1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 4 * 5 * Swap reorganised 29.12.95, Stephen Tweedie. 6 * kswapd added: 7.1.96 sct 7 * Removed kswapd_ctl limits, and swap out as many pages as needed 8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 10 * Multiqueue VM started 5.8.00, Rik van Riel. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */ 30 #include <linux/mm_inline.h> 31 #include <linux/backing-dev.h> 32 #include <linux/rmap.h> 33 #include <linux/topology.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/compaction.h> 37 #include <linux/notifier.h> 38 #include <linux/delay.h> 39 #include <linux/kthread.h> 40 #include <linux/freezer.h> 41 #include <linux/memcontrol.h> 42 #include <linux/migrate.h> 43 #include <linux/delayacct.h> 44 #include <linux/sysctl.h> 45 #include <linux/memory-tiers.h> 46 #include <linux/oom.h> 47 #include <linux/pagevec.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 #include <linux/psi.h> 52 #include <linux/pagewalk.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/ctype.h> 55 #include <linux/debugfs.h> 56 #include <linux/khugepaged.h> 57 #include <linux/rculist_nulls.h> 58 #include <linux/random.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/div64.h> 62 63 #include <linux/swapops.h> 64 #include <linux/balloon_compaction.h> 65 #include <linux/sched/sysctl.h> 66 67 #include "internal.h" 68 #include "swap.h" 69 70 #define CREATE_TRACE_POINTS 71 #include <trace/events/vmscan.h> 72 73 struct scan_control { 74 /* How many pages shrink_list() should reclaim */ 75 unsigned long nr_to_reclaim; 76 77 /* 78 * Nodemask of nodes allowed by the caller. If NULL, all nodes 79 * are scanned. 80 */ 81 nodemask_t *nodemask; 82 83 /* 84 * The memory cgroup that hit its limit and as a result is the 85 * primary target of this reclaim invocation. 86 */ 87 struct mem_cgroup *target_mem_cgroup; 88 89 /* 90 * Scan pressure balancing between anon and file LRUs 91 */ 92 unsigned long anon_cost; 93 unsigned long file_cost; 94 95 #ifdef CONFIG_MEMCG 96 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */ 97 int *proactive_swappiness; 98 #endif 99 100 /* Can active folios be deactivated as part of reclaim? */ 101 #define DEACTIVATE_ANON 1 102 #define DEACTIVATE_FILE 2 103 unsigned int may_deactivate:2; 104 unsigned int force_deactivate:1; 105 unsigned int skipped_deactivate:1; 106 107 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 108 unsigned int may_writepage:1; 109 110 /* Can mapped folios be reclaimed? */ 111 unsigned int may_unmap:1; 112 113 /* Can folios be swapped as part of reclaim? */ 114 unsigned int may_swap:1; 115 116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */ 117 unsigned int no_cache_trim_mode:1; 118 119 /* Has cache_trim_mode failed at least once? */ 120 unsigned int cache_trim_mode_failed:1; 121 122 /* Proactive reclaim invoked by userspace through memory.reclaim */ 123 unsigned int proactive:1; 124 125 /* 126 * Cgroup memory below memory.low is protected as long as we 127 * don't threaten to OOM. If any cgroup is reclaimed at 128 * reduced force or passed over entirely due to its memory.low 129 * setting (memcg_low_skipped), and nothing is reclaimed as a 130 * result, then go back for one more cycle that reclaims the protected 131 * memory (memcg_low_reclaim) to avert OOM. 132 */ 133 unsigned int memcg_low_reclaim:1; 134 unsigned int memcg_low_skipped:1; 135 136 /* Shared cgroup tree walk failed, rescan the whole tree */ 137 unsigned int memcg_full_walk:1; 138 139 unsigned int hibernation_mode:1; 140 141 /* One of the zones is ready for compaction */ 142 unsigned int compaction_ready:1; 143 144 /* There is easily reclaimable cold cache in the current node */ 145 unsigned int cache_trim_mode:1; 146 147 /* The file folios on the current node are dangerously low */ 148 unsigned int file_is_tiny:1; 149 150 /* Always discard instead of demoting to lower tier memory */ 151 unsigned int no_demotion:1; 152 153 /* Allocation order */ 154 s8 order; 155 156 /* Scan (total_size >> priority) pages at once */ 157 s8 priority; 158 159 /* The highest zone to isolate folios for reclaim from */ 160 s8 reclaim_idx; 161 162 /* This context's GFP mask */ 163 gfp_t gfp_mask; 164 165 /* Incremented by the number of inactive pages that were scanned */ 166 unsigned long nr_scanned; 167 168 /* Number of pages freed so far during a call to shrink_zones() */ 169 unsigned long nr_reclaimed; 170 171 struct { 172 unsigned int dirty; 173 unsigned int unqueued_dirty; 174 unsigned int congested; 175 unsigned int writeback; 176 unsigned int immediate; 177 unsigned int file_taken; 178 unsigned int taken; 179 } nr; 180 181 /* for recording the reclaimed slab by now */ 182 struct reclaim_state reclaim_state; 183 }; 184 185 #ifdef ARCH_HAS_PREFETCHW 186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \ 187 do { \ 188 if ((_folio)->lru.prev != _base) { \ 189 struct folio *prev; \ 190 \ 191 prev = lru_to_folio(&(_folio->lru)); \ 192 prefetchw(&prev->_field); \ 193 } \ 194 } while (0) 195 #else 196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0) 197 #endif 198 199 /* 200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy. 201 */ 202 int vm_swappiness = 60; 203 204 #ifdef CONFIG_MEMCG 205 206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */ 207 static bool cgroup_reclaim(struct scan_control *sc) 208 { 209 return sc->target_mem_cgroup; 210 } 211 212 /* 213 * Returns true for reclaim on the root cgroup. This is true for direct 214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup. 215 */ 216 static bool root_reclaim(struct scan_control *sc) 217 { 218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup); 219 } 220 221 /** 222 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 223 * @sc: scan_control in question 224 * 225 * The normal page dirty throttling mechanism in balance_dirty_pages() is 226 * completely broken with the legacy memcg and direct stalling in 227 * shrink_folio_list() is used for throttling instead, which lacks all the 228 * niceties such as fairness, adaptive pausing, bandwidth proportional 229 * allocation and configurability. 230 * 231 * This function tests whether the vmscan currently in progress can assume 232 * that the normal dirty throttling mechanism is operational. 233 */ 234 static bool writeback_throttling_sane(struct scan_control *sc) 235 { 236 if (!cgroup_reclaim(sc)) 237 return true; 238 #ifdef CONFIG_CGROUP_WRITEBACK 239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 240 return true; 241 #endif 242 return false; 243 } 244 245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 246 { 247 if (sc->proactive && sc->proactive_swappiness) 248 return *sc->proactive_swappiness; 249 return mem_cgroup_swappiness(memcg); 250 } 251 #else 252 static bool cgroup_reclaim(struct scan_control *sc) 253 { 254 return false; 255 } 256 257 static bool root_reclaim(struct scan_control *sc) 258 { 259 return true; 260 } 261 262 static bool writeback_throttling_sane(struct scan_control *sc) 263 { 264 return true; 265 } 266 267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg) 268 { 269 return READ_ONCE(vm_swappiness); 270 } 271 #endif 272 273 static void set_task_reclaim_state(struct task_struct *task, 274 struct reclaim_state *rs) 275 { 276 /* Check for an overwrite */ 277 WARN_ON_ONCE(rs && task->reclaim_state); 278 279 /* Check for the nulling of an already-nulled member */ 280 WARN_ON_ONCE(!rs && !task->reclaim_state); 281 282 task->reclaim_state = rs; 283 } 284 285 /* 286 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to 287 * scan_control->nr_reclaimed. 288 */ 289 static void flush_reclaim_state(struct scan_control *sc) 290 { 291 /* 292 * Currently, reclaim_state->reclaimed includes three types of pages 293 * freed outside of vmscan: 294 * (1) Slab pages. 295 * (2) Clean file pages from pruned inodes (on highmem systems). 296 * (3) XFS freed buffer pages. 297 * 298 * For all of these cases, we cannot universally link the pages to a 299 * single memcg. For example, a memcg-aware shrinker can free one object 300 * charged to the target memcg, causing an entire page to be freed. 301 * If we count the entire page as reclaimed from the memcg, we end up 302 * overestimating the reclaimed amount (potentially under-reclaiming). 303 * 304 * Only count such pages for global reclaim to prevent under-reclaiming 305 * from the target memcg; preventing unnecessary retries during memcg 306 * charging and false positives from proactive reclaim. 307 * 308 * For uncommon cases where the freed pages were actually mostly 309 * charged to the target memcg, we end up underestimating the reclaimed 310 * amount. This should be fine. The freed pages will be uncharged 311 * anyway, even if they are not counted here properly, and we will be 312 * able to make forward progress in charging (which is usually in a 313 * retry loop). 314 * 315 * We can go one step further, and report the uncharged objcg pages in 316 * memcg reclaim, to make reporting more accurate and reduce 317 * underestimation, but it's probably not worth the complexity for now. 318 */ 319 if (current->reclaim_state && root_reclaim(sc)) { 320 sc->nr_reclaimed += current->reclaim_state->reclaimed; 321 current->reclaim_state->reclaimed = 0; 322 } 323 } 324 325 static bool can_demote(int nid, struct scan_control *sc) 326 { 327 if (!numa_demotion_enabled) 328 return false; 329 if (sc && sc->no_demotion) 330 return false; 331 if (next_demotion_node(nid) == NUMA_NO_NODE) 332 return false; 333 334 return true; 335 } 336 337 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg, 338 int nid, 339 struct scan_control *sc) 340 { 341 if (memcg == NULL) { 342 /* 343 * For non-memcg reclaim, is there 344 * space in any swap device? 345 */ 346 if (get_nr_swap_pages() > 0) 347 return true; 348 } else { 349 /* Is the memcg below its swap limit? */ 350 if (mem_cgroup_get_nr_swap_pages(memcg) > 0) 351 return true; 352 } 353 354 /* 355 * The page can not be swapped. 356 * 357 * Can it be reclaimed from this node via demotion? 358 */ 359 return can_demote(nid, sc); 360 } 361 362 /* 363 * This misses isolated folios which are not accounted for to save counters. 364 * As the data only determines if reclaim or compaction continues, it is 365 * not expected that isolated folios will be a dominating factor. 366 */ 367 unsigned long zone_reclaimable_pages(struct zone *zone) 368 { 369 unsigned long nr; 370 371 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 372 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 373 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL)) 374 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 375 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 376 377 return nr; 378 } 379 380 /** 381 * lruvec_lru_size - Returns the number of pages on the given LRU list. 382 * @lruvec: lru vector 383 * @lru: lru to use 384 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list) 385 */ 386 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, 387 int zone_idx) 388 { 389 unsigned long size = 0; 390 int zid; 391 392 for (zid = 0; zid <= zone_idx; zid++) { 393 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 394 395 if (!managed_zone(zone)) 396 continue; 397 398 if (!mem_cgroup_disabled()) 399 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 400 else 401 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 402 } 403 return size; 404 } 405 406 static unsigned long drop_slab_node(int nid) 407 { 408 unsigned long freed = 0; 409 struct mem_cgroup *memcg = NULL; 410 411 memcg = mem_cgroup_iter(NULL, NULL, NULL); 412 do { 413 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 414 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 415 416 return freed; 417 } 418 419 void drop_slab(void) 420 { 421 int nid; 422 int shift = 0; 423 unsigned long freed; 424 425 do { 426 freed = 0; 427 for_each_online_node(nid) { 428 if (fatal_signal_pending(current)) 429 return; 430 431 freed += drop_slab_node(nid); 432 } 433 } while ((freed >> shift++) > 1); 434 } 435 436 static int reclaimer_offset(void) 437 { 438 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 439 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD); 440 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 441 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD); 442 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD != 443 PGSCAN_DIRECT - PGSCAN_KSWAPD); 444 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD != 445 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD); 446 447 if (current_is_kswapd()) 448 return 0; 449 if (current_is_khugepaged()) 450 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD; 451 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD; 452 } 453 454 static inline int is_page_cache_freeable(struct folio *folio) 455 { 456 /* 457 * A freeable page cache folio is referenced only by the caller 458 * that isolated the folio, the page cache and optional filesystem 459 * private data at folio->private. 460 */ 461 return folio_ref_count(folio) - folio_test_private(folio) == 462 1 + folio_nr_pages(folio); 463 } 464 465 /* 466 * We detected a synchronous write error writing a folio out. Probably 467 * -ENOSPC. We need to propagate that into the address_space for a subsequent 468 * fsync(), msync() or close(). 469 * 470 * The tricky part is that after writepage we cannot touch the mapping: nothing 471 * prevents it from being freed up. But we have a ref on the folio and once 472 * that folio is locked, the mapping is pinned. 473 * 474 * We're allowed to run sleeping folio_lock() here because we know the caller has 475 * __GFP_FS. 476 */ 477 static void handle_write_error(struct address_space *mapping, 478 struct folio *folio, int error) 479 { 480 folio_lock(folio); 481 if (folio_mapping(folio) == mapping) 482 mapping_set_error(mapping, error); 483 folio_unlock(folio); 484 } 485 486 static bool skip_throttle_noprogress(pg_data_t *pgdat) 487 { 488 int reclaimable = 0, write_pending = 0; 489 int i; 490 491 /* 492 * If kswapd is disabled, reschedule if necessary but do not 493 * throttle as the system is likely near OOM. 494 */ 495 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 496 return true; 497 498 /* 499 * If there are a lot of dirty/writeback folios then do not 500 * throttle as throttling will occur when the folios cycle 501 * towards the end of the LRU if still under writeback. 502 */ 503 for (i = 0; i < MAX_NR_ZONES; i++) { 504 struct zone *zone = pgdat->node_zones + i; 505 506 if (!managed_zone(zone)) 507 continue; 508 509 reclaimable += zone_reclaimable_pages(zone); 510 write_pending += zone_page_state_snapshot(zone, 511 NR_ZONE_WRITE_PENDING); 512 } 513 if (2 * write_pending <= reclaimable) 514 return true; 515 516 return false; 517 } 518 519 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason) 520 { 521 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason]; 522 long timeout, ret; 523 DEFINE_WAIT(wait); 524 525 /* 526 * Do not throttle user workers, kthreads other than kswapd or 527 * workqueues. They may be required for reclaim to make 528 * forward progress (e.g. journalling workqueues or kthreads). 529 */ 530 if (!current_is_kswapd() && 531 current->flags & (PF_USER_WORKER|PF_KTHREAD)) { 532 cond_resched(); 533 return; 534 } 535 536 /* 537 * These figures are pulled out of thin air. 538 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many 539 * parallel reclaimers which is a short-lived event so the timeout is 540 * short. Failing to make progress or waiting on writeback are 541 * potentially long-lived events so use a longer timeout. This is shaky 542 * logic as a failure to make progress could be due to anything from 543 * writeback to a slow device to excessive referenced folios at the tail 544 * of the inactive LRU. 545 */ 546 switch(reason) { 547 case VMSCAN_THROTTLE_WRITEBACK: 548 timeout = HZ/10; 549 550 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) { 551 WRITE_ONCE(pgdat->nr_reclaim_start, 552 node_page_state(pgdat, NR_THROTTLED_WRITTEN)); 553 } 554 555 break; 556 case VMSCAN_THROTTLE_CONGESTED: 557 fallthrough; 558 case VMSCAN_THROTTLE_NOPROGRESS: 559 if (skip_throttle_noprogress(pgdat)) { 560 cond_resched(); 561 return; 562 } 563 564 timeout = 1; 565 566 break; 567 case VMSCAN_THROTTLE_ISOLATED: 568 timeout = HZ/50; 569 break; 570 default: 571 WARN_ON_ONCE(1); 572 timeout = HZ; 573 break; 574 } 575 576 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 577 ret = schedule_timeout(timeout); 578 finish_wait(wqh, &wait); 579 580 if (reason == VMSCAN_THROTTLE_WRITEBACK) 581 atomic_dec(&pgdat->nr_writeback_throttled); 582 583 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout), 584 jiffies_to_usecs(timeout - ret), 585 reason); 586 } 587 588 /* 589 * Account for folios written if tasks are throttled waiting on dirty 590 * folios to clean. If enough folios have been cleaned since throttling 591 * started then wakeup the throttled tasks. 592 */ 593 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 594 int nr_throttled) 595 { 596 unsigned long nr_written; 597 598 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN); 599 600 /* 601 * This is an inaccurate read as the per-cpu deltas may not 602 * be synchronised. However, given that the system is 603 * writeback throttled, it is not worth taking the penalty 604 * of getting an accurate count. At worst, the throttle 605 * timeout guarantees forward progress. 606 */ 607 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) - 608 READ_ONCE(pgdat->nr_reclaim_start); 609 610 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled) 611 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]); 612 } 613 614 /* possible outcome of pageout() */ 615 typedef enum { 616 /* failed to write folio out, folio is locked */ 617 PAGE_KEEP, 618 /* move folio to the active list, folio is locked */ 619 PAGE_ACTIVATE, 620 /* folio has been sent to the disk successfully, folio is unlocked */ 621 PAGE_SUCCESS, 622 /* folio is clean and locked */ 623 PAGE_CLEAN, 624 } pageout_t; 625 626 /* 627 * pageout is called by shrink_folio_list() for each dirty folio. 628 * Calls ->writepage(). 629 */ 630 static pageout_t pageout(struct folio *folio, struct address_space *mapping, 631 struct swap_iocb **plug) 632 { 633 /* 634 * If the folio is dirty, only perform writeback if that write 635 * will be non-blocking. To prevent this allocation from being 636 * stalled by pagecache activity. But note that there may be 637 * stalls if we need to run get_block(). We could test 638 * PagePrivate for that. 639 * 640 * If this process is currently in __generic_file_write_iter() against 641 * this folio's queue, we can perform writeback even if that 642 * will block. 643 * 644 * If the folio is swapcache, write it back even if that would 645 * block, for some throttling. This happens by accident, because 646 * swap_backing_dev_info is bust: it doesn't reflect the 647 * congestion state of the swapdevs. Easy to fix, if needed. 648 */ 649 if (!is_page_cache_freeable(folio)) 650 return PAGE_KEEP; 651 if (!mapping) { 652 /* 653 * Some data journaling orphaned folios can have 654 * folio->mapping == NULL while being dirty with clean buffers. 655 */ 656 if (folio_test_private(folio)) { 657 if (try_to_free_buffers(folio)) { 658 folio_clear_dirty(folio); 659 pr_info("%s: orphaned folio\n", __func__); 660 return PAGE_CLEAN; 661 } 662 } 663 return PAGE_KEEP; 664 } 665 if (mapping->a_ops->writepage == NULL) 666 return PAGE_ACTIVATE; 667 668 if (folio_clear_dirty_for_io(folio)) { 669 int res; 670 struct writeback_control wbc = { 671 .sync_mode = WB_SYNC_NONE, 672 .nr_to_write = SWAP_CLUSTER_MAX, 673 .range_start = 0, 674 .range_end = LLONG_MAX, 675 .for_reclaim = 1, 676 .swap_plug = plug, 677 }; 678 679 folio_set_reclaim(folio); 680 res = mapping->a_ops->writepage(&folio->page, &wbc); 681 if (res < 0) 682 handle_write_error(mapping, folio, res); 683 if (res == AOP_WRITEPAGE_ACTIVATE) { 684 folio_clear_reclaim(folio); 685 return PAGE_ACTIVATE; 686 } 687 688 if (!folio_test_writeback(folio)) { 689 /* synchronous write or broken a_ops? */ 690 folio_clear_reclaim(folio); 691 } 692 trace_mm_vmscan_write_folio(folio); 693 node_stat_add_folio(folio, NR_VMSCAN_WRITE); 694 return PAGE_SUCCESS; 695 } 696 697 return PAGE_CLEAN; 698 } 699 700 /* 701 * Same as remove_mapping, but if the folio is removed from the mapping, it 702 * gets returned with a refcount of 0. 703 */ 704 static int __remove_mapping(struct address_space *mapping, struct folio *folio, 705 bool reclaimed, struct mem_cgroup *target_memcg) 706 { 707 int refcount; 708 void *shadow = NULL; 709 710 BUG_ON(!folio_test_locked(folio)); 711 BUG_ON(mapping != folio_mapping(folio)); 712 713 if (!folio_test_swapcache(folio)) 714 spin_lock(&mapping->host->i_lock); 715 xa_lock_irq(&mapping->i_pages); 716 /* 717 * The non racy check for a busy folio. 718 * 719 * Must be careful with the order of the tests. When someone has 720 * a ref to the folio, it may be possible that they dirty it then 721 * drop the reference. So if the dirty flag is tested before the 722 * refcount here, then the following race may occur: 723 * 724 * get_user_pages(&page); 725 * [user mapping goes away] 726 * write_to(page); 727 * !folio_test_dirty(folio) [good] 728 * folio_set_dirty(folio); 729 * folio_put(folio); 730 * !refcount(folio) [good, discard it] 731 * 732 * [oops, our write_to data is lost] 733 * 734 * Reversing the order of the tests ensures such a situation cannot 735 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags 736 * load is not satisfied before that of folio->_refcount. 737 * 738 * Note that if the dirty flag is always set via folio_mark_dirty, 739 * and thus under the i_pages lock, then this ordering is not required. 740 */ 741 refcount = 1 + folio_nr_pages(folio); 742 if (!folio_ref_freeze(folio, refcount)) 743 goto cannot_free; 744 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */ 745 if (unlikely(folio_test_dirty(folio))) { 746 folio_ref_unfreeze(folio, refcount); 747 goto cannot_free; 748 } 749 750 if (folio_test_swapcache(folio)) { 751 swp_entry_t swap = folio->swap; 752 753 if (reclaimed && !mapping_exiting(mapping)) 754 shadow = workingset_eviction(folio, target_memcg); 755 __delete_from_swap_cache(folio, swap, shadow); 756 mem_cgroup_swapout(folio, swap); 757 xa_unlock_irq(&mapping->i_pages); 758 put_swap_folio(folio, swap); 759 } else { 760 void (*free_folio)(struct folio *); 761 762 free_folio = mapping->a_ops->free_folio; 763 /* 764 * Remember a shadow entry for reclaimed file cache in 765 * order to detect refaults, thus thrashing, later on. 766 * 767 * But don't store shadows in an address space that is 768 * already exiting. This is not just an optimization, 769 * inode reclaim needs to empty out the radix tree or 770 * the nodes are lost. Don't plant shadows behind its 771 * back. 772 * 773 * We also don't store shadows for DAX mappings because the 774 * only page cache folios found in these are zero pages 775 * covering holes, and because we don't want to mix DAX 776 * exceptional entries and shadow exceptional entries in the 777 * same address_space. 778 */ 779 if (reclaimed && folio_is_file_lru(folio) && 780 !mapping_exiting(mapping) && !dax_mapping(mapping)) 781 shadow = workingset_eviction(folio, target_memcg); 782 __filemap_remove_folio(folio, shadow); 783 xa_unlock_irq(&mapping->i_pages); 784 if (mapping_shrinkable(mapping)) 785 inode_add_lru(mapping->host); 786 spin_unlock(&mapping->host->i_lock); 787 788 if (free_folio) 789 free_folio(folio); 790 } 791 792 return 1; 793 794 cannot_free: 795 xa_unlock_irq(&mapping->i_pages); 796 if (!folio_test_swapcache(folio)) 797 spin_unlock(&mapping->host->i_lock); 798 return 0; 799 } 800 801 /** 802 * remove_mapping() - Attempt to remove a folio from its mapping. 803 * @mapping: The address space. 804 * @folio: The folio to remove. 805 * 806 * If the folio is dirty, under writeback or if someone else has a ref 807 * on it, removal will fail. 808 * Return: The number of pages removed from the mapping. 0 if the folio 809 * could not be removed. 810 * Context: The caller should have a single refcount on the folio and 811 * hold its lock. 812 */ 813 long remove_mapping(struct address_space *mapping, struct folio *folio) 814 { 815 if (__remove_mapping(mapping, folio, false, NULL)) { 816 /* 817 * Unfreezing the refcount with 1 effectively 818 * drops the pagecache ref for us without requiring another 819 * atomic operation. 820 */ 821 folio_ref_unfreeze(folio, 1); 822 return folio_nr_pages(folio); 823 } 824 return 0; 825 } 826 827 /** 828 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list. 829 * @folio: Folio to be returned to an LRU list. 830 * 831 * Add previously isolated @folio to appropriate LRU list. 832 * The folio may still be unevictable for other reasons. 833 * 834 * Context: lru_lock must not be held, interrupts must be enabled. 835 */ 836 void folio_putback_lru(struct folio *folio) 837 { 838 folio_add_lru(folio); 839 folio_put(folio); /* drop ref from isolate */ 840 } 841 842 enum folio_references { 843 FOLIOREF_RECLAIM, 844 FOLIOREF_RECLAIM_CLEAN, 845 FOLIOREF_KEEP, 846 FOLIOREF_ACTIVATE, 847 }; 848 849 static enum folio_references folio_check_references(struct folio *folio, 850 struct scan_control *sc) 851 { 852 int referenced_ptes, referenced_folio; 853 unsigned long vm_flags; 854 855 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup, 856 &vm_flags); 857 referenced_folio = folio_test_clear_referenced(folio); 858 859 /* 860 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma. 861 * Let the folio, now marked Mlocked, be moved to the unevictable list. 862 */ 863 if (vm_flags & VM_LOCKED) 864 return FOLIOREF_ACTIVATE; 865 866 /* rmap lock contention: rotate */ 867 if (referenced_ptes == -1) 868 return FOLIOREF_KEEP; 869 870 if (referenced_ptes) { 871 /* 872 * All mapped folios start out with page table 873 * references from the instantiating fault, so we need 874 * to look twice if a mapped file/anon folio is used more 875 * than once. 876 * 877 * Mark it and spare it for another trip around the 878 * inactive list. Another page table reference will 879 * lead to its activation. 880 * 881 * Note: the mark is set for activated folios as well 882 * so that recently deactivated but used folios are 883 * quickly recovered. 884 */ 885 folio_set_referenced(folio); 886 887 if (referenced_folio || referenced_ptes > 1) 888 return FOLIOREF_ACTIVATE; 889 890 /* 891 * Activate file-backed executable folios after first usage. 892 */ 893 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) 894 return FOLIOREF_ACTIVATE; 895 896 return FOLIOREF_KEEP; 897 } 898 899 /* Reclaim if clean, defer dirty folios to writeback */ 900 if (referenced_folio && folio_is_file_lru(folio)) 901 return FOLIOREF_RECLAIM_CLEAN; 902 903 return FOLIOREF_RECLAIM; 904 } 905 906 /* Check if a folio is dirty or under writeback */ 907 static void folio_check_dirty_writeback(struct folio *folio, 908 bool *dirty, bool *writeback) 909 { 910 struct address_space *mapping; 911 912 /* 913 * Anonymous folios are not handled by flushers and must be written 914 * from reclaim context. Do not stall reclaim based on them. 915 * MADV_FREE anonymous folios are put into inactive file list too. 916 * They could be mistakenly treated as file lru. So further anon 917 * test is needed. 918 */ 919 if (!folio_is_file_lru(folio) || 920 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) { 921 *dirty = false; 922 *writeback = false; 923 return; 924 } 925 926 /* By default assume that the folio flags are accurate */ 927 *dirty = folio_test_dirty(folio); 928 *writeback = folio_test_writeback(folio); 929 930 /* Verify dirty/writeback state if the filesystem supports it */ 931 if (!folio_test_private(folio)) 932 return; 933 934 mapping = folio_mapping(folio); 935 if (mapping && mapping->a_ops->is_dirty_writeback) 936 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback); 937 } 938 939 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private) 940 { 941 struct folio *dst; 942 nodemask_t *allowed_mask; 943 struct migration_target_control *mtc; 944 945 mtc = (struct migration_target_control *)private; 946 947 allowed_mask = mtc->nmask; 948 /* 949 * make sure we allocate from the target node first also trying to 950 * demote or reclaim pages from the target node via kswapd if we are 951 * low on free memory on target node. If we don't do this and if 952 * we have free memory on the slower(lower) memtier, we would start 953 * allocating pages from slower(lower) memory tiers without even forcing 954 * a demotion of cold pages from the target memtier. This can result 955 * in the kernel placing hot pages in slower(lower) memory tiers. 956 */ 957 mtc->nmask = NULL; 958 mtc->gfp_mask |= __GFP_THISNODE; 959 dst = alloc_migration_target(src, (unsigned long)mtc); 960 if (dst) 961 return dst; 962 963 mtc->gfp_mask &= ~__GFP_THISNODE; 964 mtc->nmask = allowed_mask; 965 966 return alloc_migration_target(src, (unsigned long)mtc); 967 } 968 969 /* 970 * Take folios on @demote_folios and attempt to demote them to another node. 971 * Folios which are not demoted are left on @demote_folios. 