~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/vmstat.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *  linux/mm/vmstat.c
  4  *
  5  *  Manages VM statistics
  6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  7  *
  8  *  zoned VM statistics
  9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
 10  *              Christoph Lameter <christoph@lameter.com>
 11  *  Copyright (C) 2008-2014 Christoph Lameter
 12  */
 13 #include <linux/fs.h>
 14 #include <linux/mm.h>
 15 #include <linux/err.h>
 16 #include <linux/module.h>
 17 #include <linux/slab.h>
 18 #include <linux/cpu.h>
 19 #include <linux/cpumask.h>
 20 #include <linux/vmstat.h>
 21 #include <linux/proc_fs.h>
 22 #include <linux/seq_file.h>
 23 #include <linux/debugfs.h>
 24 #include <linux/sched.h>
 25 #include <linux/math64.h>
 26 #include <linux/writeback.h>
 27 #include <linux/compaction.h>
 28 #include <linux/mm_inline.h>
 29 #include <linux/page_owner.h>
 30 #include <linux/sched/isolation.h>
 31 
 32 #include "internal.h"
 33 
 34 #ifdef CONFIG_NUMA
 35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
 36 
 37 /* zero numa counters within a zone */
 38 static void zero_zone_numa_counters(struct zone *zone)
 39 {
 40         int item, cpu;
 41 
 42         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
 43                 atomic_long_set(&zone->vm_numa_event[item], 0);
 44                 for_each_online_cpu(cpu) {
 45                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
 46                                                 = 0;
 47                 }
 48         }
 49 }
 50 
 51 /* zero numa counters of all the populated zones */
 52 static void zero_zones_numa_counters(void)
 53 {
 54         struct zone *zone;
 55 
 56         for_each_populated_zone(zone)
 57                 zero_zone_numa_counters(zone);
 58 }
 59 
 60 /* zero global numa counters */
 61 static void zero_global_numa_counters(void)
 62 {
 63         int item;
 64 
 65         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
 66                 atomic_long_set(&vm_numa_event[item], 0);
 67 }
 68 
 69 static void invalid_numa_statistics(void)
 70 {
 71         zero_zones_numa_counters();
 72         zero_global_numa_counters();
 73 }
 74 
 75 static DEFINE_MUTEX(vm_numa_stat_lock);
 76 
 77 int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write,
 78                 void *buffer, size_t *length, loff_t *ppos)
 79 {
 80         int ret, oldval;
 81 
 82         mutex_lock(&vm_numa_stat_lock);
 83         if (write)
 84                 oldval = sysctl_vm_numa_stat;
 85         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 86         if (ret || !write)
 87                 goto out;
 88 
 89         if (oldval == sysctl_vm_numa_stat)
 90                 goto out;
 91         else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
 92                 static_branch_enable(&vm_numa_stat_key);
 93                 pr_info("enable numa statistics\n");
 94         } else {
 95                 static_branch_disable(&vm_numa_stat_key);
 96                 invalid_numa_statistics();
 97                 pr_info("disable numa statistics, and clear numa counters\n");
 98         }
 99 
100 out:
101         mutex_unlock(&vm_numa_stat_lock);
102         return ret;
103 }
104 #endif
105 
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
109 
110 static void sum_vm_events(unsigned long *ret)
111 {
112         int cpu;
113         int i;
114 
115         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116 
117         for_each_online_cpu(cpu) {
118                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119 
120                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121                         ret[i] += this->event[i];
122         }
123 }
124 
125 /*
126  * Accumulate the vm event counters across all CPUs.
127  * The result is unavoidably approximate - it can change
128  * during and after execution of this function.
129 */
130 void all_vm_events(unsigned long *ret)
131 {
132         cpus_read_lock();
133         sum_vm_events(ret);
134         cpus_read_unlock();
135 }
136 EXPORT_SYMBOL_GPL(all_vm_events);
137 
138 /*
139  * Fold the foreign cpu events into our own.
140  *
141  * This is adding to the events on one processor
142  * but keeps the global counts constant.
143  */
144 void vm_events_fold_cpu(int cpu)
145 {
146         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147         int i;
148 
149         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150                 count_vm_events(i, fold_state->event[i]);
151                 fold_state->event[i] = 0;
152         }
153 }
154 
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
156 
157 /*
158  * Manage combined zone based / global counters
159  *
160  * vm_stat contains the global counters
161  */
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
167 
168 #ifdef CONFIG_NUMA
169 static void fold_vm_zone_numa_events(struct zone *zone)
170 {
171         unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172         int cpu;
173         enum numa_stat_item item;
174 
175         for_each_online_cpu(cpu) {
176                 struct per_cpu_zonestat *pzstats;
177 
178                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179                 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180                         zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181         }
182 
183         for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184                 zone_numa_event_add(zone_numa_events[item], zone, item);
185 }
186 
187 void fold_vm_numa_events(void)
188 {
189         struct zone *zone;
190 
191         for_each_populated_zone(zone)
192                 fold_vm_zone_numa_events(zone);
193 }
194 #endif
195 
196 #ifdef CONFIG_SMP
197 
198 int calculate_pressure_threshold(struct zone *zone)
199 {
200         int threshold;
201         int watermark_distance;
202 
203         /*
204          * As vmstats are not up to date, there is drift between the estimated
205          * and real values. For high thresholds and a high number of CPUs, it
206          * is possible for the min watermark to be breached while the estimated
207          * value looks fine. The pressure threshold is a reduced value such
208          * that even the maximum amount of drift will not accidentally breach
209          * the min watermark
210          */
211         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213 
214         /*
215          * Maximum threshold is 125
216          */
217         threshold = min(125, threshold);
218 
219         return threshold;
220 }
221 
222 int calculate_normal_threshold(struct zone *zone)
223 {
224         int threshold;
225         int mem;        /* memory in 128 MB units */
226 
227         /*
228          * The threshold scales with the number of processors and the amount
229          * of memory per zone. More memory means that we can defer updates for
230          * longer, more processors could lead to more contention.
231          * fls() is used to have a cheap way of logarithmic scaling.
232          *
233          * Some sample thresholds:
234          *
235          * Threshold    Processors      (fls)   Zonesize        fls(mem)+1
236          * ------------------------------------------------------------------
237          * 8            1               1       0.9-1 GB        4
238          * 16           2               2       0.9-1 GB        4
239          * 20           2               2       1-2 GB          5
240          * 24           2               2       2-4 GB          6
241          * 28           2               2       4-8 GB          7
242          * 32           2               2       8-16 GB         8
243          * 4            2               2       <128M           1
244          * 30           4               3       2-4 GB          5
245          * 48           4               3       8-16 GB         8
246          * 32           8               4       1-2 GB          4
247          * 32           8               4       0.9-1GB         4
248          * 10           16              5       <128M           1
249          * 40           16              5       900M            4
250          * 70           64              7       2-4 GB          5
251          * 84           64              7       4-8 GB          6
252          * 108          512             9       4-8 GB          6
253          * 125          1024            10      8-16 GB         8
254          * 125          1024            10      16-32 GB        9
255          */
256 
257         mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258 
259         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260 
261         /*
262          * Maximum threshold is 125
263          */
264         threshold = min(125, threshold);
265 
266         return threshold;
267 }
268 
269 /*
270  * Refresh the thresholds for each zone.
271  */
272 void refresh_zone_stat_thresholds(void)
273 {
274         struct pglist_data *pgdat;
275         struct zone *zone;
276         int cpu;
277         int threshold;
278 
279         /* Zero current pgdat thresholds */
280         for_each_online_pgdat(pgdat) {
281                 for_each_online_cpu(cpu) {
282                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283                 }
284         }
285 
286         for_each_populated_zone(zone) {
287                 struct pglist_data *pgdat = zone->zone_pgdat;
288                 unsigned long max_drift, tolerate_drift;
289 
290                 threshold = calculate_normal_threshold(zone);
291 
292                 for_each_online_cpu(cpu) {
293                         int pgdat_threshold;
294 
295                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296                                                         = threshold;
297 
298                         /* Base nodestat threshold on the largest populated zone. */
299                         pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300                         per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301                                 = max(threshold, pgdat_threshold);
302                 }
303 
304                 /*
305                  * Only set percpu_drift_mark if there is a danger that
306                  * NR_FREE_PAGES reports the low watermark is ok when in fact
307                  * the min watermark could be breached by an allocation
308                  */
309                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310                 max_drift = num_online_cpus() * threshold;
311                 if (max_drift > tolerate_drift)
312                         zone->percpu_drift_mark = high_wmark_pages(zone) +
313                                         max_drift;
314         }
315 }
316 
317 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318                                 int (*calculate_pressure)(struct zone *))
319 {
320         struct zone *zone;
321         int cpu;
322         int threshold;
323         int i;
324 
325         for (i = 0; i < pgdat->nr_zones; i++) {
326                 zone = &pgdat->node_zones[i];
327                 if (!zone->percpu_drift_mark)
328                         continue;
329 
330                 threshold = (*calculate_pressure)(zone);
331                 for_each_online_cpu(cpu)
332                         per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333                                                         = threshold;
334         }
335 }
336 
337 /*
338  * For use when we know that interrupts are disabled,
339  * or when we know that preemption is disabled and that
340  * particular counter cannot be updated from interrupt context.
