~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/vmalloc.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  Copyright (C) 1993  Linus Torvalds
  4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  7  *  Numa awareness, Christoph Lameter, SGI, June 2005
  8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
  9  */
 10 
 11 #include <linux/vmalloc.h>
 12 #include <linux/mm.h>
 13 #include <linux/module.h>
 14 #include <linux/highmem.h>
 15 #include <linux/sched/signal.h>
 16 #include <linux/slab.h>
 17 #include <linux/spinlock.h>
 18 #include <linux/interrupt.h>
 19 #include <linux/proc_fs.h>
 20 #include <linux/seq_file.h>
 21 #include <linux/set_memory.h>
 22 #include <linux/debugobjects.h>
 23 #include <linux/kallsyms.h>
 24 #include <linux/list.h>
 25 #include <linux/notifier.h>
 26 #include <linux/rbtree.h>
 27 #include <linux/xarray.h>
 28 #include <linux/io.h>
 29 #include <linux/rcupdate.h>
 30 #include <linux/pfn.h>
 31 #include <linux/kmemleak.h>
 32 #include <linux/atomic.h>
 33 #include <linux/compiler.h>
 34 #include <linux/memcontrol.h>
 35 #include <linux/llist.h>
 36 #include <linux/uio.h>
 37 #include <linux/bitops.h>
 38 #include <linux/rbtree_augmented.h>
 39 #include <linux/overflow.h>
 40 #include <linux/pgtable.h>
 41 #include <linux/hugetlb.h>
 42 #include <linux/sched/mm.h>
 43 #include <asm/tlbflush.h>
 44 #include <asm/shmparam.h>
 45 #include <linux/page_owner.h>
 46 
 47 #define CREATE_TRACE_POINTS
 48 #include <trace/events/vmalloc.h>
 49 
 50 #include "internal.h"
 51 #include "pgalloc-track.h"
 52 
 53 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
 54 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
 55 
 56 static int __init set_nohugeiomap(char *str)
 57 {
 58         ioremap_max_page_shift = PAGE_SHIFT;
 59         return 0;
 60 }
 61 early_param("nohugeiomap", set_nohugeiomap);
 62 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
 63 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
 64 #endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
 65 
 66 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
 67 static bool __ro_after_init vmap_allow_huge = true;
 68 
 69 static int __init set_nohugevmalloc(char *str)
 70 {
 71         vmap_allow_huge = false;
 72         return 0;
 73 }
 74 early_param("nohugevmalloc", set_nohugevmalloc);
 75 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
 76 static const bool vmap_allow_huge = false;
 77 #endif  /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
 78 
 79 bool is_vmalloc_addr(const void *x)
 80 {
 81         unsigned long addr = (unsigned long)kasan_reset_tag(x);
 82 
 83         return addr >= VMALLOC_START && addr < VMALLOC_END;
 84 }
 85 EXPORT_SYMBOL(is_vmalloc_addr);
 86 
 87 struct vfree_deferred {
 88         struct llist_head list;
 89         struct work_struct wq;
 90 };
 91 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
 92 
 93 /*** Page table manipulation functions ***/
 94 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 95                         phys_addr_t phys_addr, pgprot_t prot,
 96                         unsigned int max_page_shift, pgtbl_mod_mask *mask)
 97 {
 98         pte_t *pte;
 99         u64 pfn;
100         struct page *page;
101         unsigned long size = PAGE_SIZE;
102 
103         pfn = phys_addr >> PAGE_SHIFT;
104         pte = pte_alloc_kernel_track(pmd, addr, mask);
105         if (!pte)
106                 return -ENOMEM;
107         do {
108                 if (!pte_none(ptep_get(pte))) {
109                         if (pfn_valid(pfn)) {
110                                 page = pfn_to_page(pfn);
111                                 dump_page(page, "remapping already mapped page");
112                         }
113                         BUG();
114                 }
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117                 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118                 if (size != PAGE_SIZE) {
119                         pte_t entry = pfn_pte(pfn, prot);
120 
121                         entry = arch_make_huge_pte(entry, ilog2(size), 0);
122                         set_huge_pte_at(&init_mm, addr, pte, entry, size);
123                         pfn += PFN_DOWN(size);
124                         continue;
125                 }
126 #endif
127                 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128                 pfn++;
129         } while (pte += PFN_DOWN(size), addr += size, addr != end);
130         *mask |= PGTBL_PTE_MODIFIED;
131         return 0;
132 }
133 
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135                         phys_addr_t phys_addr, pgprot_t prot,
136                         unsigned int max_page_shift)
137 {
138         if (max_page_shift < PMD_SHIFT)
139                 return 0;
140 
141         if (!arch_vmap_pmd_supported(prot))
142                 return 0;
143 
144         if ((end - addr) != PMD_SIZE)
145                 return 0;
146 
147         if (!IS_ALIGNED(addr, PMD_SIZE))
148                 return 0;
149 
150         if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151                 return 0;
152 
153         if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154                 return 0;
155 
156         return pmd_set_huge(pmd, phys_addr, prot);
157 }
158 
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160                         phys_addr_t phys_addr, pgprot_t prot,
161                         unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163         pmd_t *pmd;
164         unsigned long next;
165 
166         pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167         if (!pmd)
168                 return -ENOMEM;
169         do {
170                 next = pmd_addr_end(addr, end);
171 
172                 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173                                         max_page_shift)) {
174                         *mask |= PGTBL_PMD_MODIFIED;
175                         continue;
176                 }
177 
178                 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179                         return -ENOMEM;
180         } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181         return 0;
182 }
183 
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185                         phys_addr_t phys_addr, pgprot_t prot,
186                         unsigned int max_page_shift)
187 {
188         if (max_page_shift < PUD_SHIFT)
189                 return 0;
190 
191         if (!arch_vmap_pud_supported(prot))
192                 return 0;
193 
194         if ((end - addr) != PUD_SIZE)
195                 return 0;
196 
197         if (!IS_ALIGNED(addr, PUD_SIZE))
198                 return 0;
199 
200         if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201                 return 0;
202 
203         if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204                 return 0;
205 
206         return pud_set_huge(pud, phys_addr, prot);
207 }
208 
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210                         phys_addr_t phys_addr, pgprot_t prot,
211                         unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213         pud_t *pud;
214         unsigned long next;
215 
216         pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217         if (!pud)
218                 return -ENOMEM;
219         do {
220                 next = pud_addr_end(addr, end);
221 
222                 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223                                         max_page_shift)) {
224                         *mask |= PGTBL_PUD_MODIFIED;
225                         continue;
226                 }
227 
228                 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229                                         max_page_shift, mask))
230                         return -ENOMEM;
231         } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232         return 0;
233 }
234 
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236                         phys_addr_t phys_addr, pgprot_t prot,
237                         unsigned int max_page_shift)
238 {
239         if (max_page_shift < P4D_SHIFT)
240                 return 0;
241 
242         if (!arch_vmap_p4d_supported(prot))
243                 return 0;
244 
245         if ((end - addr) != P4D_SIZE)
246                 return 0;
247 
248         if (!IS_ALIGNED(addr, P4D_SIZE))
249                 return 0;
250 
251         if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252                 return 0;
253 
254         if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255                 return 0;
256 
257         return p4d_set_huge(p4d, phys_addr, prot);
258 }
259 
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261                         phys_addr_t phys_addr, pgprot_t prot,
262                         unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264         p4d_t *p4d;
265         unsigned long next;
266 
267         p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268         if (!p4d)
269                 return -ENOMEM;
270         do {
271                 next = p4d_addr_end(addr, end);
272 
273                 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274                                         max_page_shift)) {
275                         *mask |= PGTBL_P4D_MODIFIED;
276                         continue;
277                 }
278 
279                 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280                                         max_page_shift, mask))
281                         return -ENOMEM;
282         } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283         return 0;
284 }
285 
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287                         phys_addr_t phys_addr, pgprot_t prot,
288                         unsigned int max_page_shift)
289 {
290         pgd_t *pgd;
291         unsigned long start;
292         unsigned long next;
293         int err;
294         pgtbl_mod_mask mask = 0;
295 
296         might_sleep();
297         BUG_ON(addr >= end);
298 
299         start = addr;
300         pgd = pgd_offset_k(addr);
301         do {
302                 next = pgd_addr_end(addr, end);
303                 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304                                         max_page_shift, &mask);
305                 if (err)
306                         break;
307         } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 
309         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310                 arch_sync_kernel_mappings(start, end);
311 
312         return err;
313 }
314 
315 int vmap_page_range(unsigned long addr, unsigned long end,
316                     phys_addr_t phys_addr, pgprot_t prot)
317 {
318         int err;
319 
320         err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321                                  ioremap_max_page_shift);
322         flush_cache_vmap(addr, end);
323         if (!err)
324                 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
325                                                ioremap_max_page_shift);
326         return err;
327 }
328 
329 int ioremap_page_range(unsigned long addr, unsigned long end,
330                 phys_addr_t phys_addr, pgprot_t prot)
331 {
332         struct vm_struct *area;
333 
334         area = find_vm_area((void *)addr);
335         if (!area || !(area->flags & VM_IOREMAP)) {
336                 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
337                 return -EINVAL;
338         }
339         if (addr != (unsigned long)area->addr ||
340             (void *)end != area->addr + get_vm_area_size(area)) {
341                 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
342                           addr, end, (long)area->addr,
343                           (long)area->addr + get_vm_area_size(area));
344                 return -ERANGE;
345         }
346         return vmap_page_range(addr, end, phys_addr, prot);
347 }
348 
349 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
350                              pgtbl_mod_mask *mask)
351 {
352         pte_t *pte;
353 
354         pte = pte_offset_kernel(pmd, addr);
355         do {
356                 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
357                 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
358         } while (pte++, addr += PAGE_SIZE, addr != end);
359         *mask |= PGTBL_PTE_MODIFIED;
360 }
361 
362 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
363                              pgtbl_mod_mask *mask)
364 {
365         pmd_t *pmd;
366         unsigned long next;
367         int cleared;
368 
369         pmd = pmd_offset(pud, addr);
370         do {
371                 next = pmd_addr_end(addr, end);
372 
373                 cleared = pmd_clear_huge(pmd);
374                 if (cleared || pmd_bad(*pmd))
375                         *mask |= PGTBL_PMD_MODIFIED;
376 
377                 if (cleared)
378                         continue;
379                 if (pmd_none_or_clear_bad(pmd))
380                         continue;
381                 vunmap_pte_range(pmd, addr, next, mask);
382 
383                 cond_resched();
384         } while (pmd++, addr = next, addr != end);
385 }
386 
387 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
388                              pgtbl_mod_mask *mask)
389 {
390         pud_t *pud;
391         unsigned long next;
392         int cleared;
393 
394         pud = pud_offset(p4d, addr);
395         do {
396                 next = pud_addr_end(addr, end);
397 
398                 cleared = pud_clear_huge(pud);
399                 if (cleared || pud_bad(*pud))
400                         *mask |= PGTBL_PUD_MODIFIED;
401 
402                 if (cleared)
403                         continue;
404                 if (pud_none_or_clear_bad(pud))
405                         continue;
406                 vunmap_pmd_range(pud, addr, next, mask);
407         } while (pud++, addr = next, addr != end);
408 }
409 
410 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
411                              pgtbl_mod_mask *mask)
412 {
413         p4d_t *p4d;
414         unsigned long next;
415 
416         p4d = p4d_offset(pgd, addr);
417         do {
418                 next = p4d_addr_end(addr, end);
419 
420                 p4d_clear_huge(p4d);
421                 if (p4d_bad(*p4d))
422                         *mask |= PGTBL_P4D_MODIFIED;
423 
424                 if (p4d_none_or_clear_bad(p4d))
425                         continue;
426                 vunmap_pud_range(p4d, addr, next, mask);
427         } while (p4d++, addr = next, addr != end);
428 }
429 
430 /*
431  * vunmap_range_noflush is similar to vunmap_range, but does not
432  * flush caches or TLBs.
433  *
434  * The caller is responsible for calling flush_cache_vmap() before calling
435  * this function, and flush_tlb_kernel_range after it has returned
436  * successfully (and before the addresses are expected to cause a page fault
437  * or be re-mapped for something else, if TLB flushes are being delayed or
438  * coalesced).
439  *
440  * This is an internal function only. Do not use outside mm/.
441  */
442 void __vunmap_range_noflush(unsigned long start, unsigned long end)
443 {
444         unsigned long next;
445         pgd_t *pgd;
446         unsigned long addr = start;
447         pgtbl_mod_mask mask = 0;
448 
449         BUG_ON(addr >= end);
450         pgd = pgd_offset_k(addr);
451         do {
452                 next = pgd_addr_end(addr, end);
453                 if (pgd_bad(*pgd))
454                         mask |= PGTBL_PGD_MODIFIED;
455                 if (pgd_none_or_clear_bad(pgd))
456                         continue;
457                 vunmap_p4d_range(pgd, addr, next, &mask);
458         } while (pgd++, addr = next, addr != end);
459 
460         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
461                 arch_sync_kernel_mappings(start, end);
462 }
463 
464 void vunmap_range_noflush(unsigned long start, unsigned long end)
465 {
466         kmsan_vunmap_range_noflush(start, end);
467         __vunmap_range_noflush(start, end);
468 }
469 
470 /**
471  * vunmap_range - unmap kernel virtual addresses
472  * @addr: start of the VM area to unmap
473  * @end: end of the VM area to unmap (non-inclusive)
474  *
475  * Clears any present PTEs in the virtual address range, flushes TLBs and
476  * caches. Any subsequent access to the address before it has been re-mapped
477  * is a kernel bug.
478  */
479 void vunmap_range(unsigned long addr, unsigned long end)
480 {
481         flush_cache_vunmap(addr, end);
482         vunmap_range_noflush(addr, end);
483         flush_tlb_kernel_range(addr, end);
484 }
485 
486 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
487                 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
488                 pgtbl_mod_mask *mask)
489 {
490         pte_t *pte;
491 
492         /*
493          * nr is a running index into the array which helps higher level
494          * callers keep track of where we're up to.
495          */
496 
497         pte = pte_alloc_kernel_track(pmd, addr, mask);
498         if (!pte)
499                 return -ENOMEM;
500         do {
501                 struct page *page = pages[*nr];
502 
503                 if (WARN_ON(!pte_none(ptep_get(pte))))
504                         return -EBUSY;
505                 if (WARN_ON(!page))
506                         return -ENOMEM;
507                 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
508                         return -EINVAL;
509 
510                 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
511                 (*nr)++;
512         } while (pte++, addr += PAGE_SIZE, addr != end);
513         *mask |= PGTBL_PTE_MODIFIED;
514         return 0;
515 }
516 
517 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
518                 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
519                 pgtbl_mod_mask *mask)
520 {
521         pmd_t *pmd;
522         unsigned long next;
523 
524         pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
525         if (!pmd)
526                 return -ENOMEM;
527         do {
528                 next = pmd_addr_end(addr, end);
529                 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
530                         return -ENOMEM;
531         } while (pmd++, addr = next, addr != end);
532         return 0;
533 }
534 
535 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
536                 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
537                 pgtbl_mod_mask *mask)
538 {
539         pud_t *pud;
540         unsigned long next;
541 
542         pud = pud_alloc_track(&init_mm, p4d, addr, mask);
543         if (!pud)
544                 return -ENOMEM;
545         do {
546                 next = pud_addr_end(addr, end);
547                 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
548                         return -ENOMEM;
549         } while (pud++, addr = next, addr != end);
550         return 0;
551 }
552 
553 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
554                 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
555                 pgtbl_mod_mask *mask)
556 {
557         p4d_t *p4d;
558         unsigned long next;
559 
560         p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
561         if (!p4d)
562                 return -ENOMEM;
563         do {
564                 next = p4d_addr_end(addr, end);
565                 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
566                         return -ENOMEM;
567         } while (p4d++, addr = next, addr != end);
568         return 0;
569 }
570 
571 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
572                 pgprot_t prot, struct page **pages)
573 {
574         unsigned long start = addr;
575         pgd_t *pgd;
576         unsigned long next;
577         int err = 0;
578         int nr = 0;
579         pgtbl_mod_mask mask = 0;
580 
581         BUG_ON(addr >= end);
582         pgd = pgd_offset_k(addr);
583         do {
584                 next = pgd_addr_end(addr, end);
585                 if (pgd_bad(*pgd))
586                         mask |= PGTBL_PGD_MODIFIED;
587                 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
588                 if (err)
589                         return err;
590         } while (pgd++, addr = next, addr != end);
591 
592         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
593                 arch_sync_kernel_mappings(start, end);
594 
595         return 0;
596 }
597 
598 /*
599  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
600  * flush caches.
601  *
602  * The caller is responsible for calling flush_cache_vmap() after this
603  * function returns successfully and before the addresses are accessed.
604  *
605  * This is an internal function only. Do not use outside mm/.
606  */
607 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
608                 pgprot_t prot, struct page **pages, unsigned int page_shift)
609 {
610         unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
611 
612         WARN_ON(page_shift < PAGE_SHIFT);
613 
614         if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
615                         page_shift == PAGE_SHIFT)
616                 return vmap_small_pages_range_noflush(addr, end, prot, pages);
617 
618         for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
619                 int err;
620 
621                 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
622                                         page_to_phys(pages[i]), prot,
623                                         page_shift);
624                 if (err)
625                         return err;
626 
627                 addr += 1UL << page_shift;
628         }
629 
630         return 0;
631 }
632 
633 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
634                 pgprot_t prot, struct page **pages, unsigned int page_shift)
635 {
636         int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
637                                                  page_shift);
638 
639         if (ret)
640                 return ret;
641         return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
642 }
643 
644 /**
645  * vmap_pages_range - map pages to a kernel virtual address
646  * @addr: start of the VM area to map
647  * @end: end of the VM area to map (non-inclusive)
648  * @prot: page protection flags to use
649  * @pages: pages to map (always PAGE_SIZE pages)
650  * @page_shift: maximum shift that the pages may be mapped with, @pages must
651  * be aligned and contiguous up to at least this shift.
652  *
653  * RETURNS:
654  * 0 on success, -errno on failure.
655  */
656 static int vmap_pages_range(unsigned long addr, unsigned long end,
657                 pgprot_t prot, struct page **pages, unsigned int page_shift)
658 {
659         int err;
660 
661         err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
662         flush_cache_vmap(addr, end);
663         return err;
664 }
665 
666 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
667                                 unsigned long end)
668 {
669         might_sleep();
670         if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
671                 return -EINVAL;
672         if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
673                 return -EINVAL;
674         if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
675                 return -EINVAL;
676         if ((end - start) >> PAGE_SHIFT > totalram_pages())
677                 return -E2BIG;
678         if (start < (unsigned long)area->addr ||
679             (void *)end > area->addr + get_vm_area_size(area))
680                 return -ERANGE;
681         return 0;
682 }
683 
684 /**
685  * vm_area_map_pages - map pages inside given sparse vm_area
686  * @area: vm_area
687  * @start: start address inside vm_area
688  * @end: end address inside vm_area
689  * @pages: pages to map (always PAGE_SIZE pages)
690  */
691 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
692                       unsigned long end, struct page **pages)
693 {
694         int err;
695 
696         err = check_sparse_vm_area(area, start, end);
697         if (err)
698                 return err;
699 
700         return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
701 }
702 
703 /**
704  * vm_area_unmap_pages - unmap pages inside given sparse vm_area
705  * @area: vm_area
706  * @start: start address inside vm_area
707  * @end: end address inside vm_area
708  */
709 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
710                          unsigned long end)
711 {
712         if (check_sparse_vm_area(area, start, end))
713                 return;
714 
715         vunmap_range(start, end);
716 }
717 
718 int is_vmalloc_or_module_addr(const void *x)
719 {
720         /*
721          * ARM, x86-64 and sparc64 put modules in a special place,
722          * and fall back on vmalloc() if that fails. Others
723          * just put it in the vmalloc space.