972 */ 973 static unsigned int demote_folio_list(struct list_head *demote_folios, 974 struct pglist_data *pgdat) 975 { 976 int target_nid = next_demotion_node(pgdat->node_id); 977 unsigned int nr_succeeded; 978 nodemask_t allowed_mask; 979 980 struct migration_target_control mtc = { 981 /* 982 * Allocate from 'node', or fail quickly and quietly. 983 * When this happens, 'page' will likely just be discarded 984 * instead of migrated. 985 */ 986 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN | 987 __GFP_NOMEMALLOC | GFP_NOWAIT, 988 .nid = target_nid, 989 .nmask = &allowed_mask, 990 .reason = MR_DEMOTION, 991 }; 992 993 if (list_empty(demote_folios)) 994 return 0; 995 996 if (target_nid == NUMA_NO_NODE) 997 return 0; 998 999 node_get_allowed_targets(pgdat, &allowed_mask); 1000 1001 /* Demotion ignores all cpuset and mempolicy settings */ 1002 migrate_pages(demote_folios, alloc_migrate_folio, NULL, 1003 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION, 1004 &nr_succeeded); 1005 1006 mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(), 1007 nr_succeeded); 1008 1009 return nr_succeeded; 1010 } 1011 1012 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask) 1013 { 1014 if (gfp_mask & __GFP_FS) 1015 return true; 1016 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO)) 1017 return false; 1018 /* 1019 * We can "enter_fs" for swap-cache with only __GFP_IO 1020 * providing this isn't SWP_FS_OPS. 1021 * ->flags can be updated non-atomicially (scan_swap_map_slots), 1022 * but that will never affect SWP_FS_OPS, so the data_race 1023 * is safe. 1024 */ 1025 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS); 1026 } 1027 1028 /* 1029 * shrink_folio_list() returns the number of reclaimed pages 1030 */ 1031 static unsigned int shrink_folio_list(struct list_head *folio_list, 1032 struct pglist_data *pgdat, struct scan_control *sc, 1033 struct reclaim_stat *stat, bool ignore_references) 1034 { 1035 struct folio_batch free_folios; 1036 LIST_HEAD(ret_folios); 1037 LIST_HEAD(demote_folios); 1038 unsigned int nr_reclaimed = 0; 1039 unsigned int pgactivate = 0; 1040 bool do_demote_pass; 1041 struct swap_iocb *plug = NULL; 1042 1043 folio_batch_init(&free_folios); 1044 memset(stat, 0, sizeof(*stat)); 1045 cond_resched(); 1046 do_demote_pass = can_demote(pgdat->node_id, sc); 1047 1048 retry: 1049 while (!list_empty(folio_list)) { 1050 struct address_space *mapping; 1051 struct folio *folio; 1052 enum folio_references references = FOLIOREF_RECLAIM; 1053 bool dirty, writeback; 1054 unsigned int nr_pages; 1055 1056 cond_resched(); 1057 1058 folio = lru_to_folio(folio_list); 1059 list_del(&folio->lru); 1060 1061 if (!folio_trylock(folio)) 1062 goto keep; 1063 1064 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1065 1066 nr_pages = folio_nr_pages(folio); 1067 1068 /* Account the number of base pages */ 1069 sc->nr_scanned += nr_pages; 1070 1071 if (unlikely(!folio_evictable(folio))) 1072 goto activate_locked; 1073 1074 if (!sc->may_unmap && folio_mapped(folio)) 1075 goto keep_locked; 1076 1077 /* folio_update_gen() tried to promote this page? */ 1078 if (lru_gen_enabled() && !ignore_references && 1079 folio_mapped(folio) && folio_test_referenced(folio)) 1080 goto keep_locked; 1081 1082 /* 1083 * The number of dirty pages determines if a node is marked 1084 * reclaim_congested. kswapd will stall and start writing 1085 * folios if the tail of the LRU is all dirty unqueued folios. 1086 */ 1087 folio_check_dirty_writeback(folio, &dirty, &writeback); 1088 if (dirty || writeback) 1089 stat->nr_dirty += nr_pages; 1090 1091 if (dirty && !writeback) 1092 stat->nr_unqueued_dirty += nr_pages; 1093 1094 /* 1095 * Treat this folio as congested if folios are cycling 1096 * through the LRU so quickly that the folios marked 1097 * for immediate reclaim are making it to the end of 1098 * the LRU a second time. 1099 */ 1100 if (writeback && folio_test_reclaim(folio)) 1101 stat->nr_congested += nr_pages; 1102 1103 /* 1104 * If a folio at the tail of the LRU is under writeback, there 1105 * are three cases to consider. 1106 * 1107 * 1) If reclaim is encountering an excessive number 1108 * of folios under writeback and this folio has both 1109 * the writeback and reclaim flags set, then it 1110 * indicates that folios are being queued for I/O but 1111 * are being recycled through the LRU before the I/O 1112 * can complete. Waiting on the folio itself risks an 1113 * indefinite stall if it is impossible to writeback 1114 * the folio due to I/O error or disconnected storage 1115 * so instead note that the LRU is being scanned too 1116 * quickly and the caller can stall after the folio 1117 * list has been processed. 1118 * 1119 * 2) Global or new memcg reclaim encounters a folio that is 1120 * not marked for immediate reclaim, or the caller does not 1121 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1122 * not to fs). In this case mark the folio for immediate 1123 * reclaim and continue scanning. 1124 * 1125 * Require may_enter_fs() because we would wait on fs, which 1126 * may not have submitted I/O yet. And the loop driver might 1127 * enter reclaim, and deadlock if it waits on a folio for 1128 * which it is needed to do the write (loop masks off 1129 * __GFP_IO|__GFP_FS for this reason); but more thought 1130 * would probably show more reasons. 1131 * 1132 * 3) Legacy memcg encounters a folio that already has the 1133 * reclaim flag set. memcg does not have any dirty folio 1134 * throttling so we could easily OOM just because too many 1135 * folios are in writeback and there is nothing else to 1136 * reclaim. Wait for the writeback to complete. 1137 * 1138 * In cases 1) and 2) we activate the folios to get them out of 1139 * the way while we continue scanning for clean folios on the 1140 * inactive list and refilling from the active list. The 1141 * observation here is that waiting for disk writes is more 1142 * expensive than potentially causing reloads down the line. 1143 * Since they're marked for immediate reclaim, they won't put 1144 * memory pressure on the cache working set any longer than it 1145 * takes to write them to disk. 1146 */ 1147 if (folio_test_writeback(folio)) { 1148 /* Case 1 above */ 1149 if (current_is_kswapd() && 1150 folio_test_reclaim(folio) && 1151 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1152 stat->nr_immediate += nr_pages; 1153 goto activate_locked; 1154 1155 /* Case 2 above */ 1156 } else if (writeback_throttling_sane(sc) || 1157 !folio_test_reclaim(folio) || 1158 !may_enter_fs(folio, sc->gfp_mask)) { 1159 /* 1160 * This is slightly racy - 1161 * folio_end_writeback() might have 1162 * just cleared the reclaim flag, then 1163 * setting the reclaim flag here ends up 1164 * interpreted as the readahead flag - but 1165 * that does not matter enough to care. 1166 * What we do want is for this folio to 1167 * have the reclaim flag set next time 1168 * memcg reclaim reaches the tests above, 1169 * so it will then wait for writeback to 1170 * avoid OOM; and it's also appropriate 1171 * in global reclaim. 1172 */ 1173 folio_set_reclaim(folio); 1174 stat->nr_writeback += nr_pages; 1175 goto activate_locked; 1176 1177 /* Case 3 above */ 1178 } else { 1179 folio_unlock(folio); 1180 folio_wait_writeback(folio); 1181 /* then go back and try same folio again */ 1182 list_add_tail(&folio->lru, folio_list); 1183 continue; 1184 } 1185 } 1186 1187 if (!ignore_references) 1188 references = folio_check_references(folio, sc); 1189 1190 switch (references) { 1191 case FOLIOREF_ACTIVATE: 1192 goto activate_locked; 1193 case FOLIOREF_KEEP: 1194 stat->nr_ref_keep += nr_pages; 1195 goto keep_locked; 1196 case FOLIOREF_RECLAIM: 1197 case FOLIOREF_RECLAIM_CLEAN: 1198 ; /* try to reclaim the folio below */ 1199 } 1200 1201 /* 1202 * Before reclaiming the folio, try to relocate 1203 * its contents to another node. 1204 */ 1205 if (do_demote_pass && 1206 (thp_migration_supported() || !folio_test_large(folio))) { 1207 list_add(&folio->lru, &demote_folios); 1208 folio_unlock(folio); 1209 continue; 1210 } 1211 1212 /* 1213 * Anonymous process memory has backing store? 1214 * Try to allocate it some swap space here. 1215 * Lazyfree folio could be freed directly 1216 */ 1217 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) { 1218 if (!folio_test_swapcache(folio)) { 1219 if (!(sc->gfp_mask & __GFP_IO)) 1220 goto keep_locked; 1221 if (folio_maybe_dma_pinned(folio)) 1222 goto keep_locked; 1223 if (folio_test_large(folio)) { 1224 /* cannot split folio, skip it */ 1225 if (!can_split_folio(folio, NULL)) 1226 goto activate_locked; 1227 /* 1228 * Split partially mapped folios right away. 1229 * We can free the unmapped pages without IO. 1230 */ 1231 if (data_race(!list_empty(&folio->_deferred_list)) && 1232 split_folio_to_list(folio, folio_list)) 1233 goto activate_locked; 1234 } 1235 if (!add_to_swap(folio)) { 1236 int __maybe_unused order = folio_order(folio); 1237 1238 if (!folio_test_large(folio)) 1239 goto activate_locked_split; 1240 /* Fallback to swap normal pages */ 1241 if (split_folio_to_list(folio, folio_list)) 1242 goto activate_locked; 1243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1244 if (nr_pages >= HPAGE_PMD_NR) { 1245 count_memcg_folio_events(folio, 1246 THP_SWPOUT_FALLBACK, 1); 1247 count_vm_event(THP_SWPOUT_FALLBACK); 1248 } 1249 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK); 1250 #endif 1251 if (!add_to_swap(folio)) 1252 goto activate_locked_split; 1253 } 1254 } 1255 } else if (folio_test_swapbacked(folio) && 1256 folio_test_large(folio)) { 1257 /* Split shmem folio */ 1258 if (split_folio_to_list(folio, folio_list)) 1259 goto keep_locked; 1260 } 1261 1262 /* 1263 * If the folio was split above, the tail pages will make 1264 * their own pass through this function and be accounted 1265 * then. 1266 */ 1267 if ((nr_pages > 1) && !folio_test_large(folio)) { 1268 sc->nr_scanned -= (nr_pages - 1); 1269 nr_pages = 1; 1270 } 1271 1272 /* 1273 * The folio is mapped into the page tables of one or more 1274 * processes. Try to unmap it here. 1275 */ 1276 if (folio_mapped(folio)) { 1277 enum ttu_flags flags = TTU_BATCH_FLUSH; 1278 bool was_swapbacked = folio_test_swapbacked(folio); 1279 1280 if (folio_test_pmd_mappable(folio)) 1281 flags |= TTU_SPLIT_HUGE_PMD; 1282 /* 1283 * Without TTU_SYNC, try_to_unmap will only begin to 1284 * hold PTL from the first present PTE within a large 1285 * folio. Some initial PTEs might be skipped due to 1286 * races with parallel PTE writes in which PTEs can be 1287 * cleared temporarily before being written new present 1288 * values. This will lead to a large folio is still 1289 * mapped while some subpages have been partially 1290 * unmapped after try_to_unmap; TTU_SYNC helps 1291 * try_to_unmap acquire PTL from the first PTE, 1292 * eliminating the influence of temporary PTE values. 1293 */ 1294 if (folio_test_large(folio)) 1295 flags |= TTU_SYNC; 1296 1297 try_to_unmap(folio, flags); 1298 if (folio_mapped(folio)) { 1299 stat->nr_unmap_fail += nr_pages; 1300 if (!was_swapbacked && 1301 folio_test_swapbacked(folio)) 1302 stat->nr_lazyfree_fail += nr_pages; 1303 goto activate_locked; 1304 } 1305 } 1306 1307 /* 1308 * Folio is unmapped now so it cannot be newly pinned anymore. 1309 * No point in trying to reclaim folio if it is pinned. 1310 * Furthermore we don't want to reclaim underlying fs metadata 1311 * if the folio is pinned and thus potentially modified by the 1312 * pinning process as that may upset the filesystem. 1313 */ 1314 if (folio_maybe_dma_pinned(folio)) 1315 goto activate_locked; 1316 1317 mapping = folio_mapping(folio); 1318 if (folio_test_dirty(folio)) { 1319 /* 1320 * Only kswapd can writeback filesystem folios 1321 * to avoid risk of stack overflow. But avoid 1322 * injecting inefficient single-folio I/O into 1323 * flusher writeback as much as possible: only 1324 * write folios when we've encountered many 1325 * dirty folios, and when we've already scanned 1326 * the rest of the LRU for clean folios and see 1327 * the same dirty folios again (with the reclaim 1328 * flag set). 1329 */ 1330 if (folio_is_file_lru(folio) && 1331 (!current_is_kswapd() || 1332 !folio_test_reclaim(folio) || 1333 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1334 /* 1335 * Immediately reclaim when written back. 1336 * Similar in principle to folio_deactivate() 1337 * except we already have the folio isolated 1338 * and know it's dirty 1339 */ 1340 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE, 1341 nr_pages); 1342 folio_set_reclaim(folio); 1343 1344 goto activate_locked; 1345 } 1346 1347 if (references == FOLIOREF_RECLAIM_CLEAN) 1348 goto keep_locked; 1349 if (!may_enter_fs(folio, sc->gfp_mask)) 1350 goto keep_locked; 1351 if (!sc->may_writepage) 1352 goto keep_locked; 1353 1354 /* 1355 * Folio is dirty. Flush the TLB if a writable entry 1356 * potentially exists to avoid CPU writes after I/O 1357 * starts and then write it out here. 1358 */ 1359 try_to_unmap_flush_dirty(); 1360 switch (pageout(folio, mapping, &plug)) { 1361 case PAGE_KEEP: 1362 goto keep_locked; 1363 case PAGE_ACTIVATE: 1364 goto activate_locked; 1365 case PAGE_SUCCESS: 1366 stat->nr_pageout += nr_pages; 1367 1368 if (folio_test_writeback(folio)) 1369 goto keep; 1370 if (folio_test_dirty(folio)) 1371 goto keep; 1372 1373 /* 1374 * A synchronous write - probably a ramdisk. Go 1375 * ahead and try to reclaim the folio. 1376 */ 1377 if (!folio_trylock(folio)) 1378 goto keep; 1379 if (folio_test_dirty(folio) || 1380 folio_test_writeback(folio)) 1381 goto keep_locked; 1382 mapping = folio_mapping(folio); 1383 fallthrough; 1384 case PAGE_CLEAN: 1385 ; /* try to free the folio below */ 1386 } 1387 } 1388 1389 /* 1390 * If the folio has buffers, try to free the buffer 1391 * mappings associated with this folio. If we succeed 1392 * we try to free the folio as well. 1393 * 1394 * We do this even if the folio is dirty. 1395 * filemap_release_folio() does not perform I/O, but it 1396 * is possible for a folio to have the dirty flag set, 1397 * but it is actually clean (all its buffers are clean). 1398 * This happens if the buffers were written out directly, 1399 * with submit_bh(). ext3 will do this, as well as 1400 * the blockdev mapping. filemap_release_folio() will 1401 * discover that cleanness and will drop the buffers 1402 * and mark the folio clean - it can be freed. 1403 * 1404 * Rarely, folios can have buffers and no ->mapping. 1405 * These are the folios which were not successfully 1406 * invalidated in truncate_cleanup_folio(). We try to 1407 * drop those buffers here and if that worked, and the 1408 * folio is no longer mapped into process address space 1409 * (refcount == 1) it can be freed. Otherwise, leave 1410 * the folio on the LRU so it is swappable. 1411 */ 1412 if (folio_needs_release(folio)) { 1413 if (!filemap_release_folio(folio, sc->gfp_mask)) 1414 goto activate_locked; 1415 if (!mapping && folio_ref_count(folio) == 1) { 1416 folio_unlock(folio); 1417 if (folio_put_testzero(folio)) 1418 goto free_it; 1419 else { 1420 /* 1421 * rare race with speculative reference. 1422 * the speculative reference will free 1423 * this folio shortly, so we may 1424 * increment nr_reclaimed here (and 1425 * leave it off the LRU). 1426 */ 1427 nr_reclaimed += nr_pages; 1428 continue; 1429 } 1430 } 1431 } 1432 1433 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) { 1434 /* follow __remove_mapping for reference */ 1435 if (!folio_ref_freeze(folio, 1)) 1436 goto keep_locked; 1437 /* 1438 * The folio has only one reference left, which is 1439 * from the isolation. After the caller puts the 1440 * folio back on the lru and drops the reference, the 1441 * folio will be freed anyway. It doesn't matter 1442 * which lru it goes on. So we don't bother checking 1443 * the dirty flag here. 1444 */ 1445 count_vm_events(PGLAZYFREED, nr_pages); 1446 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages); 1447 } else if (!mapping || !__remove_mapping(mapping, folio, true, 1448 sc->target_mem_cgroup)) 1449 goto keep_locked; 1450 1451 folio_unlock(folio); 1452 free_it: 1453 /* 1454 * Folio may get swapped out as a whole, need to account 1455 * all pages in it. 1456 */ 1457 nr_reclaimed += nr_pages; 1458 1459 folio_undo_large_rmappable(folio); 1460 if (folio_batch_add(&free_folios, folio) == 0) { 1461 mem_cgroup_uncharge_folios(&free_folios); 1462 try_to_unmap_flush(); 1463 free_unref_folios(&free_folios); 1464 } 1465 continue; 1466 1467 activate_locked_split: 1468 /* 1469 * The tail pages that are failed to add into swap cache 1470 * reach here. Fixup nr_scanned and nr_pages. 1471 */ 1472 if (nr_pages > 1) { 1473 sc->nr_scanned -= (nr_pages - 1); 1474 nr_pages = 1; 1475 } 1476 activate_locked: 1477 /* Not a candidate for swapping, so reclaim swap space. */ 1478 if (folio_test_swapcache(folio) && 1479 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio))) 1480 folio_free_swap(folio); 1481 VM_BUG_ON_FOLIO(folio_test_active(folio), folio); 1482 if (!folio_test_mlocked(folio)) { 1483 int type = folio_is_file_lru(folio); 1484 folio_set_active(folio); 1485 stat->nr_activate[type] += nr_pages; 1486 count_memcg_folio_events(folio, PGACTIVATE, nr_pages); 1487 } 1488 keep_locked: 1489 folio_unlock(folio); 1490 keep: 1491 list_add(&folio->lru, &ret_folios); 1492 VM_BUG_ON_FOLIO(folio_test_lru(folio) || 1493 folio_test_unevictable(folio), folio); 1494 } 1495 /* 'folio_list' is always empty here */ 1496 1497 /* Migrate folios selected for demotion */ 1498 nr_reclaimed += demote_folio_list(&demote_folios, pgdat); 1499 /* Folios that could not be demoted are still in @demote_folios */ 1500 if (!list_empty(&demote_folios)) { 1501 /* Folios which weren't demoted go back on @folio_list */ 1502 list_splice_init(&demote_folios, folio_list); 1503 1504 /* 1505 * goto retry to reclaim the undemoted folios in folio_list if 1506 * desired. 1507 * 1508 * Reclaiming directly from top tier nodes is not often desired 1509 * due to it breaking the LRU ordering: in general memory 1510 * should be reclaimed from lower tier nodes and demoted from 1511 * top tier nodes. 1512 * 1513 * However, disabling reclaim from top tier nodes entirely 1514 * would cause ooms in edge scenarios where lower tier memory 1515 * is unreclaimable for whatever reason, eg memory being 1516 * mlocked or too hot to reclaim. We can disable reclaim 1517 * from top tier nodes in proactive reclaim though as that is 1518 * not real memory pressure. 1519 */ 1520 if (!sc->proactive) { 1521 do_demote_pass = false; 1522 goto retry; 1523 } 1524 } 1525 1526 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1527 1528 mem_cgroup_uncharge_folios(&free_folios); 1529 try_to_unmap_flush(); 1530 free_unref_folios(&free_folios); 1531 1532 list_splice(&ret_folios, folio_list); 1533 count_vm_events(PGACTIVATE, pgactivate); 1534 1535 if (plug) 1536 swap_write_unplug(plug); 1537 return nr_reclaimed; 1538 } 1539 1540 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1541 struct list_head *folio_list) 1542 { 1543 struct scan_control sc = { 1544 .gfp_mask = GFP_KERNEL, 1545 .may_unmap = 1, 1546 }; 1547 struct reclaim_stat stat; 1548 unsigned int nr_reclaimed; 1549 struct folio *folio, *next; 1550 LIST_HEAD(clean_folios); 1551 unsigned int noreclaim_flag; 1552 1553 list_for_each_entry_safe(folio, next, folio_list, lru) { 1554 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) && 1555 !folio_test_dirty(folio) && !__folio_test_movable(folio) && 1556 !folio_test_unevictable(folio)) { 1557 folio_clear_active(folio); 1558 list_move(&folio->lru, &clean_folios); 1559 } 1560 } 1561 1562 /* 1563 * We should be safe here since we are only dealing with file pages and 1564 * we are not kswapd and therefore cannot write dirty file pages. But 1565 * call memalloc_noreclaim_save() anyway, just in case these conditions 1566 * change in the future. 1567 */ 1568 noreclaim_flag = memalloc_noreclaim_save(); 1569 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc, 1570 &stat, true); 1571 memalloc_noreclaim_restore(noreclaim_flag); 1572 1573 list_splice(&clean_folios, folio_list); 1574 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1575 -(long)nr_reclaimed); 1576 /* 1577 * Since lazyfree pages are isolated from file LRU from the beginning, 1578 * they will rotate back to anonymous LRU in the end if it failed to 1579 * discard so isolated count will be mismatched. 1580 * Compensate the isolated count for both LRU lists. 1581 */ 1582 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1583 stat.nr_lazyfree_fail); 1584 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1585 -(long)stat.nr_lazyfree_fail); 1586 return nr_reclaimed; 1587 } 1588 1589 /* 1590 * Update LRU sizes after isolating pages. The LRU size updates must 1591 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1592 */ 1593 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1594 enum lru_list lru, unsigned long *nr_zone_taken) 1595 { 1596 int zid; 1597 1598 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1599 if (!nr_zone_taken[zid]) 1600 continue; 1601 1602 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1603 } 1604 1605 } 1606 1607 /* 1608 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times. 1609 * 1610 * lruvec->lru_lock is heavily contended. Some of the functions that 1611 * shrink the lists perform better by taking out a batch of pages 1612 * and working on them outside the LRU lock. 1613 * 1614 * For pagecache intensive workloads, this function is the hottest 1615 * spot in the kernel (apart from copy_*_user functions). 1616 * 1617 * Lru_lock must be held before calling this function. 1618 * 1619 * @nr_to_scan: The number of eligible pages to look through on the list. 1620 * @lruvec: The LRU vector to pull pages from. 1621 * @dst: The temp list to put pages on to. 1622 * @nr_scanned: The number of pages that were scanned. 1623 * @sc: The scan_control struct for this reclaim session 1624 * @lru: LRU list id for isolating 1625 * 1626 * returns how many pages were moved onto *@dst. 1627 */ 1628 static unsigned long isolate_lru_folios(unsigned long nr_to_scan, 1629 struct lruvec *lruvec, struct list_head *dst, 1630 unsigned long *nr_scanned, struct scan_control *sc, 1631 enum lru_list lru) 1632 { 1633 struct list_head *src = &lruvec->lists[lru]; 1634 unsigned long nr_taken = 0; 1635 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1636 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1637 unsigned long skipped = 0; 1638 unsigned long scan, total_scan, nr_pages; 1639 LIST_HEAD(folios_skipped); 1640 1641 total_scan = 0; 1642 scan = 0; 1643 while (scan < nr_to_scan && !list_empty(src)) { 1644 struct list_head *move_to = src; 1645 struct folio *folio; 1646 1647 folio = lru_to_folio(src); 1648 prefetchw_prev_lru_folio(folio, src, flags); 1649 1650 nr_pages = folio_nr_pages(folio); 1651 total_scan += nr_pages; 1652 1653 if (folio_zonenum(folio) > sc->reclaim_idx) { 1654 nr_skipped[folio_zonenum(folio)] += nr_pages; 1655 move_to = &folios_skipped; 1656 goto move; 1657 } 1658 1659 /* 1660 * Do not count skipped folios because that makes the function 1661 * return with no isolated folios if the LRU mostly contains 1662 * ineligible folios. This causes the VM to not reclaim any 1663 * folios, triggering a premature OOM. 1664 * Account all pages in a folio. 1665 */ 1666 scan += nr_pages; 1667 1668 if (!folio_test_lru(folio)) 1669 goto move; 1670 if (!sc->may_unmap && folio_mapped(folio)) 1671 goto move; 1672 1673 /* 1674 * Be careful not to clear the lru flag until after we're 1675 * sure the folio is not being freed elsewhere -- the 1676 * folio release code relies on it. 1677 */ 1678 if (unlikely(!folio_try_get(folio))) 1679 goto move; 1680 1681 if (!folio_test_clear_lru(folio)) { 1682 /* Another thread is already isolating this folio */ 1683 folio_put(folio); 1684 goto move; 1685 } 1686 1687 nr_taken += nr_pages; 1688 nr_zone_taken[folio_zonenum(folio)] += nr_pages; 1689 move_to = dst; 1690 move: 1691 list_move(&folio->lru, move_to); 1692 } 1693 1694 /* 1695 * Splice any skipped folios to the start of the LRU list. Note that 1696 * this disrupts the LRU order when reclaiming for lower zones but 1697 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1698 * scanning would soon rescan the same folios to skip and waste lots 1699 * of cpu cycles. 1700 */ 1701 if (!list_empty(&folios_skipped)) { 1702 int zid; 1703 1704 list_splice(&folios_skipped, src); 1705 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1706 if (!nr_skipped[zid]) 1707 continue; 1708 1709 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1710 skipped += nr_skipped[zid]; 1711 } 1712 } 1713 *nr_scanned = total_scan; 1714 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1715 total_scan, skipped, nr_taken, lru); 1716 update_lru_sizes(lruvec, lru, nr_zone_taken); 1717 return nr_taken; 1718 } 1719 1720 /** 1721 * folio_isolate_lru() - Try to isolate a folio from its LRU list. 1722 * @folio: Folio to isolate from its LRU list. 1723 * 1724 * Isolate a @folio from an LRU list and adjust the vmstat statistic 1725 * corresponding to whatever LRU list the folio was on. 1726 * 1727 * The folio will have its LRU flag cleared. If it was found on the 1728 * active list, it will have the Active flag set. If it was found on the 1729 * unevictable list, it will have the Unevictable flag set. These flags 1730 * may need to be cleared by the caller before letting the page go. 1731 * 1732 * Context: 1733 * 1734 * (1) Must be called with an elevated refcount on the folio. This is a 1735 * fundamental difference from isolate_lru_folios() (which is called 1736 * without a stable reference). 1737 * (2) The lru_lock must not be held. 1738 * (3) Interrupts must be enabled. 1739 * 1740 * Return: true if the folio was removed from an LRU list. 1741 * false if the folio was not on an LRU list. 1742 */ 1743 bool folio_isolate_lru(struct folio *folio) 1744 { 1745 bool ret = false; 1746 1747 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio); 1748 1749 if (folio_test_clear_lru(folio)) { 1750 struct lruvec *lruvec; 1751 1752 folio_get(folio); 1753 lruvec = folio_lruvec_lock_irq(folio); 1754 lruvec_del_folio(lruvec, folio); 1755 unlock_page_lruvec_irq(lruvec); 1756 ret = true; 1757 } 1758 1759 return ret; 1760 } 1761 1762 /* 1763 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1764 * then get rescheduled. When there are massive number of tasks doing page 1765 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1766 * the LRU list will go small and be scanned faster than necessary, leading to 1767 * unnecessary swapping, thrashing and OOM. 1768 */ 1769 static bool too_many_isolated(struct pglist_data *pgdat, int file, 1770 struct scan_control *sc) 1771 { 1772 unsigned long inactive, isolated; 1773 bool too_many; 1774 1775 if (current_is_kswapd()) 1776 return false; 1777 1778 if (!writeback_throttling_sane(sc)) 1779 return false; 1780 1781 if (file) { 1782 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1783 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1784 } else { 1785 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1786 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1787 } 1788 1789 /* 1790 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1791 * won't get blocked by normal direct-reclaimers, forming a circular 1792 * deadlock. 1793 */ 1794 if (gfp_has_io_fs(sc->gfp_mask)) 1795 inactive >>= 3; 1796 1797 too_many = isolated > inactive; 1798 1799 /* Wake up tasks throttled due to too_many_isolated. */ 1800 if (!too_many) 1801 wake_throttle_isolated(pgdat); 1802 1803 return too_many; 1804 } 1805 1806 /* 1807 * move_folios_to_lru() moves folios from private @list to appropriate LRU list. 1808 * 1809 * Returns the number of pages moved to the given lruvec. 1810 */ 1811 static unsigned int move_folios_to_lru(struct lruvec *lruvec, 1812 struct list_head *list) 1813 { 1814 int nr_pages, nr_moved = 0; 1815 struct folio_batch free_folios; 1816 1817 folio_batch_init(&free_folios); 1818 while (!list_empty(list)) { 1819 struct folio *folio = lru_to_folio(list); 1820 1821 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 1822 list_del(&folio->lru); 1823 if (unlikely(!folio_evictable(folio))) { 1824 spin_unlock_irq(&lruvec->lru_lock); 1825 folio_putback_lru(folio); 1826 spin_lock_irq(&lruvec->lru_lock); 1827 continue; 1828 } 1829 1830 /* 1831 * The folio_set_lru needs to be kept here for list integrity. 1832 * Otherwise: 1833 * #0 move_folios_to_lru #1 release_pages 1834 * if (!folio_put_testzero()) 1835 * if (folio_put_testzero()) 1836 * !lru //skip lru_lock 1837 * folio_set_lru() 1838 * list_add(&folio->lru,) 1839 * list_add(&folio->lru,) 1840 */ 1841 folio_set_lru(folio); 1842 1843 if (unlikely(folio_put_testzero(folio))) { 1844 __folio_clear_lru_flags(folio); 1845 1846 folio_undo_large_rmappable(folio); 1847 if (folio_batch_add(&free_folios, folio) == 0) { 1848 spin_unlock_irq(&lruvec->lru_lock); 1849 mem_cgroup_uncharge_folios(&free_folios); 1850 free_unref_folios(&free_folios); 1851 spin_lock_irq(&lruvec->lru_lock); 1852 } 1853 1854 continue; 1855 } 1856 1857 /* 1858 * All pages were isolated from the same lruvec (and isolation 1859 * inhibits memcg migration). 