~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/workingset.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Workingset detection
  4  *
  5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
  6  */
  7 
  8 #include <linux/memcontrol.h>
  9 #include <linux/mm_inline.h>
 10 #include <linux/writeback.h>
 11 #include <linux/shmem_fs.h>
 12 #include <linux/pagemap.h>
 13 #include <linux/atomic.h>
 14 #include <linux/module.h>
 15 #include <linux/swap.h>
 16 #include <linux/dax.h>
 17 #include <linux/fs.h>
 18 #include <linux/mm.h>
 19 #include "internal.h"
 20 
 21 /*
 22  *              Double CLOCK lists
 23  *
 24  * Per node, two clock lists are maintained for file pages: the
 25  * inactive and the active list.  Freshly faulted pages start out at
 26  * the head of the inactive list and page reclaim scans pages from the
 27  * tail.  Pages that are accessed multiple times on the inactive list
 28  * are promoted to the active list, to protect them from reclaim,
 29  * whereas active pages are demoted to the inactive list when the
 30  * active list grows too big.
 31  *
 32  *   fault ------------------------+
 33  *                                 |
 34  *              +--------------+   |            +-------------+
 35  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
 36  *              +--------------+                +-------------+    |
 37  *                     |                                           |
 38  *                     +-------------- promotion ------------------+
 39  *
 40  *
 41  *              Access frequency and refault distance
 42  *
 43  * A workload is thrashing when its pages are frequently used but they
 44  * are evicted from the inactive list every time before another access
 45  * would have promoted them to the active list.
 46  *
 47  * In cases where the average access distance between thrashing pages
 48  * is bigger than the size of memory there is nothing that can be
 49  * done - the thrashing set could never fit into memory under any
 50  * circumstance.
 51  *
 52  * However, the average access distance could be bigger than the
 53  * inactive list, yet smaller than the size of memory.  In this case,
 54  * the set could fit into memory if it weren't for the currently
 55  * active pages - which may be used more, hopefully less frequently:
 56  *
 57  *      +-memory available to cache-+
 58  *      |                           |
 59  *      +-inactive------+-active----+
 60  *  a b | c d e f g h i | J K L M N |
 61  *      +---------------+-----------+
 62  *
 63  * It is prohibitively expensive to accurately track access frequency
 64  * of pages.  But a reasonable approximation can be made to measure
 65  * thrashing on the inactive list, after which refaulting pages can be
 66  * activated optimistically to compete with the existing active pages.
 67  *
 68  * Approximating inactive page access frequency - Observations:
 69  *
 70  * 1. When a page is accessed for the first time, it is added to the
 71  *    head of the inactive list, slides every existing inactive page
 72  *    towards the tail by one slot, and pushes the current tail page
 73  *    out of memory.
 74  *
 75  * 2. When a page is accessed for the second time, it is promoted to
 76  *    the active list, shrinking the inactive list by one slot.  This
 77  *    also slides all inactive pages that were faulted into the cache
 78  *    more recently than the activated page towards the tail of the
 79  *    inactive list.
 80  *
 81  * Thus:
 82  *
 83  * 1. The sum of evictions and activations between any two points in
 84  *    time indicate the minimum number of inactive pages accessed in
 85  *    between.
 86  *
 87  * 2. Moving one inactive page N page slots towards the tail of the
 88  *    list requires at least N inactive page accesses.
 89  *
 90  * Combining these:
 91  *
 92  * 1. When a page is finally evicted from memory, the number of
 93  *    inactive pages accessed while the page was in cache is at least
 94  *    the number of page slots on the inactive list.
 95  *
 96  * 2. In addition, measuring the sum of evictions and activations (E)
 97  *    at the time of a page's eviction, and comparing it to another
 98  *    reading (R) at the time the page faults back into memory tells
 99  *    the minimum number of accesses while the page was not cached.
100  *    This is called the refault distance.