724          */
725 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
726         unsigned long addr = (unsigned long)kasan_reset_tag(x);
727         if (addr >= MODULES_VADDR && addr < MODULES_END)
728                 return 1;
729 #endif
730         return is_vmalloc_addr(x);
731 }
732 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
733 
734 /*
735  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
736  * return the tail page that corresponds to the base page address, which
737  * matches small vmap mappings.
738  */
739 struct page *vmalloc_to_page(const void *vmalloc_addr)
740 {
741         unsigned long addr = (unsigned long) vmalloc_addr;
742         struct page *page = NULL;
743         pgd_t *pgd = pgd_offset_k(addr);
744         p4d_t *p4d;
745         pud_t *pud;
746         pmd_t *pmd;
747         pte_t *ptep, pte;
748 
749         /*
750          * XXX we might need to change this if we add VIRTUAL_BUG_ON for
751          * architectures that do not vmalloc module space
752          */
753         VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
754 
755         if (pgd_none(*pgd))
756                 return NULL;
757         if (WARN_ON_ONCE(pgd_leaf(*pgd)))
758                 return NULL; /* XXX: no allowance for huge pgd */
759         if (WARN_ON_ONCE(pgd_bad(*pgd)))
760                 return NULL;
761 
762         p4d = p4d_offset(pgd, addr);
763         if (p4d_none(*p4d))
764                 return NULL;
765         if (p4d_leaf(*p4d))
766                 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
767         if (WARN_ON_ONCE(p4d_bad(*p4d)))
768                 return NULL;
769 
770         pud = pud_offset(p4d, addr);
771         if (pud_none(*pud))
772                 return NULL;
773         if (pud_leaf(*pud))
774                 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
775         if (WARN_ON_ONCE(pud_bad(*pud)))
776                 return NULL;
777 
778         pmd = pmd_offset(pud, addr);
779         if (pmd_none(*pmd))
780                 return NULL;
781         if (pmd_leaf(*pmd))
782                 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
783         if (WARN_ON_ONCE(pmd_bad(*pmd)))
784                 return NULL;
785 
786         ptep = pte_offset_kernel(pmd, addr);
787         pte = ptep_get(ptep);
788         if (pte_present(pte))
789                 page = pte_page(pte);
790 
791         return page;
792 }
793 EXPORT_SYMBOL(vmalloc_to_page);
794 
795 /*
796  * Map a vmalloc()-space virtual address to the physical page frame number.
797  */
798 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
799 {
800         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
801 }
802 EXPORT_SYMBOL(vmalloc_to_pfn);
803 
804 
805 /*** Global kva allocator ***/
806 
807 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
808 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
809 
810 
811 static DEFINE_SPINLOCK(free_vmap_area_lock);
812 static bool vmap_initialized __read_mostly;
813 
814 /*
815  * This kmem_cache is used for vmap_area objects. Instead of
816  * allocating from slab we reuse an object from this cache to
817  * make things faster. Especially in "no edge" splitting of
818  * free block.
819  */
820 static struct kmem_cache *vmap_area_cachep;
821 
822 /*
823  * This linked list is used in pair with free_vmap_area_root.
824  * It gives O(1) access to prev/next to perform fast coalescing.
825  */
826 static LIST_HEAD(free_vmap_area_list);
827 
828 /*
829  * This augment red-black tree represents the free vmap space.
830  * All vmap_area objects in this tree are sorted by va->va_start
831  * address. It is used for allocation and merging when a vmap
832  * object is released.
833  *
834  * Each vmap_area node contains a maximum available free block
835  * of its sub-tree, right or left. Therefore it is possible to
836  * find a lowest match of free area.
837  */
838 static struct rb_root free_vmap_area_root = RB_ROOT;
839 
840 /*
841  * Preload a CPU with one object for "no edge" split case. The
842  * aim is to get rid of allocations from the atomic context, thus
843  * to use more permissive allocation masks.
844  */
845 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
846 
847 /*
848  * This structure defines a single, solid model where a list and
849  * rb-tree are part of one entity protected by the lock. Nodes are
850  * sorted in ascending order, thus for O(1) access to left/right
851  * neighbors a list is used as well as for sequential traversal.
852  */
853 struct rb_list {
854         struct rb_root root;
855         struct list_head head;
856         spinlock_t lock;
857 };
858 
859 /*
860  * A fast size storage contains VAs up to 1M size. A pool consists
861  * of linked between each other ready to go VAs of certain sizes.
862  * An index in the pool-array corresponds to number of pages + 1.
863  */
864 #define MAX_VA_SIZE_PAGES 256
865 
866 struct vmap_pool {
867         struct list_head head;
868         unsigned long len;
869 };
870 
871 /*
872  * An effective vmap-node logic. Users make use of nodes instead
873  * of a global heap. It allows to balance an access and mitigate
874  * contention.
875  */
876 static struct vmap_node {
877         /* Simple size segregated storage. */
878         struct vmap_pool pool[MAX_VA_SIZE_PAGES];
879         spinlock_t pool_lock;
880         bool skip_populate;
881 
882         /* Bookkeeping data of this node. */
883         struct rb_list busy;
884         struct rb_list lazy;
885 
886         /*
887          * Ready-to-free areas.
888          */
889         struct list_head purge_list;
890         struct work_struct purge_work;
891         unsigned long nr_purged;
892 } single;
893 
894 /*
895  * Initial setup consists of one single node, i.e. a balancing
896  * is fully disabled. Later on, after vmap is initialized these
897  * parameters are updated based on a system capacity.
898  */
899 static struct vmap_node *vmap_nodes = &single;
900 static __read_mostly unsigned int nr_vmap_nodes = 1;
901 static __read_mostly unsigned int vmap_zone_size = 1;
902 
903 static inline unsigned int
904 addr_to_node_id(unsigned long addr)
905 {
906         return (addr / vmap_zone_size) % nr_vmap_nodes;
907 }
908 
909 static inline struct vmap_node *
910 addr_to_node(unsigned long addr)
911 {
912         return &vmap_nodes[addr_to_node_id(addr)];
913 }
914 
915 static inline struct vmap_node *
916 id_to_node(unsigned int id)
917 {
918         return &vmap_nodes[id % nr_vmap_nodes];
919 }
920 
921 /*
922  * We use the value 0 to represent "no node", that is why
923  * an encoded value will be the node-id incremented by 1.
924  * It is always greater then 0. A valid node_id which can
925  * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
926  * is not valid 0 is returned.
927  */
928 static unsigned int
929 encode_vn_id(unsigned int node_id)
930 {
931         /* Can store U8_MAX [0:254] nodes. */
932         if (node_id < nr_vmap_nodes)
933                 return (node_id + 1) << BITS_PER_BYTE;
934 
935         /* Warn and no node encoded. */
936         WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
937         return 0;
938 }
939 
940 /*
941  * Returns an encoded node-id, the valid range is within
942  * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
943  * returned if extracted data is wrong.
944  */
945 static unsigned int
946 decode_vn_id(unsigned int val)
947 {
948         unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
949 
950         /* Can store U8_MAX [0:254] nodes. */
951         if (node_id < nr_vmap_nodes)
952                 return node_id;
953 
954         /* If it was _not_ zero, warn. */
955         WARN_ONCE(node_id != UINT_MAX,
956                 "Decode wrong node id (%d)\n", node_id);
957 
958         return nr_vmap_nodes;
959 }
960 
961 static bool
962 is_vn_id_valid(unsigned int node_id)
963 {
964         if (node_id < nr_vmap_nodes)
965                 return true;
966 
967         return false;
968 }
969 
970 static __always_inline unsigned long
971 va_size(struct vmap_area *va)
972 {
973         return (va->va_end - va->va_start);
974 }
975 
976 static __always_inline unsigned long
977 get_subtree_max_size(struct rb_node *node)
978 {
979         struct vmap_area *va;
980 
981         va = rb_entry_safe(node, struct vmap_area, rb_node);
982         return va ? va->subtree_max_size : 0;
983 }
984 
985 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
986         struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
987 
988 static void reclaim_and_purge_vmap_areas(void);
989 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
990 static void drain_vmap_area_work(struct work_struct *work);
991 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
992 
993 static atomic_long_t nr_vmalloc_pages;
994 
995 unsigned long vmalloc_nr_pages(void)
996 {
997         return atomic_long_read(&nr_vmalloc_pages);
998 }
999 
1000 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1001 {
1002         struct rb_node *n = root->rb_node;
1003 
1004         addr = (unsigned long)kasan_reset_tag((void *)addr);
1005 
1006         while (n) {
1007                 struct vmap_area *va;
1008 
1009                 va = rb_entry(n, struct vmap_area, rb_node);
1010                 if (addr < va->va_start)
1011                         n = n->rb_left;
1012                 else if (addr >= va->va_end)
1013                         n = n->rb_right;
1014                 else
1015                         return va;
1016         }
1017 
1018         return NULL;
1019 }
1020 
1021 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1022 static struct vmap_area *
1023 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1024 {
1025         struct vmap_area *va = NULL;
1026         struct rb_node *n = root->rb_node;
1027 
1028         addr = (unsigned long)kasan_reset_tag((void *)addr);
1029 
1030         while (n) {
1031                 struct vmap_area *tmp;
1032 
1033                 tmp = rb_entry(n, struct vmap_area, rb_node);
1034                 if (tmp->va_end > addr) {
1035                         va = tmp;
1036                         if (tmp->va_start <= addr)
1037                                 break;
1038 
1039                         n = n->rb_left;
1040                 } else
1041                         n = n->rb_right;
1042         }
1043 
1044         return va;
1045 }
1046 
1047 /*
1048  * Returns a node where a first VA, that satisfies addr < va_end, resides.
1049  * If success, a node is locked. A user is responsible to unlock it when a
1050  * VA is no longer needed to be accessed.
1051  *
1052  * Returns NULL if nothing found.
1053  */
1054 static struct vmap_node *
1055 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1056 {
1057         unsigned long va_start_lowest;
1058         struct vmap_node *vn;
1059         int i;
1060 
1061 repeat:
1062         for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
1063                 vn = &vmap_nodes[i];
1064 
1065                 spin_lock(&vn->busy.lock);
1066                 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1067 
1068                 if (*va)
1069                         if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1070                                 va_start_lowest = (*va)->va_start;
1071                 spin_unlock(&vn->busy.lock);
1072         }
1073 
1074         /*
1075          * Check if found VA exists, it might have gone away.  In this case we
1076          * repeat the search because a VA has been removed concurrently and we
1077          * need to proceed to the next one, which is a rare case.
1078          */
1079         if (va_start_lowest) {
1080                 vn = addr_to_node(va_start_lowest);
1081 
1082                 spin_lock(&vn->busy.lock);
1083                 *va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1084 
1085                 if (*va)
1086                         return vn;
1087 
1088                 spin_unlock(&vn->busy.lock);
1089                 goto repeat;
1090         }
1091 
1092         return NULL;
1093 }
1094 
1095 /*
1096  * This function returns back addresses of parent node
1097  * and its left or right link for further processing.
1098  *
1099  * Otherwise NULL is returned. In that case all further
1100  * steps regarding inserting of conflicting overlap range
1101  * have to be declined and actually considered as a bug.
1102  */
1103 static __always_inline struct rb_node **
1104 find_va_links(struct vmap_area *va,
1105         struct rb_root *root, struct rb_node *from,
1106         struct rb_node **parent)
1107 {
1108         struct vmap_area *tmp_va;
1109         struct rb_node **link;
1110 
1111         if (root) {
1112                 link = &root->rb_node;
1113                 if (unlikely(!*link)) {
1114                         *parent = NULL;
1115                         return link;
1116                 }
1117         } else {
1118                 link = &from;
1119         }
1120 
1121         /*
1122          * Go to the bottom of the tree. When we hit the last point
1123          * we end up with parent rb_node and correct direction, i name
1124          * it link, where the new va->rb_node will be attached to.
1125          */
1126         do {
1127                 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1128 
1129                 /*
1130                  * During the traversal we also do some sanity check.
1131                  * Trigger the BUG() if there are sides(left/right)
1132                  * or full overlaps.
1133                  */
1134                 if (va->va_end <= tmp_va->va_start)
1135                         link = &(*link)->rb_left;
1136                 else if (va->va_start >= tmp_va->va_end)
1137                         link = &(*link)->rb_right;
1138                 else {
1139                         WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1140                                 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1141 
1142                         return NULL;
1143                 }
1144         } while (*link);
1145 
1146         *parent = &tmp_va->rb_node;
1147         return link;
1148 }
1149 
1150 static __always_inline struct list_head *
1151 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1152 {
1153         struct list_head *list;
1154 
1155         if (unlikely(!parent))
1156                 /*
1157                  * The red-black tree where we try to find VA neighbors
1158                  * before merging or inserting is empty, i.e. it means
1159                  * there is no free vmap space. Normally it does not
1160                  * happen but we handle this case anyway.
1161                  */
1162                 return NULL;
1163 
1164         list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1165         return (&parent->rb_right == link ? list->next : list);
1166 }
1167 
1168 static __always_inline void
1169 __link_va(struct vmap_area *va, struct rb_root *root,
1170         struct rb_node *parent, struct rb_node **link,
1171         struct list_head *head, bool augment)
1172 {
1173         /*
1174          * VA is still not in the list, but we can
1175          * identify its future previous list_head node.
1176          */
1177         if (likely(parent)) {
1178                 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1179                 if (&parent->rb_right != link)
1180                         head = head->prev;
1181         }
1182 
1183         /* Insert to the rb-tree */
1184         rb_link_node(&va->rb_node, parent, link);
1185         if (augment) {
1186                 /*
1187                  * Some explanation here. Just perform simple insertion
1188                  * to the tree. We do not set va->subtree_max_size to
1189                  * its current size before calling rb_insert_augmented().
1190                  * It is because we populate the tree from the bottom
1191                  * to parent levels when the node _is_ in the tree.
1192                  *
1193                  * Therefore we set subtree_max_size to zero after insertion,
1194                  * to let __augment_tree_propagate_from() puts everything to
1195                  * the correct order later on.
1196                  */
1197                 rb_insert_augmented(&va->rb_node,
1198                         root, &free_vmap_area_rb_augment_cb);
1199                 va->subtree_max_size = 0;
1200         } else {
1201                 rb_insert_color(&va->rb_node, root);
1202         }
1203 
1204         /* Address-sort this list */
1205         list_add(&va->list, head);
1206 }
1207 
1208 static __always_inline void
1209 link_va(struct vmap_area *va, struct rb_root *root,
1210         struct rb_node *parent, struct rb_node **link,
1211         struct list_head *head)
1212 {
1213         __link_va(va, root, parent, link, head, false);
1214 }
1215 
1216 static __always_inline void
1217 link_va_augment(struct vmap_area *va, struct rb_root *root,
1218         struct rb_node *parent, struct rb_node **link,
1219         struct list_head *head)
1220 {
1221         __link_va(va, root, parent, link, head, true);
1222 }
1223 
1224 static __always_inline void
1225 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1226 {
1227         if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1228                 return;
1229 
1230         if (augment)
1231                 rb_erase_augmented(&va->rb_node,
1232                         root, &free_vmap_area_rb_augment_cb);
1233         else
1234                 rb_erase(&va->rb_node, root);
1235 
1236         list_del_init(&va->list);
1237         RB_CLEAR_NODE(&va->rb_node);
1238 }
1239 
1240 static __always_inline void
1241 unlink_va(struct vmap_area *va, struct rb_root *root)
1242 {
1243         __unlink_va(va, root, false);
1244 }
1245 
1246 static __always_inline void
1247 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1248 {
1249         __unlink_va(va, root, true);
1250 }
1251 
1252 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1253 /*
1254  * Gets called when remove the node and rotate.
1255  */
1256 static __always_inline unsigned long
1257 compute_subtree_max_size(struct vmap_area *va)
1258 {
1259         return max3(va_size(va),
1260                 get_subtree_max_size(va->rb_node.rb_left),
1261                 get_subtree_max_size(va->rb_node.rb_right));
1262 }
1263 
1264 static void
1265 augment_tree_propagate_check(void)
1266 {
1267         struct vmap_area *va;
1268         unsigned long computed_size;
1269 
1270         list_for_each_entry(va, &free_vmap_area_list, list) {
1271                 computed_size = compute_subtree_max_size(va);
1272                 if (computed_size != va->subtree_max_size)
1273                         pr_emerg("tree is corrupted: %lu, %lu\n",
1274                                 va_size(va), va->subtree_max_size);
1275         }
1276 }
1277 #endif
1278 
1279 /*
1280  * This function populates subtree_max_size from bottom to upper
1281  * levels starting from VA point. The propagation must be done
1282  * when VA size is modified by changing its va_start/va_end. Or
1283  * in case of newly inserting of VA to the tree.
1284  *
1285  * It means that __augment_tree_propagate_from() must be called:
1286  * - After VA has been inserted to the tree(free path);
1287  * - After VA has been shrunk(allocation path);
1288  * - After VA has been increased(merging path).
1289  *
1290  * Please note that, it does not mean that upper parent nodes
1291  * and their subtree_max_size are recalculated all the time up
1292  * to the root node.
1293  *
1294  *       4--8
1295  *        /\
1296  *       /  \
1297  *      /    \
1298  *    2--2  8--8
1299  *
1300  * For example if we modify the node 4, shrinking it to 2, then
1301  * no any modification is required. If we shrink the node 2 to 1
1302  * its subtree_max_size is updated only, and set to 1. If we shrink
1303  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1304  * node becomes 4--6.
1305  */
1306 static __always_inline void
1307 augment_tree_propagate_from(struct vmap_area *va)
1308 {
1309         /*
1310          * Populate the tree from bottom towards the root until
1311          * the calculated maximum available size of checked node
1312          * is equal to its current one.
1313          */
1314         free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1315 
1316 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1317         augment_tree_propagate_check();
1318 #endif
1319 }
1320 
1321 static void
1322 insert_vmap_area(struct vmap_area *va,
1323         struct rb_root *root, struct list_head *head)
1324 {
1325         struct rb_node **link;
1326         struct rb_node *parent;
1327 
1328         link = find_va_links(va, root, NULL, &parent);
1329         if (link)
1330                 link_va(va, root, parent, link, head);
1331 }
1332 
1333 static void
1334 insert_vmap_area_augment(struct vmap_area *va,
1335         struct rb_node *from, struct rb_root *root,
1336         struct list_head *head)
1337 {
1338         struct rb_node **link;
1339         struct rb_node *parent;
1340 
1341         if (from)
1342                 link = find_va_links(va, NULL, from, &parent);
1343         else
1344                 link = find_va_links(va, root, NULL, &parent);
1345 
1346         if (link) {
1347                 link_va_augment(va, root, parent, link, head);
1348                 augment_tree_propagate_from(va);
1349         }
1350 }
1351 
1352 /*
1353  * Merge de-allocated chunk of VA memory with previous
1354  * and next free blocks. If coalesce is not done a new
1355  * free area is inserted. If VA has been merged, it is
1356  * freed.
1357  *
1358  * Please note, it can return NULL in case of overlap
1359  * ranges, followed by WARN() report. Despite it is a
1360  * buggy behaviour, a system can be alive and keep
1361  * ongoing.
1362  */
1363 static __always_inline struct vmap_area *
1364 __merge_or_add_vmap_area(struct vmap_area *va,
1365         struct rb_root *root, struct list_head *head, bool augment)
1366 {
1367         struct vmap_area *sibling;
1368         struct list_head *next;
1369         struct rb_node **link;
1370         struct rb_node *parent;
1371         bool merged = false;
1372 
1373         /*
1374          * Find a place in the tree where VA potentially will be
1375          * inserted, unless it is merged with its sibling/siblings.
1376          */
1377         link = find_va_links(va, root, NULL, &parent);
1378         if (!link)
1379                 return NULL;
1380 
1381         /*
1382          * Get next node of VA to check if merging can be done.
