 1); 1099 /* start and end may be different if there is no prev or next vma. */ 1100 free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start, 1101 vms->unmap_end, mm_wr_locked); 1102 tlb_finish_mmu(&tlb); 1103 vms->clear_ptes = false; 1104 } 1105 1106 void vms_clean_up_area(struct vma_munmap_struct *vms, 1107 struct ma_state *mas_detach) 1108 { 1109 struct vm_area_struct *vma; 1110 1111 if (!vms->nr_pages) 1112 return; 1113 1114 vms_clear_ptes(vms, mas_detach, true); 1115 mas_set(mas_detach, 0); 1116 mas_for_each(mas_detach, vma, ULONG_MAX) 1117 vma_close(vma); 1118 } 1119 1120 /* 1121 * vms_complete_munmap_vmas() - Finish the munmap() operation 1122 * @vms: The vma munmap struct 1123 * @mas_detach: The maple state of the detached vmas 1124 * 1125 * This updates the mm_struct, unmaps the region, frees the resources 1126 * used for the munmap() and may downgrade the lock - if requested. Everything 1127 * needed to be done once the vma maple tree is updated. 1128 */ 1129 void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, 1130 struct ma_state *mas_detach) 1131 { 1132 struct vm_area_struct *vma; 1133 struct mm_struct *mm; 1134 1135 mm = current->mm; 1136 mm->map_count -= vms->vma_count; 1137 mm->locked_vm -= vms->locked_vm; 1138 if (vms->unlock) 1139 mmap_write_downgrade(mm); 1140 1141 if (!vms->nr_pages) 1142 return; 1143 1144 vms_clear_ptes(vms, mas_detach, !vms->unlock); 1145 /* Update high watermark before we lower total_vm */ 1146 update_hiwater_vm(mm); 1147 /* Stat accounting */ 1148 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); 1149 /* Paranoid bookkeeping */ 1150 VM_WARN_ON(vms->exec_vm > mm->exec_vm); 1151 VM_WARN_ON(vms->stack_vm > mm->stack_vm); 1152 VM_WARN_ON(vms->data_vm > mm->data_vm); 1153 mm->exec_vm -= vms->exec_vm; 1154 mm->stack_vm -= vms->stack_vm; 1155 mm->data_vm -= vms->data_vm; 1156 1157 /* Remove and clean up vmas */ 1158 mas_set(mas_detach, 0); 1159 mas_for_each(mas_detach, vma, ULONG_MAX) 1160 remove_vma(vma, /* unreachable = */ false); 1161 1162 vm_unacct_memory(vms->nr_accounted); 1163 validate_mm(mm); 1164 if (vms->unlock) 1165 mmap_read_unlock(mm); 1166 1167 __mt_destroy(mas_detach->tree); 1168 } 1169 1170 /* 1171 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree 1172 * for removal at a later date. Handles splitting first and last if necessary 1173 * and marking the vmas as isolated. 1174 * 1175 * @vms: The vma munmap struct 1176 * @mas_detach: The maple state tracking the detached tree 1177 * 1178 * Return: 0 on success, error otherwise 1179 */ 1180 int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, 1181 struct ma_state *mas_detach) 1182 { 1183 struct vm_area_struct *next = NULL; 1184 int error; 1185 1186 /* 1187 * If we need to split any vma, do it now to save pain later. 1188 * Does it split the first one? 1189 */ 1190 if (vms->start > vms->vma->vm_start) { 1191 1192 /* 1193 * Make sure that map_count on return from munmap() will 1194 * not exceed its limit; but let map_count go just above 1195 * its limit temporarily, to help free resources as expected. 1196 */ 1197 if (vms->end < vms->vma->vm_end && 1198 vms->vma->vm_mm->map_count >= sysctl_max_map_count) { 1199 error = -ENOMEM; 1200 goto map_count_exceeded; 1201 } 1202 1203 /* Don't bother splitting the VMA if we can't unmap it anyway */ 1204 if (!can_modify_vma(vms->vma)) { 1205 error = -EPERM; 1206 goto start_split_failed; 1207 } 1208 1209 error = __split_vma(vms->vmi, vms->vma, vms->start, 1); 1210 if (error) 1211 goto start_split_failed; 1212 } 1213 vms->prev = vma_prev(vms->vmi); 1214 if (vms->prev) 1215 vms->unmap_start = vms->prev->vm_end; 1216 1217 /* 1218 * Detach a range of VMAs from the mm. Using next as a temp variable as 1219 * it is always overwritten. 