101  *
102  * Because the first access of the page was the fault and the second
103  * access the refault, we combine the in-cache distance with the
104  * out-of-cache distance to get the complete minimum access distance
105  * of this page:
106  *
107  *      NR_inactive + (R - E)
108  *
109  * And knowing the minimum access distance of a page, we can easily
110  * tell if the page would be able to stay in cache assuming all page
111  * slots in the cache were available:
112  *
113  *   NR_inactive + (R - E) <= NR_inactive + NR_active
114  *
115  * If we have swap we should consider about NR_inactive_anon and
116  * NR_active_anon, so for page cache and anonymous respectively:
117  *
118  *   NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file
119  *   + NR_inactive_anon + NR_active_anon
120  *
121  *   NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon
122  *   + NR_inactive_file + NR_active_file
123  *
124  * Which can be further simplified to:
125  *
126  *   (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon
127  *
128  *   (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file
129  *
130  * Put into words, the refault distance (out-of-cache) can be seen as
131  * a deficit in inactive list space (in-cache).  If the inactive list
132  * had (R - E) more page slots, the page would not have been evicted
133  * in between accesses, but activated instead.  And on a full system,
134  * the only thing eating into inactive list space is active pages.
135  *
136  *
137  *              Refaulting inactive pages
138  *
139  * All that is known about the active list is that the pages have been
140  * accessed more than once in the past.  This means that at any given
141  * time there is actually a good chance that pages on the active list
142  * are no longer in active use.
143  *
144  * So when a refault distance of (R - E) is observed and there are at
145  * least (R - E) pages in the userspace workingset, the refaulting page
146  * is activated optimistically in the hope that (R - E) pages are actually
147  * used less frequently than the refaulting page - or even not used at
148  * all anymore.
149  *
150  * That means if inactive cache is refaulting with a suitable refault
151  * distance, we assume the cache workingset is transitioning and put
152  * pressure on the current workingset.
153  *
154  * If this is wrong and demotion kicks in, the pages which are truly
155  * used more frequently will be reactivated while the less frequently
156  * used once will be evicted from memory.
157  *
158  * But if this is right, the stale pages will be pushed out of memory
159  * and the used pages get to stay in cache.
160  *
161  *              Refaulting active pages
162  *
163  * If on the other hand the refaulting pages have recently been
164  * deactivated, it means that the active list is no longer protecting
165  * actively used cache from reclaim. The cache is NOT transitioning to
166  * a different workingset; the existing workingset is thrashing in the
167  * space allocated to the page cache.
168  *
169  *
170  *              Implementation
171  *
172  * For each node's LRU lists, a counter for inactive evictions and
173  * activations is maintained (node->nonresident_age).
174  *
175  * On eviction, a snapshot of this counter (along with some bits to
176  * identify the node) is stored in the now empty page cache
177  * slot of the evicted page.  This is called a shadow entry.
178  *
179  * On cache misses for which there are shadow entries, an eligible
180  * refault distance will immediately activate the refaulting page.
181  */
182 
183 #define WORKINGSET_SHIFT 1
184 #define EVICTION_SHIFT  ((BITS_PER_LONG - BITS_PER_XA_VALUE) +  \
185                          WORKINGSET_SHIFT + NODES_SHIFT + \
186                          MEM_CGROUP_ID_SHIFT)
187 #define EVICTION_MASK   (~0UL >> EVICTION_SHIFT)
188 
189 /*
190  * Eviction timestamps need to be able to cover the full range of
191  * actionable refaults. However, bits are tight in the xarray
192  * entry, and after storing the identifier for the lruvec there might
193  * not be enough left to represent every single actionable refault. In
194  * that case, we have to sacrifice granularity for distance, and group
195  * evictions into coarser buckets by shaving off lower timestamp bits.