1383          */
1384         next = get_va_next_sibling(parent, link);
1385         if (unlikely(next == NULL))
1386                 goto insert;
1387 
1388         /*
1389          * start            end
1390          * |                |
1391          * |<------VA------>|<-----Next----->|
1392          *                  |                |
1393          *                  start            end
1394          */
1395         if (next != head) {
1396                 sibling = list_entry(next, struct vmap_area, list);
1397                 if (sibling->va_start == va->va_end) {
1398                         sibling->va_start = va->va_start;
1399 
1400                         /* Free vmap_area object. */
1401                         kmem_cache_free(vmap_area_cachep, va);
1402 
1403                         /* Point to the new merged area. */
1404                         va = sibling;
1405                         merged = true;
1406                 }
1407         }
1408 
1409         /*
1410          * start            end
1411          * |                |
1412          * |<-----Prev----->|<------VA------>|
1413          *                  |                |
1414          *                  start            end
1415          */
1416         if (next->prev != head) {
1417                 sibling = list_entry(next->prev, struct vmap_area, list);
1418                 if (sibling->va_end == va->va_start) {
1419                         /*
1420                          * If both neighbors are coalesced, it is important
1421                          * to unlink the "next" node first, followed by merging
1422                          * with "previous" one. Otherwise the tree might not be
1423                          * fully populated if a sibling's augmented value is
1424                          * "normalized" because of rotation operations.
1425                          */
1426                         if (merged)
1427                                 __unlink_va(va, root, augment);
1428 
1429                         sibling->va_end = va->va_end;
1430 
1431                         /* Free vmap_area object. */
1432                         kmem_cache_free(vmap_area_cachep, va);
1433 
1434                         /* Point to the new merged area. */
1435                         va = sibling;
1436                         merged = true;
1437                 }
1438         }
1439 
1440 insert:
1441         if (!merged)
1442                 __link_va(va, root, parent, link, head, augment);
1443 
1444         return va;
1445 }
1446 
1447 static __always_inline struct vmap_area *
1448 merge_or_add_vmap_area(struct vmap_area *va,
1449         struct rb_root *root, struct list_head *head)
1450 {
1451         return __merge_or_add_vmap_area(va, root, head, false);
1452 }
1453 
1454 static __always_inline struct vmap_area *
1455 merge_or_add_vmap_area_augment(struct vmap_area *va,
1456         struct rb_root *root, struct list_head *head)
1457 {
1458         va = __merge_or_add_vmap_area(va, root, head, true);
1459         if (va)
1460                 augment_tree_propagate_from(va);
1461 
1462         return va;
1463 }
1464 
1465 static __always_inline bool
1466 is_within_this_va(struct vmap_area *va, unsigned long size,
1467         unsigned long align, unsigned long vstart)
1468 {
1469         unsigned long nva_start_addr;
1470 
1471         if (va->va_start > vstart)
1472                 nva_start_addr = ALIGN(va->va_start, align);
1473         else
1474                 nva_start_addr = ALIGN(vstart, align);
1475 
1476         /* Can be overflowed due to big size or alignment. */
1477         if (nva_start_addr + size < nva_start_addr ||
1478                         nva_start_addr < vstart)
1479                 return false;
1480 
1481         return (nva_start_addr + size <= va->va_end);
1482 }
1483 
1484 /*
1485  * Find the first free block(lowest start address) in the tree,
1486  * that will accomplish the request corresponding to passing
1487  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1488  * a search length is adjusted to account for worst case alignment
1489  * overhead.
1490  */
1491 static __always_inline struct vmap_area *
1492 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1493         unsigned long align, unsigned long vstart, bool adjust_search_size)
1494 {
1495         struct vmap_area *va;
1496         struct rb_node *node;
1497         unsigned long length;
1498 
1499         /* Start from the root. */
1500         node = root->rb_node;
1501 
1502         /* Adjust the search size for alignment overhead. */
1503         length = adjust_search_size ? size + align - 1 : size;
1504 
1505         while (node) {
1506                 va = rb_entry(node, struct vmap_area, rb_node);
1507 
1508                 if (get_subtree_max_size(node->rb_left) >= length &&
1509                                 vstart < va->va_start) {
1510                         node = node->rb_left;
1511                 } else {
1512                         if (is_within_this_va(va, size, align, vstart))
1513                                 return va;
1514 
1515                         /*
1516                          * Does not make sense to go deeper towards the right
1517                          * sub-tree if it does not have a free block that is
1518                          * equal or bigger to the requested search length.
1519                          */
1520                         if (get_subtree_max_size(node->rb_right) >= length) {
1521                                 node = node->rb_right;
1522                                 continue;
1523                         }
1524 
1525                         /*
1526                          * OK. We roll back and find the first right sub-tree,
1527                          * that will satisfy the search criteria. It can happen
1528                          * due to "vstart" restriction or an alignment overhead
1529                          * that is bigger then PAGE_SIZE.
1530                          */
1531                         while ((node = rb_parent(node))) {
1532                                 va = rb_entry(node, struct vmap_area, rb_node);
1533                                 if (is_within_this_va(va, size, align, vstart))
1534                                         return va;
1535 
1536                                 if (get_subtree_max_size(node->rb_right) >= length &&
1537                                                 vstart <= va->va_start) {
1538                                         /*
1539                                          * Shift the vstart forward. Please note, we update it with
1540                                          * parent's start address adding "1" because we do not want
1541                                          * to enter same sub-tree after it has already been checked
1542                                          * and no suitable free block found there.
1543                                          */
1544                                         vstart = va->va_start + 1;
1545                                         node = node->rb_right;
1546                                         break;
1547                                 }
1548                         }
1549                 }
1550         }
1551 
1552         return NULL;
1553 }
1554 
1555 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1556 #include <linux/random.h>
1557 
1558 static struct vmap_area *
1559 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1560         unsigned long align, unsigned long vstart)
1561 {
1562         struct vmap_area *va;
1563 
1564         list_for_each_entry(va, head, list) {
1565                 if (!is_within_this_va(va, size, align, vstart))
1566                         continue;
1567 
1568                 return va;
1569         }
1570 
1571         return NULL;
1572 }
1573 
1574 static void
1575 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1576                              unsigned long size, unsigned long align)
1577 {
1578         struct vmap_area *va_1, *va_2;
1579         unsigned long vstart;
1580         unsigned int rnd;
1581 
1582         get_random_bytes(&rnd, sizeof(rnd));
1583         vstart = VMALLOC_START + rnd;
1584 
1585         va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1586         va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1587 
1588         if (va_1 != va_2)
1589                 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1590                         va_1, va_2, vstart);
1591 }
1592 #endif
1593 
1594 enum fit_type {
1595         NOTHING_FIT = 0,
1596         FL_FIT_TYPE = 1,        /* full fit */
1597         LE_FIT_TYPE = 2,        /* left edge fit */
1598         RE_FIT_TYPE = 3,        /* right edge fit */
1599         NE_FIT_TYPE = 4         /* no edge fit */
1600 };
1601 
1602 static __always_inline enum fit_type
1603 classify_va_fit_type(struct vmap_area *va,
1604         unsigned long nva_start_addr, unsigned long size)
1605 {
1606         enum fit_type type;
1607 
1608         /* Check if it is within VA. */
1609         if (nva_start_addr < va->va_start ||
1610                         nva_start_addr + size > va->va_end)
1611                 return NOTHING_FIT;
1612 
1613         /* Now classify. */
1614         if (va->va_start == nva_start_addr) {
1615                 if (va->va_end == nva_start_addr + size)
1616                         type = FL_FIT_TYPE;
1617                 else
1618                         type = LE_FIT_TYPE;
1619         } else if (va->va_end == nva_start_addr + size) {
1620                 type = RE_FIT_TYPE;
1621         } else {
1622                 type = NE_FIT_TYPE;
1623         }
1624 
1625         return type;
1626 }
1627 
1628 static __always_inline int
1629 va_clip(struct rb_root *root, struct list_head *head,
1630                 struct vmap_area *va, unsigned long nva_start_addr,
1631                 unsigned long size)
1632 {
1633         struct vmap_area *lva = NULL;
1634         enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1635 
1636         if (type == FL_FIT_TYPE) {
1637                 /*
1638                  * No need to split VA, it fully fits.
1639                  *
1640                  * |               |
1641                  * V      NVA      V
1642                  * |---------------|
1643                  */
1644                 unlink_va_augment(va, root);
1645                 kmem_cache_free(vmap_area_cachep, va);
1646         } else if (type == LE_FIT_TYPE) {
1647                 /*
1648                  * Split left edge of fit VA.
1649                  *
1650                  * |       |
1651                  * V  NVA  V   R
1652                  * |-------|-------|
1653                  */
1654                 va->va_start += size;
1655         } else if (type == RE_FIT_TYPE) {
1656                 /*
1657                  * Split right edge of fit VA.
1658                  *
1659                  *         |       |
1660                  *     L   V  NVA  V
1661                  * |-------|-------|
1662                  */
1663                 va->va_end = nva_start_addr;
1664         } else if (type == NE_FIT_TYPE) {
1665                 /*
1666                  * Split no edge of fit VA.
1667                  *
1668                  *     |       |
1669                  *   L V  NVA  V R
1670                  * |---|-------|---|
1671                  */
1672                 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1673                 if (unlikely(!lva)) {
1674                         /*
1675                          * For percpu allocator we do not do any pre-allocation
1676                          * and leave it as it is. The reason is it most likely
1677                          * never ends up with NE_FIT_TYPE splitting. In case of
1678                          * percpu allocations offsets and sizes are aligned to
1679                          * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1680                          * are its main fitting cases.
1681                          *
1682                          * There are a few exceptions though, as an example it is
1683                          * a first allocation (early boot up) when we have "one"
1684                          * big free space that has to be split.
1685                          *
1686                          * Also we can hit this path in case of regular "vmap"
1687                          * allocations, if "this" current CPU was not preloaded.
1688                          * See the comment in alloc_vmap_area() why. If so, then
1689                          * GFP_NOWAIT is used instead to get an extra object for
1690                          * split purpose. That is rare and most time does not
1691                          * occur.
1692                          *
1693                          * What happens if an allocation gets failed. Basically,
1694                          * an "overflow" path is triggered to purge lazily freed
1695                          * areas to free some memory, then, the "retry" path is
1696                          * triggered to repeat one more time. See more details
1697                          * in alloc_vmap_area() function.
1698                          */
1699                         lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1700                         if (!lva)
1701                                 return -1;
1702                 }
1703 
1704                 /*
1705                  * Build the remainder.
1706                  */
1707                 lva->va_start = va->va_start;
1708                 lva->va_end = nva_start_addr;
1709 
1710                 /*
1711                  * Shrink this VA to remaining size.
1712                  */
1713                 va->va_start = nva_start_addr + size;
1714         } else {
1715                 return -1;
1716         }
1717 
1718         if (type != FL_FIT_TYPE) {
1719                 augment_tree_propagate_from(va);
1720 
1721                 if (lva)        /* type == NE_FIT_TYPE */
1722                         insert_vmap_area_augment(lva, &va->rb_node, root, head);
1723         }
1724 
1725         return 0;
1726 }
1727 
1728 static unsigned long
1729 va_alloc(struct vmap_area *va,
1730                 struct rb_root *root, struct list_head *head,
1731                 unsigned long size, unsigned long align,
1732                 unsigned long vstart, unsigned long vend)
1733 {
1734         unsigned long nva_start_addr;
1735         int ret;
1736 
1737         if (va->va_start > vstart)
1738                 nva_start_addr = ALIGN(va->va_start, align);
1739         else
1740                 nva_start_addr = ALIGN(vstart, align);
1741 
1742         /* Check the "vend" restriction. */
1743         if (nva_start_addr + size > vend)
1744                 return vend;
1745 
1746         /* Update the free vmap_area. */
1747         ret = va_clip(root, head, va, nva_start_addr, size);
1748         if (WARN_ON_ONCE(ret))
1749                 return vend;
1750 
1751         return nva_start_addr;
1752 }
1753 
1754 /*
1755  * Returns a start address of the newly allocated area, if success.
1756  * Otherwise a vend is returned that indicates failure.
1757  */
1758 static __always_inline unsigned long
1759 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1760         unsigned long size, unsigned long align,
1761         unsigned long vstart, unsigned long vend)
1762 {
1763         bool adjust_search_size = true;
1764         unsigned long nva_start_addr;
1765         struct vmap_area *va;
1766 
1767         /*
1768          * Do not adjust when:
1769          *   a) align <= PAGE_SIZE, because it does not make any sense.
1770          *      All blocks(their start addresses) are at least PAGE_SIZE
1771          *      aligned anyway;
1772          *   b) a short range where a requested size corresponds to exactly
1773          *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1774          *      With adjusted search length an allocation would not succeed.
1775          */
1776         if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1777                 adjust_search_size = false;
1778 
1779         va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1780         if (unlikely(!va))
1781                 return vend;
1782 
1783         nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1784         if (nva_start_addr == vend)
1785                 return vend;
1786 
1787 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1788         find_vmap_lowest_match_check(root, head, size, align);
1789 #endif
1790 
1791         return nva_start_addr;
1792 }
1793 
1794 /*
1795  * Free a region of KVA allocated by alloc_vmap_area
1796  */
1797 static void free_vmap_area(struct vmap_area *va)
1798 {
1799         struct vmap_node *vn = addr_to_node(va->va_start);
1800 
1801         /*
1802          * Remove from the busy tree/list.
1803          */
1804         spin_lock(&vn->busy.lock);
1805         unlink_va(va, &vn->busy.root);
1806         spin_unlock(&vn->busy.lock);
1807 
1808         /*
1809          * Insert/Merge it back to the free tree/list.
1810          */
1811         spin_lock(&free_vmap_area_lock);
1812         merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1813         spin_unlock(&free_vmap_area_lock);
1814 }
1815 
1816 static inline void
1817 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1818 {
1819         struct vmap_area *va = NULL, *tmp;
1820 
1821         /*
1822          * Preload this CPU with one extra vmap_area object. It is used
1823          * when fit type of free area is NE_FIT_TYPE. It guarantees that
1824          * a CPU that does an allocation is preloaded.
1825          *
1826          * We do it in non-atomic context, thus it allows us to use more
1827          * permissive allocation masks to be more stable under low memory
1828          * condition and high memory pressure.
1829          */
1830         if (!this_cpu_read(ne_fit_preload_node))
1831                 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1832 
1833         spin_lock(lock);
1834 
1835         tmp = NULL;
1836         if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1837                 kmem_cache_free(vmap_area_cachep, va);
1838 }
1839 
1840 static struct vmap_pool *
1841 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1842 {
1843         unsigned int idx = (size - 1) / PAGE_SIZE;
1844 
1845         if (idx < MAX_VA_SIZE_PAGES)
1846                 return &vn->pool[idx];
1847 
1848         return NULL;
1849 }
1850 
1851 static bool
1852 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1853 {
1854         struct vmap_pool *vp;
1855 
1856         vp = size_to_va_pool(n, va_size(va));
1857         if (!vp)
1858                 return false;
1859 
1860         spin_lock(&n->pool_lock);
1861         list_add(&va->list, &vp->head);
1862         WRITE_ONCE(vp->len, vp->len + 1);
1863         spin_unlock(&n->pool_lock);
1864 
1865         return true;
1866 }
1867 
1868 static struct vmap_area *
1869 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1870                 unsigned long align, unsigned long vstart,
1871                 unsigned long vend)
1872 {
1873         struct vmap_area *va = NULL;
1874         struct vmap_pool *vp;
1875         int err = 0;
1876 
1877         vp = size_to_va_pool(vn, size);
1878         if (!vp || list_empty(&vp->head))
1879                 return NULL;
1880 
1881         spin_lock(&vn->pool_lock);
1882         if (!list_empty(&vp->head)) {
1883                 va = list_first_entry(&vp->head, struct vmap_area, list);
1884 
1885                 if (IS_ALIGNED(va->va_start, align)) {
1886                         /*
1887                          * Do some sanity check and emit a warning
1888                          * if one of below checks detects an error.
1889                          */
1890                         err |= (va_size(va) != size);
1891                         err |= (va->va_start < vstart);
1892                         err |= (va->va_end > vend);
1893 
1894                         if (!WARN_ON_ONCE(err)) {
1895                                 list_del_init(&va->list);
1896                                 WRITE_ONCE(vp->len, vp->len - 1);
1897                         } else {
1898                                 va = NULL;
1899                         }
1900                 } else {
1901                         list_move_tail(&va->list, &vp->head);
1902                         va = NULL;
1903                 }
1904         }
1905         spin_unlock(&vn->pool_lock);
1906 
1907         return va;
1908 }
1909 
1910 static struct vmap_area *
1911 node_alloc(unsigned long size, unsigned long align,
1912                 unsigned long vstart, unsigned long vend,
1913                 unsigned long *addr, unsigned int *vn_id)
1914 {
1915         struct vmap_area *va;
1916 
1917         *vn_id = 0;
1918         *addr = vend;
1919 
1920         /*
1921          * Fallback to a global heap if not vmalloc or there
1922          * is only one node.
1923          */
1924         if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1925                         nr_vmap_nodes == 1)
1926                 return NULL;
1927 
1928         *vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1929         va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1930         *vn_id = encode_vn_id(*vn_id);
1931 
1932         if (va)
1933                 *addr = va->va_start;
1934 
1935         return va;
1936 }
1937 
1938 static inline void setup_vmalloc_vm(struct vm_struct *vm,
1939         struct vmap_area *va, unsigned long flags, const void *caller)
1940 {
1941         vm->flags = flags;
1942         vm->addr = (void *)va->va_start;
1943         vm->size = va->va_end - va->va_start;
1944         vm->caller = caller;
1945         va->vm = vm;
1946 }
1947 
1948 /*
1949  * Allocate a region of KVA of the specified size and alignment, within the
1950  * vstart and vend. If vm is passed in, the two will also be bound.
1951  */
1952 static struct vmap_area *alloc_vmap_area(unsigned long size,
1953                                 unsigned long align,
1954                                 unsigned long vstart, unsigned long vend,
1955                                 int node, gfp_t gfp_mask,
1956                                 unsigned long va_flags, struct vm_struct *vm)
1957 {
1958         struct vmap_node *vn;
1959         struct vmap_area *va;
1960         unsigned long freed;
1961         unsigned long addr;
1962         unsigned int vn_id;
1963         int purged = 0;
1964         int ret;
1965 
1966         if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1967                 return ERR_PTR(-EINVAL);
1968 
1969         if (unlikely(!vmap_initialized))
1970                 return ERR_PTR(-EBUSY);
1971 
1972         might_sleep();
1973 
1974         /*
1975          * If a VA is obtained from a global heap(if it fails here)
1976          * it is anyway marked with this "vn_id" so it is returned
1977          * to this pool's node later. Such way gives a possibility
1978          * to populate pools based on users demand.
1979          *
1980          * On success a ready to go VA is returned.
1981          */
1982         va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
1983         if (!va) {
1984                 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1985 
1986                 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1987                 if (unlikely(!va))
1988                         return ERR_PTR(-ENOMEM);
1989 
1990                 /*
1991                  * Only scan the relevant parts containing pointers to other objects
1992                  * to avoid false negatives.
1993                  */
1994                 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1995         }
1996 
1997 retry:
1998         if (addr == vend) {
1999                 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2000                 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2001                         size, align, vstart, vend);
2002                 spin_unlock(&free_vmap_area_lock);
2003         }
2004 
2005         trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
2006 
2007         /*
2008          * If an allocation fails, the "vend" address is
2009          * returned. Therefore trigger the overflow path.