341  */
342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343                            long delta)
344 {
345         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346         s8 __percpu *p = pcp->vm_stat_diff + item;
347         long x;
348         long t;
349 
350         /*
351          * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352          * atomicity is provided by IRQs being disabled -- either explicitly
353          * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354          * CPU migrations and preemption potentially corrupts a counter so
355          * disable preemption.
356          */
357         preempt_disable_nested();
358 
359         x = delta + __this_cpu_read(*p);
360 
361         t = __this_cpu_read(pcp->stat_threshold);
362 
363         if (unlikely(abs(x) > t)) {
364                 zone_page_state_add(x, zone, item);
365                 x = 0;
366         }
367         __this_cpu_write(*p, x);
368 
369         preempt_enable_nested();
370 }
371 EXPORT_SYMBOL(__mod_zone_page_state);
372 
373 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374                                 long delta)
375 {
376         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377         s8 __percpu *p = pcp->vm_node_stat_diff + item;
378         long x;
379         long t;
380 
381         if (vmstat_item_in_bytes(item)) {
382                 /*
383                  * Only cgroups use subpage accounting right now; at
384                  * the global level, these items still change in
385                  * multiples of whole pages. Store them as pages
386                  * internally to keep the per-cpu counters compact.
387                  */
388                 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389                 delta >>= PAGE_SHIFT;
390         }
391 
392         /* See __mod_node_page_state */
393         preempt_disable_nested();
394 
395         x = delta + __this_cpu_read(*p);
396 
397         t = __this_cpu_read(pcp->stat_threshold);
398 
399         if (unlikely(abs(x) > t)) {
400                 node_page_state_add(x, pgdat, item);
401                 x = 0;
402         }
403         __this_cpu_write(*p, x);
404 
405         preempt_enable_nested();
406 }
407 EXPORT_SYMBOL(__mod_node_page_state);
408 
409 /*
410  * Optimized increment and decrement functions.
411  *
412  * These are only for a single page and therefore can take a struct page *
413  * argument instead of struct zone *. This allows the inclusion of the code
414  * generated for page_zone(page) into the optimized functions.
415  *
416  * No overflow check is necessary and therefore the differential can be
417  * incremented or decremented in place which may allow the compilers to
418  * generate better code.
419  * The increment or decrement is known and therefore one boundary check can
420  * be omitted.
421  *
422  * NOTE: These functions are very performance sensitive. Change only
423  * with care.
424  *
425  * Some processors have inc/dec instructions that are atomic vs an interrupt.
426  * However, the code must first determine the differential location in a zone
427  * based on the processor number and then inc/dec the counter. There is no
428  * guarantee without disabling preemption that the processor will not change
429  * in between and therefore the atomicity vs. interrupt cannot be exploited
430  * in a useful way here.
431  */
432 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433 {
434         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435         s8 __percpu *p = pcp->vm_stat_diff + item;
436         s8 v, t;
437 
438         /* See __mod_node_page_state */
439         preempt_disable_nested();
440 
441         v = __this_cpu_inc_return(*p);
442         t = __this_cpu_read(pcp->stat_threshold);
443         if (unlikely(v > t)) {
444                 s8 overstep = t >> 1;
445 
446                 zone_page_state_add(v + overstep, zone, item);
447                 __this_cpu_write(*p, -overstep);
448         }
449 
450         preempt_enable_nested();
451 }
452 
453 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454 {
455         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456         s8 __percpu *p = pcp->vm_node_stat_diff + item;
457         s8 v, t;
458 
459         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460 
461         /* See __mod_node_page_state */
462         preempt_disable_nested();
463 
464         v = __this_cpu_inc_return(*p);
465         t = __this_cpu_read(pcp->stat_threshold);
466         if (unlikely(v > t)) {
467                 s8 overstep = t >> 1;
468 
469                 node_page_state_add(v + overstep, pgdat, item);
470                 __this_cpu_write(*p, -overstep);
471         }
472 
473         preempt_enable_nested();
474 }
475 
476 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477 {
478         __inc_zone_state(page_zone(page), item);
479 }
480 EXPORT_SYMBOL(__inc_zone_page_state);
481 
482 void __inc_node_page_state(struct page *page, enum node_stat_item item)
483 {
484         __inc_node_state(page_pgdat(page), item);
485 }
486 EXPORT_SYMBOL(__inc_node_page_state);
487 
488 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489 {
490         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491         s8 __percpu *p = pcp->vm_stat_diff + item;
492         s8 v, t;
493 
494         /* See __mod_node_page_state */
495         preempt_disable_nested();
496 
497         v = __this_cpu_dec_return(*p);
498         t = __this_cpu_read(pcp->stat_threshold);
499         if (unlikely(v < - t)) {
500                 s8 overstep = t >> 1;
501 
502                 zone_page_state_add(v - overstep, zone, item);
503                 __this_cpu_write(*p, overstep);
504         }
505 
506         preempt_enable_nested();
507 }
508 
509 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510 {
511         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512         s8 __percpu *p = pcp->vm_node_stat_diff + item;
513         s8 v, t;
514 
515         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516 
517         /* See __mod_node_page_state */
518         preempt_disable_nested();
519 
520         v = __this_cpu_dec_return(*p);
521         t = __this_cpu_read(pcp->stat_threshold);
522         if (unlikely(v < - t)) {
523                 s8 overstep = t >> 1;
524 
525                 node_page_state_add(v - overstep, pgdat, item);
526                 __this_cpu_write(*p, overstep);
527         }
528 
529         preempt_enable_nested();
530 }
531 
532 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533 {
534         __dec_zone_state(page_zone(page), item);
535 }
536 EXPORT_SYMBOL(__dec_zone_page_state);
537 
538 void __dec_node_page_state(struct page *page, enum node_stat_item item)
539 {
540         __dec_node_state(page_pgdat(page), item);
541 }
542 EXPORT_SYMBOL(__dec_node_page_state);
543 
544 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545 /*
546  * If we have cmpxchg_local support then we do not need to incur the overhead
547  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548  *
549  * mod_state() modifies the zone counter state through atomic per cpu
550  * operations.
551  *
552  * Overstep mode specifies how overstep should handled:
553  *     0       No overstepping
554  *     1       Overstepping half of threshold
555  *     -1      Overstepping minus half of threshold
556 */
557 static inline void mod_zone_state(struct zone *zone,
558        enum zone_stat_item item, long delta, int overstep_mode)
559 {
560         struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561         s8 __percpu *p = pcp->vm_stat_diff + item;
562         long n, t, z;
563         s8 o;
564 
565         o = this_cpu_read(*p);
566         do {
567                 z = 0;  /* overflow to zone counters */
568 
569                 /*
570                  * The fetching of the stat_threshold is racy. We may apply
571                  * a counter threshold to the wrong the cpu if we get
572                  * rescheduled while executing here. However, the next
573                  * counter update will apply the threshold again and
574                  * therefore bring the counter under the threshold again.
575                  *
576                  * Most of the time the thresholds are the same anyways
577                  * for all cpus in a zone.
578                  */
579                 t = this_cpu_read(pcp->stat_threshold);
580 
581                 n = delta + (long)o;
582 
583                 if (abs(n) > t) {
584                         int os = overstep_mode * (t >> 1) ;
585 
586                         /* Overflow must be added to zone counters */
587                         z = n + os;
588                         n = -os;
589                 }
590         } while (!this_cpu_try_cmpxchg(*p, &o, n));
591 
592         if (z)
593                 zone_page_state_add(z, zone, item);
594 }
595 
596 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
597                          long delta)
598 {
599         mod_zone_state(zone, item, delta, 0);
600 }
601 EXPORT_SYMBOL(mod_zone_page_state);
602 
603 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604 {
605         mod_zone_state(page_zone(page), item, 1, 1);
606 }
607 EXPORT_SYMBOL(inc_zone_page_state);
608 
609 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610 {
611         mod_zone_state(page_zone(page), item, -1, -1);
612 }
613 EXPORT_SYMBOL(dec_zone_page_state);
614 
615 static inline void mod_node_state(struct pglist_data *pgdat,
616        enum node_stat_item item, int delta, int overstep_mode)
617 {
618         struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619         s8 __percpu *p = pcp->vm_node_stat_diff + item;
620         long n, t, z;
621         s8 o;
622 
623         if (vmstat_item_in_bytes(item)) {
624                 /*
625                  * Only cgroups use subpage accounting right now; at
626                  * the global level, these items still change in
627                  * multiples of whole pages. Store them as pages
628                  * internally to keep the per-cpu counters compact.