1860 */ 1861 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio); 1862 lruvec_add_folio(lruvec, folio); 1863 nr_pages = folio_nr_pages(folio); 1864 nr_moved += nr_pages; 1865 if (folio_test_active(folio)) 1866 workingset_age_nonresident(lruvec, nr_pages); 1867 } 1868 1869 if (free_folios.nr) { 1870 spin_unlock_irq(&lruvec->lru_lock); 1871 mem_cgroup_uncharge_folios(&free_folios); 1872 free_unref_folios(&free_folios); 1873 spin_lock_irq(&lruvec->lru_lock); 1874 } 1875 1876 return nr_moved; 1877 } 1878 1879 /* 1880 * If a kernel thread (such as nfsd for loop-back mounts) services a backing 1881 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case 1882 * we should not throttle. Otherwise it is safe to do so. 1883 */ 1884 static int current_may_throttle(void) 1885 { 1886 return !(current->flags & PF_LOCAL_THROTTLE); 1887 } 1888 1889 /* 1890 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1891 * of reclaimed pages 1892 */ 1893 static unsigned long shrink_inactive_list(unsigned long nr_to_scan, 1894 struct lruvec *lruvec, struct scan_control *sc, 1895 enum lru_list lru) 1896 { 1897 LIST_HEAD(folio_list); 1898 unsigned long nr_scanned; 1899 unsigned int nr_reclaimed = 0; 1900 unsigned long nr_taken; 1901 struct reclaim_stat stat; 1902 bool file = is_file_lru(lru); 1903 enum vm_event_item item; 1904 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1905 bool stalled = false; 1906 1907 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1908 if (stalled) 1909 return 0; 1910 1911 /* wait a bit for the reclaimer. */ 1912 stalled = true; 1913 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED); 1914 1915 /* We are about to die and free our memory. Return now. */ 1916 if (fatal_signal_pending(current)) 1917 return SWAP_CLUSTER_MAX; 1918 } 1919 1920 lru_add_drain(); 1921 1922 spin_lock_irq(&lruvec->lru_lock); 1923 1924 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list, 1925 &nr_scanned, sc, lru); 1926 1927 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1928 item = PGSCAN_KSWAPD + reclaimer_offset(); 1929 if (!cgroup_reclaim(sc)) 1930 __count_vm_events(item, nr_scanned); 1931 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1932 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1933 1934 spin_unlock_irq(&lruvec->lru_lock); 1935 1936 if (nr_taken == 0) 1937 return 0; 1938 1939 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false); 1940 1941 spin_lock_irq(&lruvec->lru_lock); 1942 move_folios_to_lru(lruvec, &folio_list); 1943 1944 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1945 item = PGSTEAL_KSWAPD + reclaimer_offset(); 1946 if (!cgroup_reclaim(sc)) 1947 __count_vm_events(item, nr_reclaimed); 1948 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1949 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1950 spin_unlock_irq(&lruvec->lru_lock); 1951 1952 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed); 1953 1954 /* 1955 * If dirty folios are scanned that are not queued for IO, it 1956 * implies that flushers are not doing their job. This can 1957 * happen when memory pressure pushes dirty folios to the end of 1958 * the LRU before the dirty limits are breached and the dirty 1959 * data has expired. It can also happen when the proportion of 1960 * dirty folios grows not through writes but through memory 1961 * pressure reclaiming all the clean cache. And in some cases, 1962 * the flushers simply cannot keep up with the allocation 1963 * rate. Nudge the flusher threads in case they are asleep. 1964 */ 1965 if (stat.nr_unqueued_dirty == nr_taken) { 1966 wakeup_flusher_threads(WB_REASON_VMSCAN); 1967 /* 1968 * For cgroupv1 dirty throttling is achieved by waking up 1969 * the kernel flusher here and later waiting on folios 1970 * which are in writeback to finish (see shrink_folio_list()). 1971 * 1972 * Flusher may not be able to issue writeback quickly 1973 * enough for cgroupv1 writeback throttling to work 1974 * on a large system. 1975 */ 1976 if (!writeback_throttling_sane(sc)) 1977 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 1978 } 1979 1980 sc->nr.dirty += stat.nr_dirty; 1981 sc->nr.congested += stat.nr_congested; 1982 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1983 sc->nr.writeback += stat.nr_writeback; 1984 sc->nr.immediate += stat.nr_immediate; 1985 sc->nr.taken += nr_taken; 1986 if (file) 1987 sc->nr.file_taken += nr_taken; 1988 1989 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1990 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1991 return nr_reclaimed; 1992 } 1993 1994 /* 1995 * shrink_active_list() moves folios from the active LRU to the inactive LRU. 1996 * 1997 * We move them the other way if the folio is referenced by one or more 1998 * processes. 1999 * 2000 * If the folios are mostly unmapped, the processing is fast and it is 2001 * appropriate to hold lru_lock across the whole operation. But if 2002 * the folios are mapped, the processing is slow (folio_referenced()), so 2003 * we should drop lru_lock around each folio. It's impossible to balance 2004 * this, so instead we remove the folios from the LRU while processing them. 2005 * It is safe to rely on the active flag against the non-LRU folios in here 2006 * because nobody will play with that bit on a non-LRU folio. 2007 * 2008 * The downside is that we have to touch folio->_refcount against each folio. 2009 * But we had to alter folio->flags anyway. 2010 */ 2011 static void shrink_active_list(unsigned long nr_to_scan, 2012 struct lruvec *lruvec, 2013 struct scan_control *sc, 2014 enum lru_list lru) 2015 { 2016 unsigned long nr_taken; 2017 unsigned long nr_scanned; 2018 unsigned long vm_flags; 2019 LIST_HEAD(l_hold); /* The folios which were snipped off */ 2020 LIST_HEAD(l_active); 2021 LIST_HEAD(l_inactive); 2022 unsigned nr_deactivate, nr_activate; 2023 unsigned nr_rotated = 0; 2024 bool file = is_file_lru(lru); 2025 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2026 2027 lru_add_drain(); 2028 2029 spin_lock_irq(&lruvec->lru_lock); 2030 2031 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold, 2032 &nr_scanned, sc, lru); 2033 2034 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2035 2036 if (!cgroup_reclaim(sc)) 2037 __count_vm_events(PGREFILL, nr_scanned); 2038 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2039 2040 spin_unlock_irq(&lruvec->lru_lock); 2041 2042 while (!list_empty(&l_hold)) { 2043 struct folio *folio; 2044 2045 cond_resched(); 2046 folio = lru_to_folio(&l_hold); 2047 list_del(&folio->lru); 2048 2049 if (unlikely(!folio_evictable(folio))) { 2050 folio_putback_lru(folio); 2051 continue; 2052 } 2053 2054 if (unlikely(buffer_heads_over_limit)) { 2055 if (folio_needs_release(folio) && 2056 folio_trylock(folio)) { 2057 filemap_release_folio(folio, 0); 2058 folio_unlock(folio); 2059 } 2060 } 2061 2062 /* Referenced or rmap lock contention: rotate */ 2063 if (folio_referenced(folio, 0, sc->target_mem_cgroup, 2064 &vm_flags) != 0) { 2065 /* 2066 * Identify referenced, file-backed active folios and 2067 * give them one more trip around the active list. So 2068 * that executable code get better chances to stay in 2069 * memory under moderate memory pressure. Anon folios 2070 * are not likely to be evicted by use-once streaming 2071 * IO, plus JVM can create lots of anon VM_EXEC folios, 2072 * so we ignore them here. 2073 */ 2074 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) { 2075 nr_rotated += folio_nr_pages(folio); 2076 list_add(&folio->lru, &l_active); 2077 continue; 2078 } 2079 } 2080 2081 folio_clear_active(folio); /* we are de-activating */ 2082 folio_set_workingset(folio); 2083 list_add(&folio->lru, &l_inactive); 2084 } 2085 2086 /* 2087 * Move folios back to the lru list. 2088 */ 2089 spin_lock_irq(&lruvec->lru_lock); 2090 2091 nr_activate = move_folios_to_lru(lruvec, &l_active); 2092 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive); 2093 2094 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2095 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2096 2097 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2098 spin_unlock_irq(&lruvec->lru_lock); 2099 2100 if (nr_rotated) 2101 lru_note_cost(lruvec, file, 0, nr_rotated); 2102 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2103 nr_deactivate, nr_rotated, sc->priority, file); 2104 } 2105 2106 static unsigned int reclaim_folio_list(struct list_head *folio_list, 2107 struct pglist_data *pgdat) 2108 { 2109 struct reclaim_stat dummy_stat; 2110 unsigned int nr_reclaimed; 2111 struct folio *folio; 2112 struct scan_control sc = { 2113 .gfp_mask = GFP_KERNEL, 2114 .may_writepage = 1, 2115 .may_unmap = 1, 2116 .may_swap = 1, 2117 .no_demotion = 1, 2118 }; 2119 2120 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, true); 2121 while (!list_empty(folio_list)) { 2122 folio = lru_to_folio(folio_list); 2123 list_del(&folio->lru); 2124 folio_putback_lru(folio); 2125 } 2126 2127 return nr_reclaimed; 2128 } 2129 2130 unsigned long reclaim_pages(struct list_head *folio_list) 2131 { 2132 int nid; 2133 unsigned int nr_reclaimed = 0; 2134 LIST_HEAD(node_folio_list); 2135 unsigned int noreclaim_flag; 2136 2137 if (list_empty(folio_list)) 2138 return nr_reclaimed; 2139 2140 noreclaim_flag = memalloc_noreclaim_save(); 2141 2142 nid = folio_nid(lru_to_folio(folio_list)); 2143 do { 2144 struct folio *folio = lru_to_folio(folio_list); 2145 2146 if (nid == folio_nid(folio)) { 2147 folio_clear_active(folio); 2148 list_move(&folio->lru, &node_folio_list); 2149 continue; 2150 } 2151 2152 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2153 nid = folio_nid(lru_to_folio(folio_list)); 2154 } while (!list_empty(folio_list)); 2155 2156 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid)); 2157 2158 memalloc_noreclaim_restore(noreclaim_flag); 2159 2160 return nr_reclaimed; 2161 } 2162 2163 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2164 struct lruvec *lruvec, struct scan_control *sc) 2165 { 2166 if (is_active_lru(lru)) { 2167 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2168 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2169 else 2170 sc->skipped_deactivate = 1; 2171 return 0; 2172 } 2173 2174 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2175 } 2176 2177 /* 2178 * The inactive anon list should be small enough that the VM never has 2179 * to do too much work. 2180 * 2181 * The inactive file list should be small enough to leave most memory 2182 * to the established workingset on the scan-resistant active list, 2183 * but large enough to avoid thrashing the aggregate readahead window. 2184 * 2185 * Both inactive lists should also be large enough that each inactive 2186 * folio has a chance to be referenced again before it is reclaimed. 2187 * 2188 * If that fails and refaulting is observed, the inactive list grows. 2189 * 2190 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios 2191 * on this LRU, maintained by the pageout code. An inactive_ratio 2192 * of 3 means 3:1 or 25% of the folios are kept on the inactive list. 2193 * 2194 * total target max 2195 * memory ratio inactive 2196 * ------------------------------------- 2197 * 10MB 1 5MB 2198 * 100MB 1 50MB 2199 * 1GB 3 250MB 2200 * 10GB 10 0.9GB 2201 * 100GB 31 3GB 2202 * 1TB 101 10GB 2203 * 10TB 320 32GB 2204 */ 2205 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2206 { 2207 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2208 unsigned long inactive, active; 2209 unsigned long inactive_ratio; 2210 unsigned long gb; 2211 2212 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2213 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2214 2215 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2216 if (gb) 2217 inactive_ratio = int_sqrt(10 * gb); 2218 else 2219 inactive_ratio = 1; 2220 2221 return inactive * inactive_ratio < active; 2222 } 2223 2224 enum scan_balance { 2225 SCAN_EQUAL, 2226 SCAN_FRACT, 2227 SCAN_ANON, 2228 SCAN_FILE, 2229 }; 2230 2231 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc) 2232 { 2233 unsigned long file; 2234 struct lruvec *target_lruvec; 2235 2236 if (lru_gen_enabled()) 2237 return; 2238 2239 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2240 2241 /* 2242 * Flush the memory cgroup stats, so that we read accurate per-memcg 2243 * lruvec stats for heuristics. 2244 */ 2245 mem_cgroup_flush_stats(sc->target_mem_cgroup); 2246 2247 /* 2248 * Determine the scan balance between anon and file LRUs. 2249 */ 2250 spin_lock_irq(&target_lruvec->lru_lock); 2251 sc->anon_cost = target_lruvec->anon_cost; 2252 sc->file_cost = target_lruvec->file_cost; 2253 spin_unlock_irq(&target_lruvec->lru_lock); 2254 2255 /* 2256 * Target desirable inactive:active list ratios for the anon 2257 * and file LRU lists. 2258 */ 2259 if (!sc->force_deactivate) { 2260 unsigned long refaults; 2261 2262 /* 2263 * When refaults are being observed, it means a new 2264 * workingset is being established. Deactivate to get 2265 * rid of any stale active pages quickly. 2266 */ 2267 refaults = lruvec_page_state(target_lruvec, 2268 WORKINGSET_ACTIVATE_ANON); 2269 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] || 2270 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2271 sc->may_deactivate |= DEACTIVATE_ANON; 2272 else 2273 sc->may_deactivate &= ~DEACTIVATE_ANON; 2274 2275 refaults = lruvec_page_state(target_lruvec, 2276 WORKINGSET_ACTIVATE_FILE); 2277 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] || 2278 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2279 sc->may_deactivate |= DEACTIVATE_FILE; 2280 else 2281 sc->may_deactivate &= ~DEACTIVATE_FILE; 2282 } else 2283 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2284 2285 /* 2286 * If we have plenty of inactive file pages that aren't 2287 * thrashing, try to reclaim those first before touching 2288 * anonymous pages. 2289 */ 2290 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2291 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) && 2292 !sc->no_cache_trim_mode) 2293 sc->cache_trim_mode = 1; 2294 else 2295 sc->cache_trim_mode = 0; 2296 2297 /* 2298 * Prevent the reclaimer from falling into the cache trap: as 2299 * cache pages start out inactive, every cache fault will tip 2300 * the scan balance towards the file LRU. And as the file LRU 2301 * shrinks, so does the window for rotation from references. 2302 * This means we have a runaway feedback loop where a tiny 2303 * thrashing file LRU becomes infinitely more attractive than 2304 * anon pages. Try to detect this based on file LRU size. 2305 */ 2306 if (!cgroup_reclaim(sc)) { 2307 unsigned long total_high_wmark = 0; 2308 unsigned long free, anon; 2309 int z; 2310 2311 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2312 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2313 node_page_state(pgdat, NR_INACTIVE_FILE); 2314 2315 for (z = 0; z < MAX_NR_ZONES; z++) { 2316 struct zone *zone = &pgdat->node_zones[z]; 2317 2318 if (!managed_zone(zone)) 2319 continue; 2320 2321 total_high_wmark += high_wmark_pages(zone); 2322 } 2323 2324 /* 2325 * Consider anon: if that's low too, this isn't a 2326 * runaway file reclaim problem, but rather just 2327 * extreme pressure. Reclaim as per usual then. 2328 */ 2329 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2330 2331 sc->file_is_tiny = 2332 file + free <= total_high_wmark && 2333 !(sc->may_deactivate & DEACTIVATE_ANON) && 2334 anon >> sc->priority; 2335 } 2336 } 2337 2338 /* 2339 * Determine how aggressively the anon and file LRU lists should be 2340 * scanned. 2341 * 2342 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan 2343 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan 2344 */ 2345 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2346 unsigned long *nr) 2347 { 2348 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2349 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2350 unsigned long anon_cost, file_cost, total_cost; 2351 int swappiness = sc_swappiness(sc, memcg); 2352 u64 fraction[ANON_AND_FILE]; 2353 u64 denominator = 0; /* gcc */ 2354 enum scan_balance scan_balance; 2355 unsigned long ap, fp; 2356 enum lru_list lru; 2357 2358 /* If we have no swap space, do not bother scanning anon folios. */ 2359 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) { 2360 scan_balance = SCAN_FILE; 2361 goto out; 2362 } 2363 2364 /* 2365 * Global reclaim will swap to prevent OOM even with no 2366 * swappiness, but memcg users want to use this knob to 2367 * disable swapping for individual groups completely when 2368 * using the memory controller's swap limit feature would be 2369 * too expensive. 2370 */ 2371 if (cgroup_reclaim(sc) && !swappiness) { 2372 scan_balance = SCAN_FILE; 2373 goto out; 2374 } 2375 2376 /* 2377 * Do not apply any pressure balancing cleverness when the 2378 * system is close to OOM, scan both anon and file equally 2379 * (unless the swappiness setting disagrees with swapping). 2380 */ 2381 if (!sc->priority && swappiness) { 2382 scan_balance = SCAN_EQUAL; 2383 goto out; 2384 } 2385 2386 /* 2387 * If the system is almost out of file pages, force-scan anon. 2388 */ 2389 if (sc->file_is_tiny) { 2390 scan_balance = SCAN_ANON; 2391 goto out; 2392 } 2393 2394 /* 2395 * If there is enough inactive page cache, we do not reclaim 2396 * anything from the anonymous working right now. 2397 */ 2398 if (sc->cache_trim_mode) { 2399 scan_balance = SCAN_FILE; 2400 goto out; 2401 } 2402 2403 scan_balance = SCAN_FRACT; 2404 /* 2405 * Calculate the pressure balance between anon and file pages. 2406 * 2407 * The amount of pressure we put on each LRU is inversely 2408 * proportional to the cost of reclaiming each list, as 2409 * determined by the share of pages that are refaulting, times 2410 * the relative IO cost of bringing back a swapped out 2411 * anonymous page vs reloading a filesystem page (swappiness). 2412 * 2413 * Although we limit that influence to ensure no list gets 2414 * left behind completely: at least a third of the pressure is 2415 * applied, before swappiness. 2416 * 2417 * With swappiness at 100, anon and file have equal IO cost. 2418 */ 2419 total_cost = sc->anon_cost + sc->file_cost; 2420 anon_cost = total_cost + sc->anon_cost; 2421 file_cost = total_cost + sc->file_cost; 2422 total_cost = anon_cost + file_cost; 2423 2424 ap = swappiness * (total_cost + 1); 2425 ap /= anon_cost + 1; 2426 2427 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1); 2428 fp /= file_cost + 1; 2429 2430 fraction[0] = ap; 2431 fraction[1] = fp; 2432 denominator = ap + fp; 2433 out: 2434 for_each_evictable_lru(lru) { 2435 bool file = is_file_lru(lru); 2436 unsigned long lruvec_size; 2437 unsigned long low, min; 2438 unsigned long scan; 2439 2440 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2441 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2442 &min, &low); 2443 2444 if (min || low) { 2445 /* 2446 * Scale a cgroup's reclaim pressure by proportioning 2447 * its current usage to its memory.low or memory.min 2448 * setting. 2449 * 2450 * This is important, as otherwise scanning aggression 2451 * becomes extremely binary -- from nothing as we 2452 * approach the memory protection threshold, to totally 2453 * nominal as we exceed it. This results in requiring 2454 * setting extremely liberal protection thresholds. It 2455 * also means we simply get no protection at all if we 2456 * set it too low, which is not ideal. 2457 * 2458 * If there is any protection in place, we reduce scan 2459 * pressure by how much of the total memory used is 2460 * within protection thresholds. 2461 * 2462 * There is one special case: in the first reclaim pass, 2463 * we skip over all groups that are within their low 2464 * protection. If that fails to reclaim enough pages to 2465 * satisfy the reclaim goal, we come back and override 2466 * the best-effort low protection. However, we still 2467 * ideally want to honor how well-behaved groups are in 2468 * that case instead of simply punishing them all 2469 * equally. As such, we reclaim them based on how much 2470 * memory they are using, reducing the scan pressure 2471 * again by how much of the total memory used is under 2472 * hard protection. 2473 */ 2474 unsigned long cgroup_size = mem_cgroup_size(memcg); 2475 unsigned long protection; 2476 2477 /* memory.low scaling, make sure we retry before OOM */ 2478 if (!sc->memcg_low_reclaim && low > min) { 2479 protection = low; 2480 sc->memcg_low_skipped = 1; 2481 } else { 2482 protection = min; 2483 } 2484 2485 /* Avoid TOCTOU with earlier protection check */ 2486 cgroup_size = max(cgroup_size, protection); 2487 2488 scan = lruvec_size - lruvec_size * protection / 2489 (cgroup_size + 1); 2490 2491 /* 2492 * Minimally target SWAP_CLUSTER_MAX pages to keep 2493 * reclaim moving forwards, avoiding decrementing 2494 * sc->priority further than desirable. 2495 */ 2496 scan = max(scan, SWAP_CLUSTER_MAX); 2497 } else { 2498 scan = lruvec_size; 2499 } 2500 2501 scan >>= sc->priority; 2502 2503 /* 2504 * If the cgroup's already been deleted, make sure to 2505 * scrape out the remaining cache. 2506 */ 2507 if (!scan && !mem_cgroup_online(memcg)) 2508 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2509 2510 switch (scan_balance) { 2511 case SCAN_EQUAL: 2512 /* Scan lists relative to size */ 2513 break; 2514 case SCAN_FRACT: 2515 /* 2516 * Scan types proportional to swappiness and 2517 * their relative recent reclaim efficiency. 2518 * Make sure we don't miss the last page on 2519 * the offlined memory cgroups because of a 2520 * round-off error. 2521 */ 2522 scan = mem_cgroup_online(memcg) ? 2523 div64_u64(scan * fraction[file], denominator) : 2524 DIV64_U64_ROUND_UP(scan * fraction[file], 2525 denominator); 2526 break; 2527 case SCAN_FILE: 2528 case SCAN_ANON: 2529 /* Scan one type exclusively */ 2530 if ((scan_balance == SCAN_FILE) != file) 2531 scan = 0; 2532 break; 2533 default: 2534 /* Look ma, no brain */ 2535 BUG(); 2536 } 2537 2538 nr[lru] = scan; 2539 } 2540 } 2541 2542 /* 2543 * Anonymous LRU management is a waste if there is 2544 * ultimately no way to reclaim the memory. 2545 */ 2546 static bool can_age_anon_pages(struct pglist_data *pgdat, 2547 struct scan_control *sc) 2548 { 2549 /* Aging the anon LRU is valuable if swap is present: */ 2550 if (total_swap_pages > 0) 2551 return true; 2552 2553 /* Also valuable if anon pages can be demoted: */ 2554 return can_demote(pgdat->node_id, sc); 2555 } 2556 2557 #ifdef CONFIG_LRU_GEN 2558 2559 #ifdef CONFIG_LRU_GEN_ENABLED 2560 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS); 2561 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap]) 2562 #else 2563 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS); 2564 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap]) 2565 #endif 2566 2567 static bool should_walk_mmu(void) 2568 { 2569 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK); 2570 } 2571 2572 static bool should_clear_pmd_young(void) 2573 { 2574 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG); 2575 } 2576 2577 /****************************************************************************** 2578 * shorthand helpers 2579 ******************************************************************************/ 2580 2581 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset)) 2582 2583 #define DEFINE_MAX_SEQ(lruvec) \ 2584 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq) 2585 2586 #define DEFINE_MIN_SEQ(lruvec) \ 2587 unsigned long min_seq[ANON_AND_FILE] = { \ 2588 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \ 2589 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \ 2590 } 2591 2592 #define for_each_gen_type_zone(gen, type, zone) \ 2593 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \ 2594 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \ 2595 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++) 2596 2597 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS) 2598 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS) 2599 2600 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid) 2601 { 2602 struct pglist_data *pgdat = NODE_DATA(nid); 2603 2604 #ifdef CONFIG_MEMCG 2605 if (memcg) { 2606 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec; 2607 2608 /* see the comment in mem_cgroup_lruvec() */ 2609 if (!lruvec->pgdat) 2610 lruvec->pgdat = pgdat; 2611 2612 return lruvec; 2613 } 2614 #endif 2615 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2616 2617 return &pgdat->__lruvec; 2618 } 2619 2620 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc) 2621 { 2622 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2623 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2624 2625 if (!sc->may_swap) 2626 return 0; 2627 2628 if (!can_demote(pgdat->node_id, sc) && 2629 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH) 2630 return 0; 2631 2632 return sc_swappiness(sc, memcg); 2633 } 2634 2635 static int get_nr_gens(struct lruvec *lruvec, int type) 2636 { 2637 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1; 2638 } 2639 2640 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec) 2641 { 2642 /* see the comment on lru_gen_folio */ 2643 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS && 2644 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) && 2645 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS; 2646 } 2647 2648 /****************************************************************************** 2649 * Bloom filters 2650 ******************************************************************************/ 2651 2652 /* 2653 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when 2654 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of 2655 * bits in a bitmap, k is the number of hash functions and n is the number of 2656 * inserted items. 2657 * 2658 * Page table walkers use one of the two filters to reduce their search space. 2659 * To get rid of non-leaf entries that no longer have enough leaf entries, the 2660 * aging uses the double-buffering technique to flip to the other filter each 2661 * time it produces a new generation. For non-leaf entries that have enough 2662 * leaf entries, the aging carries them over to the next generation in 2663 * walk_pmd_range(); the eviction also report them when walking the rmap 2664 * in lru_gen_look_around(). 2665 * 2666 * For future optimizations: 2667 * 1. It's not necessary to keep both filters all the time. The spare one can be 2668 * freed after the RCU grace period and reallocated if needed again. 2669 * 2. And when reallocating, it's worth scaling its size according to the number 2670 * of inserted entries in the other filter, to reduce the memory overhead on 2671 * small systems and false positives on large systems. 