1220 */ 1221 for_each_vma_range(*(vms->vmi), next, vms->end) { 1222 long nrpages; 1223 1224 if (!can_modify_vma(next)) { 1225 error = -EPERM; 1226 goto modify_vma_failed; 1227 } 1228 /* Does it split the end? */ 1229 if (next->vm_end > vms->end) { 1230 error = __split_vma(vms->vmi, next, vms->end, 0); 1231 if (error) 1232 goto end_split_failed; 1233 } 1234 vma_start_write(next); 1235 mas_set(mas_detach, vms->vma_count++); 1236 error = mas_store_gfp(mas_detach, next, GFP_KERNEL); 1237 if (error) 1238 goto munmap_gather_failed; 1239 1240 vma_mark_detached(next, true); 1241 nrpages = vma_pages(next); 1242 1243 vms->nr_pages += nrpages; 1244 if (next->vm_flags & VM_LOCKED) 1245 vms->locked_vm += nrpages; 1246 1247 if (next->vm_flags & VM_ACCOUNT) 1248 vms->nr_accounted += nrpages; 1249 1250 if (is_exec_mapping(next->vm_flags)) 1251 vms->exec_vm += nrpages; 1252 else if (is_stack_mapping(next->vm_flags)) 1253 vms->stack_vm += nrpages; 1254 else if (is_data_mapping(next->vm_flags)) 1255 vms->data_vm += nrpages; 1256 1257 if (unlikely(vms->uf)) { 1258 /* 1259 * If userfaultfd_unmap_prep returns an error the vmas 1260 * will remain split, but userland will get a 1261 * highly unexpected error anyway. This is no 1262 * different than the case where the first of the two 1263 * __split_vma fails, but we don't undo the first 1264 * split, despite we could. This is unlikely enough 1265 * failure that it's not worth optimizing it for. 1266 */ 1267 error = userfaultfd_unmap_prep(next, vms->start, 1268 vms->end, vms->uf); 1269 if (error) 1270 goto userfaultfd_error; 1271 } 1272 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE 1273 BUG_ON(next->vm_start < vms->start); 1274 BUG_ON(next->vm_start > vms->end); 1275 #endif 1276 } 1277 1278 vms->next = vma_next(vms->vmi); 1279 if (vms->next) 1280 vms->unmap_end = vms->next->vm_start; 1281 1282 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1283 /* Make sure no VMAs are about to be lost. */ 1284 { 1285 MA_STATE(test, mas_detach->tree, 0, 0); 1286 struct vm_area_struct *vma_mas, *vma_test; 1287 int test_count = 0; 1288 1289 vma_iter_set(vms->vmi, vms->start); 1290 rcu_read_lock(); 1291 vma_test = mas_find(&test, vms->vma_count - 1); 1292 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { 1293 BUG_ON(vma_mas != vma_test); 1294 test_count++; 1295 vma_test = mas_next(&test, vms->vma_count - 1); 1296 } 1297 rcu_read_unlock(); 1298 BUG_ON(vms->vma_count != test_count); 1299 } 1300 #endif 1301 1302 while (vma_iter_addr(vms->vmi) > vms->start) 1303 vma_iter_prev_range(vms->vmi); 1304 1305 vms->clear_ptes = true; 1306 return 0; 1307 1308 userfaultfd_error: 1309 munmap_gather_failed: 1310 end_split_failed: 1311 modify_vma_failed: 1312 reattach_vmas(mas_detach); 1313 start_split_failed: 1314 map_count_exceeded: 1315 return error; 1316 } 1317 1318 /* 1319 * do_vmi_align_munmap() - munmap the aligned region from @start to @end. 1320 * @vmi: The vma iterator 1321 * @vma: The starting vm_area_struct 1322 * @mm: The mm_struct 1323 * @start: The aligned start address to munmap. 1324 * @end: The aligned end address to munmap. 1325 * @uf: The userfaultfd list_head 1326 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on 1327 * success. 1328 * 1329 * Return: 0 on success and drops the lock if so directed, error and leaves the 1330 * lock held otherwise. 1331 */ 1332 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 1333 struct mm_struct *mm, unsigned long start, unsigned long end, 1334 struct list_head *uf, bool unlock) 1335 { 1336 struct maple_tree mt_detach; 1337 MA_STATE(mas_detach, &mt_detach, 0, 0); 1338 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); 1339 mt_on_stack(mt_detach); 1340 struct vma_munmap_struct vms; 1341 int error; 1342 1343 init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock); 1344 error = vms_gather_munmap_vmas(&vms, &mas_detach); 1345 if (error) 1346 goto gather_failed; 1347 1348 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); 1349 if (error) 1350 goto clear_tree_failed; 1351 1352 /* Point of no return */ 1353 vms_complete_munmap_vmas(&vms, &mas_detach); 1354 return 0; 1355 1356 clear_tree_failed: 1357 reattach_vmas(&mas_detach); 1358 gather_failed: 1359 validate_mm(mm); 1360 return error; 1361 } 1362 1363 /* 1364 * do_vmi_munmap() - munmap a given range. 