2010          */
2011         if (unlikely(addr == vend))
2012                 goto overflow;
2013 
2014         va->va_start = addr;
2015         va->va_end = addr + size;
2016         va->vm = NULL;
2017         va->flags = (va_flags | vn_id);
2018 
2019         if (vm) {
2020                 vm->addr = (void *)va->va_start;
2021                 vm->size = va->va_end - va->va_start;
2022                 va->vm = vm;
2023         }
2024 
2025         vn = addr_to_node(va->va_start);
2026 
2027         spin_lock(&vn->busy.lock);
2028         insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2029         spin_unlock(&vn->busy.lock);
2030 
2031         BUG_ON(!IS_ALIGNED(va->va_start, align));
2032         BUG_ON(va->va_start < vstart);
2033         BUG_ON(va->va_end > vend);
2034 
2035         ret = kasan_populate_vmalloc(addr, size);
2036         if (ret) {
2037                 free_vmap_area(va);
2038                 return ERR_PTR(ret);
2039         }
2040 
2041         return va;
2042 
2043 overflow:
2044         if (!purged) {
2045                 reclaim_and_purge_vmap_areas();
2046                 purged = 1;
2047                 goto retry;
2048         }
2049 
2050         freed = 0;
2051         blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2052 
2053         if (freed > 0) {
2054                 purged = 0;
2055                 goto retry;
2056         }
2057 
2058         if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2059                 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2060                                 size, vstart, vend);
2061 
2062         kmem_cache_free(vmap_area_cachep, va);
2063         return ERR_PTR(-EBUSY);
2064 }
2065 
2066 int register_vmap_purge_notifier(struct notifier_block *nb)
2067 {
2068         return blocking_notifier_chain_register(&vmap_notify_list, nb);
2069 }
2070 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2071 
2072 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2073 {
2074         return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2075 }
2076 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2077 
2078 /*
2079  * lazy_max_pages is the maximum amount of virtual address space we gather up
2080  * before attempting to purge with a TLB flush.
2081  *
2082  * There is a tradeoff here: a larger number will cover more kernel page tables
2083  * and take slightly longer to purge, but it will linearly reduce the number of
2084  * global TLB flushes that must be performed. It would seem natural to scale
2085  * this number up linearly with the number of CPUs (because vmapping activity
2086  * could also scale linearly with the number of CPUs), however it is likely
2087  * that in practice, workloads might be constrained in other ways that mean
2088  * vmap activity will not scale linearly with CPUs. Also, I want to be
2089  * conservative and not introduce a big latency on huge systems, so go with
2090  * a less aggressive log scale. It will still be an improvement over the old
2091  * code, and it will be simple to change the scale factor if we find that it
2092  * becomes a problem on bigger systems.
2093  */
2094 static unsigned long lazy_max_pages(void)
2095 {
2096         unsigned int log;
2097 
2098         log = fls(num_online_cpus());
2099 
2100         return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2101 }
2102 
2103 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
2104 
2105 /*
2106  * Serialize vmap purging.  There is no actual critical section protected
2107  * by this lock, but we want to avoid concurrent calls for performance
2108  * reasons and to make the pcpu_get_vm_areas more deterministic.
2109  */
2110 static DEFINE_MUTEX(vmap_purge_lock);
2111 
2112 /* for per-CPU blocks */
2113 static void purge_fragmented_blocks_allcpus(void);
2114 static cpumask_t purge_nodes;
2115 
2116 static void
2117 reclaim_list_global(struct list_head *head)
2118 {
2119         struct vmap_area *va, *n;
2120 
2121         if (list_empty(head))
2122                 return;
2123 
2124         spin_lock(&free_vmap_area_lock);
2125         list_for_each_entry_safe(va, n, head, list)
2126                 merge_or_add_vmap_area_augment(va,
2127                         &free_vmap_area_root, &free_vmap_area_list);
2128         spin_unlock(&free_vmap_area_lock);
2129 }
2130 
2131 static void
2132 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2133 {
2134         struct vmap_area *va, *nva;
2135         struct list_head decay_list;
2136         struct rb_root decay_root;
2137         unsigned long n_decay;
2138         int i;
2139 
2140         decay_root = RB_ROOT;
2141         INIT_LIST_HEAD(&decay_list);
2142 
2143         for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2144                 struct list_head tmp_list;
2145 
2146                 if (list_empty(&vn->pool[i].head))
2147                         continue;
2148 
2149                 INIT_LIST_HEAD(&tmp_list);
2150 
2151                 /* Detach the pool, so no-one can access it. */
2152                 spin_lock(&vn->pool_lock);
2153                 list_replace_init(&vn->pool[i].head, &tmp_list);
2154                 spin_unlock(&vn->pool_lock);
2155 
2156                 if (full_decay)
2157                         WRITE_ONCE(vn->pool[i].len, 0);
2158 
2159                 /* Decay a pool by ~25% out of left objects. */
2160                 n_decay = vn->pool[i].len >> 2;
2161 
2162                 list_for_each_entry_safe(va, nva, &tmp_list, list) {
2163                         list_del_init(&va->list);
2164                         merge_or_add_vmap_area(va, &decay_root, &decay_list);
2165 
2166                         if (!full_decay) {
2167                                 WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2168 
2169                                 if (!--n_decay)
2170                                         break;
2171                         }
2172                 }
2173 
2174                 /*
2175                  * Attach the pool back if it has been partly decayed.
2176                  * Please note, it is supposed that nobody(other contexts)
2177                  * can populate the pool therefore a simple list replace
2178                  * operation takes place here.
2179                  */
2180                 if (!full_decay && !list_empty(&tmp_list)) {
2181                         spin_lock(&vn->pool_lock);
2182                         list_replace_init(&tmp_list, &vn->pool[i].head);
2183                         spin_unlock(&vn->pool_lock);
2184                 }
2185         }
2186 
2187         reclaim_list_global(&decay_list);
2188 }
2189 
2190 static void purge_vmap_node(struct work_struct *work)
2191 {
2192         struct vmap_node *vn = container_of(work,
2193                 struct vmap_node, purge_work);
2194         unsigned long nr_purged_pages = 0;
2195         struct vmap_area *va, *n_va;
2196         LIST_HEAD(local_list);
2197 
2198         vn->nr_purged = 0;
2199 
2200         list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2201                 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
2202                 unsigned long orig_start = va->va_start;
2203                 unsigned long orig_end = va->va_end;
2204                 unsigned int vn_id = decode_vn_id(va->flags);
2205 
2206                 list_del_init(&va->list);
2207 
2208                 if (is_vmalloc_or_module_addr((void *)orig_start))
2209                         kasan_release_vmalloc(orig_start, orig_end,
2210                                               va->va_start, va->va_end);
2211 
2212                 nr_purged_pages += nr;
2213                 vn->nr_purged++;
2214 
2215                 if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2216                         if (node_pool_add_va(vn, va))
2217                                 continue;
2218 
2219                 /* Go back to global. */
2220                 list_add(&va->list, &local_list);
2221         }
2222 
2223         atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2224 
2225         reclaim_list_global(&local_list);
2226 }
2227 
2228 /*
2229  * Purges all lazily-freed vmap areas.
2230  */
2231 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2232                 bool full_pool_decay)
2233 {
2234         unsigned long nr_purged_areas = 0;
2235         unsigned int nr_purge_helpers;
2236         unsigned int nr_purge_nodes;
2237         struct vmap_node *vn;
2238         int i;
2239 
2240         lockdep_assert_held(&vmap_purge_lock);
2241 
2242         /*
2243          * Use cpumask to mark which node has to be processed.
2244          */
2245         purge_nodes = CPU_MASK_NONE;
2246 
2247         for (i = 0; i < nr_vmap_nodes; i++) {
2248                 vn = &vmap_nodes[i];
2249 
2250                 INIT_LIST_HEAD(&vn->purge_list);
2251                 vn->skip_populate = full_pool_decay;
2252                 decay_va_pool_node(vn, full_pool_decay);
2253 
2254                 if (RB_EMPTY_ROOT(&vn->lazy.root))
2255                         continue;
2256 
2257                 spin_lock(&vn->lazy.lock);
2258                 WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2259                 list_replace_init(&vn->lazy.head, &vn->purge_list);
2260                 spin_unlock(&vn->lazy.lock);
2261 
2262                 start = min(start, list_first_entry(&vn->purge_list,
2263                         struct vmap_area, list)->va_start);
2264 
2265                 end = max(end, list_last_entry(&vn->purge_list,
2266                         struct vmap_area, list)->va_end);
2267 
2268                 cpumask_set_cpu(i, &purge_nodes);
2269         }
2270 
2271         nr_purge_nodes = cpumask_weight(&purge_nodes);
2272         if (nr_purge_nodes > 0) {
2273                 flush_tlb_kernel_range(start, end);
2274 
2275                 /* One extra worker is per a lazy_max_pages() full set minus one. */
2276                 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2277                 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2278 
2279                 for_each_cpu(i, &purge_nodes) {
2280                         vn = &vmap_nodes[i];
2281 
2282                         if (nr_purge_helpers > 0) {
2283                                 INIT_WORK(&vn->purge_work, purge_vmap_node);
2284 
2285                                 if (cpumask_test_cpu(i, cpu_online_mask))
2286                                         schedule_work_on(i, &vn->purge_work);
2287                                 else
2288                                         schedule_work(&vn->purge_work);
2289 
2290                                 nr_purge_helpers--;
2291                         } else {
2292                                 vn->purge_work.func = NULL;
2293                                 purge_vmap_node(&vn->purge_work);
2294                                 nr_purged_areas += vn->nr_purged;
2295                         }
2296                 }
2297 
2298                 for_each_cpu(i, &purge_nodes) {
2299                         vn = &vmap_nodes[i];
2300 
2301                         if (vn->purge_work.func) {
2302                                 flush_work(&vn->purge_work);
2303                                 nr_purged_areas += vn->nr_purged;
2304                         }
2305                 }
2306         }
2307 
2308         trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2309         return nr_purged_areas > 0;
2310 }
2311 
2312 /*
2313  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2314  */
2315 static void reclaim_and_purge_vmap_areas(void)
2316 
2317 {
2318         mutex_lock(&vmap_purge_lock);
2319         purge_fragmented_blocks_allcpus();
2320         __purge_vmap_area_lazy(ULONG_MAX, 0, true);
2321         mutex_unlock(&vmap_purge_lock);
2322 }
2323 
2324 static void drain_vmap_area_work(struct work_struct *work)
2325 {
2326         mutex_lock(&vmap_purge_lock);
2327         __purge_vmap_area_lazy(ULONG_MAX, 0, false);
2328         mutex_unlock(&vmap_purge_lock);
2329 }
2330 
2331 /*
2332  * Free a vmap area, caller ensuring that the area has been unmapped,
2333  * unlinked and flush_cache_vunmap had been called for the correct
2334  * range previously.
2335  */
2336 static void free_vmap_area_noflush(struct vmap_area *va)
2337 {
2338         unsigned long nr_lazy_max = lazy_max_pages();
2339         unsigned long va_start = va->va_start;
2340         unsigned int vn_id = decode_vn_id(va->flags);
2341         struct vmap_node *vn;
2342         unsigned long nr_lazy;
2343 
2344         if (WARN_ON_ONCE(!list_empty(&va->list)))
2345                 return;
2346 
2347         nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
2348                                 PAGE_SHIFT, &vmap_lazy_nr);
2349 
2350         /*
2351          * If it was request by a certain node we would like to
2352          * return it to that node, i.e. its pool for later reuse.
2353          */
2354         vn = is_vn_id_valid(vn_id) ?
2355                 id_to_node(vn_id):addr_to_node(va->va_start);
2356 
2357         spin_lock(&vn->lazy.lock);
2358         insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2359         spin_unlock(&vn->lazy.lock);
2360 
2361         trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2362 
2363         /* After this point, we may free va at any time */
2364         if (unlikely(nr_lazy > nr_lazy_max))
2365                 schedule_work(&drain_vmap_work);
2366 }
2367 
2368 /*
2369  * Free and unmap a vmap area
2370  */
2371 static void free_unmap_vmap_area(struct vmap_area *va)
2372 {
2373         flush_cache_vunmap(va->va_start, va->va_end);
2374         vunmap_range_noflush(va->va_start, va->va_end);
2375         if (debug_pagealloc_enabled_static())
2376                 flush_tlb_kernel_range(va->va_start, va->va_end);
2377 
2378         free_vmap_area_noflush(va);
2379 }
2380 
2381 struct vmap_area *find_vmap_area(unsigned long addr)
2382 {
2383         struct vmap_node *vn;
2384         struct vmap_area *va;
2385         int i, j;
2386 
2387         if (unlikely(!vmap_initialized))
2388                 return NULL;
2389 
2390         /*
2391          * An addr_to_node_id(addr) converts an address to a node index
2392          * where a VA is located. If VA spans several zones and passed
2393          * addr is not the same as va->va_start, what is not common, we
2394          * may need to scan extra nodes. See an example:
2395          *
2396          *      <----va---->
2397          * -|-----|-----|-----|-----|-
2398          *     1     2     0     1
2399          *
2400          * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2401          * addr is within 2 or 0 nodes we should do extra work.
2402          */
2403         i = j = addr_to_node_id(addr);
2404         do {
2405                 vn = &vmap_nodes[i];
2406 
2407                 spin_lock(&vn->busy.lock);
2408                 va = __find_vmap_area(addr, &vn->busy.root);
2409                 spin_unlock(&vn->busy.lock);
2410 
2411                 if (va)
2412                         return va;
2413         } while ((i = (i + 1) % nr_vmap_nodes) != j);
2414 
2415         return NULL;
2416 }
2417 
2418 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2419 {
2420         struct vmap_node *vn;
2421         struct vmap_area *va;
2422         int i, j;
2423 
2424         /*
2425          * Check the comment in the find_vmap_area() about the loop.
2426          */
2427         i = j = addr_to_node_id(addr);
2428         do {
2429                 vn = &vmap_nodes[i];
2430 
2431                 spin_lock(&vn->busy.lock);
2432                 va = __find_vmap_area(addr, &vn->busy.root);
2433                 if (va)
2434                         unlink_va(va, &vn->busy.root);
2435                 spin_unlock(&vn->busy.lock);
2436 
2437                 if (va)
2438                         return va;
2439         } while ((i = (i + 1) % nr_vmap_nodes) != j);
2440 
2441         return NULL;
2442 }
2443 
2444 /*** Per cpu kva allocator ***/
2445 
2446 /*
2447  * vmap space is limited especially on 32 bit architectures. Ensure there is
2448  * room for at least 16 percpu vmap blocks per CPU.
2449  */
2450 /*
2451  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2452  * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
2453  * instead (we just need a rough idea)
2454  */
2455 #if BITS_PER_LONG == 32
2456 #define VMALLOC_SPACE           (128UL*1024*1024)
2457 #else
2458 #define VMALLOC_SPACE           (128UL*1024*1024*1024)
2459 #endif
2460 
2461 #define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
2462 #define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
2463 #define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
2464 #define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
2465 #define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
2466 #define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
2467 #define VMAP_BBMAP_BITS         \
2468                 VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
2469                 VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
2470                         VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2471 
2472 #define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
2473 
2474 /*
2475  * Purge threshold to prevent overeager purging of fragmented blocks for
2476  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2477  */
2478 #define VMAP_PURGE_THRESHOLD    (VMAP_BBMAP_BITS / 4)
2479 
2480 #define VMAP_RAM                0x1 /* indicates vm_map_ram area*/
2481 #define VMAP_BLOCK              0x2 /* mark out the vmap_block sub-type*/
2482 #define VMAP_FLAGS_MASK         0x3
2483 
2484 struct vmap_block_queue {
2485         spinlock_t lock;
2486         struct list_head free;
2487 
2488         /*
2489          * An xarray requires an extra memory dynamically to
2490          * be allocated. If it is an issue, we can use rb-tree
2491          * instead.
2492          */
2493         struct xarray vmap_blocks;
2494 };
2495 
2496 struct vmap_block {
2497         spinlock_t lock;
2498         struct vmap_area *va;
2499         unsigned long free, dirty;
2500         DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2501         unsigned long dirty_min, dirty_max; /*< dirty range */
2502         struct list_head free_list;
2503         struct rcu_head rcu_head;
2504         struct list_head purge;
2505         unsigned int cpu;
2506 };
2507 
2508 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2509 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2510 
2511 /*
2512  * In order to fast access to any "vmap_block" associated with a
2513  * specific address, we use a hash.
2514  *
2515  * A per-cpu vmap_block_queue is used in both ways, to serialize
2516  * an access to free block chains among CPUs(alloc path) and it
2517  * also acts as a vmap_block hash(alloc/free paths). It means we
2518  * overload it, since we already have the per-cpu array which is
2519  * used as a hash table. When used as a hash a 'cpu' passed to
2520  * per_cpu() is not actually a CPU but rather a hash index.
2521  *
2522  * A hash function is addr_to_vb_xa() which hashes any address
2523  * to a specific index(in a hash) it belongs to. This then uses a
2524  * per_cpu() macro to access an array with generated index.
2525  *
2526  * An example:
2527  *
2528  *  CPU_1  CPU_2  CPU_0
2529  *    |      |      |
2530  *    V      V      V
2531  * 0     10     20     30     40     50     60
2532  * |------|------|------|------|------|------|...<vmap address space>
2533  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
2534  *
2535  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2536  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2537  *
2538  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2539  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2540  *
2541  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2542  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2543  *
2544  * This technique almost always avoids lock contention on insert/remove,
2545  * however xarray spinlocks protect against any contention that remains.
2546  */
2547 static struct xarray *
2548 addr_to_vb_xa(unsigned long addr)
2549 {
2550         int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2551 
2552         /*
2553          * Please note, nr_cpu_ids points on a highest set
2554          * possible bit, i.e. we never invoke cpumask_next()
2555          * if an index points on it which is nr_cpu_ids - 1.
2556          */
2557         if (!cpu_possible(index))
2558                 index = cpumask_next(index, cpu_possible_mask);
2559 
2560         return &per_cpu(vmap_block_queue, index).vmap_blocks;
2561 }
2562 
2563 /*
2564  * We should probably have a fallback mechanism to allocate virtual memory
2565  * out of partially filled vmap blocks. However vmap block sizing should be
2566  * fairly reasonable according to the vmalloc size, so it shouldn't be a
2567  * big problem.
2568  */
2569 
2570 static unsigned long addr_to_vb_idx(unsigned long addr)
2571 {
2572         addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2573         addr /= VMAP_BLOCK_SIZE;
2574         return addr;
2575 }
2576 
2577 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2578 {
2579         unsigned long addr;
2580 
2581         addr = va_start + (pages_off << PAGE_SHIFT);
2582         BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2583         return (void *)addr;
2584 }
2585 
2586 /**
2587  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2588  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2589  * @order:    how many 2^order pages should be occupied in newly allocated block
2590  * @gfp_mask: flags for the page level allocator
2591  *
2592  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2593  */
2594 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2595 {
2596         struct vmap_block_queue *vbq;
2597         struct vmap_block *vb;
2598         struct vmap_area *va;
2599         struct xarray *xa;
2600         unsigned long vb_idx;
2601         int node, err;
2602         void *vaddr;
2603 
2604         node = numa_node_id();
2605 
2606         vb = kmalloc_node(sizeof(struct vmap_block),
2607                         gfp_mask & GFP_RECLAIM_MASK, node);
2608         if (unlikely(!vb))
2609                 return ERR_PTR(-ENOMEM);
2610 
2611         va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2612                                         VMALLOC_START, VMALLOC_END,
2613                                         node, gfp_mask,
2614                                         VMAP_RAM|VMAP_BLOCK, NULL);
2615         if (IS_ERR(va)) {
2616                 kfree(vb);
2617                 return ERR_CAST(va);
2618         }
2619 
2620         vaddr = vmap_block_vaddr(va->va_start, 0);
2621         spin_lock_init(&vb->lock);
2622         vb->va = va;
2623         /* At least something should be left free */
2624         BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2625         bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2626         vb->free = VMAP_BBMAP_BITS - (1UL << order);
2627         vb->dirty = 0;
2628         vb->dirty_min = VMAP_BBMAP_BITS;
2629         vb->dirty_max = 0;
2630         bitmap_set(vb->used_map, 0, (1UL << order));
2631         INIT_LIST_HEAD(&vb->free_list);
2632         vb->cpu = raw_smp_processor_id();
2633 
2634         xa = addr_to_vb_xa(va->va_start);
2635         vb_idx = addr_to_vb_idx(va->va_start);
2636         err = xa_insert(xa, vb_idx, vb, gfp_mask);
2637         if (err) {
2638                 kfree(vb);
2639                 free_vmap_area(va);
2640                 return ERR_PTR(err);
2641         }
2642         /*
2643          * list_add_tail_rcu could happened in another core
2644          * rather than vb->cpu due to task migration, which
2645          * is safe as list_add_tail_rcu will ensure the list's
2646          * integrity together with list_for_each_rcu from read
2647          * side.