629                  */
630                 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
631                 delta >>= PAGE_SHIFT;
632         }
633 
634         o = this_cpu_read(*p);
635         do {
636                 z = 0;  /* overflow to node counters */
637 
638                 /*
639                  * The fetching of the stat_threshold is racy. We may apply
640                  * a counter threshold to the wrong the cpu if we get
641                  * rescheduled while executing here. However, the next
642                  * counter update will apply the threshold again and
643                  * therefore bring the counter under the threshold again.
644                  *
645                  * Most of the time the thresholds are the same anyways
646                  * for all cpus in a node.
647                  */
648                 t = this_cpu_read(pcp->stat_threshold);
649 
650                 n = delta + (long)o;
651 
652                 if (abs(n) > t) {
653                         int os = overstep_mode * (t >> 1) ;
654 
655                         /* Overflow must be added to node counters */
656                         z = n + os;
657                         n = -os;
658                 }
659         } while (!this_cpu_try_cmpxchg(*p, &o, n));
660 
661         if (z)
662                 node_page_state_add(z, pgdat, item);
663 }
664 
665 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
666                                         long delta)
667 {
668         mod_node_state(pgdat, item, delta, 0);
669 }
670 EXPORT_SYMBOL(mod_node_page_state);
671 
672 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
673 {
674         mod_node_state(pgdat, item, 1, 1);
675 }
676 
677 void inc_node_page_state(struct page *page, enum node_stat_item item)
678 {
679         mod_node_state(page_pgdat(page), item, 1, 1);
680 }
681 EXPORT_SYMBOL(inc_node_page_state);
682 
683 void dec_node_page_state(struct page *page, enum node_stat_item item)
684 {
685         mod_node_state(page_pgdat(page), item, -1, -1);
686 }
687 EXPORT_SYMBOL(dec_node_page_state);
688 #else
689 /*
690  * Use interrupt disable to serialize counter updates
691  */
692 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
693                          long delta)
694 {
695         unsigned long flags;
696 
697         local_irq_save(flags);
698         __mod_zone_page_state(zone, item, delta);
699         local_irq_restore(flags);
700 }
701 EXPORT_SYMBOL(mod_zone_page_state);
702 
703 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
704 {
705         unsigned long flags;
706         struct zone *zone;
707 
708         zone = page_zone(page);
709         local_irq_save(flags);
710         __inc_zone_state(zone, item);
711         local_irq_restore(flags);
712 }
713 EXPORT_SYMBOL(inc_zone_page_state);
714 
715 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
716 {
717         unsigned long flags;
718 
719         local_irq_save(flags);
720         __dec_zone_page_state(page, item);
721         local_irq_restore(flags);
722 }
723 EXPORT_SYMBOL(dec_zone_page_state);
724 
725 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
726 {
727         unsigned long flags;
728 
729         local_irq_save(flags);
730         __inc_node_state(pgdat, item);
731         local_irq_restore(flags);
732 }
733 EXPORT_SYMBOL(inc_node_state);
734 
735 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
736                                         long delta)
737 {
738         unsigned long flags;
739 
740         local_irq_save(flags);
741         __mod_node_page_state(pgdat, item, delta);
742         local_irq_restore(flags);
743 }
744 EXPORT_SYMBOL(mod_node_page_state);
745 
746 void inc_node_page_state(struct page *page, enum node_stat_item item)
747 {
748         unsigned long flags;
749         struct pglist_data *pgdat;
750 
751         pgdat = page_pgdat(page);
752         local_irq_save(flags);
753         __inc_node_state(pgdat, item);
754         local_irq_restore(flags);
755 }
756 EXPORT_SYMBOL(inc_node_page_state);
757 
758 void dec_node_page_state(struct page *page, enum node_stat_item item)
759 {
760         unsigned long flags;
761 
762         local_irq_save(flags);
763         __dec_node_page_state(page, item);
764         local_irq_restore(flags);
765 }
766 EXPORT_SYMBOL(dec_node_page_state);
767 #endif
768 
769 /*
770  * Fold a differential into the global counters.
771  * Returns the number of counters updated.
772  */
773 static int fold_diff(int *zone_diff, int *node_diff)
774 {
775         int i;
776         int changes = 0;
777 
778         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
779                 if (zone_diff[i]) {
780                         atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
781                         changes++;
782         }
783 
784         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
785                 if (node_diff[i]) {
786                         atomic_long_add(node_diff[i], &vm_node_stat[i]);
787                         changes++;
788         }
789         return changes;
790 }
791 
792 /*
793  * Update the zone counters for the current cpu.
794  *
795  * Note that refresh_cpu_vm_stats strives to only access
796  * node local memory. The per cpu pagesets on remote zones are placed
797  * in the memory local to the processor using that pageset. So the
798  * loop over all zones will access a series of cachelines local to
799  * the processor.
800  *
801  * The call to zone_page_state_add updates the cachelines with the
802  * statistics in the remote zone struct as well as the global cachelines
803  * with the global counters. These could cause remote node cache line
804  * bouncing and will have to be only done when necessary.
805  *
806  * The function returns the number of global counters updated.
807  */
808 static int refresh_cpu_vm_stats(bool do_pagesets)
809 {
810         struct pglist_data *pgdat;
811         struct zone *zone;
812         int i;
813         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
814         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
815         int changes = 0;
816 
817         for_each_populated_zone(zone) {
818                 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
819                 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
820 
821                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822                         int v;
823 
824                         v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825                         if (v) {
826 
827                                 atomic_long_add(v, &zone->vm_stat[i]);
828                                 global_zone_diff[i] += v;
829 #ifdef CONFIG_NUMA
830                                 /* 3 seconds idle till flush */
831                                 __this_cpu_write(pcp->expire, 3);
832 #endif
833                         }
834                 }
835 
836                 if (do_pagesets) {
837                         cond_resched();
838 
839                         changes += decay_pcp_high(zone, this_cpu_ptr(pcp));
840 #ifdef CONFIG_NUMA
841                         /*
842                          * Deal with draining the remote pageset of this
843                          * processor
844                          *
845                          * Check if there are pages remaining in this pageset
846                          * if not then there is nothing to expire.
847                          */
848                         if (!__this_cpu_read(pcp->expire) ||
849                                !__this_cpu_read(pcp->count))
850                                 continue;
851 
852                         /*
853                          * We never drain zones local to this processor.
854                          */
855                         if (zone_to_nid(zone) == numa_node_id()) {
856                                 __this_cpu_write(pcp->expire, 0);
857                                 continue;
858                         }
859 
860                         if (__this_cpu_dec_return(pcp->expire)) {
861                                 changes++;
862                                 continue;
863                         }
864 
865                         if (__this_cpu_read(pcp->count)) {
866                                 drain_zone_pages(zone, this_cpu_ptr(pcp));
867                                 changes++;
868                         }
869 #endif
870                 }
871         }
872 
873         for_each_online_pgdat(pgdat) {
874                 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
875 
876                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
877                         int v;
878 
879                         v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
880                         if (v) {
881                                 atomic_long_add(v, &pgdat->vm_stat[i]);
882                                 global_node_diff[i] += v;
883                         }
884                 }
885         }
886 
887         changes += fold_diff(global_zone_diff, global_node_diff);
888         return changes;
889 }
890 
891 /*
892  * Fold the data for an offline cpu into the global array.
893  * There cannot be any access by the offline cpu and therefore
894  * synchronization is simplified.