2672 * 3. Jenkins' hash function is an alternative to Knuth's. 2673 */ 2674 #define BLOOM_FILTER_SHIFT 15 2675 2676 static inline int filter_gen_from_seq(unsigned long seq) 2677 { 2678 return seq % NR_BLOOM_FILTERS; 2679 } 2680 2681 static void get_item_key(void *item, int *key) 2682 { 2683 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2); 2684 2685 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32)); 2686 2687 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1); 2688 key[1] = hash >> BLOOM_FILTER_SHIFT; 2689 } 2690 2691 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2692 void *item) 2693 { 2694 int key[2]; 2695 unsigned long *filter; 2696 int gen = filter_gen_from_seq(seq); 2697 2698 filter = READ_ONCE(mm_state->filters[gen]); 2699 if (!filter) 2700 return true; 2701 2702 get_item_key(item, key); 2703 2704 return test_bit(key[0], filter) && test_bit(key[1], filter); 2705 } 2706 2707 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq, 2708 void *item) 2709 { 2710 int key[2]; 2711 unsigned long *filter; 2712 int gen = filter_gen_from_seq(seq); 2713 2714 filter = READ_ONCE(mm_state->filters[gen]); 2715 if (!filter) 2716 return; 2717 2718 get_item_key(item, key); 2719 2720 if (!test_bit(key[0], filter)) 2721 set_bit(key[0], filter); 2722 if (!test_bit(key[1], filter)) 2723 set_bit(key[1], filter); 2724 } 2725 2726 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq) 2727 { 2728 unsigned long *filter; 2729 int gen = filter_gen_from_seq(seq); 2730 2731 filter = mm_state->filters[gen]; 2732 if (filter) { 2733 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT)); 2734 return; 2735 } 2736 2737 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT), 2738 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 2739 WRITE_ONCE(mm_state->filters[gen], filter); 2740 } 2741 2742 /****************************************************************************** 2743 * mm_struct list 2744 ******************************************************************************/ 2745 2746 #ifdef CONFIG_LRU_GEN_WALKS_MMU 2747 2748 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2749 { 2750 static struct lru_gen_mm_list mm_list = { 2751 .fifo = LIST_HEAD_INIT(mm_list.fifo), 2752 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock), 2753 }; 2754 2755 #ifdef CONFIG_MEMCG 2756 if (memcg) 2757 return &memcg->mm_list; 2758 #endif 2759 VM_WARN_ON_ONCE(!mem_cgroup_disabled()); 2760 2761 return &mm_list; 2762 } 2763 2764 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2765 { 2766 return &lruvec->mm_state; 2767 } 2768 2769 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2770 { 2771 int key; 2772 struct mm_struct *mm; 2773 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 2774 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 2775 2776 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list); 2777 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap); 2778 2779 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap)) 2780 return NULL; 2781 2782 clear_bit(key, &mm->lru_gen.bitmap); 2783 2784 return mmget_not_zero(mm) ? mm : NULL; 2785 } 2786 2787 void lru_gen_add_mm(struct mm_struct *mm) 2788 { 2789 int nid; 2790 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm); 2791 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2792 2793 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list)); 2794 #ifdef CONFIG_MEMCG 2795 VM_WARN_ON_ONCE(mm->lru_gen.memcg); 2796 mm->lru_gen.memcg = memcg; 2797 #endif 2798 spin_lock(&mm_list->lock); 2799 2800 for_each_node_state(nid, N_MEMORY) { 2801 struct lruvec *lruvec = get_lruvec(memcg, nid); 2802 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2803 2804 /* the first addition since the last iteration */ 2805 if (mm_state->tail == &mm_list->fifo) 2806 mm_state->tail = &mm->lru_gen.list; 2807 } 2808 2809 list_add_tail(&mm->lru_gen.list, &mm_list->fifo); 2810 2811 spin_unlock(&mm_list->lock); 2812 } 2813 2814 void lru_gen_del_mm(struct mm_struct *mm) 2815 { 2816 int nid; 2817 struct lru_gen_mm_list *mm_list; 2818 struct mem_cgroup *memcg = NULL; 2819 2820 if (list_empty(&mm->lru_gen.list)) 2821 return; 2822 2823 #ifdef CONFIG_MEMCG 2824 memcg = mm->lru_gen.memcg; 2825 #endif 2826 mm_list = get_mm_list(memcg); 2827 2828 spin_lock(&mm_list->lock); 2829 2830 for_each_node(nid) { 2831 struct lruvec *lruvec = get_lruvec(memcg, nid); 2832 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2833 2834 /* where the current iteration continues after */ 2835 if (mm_state->head == &mm->lru_gen.list) 2836 mm_state->head = mm_state->head->prev; 2837 2838 /* where the last iteration ended before */ 2839 if (mm_state->tail == &mm->lru_gen.list) 2840 mm_state->tail = mm_state->tail->next; 2841 } 2842 2843 list_del_init(&mm->lru_gen.list); 2844 2845 spin_unlock(&mm_list->lock); 2846 2847 #ifdef CONFIG_MEMCG 2848 mem_cgroup_put(mm->lru_gen.memcg); 2849 mm->lru_gen.memcg = NULL; 2850 #endif 2851 } 2852 2853 #ifdef CONFIG_MEMCG 2854 void lru_gen_migrate_mm(struct mm_struct *mm) 2855 { 2856 struct mem_cgroup *memcg; 2857 struct task_struct *task = rcu_dereference_protected(mm->owner, true); 2858 2859 VM_WARN_ON_ONCE(task->mm != mm); 2860 lockdep_assert_held(&task->alloc_lock); 2861 2862 /* for mm_update_next_owner() */ 2863 if (mem_cgroup_disabled()) 2864 return; 2865 2866 /* migration can happen before addition */ 2867 if (!mm->lru_gen.memcg) 2868 return; 2869 2870 rcu_read_lock(); 2871 memcg = mem_cgroup_from_task(task); 2872 rcu_read_unlock(); 2873 if (memcg == mm->lru_gen.memcg) 2874 return; 2875 2876 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list)); 2877 2878 lru_gen_del_mm(mm); 2879 lru_gen_add_mm(mm); 2880 } 2881 #endif 2882 2883 #else /* !CONFIG_LRU_GEN_WALKS_MMU */ 2884 2885 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg) 2886 { 2887 return NULL; 2888 } 2889 2890 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec) 2891 { 2892 return NULL; 2893 } 2894 2895 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk) 2896 { 2897 return NULL; 2898 } 2899 2900 #endif 2901 2902 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last) 2903 { 2904 int i; 2905 int hist; 2906 struct lruvec *lruvec = walk->lruvec; 2907 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2908 2909 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock); 2910 2911 hist = lru_hist_from_seq(walk->seq); 2912 2913 for (i = 0; i < NR_MM_STATS; i++) { 2914 WRITE_ONCE(mm_state->stats[hist][i], 2915 mm_state->stats[hist][i] + walk->mm_stats[i]); 2916 walk->mm_stats[i] = 0; 2917 } 2918 2919 if (NR_HIST_GENS > 1 && last) { 2920 hist = lru_hist_from_seq(walk->seq + 1); 2921 2922 for (i = 0; i < NR_MM_STATS; i++) 2923 WRITE_ONCE(mm_state->stats[hist][i], 0); 2924 } 2925 } 2926 2927 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter) 2928 { 2929 bool first = false; 2930 bool last = false; 2931 struct mm_struct *mm = NULL; 2932 struct lruvec *lruvec = walk->lruvec; 2933 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2934 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2935 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2936 2937 /* 2938 * mm_state->seq is incremented after each iteration of mm_list. There 2939 * are three interesting cases for this page table walker: 2940 * 1. It tries to start a new iteration with a stale max_seq: there is 2941 * nothing left to do. 2942 * 2. It started the next iteration: it needs to reset the Bloom filter 2943 * so that a fresh set of PTE tables can be recorded. 2944 * 3. It ended the current iteration: it needs to reset the mm stats 2945 * counters and tell its caller to increment max_seq. 2946 */ 2947 spin_lock(&mm_list->lock); 2948 2949 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq); 2950 2951 if (walk->seq <= mm_state->seq) 2952 goto done; 2953 2954 if (!mm_state->head) 2955 mm_state->head = &mm_list->fifo; 2956 2957 if (mm_state->head == &mm_list->fifo) 2958 first = true; 2959 2960 do { 2961 mm_state->head = mm_state->head->next; 2962 if (mm_state->head == &mm_list->fifo) { 2963 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 2964 last = true; 2965 break; 2966 } 2967 2968 /* force scan for those added after the last iteration */ 2969 if (!mm_state->tail || mm_state->tail == mm_state->head) { 2970 mm_state->tail = mm_state->head->next; 2971 walk->force_scan = true; 2972 } 2973 } while (!(mm = get_next_mm(walk))); 2974 done: 2975 if (*iter || last) 2976 reset_mm_stats(walk, last); 2977 2978 spin_unlock(&mm_list->lock); 2979 2980 if (mm && first) 2981 reset_bloom_filter(mm_state, walk->seq + 1); 2982 2983 if (*iter) 2984 mmput_async(*iter); 2985 2986 *iter = mm; 2987 2988 return last; 2989 } 2990 2991 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq) 2992 { 2993 bool success = false; 2994 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2995 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 2996 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 2997 2998 spin_lock(&mm_list->lock); 2999 3000 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq); 3001 3002 if (seq > mm_state->seq) { 3003 mm_state->head = NULL; 3004 mm_state->tail = NULL; 3005 WRITE_ONCE(mm_state->seq, mm_state->seq + 1); 3006 success = true; 3007 } 3008 3009 spin_unlock(&mm_list->lock); 3010 3011 return success; 3012 } 3013 3014 /****************************************************************************** 3015 * PID controller 3016 ******************************************************************************/ 3017 3018 /* 3019 * A feedback loop based on Proportional-Integral-Derivative (PID) controller. 3020 * 3021 * The P term is refaulted/(evicted+protected) from a tier in the generation 3022 * currently being evicted; the I term is the exponential moving average of the 3023 * P term over the generations previously evicted, using the smoothing factor 3024 * 1/2; the D term isn't supported. 3025 * 3026 * The setpoint (SP) is always the first tier of one type; the process variable 3027 * (PV) is either any tier of the other type or any other tier of the same 3028 * type. 3029 * 3030 * The error is the difference between the SP and the PV; the correction is to 3031 * turn off protection when SP>PV or turn on protection when SP<PV. 3032 * 3033 * For future optimizations: 3034 * 1. The D term may discount the other two terms over time so that long-lived 3035 * generations can resist stale information. 3036 */ 3037 struct ctrl_pos { 3038 unsigned long refaulted; 3039 unsigned long total; 3040 int gain; 3041 }; 3042 3043 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain, 3044 struct ctrl_pos *pos) 3045 { 3046 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3047 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 3048 3049 pos->refaulted = lrugen->avg_refaulted[type][tier] + 3050 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3051 pos->total = lrugen->avg_total[type][tier] + 3052 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3053 if (tier) 3054 pos->total += lrugen->protected[hist][type][tier - 1]; 3055 pos->gain = gain; 3056 } 3057 3058 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover) 3059 { 3060 int hist, tier; 3061 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3062 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1; 3063 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1; 3064 3065 lockdep_assert_held(&lruvec->lru_lock); 3066 3067 if (!carryover && !clear) 3068 return; 3069 3070 hist = lru_hist_from_seq(seq); 3071 3072 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 3073 if (carryover) { 3074 unsigned long sum; 3075 3076 sum = lrugen->avg_refaulted[type][tier] + 3077 atomic_long_read(&lrugen->refaulted[hist][type][tier]); 3078 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2); 3079 3080 sum = lrugen->avg_total[type][tier] + 3081 atomic_long_read(&lrugen->evicted[hist][type][tier]); 3082 if (tier) 3083 sum += lrugen->protected[hist][type][tier - 1]; 3084 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2); 3085 } 3086 3087 if (clear) { 3088 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0); 3089 atomic_long_set(&lrugen->evicted[hist][type][tier], 0); 3090 if (tier) 3091 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0); 3092 } 3093 } 3094 } 3095 3096 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv) 3097 { 3098 /* 3099 * Return true if the PV has a limited number of refaults or a lower 3100 * refaulted/total than the SP. 3101 */ 3102 return pv->refaulted < MIN_LRU_BATCH || 3103 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <= 3104 (sp->refaulted + 1) * pv->total * pv->gain; 3105 } 3106 3107 /****************************************************************************** 3108 * the aging 3109 ******************************************************************************/ 3110 3111 /* promote pages accessed through page tables */ 3112 static int folio_update_gen(struct folio *folio, int gen) 3113 { 3114 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3115 3116 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS); 3117 VM_WARN_ON_ONCE(!rcu_read_lock_held()); 3118 3119 do { 3120 /* lru_gen_del_folio() has isolated this page? */ 3121 if (!(old_flags & LRU_GEN_MASK)) { 3122 /* for shrink_folio_list() */ 3123 new_flags = old_flags | BIT(PG_referenced); 3124 continue; 3125 } 3126 3127 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3128 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF; 3129 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3130 3131 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3132 } 3133 3134 /* protect pages accessed multiple times through file descriptors */ 3135 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming) 3136 { 3137 int type = folio_is_file_lru(folio); 3138 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3139 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3140 unsigned long new_flags, old_flags = READ_ONCE(folio->flags); 3141 3142 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio); 3143 3144 do { 3145 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1; 3146 /* folio_update_gen() has promoted this page? */ 3147 if (new_gen >= 0 && new_gen != old_gen) 3148 return new_gen; 3149 3150 new_gen = (old_gen + 1) % MAX_NR_GENS; 3151 3152 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS); 3153 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF; 3154 /* for folio_end_writeback() */ 3155 if (reclaiming) 3156 new_flags |= BIT(PG_reclaim); 3157 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags)); 3158 3159 lru_gen_update_size(lruvec, folio, old_gen, new_gen); 3160 3161 return new_gen; 3162 } 3163 3164 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio, 3165 int old_gen, int new_gen) 3166 { 3167 int type = folio_is_file_lru(folio); 3168 int zone = folio_zonenum(folio); 3169 int delta = folio_nr_pages(folio); 3170 3171 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS); 3172 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS); 3173 3174 walk->batched++; 3175 3176 walk->nr_pages[old_gen][type][zone] -= delta; 3177 walk->nr_pages[new_gen][type][zone] += delta; 3178 } 3179 3180 static void reset_batch_size(struct lru_gen_mm_walk *walk) 3181 { 3182 int gen, type, zone; 3183 struct lruvec *lruvec = walk->lruvec; 3184 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3185 3186 walk->batched = 0; 3187 3188 for_each_gen_type_zone(gen, type, zone) { 3189 enum lru_list lru = type * LRU_INACTIVE_FILE; 3190 int delta = walk->nr_pages[gen][type][zone]; 3191 3192 if (!delta) 3193 continue; 3194 3195 walk->nr_pages[gen][type][zone] = 0; 3196 WRITE_ONCE(lrugen->nr_pages[gen][type][zone], 3197 lrugen->nr_pages[gen][type][zone] + delta); 3198 3199 if (lru_gen_is_active(lruvec, gen)) 3200 lru += LRU_ACTIVE; 3201 __update_lru_size(lruvec, lru, zone, delta); 3202 } 3203 } 3204 3205 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args) 3206 { 3207 struct address_space *mapping; 3208 struct vm_area_struct *vma = args->vma; 3209 struct lru_gen_mm_walk *walk = args->private; 3210 3211 if (!vma_is_accessible(vma)) 3212 return true; 3213 3214 if (is_vm_hugetlb_page(vma)) 3215 return true; 3216 3217 if (!vma_has_recency(vma)) 3218 return true; 3219 3220 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) 3221 return true; 3222 3223 if (vma == get_gate_vma(vma->vm_mm)) 3224 return true; 3225 3226 if (vma_is_anonymous(vma)) 3227 return !walk->can_swap; 3228 3229 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping)) 3230 return true; 3231 3232 mapping = vma->vm_file->f_mapping; 3233 if (mapping_unevictable(mapping)) 3234 return true; 3235 3236 if (shmem_mapping(mapping)) 3237 return !walk->can_swap; 3238 3239 /* to exclude special mappings like dax, etc. */ 3240 return !mapping->a_ops->read_folio; 3241 } 3242 3243 /* 3244 * Some userspace memory allocators map many single-page VMAs. Instead of 3245 * returning back to the PGD table for each of such VMAs, finish an entire PMD 3246 * table to reduce zigzags and improve cache performance. 3247 */ 3248 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args, 3249 unsigned long *vm_start, unsigned long *vm_end) 3250 { 3251 unsigned long start = round_up(*vm_end, size); 3252 unsigned long end = (start | ~mask) + 1; 3253 VMA_ITERATOR(vmi, args->mm, start); 3254 3255 VM_WARN_ON_ONCE(mask & size); 3256 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask)); 3257 3258 for_each_vma(vmi, args->vma) { 3259 if (end && end <= args->vma->vm_start) 3260 return false; 3261 3262 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) 3263 continue; 3264 3265 *vm_start = max(start, args->vma->vm_start); 3266 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1; 3267 3268 return true; 3269 } 3270 3271 return false; 3272 } 3273 3274 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr) 3275 { 3276 unsigned long pfn = pte_pfn(pte); 3277 3278 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3279 3280 if (!pte_present(pte) || is_zero_pfn(pfn)) 3281 return -1; 3282 3283 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte))) 3284 return -1; 3285 3286 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3287 return -1; 3288 3289 return pfn; 3290 } 3291 3292 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr) 3293 { 3294 unsigned long pfn = pmd_pfn(pmd); 3295 3296 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end); 3297 3298 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd)) 3299 return -1; 3300 3301 if (WARN_ON_ONCE(pmd_devmap(pmd))) 3302 return -1; 3303 3304 if (WARN_ON_ONCE(!pfn_valid(pfn))) 3305 return -1; 3306 3307 return pfn; 3308 } 3309 3310 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg, 3311 struct pglist_data *pgdat, bool can_swap) 3312 { 3313 struct folio *folio; 3314 3315 /* try to avoid unnecessary memory loads */ 3316 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3317 return NULL; 3318 3319 folio = pfn_folio(pfn); 3320 if (folio_nid(folio) != pgdat->node_id) 3321 return NULL; 3322 3323 if (folio_memcg_rcu(folio) != memcg) 3324 return NULL; 3325 3326 /* file VMAs can contain anon pages from COW */ 3327 if (!folio_is_file_lru(folio) && !can_swap) 3328 return NULL; 3329 3330 return folio; 3331 } 3332 3333 static bool suitable_to_scan(int total, int young) 3334 { 3335 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8); 3336 3337 /* suitable if the average number of young PTEs per cacheline is >=1 */ 3338 return young * n >= total; 3339 } 3340 3341 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end, 3342 struct mm_walk *args) 3343 { 3344 int i; 3345 pte_t *pte; 3346 spinlock_t *ptl; 3347 unsigned long addr; 3348 int total = 0; 3349 int young = 0; 3350 struct lru_gen_mm_walk *walk = args->private; 3351 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3352 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3353 DEFINE_MAX_SEQ(walk->lruvec); 3354 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3355 3356 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl); 3357 if (!pte) 3358 return false; 3359 if (!spin_trylock(ptl)) { 3360 pte_unmap(pte); 3361 return false; 3362 } 3363 3364 arch_enter_lazy_mmu_mode(); 3365 restart: 3366 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) { 3367 unsigned long pfn; 3368 struct folio *folio; 3369 pte_t ptent = ptep_get(pte + i); 3370 3371 total++; 3372 walk->mm_stats[MM_LEAF_TOTAL]++; 3373 3374 pfn = get_pte_pfn(ptent, args->vma, addr); 3375 if (pfn == -1) 3376 continue; 3377 3378 if (!pte_young(ptent)) { 3379 walk->mm_stats[MM_LEAF_OLD]++; 3380 continue; 3381 } 3382 3383 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3384 if (!folio) 3385 continue; 3386 3387 if (!ptep_test_and_clear_young(args->vma, addr, pte + i)) 3388 VM_WARN_ON_ONCE(true); 3389 3390 young++; 3391 walk->mm_stats[MM_LEAF_YOUNG]++; 3392 3393 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 3394 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3395 !folio_test_swapcache(folio))) 3396 folio_mark_dirty(folio); 3397 3398 old_gen = folio_update_gen(folio, new_gen); 3399 if (old_gen >= 0 && old_gen != new_gen) 3400 update_batch_size(walk, folio, old_gen, new_gen); 3401 } 3402 3403 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end)) 3404 goto restart; 3405 3406 arch_leave_lazy_mmu_mode(); 3407 pte_unmap_unlock(pte, ptl); 3408 3409 return suitable_to_scan(total, young); 3410 } 3411 3412 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma, 3413 struct mm_walk *args, unsigned long *bitmap, unsigned long *first) 3414 { 3415 int i; 3416 pmd_t *pmd; 3417 spinlock_t *ptl; 3418 struct lru_gen_mm_walk *walk = args->private; 3419 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec); 3420 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3421 DEFINE_MAX_SEQ(walk->lruvec); 3422 int old_gen, new_gen = lru_gen_from_seq(max_seq); 3423 3424 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3425 3426 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */ 3427 if (*first == -1) { 3428 *first = addr; 3429 bitmap_zero(bitmap, MIN_LRU_BATCH); 3430 return; 3431 } 3432 3433 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first); 3434 if (i && i <= MIN_LRU_BATCH) { 3435 __set_bit(i - 1, bitmap); 3436 return; 3437 } 3438 3439 pmd = pmd_offset(pud, *first); 3440 3441 ptl = pmd_lockptr(args->mm, pmd); 3442 if (!spin_trylock(ptl)) 3443 goto done; 3444 3445 arch_enter_lazy_mmu_mode(); 3446 3447 do { 3448 unsigned long pfn; 3449 struct folio *folio; 3450 3451 /* don't round down the first address */ 3452 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first; 3453 3454 pfn = get_pmd_pfn(pmd[i], vma, addr); 3455 if (pfn == -1) 3456 goto next; 3457 3458 if (!pmd_trans_huge(pmd[i])) { 3459 if (should_clear_pmd_young()) 3460 pmdp_test_and_clear_young(vma, addr, pmd + i); 3461 goto next; 3462 } 3463 3464 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap); 3465 if (!folio) 3466 goto next; 3467 3468 if (!pmdp_test_and_clear_young(vma, addr, pmd + i)) 3469 goto next; 3470 3471 walk->mm_stats[MM_LEAF_YOUNG]++; 3472 3473 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) && 3474 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 3475 !folio_test_swapcache(folio))) 3476 folio_mark_dirty(folio); 3477 3478 old_gen = folio_update_gen(folio, new_gen); 3479 if (old_gen >= 0 && old_gen != new_gen) 3480 update_batch_size(walk, folio, old_gen, new_gen); 3481 next: 3482 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1; 3483 } while (i <= MIN_LRU_BATCH); 3484 3485 arch_leave_lazy_mmu_mode(); 3486 spin_unlock(ptl); 3487 done: 3488 *first = -1; 3489 } 3490 3491 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end, 3492 struct mm_walk *args) 3493 { 3494 int i; 3495 pmd_t *pmd; 3496 unsigned long next; 3497 unsigned long addr; 3498 struct vm_area_struct *vma; 3499 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH); 3500 unsigned long first = -1; 3501 struct lru_gen_mm_walk *walk = args->private; 3502 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec); 3503 3504 VM_WARN_ON_ONCE(pud_leaf(*pud)); 3505 3506 /* 3507 * Finish an entire PMD in two passes: the first only reaches to PTE 3508 * tables to avoid taking the PMD lock; the second, if necessary, takes 3509 * the PMD lock to clear the accessed bit in PMD entries. 3510 */ 3511 pmd = pmd_offset(pud, start & PUD_MASK); 3512 restart: 3513 /* walk_pte_range() may call get_next_vma() */ 3514 vma = args->vma; 3515 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) { 3516 pmd_t val = pmdp_get_lockless(pmd + i); 3517 3518 next = pmd_addr_end(addr, end); 3519 3520 if (!pmd_present(val) || is_huge_zero_pmd(val)) { 3521 walk->mm_stats[MM_LEAF_TOTAL]++; 3522 continue; 3523 } 3524 3525 if (pmd_trans_huge(val)) { 3526 unsigned long pfn = pmd_pfn(val); 3527 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec); 3528 3529 walk->mm_stats[MM_LEAF_TOTAL]++; 3530 3531 if (!pmd_young(val)) { 3532 walk->mm_stats[MM_LEAF_OLD]++; 3533 continue; 3534 } 3535 3536 /* try to avoid unnecessary memory loads */ 3537 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat)) 3538 continue; 3539 3540 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3541 continue; 3542 } 3543 3544 walk->mm_stats[MM_NONLEAF_TOTAL]++; 3545 3546 if (should_clear_pmd_young()) { 3547 if (!pmd_young(val)) 3548 continue; 3549 3550 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first); 3551 } 3552 3553 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i)) 3554 continue; 3555 3556 walk->mm_stats[MM_NONLEAF_FOUND]++; 3557 3558 if (!walk_pte_range(&val, addr, next, args)) 3559 continue; 3560 3561 walk->mm_stats[MM_NONLEAF_ADDED]++; 3562 3563 /* carry over to the next generation */ 3564 update_bloom_filter(mm_state, walk->seq + 1, pmd + i); 3565 } 3566 3567 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first); 3568 3569 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end)) 3570 goto restart; 3571 } 3572 3573 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end, 3574 struct mm_walk *args) 3575 { 3576 int i; 3577 pud_t *pud; 3578 unsigned long addr; 3579 unsigned long next; 3580 struct lru_gen_mm_walk *walk = args->private; 3581 3582 VM_WARN_ON_ONCE(p4d_leaf(*p4d)); 3583 3584 pud = pud_offset(p4d, start & P4D_MASK); 3585 restart: 3586 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) { 3587 pud_t val = READ_ONCE(pud[i]); 3588 3589 next = pud_addr_end(addr, end); 3590 3591 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val))) 3592 continue; 3593 3594 walk_pmd_range(&val, addr, next, args); 3595 3596 if (need_resched() || walk->batched >= MAX_LRU_BATCH) { 3597 end = (addr | ~PUD_MASK) + 1; 3598 goto done; 3599 } 3600 } 3601 3602 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end)) 3603 goto restart; 3604 3605 end = round_up(end, P4D_SIZE); 3606 done: 3607 if (!end || !args->vma) 3608 return 1; 3609 3610 walk->next_addr = max(end, args->vma->vm_start); 3611 3612 return -EAGAIN; 3613 } 3614 3615 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk) 3616 { 3617 static const struct mm_walk_ops mm_walk_ops = { 3618 .test_walk = should_skip_vma, 3619 .p4d_entry = walk_pud_range, 3620 .walk_lock = PGWALK_RDLOCK, 3621 }; 3622 3623 int err; 3624 struct lruvec *lruvec = walk->lruvec; 3625 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3626 3627 walk->next_addr = FIRST_USER_ADDRESS; 3628 3629 do { 3630 DEFINE_MAX_SEQ(lruvec); 3631 3632 err = -EBUSY; 3633 3634 /* another thread might have called inc_max_seq() */ 3635 if (walk->seq != max_seq) 3636 break; 3637 3638 /* folio_update_gen() requires stable folio_memcg() */ 3639 if (!mem_cgroup_trylock_pages(memcg)) 3640 break; 3641 3642 /* the caller might be holding the lock for write */ 3643 if (mmap_read_trylock(mm)) { 3644 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk); 3645 3646 mmap_read_unlock(mm); 3647 } 3648 3649 mem_cgroup_unlock_pages(); 3650 3651 if (walk->batched) { 3652 spin_lock_irq(&lruvec->lru_lock); 3653 reset_batch_size(walk); 3654 spin_unlock_irq(&lruvec->lru_lock); 3655 } 3656 3657 cond_resched(); 3658 } while (err == -EAGAIN); 3659 } 3660 3661 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc) 3662 { 3663 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3664 3665 if (pgdat && current_is_kswapd()) { 3666 VM_WARN_ON_ONCE(walk); 3667 3668 walk = &pgdat->mm_walk; 3669 } else if (!walk && force_alloc) { 3670 VM_WARN_ON_ONCE(current_is_kswapd()); 3671 3672 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 3673 } 3674 3675 current->reclaim_state->mm_walk = walk; 3676 3677 return walk; 3678 } 3679 3680 static void clear_mm_walk(void) 3681 { 3682 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk; 3683 3684 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages))); 3685 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats))); 3686 3687 current->reclaim_state->mm_walk = NULL; 3688 3689 if (!current_is_kswapd()) 3690 kfree(walk); 3691 } 3692 3693 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap) 3694 { 3695 int zone; 3696 int remaining = MAX_LRU_BATCH; 3697 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3698 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]); 3699 3700 if (type == LRU_GEN_ANON && !can_swap) 3701 goto done; 3702 3703 /* prevent cold/hot inversion if force_scan is true */ 3704 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3705 struct list_head *head = &lrugen->folios[old_gen][type][zone]; 3706 3707 while (!list_empty(head)) { 3708 struct folio *folio = lru_to_folio(head); 3709 3710 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 3711 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 3712 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 3713 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 3714 3715 new_gen = folio_inc_gen(lruvec, folio, false); 3716 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]); 3717 3718 if (!--remaining) 3719 return false; 3720 } 3721 } 3722 done: 3723 reset_ctrl_pos(lruvec, type, true); 3724 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1); 3725 3726 return true; 3727 } 3728 3729 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap) 3730 { 3731 int gen, type, zone; 3732 bool success = false; 3733 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3734 DEFINE_MIN_SEQ(lruvec); 3735 3736 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3737 3738 /* find the oldest populated generation */ 3739 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3740 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) { 3741 gen = lru_gen_from_seq(min_seq[type]); 3742 3743 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3744 if (!list_empty(&lrugen->folios[gen][type][zone])) 3745 goto next; 3746 } 3747 3748 min_seq[type]++; 3749 } 3750 next: 3751 ; 3752 } 3753 3754 /* see the comment on lru_gen_folio */ 3755 if (can_swap) { 3756 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]); 3757 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]); 3758 } 3759 3760 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3761 if (min_seq[type] == lrugen->min_seq[type]) 3762 continue; 3763 3764 reset_ctrl_pos(lruvec, type, true); 3765 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]); 3766 success = true; 3767 } 3768 3769 return success; 3770 } 3771 3772 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3773 bool can_swap, bool force_scan) 3774 { 3775 bool success; 3776 int prev, next; 3777 int type, zone; 3778 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3779 restart: 3780 if (seq < READ_ONCE(lrugen->max_seq)) 3781 return false; 3782 3783 spin_lock_irq(&lruvec->lru_lock); 3784 3785 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 3786 3787 success = seq == lrugen->max_seq; 3788 if (!success) 3789 goto unlock; 3790 3791 for (type = ANON_AND_FILE - 1; type >= 0; type--) { 3792 if (get_nr_gens(lruvec, type) != MAX_NR_GENS) 3793 continue; 3794 3795 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap)); 3796 3797 if (inc_min_seq(lruvec, type, can_swap)) 3798 continue; 3799 3800 spin_unlock_irq(&lruvec->lru_lock); 3801 cond_resched(); 3802 goto restart; 3803 } 3804 3805 /* 3806 * Update the active/inactive LRU sizes for compatibility. Both sides of 3807 * the current max_seq need to be covered, since max_seq+1 can overlap 3808 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do 3809 * overlap, cold/hot inversion happens. 