2648          */
2649         vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2650         spin_lock(&vbq->lock);
2651         list_add_tail_rcu(&vb->free_list, &vbq->free);
2652         spin_unlock(&vbq->lock);
2653 
2654         return vaddr;
2655 }
2656 
2657 static void free_vmap_block(struct vmap_block *vb)
2658 {
2659         struct vmap_node *vn;
2660         struct vmap_block *tmp;
2661         struct xarray *xa;
2662 
2663         xa = addr_to_vb_xa(vb->va->va_start);
2664         tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2665         BUG_ON(tmp != vb);
2666 
2667         vn = addr_to_node(vb->va->va_start);
2668         spin_lock(&vn->busy.lock);
2669         unlink_va(vb->va, &vn->busy.root);
2670         spin_unlock(&vn->busy.lock);
2671 
2672         free_vmap_area_noflush(vb->va);
2673         kfree_rcu(vb, rcu_head);
2674 }
2675 
2676 static bool purge_fragmented_block(struct vmap_block *vb,
2677                 struct list_head *purge_list, bool force_purge)
2678 {
2679         struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2680 
2681         if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2682             vb->dirty == VMAP_BBMAP_BITS)
2683                 return false;
2684 
2685         /* Don't overeagerly purge usable blocks unless requested */
2686         if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2687                 return false;
2688 
2689         /* prevent further allocs after releasing lock */
2690         WRITE_ONCE(vb->free, 0);
2691         /* prevent purging it again */
2692         WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2693         vb->dirty_min = 0;
2694         vb->dirty_max = VMAP_BBMAP_BITS;
2695         spin_lock(&vbq->lock);
2696         list_del_rcu(&vb->free_list);
2697         spin_unlock(&vbq->lock);
2698         list_add_tail(&vb->purge, purge_list);
2699         return true;
2700 }
2701 
2702 static void free_purged_blocks(struct list_head *purge_list)
2703 {
2704         struct vmap_block *vb, *n_vb;
2705 
2706         list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2707                 list_del(&vb->purge);
2708                 free_vmap_block(vb);
2709         }
2710 }
2711 
2712 static void purge_fragmented_blocks(int cpu)
2713 {
2714         LIST_HEAD(purge);
2715         struct vmap_block *vb;
2716         struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2717 
2718         rcu_read_lock();
2719         list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2720                 unsigned long free = READ_ONCE(vb->free);
2721                 unsigned long dirty = READ_ONCE(vb->dirty);
2722 
2723                 if (free + dirty != VMAP_BBMAP_BITS ||
2724                     dirty == VMAP_BBMAP_BITS)
2725                         continue;
2726 
2727                 spin_lock(&vb->lock);
2728                 purge_fragmented_block(vb, &purge, true);
2729                 spin_unlock(&vb->lock);
2730         }
2731         rcu_read_unlock();
2732         free_purged_blocks(&purge);
2733 }
2734 
2735 static void purge_fragmented_blocks_allcpus(void)
2736 {
2737         int cpu;
2738 
2739         for_each_possible_cpu(cpu)
2740                 purge_fragmented_blocks(cpu);
2741 }
2742 
2743 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2744 {
2745         struct vmap_block_queue *vbq;
2746         struct vmap_block *vb;
2747         void *vaddr = NULL;
2748         unsigned int order;
2749 
2750         BUG_ON(offset_in_page(size));
2751         BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2752         if (WARN_ON(size == 0)) {
2753                 /*
2754                  * Allocating 0 bytes isn't what caller wants since
2755                  * get_order(0) returns funny result. Just warn and terminate
2756                  * early.
2757                  */
2758                 return ERR_PTR(-EINVAL);
2759         }
2760         order = get_order(size);
2761 
2762         rcu_read_lock();
2763         vbq = raw_cpu_ptr(&vmap_block_queue);
2764         list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2765                 unsigned long pages_off;
2766 
2767                 if (READ_ONCE(vb->free) < (1UL << order))
2768                         continue;
2769 
2770                 spin_lock(&vb->lock);
2771                 if (vb->free < (1UL << order)) {
2772                         spin_unlock(&vb->lock);
2773                         continue;
2774                 }
2775 
2776                 pages_off = VMAP_BBMAP_BITS - vb->free;
2777                 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2778                 WRITE_ONCE(vb->free, vb->free - (1UL << order));
2779                 bitmap_set(vb->used_map, pages_off, (1UL << order));
2780                 if (vb->free == 0) {
2781                         spin_lock(&vbq->lock);
2782                         list_del_rcu(&vb->free_list);
2783                         spin_unlock(&vbq->lock);
2784                 }
2785 
2786                 spin_unlock(&vb->lock);
2787                 break;
2788         }
2789 
2790         rcu_read_unlock();
2791 
2792         /* Allocate new block if nothing was found */
2793         if (!vaddr)
2794                 vaddr = new_vmap_block(order, gfp_mask);
2795 
2796         return vaddr;
2797 }
2798 
2799 static void vb_free(unsigned long addr, unsigned long size)
2800 {
2801         unsigned long offset;
2802         unsigned int order;
2803         struct vmap_block *vb;
2804         struct xarray *xa;
2805 
2806         BUG_ON(offset_in_page(size));
2807         BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2808 
2809         flush_cache_vunmap(addr, addr + size);
2810 
2811         order = get_order(size);
2812         offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2813 
2814         xa = addr_to_vb_xa(addr);
2815         vb = xa_load(xa, addr_to_vb_idx(addr));
2816 
2817         spin_lock(&vb->lock);
2818         bitmap_clear(vb->used_map, offset, (1UL << order));
2819         spin_unlock(&vb->lock);
2820 
2821         vunmap_range_noflush(addr, addr + size);
2822 
2823         if (debug_pagealloc_enabled_static())
2824                 flush_tlb_kernel_range(addr, addr + size);
2825 
2826         spin_lock(&vb->lock);
2827 
2828         /* Expand the not yet TLB flushed dirty range */
2829         vb->dirty_min = min(vb->dirty_min, offset);
2830         vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2831 
2832         WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2833         if (vb->dirty == VMAP_BBMAP_BITS) {
2834                 BUG_ON(vb->free);
2835                 spin_unlock(&vb->lock);
2836                 free_vmap_block(vb);
2837         } else
2838                 spin_unlock(&vb->lock);
2839 }
2840 
2841 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2842 {
2843         LIST_HEAD(purge_list);
2844         int cpu;
2845 
2846         if (unlikely(!vmap_initialized))
2847                 return;
2848 
2849         mutex_lock(&vmap_purge_lock);
2850 
2851         for_each_possible_cpu(cpu) {
2852                 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2853                 struct vmap_block *vb;
2854                 unsigned long idx;
2855 
2856                 rcu_read_lock();
2857                 xa_for_each(&vbq->vmap_blocks, idx, vb) {
2858                         spin_lock(&vb->lock);
2859 
2860                         /*
2861                          * Try to purge a fragmented block first. If it's
2862                          * not purgeable, check whether there is dirty
2863                          * space to be flushed.
2864                          */
2865                         if (!purge_fragmented_block(vb, &purge_list, false) &&
2866                             vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2867                                 unsigned long va_start = vb->va->va_start;
2868                                 unsigned long s, e;
2869 
2870                                 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2871                                 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2872 
2873                                 start = min(s, start);
2874                                 end   = max(e, end);
2875 
2876                                 /* Prevent that this is flushed again */
2877                                 vb->dirty_min = VMAP_BBMAP_BITS;
2878                                 vb->dirty_max = 0;
2879 
2880                                 flush = 1;
2881                         }
2882                         spin_unlock(&vb->lock);
2883                 }
2884                 rcu_read_unlock();
2885         }
2886         free_purged_blocks(&purge_list);
2887 
2888         if (!__purge_vmap_area_lazy(start, end, false) && flush)
2889                 flush_tlb_kernel_range(start, end);
2890         mutex_unlock(&vmap_purge_lock);
2891 }
2892 
2893 /**
2894  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2895  *
2896  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2897  * to amortize TLB flushing overheads. What this means is that any page you
2898  * have now, may, in a former life, have been mapped into kernel virtual
2899  * address by the vmap layer and so there might be some CPUs with TLB entries
2900  * still referencing that page (additional to the regular 1:1 kernel mapping).
2901  *
2902  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2903  * be sure that none of the pages we have control over will have any aliases
2904  * from the vmap layer.
2905  */
2906 void vm_unmap_aliases(void)
2907 {
2908         unsigned long start = ULONG_MAX, end = 0;
2909         int flush = 0;
2910 
2911         _vm_unmap_aliases(start, end, flush);
2912 }
2913 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2914 
2915 /**
2916  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2917  * @mem: the pointer returned by vm_map_ram
2918  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2919  */
2920 void vm_unmap_ram(const void *mem, unsigned int count)
2921 {
2922         unsigned long size = (unsigned long)count << PAGE_SHIFT;
2923         unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2924         struct vmap_area *va;
2925 
2926         might_sleep();
2927         BUG_ON(!addr);
2928         BUG_ON(addr < VMALLOC_START);
2929         BUG_ON(addr > VMALLOC_END);
2930         BUG_ON(!PAGE_ALIGNED(addr));
2931 
2932         kasan_poison_vmalloc(mem, size);
2933 
2934         if (likely(count <= VMAP_MAX_ALLOC)) {
2935                 debug_check_no_locks_freed(mem, size);
2936                 vb_free(addr, size);
2937                 return;
2938         }
2939 
2940         va = find_unlink_vmap_area(addr);
2941         if (WARN_ON_ONCE(!va))
2942                 return;
2943 
2944         debug_check_no_locks_freed((void *)va->va_start,
2945                                     (va->va_end - va->va_start));
2946         free_unmap_vmap_area(va);
2947 }
2948 EXPORT_SYMBOL(vm_unmap_ram);
2949 
2950 /**
2951  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2952  * @pages: an array of pointers to the pages to be mapped
2953  * @count: number of pages
2954  * @node: prefer to allocate data structures on this node
2955  *
2956  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2957  * faster than vmap so it's good.  But if you mix long-life and short-life
2958  * objects with vm_map_ram(), it could consume lots of address space through
2959  * fragmentation (especially on a 32bit machine).  You could see failures in
2960  * the end.  Please use this function for short-lived objects.
2961  *
2962  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2963  */
2964 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2965 {
2966         unsigned long size = (unsigned long)count << PAGE_SHIFT;
2967         unsigned long addr;
2968         void *mem;
2969 
2970         if (likely(count <= VMAP_MAX_ALLOC)) {
2971                 mem = vb_alloc(size, GFP_KERNEL);
2972                 if (IS_ERR(mem))
2973                         return NULL;
2974                 addr = (unsigned long)mem;
2975         } else {
2976                 struct vmap_area *va;
2977                 va = alloc_vmap_area(size, PAGE_SIZE,
2978                                 VMALLOC_START, VMALLOC_END,
2979                                 node, GFP_KERNEL, VMAP_RAM,
2980                                 NULL);
2981                 if (IS_ERR(va))
2982                         return NULL;
2983 
2984                 addr = va->va_start;
2985                 mem = (void *)addr;
2986         }
2987 
2988         if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2989                                 pages, PAGE_SHIFT) < 0) {
2990                 vm_unmap_ram(mem, count);
2991                 return NULL;
2992         }
2993 
2994         /*
2995          * Mark the pages as accessible, now that they are mapped.
2996          * With hardware tag-based KASAN, marking is skipped for
2997          * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2998          */
2999         mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
3000 
3001         return mem;
3002 }
3003 EXPORT_SYMBOL(vm_map_ram);
3004 
3005 static struct vm_struct *vmlist __initdata;
3006 
3007 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3008 {
3009 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3010         return vm->page_order;
3011 #else
3012         return 0;
3013 #endif
3014 }
3015 
3016 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3017 {
3018 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3019         vm->page_order = order;
3020 #else
3021         BUG_ON(order != 0);
3022 #endif
3023 }
3024 
3025 /**
3026  * vm_area_add_early - add vmap area early during boot
3027  * @vm: vm_struct to add
3028  *
3029  * This function is used to add fixed kernel vm area to vmlist before
3030  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
3031  * should contain proper values and the other fields should be zero.
3032  *
3033  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3034  */
3035 void __init vm_area_add_early(struct vm_struct *vm)
3036 {
3037         struct vm_struct *tmp, **p;
3038 
3039         BUG_ON(vmap_initialized);
3040         for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3041                 if (tmp->addr >= vm->addr) {
3042                         BUG_ON(tmp->addr < vm->addr + vm->size);
3043                         break;
3044                 } else
3045                         BUG_ON(tmp->addr + tmp->size > vm->addr);
3046         }
3047         vm->next = *p;
3048         *p = vm;
3049 }
3050 
3051 /**
3052  * vm_area_register_early - register vmap area early during boot
3053  * @vm: vm_struct to register
3054  * @align: requested alignment
3055  *
3056  * This function is used to register kernel vm area before
3057  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
3058  * proper values on entry and other fields should be zero.  On return,
3059  * vm->addr contains the allocated address.
3060  *
3061  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3062  */
3063 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3064 {
3065         unsigned long addr = ALIGN(VMALLOC_START, align);
3066         struct vm_struct *cur, **p;
3067 
3068         BUG_ON(vmap_initialized);
3069 
3070         for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3071                 if ((unsigned long)cur->addr - addr >= vm->size)
3072                         break;
3073                 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3074         }
3075 
3076         BUG_ON(addr > VMALLOC_END - vm->size);
3077         vm->addr = (void *)addr;
3078         vm->next = *p;
3079         *p = vm;
3080         kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3081 }
3082 
3083 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3084 {
3085         /*
3086          * Before removing VM_UNINITIALIZED,
3087          * we should make sure that vm has proper values.
3088          * Pair with smp_rmb() in show_numa_info().
3089          */
3090         smp_wmb();
3091         vm->flags &= ~VM_UNINITIALIZED;
3092 }
3093 
3094 static struct vm_struct *__get_vm_area_node(unsigned long size,
3095                 unsigned long align, unsigned long shift, unsigned long flags,
3096                 unsigned long start, unsigned long end, int node,
3097                 gfp_t gfp_mask, const void *caller)
3098 {
3099         struct vmap_area *va;
3100         struct vm_struct *area;
3101         unsigned long requested_size = size;
3102 
3103         BUG_ON(in_interrupt());
3104         size = ALIGN(size, 1ul << shift);
3105         if (unlikely(!size))
3106                 return NULL;
3107 
3108         if (flags & VM_IOREMAP)
3109                 align = 1ul << clamp_t(int, get_count_order_long(size),
3110                                        PAGE_SHIFT, IOREMAP_MAX_ORDER);
3111 
3112         area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3113         if (unlikely(!area))
3114                 return NULL;
3115 
3116         if (!(flags & VM_NO_GUARD))
3117                 size += PAGE_SIZE;
3118 
3119         area->flags = flags;
3120         area->caller = caller;
3121 
3122         va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3123         if (IS_ERR(va)) {
3124                 kfree(area);
3125                 return NULL;
3126         }
3127 
3128         /*
3129          * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3130          * best-effort approach, as they can be mapped outside of vmalloc code.
3131          * For VM_ALLOC mappings, the pages are marked as accessible after
3132          * getting mapped in __vmalloc_node_range().
3133          * With hardware tag-based KASAN, marking is skipped for
3134          * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3135          */
3136         if (!(flags & VM_ALLOC))
3137                 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3138                                                     KASAN_VMALLOC_PROT_NORMAL);
3139 
3140         return area;
3141 }
3142 
3143 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3144                                        unsigned long start, unsigned long end,
3145                                        const void *caller)
3146 {
3147         return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3148                                   NUMA_NO_NODE, GFP_KERNEL, caller);
3149 }
3150 
3151 /**
3152  * get_vm_area - reserve a contiguous kernel virtual area
3153  * @size:        size of the area
3154  * @flags:       %VM_IOREMAP for I/O mappings or VM_ALLOC
3155  *
3156  * Search an area of @size in the kernel virtual mapping area,
3157  * and reserved it for out purposes.  Returns the area descriptor
3158  * on success or %NULL on failure.
3159  *
3160  * Return: the area descriptor on success or %NULL on failure.
3161  */
3162 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3163 {
3164         return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3165                                   VMALLOC_START, VMALLOC_END,
3166                                   NUMA_NO_NODE, GFP_KERNEL,
3167                                   __builtin_return_address(0));
3168 }
3169 
3170 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3171                                 const void *caller)
3172 {
3173         return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3174                                   VMALLOC_START, VMALLOC_END,
3175                                   NUMA_NO_NODE, GFP_KERNEL, caller);
3176 }
3177 
3178 /**
3179  * find_vm_area - find a continuous kernel virtual area
3180  * @addr:         base address
3181  *
3182  * Search for the kernel VM area starting at @addr, and return it.
3183  * It is up to the caller to do all required locking to keep the returned
3184  * pointer valid.
3185  *
3186  * Return: the area descriptor on success or %NULL on failure.
3187  */
3188 struct vm_struct *find_vm_area(const void *addr)
3189 {
3190         struct vmap_area *va;
3191 
3192         va = find_vmap_area((unsigned long)addr);
3193         if (!va)
3194                 return NULL;
3195 
3196         return va->vm;
3197 }
3198 
3199 /**
3200  * remove_vm_area - find and remove a continuous kernel virtual area
3201  * @addr:           base address
3202  *
3203  * Search for the kernel VM area starting at @addr, and remove it.
3204  * This function returns the found VM area, but using it is NOT safe
3205  * on SMP machines, except for its size or flags.
3206  *
3207  * Return: the area descriptor on success or %NULL on failure.
3208  */
3209 struct vm_struct *remove_vm_area(const void *addr)
3210 {
3211         struct vmap_area *va;
3212         struct vm_struct *vm;
3213 
3214         might_sleep();
3215 
3216         if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3217                         addr))
3218                 return NULL;
3219 
3220         va = find_unlink_vmap_area((unsigned long)addr);
3221         if (!va || !va->vm)
3222                 return NULL;
3223         vm = va->vm;
3224 
3225         debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3226         debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3227         kasan_free_module_shadow(vm);
3228         kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3229 
3230         free_unmap_vmap_area(va);
3231         return vm;
3232 }
3233 
3234 static inline void set_area_direct_map(const struct vm_struct *area,
3235                                        int (*set_direct_map)(struct page *page))
3236 {
3237         int i;
3238 
3239         /* HUGE_VMALLOC passes small pages to set_direct_map */
3240         for (i = 0; i < area->nr_pages; i++)
3241                 if (page_address(area->pages[i]))
3242                         set_direct_map(area->pages[i]);
3243 }
3244 
3245 /*
3246  * Flush the vm mapping and reset the direct map.
3247  */
3248 static void vm_reset_perms(struct vm_struct *area)
3249 {
3250         unsigned long start = ULONG_MAX, end = 0;
3251         unsigned int page_order = vm_area_page_order(area);
3252         int flush_dmap = 0;
3253         int i;
3254 
3255         /*
3256          * Find the start and end range of the direct mappings to make sure that
3257          * the vm_unmap_aliases() flush includes the direct map.
3258          */
3259         for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3260                 unsigned long addr = (unsigned long)page_address(area->pages[i]);
3261 
3262                 if (addr) {
3263                         unsigned long page_size;
3264 
3265                         page_size = PAGE_SIZE << page_order;
3266                         start = min(addr, start);
3267                         end = max(addr + page_size, end);
3268                         flush_dmap = 1;
3269                 }
3270         }
3271 
3272         /*
3273          * Set direct map to something invalid so that it won't be cached if
3274          * there are any accesses after the TLB flush, then flush the TLB and
3275          * reset the direct map permissions to the default.