895  */
896 void cpu_vm_stats_fold(int cpu)
897 {
898         struct pglist_data *pgdat;
899         struct zone *zone;
900         int i;
901         int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
902         int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
903 
904         for_each_populated_zone(zone) {
905                 struct per_cpu_zonestat *pzstats;
906 
907                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
908 
909                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
910                         if (pzstats->vm_stat_diff[i]) {
911                                 int v;
912 
913                                 v = pzstats->vm_stat_diff[i];
914                                 pzstats->vm_stat_diff[i] = 0;
915                                 atomic_long_add(v, &zone->vm_stat[i]);
916                                 global_zone_diff[i] += v;
917                         }
918                 }
919 #ifdef CONFIG_NUMA
920                 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
921                         if (pzstats->vm_numa_event[i]) {
922                                 unsigned long v;
923 
924                                 v = pzstats->vm_numa_event[i];
925                                 pzstats->vm_numa_event[i] = 0;
926                                 zone_numa_event_add(v, zone, i);
927                         }
928                 }
929 #endif
930         }
931 
932         for_each_online_pgdat(pgdat) {
933                 struct per_cpu_nodestat *p;
934 
935                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
936 
937                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
938                         if (p->vm_node_stat_diff[i]) {
939                                 int v;
940 
941                                 v = p->vm_node_stat_diff[i];
942                                 p->vm_node_stat_diff[i] = 0;
943                                 atomic_long_add(v, &pgdat->vm_stat[i]);
944                                 global_node_diff[i] += v;
945                         }
946         }
947 
948         fold_diff(global_zone_diff, global_node_diff);
949 }
950 
951 /*
952  * this is only called if !populated_zone(zone), which implies no other users of
953  * pset->vm_stat_diff[] exist.
954  */
955 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
956 {
957         unsigned long v;
958         int i;
959 
960         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
961                 if (pzstats->vm_stat_diff[i]) {
962                         v = pzstats->vm_stat_diff[i];
963                         pzstats->vm_stat_diff[i] = 0;
964                         zone_page_state_add(v, zone, i);
965                 }
966         }
967 
968 #ifdef CONFIG_NUMA
969         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
970                 if (pzstats->vm_numa_event[i]) {
971                         v = pzstats->vm_numa_event[i];
972                         pzstats->vm_numa_event[i] = 0;
973                         zone_numa_event_add(v, zone, i);
974                 }
975         }
976 #endif
977 }
978 #endif
979 
980 #ifdef CONFIG_NUMA
981 /*
982  * Determine the per node value of a stat item. This function
983  * is called frequently in a NUMA machine, so try to be as
984  * frugal as possible.
985  */
986 unsigned long sum_zone_node_page_state(int node,
987                                  enum zone_stat_item item)
988 {
989         struct zone *zones = NODE_DATA(node)->node_zones;
990         int i;
991         unsigned long count = 0;
992 
993         for (i = 0; i < MAX_NR_ZONES; i++)
994                 count += zone_page_state(zones + i, item);
995 
996         return count;
997 }
998 
999 /* Determine the per node value of a numa stat item. */
1000 unsigned long sum_zone_numa_event_state(int node,
1001                                  enum numa_stat_item item)
1002 {
1003         struct zone *zones = NODE_DATA(node)->node_zones;
1004         unsigned long count = 0;
1005         int i;
1006 
1007         for (i = 0; i < MAX_NR_ZONES; i++)
1008                 count += zone_numa_event_state(zones + i, item);
1009 
1010         return count;
1011 }
1012 
1013 /*
1014  * Determine the per node value of a stat item.
1015  */
1016 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1017                                     enum node_stat_item item)
1018 {
1019         long x = atomic_long_read(&pgdat->vm_stat[item]);
1020 #ifdef CONFIG_SMP
1021         if (x < 0)
1022                 x = 0;
1023 #endif
1024         return x;
1025 }
1026 
1027 unsigned long node_page_state(struct pglist_data *pgdat,
1028                               enum node_stat_item item)
1029 {
1030         VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1031 
1032         return node_page_state_pages(pgdat, item);
1033 }
1034 #endif
1035 
1036 /*
1037  * Count number of pages "struct page" and "struct page_ext" consume.
1038  * nr_memmap_boot_pages: # of pages allocated by boot allocator
1039  * nr_memmap_pages: # of pages that were allocated by buddy allocator
1040  */
1041 static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0);
1042 static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0);
1043 
1044 void memmap_boot_pages_add(long delta)
1045 {
1046         atomic_long_add(delta, &nr_memmap_boot_pages);
1047 }
1048 
1049 void memmap_pages_add(long delta)
1050 {
1051         atomic_long_add(delta, &nr_memmap_pages);
1052 }
1053 
1054 #ifdef CONFIG_COMPACTION
1055 
1056 struct contig_page_info {
1057         unsigned long free_pages;
1058         unsigned long free_blocks_total;
1059         unsigned long free_blocks_suitable;
1060 };
1061 
1062 /*
1063  * Calculate the number of free pages in a zone, how many contiguous
1064  * pages are free and how many are large enough to satisfy an allocation of
1065  * the target size. Note that this function makes no attempt to estimate
1066  * how many suitable free blocks there *might* be if MOVABLE pages were
1067  * migrated. Calculating that is possible, but expensive and can be
1068  * figured out from userspace
1069  */
1070 static void fill_contig_page_info(struct zone *zone,
1071                                 unsigned int suitable_order,
1072                                 struct contig_page_info *info)
1073 {
1074         unsigned int order;
1075 
1076         info->free_pages = 0;
1077         info->free_blocks_total = 0;
1078         info->free_blocks_suitable = 0;
1079 
1080         for (order = 0; order < NR_PAGE_ORDERS; order++) {
1081                 unsigned long blocks;
1082 
1083                 /*
1084                  * Count number of free blocks.
1085                  *
1086                  * Access to nr_free is lockless as nr_free is used only for
1087                  * diagnostic purposes. Use data_race to avoid KCSAN warning.
1088                  */
1089                 blocks = data_race(zone->free_area[order].nr_free);
1090                 info->free_blocks_total += blocks;
1091 
1092                 /* Count free base pages */
1093                 info->free_pages += blocks << order;
1094 
1095                 /* Count the suitable free blocks */
1096                 if (order >= suitable_order)
1097                         info->free_blocks_suitable += blocks <<
1098                                                 (order - suitable_order);
1099         }
1100 }
1101 
1102 /*
1103  * A fragmentation index only makes sense if an allocation of a requested
1104  * size would fail. If that is true, the fragmentation index indicates
1105  * whether external fragmentation or a lack of memory was the problem.
1106  * The value can be used to determine if page reclaim or compaction
1107  * should be used
1108  */
1109 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1110 {
1111         unsigned long requested = 1UL << order;
1112 
1113         if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1114                 return 0;
1115 
1116         if (!info->free_blocks_total)
1117                 return 0;
1118 
1119         /* Fragmentation index only makes sense when a request would fail */
1120         if (info->free_blocks_suitable)
1121                 return -1000;
1122 
1123         /*
1124          * Index is between 0 and 1 so return within 3 decimal places
1125          *
1126          * 0 => allocation would fail due to lack of memory
1127          * 1 => allocation would fail due to fragmentation
1128          */
1129         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1130 }
1131 
1132 /*
1133  * Calculates external fragmentation within a zone wrt the given order.
1134  * It is defined as the percentage of pages found in blocks of size
1135  * less than 1 << order. It returns values in range [0, 100].