3810 */ 3811 prev = lru_gen_from_seq(lrugen->max_seq - 1); 3812 next = lru_gen_from_seq(lrugen->max_seq + 1); 3813 3814 for (type = 0; type < ANON_AND_FILE; type++) { 3815 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3816 enum lru_list lru = type * LRU_INACTIVE_FILE; 3817 long delta = lrugen->nr_pages[prev][type][zone] - 3818 lrugen->nr_pages[next][type][zone]; 3819 3820 if (!delta) 3821 continue; 3822 3823 __update_lru_size(lruvec, lru, zone, delta); 3824 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta); 3825 } 3826 } 3827 3828 for (type = 0; type < ANON_AND_FILE; type++) 3829 reset_ctrl_pos(lruvec, type, false); 3830 3831 WRITE_ONCE(lrugen->timestamps[next], jiffies); 3832 /* make sure preceding modifications appear */ 3833 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1); 3834 unlock: 3835 spin_unlock_irq(&lruvec->lru_lock); 3836 3837 return success; 3838 } 3839 3840 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq, 3841 bool can_swap, bool force_scan) 3842 { 3843 bool success; 3844 struct lru_gen_mm_walk *walk; 3845 struct mm_struct *mm = NULL; 3846 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3847 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 3848 3849 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq)); 3850 3851 if (!mm_state) 3852 return inc_max_seq(lruvec, seq, can_swap, force_scan); 3853 3854 /* see the comment in iterate_mm_list() */ 3855 if (seq <= READ_ONCE(mm_state->seq)) 3856 return false; 3857 3858 /* 3859 * If the hardware doesn't automatically set the accessed bit, fallback 3860 * to lru_gen_look_around(), which only clears the accessed bit in a 3861 * handful of PTEs. Spreading the work out over a period of time usually 3862 * is less efficient, but it avoids bursty page faults. 3863 */ 3864 if (!should_walk_mmu()) { 3865 success = iterate_mm_list_nowalk(lruvec, seq); 3866 goto done; 3867 } 3868 3869 walk = set_mm_walk(NULL, true); 3870 if (!walk) { 3871 success = iterate_mm_list_nowalk(lruvec, seq); 3872 goto done; 3873 } 3874 3875 walk->lruvec = lruvec; 3876 walk->seq = seq; 3877 walk->can_swap = can_swap; 3878 walk->force_scan = force_scan; 3879 3880 do { 3881 success = iterate_mm_list(walk, &mm); 3882 if (mm) 3883 walk_mm(mm, walk); 3884 } while (mm); 3885 done: 3886 if (success) { 3887 success = inc_max_seq(lruvec, seq, can_swap, force_scan); 3888 WARN_ON_ONCE(!success); 3889 } 3890 3891 return success; 3892 } 3893 3894 /****************************************************************************** 3895 * working set protection 3896 ******************************************************************************/ 3897 3898 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc) 3899 { 3900 int priority; 3901 unsigned long reclaimable; 3902 3903 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH) 3904 return; 3905 /* 3906 * Determine the initial priority based on 3907 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, 3908 * where reclaimed_to_scanned_ratio = inactive / total. 3909 */ 3910 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE); 3911 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 3912 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON); 3913 3914 /* round down reclaimable and round up sc->nr_to_reclaim */ 3915 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1); 3916 3917 /* 3918 * The estimation is based on LRU pages only, so cap it to prevent 3919 * overshoots of shrinker objects by large margins. 3920 */ 3921 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY); 3922 } 3923 3924 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc) 3925 { 3926 int gen, type, zone; 3927 unsigned long total = 0; 3928 bool can_swap = get_swappiness(lruvec, sc); 3929 struct lru_gen_folio *lrugen = &lruvec->lrugen; 3930 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3931 DEFINE_MAX_SEQ(lruvec); 3932 DEFINE_MIN_SEQ(lruvec); 3933 3934 for (type = !can_swap; type < ANON_AND_FILE; type++) { 3935 unsigned long seq; 3936 3937 for (seq = min_seq[type]; seq <= max_seq; seq++) { 3938 gen = lru_gen_from_seq(seq); 3939 3940 for (zone = 0; zone < MAX_NR_ZONES; zone++) 3941 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 3942 } 3943 } 3944 3945 /* whether the size is big enough to be helpful */ 3946 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total; 3947 } 3948 3949 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc, 3950 unsigned long min_ttl) 3951 { 3952 int gen; 3953 unsigned long birth; 3954 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 3955 DEFINE_MIN_SEQ(lruvec); 3956 3957 if (mem_cgroup_below_min(NULL, memcg)) 3958 return false; 3959 3960 if (!lruvec_is_sizable(lruvec, sc)) 3961 return false; 3962 3963 /* see the comment on lru_gen_folio */ 3964 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]); 3965 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 3966 3967 return time_is_before_jiffies(birth + min_ttl); 3968 } 3969 3970 /* to protect the working set of the last N jiffies */ 3971 static unsigned long lru_gen_min_ttl __read_mostly; 3972 3973 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 3974 { 3975 struct mem_cgroup *memcg; 3976 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl); 3977 bool reclaimable = !min_ttl; 3978 3979 VM_WARN_ON_ONCE(!current_is_kswapd()); 3980 3981 set_initial_priority(pgdat, sc); 3982 3983 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3984 do { 3985 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3986 3987 mem_cgroup_calculate_protection(NULL, memcg); 3988 3989 if (!reclaimable) 3990 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl); 3991 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 3992 3993 /* 3994 * The main goal is to OOM kill if every generation from all memcgs is 3995 * younger than min_ttl. However, another possibility is all memcgs are 3996 * either too small or below min. 3997 */ 3998 if (!reclaimable && mutex_trylock(&oom_lock)) { 3999 struct oom_control oc = { 4000 .gfp_mask = sc->gfp_mask, 4001 }; 4002 4003 out_of_memory(&oc); 4004 4005 mutex_unlock(&oom_lock); 4006 } 4007 } 4008 4009 /****************************************************************************** 4010 * rmap/PT walk feedback 4011 ******************************************************************************/ 4012 4013 /* 4014 * This function exploits spatial locality when shrink_folio_list() walks the 4015 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If 4016 * the scan was done cacheline efficiently, it adds the PMD entry pointing to 4017 * the PTE table to the Bloom filter. This forms a feedback loop between the 4018 * eviction and the aging. 4019 */ 4020 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 4021 { 4022 int i; 4023 unsigned long start; 4024 unsigned long end; 4025 struct lru_gen_mm_walk *walk; 4026 int young = 0; 4027 pte_t *pte = pvmw->pte; 4028 unsigned long addr = pvmw->address; 4029 struct vm_area_struct *vma = pvmw->vma; 4030 struct folio *folio = pfn_folio(pvmw->pfn); 4031 bool can_swap = !folio_is_file_lru(folio); 4032 struct mem_cgroup *memcg = folio_memcg(folio); 4033 struct pglist_data *pgdat = folio_pgdat(folio); 4034 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 4035 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 4036 DEFINE_MAX_SEQ(lruvec); 4037 int old_gen, new_gen = lru_gen_from_seq(max_seq); 4038 4039 lockdep_assert_held(pvmw->ptl); 4040 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio); 4041 4042 if (spin_is_contended(pvmw->ptl)) 4043 return; 4044 4045 /* exclude special VMAs containing anon pages from COW */ 4046 if (vma->vm_flags & VM_SPECIAL) 4047 return; 4048 4049 /* avoid taking the LRU lock under the PTL when possible */ 4050 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL; 4051 4052 start = max(addr & PMD_MASK, vma->vm_start); 4053 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1; 4054 4055 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) { 4056 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2) 4057 end = start + MIN_LRU_BATCH * PAGE_SIZE; 4058 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2) 4059 start = end - MIN_LRU_BATCH * PAGE_SIZE; 4060 else { 4061 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2; 4062 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2; 4063 } 4064 } 4065 4066 /* folio_update_gen() requires stable folio_memcg() */ 4067 if (!mem_cgroup_trylock_pages(memcg)) 4068 return; 4069 4070 arch_enter_lazy_mmu_mode(); 4071 4072 pte -= (addr - start) / PAGE_SIZE; 4073 4074 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) { 4075 unsigned long pfn; 4076 pte_t ptent = ptep_get(pte + i); 4077 4078 pfn = get_pte_pfn(ptent, vma, addr); 4079 if (pfn == -1) 4080 continue; 4081 4082 if (!pte_young(ptent)) 4083 continue; 4084 4085 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap); 4086 if (!folio) 4087 continue; 4088 4089 if (!ptep_test_and_clear_young(vma, addr, pte + i)) 4090 VM_WARN_ON_ONCE(true); 4091 4092 young++; 4093 4094 if (pte_dirty(ptent) && !folio_test_dirty(folio) && 4095 !(folio_test_anon(folio) && folio_test_swapbacked(folio) && 4096 !folio_test_swapcache(folio))) 4097 folio_mark_dirty(folio); 4098 4099 if (walk) { 4100 old_gen = folio_update_gen(folio, new_gen); 4101 if (old_gen >= 0 && old_gen != new_gen) 4102 update_batch_size(walk, folio, old_gen, new_gen); 4103 4104 continue; 4105 } 4106 4107 old_gen = folio_lru_gen(folio); 4108 if (old_gen < 0) 4109 folio_set_referenced(folio); 4110 else if (old_gen != new_gen) 4111 folio_activate(folio); 4112 } 4113 4114 arch_leave_lazy_mmu_mode(); 4115 mem_cgroup_unlock_pages(); 4116 4117 /* feedback from rmap walkers to page table walkers */ 4118 if (mm_state && suitable_to_scan(i, young)) 4119 update_bloom_filter(mm_state, max_seq, pvmw->pmd); 4120 } 4121 4122 /****************************************************************************** 4123 * memcg LRU 4124 ******************************************************************************/ 4125 4126 /* see the comment on MEMCG_NR_GENS */ 4127 enum { 4128 MEMCG_LRU_NOP, 4129 MEMCG_LRU_HEAD, 4130 MEMCG_LRU_TAIL, 4131 MEMCG_LRU_OLD, 4132 MEMCG_LRU_YOUNG, 4133 }; 4134 4135 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op) 4136 { 4137 int seg; 4138 int old, new; 4139 unsigned long flags; 4140 int bin = get_random_u32_below(MEMCG_NR_BINS); 4141 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4142 4143 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags); 4144 4145 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list)); 4146 4147 seg = 0; 4148 new = old = lruvec->lrugen.gen; 4149 4150 /* see the comment on MEMCG_NR_GENS */ 4151 if (op == MEMCG_LRU_HEAD) 4152 seg = MEMCG_LRU_HEAD; 4153 else if (op == MEMCG_LRU_TAIL) 4154 seg = MEMCG_LRU_TAIL; 4155 else if (op == MEMCG_LRU_OLD) 4156 new = get_memcg_gen(pgdat->memcg_lru.seq); 4157 else if (op == MEMCG_LRU_YOUNG) 4158 new = get_memcg_gen(pgdat->memcg_lru.seq + 1); 4159 else 4160 VM_WARN_ON_ONCE(true); 4161 4162 WRITE_ONCE(lruvec->lrugen.seg, seg); 4163 WRITE_ONCE(lruvec->lrugen.gen, new); 4164 4165 hlist_nulls_del_rcu(&lruvec->lrugen.list); 4166 4167 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD) 4168 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4169 else 4170 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]); 4171 4172 pgdat->memcg_lru.nr_memcgs[old]--; 4173 pgdat->memcg_lru.nr_memcgs[new]++; 4174 4175 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq)) 4176 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4177 4178 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags); 4179 } 4180 4181 #ifdef CONFIG_MEMCG 4182 4183 void lru_gen_online_memcg(struct mem_cgroup *memcg) 4184 { 4185 int gen; 4186 int nid; 4187 int bin = get_random_u32_below(MEMCG_NR_BINS); 4188 4189 for_each_node(nid) { 4190 struct pglist_data *pgdat = NODE_DATA(nid); 4191 struct lruvec *lruvec = get_lruvec(memcg, nid); 4192 4193 spin_lock_irq(&pgdat->memcg_lru.lock); 4194 4195 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list)); 4196 4197 gen = get_memcg_gen(pgdat->memcg_lru.seq); 4198 4199 lruvec->lrugen.gen = gen; 4200 4201 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]); 4202 pgdat->memcg_lru.nr_memcgs[gen]++; 4203 4204 spin_unlock_irq(&pgdat->memcg_lru.lock); 4205 } 4206 } 4207 4208 void lru_gen_offline_memcg(struct mem_cgroup *memcg) 4209 { 4210 int nid; 4211 4212 for_each_node(nid) { 4213 struct lruvec *lruvec = get_lruvec(memcg, nid); 4214 4215 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD); 4216 } 4217 } 4218 4219 void lru_gen_release_memcg(struct mem_cgroup *memcg) 4220 { 4221 int gen; 4222 int nid; 4223 4224 for_each_node(nid) { 4225 struct pglist_data *pgdat = NODE_DATA(nid); 4226 struct lruvec *lruvec = get_lruvec(memcg, nid); 4227 4228 spin_lock_irq(&pgdat->memcg_lru.lock); 4229 4230 if (hlist_nulls_unhashed(&lruvec->lrugen.list)) 4231 goto unlock; 4232 4233 gen = lruvec->lrugen.gen; 4234 4235 hlist_nulls_del_init_rcu(&lruvec->lrugen.list); 4236 pgdat->memcg_lru.nr_memcgs[gen]--; 4237 4238 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq)) 4239 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1); 4240 unlock: 4241 spin_unlock_irq(&pgdat->memcg_lru.lock); 4242 } 4243 } 4244 4245 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid) 4246 { 4247 struct lruvec *lruvec = get_lruvec(memcg, nid); 4248 4249 /* see the comment on MEMCG_NR_GENS */ 4250 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD) 4251 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD); 4252 } 4253 4254 #endif /* CONFIG_MEMCG */ 4255 4256 /****************************************************************************** 4257 * the eviction 4258 ******************************************************************************/ 4259 4260 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc, 4261 int tier_idx) 4262 { 4263 bool success; 4264 int gen = folio_lru_gen(folio); 4265 int type = folio_is_file_lru(folio); 4266 int zone = folio_zonenum(folio); 4267 int delta = folio_nr_pages(folio); 4268 int refs = folio_lru_refs(folio); 4269 int tier = lru_tier_from_refs(refs); 4270 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4271 4272 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio); 4273 4274 /* unevictable */ 4275 if (!folio_evictable(folio)) { 4276 success = lru_gen_del_folio(lruvec, folio, true); 4277 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4278 folio_set_unevictable(folio); 4279 lruvec_add_folio(lruvec, folio); 4280 __count_vm_events(UNEVICTABLE_PGCULLED, delta); 4281 return true; 4282 } 4283 4284 /* promoted */ 4285 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) { 4286 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4287 return true; 4288 } 4289 4290 /* protected */ 4291 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) { 4292 int hist = lru_hist_from_seq(lrugen->min_seq[type]); 4293 4294 gen = folio_inc_gen(lruvec, folio, false); 4295 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4296 4297 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 4298 lrugen->protected[hist][type][tier - 1] + delta); 4299 return true; 4300 } 4301 4302 /* ineligible */ 4303 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) { 4304 gen = folio_inc_gen(lruvec, folio, false); 4305 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]); 4306 return true; 4307 } 4308 4309 /* waiting for writeback */ 4310 if (folio_test_locked(folio) || folio_test_writeback(folio) || 4311 (type == LRU_GEN_FILE && folio_test_dirty(folio))) { 4312 gen = folio_inc_gen(lruvec, folio, true); 4313 list_move(&folio->lru, &lrugen->folios[gen][type][zone]); 4314 return true; 4315 } 4316 4317 return false; 4318 } 4319 4320 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc) 4321 { 4322 bool success; 4323 4324 /* swap constrained */ 4325 if (!(sc->gfp_mask & __GFP_IO) && 4326 (folio_test_dirty(folio) || 4327 (folio_test_anon(folio) && !folio_test_swapcache(folio)))) 4328 return false; 4329 4330 /* raced with release_pages() */ 4331 if (!folio_try_get(folio)) 4332 return false; 4333 4334 /* raced with another isolation */ 4335 if (!folio_test_clear_lru(folio)) { 4336 folio_put(folio); 4337 return false; 4338 } 4339 4340 /* see the comment on MAX_NR_TIERS */ 4341 if (!folio_test_referenced(folio)) 4342 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0); 4343 4344 /* for shrink_folio_list() */ 4345 folio_clear_reclaim(folio); 4346 folio_clear_referenced(folio); 4347 4348 success = lru_gen_del_folio(lruvec, folio, true); 4349 VM_WARN_ON_ONCE_FOLIO(!success, folio); 4350 4351 return true; 4352 } 4353 4354 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc, 4355 int type, int tier, struct list_head *list) 4356 { 4357 int i; 4358 int gen; 4359 enum vm_event_item item; 4360 int sorted = 0; 4361 int scanned = 0; 4362 int isolated = 0; 4363 int skipped = 0; 4364 int remaining = MAX_LRU_BATCH; 4365 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4366 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4367 4368 VM_WARN_ON_ONCE(!list_empty(list)); 4369 4370 if (get_nr_gens(lruvec, type) == MIN_NR_GENS) 4371 return 0; 4372 4373 gen = lru_gen_from_seq(lrugen->min_seq[type]); 4374 4375 for (i = MAX_NR_ZONES; i > 0; i--) { 4376 LIST_HEAD(moved); 4377 int skipped_zone = 0; 4378 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES; 4379 struct list_head *head = &lrugen->folios[gen][type][zone]; 4380 4381 while (!list_empty(head)) { 4382 struct folio *folio = lru_to_folio(head); 4383 int delta = folio_nr_pages(folio); 4384 4385 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4386 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 4387 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4388 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 4389 4390 scanned += delta; 4391 4392 if (sort_folio(lruvec, folio, sc, tier)) 4393 sorted += delta; 4394 else if (isolate_folio(lruvec, folio, sc)) { 4395 list_add(&folio->lru, list); 4396 isolated += delta; 4397 } else { 4398 list_move(&folio->lru, &moved); 4399 skipped_zone += delta; 4400 } 4401 4402 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH) 4403 break; 4404 } 4405 4406 if (skipped_zone) { 4407 list_splice(&moved, head); 4408 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone); 4409 skipped += skipped_zone; 4410 } 4411 4412 if (!remaining || isolated >= MIN_LRU_BATCH) 4413 break; 4414 } 4415 4416 item = PGSCAN_KSWAPD + reclaimer_offset(); 4417 if (!cgroup_reclaim(sc)) { 4418 __count_vm_events(item, isolated); 4419 __count_vm_events(PGREFILL, sorted); 4420 } 4421 __count_memcg_events(memcg, item, isolated); 4422 __count_memcg_events(memcg, PGREFILL, sorted); 4423 __count_vm_events(PGSCAN_ANON + type, isolated); 4424 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH, 4425 scanned, skipped, isolated, 4426 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4427 4428 /* 4429 * There might not be eligible folios due to reclaim_idx. Check the 4430 * remaining to prevent livelock if it's not making progress. 4431 */ 4432 return isolated || !remaining ? scanned : 0; 4433 } 4434 4435 static int get_tier_idx(struct lruvec *lruvec, int type) 4436 { 4437 int tier; 4438 struct ctrl_pos sp, pv; 4439 4440 /* 4441 * To leave a margin for fluctuations, use a larger gain factor (1:2). 4442 * This value is chosen because any other tier would have at least twice 4443 * as many refaults as the first tier. 4444 */ 4445 read_ctrl_pos(lruvec, type, 0, 1, &sp); 4446 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4447 read_ctrl_pos(lruvec, type, tier, 2, &pv); 4448 if (!positive_ctrl_err(&sp, &pv)) 4449 break; 4450 } 4451 4452 return tier - 1; 4453 } 4454 4455 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx) 4456 { 4457 int type, tier; 4458 struct ctrl_pos sp, pv; 4459 int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness }; 4460 4461 /* 4462 * Compare the first tier of anon with that of file to determine which 4463 * type to scan. Also need to compare other tiers of the selected type 4464 * with the first tier of the other type to determine the last tier (of 4465 * the selected type) to evict. 4466 */ 4467 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp); 4468 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv); 4469 type = positive_ctrl_err(&sp, &pv); 4470 4471 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp); 4472 for (tier = 1; tier < MAX_NR_TIERS; tier++) { 4473 read_ctrl_pos(lruvec, type, tier, gain[type], &pv); 4474 if (!positive_ctrl_err(&sp, &pv)) 4475 break; 4476 } 4477 4478 *tier_idx = tier - 1; 4479 4480 return type; 4481 } 4482 4483 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness, 4484 int *type_scanned, struct list_head *list) 4485 { 4486 int i; 4487 int type; 4488 int scanned; 4489 int tier = -1; 4490 DEFINE_MIN_SEQ(lruvec); 4491 4492 /* 4493 * Try to make the obvious choice first, and if anon and file are both 4494 * available from the same generation, 4495 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon 4496 * first. 4497 * 2. If !__GFP_IO, file first since clean pagecache is more likely to 4498 * exist than clean swapcache. 4499 */ 4500 if (!swappiness) 4501 type = LRU_GEN_FILE; 4502 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE]) 4503 type = LRU_GEN_ANON; 4504 else if (swappiness == 1) 4505 type = LRU_GEN_FILE; 4506 else if (swappiness == MAX_SWAPPINESS) 4507 type = LRU_GEN_ANON; 4508 else if (!(sc->gfp_mask & __GFP_IO)) 4509 type = LRU_GEN_FILE; 4510 else 4511 type = get_type_to_scan(lruvec, swappiness, &tier); 4512 4513 for (i = !swappiness; i < ANON_AND_FILE; i++) { 4514 if (tier < 0) 4515 tier = get_tier_idx(lruvec, type); 4516 4517 scanned = scan_folios(lruvec, sc, type, tier, list); 4518 if (scanned) 4519 break; 4520 4521 type = !type; 4522 tier = -1; 4523 } 4524 4525 *type_scanned = type; 4526 4527 return scanned; 4528 } 4529 4530 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness) 4531 { 4532 int type; 4533 int scanned; 4534 int reclaimed; 4535 LIST_HEAD(list); 4536 LIST_HEAD(clean); 4537 struct folio *folio; 4538 struct folio *next; 4539 enum vm_event_item item; 4540 struct reclaim_stat stat; 4541 struct lru_gen_mm_walk *walk; 4542 bool skip_retry = false; 4543 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4544 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4545 4546 spin_lock_irq(&lruvec->lru_lock); 4547 4548 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list); 4549 4550 scanned += try_to_inc_min_seq(lruvec, swappiness); 4551 4552 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS) 4553 scanned = 0; 4554 4555 spin_unlock_irq(&lruvec->lru_lock); 4556 4557 if (list_empty(&list)) 4558 return scanned; 4559 retry: 4560 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false); 4561 sc->nr_reclaimed += reclaimed; 4562 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 4563 scanned, reclaimed, &stat, sc->priority, 4564 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON); 4565 4566 list_for_each_entry_safe_reverse(folio, next, &list, lru) { 4567 if (!folio_evictable(folio)) { 4568 list_del(&folio->lru); 4569 folio_putback_lru(folio); 4570 continue; 4571 } 4572 4573 if (folio_test_reclaim(folio) && 4574 (folio_test_dirty(folio) || folio_test_writeback(folio))) { 4575 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */ 4576 if (folio_test_workingset(folio)) 4577 folio_set_referenced(folio); 4578 continue; 4579 } 4580 4581 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) || 4582 folio_mapped(folio) || folio_test_locked(folio) || 4583 folio_test_dirty(folio) || folio_test_writeback(folio)) { 4584 /* don't add rejected folios to the oldest generation */ 4585 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 4586 BIT(PG_active)); 4587 continue; 4588 } 4589 4590 /* retry folios that may have missed folio_rotate_reclaimable() */ 4591 list_move(&folio->lru, &clean); 4592 } 4593 4594 spin_lock_irq(&lruvec->lru_lock); 4595 4596 move_folios_to_lru(lruvec, &list); 4597 4598 walk = current->reclaim_state->mm_walk; 4599 if (walk && walk->batched) { 4600 walk->lruvec = lruvec; 4601 reset_batch_size(walk); 4602 } 4603 4604 item = PGSTEAL_KSWAPD + reclaimer_offset(); 4605 if (!cgroup_reclaim(sc)) 4606 __count_vm_events(item, reclaimed); 4607 __count_memcg_events(memcg, item, reclaimed); 4608 __count_vm_events(PGSTEAL_ANON + type, reclaimed); 4609 4610 spin_unlock_irq(&lruvec->lru_lock); 4611 4612 list_splice_init(&clean, &list); 4613 4614 if (!list_empty(&list)) { 4615 skip_retry = true; 4616 goto retry; 4617 } 4618 4619 return scanned; 4620 } 4621 4622 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, 4623 bool can_swap, unsigned long *nr_to_scan) 4624 { 4625 int gen, type, zone; 4626 unsigned long old = 0; 4627 unsigned long young = 0; 4628 unsigned long total = 0; 4629 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4630 DEFINE_MIN_SEQ(lruvec); 4631 4632 /* whether this lruvec is completely out of cold folios */ 4633 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) { 4634 *nr_to_scan = 0; 4635 return true; 4636 } 4637 4638 for (type = !can_swap; type < ANON_AND_FILE; type++) { 4639 unsigned long seq; 4640 4641 for (seq = min_seq[type]; seq <= max_seq; seq++) { 4642 unsigned long size = 0; 4643 4644 gen = lru_gen_from_seq(seq); 4645 4646 for (zone = 0; zone < MAX_NR_ZONES; zone++) 4647 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 4648 4649 total += size; 4650 if (seq == max_seq) 4651 young += size; 4652 else if (seq + MIN_NR_GENS == max_seq) 4653 old += size; 4654 } 4655 } 4656 4657 *nr_to_scan = total; 4658 4659 /* 4660 * The aging tries to be lazy to reduce the overhead, while the eviction 4661 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the 4662 * ideal number of generations is MIN_NR_GENS+1. 4663 */ 4664 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq) 4665 return false; 4666 4667 /* 4668 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1) 4669 * of the total number of pages for each generation. A reasonable range 4670 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The 4671 * aging cares about the upper bound of hot pages, while the eviction 4672 * cares about the lower bound of cold pages. 4673 */ 4674 if (young * MIN_NR_GENS > total) 4675 return true; 4676 if (old * (MIN_NR_GENS + 2) < total) 4677 return true; 4678 4679 return false; 4680 } 4681 4682 /* 4683 * For future optimizations: 4684 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg 4685 * reclaim. 4686 */ 4687 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap) 4688 { 4689 bool success; 4690 unsigned long nr_to_scan; 4691 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4692 DEFINE_MAX_SEQ(lruvec); 4693 4694 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg)) 4695 return -1; 4696 4697 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan); 4698 4699 /* try to scrape all its memory if this memcg was deleted */ 4700 if (nr_to_scan && !mem_cgroup_online(memcg)) 4701 return nr_to_scan; 4702 4703 /* try to get away with not aging at the default priority */ 4704 if (!success || sc->priority == DEF_PRIORITY) 4705 return nr_to_scan >> sc->priority; 4706 4707 /* stop scanning this lruvec as it's low on cold folios */ 4708 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0; 4709 } 4710 4711 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc) 4712 { 4713 int i; 4714 enum zone_watermarks mark; 4715 4716 /* don't abort memcg reclaim to ensure fairness */ 4717 if (!root_reclaim(sc)) 4718 return false; 4719 4720 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order))) 4721 return true; 4722 4723 /* check the order to exclude compaction-induced reclaim */ 4724 if (!current_is_kswapd() || sc->order) 4725 return false; 4726 4727 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ? 