3276          */
3277         set_area_direct_map(area, set_direct_map_invalid_noflush);
3278         _vm_unmap_aliases(start, end, flush_dmap);
3279         set_area_direct_map(area, set_direct_map_default_noflush);
3280 }
3281 
3282 static void delayed_vfree_work(struct work_struct *w)
3283 {
3284         struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3285         struct llist_node *t, *llnode;
3286 
3287         llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3288                 vfree(llnode);
3289 }
3290 
3291 /**
3292  * vfree_atomic - release memory allocated by vmalloc()
3293  * @addr:         memory base address
3294  *
3295  * This one is just like vfree() but can be called in any atomic context
3296  * except NMIs.
3297  */
3298 void vfree_atomic(const void *addr)
3299 {
3300         struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3301 
3302         BUG_ON(in_nmi());
3303         kmemleak_free(addr);
3304 
3305         /*
3306          * Use raw_cpu_ptr() because this can be called from preemptible
3307          * context. Preemption is absolutely fine here, because the llist_add()
3308          * implementation is lockless, so it works even if we are adding to
3309          * another cpu's list. schedule_work() should be fine with this too.
3310          */
3311         if (addr && llist_add((struct llist_node *)addr, &p->list))
3312                 schedule_work(&p->wq);
3313 }
3314 
3315 /**
3316  * vfree - Release memory allocated by vmalloc()
3317  * @addr:  Memory base address
3318  *
3319  * Free the virtually continuous memory area starting at @addr, as obtained
3320  * from one of the vmalloc() family of APIs.  This will usually also free the
3321  * physical memory underlying the virtual allocation, but that memory is
3322  * reference counted, so it will not be freed until the last user goes away.
3323  *
3324  * If @addr is NULL, no operation is performed.
3325  *
3326  * Context:
3327  * May sleep if called *not* from interrupt context.
3328  * Must not be called in NMI context (strictly speaking, it could be
3329  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3330  * conventions for vfree() arch-dependent would be a really bad idea).
3331  */
3332 void vfree(const void *addr)
3333 {
3334         struct vm_struct *vm;
3335         int i;
3336 
3337         if (unlikely(in_interrupt())) {
3338                 vfree_atomic(addr);
3339                 return;
3340         }
3341 
3342         BUG_ON(in_nmi());
3343         kmemleak_free(addr);
3344         might_sleep();
3345 
3346         if (!addr)
3347                 return;
3348 
3349         vm = remove_vm_area(addr);
3350         if (unlikely(!vm)) {
3351                 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3352                                 addr);
3353                 return;
3354         }
3355 
3356         if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3357                 vm_reset_perms(vm);
3358         for (i = 0; i < vm->nr_pages; i++) {
3359                 struct page *page = vm->pages[i];
3360 
3361                 BUG_ON(!page);
3362                 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
3363                 /*
3364                  * High-order allocs for huge vmallocs are split, so
3365                  * can be freed as an array of order-0 allocations
3366                  */
3367                 __free_page(page);
3368                 cond_resched();
3369         }
3370         atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3371         kvfree(vm->pages);
3372         kfree(vm);
3373 }
3374 EXPORT_SYMBOL(vfree);
3375 
3376 /**
3377  * vunmap - release virtual mapping obtained by vmap()
3378  * @addr:   memory base address
3379  *
3380  * Free the virtually contiguous memory area starting at @addr,
3381  * which was created from the page array passed to vmap().
3382  *
3383  * Must not be called in interrupt context.
3384  */
3385 void vunmap(const void *addr)
3386 {
3387         struct vm_struct *vm;
3388 
3389         BUG_ON(in_interrupt());
3390         might_sleep();
3391 
3392         if (!addr)
3393                 return;
3394         vm = remove_vm_area(addr);
3395         if (unlikely(!vm)) {
3396                 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3397                                 addr);
3398                 return;
3399         }
3400         kfree(vm);
3401 }
3402 EXPORT_SYMBOL(vunmap);
3403 
3404 /**
3405  * vmap - map an array of pages into virtually contiguous space
3406  * @pages: array of page pointers
3407  * @count: number of pages to map
3408  * @flags: vm_area->flags
3409  * @prot: page protection for the mapping
3410  *
3411  * Maps @count pages from @pages into contiguous kernel virtual space.
3412  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3413  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3414  * are transferred from the caller to vmap(), and will be freed / dropped when
3415  * vfree() is called on the return value.
3416  *
3417  * Return: the address of the area or %NULL on failure
3418  */
3419 void *vmap(struct page **pages, unsigned int count,
3420            unsigned long flags, pgprot_t prot)
3421 {
3422         struct vm_struct *area;
3423         unsigned long addr;
3424         unsigned long size;             /* In bytes */
3425 
3426         might_sleep();
3427 
3428         if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3429                 return NULL;
3430 
3431         /*
3432          * Your top guard is someone else's bottom guard. Not having a top
3433          * guard compromises someone else's mappings too.
3434          */
3435         if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3436                 flags &= ~VM_NO_GUARD;
3437 
3438         if (count > totalram_pages())
3439                 return NULL;
3440 
3441         size = (unsigned long)count << PAGE_SHIFT;
3442         area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3443         if (!area)
3444                 return NULL;
3445 
3446         addr = (unsigned long)area->addr;
3447         if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3448                                 pages, PAGE_SHIFT) < 0) {
3449                 vunmap(area->addr);
3450                 return NULL;
3451         }
3452 
3453         if (flags & VM_MAP_PUT_PAGES) {
3454                 area->pages = pages;
3455                 area->nr_pages = count;
3456         }
3457         return area->addr;
3458 }
3459 EXPORT_SYMBOL(vmap);
3460 
3461 #ifdef CONFIG_VMAP_PFN
3462 struct vmap_pfn_data {
3463         unsigned long   *pfns;
3464         pgprot_t        prot;
3465         unsigned int    idx;
3466 };
3467 
3468 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3469 {
3470         struct vmap_pfn_data *data = private;
3471         unsigned long pfn = data->pfns[data->idx];
3472         pte_t ptent;
3473 
3474         if (WARN_ON_ONCE(pfn_valid(pfn)))
3475                 return -EINVAL;
3476 
3477         ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3478         set_pte_at(&init_mm, addr, pte, ptent);
3479 
3480         data->idx++;
3481         return 0;
3482 }
3483 
3484 /**
3485  * vmap_pfn - map an array of PFNs into virtually contiguous space
3486  * @pfns: array of PFNs
3487  * @count: number of pages to map
3488  * @prot: page protection for the mapping
3489  *
3490  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3491  * the start address of the mapping.
3492  */
3493 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3494 {
3495         struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3496         struct vm_struct *area;
3497 
3498         area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3499                         __builtin_return_address(0));
3500         if (!area)
3501                 return NULL;
3502         if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3503                         count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3504                 free_vm_area(area);
3505                 return NULL;
3506         }
3507 
3508         flush_cache_vmap((unsigned long)area->addr,
3509                          (unsigned long)area->addr + count * PAGE_SIZE);
3510 
3511         return area->addr;
3512 }
3513 EXPORT_SYMBOL_GPL(vmap_pfn);
3514 #endif /* CONFIG_VMAP_PFN */
3515 
3516 static inline unsigned int
3517 vm_area_alloc_pages(gfp_t gfp, int nid,
3518                 unsigned int order, unsigned int nr_pages, struct page **pages)
3519 {
3520         unsigned int nr_allocated = 0;
3521         gfp_t alloc_gfp = gfp;
3522         bool nofail = gfp & __GFP_NOFAIL;
3523         struct page *page;
3524         int i;
3525 
3526         /*
3527          * For order-0 pages we make use of bulk allocator, if
3528          * the page array is partly or not at all populated due
3529          * to fails, fallback to a single page allocator that is
3530          * more permissive.
3531          */
3532         if (!order) {
3533                 /* bulk allocator doesn't support nofail req. officially */
3534                 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3535 
3536                 while (nr_allocated < nr_pages) {
3537                         unsigned int nr, nr_pages_request;
3538 
3539                         /*
3540                          * A maximum allowed request is hard-coded and is 100
3541                          * pages per call. That is done in order to prevent a
3542                          * long preemption off scenario in the bulk-allocator
3543                          * so the range is [1:100].
3544                          */
3545                         nr_pages_request = min(100U, nr_pages - nr_allocated);
3546 
3547                         /* memory allocation should consider mempolicy, we can't
3548                          * wrongly use nearest node when nid == NUMA_NO_NODE,
3549                          * otherwise memory may be allocated in only one node,
3550                          * but mempolicy wants to alloc memory by interleaving.
3551                          */
3552                         if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3553                                 nr = alloc_pages_bulk_array_mempolicy_noprof(bulk_gfp,
3554                                                         nr_pages_request,
3555                                                         pages + nr_allocated);
3556 
3557                         else
3558                                 nr = alloc_pages_bulk_array_node_noprof(bulk_gfp, nid,
3559                                                         nr_pages_request,
3560                                                         pages + nr_allocated);
3561 
3562                         nr_allocated += nr;
3563                         cond_resched();
3564 
3565                         /*
3566                          * If zero or pages were obtained partly,
3567                          * fallback to a single page allocator.
3568                          */
3569                         if (nr != nr_pages_request)
3570                                 break;
3571                 }
3572         } else if (gfp & __GFP_NOFAIL) {
3573                 /*
3574                  * Higher order nofail allocations are really expensive and
3575                  * potentially dangerous (pre-mature OOM, disruptive reclaim
3576                  * and compaction etc.
3577                  */
3578                 alloc_gfp &= ~__GFP_NOFAIL;
3579         }
3580 
3581         /* High-order pages or fallback path if "bulk" fails. */
3582         while (nr_allocated < nr_pages) {
3583                 if (!nofail && fatal_signal_pending(current))
3584                         break;
3585 
3586                 if (nid == NUMA_NO_NODE)
3587                         page = alloc_pages_noprof(alloc_gfp, order);
3588                 else
3589                         page = alloc_pages_node_noprof(nid, alloc_gfp, order);
3590                 if (unlikely(!page))
3591                         break;
3592 
3593                 /*
3594                  * Higher order allocations must be able to be treated as
3595                  * indepdenent small pages by callers (as they can with
3596                  * small-page vmallocs). Some drivers do their own refcounting
3597                  * on vmalloc_to_page() pages, some use page->mapping,
3598                  * page->lru, etc.
3599                  */
3600                 if (order)
3601                         split_page(page, order);
3602 
3603                 /*
3604                  * Careful, we allocate and map page-order pages, but
3605                  * tracking is done per PAGE_SIZE page so as to keep the
3606                  * vm_struct APIs independent of the physical/mapped size.
3607                  */
3608                 for (i = 0; i < (1U << order); i++)
3609                         pages[nr_allocated + i] = page + i;
3610 
3611                 cond_resched();
3612                 nr_allocated += 1U << order;
3613         }
3614 
3615         return nr_allocated;
3616 }
3617 
3618 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3619                                  pgprot_t prot, unsigned int page_shift,
3620                                  int node)
3621 {
3622         const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3623         bool nofail = gfp_mask & __GFP_NOFAIL;
3624         unsigned long addr = (unsigned long)area->addr;
3625         unsigned long size = get_vm_area_size(area);
3626         unsigned long array_size;
3627         unsigned int nr_small_pages = size >> PAGE_SHIFT;
3628         unsigned int page_order;
3629         unsigned int flags;
3630         int ret;
3631 
3632         array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3633 
3634         if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3635                 gfp_mask |= __GFP_HIGHMEM;
3636 
3637         /* Please note that the recursion is strictly bounded. */
3638         if (array_size > PAGE_SIZE) {
3639                 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3640                                         area->caller);
3641         } else {
3642                 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3643         }
3644 
3645         if (!area->pages) {
3646                 warn_alloc(gfp_mask, NULL,
3647                         "vmalloc error: size %lu, failed to allocated page array size %lu",
3648                         nr_small_pages * PAGE_SIZE, array_size);
3649                 free_vm_area(area);
3650                 return NULL;
3651         }
3652 
3653         set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3654         page_order = vm_area_page_order(area);
3655 
3656         area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3657                 node, page_order, nr_small_pages, area->pages);
3658 
3659         atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3660         if (gfp_mask & __GFP_ACCOUNT) {
3661                 int i;
3662 
3663                 for (i = 0; i < area->nr_pages; i++)
3664                         mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3665         }
3666 
3667         /*
3668          * If not enough pages were obtained to accomplish an
3669          * allocation request, free them via vfree() if any.
3670          */
3671         if (area->nr_pages != nr_small_pages) {
3672                 /*
3673                  * vm_area_alloc_pages() can fail due to insufficient memory but
3674                  * also:-
3675                  *
3676                  * - a pending fatal signal
3677                  * - insufficient huge page-order pages
3678                  *
3679                  * Since we always retry allocations at order-0 in the huge page
3680                  * case a warning for either is spurious.
3681                  */
3682                 if (!fatal_signal_pending(current) && page_order == 0)
3683                         warn_alloc(gfp_mask, NULL,
3684                                 "vmalloc error: size %lu, failed to allocate pages",
3685                                 area->nr_pages * PAGE_SIZE);
3686                 goto fail;
3687         }
3688 
3689         /*
3690          * page tables allocations ignore external gfp mask, enforce it
3691          * by the scope API
3692          */
3693         if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3694                 flags = memalloc_nofs_save();
3695         else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3696                 flags = memalloc_noio_save();
3697 
3698         do {
3699                 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3700                         page_shift);
3701                 if (nofail && (ret < 0))
3702                         schedule_timeout_uninterruptible(1);
3703         } while (nofail && (ret < 0));
3704 
3705         if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3706                 memalloc_nofs_restore(flags);
3707         else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3708                 memalloc_noio_restore(flags);
3709 
3710         if (ret < 0) {
3711                 warn_alloc(gfp_mask, NULL,
3712                         "vmalloc error: size %lu, failed to map pages",
3713                         area->nr_pages * PAGE_SIZE);
3714                 goto fail;
3715         }
3716 
3717         return area->addr;
3718 
3719 fail:
3720         vfree(area->addr);
3721         return NULL;
3722 }
3723 
3724 /**
3725  * __vmalloc_node_range - allocate virtually contiguous memory
3726  * @size:                 allocation size
3727  * @align:                desired alignment
3728  * @start:                vm area range start
3729  * @end:                  vm area range end
3730  * @gfp_mask:             flags for the page level allocator
3731  * @prot:                 protection mask for the allocated pages
3732  * @vm_flags:             additional vm area flags (e.g. %VM_NO_GUARD)
3733  * @node:                 node to use for allocation or NUMA_NO_NODE
3734  * @caller:               caller's return address
3735  *
3736  * Allocate enough pages to cover @size from the page level
3737  * allocator with @gfp_mask flags. Please note that the full set of gfp
3738  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3739  * supported.
3740  * Zone modifiers are not supported. From the reclaim modifiers
3741  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3742  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3743  * __GFP_RETRY_MAYFAIL are not supported).
3744  *
3745  * __GFP_NOWARN can be used to suppress failures messages.
3746  *
3747  * Map them into contiguous kernel virtual space, using a pagetable
3748  * protection of @prot.
3749  *
3750  * Return: the address of the area or %NULL on failure
3751  */
3752 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3753                         unsigned long start, unsigned long end, gfp_t gfp_mask,
3754                         pgprot_t prot, unsigned long vm_flags, int node,
3755                         const void *caller)
3756 {
3757         struct vm_struct *area;
3758         void *ret;
3759         kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3760         unsigned long real_size = size;
3761         unsigned long real_align = align;
3762         unsigned int shift = PAGE_SHIFT;
3763 
3764         if (WARN_ON_ONCE(!size))
3765                 return NULL;
3766 
3767         if ((size >> PAGE_SHIFT) > totalram_pages()) {
3768                 warn_alloc(gfp_mask, NULL,
3769                         "vmalloc error: size %lu, exceeds total pages",
3770                         real_size);
3771                 return NULL;
3772         }
3773 
3774         if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3775                 unsigned long size_per_node;
3776 
3777                 /*
3778                  * Try huge pages. Only try for PAGE_KERNEL allocations,
3779                  * others like modules don't yet expect huge pages in
3780                  * their allocations due to apply_to_page_range not
3781                  * supporting them.
3782                  */
3783 
3784                 size_per_node = size;
3785                 if (node == NUMA_NO_NODE)
3786                         size_per_node /= num_online_nodes();
3787                 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3788                         shift = PMD_SHIFT;
3789                 else
3790                         shift = arch_vmap_pte_supported_shift(size_per_node);
3791 
3792                 align = max(real_align, 1UL << shift);
3793                 size = ALIGN(real_size, 1UL << shift);
3794         }
3795 
3796 again:
3797         area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3798                                   VM_UNINITIALIZED | vm_flags, start, end, node,
3799                                   gfp_mask, caller);
3800         if (!area) {
3801                 bool nofail = gfp_mask & __GFP_NOFAIL;
3802                 warn_alloc(gfp_mask, NULL,
3803                         "vmalloc error: size %lu, vm_struct allocation failed%s",
3804                         real_size, (nofail) ? ". Retrying." : "");
3805                 if (nofail) {
3806                         schedule_timeout_uninterruptible(1);
3807                         goto again;
3808                 }
3809                 goto fail;
3810         }
3811 
3812         /*
3813          * Prepare arguments for __vmalloc_area_node() and
3814          * kasan_unpoison_vmalloc().
3815          */
3816         if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3817                 if (kasan_hw_tags_enabled()) {
3818                         /*
3819                          * Modify protection bits to allow tagging.
3820                          * This must be done before mapping.
3821                          */
3822                         prot = arch_vmap_pgprot_tagged(prot);
3823 
3824                         /*
3825                          * Skip page_alloc poisoning and zeroing for physical
3826                          * pages backing VM_ALLOC mapping. Memory is instead
3827                          * poisoned and zeroed by kasan_unpoison_vmalloc().
3828                          */
3829                         gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3830                 }
3831 
3832                 /* Take note that the mapping is PAGE_KERNEL. */
3833                 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3834         }
3835 
3836         /* Allocate physical pages and map them into vmalloc space. */
3837         ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3838         if (!ret)
3839                 goto fail;
3840 
3841         /*
3842          * Mark the pages as accessible, now that they are mapped.
3843          * The condition for setting KASAN_VMALLOC_INIT should complement the
3844          * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3845          * to make sure that memory is initialized under the same conditions.
3846          * Tag-based KASAN modes only assign tags to normal non-executable
3847          * allocations, see __kasan_unpoison_vmalloc().
3848          */
3849         kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3850         if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3851             (gfp_mask & __GFP_SKIP_ZERO))
3852                 kasan_flags |= KASAN_VMALLOC_INIT;
3853         /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3854         area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3855 
3856         /*
3857          * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3858          * flag. It means that vm_struct is not fully initialized.
3859          * Now, it is fully initialized, so remove this flag here.
3860          */
3861         clear_vm_uninitialized_flag(area);
3862 
3863         size = PAGE_ALIGN(size);
3864         if (!(vm_flags & VM_DEFER_KMEMLEAK))
3865                 kmemleak_vmalloc(area, size, gfp_mask);
3866 
3867         return area->addr;
3868 
3869 fail:
3870         if (shift > PAGE_SHIFT) {
3871                 shift = PAGE_SHIFT;
3872                 align = real_align;
3873                 size = real_size;
3874                 goto again;
3875         }
3876 
3877         return NULL;
3878 }
3879 
3880 /**
3881  * __vmalloc_node - allocate virtually contiguous memory
3882  * @size:           allocation size
3883  * @align:          desired alignment
3884  * @gfp_mask:       flags for the page level allocator
3885  * @node:           node to use for allocation or NUMA_NO_NODE
3886  * @caller:         caller's return address
3887  *
3888  * Allocate enough pages to cover @size from the page level allocator with
3889  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3890  *
3891  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3892  * and __GFP_NOFAIL are not supported
3893  *
3894  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3895  * with mm people.