1365 * @vmi: The vma iterator 1366 * @mm: The mm_struct 1367 * @start: The start address to munmap 1368 * @len: The length of the range to munmap 1369 * @uf: The userfaultfd list_head 1370 * @unlock: set to true if the user wants to drop the mmap_lock on success 1371 * 1372 * This function takes a @mas that is either pointing to the previous VMA or set 1373 * to MA_START and sets it up to remove the mapping(s). The @len will be 1374 * aligned. 1375 * 1376 * Return: 0 on success and drops the lock if so directed, error and leaves the 1377 * lock held otherwise. 1378 */ 1379 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 1380 unsigned long start, size_t len, struct list_head *uf, 1381 bool unlock) 1382 { 1383 unsigned long end; 1384 struct vm_area_struct *vma; 1385 1386 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) 1387 return -EINVAL; 1388 1389 end = start + PAGE_ALIGN(len); 1390 if (end == start) 1391 return -EINVAL; 1392 1393 /* Find the first overlapping VMA */ 1394 vma = vma_find(vmi, end); 1395 if (!vma) { 1396 if (unlock) 1397 mmap_write_unlock(mm); 1398 return 0; 1399 } 1400 1401 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); 1402 } 1403 1404 /* 1405 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd 1406 * context and anonymous VMA name within the range [start, end). 1407 * 1408 * As a result, we might be able to merge the newly modified VMA range with an 1409 * adjacent VMA with identical properties. 1410 * 1411 * If no merge is possible and the range does not span the entirety of the VMA, 1412 * we then need to split the VMA to accommodate the change. 1413 * 1414 * The function returns either the merged VMA, the original VMA if a split was 1415 * required instead, or an error if the split failed. 1416 */ 1417 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) 1418 { 1419 struct vm_area_struct *vma = vmg->vma; 1420 struct vm_area_struct *merged; 1421 1422 /* First, try to merge. */ 1423 merged = vma_merge_existing_range(vmg); 1424 if (merged) 1425 return merged; 1426 1427 /* Split any preceding portion of the VMA. */ 1428 if (vma->vm_start < vmg->start) { 1429 int err = split_vma(vmg->vmi, vma, vmg->start, 1); 1430 1431 if (err) 1432 return ERR_PTR(err); 1433 } 1434 1435 /* Split any trailing portion of the VMA. */ 1436 if (vma->vm_end > vmg->end) { 1437 int err = split_vma(vmg->vmi, vma, vmg->end, 0); 1438 1439 if (err) 1440 return ERR_PTR(err); 1441 } 1442 1443 return vma; 1444 } 1445 1446 struct vm_area_struct *vma_modify_flags( 1447 struct vma_iterator *vmi, struct vm_area_struct *prev, 1448 struct vm_area_struct *vma, unsigned long start, unsigned long end, 1449 unsigned long new_flags) 1450 { 1451 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1452 1453 vmg.flags = new_flags; 1454 1455 return vma_modify(&vmg); 1456 } 1457 1458 struct vm_area_struct 1459 *vma_modify_flags_name(struct vma_iterator *vmi, 1460 struct vm_area_struct *prev, 1461 struct vm_area_struct *vma, 1462 unsigned long start, 1463 unsigned long end, 1464 unsigned long new_flags, 1465 struct anon_vma_name *new_name) 1466 { 1467 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1468 1469 vmg.flags = new_flags; 1470 vmg.anon_name = new_name; 1471 1472 return vma_modify(&vmg); 1473 } 1474 1475 struct vm_area_struct 1476 *vma_modify_policy(struct vma_iterator *vmi, 1477 struct vm_area_struct *prev, 1478 struct