196  */
197 static unsigned int bucket_order __read_mostly;
198 
199 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
200                          bool workingset)
201 {
202         eviction &= EVICTION_MASK;
203         eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
204         eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
205         eviction = (eviction << WORKINGSET_SHIFT) | workingset;
206 
207         return xa_mk_value(eviction);
208 }
209 
210 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
211                           unsigned long *evictionp, bool *workingsetp)
212 {
213         unsigned long entry = xa_to_value(shadow);
214         int memcgid, nid;
215         bool workingset;
216 
217         workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
218         entry >>= WORKINGSET_SHIFT;
219         nid = entry & ((1UL << NODES_SHIFT) - 1);
220         entry >>= NODES_SHIFT;
221         memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
222         entry >>= MEM_CGROUP_ID_SHIFT;
223 
224         *memcgidp = memcgid;
225         *pgdat = NODE_DATA(nid);
226         *evictionp = entry;
227         *workingsetp = workingset;
228 }
229 
230 #ifdef CONFIG_LRU_GEN
231 
232 static void *lru_gen_eviction(struct folio *folio)
233 {
234         int hist;
235         unsigned long token;
236         unsigned long min_seq;
237         struct lruvec *lruvec;
238         struct lru_gen_folio *lrugen;
239         int type = folio_is_file_lru(folio);
240         int delta = folio_nr_pages(folio);
241         int refs = folio_lru_refs(folio);
242         int tier = lru_tier_from_refs(refs);
243         struct mem_cgroup *memcg = folio_memcg(folio);
244         struct pglist_data *pgdat = folio_pgdat(folio);
245 
246         BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
247 
248         lruvec = mem_cgroup_lruvec(memcg, pgdat);
249         lrugen = &lruvec->lrugen;
250         min_seq = READ_ONCE(lrugen->min_seq[type]);
251         token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
252 
253         hist = lru_hist_from_seq(min_seq);
254         atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
255 
256         return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs);
257 }
258 
259 /*
260  * Tests if the shadow entry is for a folio that was recently evicted.
261  * Fills in @lruvec, @token, @workingset with the values unpacked from shadow.
262  */
263 static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
264                                 unsigned long *token, bool *workingset)
265 {
266         int memcg_id;
267         unsigned long min_seq;
268         struct mem_cgroup *memcg;
269         struct pglist_data *pgdat;
270 
271         unpack_shadow(shadow, &memcg_id, &pgdat, token, workingset);
272 
273         memcg = mem_cgroup_from_id(memcg_id);
274         *lruvec = mem_cgroup_lruvec(memcg, pgdat);
275 
276         min_seq = READ_ONCE((*lruvec)->lrugen.min_seq[file]);
277         return (*token >> LRU_REFS_WIDTH) == (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH));
278 }
279 
280 static void lru_gen_refault(struct folio *folio, void *shadow)
281 {
282         bool recent;
283         int hist, tier, refs;
284         bool workingset;
285         unsigned long token;
286         struct lruvec *lruvec;
287         struct lru_gen_folio *lrugen;
288         int type = folio_is_file_lru(folio);
289         int delta = folio_nr_pages(folio);
290 
291         rcu_read_lock();
292 
293         recent = lru_gen_test_recent(shadow, type, &lruvec, &token, &workingset);
294         if (lruvec != folio_lruvec(folio))
295                 goto unlock;
296 
297         mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
298 
299         if (!recent)
300                 goto unlock;
301 
302         lrugen = &lruvec->lrugen;
303 
304         hist = lru_hist_from_seq(READ_ONCE(lrugen->min_seq[type]));
305         /* see the comment in folio_lru_refs() */
306         refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset;
307         tier = lru_tier_from_refs(refs);
308 
309         atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
310         mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
311 
312         /*
313          * Count the following two cases as stalls:
314          * 1. For pages accessed through page tables, hotter pages pushed out
315          *    hot pages which refaulted immediately.
316          * 2. For pages accessed multiple times through file descriptors,
317          *    they would have been protected by sort_folio().
318          */
319         if (lru_gen_in_fault() || refs >= BIT(LRU_REFS_WIDTH) - 1) {
320                 set_mask_bits(&folio->flags, 0, LRU_REFS_MASK | BIT(PG_workingset));
321                 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
322         }
323 unlock:
324         rcu_read_unlock();
325 }
326 
327 #else /* !CONFIG_LRU_GEN */
328 
329 static void *lru_gen_eviction(struct folio *folio)
330 {
331         return NULL;
332 }
333 
334 static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
335                                 unsigned long *token, bool *workingset)
336 {
337         return false;
338 }
339 
340 static void lru_gen_refault(struct folio *folio, void *shadow)
341 {
342 }
343 
344 #endif /* CONFIG_LRU_GEN */
345 
346 /**
347  * workingset_age_nonresident - age non-resident entries as LRU ages
348  * @lruvec: the lruvec that was aged
349  * @nr_pages: the number of pages to count
350  *
351  * As in-memory pages are aged, non-resident pages need to be aged as
352  * well, in order for the refault distances later on to be comparable
353  * to the in-memory dimensions. This function allows reclaim and LRU
354  * operations to drive the non-resident aging along in parallel.