3896  *
3897  * Return: pointer to the allocated memory or %NULL on error
3898  */
3899 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
3900                             gfp_t gfp_mask, int node, const void *caller)
3901 {
3902         return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
3903                                 gfp_mask, PAGE_KERNEL, 0, node, caller);
3904 }
3905 /*
3906  * This is only for performance analysis of vmalloc and stress purpose.
3907  * It is required by vmalloc test module, therefore do not use it other
3908  * than that.
3909  */
3910 #ifdef CONFIG_TEST_VMALLOC_MODULE
3911 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
3912 #endif
3913 
3914 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
3915 {
3916         return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
3917                                 __builtin_return_address(0));
3918 }
3919 EXPORT_SYMBOL(__vmalloc_noprof);
3920 
3921 /**
3922  * vmalloc - allocate virtually contiguous memory
3923  * @size:    allocation size
3924  *
3925  * Allocate enough pages to cover @size from the page level
3926  * allocator and map them into contiguous kernel virtual space.
3927  *
3928  * For tight control over page level allocator and protection flags
3929  * use __vmalloc() instead.
3930  *
3931  * Return: pointer to the allocated memory or %NULL on error
3932  */
3933 void *vmalloc_noprof(unsigned long size)
3934 {
3935         return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3936                                 __builtin_return_address(0));
3937 }
3938 EXPORT_SYMBOL(vmalloc_noprof);
3939 
3940 /**
3941  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3942  * @size:      allocation size
3943  * @gfp_mask:  flags for the page level allocator
3944  *
3945  * Allocate enough pages to cover @size from the page level
3946  * allocator and map them into contiguous kernel virtual space.
3947  * If @size is greater than or equal to PMD_SIZE, allow using
3948  * huge pages for the memory
3949  *
3950  * Return: pointer to the allocated memory or %NULL on error
3951  */
3952 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
3953 {
3954         return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
3955                                     gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3956                                     NUMA_NO_NODE, __builtin_return_address(0));
3957 }
3958 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
3959 
3960 /**
3961  * vzalloc - allocate virtually contiguous memory with zero fill
3962  * @size:    allocation size
3963  *
3964  * Allocate enough pages to cover @size from the page level
3965  * allocator and map them into contiguous kernel virtual space.
3966  * The memory allocated is set to zero.
3967  *
3968  * For tight control over page level allocator and protection flags
3969  * use __vmalloc() instead.
3970  *
3971  * Return: pointer to the allocated memory or %NULL on error
3972  */
3973 void *vzalloc_noprof(unsigned long size)
3974 {
3975         return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3976                                 __builtin_return_address(0));
3977 }
3978 EXPORT_SYMBOL(vzalloc_noprof);
3979 
3980 /**
3981  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3982  * @size: allocation size
3983  *
3984  * The resulting memory area is zeroed so it can be mapped to userspace
3985  * without leaking data.
3986  *
3987  * Return: pointer to the allocated memory or %NULL on error
3988  */
3989 void *vmalloc_user_noprof(unsigned long size)
3990 {
3991         return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3992                                     GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3993                                     VM_USERMAP, NUMA_NO_NODE,
3994                                     __builtin_return_address(0));
3995 }
3996 EXPORT_SYMBOL(vmalloc_user_noprof);
3997 
3998 /**
3999  * vmalloc_node - allocate memory on a specific node
4000  * @size:         allocation size
4001  * @node:         numa node
4002  *
4003  * Allocate enough pages to cover @size from the page level
4004  * allocator and map them into contiguous kernel virtual space.
4005  *
4006  * For tight control over page level allocator and protection flags
4007  * use __vmalloc() instead.
4008  *
4009  * Return: pointer to the allocated memory or %NULL on error
4010  */
4011 void *vmalloc_node_noprof(unsigned long size, int node)
4012 {
4013         return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4014                         __builtin_return_address(0));
4015 }
4016 EXPORT_SYMBOL(vmalloc_node_noprof);
4017 
4018 /**
4019  * vzalloc_node - allocate memory on a specific node with zero fill
4020  * @size:       allocation size
4021  * @node:       numa node
4022  *
4023  * Allocate enough pages to cover @size from the page level
4024  * allocator and map them into contiguous kernel virtual space.
4025  * The memory allocated is set to zero.
4026  *
4027  * Return: pointer to the allocated memory or %NULL on error
4028  */
4029 void *vzalloc_node_noprof(unsigned long size, int node)
4030 {
4031         return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4032                                 __builtin_return_address(0));
4033 }
4034 EXPORT_SYMBOL(vzalloc_node_noprof);
4035 
4036 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4037 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4038 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4039 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4040 #else
4041 /*
4042  * 64b systems should always have either DMA or DMA32 zones. For others
4043  * GFP_DMA32 should do the right thing and use the normal zone.
4044  */
4045 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4046 #endif
4047 
4048 /**
4049  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4050  * @size:       allocation size
4051  *
4052  * Allocate enough 32bit PA addressable pages to cover @size from the
4053  * page level allocator and map them into contiguous kernel virtual space.
4054  *
4055  * Return: pointer to the allocated memory or %NULL on error
4056  */
4057 void *vmalloc_32_noprof(unsigned long size)
4058 {
4059         return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4060                         __builtin_return_address(0));
4061 }
4062 EXPORT_SYMBOL(vmalloc_32_noprof);
4063 
4064 /**
4065  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4066  * @size:            allocation size
4067  *
4068  * The resulting memory area is 32bit addressable and zeroed so it can be
4069  * mapped to userspace without leaking data.
4070  *
4071  * Return: pointer to the allocated memory or %NULL on error
4072  */
4073 void *vmalloc_32_user_noprof(unsigned long size)
4074 {
4075         return __vmalloc_node_range_noprof(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
4076                                     GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4077                                     VM_USERMAP, NUMA_NO_NODE,
4078                                     __builtin_return_address(0));
4079 }
4080 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4081 
4082 /*
4083  * Atomically zero bytes in the iterator.
4084  *
4085  * Returns the number of zeroed bytes.
4086  */
4087 static size_t zero_iter(struct iov_iter *iter, size_t count)
4088 {
4089         size_t remains = count;
4090 
4091         while (remains > 0) {
4092                 size_t num, copied;
4093 
4094                 num = min_t(size_t, remains, PAGE_SIZE);
4095                 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4096                 remains -= copied;
4097 
4098                 if (copied < num)
4099                         break;
4100         }
4101 
4102         return count - remains;
4103 }
4104 
4105 /*
4106  * small helper routine, copy contents to iter from addr.
4107  * If the page is not present, fill zero.
4108  *
4109  * Returns the number of copied bytes.
4110  */
4111 static size_t aligned_vread_iter(struct iov_iter *iter,
4112                                  const char *addr, size_t count)
4113 {
4114         size_t remains = count;
4115         struct page *page;
4116 
4117         while (remains > 0) {
4118                 unsigned long offset, length;
4119                 size_t copied = 0;
4120 
4121                 offset = offset_in_page(addr);
4122                 length = PAGE_SIZE - offset;
4123                 if (length > remains)
4124                         length = remains;
4125                 page = vmalloc_to_page(addr);
4126                 /*
4127                  * To do safe access to this _mapped_ area, we need lock. But
4128                  * adding lock here means that we need to add overhead of
4129                  * vmalloc()/vfree() calls for this _debug_ interface, rarely
4130                  * used. Instead of that, we'll use an local mapping via
4131                  * copy_page_to_iter_nofault() and accept a small overhead in
4132                  * this access function.
4133                  */
4134                 if (page)
4135                         copied = copy_page_to_iter_nofault(page, offset,
4136                                                            length, iter);
4137                 else
4138                         copied = zero_iter(iter, length);
4139 
4140                 addr += copied;
4141                 remains -= copied;
4142 
4143                 if (copied != length)
4144                         break;
4145         }
4146 
4147         return count - remains;
4148 }
4149 
4150 /*
4151  * Read from a vm_map_ram region of memory.
4152  *
4153  * Returns the number of copied bytes.
4154  */
4155 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4156                                   size_t count, unsigned long flags)
4157 {
4158         char *start;
4159         struct vmap_block *vb;
4160         struct xarray *xa;
4161         unsigned long offset;
4162         unsigned int rs, re;
4163         size_t remains, n;
4164 
4165         /*
4166          * If it's area created by vm_map_ram() interface directly, but
4167          * not further subdividing and delegating management to vmap_block,
4168          * handle it here.
4169          */
4170         if (!(flags & VMAP_BLOCK))
4171                 return aligned_vread_iter(iter, addr, count);
4172 
4173         remains = count;
4174 
4175         /*
4176          * Area is split into regions and tracked with vmap_block, read out
4177          * each region and zero fill the hole between regions.
4178          */
4179         xa = addr_to_vb_xa((unsigned long) addr);
4180         vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4181         if (!vb)
4182                 goto finished_zero;
4183 
4184         spin_lock(&vb->lock);
4185         if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4186                 spin_unlock(&vb->lock);
4187                 goto finished_zero;
4188         }
4189 
4190         for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4191                 size_t copied;
4192 
4193                 if (remains == 0)
4194                         goto finished;
4195 
4196                 start = vmap_block_vaddr(vb->va->va_start, rs);
4197 
4198                 if (addr < start) {
4199                         size_t to_zero = min_t(size_t, start - addr, remains);
4200                         size_t zeroed = zero_iter(iter, to_zero);
4201 
4202                         addr += zeroed;
4203                         remains -= zeroed;
4204 
4205                         if (remains == 0 || zeroed != to_zero)
4206                                 goto finished;
4207                 }
4208 
4209                 /*it could start reading from the middle of used region*/
4210                 offset = offset_in_page(addr);
4211                 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4212                 if (n > remains)
4213                         n = remains;
4214 
4215                 copied = aligned_vread_iter(iter, start + offset, n);
4216 
4217                 addr += copied;
4218                 remains -= copied;
4219 
4220                 if (copied != n)
4221                         goto finished;
4222         }
4223 
4224         spin_unlock(&vb->lock);
4225 
4226 finished_zero:
4227         /* zero-fill the left dirty or free regions */
4228         return count - remains + zero_iter(iter, remains);
4229 finished:
4230         /* We couldn't copy/zero everything */
4231         spin_unlock(&vb->lock);
4232         return count - remains;
4233 }
4234 
4235 /**
4236  * vread_iter() - read vmalloc area in a safe way to an iterator.
4237  * @iter:         the iterator to which data should be written.
4238  * @addr:         vm address.
4239  * @count:        number of bytes to be read.
4240  *
4241  * This function checks that addr is a valid vmalloc'ed area, and
4242  * copy data from that area to a given buffer. If the given memory range
4243  * of [addr...addr+count) includes some valid address, data is copied to
4244  * proper area of @buf. If there are memory holes, they'll be zero-filled.
4245  * IOREMAP area is treated as memory hole and no copy is done.
4246  *
4247  * If [addr...addr+count) doesn't includes any intersects with alive
4248  * vm_struct area, returns 0. @buf should be kernel's buffer.
4249  *
4250  * Note: In usual ops, vread() is never necessary because the caller
4251  * should know vmalloc() area is valid and can use memcpy().
4252  * This is for routines which have to access vmalloc area without
4253  * any information, as /proc/kcore.
4254  *
4255  * Return: number of bytes for which addr and buf should be increased
4256  * (same number as @count) or %0 if [addr...addr+count) doesn't
4257  * include any intersection with valid vmalloc area
4258  */
4259 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4260 {
4261         struct vmap_node *vn;
4262         struct vmap_area *va;
4263         struct vm_struct *vm;
4264         char *vaddr;
4265         size_t n, size, flags, remains;
4266         unsigned long next;
4267 
4268         addr = kasan_reset_tag(addr);
4269 
4270         /* Don't allow overflow */
4271         if ((unsigned long) addr + count < count)
4272                 count = -(unsigned long) addr;
4273 
4274         remains = count;
4275 
4276         vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4277         if (!vn)
4278                 goto finished_zero;
4279 
4280         /* no intersects with alive vmap_area */
4281         if ((unsigned long)addr + remains <= va->va_start)
4282                 goto finished_zero;
4283 
4284         do {
4285                 size_t copied;
4286 
4287                 if (remains == 0)
4288                         goto finished;
4289 
4290                 vm = va->vm;
4291                 flags = va->flags & VMAP_FLAGS_MASK;
4292                 /*
4293                  * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4294                  * be set together with VMAP_RAM.
4295                  */
4296                 WARN_ON(flags == VMAP_BLOCK);
4297 
4298                 if (!vm && !flags)
4299                         goto next_va;
4300 
4301                 if (vm && (vm->flags & VM_UNINITIALIZED))
4302                         goto next_va;
4303 
4304                 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4305                 smp_rmb();
4306 
4307                 vaddr = (char *) va->va_start;
4308                 size = vm ? get_vm_area_size(vm) : va_size(va);
4309 
4310                 if (addr >= vaddr + size)
4311                         goto next_va;
4312 
4313                 if (addr < vaddr) {
4314                         size_t to_zero = min_t(size_t, vaddr - addr, remains);
4315                         size_t zeroed = zero_iter(iter, to_zero);
4316 
4317                         addr += zeroed;
4318                         remains -= zeroed;
4319 
4320                         if (remains == 0 || zeroed != to_zero)
4321                                 goto finished;
4322                 }
4323 
4324                 n = vaddr + size - addr;
4325                 if (n > remains)
4326                         n = remains;
4327 
4328                 if (flags & VMAP_RAM)
4329                         copied = vmap_ram_vread_iter(iter, addr, n, flags);
4330                 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4331                         copied = aligned_vread_iter(iter, addr, n);
4332                 else /* IOREMAP | SPARSE area is treated as memory hole */
4333                         copied = zero_iter(iter, n);
4334 
4335                 addr += copied;
4336                 remains -= copied;
4337 
4338                 if (copied != n)
4339                         goto finished;
4340 
4341         next_va:
4342                 next = va->va_end;
4343                 spin_unlock(&vn->busy.lock);
4344         } while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4345 
4346 finished_zero:
4347         if (vn)
4348                 spin_unlock(&vn->busy.lock);
4349 
4350         /* zero-fill memory holes */
4351         return count - remains + zero_iter(iter, remains);
4352 finished:
4353         /* Nothing remains, or We couldn't copy/zero everything. */
4354         if (vn)
4355                 spin_unlock(&vn->busy.lock);
4356 
4357         return count - remains;
4358 }
4359 
4360 /**
4361  * remap_vmalloc_range_partial - map vmalloc pages to userspace
4362  * @vma:                vma to cover
4363  * @uaddr:              target user address to start at
4364  * @kaddr:              virtual address of vmalloc kernel memory
4365  * @pgoff:              offset from @kaddr to start at
4366  * @size:               size of map area
4367  *
4368  * Returns:     0 for success, -Exxx on failure
4369  *
4370  * This function checks that @kaddr is a valid vmalloc'ed area,
4371  * and that it is big enough to cover the range starting at
4372  * @uaddr in @vma. Will return failure if that criteria isn't
4373  * met.
4374  *
4375  * Similar to remap_pfn_range() (see mm/memory.c)
4376  */
4377 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4378                                 void *kaddr, unsigned long pgoff,
4379                                 unsigned long size)
4380 {
4381         struct vm_struct *area;
4382         unsigned long off;
4383         unsigned long end_index;
4384 
4385         if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4386                 return -EINVAL;
4387 
4388         size = PAGE_ALIGN(size);
4389 
4390         if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4391                 return -EINVAL;
4392 
4393         area = find_vm_area(kaddr);
4394         if (!area)
4395                 return -EINVAL;
4396 
4397         if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4398                 return -EINVAL;
4399 
4400         if (check_add_overflow(size, off, &end_index) ||
4401             end_index > get_vm_area_size(area))
4402                 return -EINVAL;
4403         kaddr += off;
4404 
4405         do {
4406                 struct page *page = vmalloc_to_page(kaddr);
4407                 int ret;
4408 
4409                 ret = vm_insert_page(vma, uaddr, page);
4410                 if (ret)
4411                         return ret;
4412 
4413                 uaddr += PAGE_SIZE;
4414                 kaddr += PAGE_SIZE;
4415                 size -= PAGE_SIZE;
4416         } while (size > 0);
4417 
4418         vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4419 
4420         return 0;
4421 }
4422 
4423 /**
4424  * remap_vmalloc_range - map vmalloc pages to userspace
4425  * @vma:                vma to cover (map full range of vma)
4426  * @addr:               vmalloc memory
4427  * @pgoff:              number of pages into addr before first page to map
4428  *
4429  * Returns:     0 for success, -Exxx on failure
4430  *
4431  * This function checks that addr is a valid vmalloc'ed area, and
4432  * that it is big enough to cover the vma. Will return failure if
4433  * that criteria isn't met.
4434  *
4435  * Similar to remap_pfn_range() (see mm/memory.c)
4436  */
4437 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4438                                                 unsigned long pgoff)
4439 {
4440         return remap_vmalloc_range_partial(vma, vma->vm_start,
4441                                            addr, pgoff,
4442                                            vma->vm_end - vma->vm_start);
4443 }
4444 EXPORT_SYMBOL(remap_vmalloc_range);
4445 
4446 void free_vm_area(struct vm_struct *area)
4447 {
4448         struct vm_struct *ret;
4449         ret = remove_vm_area(area->addr);
4450         BUG_ON(ret != area);
4451         kfree(area);
4452 }
4453 EXPORT_SYMBOL_GPL(free_vm_area);
4454 
4455 #ifdef CONFIG_SMP
4456 static struct vmap_area *node_to_va(struct rb_node *n)
4457 {
4458         return rb_entry_safe(n, struct vmap_area, rb_node);
4459 }
4460 
4461 /**
4462  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4463  * @addr: target address
4464  *
4465  * Returns: vmap_area if it is found. If there is no such area
4466  *   the first highest(reverse order) vmap_area is returned
4467  *   i.e. va->va_start < addr && va->va_end < addr or NULL
4468  *   if there are no any areas before @addr.
4469  */
4470 static struct vmap_area *
4471 pvm_find_va_enclose_addr(unsigned long addr)
4472 {
4473         struct vmap_area *va, *tmp;
4474         struct rb_node *n;
4475 
4476         n = free_vmap_area_root.rb_node;
4477         va = NULL;
4478 
4479         while (n) {
4480                 tmp = rb_entry(n, struct vmap_area, rb_node);
4481                 if (tmp->va_start <= addr) {
4482                         va = tmp;
4483                         if (tmp->va_end >= addr)
4484                                 break;
4485 
4486                         n = n->rb_right;
4487                 } else {
4488                         n = n->rb_left;
4489                 }
4490         }
4491 
4492         return va;
4493 }
4494 
4495 /**
4496  * pvm_determine_end_from_reverse - find the highest aligned address
4497  * of free block below VMALLOC_END
4498  * @va:
4499  *   in - the VA we start the search(reverse order);
4500  *   out - the VA with the highest aligned end address.
4501  * @align: alignment for required highest address
4502  *
4503  * Returns: determined end address within vmap_area
4504  */
4505 static unsigned long
4506 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4507 {
4508         unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4509         unsigned long addr;
4510 
4511         if (likely(*va)) {
4512                 list_for_each_entry_from_reverse((*va),
4513                                 &free_vmap_area_list, list) {
4514                         addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4515                         if ((*va)->va_start < addr)
4516                                 return addr;
4517                 }
4518         }
4519 
4520         return 0;
4521 }
4522 
4523 /**
4524  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4525  * @offsets: array containing offset of each area
4526  * @sizes: array containing size of each area
4527  * @nr_vms: the number of areas to allocate
4528  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4529  *
4530  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4531  *          vm_structs on success, %NULL on failure
4532  *
4533  * Percpu allocator wants to use congruent vm areas so that it can
4534  * maintain the offsets among percpu areas.  This function allocates
4535  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4536  * be scattered pretty far, distance between two areas easily going up
4537  * to gigabytes.  To avoid interacting with regular vmallocs, these
4538  * areas are allocated from top.