vm_area_struct *vma, 1479 unsigned long start, unsigned long end, 1480 struct mempolicy *new_pol) 1481 { 1482 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1483 1484 vmg.policy = new_pol; 1485 1486 return vma_modify(&vmg); 1487 } 1488 1489 struct vm_area_struct 1490 *vma_modify_flags_uffd(struct vma_iterator *vmi, 1491 struct vm_area_struct *prev, 1492 struct vm_area_struct *vma, 1493 unsigned long start, unsigned long end, 1494 unsigned long new_flags, 1495 struct vm_userfaultfd_ctx new_ctx) 1496 { 1497 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); 1498 1499 vmg.flags = new_flags; 1500 vmg.uffd_ctx = new_ctx; 1501 1502 return vma_modify(&vmg); 1503 } 1504 1505 /* 1506 * Expand vma by delta bytes, potentially merging with an immediately adjacent 1507 * VMA with identical properties. 1508 */ 1509 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1510 struct vm_area_struct *vma, 1511 unsigned long delta) 1512 { 1513 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); 1514 1515 vmg.next = vma_iter_next_rewind(vmi, NULL); 1516 vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */ 1517 1518 return vma_merge_new_range(&vmg); 1519 } 1520 1521 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) 1522 { 1523 vb->count = 0; 1524 } 1525 1526 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) 1527 { 1528 struct address_space *mapping; 1529 int i; 1530 1531 mapping = vb->vmas[0]->vm_file->f_mapping; 1532 i_mmap_lock_write(mapping); 1533 for (i = 0; i < vb->count; i++) { 1534 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); 1535 __remove_shared_vm_struct(vb->vmas[i], mapping); 1536 } 1537 i_mmap_unlock_write(mapping); 1538 1539 unlink_file_vma_batch_init(vb); 1540 } 1541 1542 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, 1543 struct vm_area_struct *vma) 1544 { 1545 if (vma->vm_file == NULL) 1546 return; 1547 1548 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || 1549 vb->count == ARRAY_SIZE(vb->vmas)) 1550 unlink_file_vma_batch_process(vb); 1551 1552 vb->vmas[vb->count] = vma; 1553 vb->count++; 1554 } 1555 1556 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) 1557 { 1558 if (vb->count > 0) 1559 unlink_file_vma_batch_process(vb); 1560 } 1561 1562 /* 1563 * Unlink a file-based vm structure from its interval tree, to hide 1564 * vma from rmap and vmtruncate before freeing its page tables. 1565 */ 1566 void unlink_file_vma(struct vm_area_struct *vma) 1567 { 1568 struct file *file = vma->vm_file; 1569 1570 if (file) { 1571 struct address_space *mapping = file->f_mapping; 1572 1573 i_mmap_lock_write(mapping); 1574 __remove_shared_vm_struct(vma, mapping); 1575 i_mmap_unlock_write(mapping); 1576 } 1577 } 1578 1579 void vma_link_file(struct vm_area_struct *vma) 1580 { 1581 struct file *file = vma->vm_file; 1582 struct address_space *mapping; 1583 1584 if (file) { 1585 mapping = file->f_mapping; 1586 i_mmap_lock_write(mapping); 1587 __vma_link_file(vma, mapping); 1588 i_mmap_unlock_write(mapping); 1589 } 1590 } 1591 1592 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) 1593 { 1594 VMA_ITERATOR(vmi, mm, 0); 1595 1596 vma_iter_config(&vmi, vma->vm_start, vma->vm_end); 1597 if (vma_iter_prealloc(&vmi, vma)) 1598 return -ENOMEM; 1599 1600 vma_start_write(vma); 1601 vma_iter_store(&vmi, vma); 1602 vma_link_file(vma); 1603 mm->map_count++; 1604 validate_mm(mm); 1605 return 0; 1606 } 1607 1608 /* 1609 * Copy the vma structure to a new location in the same mm, 1610 * prior to moving page table entries, to effect an mremap move. 1611 */ 1612 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, 1613 unsigned long addr, unsigned long len, pgoff_t pgoff, 1614 bool *need_rmap_locks) 1615 { 1616 struct vm_area_struct *vma = *vmap; 1617 unsigned long vma_start = vma->vm_start; 1618 struct mm_struct *mm = vma->vm_mm; 1619 struct vm_area_struct *new_vma; 1620 bool faulted_in_anon_vma = true; 1621 VMA_ITERATOR(vmi, mm, addr); 1622 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); 1623 1624 /* 1625 * If anonymous vma has not yet been faulted, update new pgoff 1626 * to match new location, to increase its chance of merging. 