~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/mm/zsmalloc.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * zsmalloc memory allocator
  3  *
  4  * Copyright (C) 2011  Nitin Gupta
  5  * Copyright (C) 2012, 2013 Minchan Kim
  6  *
  7  * This code is released using a dual license strategy: BSD/GPL
  8  * You can choose the license that better fits your requirements.
  9  *
 10  * Released under the terms of 3-clause BSD License
 11  * Released under the terms of GNU General Public License Version 2.0
 12  */
 13 
 14 /*
 15  * Following is how we use various fields and flags of underlying
 16  * struct page(s) to form a zspage.
 17  *
 18  * Usage of struct page fields:
 19  *      page->private: points to zspage
 20  *      page->index: links together all component pages of a zspage
 21  *              For the huge page, this is always 0, so we use this field
 22  *              to store handle.
 23  *      page->page_type: PG_zsmalloc, lower 16 bit locate the first object
 24  *              offset in a subpage of a zspage
 25  *
 26  * Usage of struct page flags:
 27  *      PG_private: identifies the first component page
 28  *      PG_owner_priv_1: identifies the huge component page
 29  *
 30  */
 31 
 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 33 
 34 /*
 35  * lock ordering:
 36  *      page_lock
 37  *      pool->migrate_lock
 38  *      class->lock
 39  *      zspage->lock
 40  */
 41 
 42 #include <linux/module.h>
 43 #include <linux/kernel.h>
 44 #include <linux/sched.h>
 45 #include <linux/bitops.h>
 46 #include <linux/errno.h>
 47 #include <linux/highmem.h>
 48 #include <linux/string.h>
 49 #include <linux/slab.h>
 50 #include <linux/pgtable.h>
 51 #include <asm/tlbflush.h>
 52 #include <linux/cpumask.h>
 53 #include <linux/cpu.h>
 54 #include <linux/vmalloc.h>
 55 #include <linux/preempt.h>
 56 #include <linux/spinlock.h>
 57 #include <linux/shrinker.h>
 58 #include <linux/types.h>
 59 #include <linux/debugfs.h>
 60 #include <linux/zsmalloc.h>
 61 #include <linux/zpool.h>
 62 #include <linux/migrate.h>
 63 #include <linux/wait.h>
 64 #include <linux/pagemap.h>
 65 #include <linux/fs.h>
 66 #include <linux/local_lock.h>
 67 
 68 #define ZSPAGE_MAGIC    0x58
 69 
 70 /*
 71  * This must be power of 2 and greater than or equal to sizeof(link_free).
 72  * These two conditions ensure that any 'struct link_free' itself doesn't
 73  * span more than 1 page which avoids complex case of mapping 2 pages simply
 74  * to restore link_free pointer values.
 75  */
 76 #define ZS_ALIGN                8
 77 
 78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
 79 
 80 /*
 81  * Object location (<PFN>, <obj_idx>) is encoded as
 82  * a single (unsigned long) handle value.
 83  *
 84  * Note that object index <obj_idx> starts from 0.
 85  *
 86  * This is made more complicated by various memory models and PAE.
 87  */
 88 
 89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
 90 #ifdef MAX_PHYSMEM_BITS
 91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
 92 #else
 93 /*
 94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 95  * be PAGE_SHIFT
 96  */
 97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
 98 #endif
 99 #endif
100 
101 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 
103 /*
104  * Head in allocated object should have OBJ_ALLOCATED_TAG
105  * to identify the object was allocated or not.
106  * It's okay to add the status bit in the least bit because
107  * header keeps handle which is 4byte-aligned address so we
108  * have room for two bit at least.