1136  */
1137 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1138 {
1139         struct contig_page_info info;
1140 
1141         fill_contig_page_info(zone, order, &info);
1142         if (info.free_pages == 0)
1143                 return 0;
1144 
1145         return div_u64((info.free_pages -
1146                         (info.free_blocks_suitable << order)) * 100,
1147                         info.free_pages);
1148 }
1149 
1150 /* Same as __fragmentation index but allocs contig_page_info on stack */
1151 int fragmentation_index(struct zone *zone, unsigned int order)
1152 {
1153         struct contig_page_info info;
1154 
1155         fill_contig_page_info(zone, order, &info);
1156         return __fragmentation_index(order, &info);
1157 }
1158 #endif
1159 
1160 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1161     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1162 #ifdef CONFIG_ZONE_DMA
1163 #define TEXT_FOR_DMA(xx) xx "_dma",
1164 #else
1165 #define TEXT_FOR_DMA(xx)
1166 #endif
1167 
1168 #ifdef CONFIG_ZONE_DMA32
1169 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1170 #else
1171 #define TEXT_FOR_DMA32(xx)
1172 #endif
1173 
1174 #ifdef CONFIG_HIGHMEM
1175 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1176 #else
1177 #define TEXT_FOR_HIGHMEM(xx)
1178 #endif
1179 
1180 #ifdef CONFIG_ZONE_DEVICE
1181 #define TEXT_FOR_DEVICE(xx) xx "_device",
1182 #else
1183 #define TEXT_FOR_DEVICE(xx)
1184 #endif
1185 
1186 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1187                                         TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1188                                         TEXT_FOR_DEVICE(xx)
1189 
1190 const char * const vmstat_text[] = {
1191         /* enum zone_stat_item counters */
1192         "nr_free_pages",
1193         "nr_zone_inactive_anon",
1194         "nr_zone_active_anon",
1195         "nr_zone_inactive_file",
1196         "nr_zone_active_file",
1197         "nr_zone_unevictable",
1198         "nr_zone_write_pending",
1199         "nr_mlock",
1200         "nr_bounce",
1201 #if IS_ENABLED(CONFIG_ZSMALLOC)
1202         "nr_zspages",
1203 #endif
1204         "nr_free_cma",
1205 #ifdef CONFIG_UNACCEPTED_MEMORY
1206         "nr_unaccepted",
1207 #endif
1208 
1209         /* enum numa_stat_item counters */
1210 #ifdef CONFIG_NUMA
1211         "numa_hit",
1212         "numa_miss",
1213         "numa_foreign",
1214         "numa_interleave",
1215         "numa_local",
1216         "numa_other",
1217 #endif
1218 
1219         /* enum node_stat_item counters */
1220         "nr_inactive_anon",
1221         "nr_active_anon",
1222         "nr_inactive_file",
1223         "nr_active_file",
1224         "nr_unevictable",
1225         "nr_slab_reclaimable",
1226         "nr_slab_unreclaimable",
1227         "nr_isolated_anon",
1228         "nr_isolated_file",
1229         "workingset_nodes",
1230         "workingset_refault_anon",
1231         "workingset_refault_file",
1232         "workingset_activate_anon",
1233         "workingset_activate_file",
1234         "workingset_restore_anon",
1235         "workingset_restore_file",
1236         "workingset_nodereclaim",
1237         "nr_anon_pages",
1238         "nr_mapped",
1239         "nr_file_pages",
1240         "nr_dirty",
1241         "nr_writeback",
1242         "nr_writeback_temp",
1243         "nr_shmem",
1244         "nr_shmem_hugepages",
1245         "nr_shmem_pmdmapped",
1246         "nr_file_hugepages",
1247         "nr_file_pmdmapped",
1248         "nr_anon_transparent_hugepages",
1249         "nr_vmscan_write",
1250         "nr_vmscan_immediate_reclaim",
1251         "nr_dirtied",
1252         "nr_written",
1253         "nr_throttled_written",
1254         "nr_kernel_misc_reclaimable",
1255         "nr_foll_pin_acquired",
1256         "nr_foll_pin_released",
1257         "nr_kernel_stack",
1258 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1259         "nr_shadow_call_stack",
1260 #endif
1261         "nr_page_table_pages",
1262         "nr_sec_page_table_pages",
1263 #ifdef CONFIG_IOMMU_SUPPORT
1264         "nr_iommu_pages",
1265 #endif
1266 #ifdef CONFIG_SWAP
1267         "nr_swapcached",
1268 #endif
1269 #ifdef CONFIG_NUMA_BALANCING
1270         "pgpromote_success",
1271         "pgpromote_candidate",
1272 #endif
1273         "pgdemote_kswapd",
1274         "pgdemote_direct",
1275         "pgdemote_khugepaged",
1276         /* system-wide enum vm_stat_item counters */
1277         "nr_dirty_threshold",
1278         "nr_dirty_background_threshold",
1279         "nr_memmap_pages",
1280         "nr_memmap_boot_pages",
1281 
1282 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1283         /* enum vm_event_item counters */
1284         "pgpgin",
1285         "pgpgout",
1286         "pswpin",
1287         "pswpout",
1288 
1289         TEXTS_FOR_ZONES("pgalloc")
1290         TEXTS_FOR_ZONES("allocstall")
1291         TEXTS_FOR_ZONES("pgskip")
1292 
1293         "pgfree",
1294         "pgactivate",
1295         "pgdeactivate",
1296         "pglazyfree",
1297 
1298         "pgfault",
1299         "pgmajfault",
1300         "pglazyfreed",
1301 
1302         "pgrefill",
1303         "pgreuse",
1304         "pgsteal_kswapd",
1305         "pgsteal_direct",
1306         "pgsteal_khugepaged",
1307         "pgscan_kswapd",
1308         "pgscan_direct",
1309         "pgscan_khugepaged",
1310         "pgscan_direct_throttle",
1311         "pgscan_anon",
1312         "pgscan_file",
1313         "pgsteal_anon",
1314         "pgsteal_file",
1315 
1316 #ifdef CONFIG_NUMA
1317         "zone_reclaim_failed",
1318 #endif
1319         "pginodesteal",
1320         "slabs_scanned",
1321         "kswapd_inodesteal",
1322         "kswapd_low_wmark_hit_quickly",
1323         "kswapd_high_wmark_hit_quickly",
1324         "pageoutrun",
1325 
1326         "pgrotated",
1327 
1328         "drop_pagecache",
1329         "drop_slab",
1330         "oom_kill",
1331 
1332 #ifdef CONFIG_NUMA_BALANCING
1333         "numa_pte_updates",
1334         "numa_huge_pte_updates",
1335         "numa_hint_faults",
1336         "numa_hint_faults_local",
1337         "numa_pages_migrated",
1338 #endif
1339 #ifdef CONFIG_MIGRATION
1340         "pgmigrate_success",
1341         "pgmigrate_fail",
1342         "thp_migration_success",
1343         "thp_migration_fail",
1344         "thp_migration_split",
1345 #endif
1346 #ifdef CONFIG_COMPACTION
1347         "compact_migrate_scanned",
1348         "compact_free_scanned",
1349         "compact_isolated",
1350         "compact_stall",
1351         "compact_fail",
1352         "compact_success",
1353         "compact_daemon_wake",
1354         "compact_daemon_migrate_scanned",
1355         "compact_daemon_free_scanned",
1356 #endif
1357 
1358 #ifdef CONFIG_HUGETLB_PAGE
1359         "htlb_buddy_alloc_success",
1360         "htlb_buddy_alloc_fail",
1361 #endif
1362 #ifdef CONFIG_CMA
1363         "cma_alloc_success",
1364         "cma_alloc_fail",
1365 #endif
1366         "unevictable_pgs_culled",
1367         "unevictable_pgs_scanned",
1368         "unevictable_pgs_rescued",
1369         "unevictable_pgs_mlocked",
1370         "unevictable_pgs_munlocked",
1371         "unevictable_pgs_cleared",
1372         "unevictable_pgs_stranded",
1373 
1374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1375         "thp_fault_alloc",
1376         "thp_fault_fallback",
1377         "thp_fault_fallback_charge",
1378         "thp_collapse_alloc",
1379         "thp_collapse_alloc_failed",
1380         "thp_file_alloc",
1381         "thp_file_fallback",
1382         "thp_file_fallback_charge",
1383         "thp_file_mapped",
1384         "thp_split_page",
1385         "thp_split_page_failed",
1386         "thp_deferred_split_page",
1387         "thp_split_pmd",
1388         "thp_scan_exceed_none_pte",
1389         "thp_scan_exceed_swap_pte",
1390         "thp_scan_exceed_share_pte",
1391 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1392         "thp_split_pud",
1393 #endif
1394         "thp_zero_page_alloc",
1395         "thp_zero_page_alloc_failed",
1396         "thp_swpout",
1397         "thp_swpout_fallback",
1398 #endif
1399 #ifdef CONFIG_MEMORY_BALLOON
1400         "balloon_inflate",
1401         "balloon_deflate",
1402 #ifdef CONFIG_BALLOON_COMPACTION
1403         "balloon_migrate",
1404 #endif
1405 #endif /* CONFIG_MEMORY_BALLOON */
1406 #ifdef CONFIG_DEBUG_TLBFLUSH
1407         "nr_tlb_remote_flush",
1408         "nr_tlb_remote_flush_received",
1409         "nr_tlb_local_flush_all",
1410         "nr_tlb_local_flush_one",
1411 #endif /* CONFIG_DEBUG_TLBFLUSH */
1412 
1413 #ifdef CONFIG_SWAP
1414         "swap_ra",
1415         "swap_ra_hit",
1416 #ifdef CONFIG_KSM
1417         "ksm_swpin_copy",
1418 #endif
1419 #endif
1420 #ifdef CONFIG_KSM
1421         "cow_ksm",
1422 #endif
1423 #ifdef CONFIG_ZSWAP
1424         "zswpin",
1425         "zswpout",
1426         "zswpwb",
1427 #endif
1428 #ifdef CONFIG_X86
1429         "direct_map_level2_splits",
1430         "direct_map_level3_splits",
1431 #endif
1432 #ifdef CONFIG_PER_VMA_LOCK_STATS
1433         "vma_lock_success",
1434         "vma_lock_abort",
1435         "vma_lock_retry",
1436         "vma_lock_miss",
1437 #endif
1438 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1439 };
1440 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1441 
1442 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1443      defined(CONFIG_PROC_FS)
1444 static void *frag_start(struct seq_file *m, loff_t *pos)
1445 {
1446         pg_data_t *pgdat;
1447         loff_t node = *pos;
1448 
1449         for (pgdat = first_online_pgdat();
1450              pgdat && node;
1451              pgdat = next_online_pgdat(pgdat))
1452                 --node;
1453 
1454         return pgdat;
1455 }
1456 
1457 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1458 {
1459         pg_data_t *pgdat = (pg_data_t *)arg;
1460 
1461         (*pos)++;
1462         return next_online_pgdat(pgdat);
1463 }
1464 
1465 static void frag_stop(struct seq_file *m, void *arg)
1466 {
1467 }
1468 
1469 /*
1470  * Walk zones in a node and print using a callback.