355  */
356 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
357 {
358         /*
359          * Reclaiming a cgroup means reclaiming all its children in a
360          * round-robin fashion. That means that each cgroup has an LRU
361          * order that is composed of the LRU orders of its child
362          * cgroups; and every page has an LRU position not just in the
363          * cgroup that owns it, but in all of that group's ancestors.
364          *
365          * So when the physical inactive list of a leaf cgroup ages,
366          * the virtual inactive lists of all its parents, including
367          * the root cgroup's, age as well.
368          */
369         do {
370                 atomic_long_add(nr_pages, &lruvec->nonresident_age);
371         } while ((lruvec = parent_lruvec(lruvec)));
372 }
373 
374 /**
375  * workingset_eviction - note the eviction of a folio from memory
376  * @target_memcg: the cgroup that is causing the reclaim
377  * @folio: the folio being evicted
378  *
379  * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
380  * of the evicted @folio so that a later refault can be detected.
381  */
382 void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
383 {
384         struct pglist_data *pgdat = folio_pgdat(folio);
385         unsigned long eviction;
386         struct lruvec *lruvec;
387         int memcgid;
388 
389         /* Folio is fully exclusive and pins folio's memory cgroup pointer */
390         VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
391         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
392         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
393 
394         if (lru_gen_enabled())
395                 return lru_gen_eviction(folio);
396 
397         lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
398         /* XXX: target_memcg can be NULL, go through lruvec */
399         memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
400         eviction = atomic_long_read(&lruvec->nonresident_age);
401         eviction >>= bucket_order;
402         workingset_age_nonresident(lruvec, folio_nr_pages(folio));
403         return pack_shadow(memcgid, pgdat, eviction,
404                                 folio_test_workingset(folio));
405 }
406 
407 /**
408  * workingset_test_recent - tests if the shadow entry is for a folio that was
409  * recently evicted. Also fills in @workingset with the value unpacked from
410  * shadow.
411  * @shadow: the shadow entry to be tested.
412  * @file: whether the corresponding folio is from the file lru.
413  * @workingset: where the workingset value unpacked from shadow should
414  * be stored.
415  * @flush: whether to flush cgroup rstat.
416  *
417  * Return: true if the shadow is for a recently evicted folio; false otherwise.
418  */
419 bool workingset_test_recent(void *shadow, bool file, bool *workingset,
420                                 bool flush)
421 {
422         struct mem_cgroup *eviction_memcg;
423         struct lruvec *eviction_lruvec;
424         unsigned long refault_distance;
425         unsigned long workingset_size;
426         unsigned long refault;
427         int memcgid;
428         struct pglist_data *pgdat;
429         unsigned long eviction;
430 
431         rcu_read_lock();
432 
433         if (lru_gen_enabled()) {
434                 bool recent = lru_gen_test_recent(shadow, file,
435                                 &eviction_lruvec, &eviction, workingset);
436 
437                 rcu_read_unlock();
438                 return recent;
439         }
440 
441 
442         unpack_shadow(shadow, &memcgid, &pgdat, &eviction, workingset);
443         eviction <<= bucket_order;
444 
445         /*
446          * Look up the memcg associated with the stored ID. It might
447          * have been deleted since the folio's eviction.
448          *
449          * Note that in rare events the ID could have been recycled
450          * for a new cgroup that refaults a shared folio. This is
451          * impossible to tell from the available data. However, this
452          * should be a rare and limited disturbance, and activations
453          * are always speculative anyway. Ultimately, it's the aging
454          * algorithm's job to shake out the minimum access frequency
455          * for the active cache.
456          *
457          * XXX: On !CONFIG_MEMCG, this will always return NULL; it
458          * would be better if the root_mem_cgroup existed in all
459          * configurations instead.
460          */
461         eviction_memcg = mem_cgroup_from_id(memcgid);
462         if (!mem_cgroup_disabled() &&
463             (!eviction_memcg || !mem_cgroup_tryget(eviction_memcg))) {
464                 rcu_read_unlock();
465                 return false;
466         }
467 
468         rcu_read_unlock();
469 
470         /*
471          * Flush stats (and potentially sleep) outside the RCU read section.