109  */
110 #define OBJ_ALLOCATED_TAG 1
111 
112 #define OBJ_TAG_BITS    1
113 #define OBJ_TAG_MASK    OBJ_ALLOCATED_TAG
114 
115 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS)
116 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117 
118 #define HUGE_BITS       1
119 #define FULLNESS_BITS   4
120 #define CLASS_BITS      8
121 #define MAGIC_VAL_BITS  8
122 
123 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
124 
125 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
126 #define ZS_MIN_ALLOC_SIZE \
127         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
128 /* each chunk includes extra space to keep handle */
129 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
130 
131 /*
132  * On systems with 4K page size, this gives 255 size classes! There is a
133  * trader-off here:
134  *  - Large number of size classes is potentially wasteful as free page are
135  *    spread across these classes
136  *  - Small number of size classes causes large internal fragmentation
137  *  - Probably its better to use specific size classes (empirically
138  *    determined). NOTE: all those class sizes must be set as multiple of
139  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
140  *
141  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
142  *  (reason above)
143  */
144 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
145 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
146                                       ZS_SIZE_CLASS_DELTA) + 1)
147 
148 /*
149  * Pages are distinguished by the ratio of used memory (that is the ratio
150  * of ->inuse objects to all objects that page can store). For example,
151  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
152  *
153  * The number of fullness groups is not random. It allows us to keep
154  * difference between the least busy page in the group (minimum permitted
155  * number of ->inuse objects) and the most busy page (maximum permitted
156  * number of ->inuse objects) at a reasonable value.
157  */
158 enum fullness_group {
159         ZS_INUSE_RATIO_0,
160         ZS_INUSE_RATIO_10,
161         /* NOTE: 8 more fullness groups here */
162         ZS_INUSE_RATIO_99       = 10,
163         ZS_INUSE_RATIO_100,
164         NR_FULLNESS_GROUPS,
165 };
166 
167 enum class_stat_type {
168         /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
169         ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
170         ZS_OBJS_INUSE,
171         NR_CLASS_STAT_TYPES,
172 };
173 
174 struct zs_size_stat {
175         unsigned long objs[NR_CLASS_STAT_TYPES];
176 };
177 
178 #ifdef CONFIG_ZSMALLOC_STAT
179 static struct dentry *zs_stat_root;
180 #endif
181 
182 static size_t huge_class_size;
183 
184 struct size_class {
185         spinlock_t lock;
186         struct list_head fullness_list[NR_FULLNESS_GROUPS];
187         /*
188          * Size of objects stored in this class. Must be multiple
189          * of ZS_ALIGN.
190          */
191         int size;
192         int objs_per_zspage;
193         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
194         int pages_per_zspage;
195 
196         unsigned int index;
197         struct zs_size_stat stats;
198 };
199 
200 /*
201  * Placed within free objects to form a singly linked list.
202  * For every zspage, zspage->freeobj gives head of this list.
203  *
204  * This must be power of 2 and less than or equal to ZS_ALIGN
205  */
206 struct link_free {
207         union {
208                 /*
209                  * Free object index;
210                  * It's valid for non-allocated object
211                  */
212                 unsigned long next;
213                 /*
214                  * Handle of allocated object.
215                  */
216                 unsigned long handle;
217         };
218 };
219 
220 struct zs_pool {
221         const char *name;
222 
223         struct size_class *size_class[ZS_SIZE_CLASSES];
224         struct kmem_cache *handle_cachep;
225         struct kmem_cache *zspage_cachep;
226 
227         atomic_long_t pages_allocated;
228 
229         struct zs_pool_stats stats;
230 
231         /* Compact classes */
232         struct shrinker *shrinker;
233 
234 #ifdef CONFIG_ZSMALLOC_STAT
235         struct dentry *stat_dentry;
236 #endif
237 #ifdef CONFIG_COMPACTION
238         struct work_struct free_work;
239 #endif
240         /* protect page/zspage migration */
241         rwlock_t migrate_lock;
242         atomic_t compaction_in_progress;
243 };
244 
245 struct zspage {
246         struct {
247                 unsigned int huge:HUGE_BITS;
248                 unsigned int fullness:FULLNESS_BITS;
249                 unsigned int class:CLASS_BITS + 1;
250                 unsigned int magic:MAGIC_VAL_BITS;
251         };
252         unsigned int inuse;
253         unsigned int freeobj;
254         struct page *first_page;
255         struct list_head list; /* fullness list */
256         struct zs_pool *pool;
257         rwlock_t lock;
258 };
259 
260 struct mapping_area {