4539  *
4540  * Despite its complicated look, this allocator is rather simple. It
4541  * does everything top-down and scans free blocks from the end looking
4542  * for matching base. While scanning, if any of the areas do not fit the
4543  * base address is pulled down to fit the area. Scanning is repeated till
4544  * all the areas fit and then all necessary data structures are inserted
4545  * and the result is returned.
4546  */
4547 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4548                                      const size_t *sizes, int nr_vms,
4549                                      size_t align)
4550 {
4551         const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4552         const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4553         struct vmap_area **vas, *va;
4554         struct vm_struct **vms;
4555         int area, area2, last_area, term_area;
4556         unsigned long base, start, size, end, last_end, orig_start, orig_end;
4557         bool purged = false;
4558 
4559         /* verify parameters and allocate data structures */
4560         BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4561         for (last_area = 0, area = 0; area < nr_vms; area++) {
4562                 start = offsets[area];
4563                 end = start + sizes[area];
4564 
4565                 /* is everything aligned properly? */
4566                 BUG_ON(!IS_ALIGNED(offsets[area], align));
4567                 BUG_ON(!IS_ALIGNED(sizes[area], align));
4568 
4569                 /* detect the area with the highest address */
4570                 if (start > offsets[last_area])
4571                         last_area = area;
4572 
4573                 for (area2 = area + 1; area2 < nr_vms; area2++) {
4574                         unsigned long start2 = offsets[area2];
4575                         unsigned long end2 = start2 + sizes[area2];
4576 
4577                         BUG_ON(start2 < end && start < end2);
4578                 }
4579         }
4580         last_end = offsets[last_area] + sizes[last_area];
4581 
4582         if (vmalloc_end - vmalloc_start < last_end) {
4583                 WARN_ON(true);
4584                 return NULL;
4585         }
4586 
4587         vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4588         vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4589         if (!vas || !vms)
4590                 goto err_free2;
4591 
4592         for (area = 0; area < nr_vms; area++) {
4593                 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4594                 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4595                 if (!vas[area] || !vms[area])
4596                         goto err_free;
4597         }
4598 retry:
4599         spin_lock(&free_vmap_area_lock);
4600 
4601         /* start scanning - we scan from the top, begin with the last area */
4602         area = term_area = last_area;
4603         start = offsets[area];
4604         end = start + sizes[area];
4605 
4606         va = pvm_find_va_enclose_addr(vmalloc_end);
4607         base = pvm_determine_end_from_reverse(&va, align) - end;
4608 
4609         while (true) {
4610                 /*
4611                  * base might have underflowed, add last_end before
4612                  * comparing.
4613                  */
4614                 if (base + last_end < vmalloc_start + last_end)
4615                         goto overflow;
4616 
4617                 /*
4618                  * Fitting base has not been found.
4619                  */
4620                 if (va == NULL)
4621                         goto overflow;
4622 
4623                 /*
4624                  * If required width exceeds current VA block, move
4625                  * base downwards and then recheck.
4626                  */
4627                 if (base + end > va->va_end) {
4628                         base = pvm_determine_end_from_reverse(&va, align) - end;
4629                         term_area = area;
4630                         continue;
4631                 }
4632 
4633                 /*
4634                  * If this VA does not fit, move base downwards and recheck.
4635                  */
4636                 if (base + start < va->va_start) {
4637                         va = node_to_va(rb_prev(&va->rb_node));
4638                         base = pvm_determine_end_from_reverse(&va, align) - end;
4639                         term_area = area;
4640                         continue;
4641                 }
4642 
4643                 /*
4644                  * This area fits, move on to the previous one.  If
4645                  * the previous one is the terminal one, we're done.
4646                  */
4647                 area = (area + nr_vms - 1) % nr_vms;
4648                 if (area == term_area)
4649                         break;
4650 
4651                 start = offsets[area];
4652                 end = start + sizes[area];
4653                 va = pvm_find_va_enclose_addr(base + end);
4654         }
4655 
4656         /* we've found a fitting base, insert all va's */
4657         for (area = 0; area < nr_vms; area++) {
4658                 int ret;
4659 
4660                 start = base + offsets[area];
4661                 size = sizes[area];
4662 
4663                 va = pvm_find_va_enclose_addr(start);
4664                 if (WARN_ON_ONCE(va == NULL))
4665                         /* It is a BUG(), but trigger recovery instead. */
4666                         goto recovery;
4667 
4668                 ret = va_clip(&free_vmap_area_root,
4669                         &free_vmap_area_list, va, start, size);
4670                 if (WARN_ON_ONCE(unlikely(ret)))
4671                         /* It is a BUG(), but trigger recovery instead. */
4672                         goto recovery;
4673 
4674                 /* Allocated area. */
4675                 va = vas[area];
4676                 va->va_start = start;
4677                 va->va_end = start + size;
4678         }
4679 
4680         spin_unlock(&free_vmap_area_lock);
4681 
4682         /* populate the kasan shadow space */
4683         for (area = 0; area < nr_vms; area++) {
4684                 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4685                         goto err_free_shadow;
4686         }
4687 
4688         /* insert all vm's */
4689         for (area = 0; area < nr_vms; area++) {
4690                 struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4691 
4692                 spin_lock(&vn->busy.lock);
4693                 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4694                 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
4695                                  pcpu_get_vm_areas);
4696                 spin_unlock(&vn->busy.lock);
4697         }
4698 
4699         /*
4700          * Mark allocated areas as accessible. Do it now as a best-effort
4701          * approach, as they can be mapped outside of vmalloc code.
4702          * With hardware tag-based KASAN, marking is skipped for
4703          * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4704          */
4705         for (area = 0; area < nr_vms; area++)
4706                 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4707                                 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4708 
4709         kfree(vas);
4710         return vms;
4711 
4712 recovery:
4713         /*
4714          * Remove previously allocated areas. There is no
4715          * need in removing these areas from the busy tree,
4716          * because they are inserted only on the final step
4717          * and when pcpu_get_vm_areas() is success.
4718          */
4719         while (area--) {
4720                 orig_start = vas[area]->va_start;
4721                 orig_end = vas[area]->va_end;
4722                 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4723                                 &free_vmap_area_list);
4724                 if (va)
4725                         kasan_release_vmalloc(orig_start, orig_end,
4726                                 va->va_start, va->va_end);
4727                 vas[area] = NULL;
4728         }
4729 
4730 overflow:
4731         spin_unlock(&free_vmap_area_lock);
4732         if (!purged) {
4733                 reclaim_and_purge_vmap_areas();
4734                 purged = true;
4735 
4736                 /* Before "retry", check if we recover. */
4737                 for (area = 0; area < nr_vms; area++) {
4738                         if (vas[area])
4739                                 continue;
4740 
4741                         vas[area] = kmem_cache_zalloc(
4742                                 vmap_area_cachep, GFP_KERNEL);
4743                         if (!vas[area])
4744                                 goto err_free;
4745                 }
4746 
4747                 goto retry;
4748         }
4749 
4750 err_free:
4751         for (area = 0; area < nr_vms; area++) {
4752                 if (vas[area])
4753                         kmem_cache_free(vmap_area_cachep, vas[area]);
4754 
4755                 kfree(vms[area]);
4756         }
4757 err_free2:
4758         kfree(vas);
4759         kfree(vms);
4760         return NULL;
4761 
4762 err_free_shadow:
4763         spin_lock(&free_vmap_area_lock);
4764         /*
4765          * We release all the vmalloc shadows, even the ones for regions that
4766          * hadn't been successfully added. This relies on kasan_release_vmalloc
4767          * being able to tolerate this case.
4768          */
4769         for (area = 0; area < nr_vms; area++) {
4770                 orig_start = vas[area]->va_start;
4771                 orig_end = vas[area]->va_end;
4772                 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4773                                 &free_vmap_area_list);
4774                 if (va)
4775                         kasan_release_vmalloc(orig_start, orig_end,
4776                                 va->va_start, va->va_end);
4777                 vas[area] = NULL;
4778                 kfree(vms[area]);
4779         }
4780         spin_unlock(&free_vmap_area_lock);
4781         kfree(vas);
4782         kfree(vms);
4783         return NULL;
4784 }
4785 
4786 /**
4787  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4788  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4789  * @nr_vms: the number of allocated areas
4790  *
4791  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4792  */
4793 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4794 {
4795         int i;
4796 
4797         for (i = 0; i < nr_vms; i++)
4798                 free_vm_area(vms[i]);
4799         kfree(vms);
4800 }
4801 #endif  /* CONFIG_SMP */
4802 
4803 #ifdef CONFIG_PRINTK
4804 bool vmalloc_dump_obj(void *object)
4805 {
4806         const void *caller;
4807         struct vm_struct *vm;
4808         struct vmap_area *va;
4809         struct vmap_node *vn;
4810         unsigned long addr;
4811         unsigned int nr_pages;
4812 
4813         addr = PAGE_ALIGN((unsigned long) object);
4814         vn = addr_to_node(addr);
4815 
4816         if (!spin_trylock(&vn->busy.lock))
4817                 return false;
4818 
4819         va = __find_vmap_area(addr, &vn->busy.root);
4820         if (!va || !va->vm) {
4821                 spin_unlock(&vn->busy.lock);
4822                 return false;
4823         }
4824 
4825         vm = va->vm;
4826         addr = (unsigned long) vm->addr;
4827         caller = vm->caller;
4828         nr_pages = vm->nr_pages;
4829         spin_unlock(&vn->busy.lock);
4830 
4831         pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4832                 nr_pages, addr, caller);
4833 
4834         return true;
4835 }
4836 #endif
4837 
4838 #ifdef CONFIG_PROC_FS
4839 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4840 {
4841         if (IS_ENABLED(CONFIG_NUMA)) {
4842                 unsigned int nr, *counters = m->private;
4843                 unsigned int step = 1U << vm_area_page_order(v);
4844 
4845                 if (!counters)
4846                         return;
4847 
4848                 if (v->flags & VM_UNINITIALIZED)
4849                         return;
4850                 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4851                 smp_rmb();
4852 
4853                 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4854 
4855                 for (nr = 0; nr < v->nr_pages; nr += step)
4856                         counters[page_to_nid(v->pages[nr])] += step;
4857                 for_each_node_state(nr, N_HIGH_MEMORY)
4858                         if (counters[nr])
4859                                 seq_printf(m, " N%u=%u", nr, counters[nr]);
4860         }
4861 }
4862 
4863 static void show_purge_info(struct seq_file *m)
4864 {
4865         struct vmap_node *vn;
4866         struct vmap_area *va;
4867         int i;
4868 
4869         for (i = 0; i < nr_vmap_nodes; i++) {
4870                 vn = &vmap_nodes[i];
4871 
4872                 spin_lock(&vn->lazy.lock);
4873                 list_for_each_entry(va, &vn->lazy.head, list) {
4874                         seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4875                                 (void *)va->va_start, (void *)va->va_end,
4876                                 va->va_end - va->va_start);
4877                 }
4878                 spin_unlock(&vn->lazy.lock);
4879         }
4880 }
4881 
4882 static int vmalloc_info_show(struct seq_file *m, void *p)
4883 {
4884         struct vmap_node *vn;
4885         struct vmap_area *va;
4886         struct vm_struct *v;
4887         int i;
4888 
4889         for (i = 0; i < nr_vmap_nodes; i++) {
4890                 vn = &vmap_nodes[i];
4891 
4892                 spin_lock(&vn->busy.lock);
4893                 list_for_each_entry(va, &vn->busy.head, list) {
4894                         if (!va->vm) {
4895                                 if (va->flags & VMAP_RAM)
4896                                         seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4897                                                 (void *)va->va_start, (void *)va->va_end,
4898                                                 va->va_end - va->va_start);
4899 
4900                                 continue;
4901                         }
4902 
4903                         v = va->vm;
4904 
4905                         seq_printf(m, "0x%pK-0x%pK %7ld",
4906                                 v->addr, v->addr + v->size, v->size);
4907 
4908                         if (v->caller)
4909                                 seq_printf(m, " %pS", v->caller);
4910 
4911                         if (v->nr_pages)
4912                                 seq_printf(m, " pages=%d", v->nr_pages);
4913 
4914                         if (v->phys_addr)
4915                                 seq_printf(m, " phys=%pa", &v->phys_addr);
4916 
4917                         if (v->flags & VM_IOREMAP)
4918                                 seq_puts(m, " ioremap");
4919 
4920                         if (v->flags & VM_SPARSE)
4921                                 seq_puts(m, " sparse");
4922 
4923                         if (v->flags & VM_ALLOC)
4924                                 seq_puts(m, " vmalloc");
4925 
4926                         if (v->flags & VM_MAP)
4927                                 seq_puts(m, " vmap");
4928 
4929                         if (v->flags & VM_USERMAP)
4930                                 seq_puts(m, " user");
4931 
4932                         if (v->flags & VM_DMA_COHERENT)
4933                                 seq_puts(m, " dma-coherent");
4934 
4935                         if (is_vmalloc_addr(v->pages))
4936                                 seq_puts(m, " vpages");
4937 
4938                         show_numa_info(m, v);
4939                         seq_putc(m, '\n');
4940                 }
4941                 spin_unlock(&vn->busy.lock);
4942         }
4943 
4944         /*
4945          * As a final step, dump "unpurged" areas.
4946          */
4947         show_purge_info(m);
4948         return 0;
4949 }
4950 
4951 static int __init proc_vmalloc_init(void)
4952 {
4953         void *priv_data = NULL;
4954 
4955         if (IS_ENABLED(CONFIG_NUMA))
4956                 priv_data = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
4957 
4958         proc_create_single_data("vmallocinfo",
4959                 0400, NULL, vmalloc_info_show, priv_data);
4960 
4961         return 0;
4962 }
4963 module_init(proc_vmalloc_init);
4964 
4965 #endif
4966 
4967 static void __init vmap_init_free_space(void)
4968 {
4969         unsigned long vmap_start = 1;
4970         const unsigned long vmap_end = ULONG_MAX;
4971         struct vmap_area *free;
4972         struct vm_struct *busy;
4973 
4974         /*
4975          *     B     F     B     B     B     F
4976          * -|-----|.....|-----|-----|-----|.....|-
4977          *  |           The KVA space           |
4978          *  |<--------------------------------->|
4979          */
4980         for (busy = vmlist; busy; busy = busy->next) {
4981                 if ((unsigned long) busy->addr - vmap_start > 0) {
4982                         free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4983                         if (!WARN_ON_ONCE(!free)) {
4984                                 free->va_start = vmap_start;
4985                                 free->va_end = (unsigned long) busy->addr;
4986 
4987                                 insert_vmap_area_augment(free, NULL,
4988                                         &free_vmap_area_root,
4989                                                 &free_vmap_area_list);
4990                         }
4991                 }
4992 
4993                 vmap_start = (unsigned long) busy->addr + busy->size;
4994         }
4995 
4996         if (vmap_end - vmap_start > 0) {
4997                 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4998                 if (!WARN_ON_ONCE(!free)) {
4999                         free->va_start = vmap_start;
5000                         free->va_end = vmap_end;
5001 
5002                         insert_vmap_area_augment(free, NULL,
5003                                 &free_vmap_area_root,
5004                                         &free_vmap_area_list);
5005                 }
5006         }
5007 }
5008 
5009 static void vmap_init_nodes(void)
5010 {
5011         struct vmap_node *vn;
5012         int i, n;
5013 
5014 #if BITS_PER_LONG == 64
5015         /*
5016          * A high threshold of max nodes is fixed and bound to 128,
5017          * thus a scale factor is 1 for systems where number of cores
5018          * are less or equal to specified threshold.
5019          *
5020          * As for NUMA-aware notes. For bigger systems, for example
5021          * NUMA with multi-sockets, where we can end-up with thousands
5022          * of cores in total, a "sub-numa-clustering" should be added.
5023          *
5024          * In this case a NUMA domain is considered as a single entity
5025          * with dedicated sub-nodes in it which describe one group or
5026          * set of cores. Therefore a per-domain purging is supposed to
5027          * be added as well as a per-domain balancing.
5028          */
5029         n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5030 
5031         if (n > 1) {
5032                 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5033                 if (vn) {
5034                         /* Node partition is 16 pages. */
5035                         vmap_zone_size = (1 << 4) * PAGE_SIZE;
5036                         nr_vmap_nodes = n;
5037                         vmap_nodes = vn;
5038                 } else {
5039                         pr_err("Failed to allocate an array. Disable a node layer\n");
5040                 }
5041         }
5042 #endif
5043 
5044         for (n = 0; n < nr_vmap_nodes; n++) {
5045                 vn = &vmap_nodes[n];
5046                 vn->busy.root = RB_ROOT;
5047                 INIT_LIST_HEAD(&vn->busy.head);
5048                 spin_lock_init(&vn->busy.lock);
5049 
5050                 vn->lazy.root = RB_ROOT;
5051                 INIT_LIST_HEAD(&vn->lazy.head);
5052                 spin_lock_init(&vn->lazy.lock);
5053 
5054                 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5055                         INIT_LIST_HEAD(&vn->pool[i].head);
5056                         WRITE_ONCE(vn->pool[i].len, 0);
5057                 }
5058 
5059                 spin_lock_init(&vn->pool_lock);
5060         }
5061 }
5062 
5063 static unsigned long
5064 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5065 {
5066         unsigned long count;
5067         struct vmap_node *vn;
5068         int i, j;
5069 
5070         for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
5071                 vn = &vmap_nodes[i];
5072 
5073                 for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
5074                         count += READ_ONCE(vn->pool[j].len);
5075         }
5076 
5077         return count ? count : SHRINK_EMPTY;
5078 }
5079 
5080 static unsigned long
5081 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5082 {
5083         int i;
5084 
5085         for (i = 0; i < nr_vmap_nodes; i++)
5086                 decay_va_pool_node(&vmap_nodes[i], true);
5087 
5088         return SHRINK_STOP;
5089 }
5090 
5091 void __init vmalloc_init(void)
5092 {
5093         struct shrinker *vmap_node_shrinker;
5094         struct vmap_area *va;
5095         struct vmap_node *vn;
5096         struct vm_struct *tmp;
5097         int i;
5098 
5099         /*
5100          * Create the cache for vmap_area objects.
5101          */
5102         vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5103 
5104         for_each_possible_cpu(i) {
5105                 struct vmap_block_queue *vbq;
5106                 struct vfree_deferred *p;
5107 
5108                 vbq = &per_cpu(vmap_block_queue, i);
5109                 spin_lock_init(&vbq->lock);
5110                 INIT_LIST_HEAD(&vbq->free);
5111                 p = &per_cpu(vfree_deferred, i);
5112                 init_llist_head(&p->list);
5113                 INIT_WORK(&p->wq, delayed_vfree_work);
5114                 xa_init(&vbq->vmap_blocks);
5115         }
5116 
5117         /*
5118          * Setup nodes before importing vmlist.
5119          */
5120         vmap_init_nodes();
5121 
5122         /* Import existing vmlist entries. */
5123         for (tmp = vmlist; tmp; tmp = tmp->next) {
5124                 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5125                 if (WARN_ON_ONCE(!va))
5126                         continue;
5127 
5128                 va->va_start = (unsigned long)tmp->addr;
5129                 va->va_end = va->va_start + tmp->size;
5130                 va->vm = tmp;
5131 
5132                 vn = addr_to_node(va->va_start);
5133                 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5134         }
5135 
5136         /*
5137          * Now we can initialize a free vmap space.
5138          */
5139         vmap_init_free_space();
5140         vmap_initialized = true;
5141 
5142         vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5143         if (!vmap_node_shrinker) {
5144                 pr_err("Failed to allocate vmap-node shrinker!\n");
5145                 return;
5146         }
5147 
5148         vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5149         vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5150         shrinker_register(vmap_node_shrinker);
5151 }
5152 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php