1627 */ 1628 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { 1629 pgoff = addr >> PAGE_SHIFT; 1630 faulted_in_anon_vma = false; 1631 } 1632 1633 new_vma = find_vma_prev(mm, addr, &vmg.prev); 1634 if (new_vma && new_vma->vm_start < addr + len) 1635 return NULL; /* should never get here */ 1636 1637 vmg.vma = NULL; /* New VMA range. */ 1638 vmg.pgoff = pgoff; 1639 vmg.next = vma_iter_next_rewind(&vmi, NULL); 1640 new_vma = vma_merge_new_range(&vmg); 1641 1642 if (new_vma) { 1643 /* 1644 * Source vma may have been merged into new_vma 1645 */ 1646 if (unlikely(vma_start >= new_vma->vm_start && 1647 vma_start < new_vma->vm_end)) { 1648 /* 1649 * The only way we can get a vma_merge with 1650 * self during an mremap is if the vma hasn't 1651 * been faulted in yet and we were allowed to 1652 * reset the dst vma->vm_pgoff to the 1653 * destination address of the mremap to allow 1654 * the merge to happen. mremap must change the 1655 * vm_pgoff linearity between src and dst vmas 1656 * (in turn preventing a vma_merge) to be 1657 * safe. It is only safe to keep the vm_pgoff 1658 * linear if there are no pages mapped yet. 1659 */ 1660 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); 1661 *vmap = vma = new_vma; 1662 } 1663 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); 1664 } else { 1665 new_vma = vm_area_dup(vma); 1666 if (!new_vma) 1667 goto out; 1668 vma_set_range(new_vma, addr, addr + len, pgoff); 1669 if (vma_dup_policy(vma, new_vma)) 1670 goto out_free_vma; 1671 if (anon_vma_clone(new_vma, vma)) 1672 goto out_free_mempol; 1673 if (new_vma->vm_file) 1674 get_file(new_vma->vm_file); 1675 if (new_vma->vm_ops && new_vma->vm_ops->open) 1676 new_vma->vm_ops->open(new_vma); 1677 if (vma_link(mm, new_vma)) 1678 goto out_vma_link; 1679 *need_rmap_locks = false; 1680 } 1681 return new_vma; 1682 1683 out_vma_link: 1684 vma_close(new_vma); 1685 1686 if (new_vma->vm_file) 1687 fput(new_vma->vm_file); 1688 1689 unlink_anon_vmas(new_vma); 1690 out_free_mempol: 1691 mpol_put(vma_policy(new_vma)); 1692 out_free_vma: 1693 vm_area_free(new_vma); 1694 out: 1695 return NULL; 1696 } 1697 1698 /* 1699 * Rough compatibility check to quickly see if it's even worth looking 1700 * at sharing an anon_vma. 1701 * 1702 * They need to have the same vm_file, and the flags can only differ 1703 * in things that mprotect may change. 1704 * 1705 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that 1706 * we can merge the two vma's. For example, we refuse to merge a vma if 1707 * there is a vm_ops->close() function, because that indicates that the 1708 * driver is doing some kind of reference counting. But that doesn't 1709 * really matter for the anon_vma sharing case. 1710 */ 1711 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) 1712 { 1713 return a->vm_end == b->vm_start && 1714 mpol_equal(vma_policy(a), vma_policy(b)) && 1715 a->vm_file == b->vm_file && 1716 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && 1717 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); 1718 } 1719 1720 /* 1721 * Do some basic sanity checking to see if we can re-use the anon_vma 1722 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be 1723 * the same as 'old', the other will be the new one that is trying 1724 * to share the anon_vma. 1725 * 1726 * NOTE! This runs with mmap_lock held for reading, so it is possible that 1727 * the anon_vma of 'old' is concurrently in the process of being set up 1728 * by another page fault trying to merge _that_. But that's ok: if it 1729 * is being set up, that automatically means that it will be a singleton 1730 * acceptable for merging, so we can do all of this optimistically. But 1731 * we do that READ_ONCE() to make sure that we never re-load the pointer. 