1471  * If @assert_populated is true, only use callback for zones that are populated.
1472  */
1473 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1474                 bool assert_populated, bool nolock,
1475                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1476 {
1477         struct zone *zone;
1478         struct zone *node_zones = pgdat->node_zones;
1479         unsigned long flags;
1480 
1481         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1482                 if (assert_populated && !populated_zone(zone))
1483                         continue;
1484 
1485                 if (!nolock)
1486                         spin_lock_irqsave(&zone->lock, flags);
1487                 print(m, pgdat, zone);
1488                 if (!nolock)
1489                         spin_unlock_irqrestore(&zone->lock, flags);
1490         }
1491 }
1492 #endif
1493 
1494 #ifdef CONFIG_PROC_FS
1495 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1496                                                 struct zone *zone)
1497 {
1498         int order;
1499 
1500         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1501         for (order = 0; order < NR_PAGE_ORDERS; ++order)
1502                 /*
1503                  * Access to nr_free is lockless as nr_free is used only for
1504                  * printing purposes. Use data_race to avoid KCSAN warning.
1505                  */
1506                 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1507         seq_putc(m, '\n');
1508 }
1509 
1510 /*
1511  * This walks the free areas for each zone.
1512  */
1513 static int frag_show(struct seq_file *m, void *arg)
1514 {
1515         pg_data_t *pgdat = (pg_data_t *)arg;
1516         walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1517         return 0;
1518 }
1519 
1520 static void pagetypeinfo_showfree_print(struct seq_file *m,
1521                                         pg_data_t *pgdat, struct zone *zone)
1522 {
1523         int order, mtype;
1524 
1525         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1526                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1527                                         pgdat->node_id,
1528                                         zone->name,
1529                                         migratetype_names[mtype]);
1530                 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1531                         unsigned long freecount = 0;
1532                         struct free_area *area;
1533                         struct list_head *curr;
1534                         bool overflow = false;
1535 
1536                         area = &(zone->free_area[order]);
1537 
1538                         list_for_each(curr, &area->free_list[mtype]) {
1539                                 /*
1540                                  * Cap the free_list iteration because it might
1541                                  * be really large and we are under a spinlock
1542                                  * so a long time spent here could trigger a
1543                                  * hard lockup detector. Anyway this is a
1544                                  * debugging tool so knowing there is a handful
1545                                  * of pages of this order should be more than
1546                                  * sufficient.
1547                                  */
1548                                 if (++freecount >= 100000) {
1549                                         overflow = true;
1550                                         break;
1551                                 }
1552                         }
1553                         seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1554                         spin_unlock_irq(&zone->lock);
1555                         cond_resched();
1556                         spin_lock_irq(&zone->lock);
1557                 }
1558                 seq_putc(m, '\n');
1559         }
1560 }
1561 
1562 /* Print out the free pages at each order for each migatetype */
1563 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1564 {
1565         int order;
1566         pg_data_t *pgdat = (pg_data_t *)arg;
1567 
1568         /* Print header */
1569         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1570         for (order = 0; order < NR_PAGE_ORDERS; ++order)
1571                 seq_printf(m, "%6d ", order);
1572         seq_putc(m, '\n');
1573 
1574         walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1575 }
1576 
1577 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1578                                         pg_data_t *pgdat, struct zone *zone)
1579 {
1580         int mtype;
1581         unsigned long pfn;
1582         unsigned long start_pfn = zone->zone_start_pfn;
1583         unsigned long end_pfn = zone_end_pfn(zone);
1584         unsigned long count[MIGRATE_TYPES] = { 0, };
1585 
1586         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1587                 struct page *page;
1588 
1589                 page = pfn_to_online_page(pfn);
1590                 if (!page)
1591                         continue;
1592 
1593                 if (page_zone(page) != zone)
1594                         continue;
1595 
1596                 mtype = get_pageblock_migratetype(page);
1597 
1598                 if (mtype < MIGRATE_TYPES)
1599                         count[mtype]++;
1600         }
1601 
1602         /* Print counts */
1603         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1604         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1605                 seq_printf(m, "%12lu ", count[mtype]);
1606         seq_putc(m, '\n');
1607 }
1608 
1609 /* Print out the number of pageblocks for each migratetype */
1610 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1611 {
1612         int mtype;
1613         pg_data_t *pgdat = (pg_data_t *)arg;
1614 
1615         seq_printf(m, "\n%-23s", "Number of blocks type ");
1616         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1617                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1618         seq_putc(m, '\n');
1619         walk_zones_in_node(m, pgdat, true, false,
1620                 pagetypeinfo_showblockcount_print);
1621 }
1622 
1623 /*
1624  * Print out the number of pageblocks for each migratetype that contain pages
1625  * of other types. This gives an indication of how well fallbacks are being
1626  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1627  * to determine what is going on
1628  */
1629 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1630 {
1631 #ifdef CONFIG_PAGE_OWNER
1632         int mtype;
1633 
1634         if (!static_branch_unlikely(&page_owner_inited))
1635                 return;
1636 
1637         drain_all_pages(NULL);
1638 
1639         seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1640         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1641                 seq_printf(m, "%12s ", migratetype_names[mtype]);
1642         seq_putc(m, '\n');
1643 
1644         walk_zones_in_node(m, pgdat, true, true,
1645                 pagetypeinfo_showmixedcount_print);
1646 #endif /* CONFIG_PAGE_OWNER */
1647 }
1648 
1649 /*
1650  * This prints out statistics in relation to grouping pages by mobility.
1651  * It is expensive to collect so do not constantly read the file.
1652  */
1653 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1654 {
1655         pg_data_t *pgdat = (pg_data_t *)arg;
1656 
1657         /* check memoryless node */
1658         if (!node_state(pgdat->node_id, N_MEMORY))
1659                 return 0;
1660 
1661         seq_printf(m, "Page block order: %d\n", pageblock_order);
1662         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1663         seq_putc(m, '\n');
1664         pagetypeinfo_showfree(m, pgdat);
1665         pagetypeinfo_showblockcount(m, pgdat);
1666         pagetypeinfo_showmixedcount(m, pgdat);
1667 
1668         return 0;
1669 }
1670 
1671 static const struct seq_operations fragmentation_op = {
1672         .start  = frag_start,
1673         .next   = frag_next,
1674         .stop   = frag_stop,
1675         .show   = frag_show,
1676 };
1677 
1678 static const struct seq_operations pagetypeinfo_op = {
1679         .start  = frag_start,
1680         .next   = frag_next,
1681         .stop   = frag_stop,
1682         .show   = pagetypeinfo_show,
1683 };
1684 
1685 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1686 {
1687         int zid;
1688 
1689         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1690                 struct zone *compare = &pgdat->node_zones[zid];
1691 
1692                 if (populated_zone(compare))
1693                         return zone == compare;
1694         }
1695 
1696         return false;
1697 }
1698 
1699 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1700                                                         struct zone *zone)
1701 {
1702         int i;
1703         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1704         if (is_zone_first_populated(pgdat, zone)) {
1705                 seq_printf(m, "\n  per-node stats");
1706                 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1707                         unsigned long pages = node_page_state_pages(pgdat, i);
1708 
1709                         if (vmstat_item_print_in_thp(i))
1710                                 pages /= HPAGE_PMD_NR;
1711                         seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1712                                    pages);
1713                 }
1714         }
1715         seq_printf(m,
1716                    "\n  pages free     %lu"
1717                    "\n        boost    %lu"
1718                    "\n        min      %lu"
1719                    "\n        low      %lu"
1720                    "\n        high     %lu"
1721                    "\n        spanned  %lu"
1722                    "\n        present  %lu"
1723                    "\n        managed  %lu"
1724                    "\n        cma      %lu",
1725                    zone_page_state(zone, NR_FREE_PAGES),
1726                    zone->watermark_boost,
1727                    min_wmark_pages(zone),
1728                    low_wmark_pages(zone),
1729                    high_wmark_pages(zone),
1730                    zone->spanned_pages,