4728 WMARK_PROMO : WMARK_HIGH; 4729 4730 for (i = 0; i <= sc->reclaim_idx; i++) { 4731 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i; 4732 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH; 4733 4734 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0)) 4735 return false; 4736 } 4737 4738 /* kswapd should abort if all eligible zones are safe */ 4739 return true; 4740 } 4741 4742 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4743 { 4744 long nr_to_scan; 4745 unsigned long scanned = 0; 4746 int swappiness = get_swappiness(lruvec, sc); 4747 4748 while (true) { 4749 int delta; 4750 4751 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness); 4752 if (nr_to_scan <= 0) 4753 break; 4754 4755 delta = evict_folios(lruvec, sc, swappiness); 4756 if (!delta) 4757 break; 4758 4759 scanned += delta; 4760 if (scanned >= nr_to_scan) 4761 break; 4762 4763 if (should_abort_scan(lruvec, sc)) 4764 break; 4765 4766 cond_resched(); 4767 } 4768 4769 /* whether this lruvec should be rotated */ 4770 return nr_to_scan < 0; 4771 } 4772 4773 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc) 4774 { 4775 bool success; 4776 unsigned long scanned = sc->nr_scanned; 4777 unsigned long reclaimed = sc->nr_reclaimed; 4778 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 4779 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 4780 4781 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */ 4782 if (mem_cgroup_below_min(NULL, memcg)) 4783 return MEMCG_LRU_YOUNG; 4784 4785 if (mem_cgroup_below_low(NULL, memcg)) { 4786 /* see the comment on MEMCG_NR_GENS */ 4787 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL) 4788 return MEMCG_LRU_TAIL; 4789 4790 memcg_memory_event(memcg, MEMCG_LOW); 4791 } 4792 4793 success = try_to_shrink_lruvec(lruvec, sc); 4794 4795 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority); 4796 4797 if (!sc->proactive) 4798 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned, 4799 sc->nr_reclaimed - reclaimed); 4800 4801 flush_reclaim_state(sc); 4802 4803 if (success && mem_cgroup_online(memcg)) 4804 return MEMCG_LRU_YOUNG; 4805 4806 if (!success && lruvec_is_sizable(lruvec, sc)) 4807 return 0; 4808 4809 /* one retry if offlined or too small */ 4810 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ? 4811 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG; 4812 } 4813 4814 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc) 4815 { 4816 int op; 4817 int gen; 4818 int bin; 4819 int first_bin; 4820 struct lruvec *lruvec; 4821 struct lru_gen_folio *lrugen; 4822 struct mem_cgroup *memcg; 4823 struct hlist_nulls_node *pos; 4824 4825 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq)); 4826 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS); 4827 restart: 4828 op = 0; 4829 memcg = NULL; 4830 4831 rcu_read_lock(); 4832 4833 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) { 4834 if (op) { 4835 lru_gen_rotate_memcg(lruvec, op); 4836 op = 0; 4837 } 4838 4839 mem_cgroup_put(memcg); 4840 memcg = NULL; 4841 4842 if (gen != READ_ONCE(lrugen->gen)) 4843 continue; 4844 4845 lruvec = container_of(lrugen, struct lruvec, lrugen); 4846 memcg = lruvec_memcg(lruvec); 4847 4848 if (!mem_cgroup_tryget(memcg)) { 4849 lru_gen_release_memcg(memcg); 4850 memcg = NULL; 4851 continue; 4852 } 4853 4854 rcu_read_unlock(); 4855 4856 op = shrink_one(lruvec, sc); 4857 4858 rcu_read_lock(); 4859 4860 if (should_abort_scan(lruvec, sc)) 4861 break; 4862 } 4863 4864 rcu_read_unlock(); 4865 4866 if (op) 4867 lru_gen_rotate_memcg(lruvec, op); 4868 4869 mem_cgroup_put(memcg); 4870 4871 if (!is_a_nulls(pos)) 4872 return; 4873 4874 /* restart if raced with lru_gen_rotate_memcg() */ 4875 if (gen != get_nulls_value(pos)) 4876 goto restart; 4877 4878 /* try the rest of the bins of the current generation */ 4879 bin = get_memcg_bin(bin + 1); 4880 if (bin != first_bin) 4881 goto restart; 4882 } 4883 4884 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 4885 { 4886 struct blk_plug plug; 4887 4888 VM_WARN_ON_ONCE(root_reclaim(sc)); 4889 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap); 4890 4891 lru_add_drain(); 4892 4893 blk_start_plug(&plug); 4894 4895 set_mm_walk(NULL, sc->proactive); 4896 4897 if (try_to_shrink_lruvec(lruvec, sc)) 4898 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG); 4899 4900 clear_mm_walk(); 4901 4902 blk_finish_plug(&plug); 4903 } 4904 4905 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 4906 { 4907 struct blk_plug plug; 4908 unsigned long reclaimed = sc->nr_reclaimed; 4909 4910 VM_WARN_ON_ONCE(!root_reclaim(sc)); 4911 4912 /* 4913 * Unmapped clean folios are already prioritized. Scanning for more of 4914 * them is likely futile and can cause high reclaim latency when there 4915 * is a large number of memcgs. 4916 */ 4917 if (!sc->may_writepage || !sc->may_unmap) 4918 goto done; 4919 4920 lru_add_drain(); 4921 4922 blk_start_plug(&plug); 4923 4924 set_mm_walk(pgdat, sc->proactive); 4925 4926 set_initial_priority(pgdat, sc); 4927 4928 if (current_is_kswapd()) 4929 sc->nr_reclaimed = 0; 4930 4931 if (mem_cgroup_disabled()) 4932 shrink_one(&pgdat->__lruvec, sc); 4933 else 4934 shrink_many(pgdat, sc); 4935 4936 if (current_is_kswapd()) 4937 sc->nr_reclaimed += reclaimed; 4938 4939 clear_mm_walk(); 4940 4941 blk_finish_plug(&plug); 4942 done: 4943 if (sc->nr_reclaimed > reclaimed) 4944 pgdat->kswapd_failures = 0; 4945 } 4946 4947 /****************************************************************************** 4948 * state change 4949 ******************************************************************************/ 4950 4951 static bool __maybe_unused state_is_valid(struct lruvec *lruvec) 4952 { 4953 struct lru_gen_folio *lrugen = &lruvec->lrugen; 4954 4955 if (lrugen->enabled) { 4956 enum lru_list lru; 4957 4958 for_each_evictable_lru(lru) { 4959 if (!list_empty(&lruvec->lists[lru])) 4960 return false; 4961 } 4962 } else { 4963 int gen, type, zone; 4964 4965 for_each_gen_type_zone(gen, type, zone) { 4966 if (!list_empty(&lrugen->folios[gen][type][zone])) 4967 return false; 4968 } 4969 } 4970 4971 return true; 4972 } 4973 4974 static bool fill_evictable(struct lruvec *lruvec) 4975 { 4976 enum lru_list lru; 4977 int remaining = MAX_LRU_BATCH; 4978 4979 for_each_evictable_lru(lru) { 4980 int type = is_file_lru(lru); 4981 bool active = is_active_lru(lru); 4982 struct list_head *head = &lruvec->lists[lru]; 4983 4984 while (!list_empty(head)) { 4985 bool success; 4986 struct folio *folio = lru_to_folio(head); 4987 4988 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 4989 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio); 4990 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 4991 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio); 4992 4993 lruvec_del_folio(lruvec, folio); 4994 success = lru_gen_add_folio(lruvec, folio, false); 4995 VM_WARN_ON_ONCE(!success); 4996 4997 if (!--remaining) 4998 return false; 4999 } 5000 } 5001 5002 return true; 5003 } 5004 5005 static bool drain_evictable(struct lruvec *lruvec) 5006 { 5007 int gen, type, zone; 5008 int remaining = MAX_LRU_BATCH; 5009 5010 for_each_gen_type_zone(gen, type, zone) { 5011 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone]; 5012 5013 while (!list_empty(head)) { 5014 bool success; 5015 struct folio *folio = lru_to_folio(head); 5016 5017 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio); 5018 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio); 5019 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio); 5020 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio); 5021 5022 success = lru_gen_del_folio(lruvec, folio, false); 5023 VM_WARN_ON_ONCE(!success); 5024 lruvec_add_folio(lruvec, folio); 5025 5026 if (!--remaining) 5027 return false; 5028 } 5029 } 5030 5031 return true; 5032 } 5033 5034 static void lru_gen_change_state(bool enabled) 5035 { 5036 static DEFINE_MUTEX(state_mutex); 5037 5038 struct mem_cgroup *memcg; 5039 5040 cgroup_lock(); 5041 cpus_read_lock(); 5042 get_online_mems(); 5043 mutex_lock(&state_mutex); 5044 5045 if (enabled == lru_gen_enabled()) 5046 goto unlock; 5047 5048 if (enabled) 5049 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5050 else 5051 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]); 5052 5053 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5054 do { 5055 int nid; 5056 5057 for_each_node(nid) { 5058 struct lruvec *lruvec = get_lruvec(memcg, nid); 5059 5060 spin_lock_irq(&lruvec->lru_lock); 5061 5062 VM_WARN_ON_ONCE(!seq_is_valid(lruvec)); 5063 VM_WARN_ON_ONCE(!state_is_valid(lruvec)); 5064 5065 lruvec->lrugen.enabled = enabled; 5066 5067 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) { 5068 spin_unlock_irq(&lruvec->lru_lock); 5069 cond_resched(); 5070 spin_lock_irq(&lruvec->lru_lock); 5071 } 5072 5073 spin_unlock_irq(&lruvec->lru_lock); 5074 } 5075 5076 cond_resched(); 5077 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5078 unlock: 5079 mutex_unlock(&state_mutex); 5080 put_online_mems(); 5081 cpus_read_unlock(); 5082 cgroup_unlock(); 5083 } 5084 5085 /****************************************************************************** 5086 * sysfs interface 5087 ******************************************************************************/ 5088 5089 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5090 { 5091 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl))); 5092 } 5093 5094 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5095 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr, 5096 const char *buf, size_t len) 5097 { 5098 unsigned int msecs; 5099 5100 if (kstrtouint(buf, 0, &msecs)) 5101 return -EINVAL; 5102 5103 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs)); 5104 5105 return len; 5106 } 5107 5108 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms); 5109 5110 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 5111 { 5112 unsigned int caps = 0; 5113 5114 if (get_cap(LRU_GEN_CORE)) 5115 caps |= BIT(LRU_GEN_CORE); 5116 5117 if (should_walk_mmu()) 5118 caps |= BIT(LRU_GEN_MM_WALK); 5119 5120 if (should_clear_pmd_young()) 5121 caps |= BIT(LRU_GEN_NONLEAF_YOUNG); 5122 5123 return sysfs_emit(buf, "0x%04x\n", caps); 5124 } 5125 5126 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5127 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 5128 const char *buf, size_t len) 5129 { 5130 int i; 5131 unsigned int caps; 5132 5133 if (tolower(*buf) == 'n') 5134 caps = 0; 5135 else if (tolower(*buf) == 'y') 5136 caps = -1; 5137 else if (kstrtouint(buf, 0, &caps)) 5138 return -EINVAL; 5139 5140 for (i = 0; i < NR_LRU_GEN_CAPS; i++) { 5141 bool enabled = caps & BIT(i); 5142 5143 if (i == LRU_GEN_CORE) 5144 lru_gen_change_state(enabled); 5145 else if (enabled) 5146 static_branch_enable(&lru_gen_caps[i]); 5147 else 5148 static_branch_disable(&lru_gen_caps[i]); 5149 } 5150 5151 return len; 5152 } 5153 5154 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled); 5155 5156 static struct attribute *lru_gen_attrs[] = { 5157 &lru_gen_min_ttl_attr.attr, 5158 &lru_gen_enabled_attr.attr, 5159 NULL 5160 }; 5161 5162 static const struct attribute_group lru_gen_attr_group = { 5163 .name = "lru_gen", 5164 .attrs = lru_gen_attrs, 5165 }; 5166 5167 /****************************************************************************** 5168 * debugfs interface 5169 ******************************************************************************/ 5170 5171 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos) 5172 { 5173 struct mem_cgroup *memcg; 5174 loff_t nr_to_skip = *pos; 5175 5176 m->private = kvmalloc(PATH_MAX, GFP_KERNEL); 5177 if (!m->private) 5178 return ERR_PTR(-ENOMEM); 5179 5180 memcg = mem_cgroup_iter(NULL, NULL, NULL); 5181 do { 5182 int nid; 5183 5184 for_each_node_state(nid, N_MEMORY) { 5185 if (!nr_to_skip--) 5186 return get_lruvec(memcg, nid); 5187 } 5188 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))); 5189 5190 return NULL; 5191 } 5192 5193 static void lru_gen_seq_stop(struct seq_file *m, void *v) 5194 { 5195 if (!IS_ERR_OR_NULL(v)) 5196 mem_cgroup_iter_break(NULL, lruvec_memcg(v)); 5197 5198 kvfree(m->private); 5199 m->private = NULL; 5200 } 5201 5202 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos) 5203 { 5204 int nid = lruvec_pgdat(v)->node_id; 5205 struct mem_cgroup *memcg = lruvec_memcg(v); 5206 5207 ++*pos; 5208 5209 nid = next_memory_node(nid); 5210 if (nid == MAX_NUMNODES) { 5211 memcg = mem_cgroup_iter(NULL, memcg, NULL); 5212 if (!memcg) 5213 return NULL; 5214 5215 nid = first_memory_node; 5216 } 5217 5218 return get_lruvec(memcg, nid); 5219 } 5220 5221 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec, 5222 unsigned long max_seq, unsigned long *min_seq, 5223 unsigned long seq) 5224 { 5225 int i; 5226 int type, tier; 5227 int hist = lru_hist_from_seq(seq); 5228 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5229 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5230 5231 for (tier = 0; tier < MAX_NR_TIERS; tier++) { 5232 seq_printf(m, " %10d", tier); 5233 for (type = 0; type < ANON_AND_FILE; type++) { 5234 const char *s = " "; 5235 unsigned long n[3] = {}; 5236 5237 if (seq == max_seq) { 5238 s = "RT "; 5239 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]); 5240 n[1] = READ_ONCE(lrugen->avg_total[type][tier]); 5241 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) { 5242 s = "rep"; 5243 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]); 5244 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]); 5245 if (tier) 5246 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]); 5247 } 5248 5249 for (i = 0; i < 3; i++) 5250 seq_printf(m, " %10lu%c", n[i], s[i]); 5251 } 5252 seq_putc(m, '\n'); 5253 } 5254 5255 if (!mm_state) 5256 return; 5257 5258 seq_puts(m, " "); 5259 for (i = 0; i < NR_MM_STATS; i++) { 5260 const char *s = " "; 5261 unsigned long n = 0; 5262 5263 if (seq == max_seq && NR_HIST_GENS == 1) { 5264 s = "LOYNFA"; 5265 n = READ_ONCE(mm_state->stats[hist][i]); 5266 } else if (seq != max_seq && NR_HIST_GENS > 1) { 5267 s = "loynfa"; 5268 n = READ_ONCE(mm_state->stats[hist][i]); 5269 } 5270 5271 seq_printf(m, " %10lu%c", n, s[i]); 5272 } 5273 seq_putc(m, '\n'); 5274 } 5275 5276 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5277 static int lru_gen_seq_show(struct seq_file *m, void *v) 5278 { 5279 unsigned long seq; 5280 bool full = !debugfs_real_fops(m->file)->write; 5281 struct lruvec *lruvec = v; 5282 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5283 int nid = lruvec_pgdat(lruvec)->node_id; 5284 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 5285 DEFINE_MAX_SEQ(lruvec); 5286 DEFINE_MIN_SEQ(lruvec); 5287 5288 if (nid == first_memory_node) { 5289 const char *path = memcg ? m->private : ""; 5290 5291 #ifdef CONFIG_MEMCG 5292 if (memcg) 5293 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX); 5294 #endif 5295 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path); 5296 } 5297 5298 seq_printf(m, " node %5d\n", nid); 5299 5300 if (!full) 5301 seq = min_seq[LRU_GEN_ANON]; 5302 else if (max_seq >= MAX_NR_GENS) 5303 seq = max_seq - MAX_NR_GENS + 1; 5304 else 5305 seq = 0; 5306 5307 for (; seq <= max_seq; seq++) { 5308 int type, zone; 5309 int gen = lru_gen_from_seq(seq); 5310 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]); 5311 5312 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth)); 5313 5314 for (type = 0; type < ANON_AND_FILE; type++) { 5315 unsigned long size = 0; 5316 char mark = full && seq < min_seq[type] ? 'x' : ' '; 5317 5318 for (zone = 0; zone < MAX_NR_ZONES; zone++) 5319 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L); 5320 5321 seq_printf(m, " %10lu%c", size, mark); 5322 } 5323 5324 seq_putc(m, '\n'); 5325 5326 if (full) 5327 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq); 5328 } 5329 5330 return 0; 5331 } 5332 5333 static const struct seq_operations lru_gen_seq_ops = { 5334 .start = lru_gen_seq_start, 5335 .stop = lru_gen_seq_stop, 5336 .next = lru_gen_seq_next, 5337 .show = lru_gen_seq_show, 5338 }; 5339 5340 static int run_aging(struct lruvec *lruvec, unsigned long seq, 5341 bool can_swap, bool force_scan) 5342 { 5343 DEFINE_MAX_SEQ(lruvec); 5344 DEFINE_MIN_SEQ(lruvec); 5345 5346 if (seq < max_seq) 5347 return 0; 5348 5349 if (seq > max_seq) 5350 return -EINVAL; 5351 5352 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq) 5353 return -ERANGE; 5354 5355 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan); 5356 5357 return 0; 5358 } 5359 5360 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc, 5361 int swappiness, unsigned long nr_to_reclaim) 5362 { 5363 DEFINE_MAX_SEQ(lruvec); 5364 5365 if (seq + MIN_NR_GENS > max_seq) 5366 return -EINVAL; 5367 5368 sc->nr_reclaimed = 0; 5369 5370 while (!signal_pending(current)) { 5371 DEFINE_MIN_SEQ(lruvec); 5372 5373 if (seq < min_seq[!swappiness]) 5374 return 0; 5375 5376 if (sc->nr_reclaimed >= nr_to_reclaim) 5377 return 0; 5378 5379 if (!evict_folios(lruvec, sc, swappiness)) 5380 return 0; 5381 5382 cond_resched(); 5383 } 5384 5385 return -EINTR; 5386 } 5387 5388 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq, 5389 struct scan_control *sc, int swappiness, unsigned long opt) 5390 { 5391 struct lruvec *lruvec; 5392 int err = -EINVAL; 5393 struct mem_cgroup *memcg = NULL; 5394 5395 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY)) 5396 return -EINVAL; 5397 5398 if (!mem_cgroup_disabled()) { 5399 rcu_read_lock(); 5400 5401 memcg = mem_cgroup_from_id(memcg_id); 5402 if (!mem_cgroup_tryget(memcg)) 5403 memcg = NULL; 5404 5405 rcu_read_unlock(); 5406 5407 if (!memcg) 5408 return -EINVAL; 5409 } 5410 5411 if (memcg_id != mem_cgroup_id(memcg)) 5412 goto done; 5413 5414 lruvec = get_lruvec(memcg, nid); 5415 5416 if (swappiness < MIN_SWAPPINESS) 5417 swappiness = get_swappiness(lruvec, sc); 5418 else if (swappiness > MAX_SWAPPINESS) 5419 goto done; 5420 5421 switch (cmd) { 5422 case '+': 5423 err = run_aging(lruvec, seq, swappiness, opt); 5424 break; 5425 case '-': 5426 err = run_eviction(lruvec, seq, sc, swappiness, opt); 5427 break; 5428 } 5429 done: 5430 mem_cgroup_put(memcg); 5431 5432 return err; 5433 } 5434 5435 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */ 5436 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src, 5437 size_t len, loff_t *pos) 5438 { 5439 void *buf; 5440 char *cur, *next; 5441 unsigned int flags; 5442 struct blk_plug plug; 5443 int err = -EINVAL; 5444 struct scan_control sc = { 5445 .may_writepage = true, 5446 .may_unmap = true, 5447 .may_swap = true, 5448 .reclaim_idx = MAX_NR_ZONES - 1, 5449 .gfp_mask = GFP_KERNEL, 5450 }; 5451 5452 buf = kvmalloc(len + 1, GFP_KERNEL); 5453 if (!buf) 5454 return -ENOMEM; 5455 5456 if (copy_from_user(buf, src, len)) { 5457 kvfree(buf); 5458 return -EFAULT; 5459 } 5460 5461 set_task_reclaim_state(current, &sc.reclaim_state); 5462 flags = memalloc_noreclaim_save(); 5463 blk_start_plug(&plug); 5464 if (!set_mm_walk(NULL, true)) { 5465 err = -ENOMEM; 5466 goto done; 5467 } 5468 5469 next = buf; 5470 next[len] = '\0'; 5471 5472 while ((cur = strsep(&next, ",;\n"))) { 5473 int n; 5474 int end; 5475 char cmd; 5476 unsigned int memcg_id; 5477 unsigned int nid; 5478 unsigned long seq; 5479 unsigned int swappiness = -1; 5480 unsigned long opt = -1; 5481 5482 cur = skip_spaces(cur); 5483 if (!*cur) 5484 continue; 5485 5486 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid, 5487 &seq, &end, &swappiness, &end, &opt, &end); 5488 if (n < 4 || cur[end]) { 5489 err = -EINVAL; 5490 break; 5491 } 5492 5493 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt); 5494 if (err) 5495 break; 5496 } 5497 done: 5498 clear_mm_walk(); 5499 blk_finish_plug(&plug); 5500 memalloc_noreclaim_restore(flags); 5501 set_task_reclaim_state(current, NULL); 5502 5503 kvfree(buf); 5504 5505 return err ? : len; 5506 } 5507 5508 static int lru_gen_seq_open(struct inode *inode, struct file *file) 5509 { 5510 return seq_open(file, &lru_gen_seq_ops); 5511 } 5512 5513 static const struct file_operations lru_gen_rw_fops = { 5514 .open = lru_gen_seq_open, 5515 .read = seq_read, 5516 .write = lru_gen_seq_write, 5517 .llseek = seq_lseek, 5518 .release = seq_release, 5519 }; 5520 5521 static const struct file_operations lru_gen_ro_fops = { 5522 .open = lru_gen_seq_open, 5523 .read = seq_read, 5524 .llseek = seq_lseek, 5525 .release = seq_release, 5526 }; 5527 5528 /****************************************************************************** 5529 * initialization 5530 ******************************************************************************/ 5531 5532 void lru_gen_init_pgdat(struct pglist_data *pgdat) 5533 { 5534 int i, j; 5535 5536 spin_lock_init(&pgdat->memcg_lru.lock); 5537 5538 for (i = 0; i < MEMCG_NR_GENS; i++) { 5539 for (j = 0; j < MEMCG_NR_BINS; j++) 5540 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i); 5541 } 5542 } 5543 5544 void lru_gen_init_lruvec(struct lruvec *lruvec) 5545 { 5546 int i; 5547 int gen, type, zone; 5548 struct lru_gen_folio *lrugen = &lruvec->lrugen; 5549 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5550 5551 lrugen->max_seq = MIN_NR_GENS + 1; 5552 lrugen->enabled = lru_gen_enabled(); 5553 5554 for (i = 0; i <= MIN_NR_GENS + 1; i++) 5555 lrugen->timestamps[i] = jiffies; 5556 5557 for_each_gen_type_zone(gen, type, zone) 5558 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]); 5559 5560 if (mm_state) 5561 mm_state->seq = MIN_NR_GENS; 5562 } 5563 5564 #ifdef CONFIG_MEMCG 5565 5566 void lru_gen_init_memcg(struct mem_cgroup *memcg) 5567 { 5568 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5569 5570 if (!mm_list) 5571 return; 5572 5573 INIT_LIST_HEAD(&mm_list->fifo); 5574 spin_lock_init(&mm_list->lock); 5575 } 5576 5577 void lru_gen_exit_memcg(struct mem_cgroup *memcg) 5578 { 5579 int i; 5580 int nid; 5581 struct lru_gen_mm_list *mm_list = get_mm_list(memcg); 5582 5583 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo)); 5584 5585 for_each_node(nid) { 5586 struct lruvec *lruvec = get_lruvec(memcg, nid); 5587 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec); 5588 5589 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0, 5590 sizeof(lruvec->lrugen.nr_pages))); 5591 5592 lruvec->lrugen.list.next = LIST_POISON1; 5593 5594 if (!mm_state) 5595 continue; 5596 5597 for (i = 0; i < NR_BLOOM_FILTERS; i++) { 5598 bitmap_free(mm_state->filters[i]); 5599 mm_state->filters[i] = NULL; 5600 } 5601 } 5602 } 5603 5604 #endif /* CONFIG_MEMCG */ 5605 5606 static int __init init_lru_gen(void) 5607 { 5608 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS); 5609 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS); 5610 5611 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group)) 5612 pr_err("lru_gen: failed to create sysfs group\n"); 5613 5614 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops); 5615 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops); 5616 5617 return 0; 5618 }; 5619 late_initcall(init_lru_gen); 5620 5621 #else /* !CONFIG_LRU_GEN */ 5622 5623 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc) 5624 { 5625 BUILD_BUG(); 5626 } 5627 5628 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5629 { 5630 BUILD_BUG(); 5631 } 5632 5633 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc) 5634 { 5635 BUILD_BUG(); 5636 } 5637 5638 #endif /* CONFIG_LRU_GEN */ 5639 5640 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 5641 { 5642 unsigned long nr[NR_LRU_LISTS]; 5643 unsigned long targets[NR_LRU_LISTS]; 5644 unsigned long nr_to_scan; 5645 enum lru_list lru; 5646 unsigned long nr_reclaimed = 0; 5647 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 5648 bool proportional_reclaim; 5649 struct blk_plug plug; 5650 5651 if (lru_gen_enabled() && !root_reclaim(sc)) { 5652 lru_gen_shrink_lruvec(lruvec, sc); 5653 return; 5654 } 5655 5656 get_scan_count(lruvec, sc, nr); 5657 5658 /* Record the original scan target for proportional adjustments later */ 5659 memcpy(targets, nr, sizeof(nr)); 5660 5661 /* 5662 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 5663 * event that can occur when there is little memory pressure e.g. 5664 * multiple streaming readers/writers. Hence, we do not abort scanning 5665 * when the requested number of pages are reclaimed when scanning at 5666 * DEF_PRIORITY on the assumption that the fact we are direct 5667 * reclaiming implies that kswapd is not keeping up and it is best to 5668 * do a batch of work at once. For memcg reclaim one check is made to 5669 * abort proportional reclaim if either the file or anon lru has already 5670 * dropped to zero at the first pass. 5671 */ 5672 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 5673 sc->priority == DEF_PRIORITY); 5674 5675 blk_start_plug(&plug); 5676 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 5677 nr[LRU_INACTIVE_FILE]) { 5678 unsigned long nr_anon, nr_file, percentage; 5679 unsigned long nr_scanned; 5680 5681 for_each_evictable_lru(lru) { 5682 if (nr[lru]) { 5683 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 5684 nr[lru] -= nr_to_scan; 5685 5686 nr_reclaimed += shrink_list(lru, nr_to_scan, 5687 lruvec, sc); 5688 } 5689 } 5690 5691 cond_resched(); 5692 5693 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 5694 continue; 5695 5696 /* 5697 * For kswapd and memcg, reclaim at least the number of pages 5698 * requested. Ensure that the anon and file LRUs are scanned 5699 * proportionally what was requested by get_scan_count(). We 5700 * stop reclaiming one LRU and reduce the amount scanning 5701 * proportional to the original scan target. 5702 */ 5703 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 5704 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 5705 5706 /* 5707 * It's just vindictive to attack the larger once the smaller 5708 * has gone to zero. And given the way we stop scanning the 5709 * smaller below, this makes sure that we only make one nudge 5710 * towards proportionality once we've got nr_to_reclaim. 5711 */ 5712 if (!nr_file || !nr_anon) 5713 break; 5714 5715 if (nr_file > nr_anon) { 5716 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 5717 targets[LRU_ACTIVE_ANON] + 1; 5718 lru = LRU_BASE; 5719 percentage = nr_anon * 100 / scan_target; 5720 } else { 5721 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 5722 targets[LRU_ACTIVE_FILE] + 1; 5723 lru = LRU_FILE; 5724 percentage = nr_file * 100 / scan_target; 5725 } 5726 5727 /* Stop scanning the smaller of the LRU */ 5728 nr[lru] = 0; 5729 nr[lru + LRU_ACTIVE] = 0; 5730 5731 /* 5732 * Recalculate the other LRU scan count based on its original 5733 * scan target and the percentage scanning already complete 5734 */ 5735 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 5736 nr_scanned = targets[lru] - nr[lru]; 5737 nr[lru] = targets[lru] * (100 - percentage) / 100; 5738 nr[lru] -= min(nr[lru], nr_scanned); 5739 5740 lru += LRU_ACTIVE; 5741 nr_scanned = targets[lru] - nr[lru]; 5742 nr[lru] = targets[lru] * (100 - percentage) / 100; 5743 nr[lru] -= min(nr[lru], nr_scanned); 5744 } 5745 blk_finish_plug(&plug); 5746 sc->nr_reclaimed += nr_reclaimed; 5747 5748 /* 5749 * Even if we did not try to evict anon pages at all, we want to 5750 * rebalance the anon lru active/inactive ratio. 5751 */ 5752 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) && 5753 inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 5754 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 5755 sc, LRU_ACTIVE_ANON); 5756 } 5757 5758 /* Use reclaim/compaction for costly allocs or under memory pressure */ 5759 static bool in_reclaim_compaction(struct scan_control *sc) 5760 { 5761 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order && 5762 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 5763 sc->priority < DEF_PRIORITY - 2)) 5764 return true; 5765 5766 return false; 5767 } 5768 5769 /* 5770 * Reclaim/compaction is used for high-order allocation requests. It reclaims 5771 * order-0 pages before compacting the zone. should_continue_reclaim() returns 5772 * true if more pages should be reclaimed such that when the page allocator 5773 * calls try_to_compact_pages() that it will have enough free pages to succeed. 5774 * It will give up earlier than that if there is difficulty reclaiming pages. 5775 */ 5776 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 5777 unsigned long nr_reclaimed, 5778 struct scan_control *sc) 5779 { 5780 unsigned long pages_for_compaction; 5781 unsigned long inactive_lru_pages; 5782 int z; 5783 5784 /* If not in reclaim/compaction mode, stop */ 5785 if (!in_reclaim_compaction(sc)) 5786 return false; 5787 5788 /* 5789 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 5790 * number of pages that were scanned. This will return to the caller 5791 * with the risk reclaim/compaction and the resulting allocation attempt 5792 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 5793 * allocations through requiring that the full LRU list has been scanned 5794 * first, by assuming that zero delta of sc->nr_scanned means full LRU 5795 * scan, but that approximation was wrong, and there were corner cases 5796 * where always a non-zero amount of pages were scanned. 