472          *
473          * Note that workingset_test_recent() itself might be called in RCU read
474          * section (for e.g, in cachestat) - these callers need to skip flushing
475          * stats (via the flush argument).
476          *
477          * XXX: With per-memcg flushing and thresholding, is ratelimiting
478          * still needed here?
479          */
480         if (flush)
481                 mem_cgroup_flush_stats_ratelimited(eviction_memcg);
482 
483         eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
484         refault = atomic_long_read(&eviction_lruvec->nonresident_age);
485 
486         /*
487          * Calculate the refault distance
488          *
489          * The unsigned subtraction here gives an accurate distance
490          * across nonresident_age overflows in most cases. There is a
491          * special case: usually, shadow entries have a short lifetime
492          * and are either refaulted or reclaimed along with the inode
493          * before they get too old.  But it is not impossible for the
494          * nonresident_age to lap a shadow entry in the field, which
495          * can then result in a false small refault distance, leading
496          * to a false activation should this old entry actually
497          * refault again.  However, earlier kernels used to deactivate
498          * unconditionally with *every* reclaim invocation for the
499          * longest time, so the occasional inappropriate activation
500          * leading to pressure on the active list is not a problem.
501          */
502         refault_distance = (refault - eviction) & EVICTION_MASK;
503 
504         /*
505          * Compare the distance to the existing workingset size. We
506          * don't activate pages that couldn't stay resident even if
507          * all the memory was available to the workingset. Whether
508          * workingset competition needs to consider anon or not depends
509          * on having free swap space.
510          */
511         workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
512         if (!file) {
513                 workingset_size += lruvec_page_state(eviction_lruvec,
514                                                      NR_INACTIVE_FILE);
515         }
516         if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) {
517                 workingset_size += lruvec_page_state(eviction_lruvec,
518                                                      NR_ACTIVE_ANON);
519                 if (file) {
520                         workingset_size += lruvec_page_state(eviction_lruvec,
521                                                      NR_INACTIVE_ANON);
522                 }
523         }
524 
525         mem_cgroup_put(eviction_memcg);
526         return refault_distance <= workingset_size;
527 }
528 
529 /**
530  * workingset_refault - Evaluate the refault of a previously evicted folio.
531  * @folio: The freshly allocated replacement folio.
532  * @shadow: Shadow entry of the evicted folio.
533  *
534  * Calculates and evaluates the refault distance of the previously
535  * evicted folio in the context of the node and the memcg whose memory
536  * pressure caused the eviction.
537  */
538 void workingset_refault(struct folio *folio, void *shadow)
539 {
540         bool file = folio_is_file_lru(folio);
541         struct pglist_data *pgdat;
542         struct mem_cgroup *memcg;
543         struct lruvec *lruvec;
544         bool workingset;
545         long nr;
546 
547         if (lru_gen_enabled()) {
548                 lru_gen_refault(folio, shadow);
549                 return;
550         }
551 
552         /*
553          * The activation decision for this folio is made at the level
554          * where the eviction occurred, as that is where the LRU order
555          * during folio reclaim is being determined.
556          *
557          * However, the cgroup that will own the folio is the one that
558          * is actually experiencing the refault event. Make sure the folio is
559          * locked to guarantee folio_memcg() stability throughout.
560          */
561         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
562         nr = folio_nr_pages(folio);
563         memcg = folio_memcg(folio);
564         pgdat = folio_pgdat(folio);
565         lruvec = mem_cgroup_lruvec(memcg, pgdat);
566 
567         mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
568 
569         if (!workingset_test_recent(shadow, file, &workingset, true))
570                 return;
571 
572         folio_set_active(folio);
573         workingset_age_nonresident(lruvec, nr);
574         mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
575 
576         /* Folio was active prior to eviction */
577         if (workingset) {
578                 folio_set_workingset(folio);
579                 /*
580                  * XXX: Move to folio_add_lru() when it supports new vs
581                  * putback
582                  */
583                 lru_note_cost_refault(folio);
584                 mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
585         }
586 }
587 
588 /**
589  * workingset_activation - note a page activation
590  * @folio: Folio that is being activated.
591  */
592 void workingset_activation(struct folio *folio)
593 {
594         struct mem_cgroup *memcg;
595 
596         rcu_read_lock();
597         /*
598          * Filter non-memcg pages here, e.g. unmap can call
599          * mark_page_accessed() on VDSO pages.