1731                    zone->present_pages,
1732                    zone_managed_pages(zone),
1733                    zone_cma_pages(zone));
1734 
1735         seq_printf(m,
1736                    "\n        protection: (%ld",
1737                    zone->lowmem_reserve[0]);
1738         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1739                 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1740         seq_putc(m, ')');
1741 
1742         /* If unpopulated, no other information is useful */
1743         if (!populated_zone(zone)) {
1744                 seq_putc(m, '\n');
1745                 return;
1746         }
1747 
1748         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1749                 seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1750                            zone_page_state(zone, i));
1751 
1752 #ifdef CONFIG_NUMA
1753         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1754                 seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1755                            zone_numa_event_state(zone, i));
1756 #endif
1757 
1758         seq_printf(m, "\n  pagesets");
1759         for_each_online_cpu(i) {
1760                 struct per_cpu_pages *pcp;
1761                 struct per_cpu_zonestat __maybe_unused *pzstats;
1762 
1763                 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1764                 seq_printf(m,
1765                            "\n    cpu: %i"
1766                            "\n              count: %i"
1767                            "\n              high:  %i"
1768                            "\n              batch: %i",
1769                            i,
1770                            pcp->count,
1771                            pcp->high,
1772                            pcp->batch);
1773 #ifdef CONFIG_SMP
1774                 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1775                 seq_printf(m, "\n  vm stats threshold: %d",
1776                                 pzstats->stat_threshold);
1777 #endif
1778         }
1779         seq_printf(m,
1780                    "\n  node_unreclaimable:  %u"
1781                    "\n  start_pfn:           %lu",
1782                    pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1783                    zone->zone_start_pfn);
1784         seq_putc(m, '\n');
1785 }
1786 
1787 /*
1788  * Output information about zones in @pgdat.  All zones are printed regardless
1789  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1790  * set of all zones and userspace would not be aware of such zones if they are
1791  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1792  */
1793 static int zoneinfo_show(struct seq_file *m, void *arg)
1794 {
1795         pg_data_t *pgdat = (pg_data_t *)arg;
1796         walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1797         return 0;
1798 }
1799 
1800 static const struct seq_operations zoneinfo_op = {
1801         .start  = frag_start, /* iterate over all zones. The same as in
1802                                * fragmentation. */
1803         .next   = frag_next,
1804         .stop   = frag_stop,
1805         .show   = zoneinfo_show,
1806 };
1807 
1808 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1809                          NR_VM_NUMA_EVENT_ITEMS + \
1810                          NR_VM_NODE_STAT_ITEMS + \
1811                          NR_VM_STAT_ITEMS + \
1812                          (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1813                           NR_VM_EVENT_ITEMS : 0))
1814 
1815 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1816 {
1817         unsigned long *v;
1818         int i;
1819 
1820         if (*pos >= NR_VMSTAT_ITEMS)
1821                 return NULL;
1822 
1823         BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1824         fold_vm_numa_events();
1825         v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1826         m->private = v;
1827         if (!v)
1828                 return ERR_PTR(-ENOMEM);
1829         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1830                 v[i] = global_zone_page_state(i);
1831         v += NR_VM_ZONE_STAT_ITEMS;
1832 
1833 #ifdef CONFIG_NUMA
1834         for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1835                 v[i] = global_numa_event_state(i);
1836         v += NR_VM_NUMA_EVENT_ITEMS;
1837 #endif
1838 
1839         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1840                 v[i] = global_node_page_state_pages(i);
1841                 if (vmstat_item_print_in_thp(i))
1842                         v[i] /= HPAGE_PMD_NR;
1843         }
1844         v += NR_VM_NODE_STAT_ITEMS;
1845 
1846         global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1847                             v + NR_DIRTY_THRESHOLD);
1848         v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages);
1849         v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages);
1850         v += NR_VM_STAT_ITEMS;
1851 
1852 #ifdef CONFIG_VM_EVENT_COUNTERS
1853         all_vm_events(v);
1854         v[PGPGIN] /= 2;         /* sectors -> kbytes */
1855         v[PGPGOUT] /= 2;
1856 #endif
1857         return (unsigned long *)m->private + *pos;
1858 }
1859 
1860 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1861 {
1862         (*pos)++;
1863         if (*pos >= NR_VMSTAT_ITEMS)
1864                 return NULL;
1865         return (unsigned long *)m->private + *pos;
1866 }
1867 
1868 static int vmstat_show(struct seq_file *m, void *arg)
1869 {
1870         unsigned long *l = arg;
1871         unsigned long off = l - (unsigned long *)m->private;
1872 
1873         seq_puts(m, vmstat_text[off]);
1874         seq_put_decimal_ull(m, " ", *l);
1875         seq_putc(m, '\n');
1876 
1877         if (off == NR_VMSTAT_ITEMS - 1) {
1878                 /*
1879                  * We've come to the end - add any deprecated counters to avoid
1880                  * breaking userspace which might depend on them being present.
1881                  */
1882                 seq_puts(m, "nr_unstable 0\n");
1883         }
1884         return 0;
1885 }
1886 
1887 static void vmstat_stop(struct seq_file *m, void *arg)
1888 {
1889         kfree(m->private);
1890         m->private = NULL;
1891 }
1892 
1893 static const struct seq_operations vmstat_op = {
1894         .start  = vmstat_start,
1895         .next   = vmstat_next,
1896         .stop   = vmstat_stop,
1897         .show   = vmstat_show,
1898 };
1899 #endif /* CONFIG_PROC_FS */
1900 
1901 #ifdef CONFIG_SMP
1902 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1903 int sysctl_stat_interval __read_mostly = HZ;
1904 
1905 #ifdef CONFIG_PROC_FS
1906 static void refresh_vm_stats(struct work_struct *work)
1907 {
1908         refresh_cpu_vm_stats(true);
1909 }
1910 
1911 int vmstat_refresh(const struct ctl_table *table, int write,
1912                    void *buffer, size_t *lenp, loff_t *ppos)
1913 {
1914         long val;
1915         int err;
1916         int i;
1917 
1918         /*
1919          * The regular update, every sysctl_stat_interval, may come later
1920          * than expected: leaving a significant amount in per_cpu buckets.
1921          * This is particularly misleading when checking a quantity of HUGE
1922          * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1923          * which can equally be echo'ed to or cat'ted from (by root),
1924          * can be used to update the stats just before reading them.
1925          *
1926          * Oh, and since global_zone_page_state() etc. are so careful to hide
1927          * transiently negative values, report an error here if any of
1928          * the stats is negative, so we know to go looking for imbalance.
1929          */
1930         err = schedule_on_each_cpu(refresh_vm_stats);
1931         if (err)
1932                 return err;
1933         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1934                 /*
1935                  * Skip checking stats known to go negative occasionally.
1936                  */
1937                 switch (i) {
1938                 case NR_ZONE_WRITE_PENDING:
1939                 case NR_FREE_CMA_PAGES:
1940                         continue;
1941                 }
1942                 val = atomic_long_read(&vm_zone_stat[i]);
1943                 if (val < 0) {
1944                         pr_warn("%s: %s %ld\n",
1945                                 __func__, zone_stat_name(i), val);
1946                 }
1947         }
1948         for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1949                 /*
1950                  * Skip checking stats known to go negative occasionally.
1951                  */
1952                 switch (i) {
1953                 case NR_WRITEBACK:
1954                         continue;
1955                 }
1956                 val = atomic_long_read(&vm_node_stat[i]);
1957                 if (val < 0) {
1958                         pr_warn("%s: %s %ld\n",
1959                                 __func__, node_stat_name(i), val);
1960                 }
1961         }
1962         if (write)
1963                 *ppos += *lenp;
1964         else
1965                 *lenp = 0;
1966         return 0;
1967 }
1968 #endif /* CONFIG_PROC_FS */
1969 
1970 static void vmstat_update(struct work_struct *w)
1971 {
1972         if (refresh_cpu_vm_stats(true)) {
1973                 /*
1974                  * Counters were updated so we expect more updates
1975                  * to occur in the future. Keep on running the
1976                  * update worker thread.
1977                  */
1978                 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1979                                 this_cpu_ptr(&vmstat_work),
1980                                 round_jiffies_relative(sysctl_stat_interval));
1981         }
1982 }
1983 
1984 /*
1985  * Check if the diffs for a certain cpu indicate that
1986  * an update is needed.
1987  */
1988 static bool need_update(int cpu)
1989 {
1990         pg_data_t *last_pgdat = NULL;
1991         struct zone *zone;
1992 
1993         for_each_populated_zone(zone) {
1994                 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1995                 struct per_cpu_nodestat *n;
1996 
1997                 /*
1998                  * The fast way of checking if there are any vmstat diffs.