5797 */ 5798 if (!nr_reclaimed) 5799 return false; 5800 5801 /* If compaction would go ahead or the allocation would succeed, stop */ 5802 for (z = 0; z <= sc->reclaim_idx; z++) { 5803 struct zone *zone = &pgdat->node_zones[z]; 5804 if (!managed_zone(zone)) 5805 continue; 5806 5807 /* Allocation can already succeed, nothing to do */ 5808 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 5809 sc->reclaim_idx, 0)) 5810 return false; 5811 5812 if (compaction_suitable(zone, sc->order, sc->reclaim_idx)) 5813 return false; 5814 } 5815 5816 /* 5817 * If we have not reclaimed enough pages for compaction and the 5818 * inactive lists are large enough, continue reclaiming 5819 */ 5820 pages_for_compaction = compact_gap(sc->order); 5821 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 5822 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc)) 5823 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 5824 5825 return inactive_lru_pages > pages_for_compaction; 5826 } 5827 5828 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 5829 { 5830 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 5831 struct mem_cgroup_reclaim_cookie reclaim = { 5832 .pgdat = pgdat, 5833 }; 5834 struct mem_cgroup_reclaim_cookie *partial = &reclaim; 5835 struct mem_cgroup *memcg; 5836 5837 /* 5838 * In most cases, direct reclaimers can do partial walks 5839 * through the cgroup tree, using an iterator state that 5840 * persists across invocations. This strikes a balance between 5841 * fairness and allocation latency. 5842 * 5843 * For kswapd, reliable forward progress is more important 5844 * than a quick return to idle. Always do full walks. 5845 */ 5846 if (current_is_kswapd() || sc->memcg_full_walk) 5847 partial = NULL; 5848 5849 memcg = mem_cgroup_iter(target_memcg, NULL, partial); 5850 do { 5851 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 5852 unsigned long reclaimed; 5853 unsigned long scanned; 5854 5855 /* 5856 * This loop can become CPU-bound when target memcgs 5857 * aren't eligible for reclaim - either because they 5858 * don't have any reclaimable pages, or because their 5859 * memory is explicitly protected. Avoid soft lockups. 5860 */ 5861 cond_resched(); 5862 5863 mem_cgroup_calculate_protection(target_memcg, memcg); 5864 5865 if (mem_cgroup_below_min(target_memcg, memcg)) { 5866 /* 5867 * Hard protection. 5868 * If there is no reclaimable memory, OOM. 5869 */ 5870 continue; 5871 } else if (mem_cgroup_below_low(target_memcg, memcg)) { 5872 /* 5873 * Soft protection. 5874 * Respect the protection only as long as 5875 * there is an unprotected supply 5876 * of reclaimable memory from other cgroups. 5877 */ 5878 if (!sc->memcg_low_reclaim) { 5879 sc->memcg_low_skipped = 1; 5880 continue; 5881 } 5882 memcg_memory_event(memcg, MEMCG_LOW); 5883 } 5884 5885 reclaimed = sc->nr_reclaimed; 5886 scanned = sc->nr_scanned; 5887 5888 shrink_lruvec(lruvec, sc); 5889 5890 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 5891 sc->priority); 5892 5893 /* Record the group's reclaim efficiency */ 5894 if (!sc->proactive) 5895 vmpressure(sc->gfp_mask, memcg, false, 5896 sc->nr_scanned - scanned, 5897 sc->nr_reclaimed - reclaimed); 5898 5899 /* If partial walks are allowed, bail once goal is reached */ 5900 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) { 5901 mem_cgroup_iter_break(target_memcg, memcg); 5902 break; 5903 } 5904 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial))); 5905 } 5906 5907 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 5908 { 5909 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed; 5910 struct lruvec *target_lruvec; 5911 bool reclaimable = false; 5912 5913 if (lru_gen_enabled() && root_reclaim(sc)) { 5914 lru_gen_shrink_node(pgdat, sc); 5915 return; 5916 } 5917 5918 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 5919 5920 again: 5921 memset(&sc->nr, 0, sizeof(sc->nr)); 5922 5923 nr_reclaimed = sc->nr_reclaimed; 5924 nr_scanned = sc->nr_scanned; 5925 5926 prepare_scan_control(pgdat, sc); 5927 5928 shrink_node_memcgs(pgdat, sc); 5929 5930 flush_reclaim_state(sc); 5931 5932 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed; 5933 5934 /* Record the subtree's reclaim efficiency */ 5935 if (!sc->proactive) 5936 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 5937 sc->nr_scanned - nr_scanned, nr_node_reclaimed); 5938 5939 if (nr_node_reclaimed) 5940 reclaimable = true; 5941 5942 if (current_is_kswapd()) { 5943 /* 5944 * If reclaim is isolating dirty pages under writeback, 5945 * it implies that the long-lived page allocation rate 5946 * is exceeding the page laundering rate. Either the 5947 * global limits are not being effective at throttling 5948 * processes due to the page distribution throughout 5949 * zones or there is heavy usage of a slow backing 5950 * device. The only option is to throttle from reclaim 5951 * context which is not ideal as there is no guarantee 5952 * the dirtying process is throttled in the same way 5953 * balance_dirty_pages() manages. 5954 * 5955 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 5956 * count the number of pages under pages flagged for 5957 * immediate reclaim and stall if any are encountered 5958 * in the nr_immediate check below. 5959 */ 5960 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 5961 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 5962 5963 /* Allow kswapd to start writing pages during reclaim.*/ 5964 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 5965 set_bit(PGDAT_DIRTY, &pgdat->flags); 5966 5967 /* 5968 * If kswapd scans pages marked for immediate 5969 * reclaim and under writeback (nr_immediate), it 5970 * implies that pages are cycling through the LRU 5971 * faster than they are written so forcibly stall 5972 * until some pages complete writeback. 5973 */ 5974 if (sc->nr.immediate) 5975 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK); 5976 } 5977 5978 /* 5979 * Tag a node/memcg as congested if all the dirty pages were marked 5980 * for writeback and immediate reclaim (counted in nr.congested). 5981 * 5982 * Legacy memcg will stall in page writeback so avoid forcibly 5983 * stalling in reclaim_throttle(). 5984 */ 5985 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) { 5986 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc)) 5987 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags); 5988 5989 if (current_is_kswapd()) 5990 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags); 5991 } 5992 5993 /* 5994 * Stall direct reclaim for IO completions if the lruvec is 5995 * node is congested. Allow kswapd to continue until it 5996 * starts encountering unqueued dirty pages or cycling through 5997 * the LRU too quickly. 5998 */ 5999 if (!current_is_kswapd() && current_may_throttle() && 6000 !sc->hibernation_mode && 6001 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) || 6002 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags))) 6003 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED); 6004 6005 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc)) 6006 goto again; 6007 6008 /* 6009 * Kswapd gives up on balancing particular nodes after too 6010 * many failures to reclaim anything from them and goes to 6011 * sleep. On reclaim progress, reset the failure counter. A 6012 * successful direct reclaim run will revive a dormant kswapd. 6013 */ 6014 if (reclaimable) 6015 pgdat->kswapd_failures = 0; 6016 else if (sc->cache_trim_mode) 6017 sc->cache_trim_mode_failed = 1; 6018 } 6019 6020 /* 6021 * Returns true if compaction should go ahead for a costly-order request, or 6022 * the allocation would already succeed without compaction. Return false if we 6023 * should reclaim first. 6024 */ 6025 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 6026 { 6027 unsigned long watermark; 6028 6029 if (!gfp_compaction_allowed(sc->gfp_mask)) 6030 return false; 6031 6032 /* Allocation can already succeed, nothing to do */ 6033 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone), 6034 sc->reclaim_idx, 0)) 6035 return true; 6036 6037 /* Compaction cannot yet proceed. Do reclaim. */ 6038 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx)) 6039 return false; 6040 6041 /* 6042 * Compaction is already possible, but it takes time to run and there 6043 * are potentially other callers using the pages just freed. So proceed 6044 * with reclaim to make a buffer of free pages available to give 6045 * compaction a reasonable chance of completing and allocating the page. 6046 * Note that we won't actually reclaim the whole buffer in one attempt 6047 * as the target watermark in should_continue_reclaim() is lower. But if 6048 * we are already above the high+gap watermark, don't reclaim at all. 6049 */ 6050 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 6051 6052 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 6053 } 6054 6055 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc) 6056 { 6057 /* 6058 * If reclaim is making progress greater than 12% efficiency then 6059 * wake all the NOPROGRESS throttled tasks. 6060 */ 6061 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) { 6062 wait_queue_head_t *wqh; 6063 6064 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS]; 6065 if (waitqueue_active(wqh)) 6066 wake_up(wqh); 6067 6068 return; 6069 } 6070 6071 /* 6072 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will 6073 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages 6074 * under writeback and marked for immediate reclaim at the tail of the 6075 * LRU. 6076 */ 6077 if (current_is_kswapd() || cgroup_reclaim(sc)) 6078 return; 6079 6080 /* Throttle if making no progress at high prioities. */ 6081 if (sc->priority == 1 && !sc->nr_reclaimed) 6082 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS); 6083 } 6084 6085 /* 6086 * This is the direct reclaim path, for page-allocating processes. We only 6087 * try to reclaim pages from zones which will satisfy the caller's allocation 6088 * request. 6089 * 6090 * If a zone is deemed to be full of pinned pages then just give it a light 6091 * scan then give up on it. 6092 */ 6093 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 6094 { 6095 struct zoneref *z; 6096 struct zone *zone; 6097 unsigned long nr_soft_reclaimed; 6098 unsigned long nr_soft_scanned; 6099 gfp_t orig_mask; 6100 pg_data_t *last_pgdat = NULL; 6101 pg_data_t *first_pgdat = NULL; 6102 6103 /* 6104 * If the number of buffer_heads in the machine exceeds the maximum 6105 * allowed level, force direct reclaim to scan the highmem zone as 6106 * highmem pages could be pinning lowmem pages storing buffer_heads 6107 */ 6108 orig_mask = sc->gfp_mask; 6109 if (buffer_heads_over_limit) { 6110 sc->gfp_mask |= __GFP_HIGHMEM; 6111 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 6112 } 6113 6114 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6115 sc->reclaim_idx, sc->nodemask) { 6116 /* 6117 * Take care memory controller reclaiming has small influence 6118 * to global LRU. 6119 */ 6120 if (!cgroup_reclaim(sc)) { 6121 if (!cpuset_zone_allowed(zone, 6122 GFP_KERNEL | __GFP_HARDWALL)) 6123 continue; 6124 6125 /* 6126 * If we already have plenty of memory free for 6127 * compaction in this zone, don't free any more. 6128 * Even though compaction is invoked for any 6129 * non-zero order, only frequent costly order 6130 * reclamation is disruptive enough to become a 6131 * noticeable problem, like transparent huge 6132 * page allocations. 6133 */ 6134 if (IS_ENABLED(CONFIG_COMPACTION) && 6135 sc->order > PAGE_ALLOC_COSTLY_ORDER && 6136 compaction_ready(zone, sc)) { 6137 sc->compaction_ready = true; 6138 continue; 6139 } 6140 6141 /* 6142 * Shrink each node in the zonelist once. If the 6143 * zonelist is ordered by zone (not the default) then a 6144 * node may be shrunk multiple times but in that case 6145 * the user prefers lower zones being preserved. 6146 */ 6147 if (zone->zone_pgdat == last_pgdat) 6148 continue; 6149 6150 /* 6151 * This steals pages from memory cgroups over softlimit 6152 * and returns the number of reclaimed pages and 6153 * scanned pages. This works for global memory pressure 6154 * and balancing, not for a memcg's limit. 6155 */ 6156 nr_soft_scanned = 0; 6157 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat, 6158 sc->order, sc->gfp_mask, 6159 &nr_soft_scanned); 6160 sc->nr_reclaimed += nr_soft_reclaimed; 6161 sc->nr_scanned += nr_soft_scanned; 6162 /* need some check for avoid more shrink_zone() */ 6163 } 6164 6165 if (!first_pgdat) 6166 first_pgdat = zone->zone_pgdat; 6167 6168 /* See comment about same check for global reclaim above */ 6169 if (zone->zone_pgdat == last_pgdat) 6170 continue; 6171 last_pgdat = zone->zone_pgdat; 6172 shrink_node(zone->zone_pgdat, sc); 6173 } 6174 6175 if (first_pgdat) 6176 consider_reclaim_throttle(first_pgdat, sc); 6177 6178 /* 6179 * Restore to original mask to avoid the impact on the caller if we 6180 * promoted it to __GFP_HIGHMEM. 6181 */ 6182 sc->gfp_mask = orig_mask; 6183 } 6184 6185 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 6186 { 6187 struct lruvec *target_lruvec; 6188 unsigned long refaults; 6189 6190 if (lru_gen_enabled()) 6191 return; 6192 6193 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 6194 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 6195 target_lruvec->refaults[WORKINGSET_ANON] = refaults; 6196 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 6197 target_lruvec->refaults[WORKINGSET_FILE] = refaults; 6198 } 6199 6200 /* 6201 * This is the main entry point to direct page reclaim. 6202 * 6203 * If a full scan of the inactive list fails to free enough memory then we 6204 * are "out of memory" and something needs to be killed. 6205 * 6206 * If the caller is !__GFP_FS then the probability of a failure is reasonably 6207 * high - the zone may be full of dirty or under-writeback pages, which this 6208 * caller can't do much about. We kick the writeback threads and take explicit 6209 * naps in the hope that some of these pages can be written. But if the 6210 * allocating task holds filesystem locks which prevent writeout this might not 6211 * work, and the allocation attempt will fail. 6212 * 6213 * returns: 0, if no pages reclaimed 6214 * else, the number of pages reclaimed 6215 */ 6216 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 6217 struct scan_control *sc) 6218 { 6219 int initial_priority = sc->priority; 6220 pg_data_t *last_pgdat; 6221 struct zoneref *z; 6222 struct zone *zone; 6223 retry: 6224 delayacct_freepages_start(); 6225 6226 if (!cgroup_reclaim(sc)) 6227 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 6228 6229 do { 6230 if (!sc->proactive) 6231 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 6232 sc->priority); 6233 sc->nr_scanned = 0; 6234 shrink_zones(zonelist, sc); 6235 6236 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 6237 break; 6238 6239 if (sc->compaction_ready) 6240 break; 6241 6242 /* 6243 * If we're getting trouble reclaiming, start doing 6244 * writepage even in laptop mode. 6245 */ 6246 if (sc->priority < DEF_PRIORITY - 2) 6247 sc->may_writepage = 1; 6248 } while (--sc->priority >= 0); 6249 6250 last_pgdat = NULL; 6251 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 6252 sc->nodemask) { 6253 if (zone->zone_pgdat == last_pgdat) 6254 continue; 6255 last_pgdat = zone->zone_pgdat; 6256 6257 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 6258 6259 if (cgroup_reclaim(sc)) { 6260 struct lruvec *lruvec; 6261 6262 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 6263 zone->zone_pgdat); 6264 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6265 } 6266 } 6267 6268 delayacct_freepages_end(); 6269 6270 if (sc->nr_reclaimed) 6271 return sc->nr_reclaimed; 6272 6273 /* Aborted reclaim to try compaction? don't OOM, then */ 6274 if (sc->compaction_ready) 6275 return 1; 6276 6277 /* 6278 * In most cases, direct reclaimers can do partial walks 6279 * through the cgroup tree to meet the reclaim goal while 6280 * keeping latency low. Since the iterator state is shared 6281 * among all direct reclaim invocations (to retain fairness 6282 * among cgroups), though, high concurrency can result in 6283 * individual threads not seeing enough cgroups to make 6284 * meaningful forward progress. Avoid false OOMs in this case. 6285 */ 6286 if (!sc->memcg_full_walk) { 6287 sc->priority = initial_priority; 6288 sc->memcg_full_walk = 1; 6289 goto retry; 6290 } 6291 6292 /* 6293 * We make inactive:active ratio decisions based on the node's 6294 * composition of memory, but a restrictive reclaim_idx or a 6295 * memory.low cgroup setting can exempt large amounts of 6296 * memory from reclaim. Neither of which are very common, so 6297 * instead of doing costly eligibility calculations of the 6298 * entire cgroup subtree up front, we assume the estimates are 6299 * good, and retry with forcible deactivation if that fails. 6300 */ 6301 if (sc->skipped_deactivate) { 6302 sc->priority = initial_priority; 6303 sc->force_deactivate = 1; 6304 sc->skipped_deactivate = 0; 6305 goto retry; 6306 } 6307 6308 /* Untapped cgroup reserves? Don't OOM, retry. */ 6309 if (sc->memcg_low_skipped) { 6310 sc->priority = initial_priority; 6311 sc->force_deactivate = 0; 6312 sc->memcg_low_reclaim = 1; 6313 sc->memcg_low_skipped = 0; 6314 goto retry; 6315 } 6316 6317 return 0; 6318 } 6319 6320 static bool allow_direct_reclaim(pg_data_t *pgdat) 6321 { 6322 struct zone *zone; 6323 unsigned long pfmemalloc_reserve = 0; 6324 unsigned long free_pages = 0; 6325 int i; 6326 bool wmark_ok; 6327 6328 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6329 return true; 6330 6331 for (i = 0; i <= ZONE_NORMAL; i++) { 6332 zone = &pgdat->node_zones[i]; 6333 if (!managed_zone(zone)) 6334 continue; 6335 6336 if (!zone_reclaimable_pages(zone)) 6337 continue; 6338 6339 pfmemalloc_reserve += min_wmark_pages(zone); 6340 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES); 6341 } 6342 6343 /* If there are no reserves (unexpected config) then do not throttle */ 6344 if (!pfmemalloc_reserve) 6345 return true; 6346 6347 wmark_ok = free_pages > pfmemalloc_reserve / 2; 6348 6349 /* kswapd must be awake if processes are being throttled */ 6350 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 6351 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 6352 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 6353 6354 wake_up_interruptible(&pgdat->kswapd_wait); 6355 } 6356 6357 return wmark_ok; 6358 } 6359 6360 /* 6361 * Throttle direct reclaimers if backing storage is backed by the network 6362 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 6363 * depleted. kswapd will continue to make progress and wake the processes 6364 * when the low watermark is reached. 6365 * 6366 * Returns true if a fatal signal was delivered during throttling. If this 6367 * happens, the page allocator should not consider triggering the OOM killer. 6368 */ 6369 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 6370 nodemask_t *nodemask) 6371 { 6372 struct zoneref *z; 6373 struct zone *zone; 6374 pg_data_t *pgdat = NULL; 6375 6376 /* 6377 * Kernel threads should not be throttled as they may be indirectly 6378 * responsible for cleaning pages necessary for reclaim to make forward 6379 * progress. kjournald for example may enter direct reclaim while 6380 * committing a transaction where throttling it could forcing other 6381 * processes to block on log_wait_commit(). 6382 */ 6383 if (current->flags & PF_KTHREAD) 6384 goto out; 6385 6386 /* 6387 * If a fatal signal is pending, this process should not throttle. 6388 * It should return quickly so it can exit and free its memory 6389 */ 6390 if (fatal_signal_pending(current)) 6391 goto out; 6392 6393 /* 6394 * Check if the pfmemalloc reserves are ok by finding the first node 6395 * with a usable ZONE_NORMAL or lower zone. The expectation is that 6396 * GFP_KERNEL will be required for allocating network buffers when 6397 * swapping over the network so ZONE_HIGHMEM is unusable. 6398 * 6399 * Throttling is based on the first usable node and throttled processes 6400 * wait on a queue until kswapd makes progress and wakes them. There 6401 * is an affinity then between processes waking up and where reclaim 6402 * progress has been made assuming the process wakes on the same node. 6403 * More importantly, processes running on remote nodes will not compete 6404 * for remote pfmemalloc reserves and processes on different nodes 6405 * should make reasonable progress. 6406 */ 6407 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6408 gfp_zone(gfp_mask), nodemask) { 6409 if (zone_idx(zone) > ZONE_NORMAL) 6410 continue; 6411 6412 /* Throttle based on the first usable node */ 6413 pgdat = zone->zone_pgdat; 6414 if (allow_direct_reclaim(pgdat)) 6415 goto out; 6416 break; 6417 } 6418 6419 /* If no zone was usable by the allocation flags then do not throttle */ 6420 if (!pgdat) 6421 goto out; 6422 6423 /* Account for the throttling */ 6424 count_vm_event(PGSCAN_DIRECT_THROTTLE); 6425 6426 /* 6427 * If the caller cannot enter the filesystem, it's possible that it 6428 * is due to the caller holding an FS lock or performing a journal 6429 * transaction in the case of a filesystem like ext[3|4]. In this case, 6430 * it is not safe to block on pfmemalloc_wait as kswapd could be 6431 * blocked waiting on the same lock. Instead, throttle for up to a 6432 * second before continuing. 6433 */ 6434 if (!(gfp_mask & __GFP_FS)) 6435 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 6436 allow_direct_reclaim(pgdat), HZ); 6437 else 6438 /* Throttle until kswapd wakes the process */ 6439 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 6440 allow_direct_reclaim(pgdat)); 6441 6442 if (fatal_signal_pending(current)) 6443 return true; 6444 6445 out: 6446 return false; 6447 } 6448 6449 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 6450 gfp_t gfp_mask, nodemask_t *nodemask) 6451 { 6452 unsigned long nr_reclaimed; 6453 struct scan_control sc = { 6454 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6455 .gfp_mask = current_gfp_context(gfp_mask), 6456 .reclaim_idx = gfp_zone(gfp_mask), 6457 .order = order, 6458 .nodemask = nodemask, 6459 .priority = DEF_PRIORITY, 6460 .may_writepage = !laptop_mode, 6461 .may_unmap = 1, 6462 .may_swap = 1, 6463 }; 6464 6465 /* 6466 * scan_control uses s8 fields for order, priority, and reclaim_idx. 6467 * Confirm they are large enough for max values. 6468 */ 6469 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX); 6470 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 6471 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 6472 6473 /* 6474 * Do not enter reclaim if fatal signal was delivered while throttled. 6475 * 1 is returned so that the page allocator does not OOM kill at this 6476 * point. 6477 */ 6478 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 6479 return 1; 6480 6481 set_task_reclaim_state(current, &sc.reclaim_state); 6482 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 6483 6484 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6485 6486 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 6487 set_task_reclaim_state(current, NULL); 6488 6489 return nr_reclaimed; 6490 } 6491 6492 #ifdef CONFIG_MEMCG 6493 6494 /* Only used by soft limit reclaim. Do not reuse for anything else. */ 6495 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 6496 gfp_t gfp_mask, bool noswap, 6497 pg_data_t *pgdat, 6498 unsigned long *nr_scanned) 6499 { 6500 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 6501 struct scan_control sc = { 6502 .nr_to_reclaim = SWAP_CLUSTER_MAX, 6503 .target_mem_cgroup = memcg, 6504 .may_writepage = !laptop_mode, 6505 .may_unmap = 1, 6506 .reclaim_idx = MAX_NR_ZONES - 1, 6507 .may_swap = !noswap, 6508 }; 6509 6510 WARN_ON_ONCE(!current->reclaim_state); 6511 6512 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 6513 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 6514 6515 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 6516 sc.gfp_mask); 6517 6518 /* 6519 * NOTE: Although we can get the priority field, using it 6520 * here is not a good idea, since it limits the pages we can scan. 6521 * if we don't reclaim here, the shrink_node from balance_pgdat 6522 * will pick up pages from other mem cgroup's as well. We hack 6523 * the priority and make it zero. 6524 */ 6525 shrink_lruvec(lruvec, &sc); 6526 6527 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 6528 6529 *nr_scanned = sc.nr_scanned; 6530 6531 return sc.nr_reclaimed; 6532 } 6533 6534 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 6535 unsigned long nr_pages, 6536 gfp_t gfp_mask, 6537 unsigned int reclaim_options, 6538 int *swappiness) 6539 { 6540 unsigned long nr_reclaimed; 6541 unsigned int noreclaim_flag; 6542 struct scan_control sc = { 6543 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 6544 .proactive_swappiness = swappiness, 6545 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 6546 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 6547 .reclaim_idx = MAX_NR_ZONES - 1, 6548 .target_mem_cgroup = memcg, 6549 .priority = DEF_PRIORITY, 6550 .may_writepage = !laptop_mode, 6551 .may_unmap = 1, 6552 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP), 6553 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE), 6554 }; 6555 /* 6556 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 6557 * equal pressure on all the nodes. This is based on the assumption that 6558 * the reclaim does not bail out early. 6559 */ 6560 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 6561 6562 set_task_reclaim_state(current, &sc.reclaim_state); 6563 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 6564 noreclaim_flag = memalloc_noreclaim_save(); 6565 6566 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 6567 6568 memalloc_noreclaim_restore(noreclaim_flag); 6569 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 6570 set_task_reclaim_state(current, NULL); 6571 6572 return nr_reclaimed; 6573 } 6574 #endif 6575 6576 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc) 6577 { 6578 struct mem_cgroup *memcg; 6579 struct lruvec *lruvec; 6580 6581 if (lru_gen_enabled()) { 6582 lru_gen_age_node(pgdat, sc); 6583 return; 6584 } 6585 6586 if (!can_age_anon_pages(pgdat, sc)) 6587 return; 6588 6589 lruvec = mem_cgroup_lruvec(NULL, pgdat); 6590 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 6591 return; 6592 6593 memcg = mem_cgroup_iter(NULL, NULL, NULL); 6594 do { 6595 lruvec = mem_cgroup_lruvec(memcg, pgdat); 6596 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 6597 sc, LRU_ACTIVE_ANON); 6598 memcg = mem_cgroup_iter(NULL, memcg, NULL); 6599 } while (memcg); 6600 } 6601 6602 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 6603 { 6604 int i; 6605 struct zone *zone; 6606 6607 /* 6608 * Check for watermark boosts top-down as the higher zones 6609 * are more likely to be boosted. Both watermarks and boosts 6610 * should not be checked at the same time as reclaim would 6611 * start prematurely when there is no boosting and a lower 6612 * zone is balanced. 6613 */ 6614 for (i = highest_zoneidx; i >= 0; i--) { 6615 zone = pgdat->node_zones + i; 6616 if (!managed_zone(zone)) 6617 continue; 6618 6619 if (zone->watermark_boost) 6620 return true; 6621 } 6622 6623 return false; 6624 } 6625 6626 /* 6627 * Returns true if there is an eligible zone balanced for the request order 6628 * and highest_zoneidx 6629 */ 6630 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 6631 { 6632 int i; 6633 unsigned long mark = -1; 6634 struct zone *zone; 6635 6636 /* 6637 * Check watermarks bottom-up as lower zones are more likely to 6638 * meet watermarks. 6639 */ 6640 for (i = 0; i <= highest_zoneidx; i++) { 6641 zone = pgdat->node_zones + i; 6642 6643 if (!managed_zone(zone)) 6644 continue; 6645 6646 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) 6647 mark = wmark_pages(zone, WMARK_PROMO); 6648 else 6649 mark = high_wmark_pages(zone); 6650 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 6651 return true; 6652 } 6653 6654 /* 6655 * If a node has no managed zone within highest_zoneidx, it does not 6656 * need balancing by definition. This can happen if a zone-restricted 6657 * allocation tries to wake a remote kswapd. 6658 */ 6659 if (mark == -1) 6660 return true; 6661 6662 return false; 6663 } 6664 6665 /* Clear pgdat state for congested, dirty or under writeback. */ 6666 static void clear_pgdat_congested(pg_data_t *pgdat) 6667 { 6668 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 6669 6670 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags); 6671 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags); 6672 clear_bit(PGDAT_DIRTY, &pgdat->flags); 6673 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 6674 } 6675 6676 /* 6677 * Prepare kswapd for sleeping. This verifies that there are no processes 6678 * waiting in throttle_direct_reclaim() and that watermarks have been met. 6679 * 6680 * Returns true if kswapd is ready to sleep 6681 */ 6682 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 6683 int highest_zoneidx) 6684 { 6685 /* 6686 * The throttled processes are normally woken up in balance_pgdat() as 6687 * soon as allow_direct_reclaim() is true. But there is a potential 6688 * race between when kswapd checks the watermarks and a process gets 6689 * throttled. There is also a potential race if processes get 6690 * throttled, kswapd wakes, a large process exits thereby balancing the 6691 * zones, which causes kswapd to exit balance_pgdat() before reaching 6692 * the wake up checks. If kswapd is going to sleep, no process should 6693 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 6694 * the wake up is premature, processes will wake kswapd and get 6695 * throttled again. The difference from wake ups in balance_pgdat() is 6696 * that here we are under prepare_to_wait(). 