1732 * 1733 * IOW: that the "list_is_singular()" test on the anon_vma_chain only 1734 * matters for the 'stable anon_vma' case (ie the thing we want to avoid 1735 * is to return an anon_vma that is "complex" due to having gone through 1736 * a fork). 1737 * 1738 * We also make sure that the two vma's are compatible (adjacent, 1739 * and with the same memory policies). That's all stable, even with just 1740 * a read lock on the mmap_lock. 1741 */ 1742 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, 1743 struct vm_area_struct *a, 1744 struct vm_area_struct *b) 1745 { 1746 if (anon_vma_compatible(a, b)) { 1747 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); 1748 1749 if (anon_vma && list_is_singular(&old->anon_vma_chain)) 1750 return anon_vma; 1751 } 1752 return NULL; 1753 } 1754 1755 /* 1756 * find_mergeable_anon_vma is used by anon_vma_prepare, to check 1757 * neighbouring vmas for a suitable anon_vma, before it goes off 1758 * to allocate a new anon_vma. It checks because a repetitive 1759 * sequence of mprotects and faults may otherwise lead to distinct 1760 * anon_vmas being allocated, preventing vma merge in subsequent 1761 * mprotect. 1762 */ 1763 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) 1764 { 1765 struct anon_vma *anon_vma = NULL; 1766 struct vm_area_struct *prev, *next; 1767 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); 1768 1769 /* Try next first. */ 1770 next = vma_iter_load(&vmi); 1771 if (next) { 1772 anon_vma = reusable_anon_vma(next, vma, next); 1773 if (anon_vma) 1774 return anon_vma; 1775 } 1776 1777 prev = vma_prev(&vmi); 1778 VM_BUG_ON_VMA(prev != vma, vma); 1779 prev = vma_prev(&vmi); 1780 /* Try prev next. */ 1781 if (prev) 1782 anon_vma = reusable_anon_vma(prev, prev, vma); 1783 1784 /* 1785 * We might reach here with anon_vma == NULL if we can't find 1786 * any reusable anon_vma. 1787 * There's no absolute need to look only at touching neighbours: 1788 * we could search further afield for "compatible" anon_vmas. 1789 * But it would probably just be a waste of time searching, 1790 * or lead to too many vmas hanging off the same anon_vma. 1791 * We're trying to allow mprotect remerging later on, 1792 * not trying to minimize memory used for anon_vmas. 1793 */ 1794 return anon_vma; 1795 } 1796 1797 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) 1798 { 1799 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); 1800 } 1801 1802 static bool vma_is_shared_writable(struct vm_area_struct *vma) 1803 { 1804 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == 1805 (VM_WRITE | VM_SHARED); 1806 } 1807 1808 static bool vma_fs_can_writeback(struct vm_area_struct *vma) 1809 { 1810 /* No managed pages to writeback. */ 1811 if (vma->vm_flags & VM_PFNMAP) 1812 return false; 1813 1814 return vma->vm_file && vma->vm_file->f_mapping && 1815 mapping_can_writeback(vma->vm_file->f_mapping); 1816 } 1817 1818 /* 1819 * Does this VMA require the underlying folios to have their dirty state 1820 * tracked? 1821 */ 1822 bool vma_needs_dirty_tracking(struct vm_area_struct *vma) 1823 { 1824 /* Only shared, writable VMAs require dirty tracking. */ 1825 if (!vma_is_shared_writable(vma)) 1826 return false; 1827 1828 /* Does the filesystem need to be notified? */ 1829 if (vm_ops_needs_writenotify(vma->vm_ops)) 1830 return true; 1831 1832 /* 1833 * Even if the filesystem doesn't indicate a need for writenotify, if it 1834 * can writeback, dirty tracking is still required. 