261         local_lock_t lock;
262         char *vm_buf; /* copy buffer for objects that span pages */
263         char *vm_addr; /* address of kmap_atomic()'ed pages */
264         enum zs_mapmode vm_mm; /* mapping mode */
265 };
266 
267 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
268 static void SetZsHugePage(struct zspage *zspage)
269 {
270         zspage->huge = 1;
271 }
272 
273 static bool ZsHugePage(struct zspage *zspage)
274 {
275         return zspage->huge;
276 }
277 
278 static void migrate_lock_init(struct zspage *zspage);
279 static void migrate_read_lock(struct zspage *zspage);
280 static void migrate_read_unlock(struct zspage *zspage);
281 static void migrate_write_lock(struct zspage *zspage);
282 static void migrate_write_unlock(struct zspage *zspage);
283 
284 #ifdef CONFIG_COMPACTION
285 static void kick_deferred_free(struct zs_pool *pool);
286 static void init_deferred_free(struct zs_pool *pool);
287 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
288 #else
289 static void kick_deferred_free(struct zs_pool *pool) {}
290 static void init_deferred_free(struct zs_pool *pool) {}
291 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
292 #endif
293 
294 static int create_cache(struct zs_pool *pool)
295 {
296         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
297                                         0, 0, NULL);
298         if (!pool->handle_cachep)
299                 return 1;
300 
301         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
302                                         0, 0, NULL);
303         if (!pool->zspage_cachep) {
304                 kmem_cache_destroy(pool->handle_cachep);
305                 pool->handle_cachep = NULL;
306                 return 1;
307         }
308 
309         return 0;
310 }
311 
312 static void destroy_cache(struct zs_pool *pool)
313 {
314         kmem_cache_destroy(pool->handle_cachep);
315         kmem_cache_destroy(pool->zspage_cachep);
316 }
317 
318 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
319 {
320         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
321                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
322 }
323 
324 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
325 {
326         kmem_cache_free(pool->handle_cachep, (void *)handle);
327 }
328 
329 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
330 {
331         return kmem_cache_zalloc(pool->zspage_cachep,
332                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
333 }
334 
335 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
336 {
337         kmem_cache_free(pool->zspage_cachep, zspage);
338 }
339 
340 /* class->lock(which owns the handle) synchronizes races */
341 static void record_obj(unsigned long handle, unsigned long obj)
342 {
343         *(unsigned long *)handle = obj;
344 }
345 
346 /* zpool driver */
347 
348 #ifdef CONFIG_ZPOOL
349 
350 static void *zs_zpool_create(const char *name, gfp_t gfp)
351 {
352         /*
353          * Ignore global gfp flags: zs_malloc() may be invoked from
354          * different contexts and its caller must provide a valid
355          * gfp mask.
356          */
357         return zs_create_pool(name);
358 }
359 
360 static void zs_zpool_destroy(void *pool)
361 {
362         zs_destroy_pool(pool);
363 }
364 
365 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
366                         unsigned long *handle)
367 {
368         *handle = zs_malloc(pool, size, gfp);
369 
370         if (IS_ERR_VALUE(*handle))
371                 return PTR_ERR((void *)*handle);
372         return 0;
373 }
374 static void zs_zpool_free(void *pool, unsigned long handle)
375 {
376         zs_free(pool, handle);
377 }
378 
379 static void *zs_zpool_map(void *pool, unsigned long handle,
380                         enum zpool_mapmode mm)
381 {
382         enum zs_mapmode zs_mm;
383 
384         switch (mm) {
385         case ZPOOL_MM_RO:
386                 zs_mm = ZS_MM_RO;
387                 break;
388         case ZPOOL_MM_WO:
389                 zs_mm = ZS_MM_WO;
390                 break;
391         case ZPOOL_MM_RW:
392         default:
393                 zs_mm = ZS_MM_RW;
394                 break;
395         }
396 
397         return zs_map_object(pool, handle, zs_mm);
398 }
399 static void zs_zpool_unmap(void *pool, unsigned long handle)
400 {
401         zs_unmap_object(pool, handle);
402 }
403 
404 static u64 zs_zpool_total_pages(void *pool)
405 {
406         return zs_get_total_pages(pool);
407 }
408 
409 static struct zpool_driver zs_zpool_driver = {
410         .type =                   "zsmalloc",
411         .owner =                  THIS_MODULE,
412         .create =                 zs_zpool_create,
413         .destroy =                zs_zpool_destroy,
414         .malloc_support_movable = true,
415         .malloc =                 zs_zpool_malloc,
416         .free =                   zs_zpool_free,
417         .map =                    zs_zpool_map,
418         .unmap =                  zs_zpool_unmap,