6697 */ 6698 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 6699 wake_up_all(&pgdat->pfmemalloc_wait); 6700 6701 /* Hopeless node, leave it to direct reclaim */ 6702 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 6703 return true; 6704 6705 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 6706 clear_pgdat_congested(pgdat); 6707 return true; 6708 } 6709 6710 return false; 6711 } 6712 6713 /* 6714 * kswapd shrinks a node of pages that are at or below the highest usable 6715 * zone that is currently unbalanced. 6716 * 6717 * Returns true if kswapd scanned at least the requested number of pages to 6718 * reclaim or if the lack of progress was due to pages under writeback. 6719 * This is used to determine if the scanning priority needs to be raised. 6720 */ 6721 static bool kswapd_shrink_node(pg_data_t *pgdat, 6722 struct scan_control *sc) 6723 { 6724 struct zone *zone; 6725 int z; 6726 unsigned long nr_reclaimed = sc->nr_reclaimed; 6727 6728 /* Reclaim a number of pages proportional to the number of zones */ 6729 sc->nr_to_reclaim = 0; 6730 for (z = 0; z <= sc->reclaim_idx; z++) { 6731 zone = pgdat->node_zones + z; 6732 if (!managed_zone(zone)) 6733 continue; 6734 6735 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 6736 } 6737 6738 /* 6739 * Historically care was taken to put equal pressure on all zones but 6740 * now pressure is applied based on node LRU order. 6741 */ 6742 shrink_node(pgdat, sc); 6743 6744 /* 6745 * Fragmentation may mean that the system cannot be rebalanced for 6746 * high-order allocations. If twice the allocation size has been 6747 * reclaimed then recheck watermarks only at order-0 to prevent 6748 * excessive reclaim. Assume that a process requested a high-order 6749 * can direct reclaim/compact. 6750 */ 6751 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 6752 sc->order = 0; 6753 6754 /* account for progress from mm_account_reclaimed_pages() */ 6755 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim; 6756 } 6757 6758 /* Page allocator PCP high watermark is lowered if reclaim is active. */ 6759 static inline void 6760 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active) 6761 { 6762 int i; 6763 struct zone *zone; 6764 6765 for (i = 0; i <= highest_zoneidx; i++) { 6766 zone = pgdat->node_zones + i; 6767 6768 if (!managed_zone(zone)) 6769 continue; 6770 6771 if (active) 6772 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6773 else 6774 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags); 6775 } 6776 } 6777 6778 static inline void 6779 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6780 { 6781 update_reclaim_active(pgdat, highest_zoneidx, true); 6782 } 6783 6784 static inline void 6785 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx) 6786 { 6787 update_reclaim_active(pgdat, highest_zoneidx, false); 6788 } 6789 6790 /* 6791 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 6792 * that are eligible for use by the caller until at least one zone is 6793 * balanced. 6794 * 6795 * Returns the order kswapd finished reclaiming at. 6796 * 6797 * kswapd scans the zones in the highmem->normal->dma direction. It skips 6798 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 6799 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 6800 * or lower is eligible for reclaim until at least one usable zone is 6801 * balanced. 6802 */ 6803 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 6804 { 6805 int i; 6806 unsigned long nr_soft_reclaimed; 6807 unsigned long nr_soft_scanned; 6808 unsigned long pflags; 6809 unsigned long nr_boost_reclaim; 6810 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 6811 bool boosted; 6812 struct zone *zone; 6813 struct scan_control sc = { 6814 .gfp_mask = GFP_KERNEL, 6815 .order = order, 6816 .may_unmap = 1, 6817 }; 6818 6819 set_task_reclaim_state(current, &sc.reclaim_state); 6820 psi_memstall_enter(&pflags); 6821 __fs_reclaim_acquire(_THIS_IP_); 6822 6823 count_vm_event(PAGEOUTRUN); 6824 6825 /* 6826 * Account for the reclaim boost. Note that the zone boost is left in 6827 * place so that parallel allocations that are near the watermark will 6828 * stall or direct reclaim until kswapd is finished. 6829 */ 6830 nr_boost_reclaim = 0; 6831 for (i = 0; i <= highest_zoneidx; i++) { 6832 zone = pgdat->node_zones + i; 6833 if (!managed_zone(zone)) 6834 continue; 6835 6836 nr_boost_reclaim += zone->watermark_boost; 6837 zone_boosts[i] = zone->watermark_boost; 6838 } 6839 boosted = nr_boost_reclaim; 6840 6841 restart: 6842 set_reclaim_active(pgdat, highest_zoneidx); 6843 sc.priority = DEF_PRIORITY; 6844 do { 6845 unsigned long nr_reclaimed = sc.nr_reclaimed; 6846 bool raise_priority = true; 6847 bool balanced; 6848 bool ret; 6849 bool was_frozen; 6850 6851 sc.reclaim_idx = highest_zoneidx; 6852 6853 /* 6854 * If the number of buffer_heads exceeds the maximum allowed 6855 * then consider reclaiming from all zones. This has a dual 6856 * purpose -- on 64-bit systems it is expected that 6857 * buffer_heads are stripped during active rotation. On 32-bit 6858 * systems, highmem pages can pin lowmem memory and shrinking 6859 * buffers can relieve lowmem pressure. Reclaim may still not 6860 * go ahead if all eligible zones for the original allocation 6861 * request are balanced to avoid excessive reclaim from kswapd. 6862 */ 6863 if (buffer_heads_over_limit) { 6864 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 6865 zone = pgdat->node_zones + i; 6866 if (!managed_zone(zone)) 6867 continue; 6868 6869 sc.reclaim_idx = i; 6870 break; 6871 } 6872 } 6873 6874 /* 6875 * If the pgdat is imbalanced then ignore boosting and preserve 6876 * the watermarks for a later time and restart. Note that the 6877 * zone watermarks will be still reset at the end of balancing 6878 * on the grounds that the normal reclaim should be enough to 6879 * re-evaluate if boosting is required when kswapd next wakes. 6880 */ 6881 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 6882 if (!balanced && nr_boost_reclaim) { 6883 nr_boost_reclaim = 0; 6884 goto restart; 6885 } 6886 6887 /* 6888 * If boosting is not active then only reclaim if there are no 6889 * eligible zones. Note that sc.reclaim_idx is not used as 6890 * buffer_heads_over_limit may have adjusted it. 6891 */ 6892 if (!nr_boost_reclaim && balanced) 6893 goto out; 6894 6895 /* Limit the priority of boosting to avoid reclaim writeback */ 6896 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 6897 raise_priority = false; 6898 6899 /* 6900 * Do not writeback or swap pages for boosted reclaim. The 6901 * intent is to relieve pressure not issue sub-optimal IO 6902 * from reclaim context. If no pages are reclaimed, the 6903 * reclaim will be aborted. 6904 */ 6905 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 6906 sc.may_swap = !nr_boost_reclaim; 6907 6908 /* 6909 * Do some background aging, to give pages a chance to be 6910 * referenced before reclaiming. All pages are rotated 6911 * regardless of classzone as this is about consistent aging. 6912 */ 6913 kswapd_age_node(pgdat, &sc); 6914 6915 /* 6916 * If we're getting trouble reclaiming, start doing writepage 6917 * even in laptop mode. 6918 */ 6919 if (sc.priority < DEF_PRIORITY - 2) 6920 sc.may_writepage = 1; 6921 6922 /* Call soft limit reclaim before calling shrink_node. */ 6923 sc.nr_scanned = 0; 6924 nr_soft_scanned = 0; 6925 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order, 6926 sc.gfp_mask, &nr_soft_scanned); 6927 sc.nr_reclaimed += nr_soft_reclaimed; 6928 6929 /* 6930 * There should be no need to raise the scanning priority if 6931 * enough pages are already being scanned that that high 6932 * watermark would be met at 100% efficiency. 6933 */ 6934 if (kswapd_shrink_node(pgdat, &sc)) 6935 raise_priority = false; 6936 6937 /* 6938 * If the low watermark is met there is no need for processes 6939 * to be throttled on pfmemalloc_wait as they should not be 6940 * able to safely make forward progress. Wake them 6941 */ 6942 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 6943 allow_direct_reclaim(pgdat)) 6944 wake_up_all(&pgdat->pfmemalloc_wait); 6945 6946 /* Check if kswapd should be suspending */ 6947 __fs_reclaim_release(_THIS_IP_); 6948 ret = kthread_freezable_should_stop(&was_frozen); 6949 __fs_reclaim_acquire(_THIS_IP_); 6950 if (was_frozen || ret) 6951 break; 6952 6953 /* 6954 * Raise priority if scanning rate is too low or there was no 6955 * progress in reclaiming pages 6956 */ 6957 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 6958 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 6959 6960 /* 6961 * If reclaim made no progress for a boost, stop reclaim as 6962 * IO cannot be queued and it could be an infinite loop in 6963 * extreme circumstances. 6964 */ 6965 if (nr_boost_reclaim && !nr_reclaimed) 6966 break; 6967 6968 if (raise_priority || !nr_reclaimed) 6969 sc.priority--; 6970 } while (sc.priority >= 1); 6971 6972 /* 6973 * Restart only if it went through the priority loop all the way, 6974 * but cache_trim_mode didn't work. 6975 */ 6976 if (!sc.nr_reclaimed && sc.priority < 1 && 6977 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) { 6978 sc.no_cache_trim_mode = 1; 6979 goto restart; 6980 } 6981 6982 if (!sc.nr_reclaimed) 6983 pgdat->kswapd_failures++; 6984 6985 out: 6986 clear_reclaim_active(pgdat, highest_zoneidx); 6987 6988 /* If reclaim was boosted, account for the reclaim done in this pass */ 6989 if (boosted) { 6990 unsigned long flags; 6991 6992 for (i = 0; i <= highest_zoneidx; i++) { 6993 if (!zone_boosts[i]) 6994 continue; 6995 6996 /* Increments are under the zone lock */ 6997 zone = pgdat->node_zones + i; 6998 spin_lock_irqsave(&zone->lock, flags); 6999 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 7000 spin_unlock_irqrestore(&zone->lock, flags); 7001 } 7002 7003 /* 7004 * As there is now likely space, wakeup kcompact to defragment 7005 * pageblocks. 7006 */ 7007 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 7008 } 7009 7010 snapshot_refaults(NULL, pgdat); 7011 __fs_reclaim_release(_THIS_IP_); 7012 psi_memstall_leave(&pflags); 7013 set_task_reclaim_state(current, NULL); 7014 7015 /* 7016 * Return the order kswapd stopped reclaiming at as 7017 * prepare_kswapd_sleep() takes it into account. If another caller 7018 * entered the allocator slow path while kswapd was awake, order will 7019 * remain at the higher level. 7020 */ 7021 return sc.order; 7022 } 7023 7024 /* 7025 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 7026 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 7027 * not a valid index then either kswapd runs for first time or kswapd couldn't 7028 * sleep after previous reclaim attempt (node is still unbalanced). In that 7029 * case return the zone index of the previous kswapd reclaim cycle. 7030 */ 7031 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 7032 enum zone_type prev_highest_zoneidx) 7033 { 7034 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7035 7036 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 7037 } 7038 7039 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 7040 unsigned int highest_zoneidx) 7041 { 7042 long remaining = 0; 7043 DEFINE_WAIT(wait); 7044 7045 if (freezing(current) || kthread_should_stop()) 7046 return; 7047 7048 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7049 7050 /* 7051 * Try to sleep for a short interval. Note that kcompactd will only be 7052 * woken if it is possible to sleep for a short interval. This is 7053 * deliberate on the assumption that if reclaim cannot keep an 7054 * eligible zone balanced that it's also unlikely that compaction will 7055 * succeed. 7056 */ 7057 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7058 /* 7059 * Compaction records what page blocks it recently failed to 7060 * isolate pages from and skips them in the future scanning. 7061 * When kswapd is going to sleep, it is reasonable to assume 7062 * that pages and compaction may succeed so reset the cache. 7063 */ 7064 reset_isolation_suitable(pgdat); 7065 7066 /* 7067 * We have freed the memory, now we should compact it to make 7068 * allocation of the requested order possible. 7069 */ 7070 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 7071 7072 remaining = schedule_timeout(HZ/10); 7073 7074 /* 7075 * If woken prematurely then reset kswapd_highest_zoneidx and 7076 * order. The values will either be from a wakeup request or 7077 * the previous request that slept prematurely. 7078 */ 7079 if (remaining) { 7080 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 7081 kswapd_highest_zoneidx(pgdat, 7082 highest_zoneidx)); 7083 7084 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 7085 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 7086 } 7087 7088 finish_wait(&pgdat->kswapd_wait, &wait); 7089 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 7090 } 7091 7092 /* 7093 * After a short sleep, check if it was a premature sleep. If not, then 7094 * go fully to sleep until explicitly woken up. 7095 */ 7096 if (!remaining && 7097 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 7098 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 7099 7100 /* 7101 * vmstat counters are not perfectly accurate and the estimated 7102 * value for counters such as NR_FREE_PAGES can deviate from the 7103 * true value by nr_online_cpus * threshold. To avoid the zone 7104 * watermarks being breached while under pressure, we reduce the 7105 * per-cpu vmstat threshold while kswapd is awake and restore 7106 * them before going back to sleep. 7107 */ 7108 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 7109 7110 if (!kthread_should_stop()) 7111 schedule(); 7112 7113 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 7114 } else { 7115 if (remaining) 7116 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 7117 else 7118 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 7119 } 7120 finish_wait(&pgdat->kswapd_wait, &wait); 7121 } 7122 7123 /* 7124 * The background pageout daemon, started as a kernel thread 7125 * from the init process. 7126 * 7127 * This basically trickles out pages so that we have _some_ 7128 * free memory available even if there is no other activity 7129 * that frees anything up. This is needed for things like routing 7130 * etc, where we otherwise might have all activity going on in 7131 * asynchronous contexts that cannot page things out. 7132 * 7133 * If there are applications that are active memory-allocators 7134 * (most normal use), this basically shouldn't matter. 7135 */ 7136 static int kswapd(void *p) 7137 { 7138 unsigned int alloc_order, reclaim_order; 7139 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 7140 pg_data_t *pgdat = (pg_data_t *)p; 7141 struct task_struct *tsk = current; 7142 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 7143 7144 if (!cpumask_empty(cpumask)) 7145 set_cpus_allowed_ptr(tsk, cpumask); 7146 7147 /* 7148 * Tell the memory management that we're a "memory allocator", 7149 * and that if we need more memory we should get access to it 7150 * regardless (see "__alloc_pages()"). "kswapd" should 7151 * never get caught in the normal page freeing logic. 7152 * 7153 * (Kswapd normally doesn't need memory anyway, but sometimes 7154 * you need a small amount of memory in order to be able to 7155 * page out something else, and this flag essentially protects 7156 * us from recursively trying to free more memory as we're 7157 * trying to free the first piece of memory in the first place). 7158 */ 7159 tsk->flags |= PF_MEMALLOC | PF_KSWAPD; 7160 set_freezable(); 7161 7162 WRITE_ONCE(pgdat->kswapd_order, 0); 7163 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7164 atomic_set(&pgdat->nr_writeback_throttled, 0); 7165 for ( ; ; ) { 7166 bool was_frozen; 7167 7168 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 7169 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7170 highest_zoneidx); 7171 7172 kswapd_try_sleep: 7173 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 7174 highest_zoneidx); 7175 7176 /* Read the new order and highest_zoneidx */ 7177 alloc_order = READ_ONCE(pgdat->kswapd_order); 7178 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 7179 highest_zoneidx); 7180 WRITE_ONCE(pgdat->kswapd_order, 0); 7181 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 7182 7183 if (kthread_freezable_should_stop(&was_frozen)) 7184 break; 7185 7186 /* 7187 * We can speed up thawing tasks if we don't call balance_pgdat 7188 * after returning from the refrigerator 7189 */ 7190 if (was_frozen) 7191 continue; 7192 7193 /* 7194 * Reclaim begins at the requested order but if a high-order 7195 * reclaim fails then kswapd falls back to reclaiming for 7196 * order-0. If that happens, kswapd will consider sleeping 7197 * for the order it finished reclaiming at (reclaim_order) 7198 * but kcompactd is woken to compact for the original 7199 * request (alloc_order). 7200 */ 7201 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 7202 alloc_order); 7203 reclaim_order = balance_pgdat(pgdat, alloc_order, 7204 highest_zoneidx); 7205 if (reclaim_order < alloc_order) 7206 goto kswapd_try_sleep; 7207 } 7208 7209 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD); 7210 7211 return 0; 7212 } 7213 7214 /* 7215 * A zone is low on free memory or too fragmented for high-order memory. If 7216 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 7217 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 7218 * has failed or is not needed, still wake up kcompactd if only compaction is 7219 * needed. 7220 */ 7221 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 7222 enum zone_type highest_zoneidx) 7223 { 7224 pg_data_t *pgdat; 7225 enum zone_type curr_idx; 7226 7227 if (!managed_zone(zone)) 7228 return; 7229 7230 if (!cpuset_zone_allowed(zone, gfp_flags)) 7231 return; 7232 7233 pgdat = zone->zone_pgdat; 7234 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 7235 7236 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 7237 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 7238 7239 if (READ_ONCE(pgdat->kswapd_order) < order) 7240 WRITE_ONCE(pgdat->kswapd_order, order); 7241 7242 if (!waitqueue_active(&pgdat->kswapd_wait)) 7243 return; 7244 7245 /* Hopeless node, leave it to direct reclaim if possible */ 7246 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 7247 (pgdat_balanced(pgdat, order, highest_zoneidx) && 7248 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 7249 /* 7250 * There may be plenty of free memory available, but it's too 7251 * fragmented for high-order allocations. Wake up kcompactd 7252 * and rely on compaction_suitable() to determine if it's 7253 * needed. If it fails, it will defer subsequent attempts to 7254 * ratelimit its work. 7255 */ 7256 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 7257 wakeup_kcompactd(pgdat, order, highest_zoneidx); 7258 return; 7259 } 7260 7261 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 7262 gfp_flags); 7263 wake_up_interruptible(&pgdat->kswapd_wait); 7264 } 7265 7266 #ifdef CONFIG_HIBERNATION 7267 /* 7268 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 7269 * freed pages. 7270 * 7271 * Rather than trying to age LRUs the aim is to preserve the overall 7272 * LRU order by reclaiming preferentially 7273 * inactive > active > active referenced > active mapped 7274 */ 7275 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 7276 { 7277 struct scan_control sc = { 7278 .nr_to_reclaim = nr_to_reclaim, 7279 .gfp_mask = GFP_HIGHUSER_MOVABLE, 7280 .reclaim_idx = MAX_NR_ZONES - 1, 7281 .priority = DEF_PRIORITY, 7282 .may_writepage = 1, 7283 .may_unmap = 1, 7284 .may_swap = 1, 7285 .hibernation_mode = 1, 7286 }; 7287 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 7288 unsigned long nr_reclaimed; 7289 unsigned int noreclaim_flag; 7290 7291 fs_reclaim_acquire(sc.gfp_mask); 7292 noreclaim_flag = memalloc_noreclaim_save(); 7293 set_task_reclaim_state(current, &sc.reclaim_state); 7294 7295 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 7296 7297 set_task_reclaim_state(current, NULL); 7298 memalloc_noreclaim_restore(noreclaim_flag); 7299 fs_reclaim_release(sc.gfp_mask); 7300 7301 return nr_reclaimed; 7302 } 7303 #endif /* CONFIG_HIBERNATION */ 7304 7305 /* 7306 * This kswapd start function will be called by init and node-hot-add. 7307 */ 7308 void __meminit kswapd_run(int nid) 7309 { 7310 pg_data_t *pgdat = NODE_DATA(nid); 7311 7312 pgdat_kswapd_lock(pgdat); 7313 if (!pgdat->kswapd) { 7314 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 7315 if (IS_ERR(pgdat->kswapd)) { 7316 /* failure at boot is fatal */ 7317 pr_err("Failed to start kswapd on node %d,ret=%ld\n", 7318 nid, PTR_ERR(pgdat->kswapd)); 7319 BUG_ON(system_state < SYSTEM_RUNNING); 7320 pgdat->kswapd = NULL; 7321 } 7322 } 7323 pgdat_kswapd_unlock(pgdat); 7324 } 7325 7326 /* 7327 * Called by memory hotplug when all memory in a node is offlined. Caller must 7328 * be holding mem_hotplug_begin/done(). 7329 */ 7330 void __meminit kswapd_stop(int nid) 7331 { 7332 pg_data_t *pgdat = NODE_DATA(nid); 7333 struct task_struct *kswapd; 7334 7335 pgdat_kswapd_lock(pgdat); 7336 kswapd = pgdat->kswapd; 7337 if (kswapd) { 7338 kthread_stop(kswapd); 7339 pgdat->kswapd = NULL; 7340 } 7341 pgdat_kswapd_unlock(pgdat); 7342 } 7343 7344 static int __init kswapd_init(void) 7345 { 7346 int nid; 7347 7348 swap_setup(); 7349 for_each_node_state(nid, N_MEMORY) 7350 kswapd_run(nid); 7351 return 0; 7352 } 7353 7354 module_init(kswapd_init) 7355 7356 #ifdef CONFIG_NUMA 7357 /* 7358 * Node reclaim mode 7359 * 7360 * If non-zero call node_reclaim when the number of free pages falls below 7361 * the watermarks. 7362 */ 7363 int node_reclaim_mode __read_mostly; 7364 7365 /* 7366 * Priority for NODE_RECLAIM. This determines the fraction of pages 7367 * of a node considered for each zone_reclaim. 4 scans 1/16th of 7368 * a zone. 7369 */ 7370 #define NODE_RECLAIM_PRIORITY 4 7371 7372 /* 7373 * Percentage of pages in a zone that must be unmapped for node_reclaim to 7374 * occur. 7375 */ 7376 int sysctl_min_unmapped_ratio = 1; 7377 7378 /* 7379 * If the number of slab pages in a zone grows beyond this percentage then 7380 * slab reclaim needs to occur. 7381 */ 7382 int sysctl_min_slab_ratio = 5; 7383 7384 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 7385 { 7386 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 7387 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 7388 node_page_state(pgdat, NR_ACTIVE_FILE); 7389 7390 /* 7391 * It's possible for there to be more file mapped pages than 7392 * accounted for by the pages on the file LRU lists because 7393 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 7394 */ 7395 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 7396 } 7397 7398 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 7399 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 7400 { 7401 unsigned long nr_pagecache_reclaimable; 7402 unsigned long delta = 0; 7403 7404 /* 7405 * If RECLAIM_UNMAP is set, then all file pages are considered 7406 * potentially reclaimable. Otherwise, we have to worry about 7407 * pages like swapcache and node_unmapped_file_pages() provides 7408 * a better estimate 7409 */ 7410 if (node_reclaim_mode & RECLAIM_UNMAP) 7411 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 7412 else 7413 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 7414 7415 /* If we can't clean pages, remove dirty pages from consideration */ 7416 if (!(node_reclaim_mode & RECLAIM_WRITE)) 7417 delta += node_page_state(pgdat, NR_FILE_DIRTY); 7418 7419 /* Watch for any possible underflows due to delta */ 7420 if (unlikely(delta > nr_pagecache_reclaimable)) 7421 delta = nr_pagecache_reclaimable; 7422 7423 return nr_pagecache_reclaimable - delta; 7424 } 7425 7426 /* 7427 * Try to free up some pages from this node through reclaim. 7428 */ 7429 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7430 { 7431 /* Minimum pages needed in order to stay on node */ 7432 const unsigned long nr_pages = 1 << order; 7433 struct task_struct *p = current; 7434 unsigned int noreclaim_flag; 7435 struct scan_control sc = { 7436 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 7437 .gfp_mask = current_gfp_context(gfp_mask), 7438 .order = order, 7439 .priority = NODE_RECLAIM_PRIORITY, 7440 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 7441 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 7442 .may_swap = 1, 7443 .reclaim_idx = gfp_zone(gfp_mask), 7444 }; 7445 unsigned long pflags; 7446 7447 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 7448 sc.gfp_mask); 7449 7450 cond_resched(); 7451 psi_memstall_enter(&pflags); 7452 delayacct_freepages_start(); 7453 fs_reclaim_acquire(sc.gfp_mask); 7454 /* 7455 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 7456 */ 7457 noreclaim_flag = memalloc_noreclaim_save(); 7458 set_task_reclaim_state(p, &sc.reclaim_state); 7459 7460 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages || 7461 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) { 7462 /* 7463 * Free memory by calling shrink node with increasing 7464 * priorities until we have enough memory freed. 7465 */ 7466 do { 7467 shrink_node(pgdat, &sc); 7468 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 7469 } 7470 7471 set_task_reclaim_state(p, NULL); 7472 memalloc_noreclaim_restore(noreclaim_flag); 7473 fs_reclaim_release(sc.gfp_mask); 7474 psi_memstall_leave(&pflags); 7475 delayacct_freepages_end(); 7476 7477 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 7478 7479 return sc.nr_reclaimed >= nr_pages; 7480 } 7481 7482 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 7483 { 7484 int ret; 7485 7486 /* 7487 * Node reclaim reclaims unmapped file backed pages and 7488 * slab pages if we are over the defined limits. 7489 * 7490 * A small portion of unmapped file backed pages is needed for 7491 * file I/O otherwise pages read by file I/O will be immediately 7492 * thrown out if the node is overallocated. So we do not reclaim 7493 * if less than a specified percentage of the node is used by 7494 * unmapped file backed pages. 7495 */ 7496 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 7497 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 7498 pgdat->min_slab_pages) 7499 return NODE_RECLAIM_FULL; 7500 7501 /* 7502 * Do not scan if the allocation should not be delayed. 7503 */ 7504 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 7505 return NODE_RECLAIM_NOSCAN; 7506 7507 /* 7508 * Only run node reclaim on the local node or on nodes that do not 7509 * have associated processors. This will favor the local processor 7510 * over remote processors and spread off node memory allocations 7511 * as wide as possible. 7512 */ 7513 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 7514 return NODE_RECLAIM_NOSCAN; 7515 7516 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 7517 return NODE_RECLAIM_NOSCAN; 7518 7519 ret = __node_reclaim(pgdat, gfp_mask, order); 7520 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 7521 7522 if (!ret) 7523 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 7524 7525 return ret; 7526 } 7527 #endif 7528 7529 /** 7530 * check_move_unevictable_folios - Move evictable folios to appropriate zone 7531 * lru list 7532 * @fbatch: Batch of lru folios to check. 7533 * 7534 * Checks folios for evictability, if an evictable folio is in the unevictable 7535 * lru list, moves it to the appropriate evictable lru list. This function 7536 * should be only used for lru folios. 7537 */ 7538 void check_move_unevictable_folios(struct folio_batch *fbatch) 7539 { 7540 struct lruvec *lruvec = NULL; 7541 int pgscanned = 0; 7542 int pgrescued = 0; 7543 int i; 7544 7545 for (i = 0; i < fbatch->nr; i++) { 7546 struct folio *folio = fbatch->folios[i]; 7547 int nr_pages = folio_nr_pages(folio); 7548 7549 pgscanned += nr_pages; 7550 7551 /* block memcg migration while the folio moves between lrus */ 7552 if (!folio_test_clear_lru(folio)) 7553 continue; 7554 7555 lruvec = folio_lruvec_relock_irq(folio, lruvec); 7556 if (folio_evictable(folio) && folio_test_unevictable(folio)) { 7557 lruvec_del_folio(lruvec, folio); 7558 folio_clear_unevictable(folio); 7559 lruvec_add_folio(lruvec, folio); 7560 pgrescued += nr_pages; 7561 } 7562 folio_set_lru(folio); 7563 } 7564 7565 if (lruvec) { 7566 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 7567 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7568 unlock_page_lruvec_irq(lruvec); 7569 } else if (pgscanned) { 7570 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 7571 } 7572 } 7573 EXPORT_SYMBOL_GPL(check_move_unevictable_folios); 7574
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.