1999                  */
2000                 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
2001                         return true;
2002 
2003                 if (last_pgdat == zone->zone_pgdat)
2004                         continue;
2005                 last_pgdat = zone->zone_pgdat;
2006                 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2007                 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2008                         return true;
2009         }
2010         return false;
2011 }
2012 
2013 /*
2014  * Switch off vmstat processing and then fold all the remaining differentials
2015  * until the diffs stay at zero. The function is used by NOHZ and can only be
2016  * invoked when tick processing is not active.
2017  */
2018 void quiet_vmstat(void)
2019 {
2020         if (system_state != SYSTEM_RUNNING)
2021                 return;
2022 
2023         if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2024                 return;
2025 
2026         if (!need_update(smp_processor_id()))
2027                 return;
2028 
2029         /*
2030          * Just refresh counters and do not care about the pending delayed
2031          * vmstat_update. It doesn't fire that often to matter and canceling
2032          * it would be too expensive from this path.
2033          * vmstat_shepherd will take care about that for us.
2034          */
2035         refresh_cpu_vm_stats(false);
2036 }
2037 
2038 /*
2039  * Shepherd worker thread that checks the
2040  * differentials of processors that have their worker
2041  * threads for vm statistics updates disabled because of
2042  * inactivity.
2043  */
2044 static void vmstat_shepherd(struct work_struct *w);
2045 
2046 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2047 
2048 static void vmstat_shepherd(struct work_struct *w)
2049 {
2050         int cpu;
2051 
2052         cpus_read_lock();
2053         /* Check processors whose vmstat worker threads have been disabled */
2054         for_each_online_cpu(cpu) {
2055                 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2056 
2057                 /*
2058                  * In kernel users of vmstat counters either require the precise value and
2059                  * they are using zone_page_state_snapshot interface or they can live with
2060                  * an imprecision as the regular flushing can happen at arbitrary time and
2061                  * cumulative error can grow (see calculate_normal_threshold).
2062                  *
2063                  * From that POV the regular flushing can be postponed for CPUs that have
2064                  * been isolated from the kernel interference without critical
2065                  * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2066                  * for all isolated CPUs to avoid interference with the isolated workload.
2067                  */
2068                 if (cpu_is_isolated(cpu))
2069                         continue;
2070 
2071                 if (!delayed_work_pending(dw) && need_update(cpu))
2072                         queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2073 
2074                 cond_resched();
2075         }
2076         cpus_read_unlock();
2077 
2078         schedule_delayed_work(&shepherd,
2079                 round_jiffies_relative(sysctl_stat_interval));
2080 }
2081 
2082 static void __init start_shepherd_timer(void)
2083 {
2084         int cpu;
2085 
2086         for_each_possible_cpu(cpu)
2087                 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2088                         vmstat_update);
2089 
2090         schedule_delayed_work(&shepherd,
2091                 round_jiffies_relative(sysctl_stat_interval));
2092 }
2093 
2094 static void __init init_cpu_node_state(void)
2095 {
2096         int node;
2097 
2098         for_each_online_node(node) {
2099                 if (!cpumask_empty(cpumask_of_node(node)))
2100                         node_set_state(node, N_CPU);
2101         }
2102 }
2103 
2104 static int vmstat_cpu_online(unsigned int cpu)
2105 {
2106         refresh_zone_stat_thresholds();
2107 
2108         if (!node_state(cpu_to_node(cpu), N_CPU)) {
2109                 node_set_state(cpu_to_node(cpu), N_CPU);
2110         }
2111 
2112         return 0;
2113 }
2114 
2115 static int vmstat_cpu_down_prep(unsigned int cpu)
2116 {
2117         cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2118         return 0;
2119 }
2120 
2121 static int vmstat_cpu_dead(unsigned int cpu)
2122 {
2123         const struct cpumask *node_cpus;
2124         int node;
2125 
2126         node = cpu_to_node(cpu);
2127 
2128         refresh_zone_stat_thresholds();
2129         node_cpus = cpumask_of_node(node);
2130         if (!cpumask_empty(node_cpus))
2131                 return 0;
2132 
2133         node_clear_state(node, N_CPU);
2134 
2135         return 0;
2136 }
2137 
2138 #endif
2139 
2140 struct workqueue_struct *mm_percpu_wq;
2141 
2142 void __init init_mm_internals(void)
2143 {
2144         int ret __maybe_unused;
2145 
2146         mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2147 
2148 #ifdef CONFIG_SMP
2149         ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2150                                         NULL, vmstat_cpu_dead);
2151         if (ret < 0)
2152                 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2153 
2154         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2155                                         vmstat_cpu_online,
2156                                         vmstat_cpu_down_prep);
2157         if (ret < 0)
2158                 pr_err("vmstat: failed to register 'online' hotplug state\n");
2159 
2160         cpus_read_lock();
2161         init_cpu_node_state();
2162         cpus_read_unlock();
2163 
2164         start_shepherd_timer();
2165 #endif
2166 #ifdef CONFIG_PROC_FS
2167         proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2168         proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2169         proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2170         proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2171 #endif
2172 }
2173 
2174 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2175 
2176 /*
2177  * Return an index indicating how much of the available free memory is
2178  * unusable for an allocation of the requested size.
2179  */
2180 static int unusable_free_index(unsigned int order,
2181                                 struct contig_page_info *info)
2182 {
2183         /* No free memory is interpreted as all free memory is unusable */
2184         if (info->free_pages == 0)
2185                 return 1000;
2186 
2187         /*
2188          * Index should be a value between 0 and 1. Return a value to 3
2189          * decimal places.
2190          *
2191          * 0 => no fragmentation
2192          * 1 => high fragmentation
2193          */
2194         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2195 
2196 }
2197 
2198 static void unusable_show_print(struct seq_file *m,
2199                                         pg_data_t *pgdat, struct zone *zone)
2200 {
2201         unsigned int order;
2202         int index;
2203         struct contig_page_info info;
2204 
2205         seq_printf(m, "Node %d, zone %8s ",
2206                                 pgdat->node_id,
2207                                 zone->name);
2208         for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2209                 fill_contig_page_info(zone, order, &info);
2210                 index = unusable_free_index(order, &info);
2211                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2212         }
2213 
2214         seq_putc(m, '\n');
2215 }
2216 
2217 /*
2218  * Display unusable free space index
2219  *
2220  * The unusable free space index measures how much of the available free
2221  * memory cannot be used to satisfy an allocation of a given size and is a
2222  * value between 0 and 1. The higher the value, the more of free memory is
2223  * unusable and by implication, the worse the external fragmentation is. This
2224  * can be expressed as a percentage by multiplying by 100.
2225  */
2226 static int unusable_show(struct seq_file *m, void *arg)
2227 {
2228         pg_data_t *pgdat = (pg_data_t *)arg;
2229 
2230         /* check memoryless node */
2231         if (!node_state(pgdat->node_id, N_MEMORY))
2232                 return 0;
2233 
2234         walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2235 
2236         return 0;
2237 }
2238 
2239 static const struct seq_operations unusable_sops = {
2240         .start  = frag_start,
2241         .next   = frag_next,
2242         .stop   = frag_stop,
2243         .show   = unusable_show,
2244 };
2245 
2246 DEFINE_SEQ_ATTRIBUTE(unusable);
2247 
2248 static void extfrag_show_print(struct seq_file *m,
2249                                         pg_data_t *pgdat, struct zone *zone)
2250 {
2251         unsigned int order;
2252         int index;
2253 
2254         /* Alloc on stack as interrupts are disabled for zone walk */
2255         struct contig_page_info info;
2256 
2257         seq_printf(m, "Node %d, zone %8s ",
2258                                 pgdat->node_id,
2259                                 zone->name);
2260         for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2261                 fill_contig_page_info(zone, order, &info);
2262                 index = __fragmentation_index(order, &info);
2263                 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2264         }
2265 
2266         seq_putc(m, '\n');
2267 }
2268 
2269 /*
2270  * Display fragmentation index for orders that allocations would fail for
2271  */
2272 static int extfrag_show(struct seq_file *m, void *arg)
2273 {
2274         pg_data_t *pgdat = (pg_data_t *)arg;
2275 
2276         walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2277 
2278         return 0;
2279 }
2280 
2281 static const struct seq_operations extfrag_sops = {
2282         .start  = frag_start,
2283         .next   = frag_next,
2284         .stop   = frag_stop,
2285         .show   = extfrag_show,
2286 };
2287 
2288 DEFINE_SEQ_ATTRIBUTE(extfrag);
2289 
2290 static int __init extfrag_debug_init(void)
2291 {
2292         struct dentry *extfrag_debug_root;
2293 
2294         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2295 
2296         debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2297                             &unusable_fops);
2298 
2299         debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2300                             &extfrag_fops);
2301 
2302         return 0;
2303 }
2304 
2305 module_init(extfrag_debug_init);
2306 
2307 #endif
2308 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php