419         .total_pages =            zs_zpool_total_pages,
420 };
421 
422 MODULE_ALIAS("zpool-zsmalloc");
423 #endif /* CONFIG_ZPOOL */
424 
425 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
426 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
427         .lock   = INIT_LOCAL_LOCK(lock),
428 };
429 
430 static __maybe_unused int is_first_page(struct page *page)
431 {
432         return PagePrivate(page);
433 }
434 
435 /* Protected by class->lock */
436 static inline int get_zspage_inuse(struct zspage *zspage)
437 {
438         return zspage->inuse;
439 }
440 
441 
442 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
443 {
444         zspage->inuse += val;
445 }
446 
447 static inline struct page *get_first_page(struct zspage *zspage)
448 {
449         struct page *first_page = zspage->first_page;
450 
451         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
452         return first_page;
453 }
454 
455 #define FIRST_OBJ_PAGE_TYPE_MASK        0xffff
456 
457 static inline void reset_first_obj_offset(struct page *page)
458 {
459         VM_WARN_ON_ONCE(!PageZsmalloc(page));
460         page->page_type |= FIRST_OBJ_PAGE_TYPE_MASK;
461 }
462 
463 static inline unsigned int get_first_obj_offset(struct page *page)
464 {
465         VM_WARN_ON_ONCE(!PageZsmalloc(page));
466         return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
467 }
468 
469 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
470 {
471         /* With 16 bit available, we can support offsets into 64 KiB pages. */
472         BUILD_BUG_ON(PAGE_SIZE > SZ_64K);
473         VM_WARN_ON_ONCE(!PageZsmalloc(page));
474         VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
475         page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
476         page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
477 }
478 
479 static inline unsigned int get_freeobj(struct zspage *zspage)
480 {
481         return zspage->freeobj;
482 }
483 
484 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
485 {
486         zspage->freeobj = obj;
487 }
488 
489 static struct size_class *zspage_class(struct zs_pool *pool,
490                                        struct zspage *zspage)
491 {
492         return pool->size_class[zspage->class];
493 }
494 
495 /*
496  * zsmalloc divides the pool into various size classes where each
497  * class maintains a list of zspages where each zspage is divided
498  * into equal sized chunks. Each allocation falls into one of these
499  * classes depending on its size. This function returns index of the
500  * size class which has chunk size big enough to hold the given size.
501  */
502 static int get_size_class_index(int size)
503 {
504         int idx = 0;
505 
506         if (likely(size > ZS_MIN_ALLOC_SIZE))
507                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
508                                 ZS_SIZE_CLASS_DELTA);
509 
510         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
511 }
512 
513 static inline void class_stat_add(struct size_class *class, int type,
514                                   unsigned long cnt)
515 {
516         class->stats.objs[type] += cnt;
517 }
518 
519 static inline void class_stat_sub(struct size_class *class, int type,
520                                   unsigned long cnt)
521 {
522         class->stats.objs[type] -= cnt;
523 }
524 
525 static inline unsigned long class_stat_read(struct size_class *class, int type)
526 {
527         return class->stats.objs[type];
528 }
529 
530 #ifdef CONFIG_ZSMALLOC_STAT
531 
532 static void __init zs_stat_init(void)
533 {
534         if (!debugfs_initialized()) {
535                 pr_warn("debugfs not available, stat dir not created\n");
536                 return;
537         }
538 
539         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
540 }
541 
542 static void __exit zs_stat_exit(void)
543 {
544         debugfs_remove_recursive(zs_stat_root);
545 }
546 
547 static unsigned long zs_can_compact(struct size_class *class);
548 
549 static int zs_stats_size_show(struct seq_file *s, void *v)
550 {
551         int i, fg;
552         struct zs_pool *pool = s->private;
553         struct size_class *class;
554         int objs_per_zspage;
555         unsigned long obj_allocated, obj_used, pages_used, freeable;
556         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
557         unsigned long total_freeable = 0;
558         unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
559 
560         seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
561                         "class", "size", "10%", "20%", "30%", "40%",
562                         "50%", "60%", "70%", "80%", "90%", "99%", "100%",
563                         "obj_allocated", "obj_used", "pages_used",
564                         "pages_per_zspage", "freeable");
565 
566         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
567 
568                 class = pool->size_class[i];
569 
570                 if (class->index != i)
571                         continue;
572 