600          *
601          * XXX: See workingset_refault() - this should return
602          * root_mem_cgroup even for !CONFIG_MEMCG.
603          */
604         memcg = folio_memcg_rcu(folio);
605         if (!mem_cgroup_disabled() && !memcg)
606                 goto out;
607         workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
608 out:
609         rcu_read_unlock();
610 }
611 
612 /*
613  * Shadow entries reflect the share of the working set that does not
614  * fit into memory, so their number depends on the access pattern of
615  * the workload.  In most cases, they will refault or get reclaimed
616  * along with the inode, but a (malicious) workload that streams
617  * through files with a total size several times that of available
618  * memory, while preventing the inodes from being reclaimed, can
619  * create excessive amounts of shadow nodes.  To keep a lid on this,
620  * track shadow nodes and reclaim them when they grow way past the
621  * point where they would still be useful.
622  */
623 
624 struct list_lru shadow_nodes;
625 
626 void workingset_update_node(struct xa_node *node)
627 {
628         struct address_space *mapping;
629         struct page *page = virt_to_page(node);
630 
631         /*
632          * Track non-empty nodes that contain only shadow entries;
633          * unlink those that contain pages or are being freed.
634          *
635          * Avoid acquiring the list_lru lock when the nodes are
636          * already where they should be. The list_empty() test is safe
637          * as node->private_list is protected by the i_pages lock.
638          */
639         mapping = container_of(node->array, struct address_space, i_pages);
640         lockdep_assert_held(&mapping->i_pages.xa_lock);
641 
642         if (node->count && node->count == node->nr_values) {
643                 if (list_empty(&node->private_list)) {
644                         list_lru_add_obj(&shadow_nodes, &node->private_list);
645                         __inc_node_page_state(page, WORKINGSET_NODES);
646                 }
647         } else {
648                 if (!list_empty(&node->private_list)) {
649                         list_lru_del_obj(&shadow_nodes, &node->private_list);
650                         __dec_node_page_state(page, WORKINGSET_NODES);
651                 }
652         }
653 }
654 
655 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
656                                         struct shrink_control *sc)
657 {
658         unsigned long max_nodes;
659         unsigned long nodes;
660         unsigned long pages;
661 
662         nodes = list_lru_shrink_count(&shadow_nodes, sc);
663         if (!nodes)
664                 return SHRINK_EMPTY;
665 
666         /*
667          * Approximate a reasonable limit for the nodes
668          * containing shadow entries. We don't need to keep more
669          * shadow entries than possible pages on the active list,
670          * since refault distances bigger than that are dismissed.
671          *
672          * The size of the active list converges toward 100% of
673          * overall page cache as memory grows, with only a tiny
674          * inactive list. Assume the total cache size for that.
675          *
676          * Nodes might be sparsely populated, with only one shadow
677          * entry in the extreme case. Obviously, we cannot keep one
678          * node for every eligible shadow entry, so compromise on a
679          * worst-case density of 1/8th. Below that, not all eligible
680          * refaults can be detected anymore.
681          *
682          * On 64-bit with 7 xa_nodes per page and 64 slots
683          * each, this will reclaim shadow entries when they consume
684          * ~1.8% of available memory:
685          *
686          * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
687          */
688 #ifdef CONFIG_MEMCG
689         if (sc->memcg) {
690                 struct lruvec *lruvec;
691                 int i;
692 
693                 mem_cgroup_flush_stats_ratelimited(sc->memcg);
694                 lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
695                 for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
696                         pages += lruvec_page_state_local(lruvec,
697                                                          NR_LRU_BASE + i);
698                 pages += lruvec_page_state_local(
699                         lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
700                 pages += lruvec_page_state_local(
701                         lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
702         } else
703 #endif
704                 pages = node_present_pages(sc->nid);
705 
706         max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
707 
708         if (nodes <= max_nodes)
709                 return 0;
710         return nodes - max_nodes;
711 }
712 
713 static enum lru_status shadow_lru_isolate(struct list_head *item,
714                                           struct list_lru_one *lru,
715                                           spinlock_t *lru_lock,
716                                           void *arg) __must_hold(lru_lock)
717 {
718         struct xa_node *node = container_of(item, struct xa_node, private_list);
719         struct address_space *mapping;
720         int ret;
721 
722         /*
723          * Page cache insertions and deletions synchronously maintain
724          * the shadow node LRU under the i_pages lock and the
725          * lru_lock.  Because the page cache tree is emptied before
726          * the inode can be destroyed, holding the lru_lock pins any
727          * address_space that has nodes on the LRU.