1835 */ 1836 return vma_fs_can_writeback(vma); 1837 } 1838 1839 /* 1840 * Some shared mappings will want the pages marked read-only 1841 * to track write events. If so, we'll downgrade vm_page_prot 1842 * to the private version (using protection_map[] without the 1843 * VM_SHARED bit). 1844 */ 1845 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) 1846 { 1847 /* If it was private or non-writable, the write bit is already clear */ 1848 if (!vma_is_shared_writable(vma)) 1849 return false; 1850 1851 /* The backer wishes to know when pages are first written to? */ 1852 if (vm_ops_needs_writenotify(vma->vm_ops)) 1853 return true; 1854 1855 /* The open routine did something to the protections that pgprot_modify 1856 * won't preserve? */ 1857 if (pgprot_val(vm_page_prot) != 1858 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) 1859 return false; 1860 1861 /* 1862 * Do we need to track softdirty? hugetlb does not support softdirty 1863 * tracking yet. 1864 */ 1865 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) 1866 return true; 1867 1868 /* Do we need write faults for uffd-wp tracking? */ 1869 if (userfaultfd_wp(vma)) 1870 return true; 1871 1872 /* Can the mapping track the dirty pages? */ 1873 return vma_fs_can_writeback(vma); 1874 } 1875 1876 static DEFINE_MUTEX(mm_all_locks_mutex); 1877 1878 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) 1879 { 1880 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 1881 /* 1882 * The LSB of head.next can't change from under us 1883 * because we hold the mm_all_locks_mutex. 1884 */ 1885 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); 1886 /* 1887 * We can safely modify head.next after taking the 1888 * anon_vma->root->rwsem. If some other vma in this mm shares 1889 * the same anon_vma we won't take it again. 1890 * 1891 * No need of atomic instructions here, head.next 1892 * can't change from under us thanks to the 1893 * anon_vma->root->rwsem. 1894 */ 1895 if (__test_and_set_bit(0, (unsigned long *) 1896 &anon_vma->root->rb_root.rb_root.rb_node)) 1897 BUG(); 1898 } 1899 } 1900 1901 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) 1902 { 1903 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 1904 /* 1905 * AS_MM_ALL_LOCKS can't change from under us because 1906 * we hold the mm_all_locks_mutex. 1907 * 1908 * Operations on ->flags have to be atomic because 1909 * even if AS_MM_ALL_LOCKS is stable thanks to the 1910 * mm_all_locks_mutex, there may be other cpus 1911 * changing other bitflags in parallel to us. 1912 */ 1913 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) 1914 BUG(); 1915 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); 1916 } 1917 } 1918 1919 /* 1920 * This operation locks against the VM for all pte/vma/mm related 1921 * operations that could ever happen on a certain mm. This includes 1922 * vmtruncate, try_to_unmap, and all page faults. 1923 * 1924 * The caller must take the mmap_lock in write mode before calling 1925 * mm_take_all_locks(). The caller isn't allowed to release the 1926 * mmap_lock until mm_drop_all_locks() returns. 1927 * 1928 * mmap_lock in write mode is required in order to block all operations 1929 * that could modify pagetables and free pages without need of 1930 * altering the vma layout. It's also needed in write mode to avoid new 1931 * anon_vmas to be associated with existing vmas. 1932 * 1933 * A single task can't take more than one mm_take_all_locks() in a row 1934 * or it would deadlock. 1935 * 1936 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in 1937 * mapping->flags avoid to take the same lock twice, if more than one 1938 * vma in this mm is backed by the same anon_vma or address_space. 1939 * 1940 * We take locks in following order, accordingly to comment at beginning 1941 * of mm/rmap.c: 1942 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for 1943 * hugetlb mapping); 1944 * - all vmas marked locked 1945 * - all i_mmap_rwsem locks; 1946 * - all anon_vma->rwseml 1947 * 1948 * We can take all locks within these types randomly because the VM code 1949 * doesn't nest them and we protected from parallel mm_take_all_locks() by 1950 * mm_all_locks_mutex. 1951 * 1952 * mm_take_all_locks() and mm_drop_all_locks are expensive operations 1953 * that may have to take thousand of locks. 1954 * 1955 * mm_take_all_locks() can fail if it's interrupted by signals. 1956 */ 1957 int mm_take_all_locks(struct mm_struct *mm) 1958 { 1959 struct vm_area_struct *vma; 1960 struct anon_vma_chain *avc; 1961 VMA_ITERATOR(vmi, mm, 0); 1962 1963 mmap_assert_write_locked(mm); 1964 1965 mutex_lock(&mm_all_locks_mutex); 1966 1967 /* 1968 * vma_start_write() does not have a complement in mm_drop_all_locks() 1969 * because vma_start_write() is always asymmetrical; it marks a VMA as 1970 * being written to until mmap_write_unlock() or mmap_write_downgrade() 1971 * is reached. 1972 */ 1973 for_each_vma(vmi, vma) { 1974 if (signal_pending(current)) 1975 goto out_unlock; 1976 vma_start_write(vma); 1977 } 1978 1979 vma_iter_init(&vmi, mm, 0); 1980 for_each_vma(vmi, vma) { 1981 if (signal_pending(current)) 1982 goto out_unlock; 1983 if (vma->vm_file && vma->vm_file->f_mapping && 1984 is_vm_hugetlb_page(vma)) 1985 vm_lock_mapping(mm, vma->vm_file->f_mapping); 1986 } 1987 1988 vma_iter_init(&vmi, mm, 0); 1989 for_each_vma(vmi, vma) { 1990 if (signal_pending(current)) 1991 goto out_unlock; 1992 if (vma->vm_file && vma->vm_file->f_mapping && 1993 !is_vm_hugetlb_page(vma)) 1994 vm_lock_mapping(mm, vma->vm_file->f_mapping); 1995 } 1996 1997 vma_iter_init(&vmi, mm, 0); 1998 for_each_vma(vmi, vma) { 1999 if (signal_pending(current)) 2000 goto out_unlock; 2001 if (vma->anon_vma) 2002 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2003 vm_lock_anon_vma(mm, avc->anon_vma); 2004 } 2005 2006 return 0; 2007 2008 out_unlock: 2009 mm_drop_all_locks(mm); 2010 return -EINTR; 2011 } 2012 2013 static void vm_unlock_anon_vma(struct anon_vma *anon_vma) 2014 { 2015 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { 2016 /* 2017 * The LSB of head.next can't change to 0 from under 2018 * us because we hold the mm_all_locks_mutex. 2019 * 2020 * We must however clear the bitflag before unlocking 2021 * the vma so the users using the anon_vma->rb_root will 2022 * never see our bitflag. 2023 * 2024 * No need of atomic instructions here, head.next 2025 * can't change from under us until we release the 2026 * anon_vma->root->rwsem. 2027 */ 2028 if (!__test_and_clear_bit(0, (unsigned long *) 2029 &anon_vma->root->rb_root.rb_root.rb_node)) 2030 BUG(); 2031 anon_vma_unlock_write(anon_vma); 2032 } 2033 } 2034 2035 static void vm_unlock_mapping(struct address_space *mapping) 2036 { 2037 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { 2038 /* 2039 * AS_MM_ALL_LOCKS can't change to 0 from under us 2040 * because we hold the mm_all_locks_mutex. 2041 */ 2042 i_mmap_unlock_write(mapping); 2043 if (!test_and_clear_bit(AS_MM_ALL_LOCKS, 2044 &mapping->flags)) 2045 BUG(); 2046 } 2047 } 2048 2049 /* 2050 * The mmap_lock cannot be released by the caller until 2051 * mm_drop_all_locks() returns. 2052 */ 2053 void mm_drop_all_locks(struct mm_struct *mm) 2054 { 2055 struct vm_area_struct *vma; 2056 struct anon_vma_chain *avc; 2057 VMA_ITERATOR(vmi, mm, 0); 2058 2059 mmap_assert_write_locked(mm); 2060 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); 2061 2062 for_each_vma(vmi, vma) { 2063 if (vma->anon_vma) 2064 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) 2065 vm_unlock_anon_vma(avc->anon_vma); 2066 if (vma->vm_file && vma->vm_file->f_mapping) 2067 vm_unlock_mapping(vma->vm_file->f_mapping); 2068 } 2069 2070 mutex_unlock(&mm_all_locks_mutex); 2071 } 2072
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.