728          *
729          * We can then safely transition to the i_pages lock to
730          * pin only the address_space of the particular node we want
731          * to reclaim, take the node off-LRU, and drop the lru_lock.
732          */
733 
734         mapping = container_of(node->array, struct address_space, i_pages);
735 
736         /* Coming from the list, invert the lock order */
737         if (!xa_trylock(&mapping->i_pages)) {
738                 spin_unlock_irq(lru_lock);
739                 ret = LRU_RETRY;
740                 goto out;
741         }
742 
743         /* For page cache we need to hold i_lock */
744         if (mapping->host != NULL) {
745                 if (!spin_trylock(&mapping->host->i_lock)) {
746                         xa_unlock(&mapping->i_pages);
747                         spin_unlock_irq(lru_lock);
748                         ret = LRU_RETRY;
749                         goto out;
750                 }
751         }
752 
753         list_lru_isolate(lru, item);
754         __dec_node_page_state(virt_to_page(node), WORKINGSET_NODES);
755 
756         spin_unlock(lru_lock);
757 
758         /*
759          * The nodes should only contain one or more shadow entries,
760          * no pages, so we expect to be able to remove them all and
761          * delete and free the empty node afterwards.
762          */
763         if (WARN_ON_ONCE(!node->nr_values))
764                 goto out_invalid;
765         if (WARN_ON_ONCE(node->count != node->nr_values))
766                 goto out_invalid;
767         xa_delete_node(node, workingset_update_node);
768         __inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
769 
770 out_invalid:
771         xa_unlock_irq(&mapping->i_pages);
772         if (mapping->host != NULL) {
773                 if (mapping_shrinkable(mapping))
774                         inode_add_lru(mapping->host);
775                 spin_unlock(&mapping->host->i_lock);
776         }
777         ret = LRU_REMOVED_RETRY;
778 out:
779         cond_resched();
780         spin_lock_irq(lru_lock);
781         return ret;
782 }
783 
784 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
785                                        struct shrink_control *sc)
786 {
787         /* list_lru lock nests inside the IRQ-safe i_pages lock */
788         return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
789                                         NULL);
790 }
791 
792 /*
793  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
794  * i_pages lock.
795  */
796 static struct lock_class_key shadow_nodes_key;
797 
798 static int __init workingset_init(void)
799 {
800         struct shrinker *workingset_shadow_shrinker;
801         unsigned int timestamp_bits;
802         unsigned int max_order;
803         int ret = -ENOMEM;
804 
805         BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
806         /*
807          * Calculate the eviction bucket size to cover the longest
808          * actionable refault distance, which is currently half of
809          * memory (totalram_pages/2). However, memory hotplug may add
810          * some more pages at runtime, so keep working with up to
811          * double the initial memory by using totalram_pages as-is.
812          */
813         timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
814         max_order = fls_long(totalram_pages() - 1);
815         if (max_order > timestamp_bits)
816                 bucket_order = max_order - timestamp_bits;
817         pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
818                timestamp_bits, max_order, bucket_order);
819 
820         workingset_shadow_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
821                                                     SHRINKER_MEMCG_AWARE,
822                                                     "mm-shadow");
823         if (!workingset_shadow_shrinker)
824                 goto err;
825 
826         ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
827                               workingset_shadow_shrinker);
828         if (ret)
829                 goto err_list_lru;
830 
831         workingset_shadow_shrinker->count_objects = count_shadow_nodes;
832         workingset_shadow_shrinker->scan_objects = scan_shadow_nodes;
833         /* ->count reports only fully expendable nodes */
834         workingset_shadow_shrinker->seeks = 0;
835 
836         shrinker_register(workingset_shadow_shrinker);
837         return 0;
838 err_list_lru:
839         shrinker_free(workingset_shadow_shrinker);
840 err:
841         return ret;
842 }
843 module_init(workingset_init);
844 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php