573                 spin_lock(&class->lock);
574 
575                 seq_printf(s, " %5u %5u ", i, class->size);
576                 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
577                         inuse_totals[fg] += class_stat_read(class, fg);
578                         seq_printf(s, "%9lu ", class_stat_read(class, fg));
579                 }
580 
581                 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
582                 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
583                 freeable = zs_can_compact(class);
584                 spin_unlock(&class->lock);
585 
586                 objs_per_zspage = class->objs_per_zspage;
587                 pages_used = obj_allocated / objs_per_zspage *
588                                 class->pages_per_zspage;
589 
590                 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
591                            obj_allocated, obj_used, pages_used,
592                            class->pages_per_zspage, freeable);
593 
594                 total_objs += obj_allocated;
595                 total_used_objs += obj_used;
596                 total_pages += pages_used;
597                 total_freeable += freeable;
598         }
599 
600         seq_puts(s, "\n");
601         seq_printf(s, " %5s %5s ", "Total", "");
602 
603         for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
604                 seq_printf(s, "%9lu ", inuse_totals[fg]);
605 
606         seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
607                    total_objs, total_used_objs, total_pages, "",
608                    total_freeable);
609 
610         return 0;
611 }
612 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
613 
614 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
615 {
616         if (!zs_stat_root) {
617                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
618                 return;
619         }
620 
621         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
622 
623         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
624                             &zs_stats_size_fops);
625 }
626 
627 static void zs_pool_stat_destroy(struct zs_pool *pool)
628 {
629         debugfs_remove_recursive(pool->stat_dentry);
630 }
631 
632 #else /* CONFIG_ZSMALLOC_STAT */
633 static void __init zs_stat_init(void)
634 {
635 }
636 
637 static void __exit zs_stat_exit(void)
638 {
639 }
640 
641 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
642 {
643 }
644 
645 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
646 {
647 }
648 #endif
649 
650 
651 /*
652  * For each size class, zspages are divided into different groups
653  * depending on their usage ratio. This function returns fullness
654  * status of the given page.
655  */
656 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
657 {
658         int inuse, objs_per_zspage, ratio;
659 
660         inuse = get_zspage_inuse(zspage);
661         objs_per_zspage = class->objs_per_zspage;
662 
663         if (inuse == 0)
664                 return ZS_INUSE_RATIO_0;
665         if (inuse == objs_per_zspage)
666                 return ZS_INUSE_RATIO_100;
667 
668         ratio = 100 * inuse / objs_per_zspage;
669         /*
670          * Take integer division into consideration: a page with one inuse
671          * object out of 127 possible, will end up having 0 usage ratio,
672          * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
673          */
674         return ratio / 10 + 1;
675 }
676 
677 /*
678  * Each size class maintains various freelists and zspages are assigned
679  * to one of these freelists based on the number of live objects they
680  * have. This functions inserts the given zspage into the freelist
681  * identified by <class, fullness_group>.
682  */
683 static void insert_zspage(struct size_class *class,
684                                 struct zspage *zspage,
685                                 int fullness)
686 {
687         class_stat_add(class, fullness, 1);
688         list_add(&zspage->list, &class->fullness_list[fullness]);
689         zspage->fullness = fullness;
690 }
691 
692 /*
693  * This function removes the given zspage from the freelist identified
694  * by <class, fullness_group>.
695  */
696 static void remove_zspage(struct size_class *class, struct zspage *zspage)
697 {
698         int fullness = zspage->fullness;
699 
700         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
701 
702         list_del_init(&zspage->list);
703         class_stat_sub(class, fullness, 1);
704 }
705 
706 /*
707  * Each size class maintains zspages in different fullness groups depending
708  * on the number of live objects they contain. When allocating or freeing
709  * objects, the fullness status of the page can change, for instance, from
710  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
711  * checks if such a status change has occurred for the given page and
712  * accordingly moves the page from the list of the old fullness group to that
713  * of the new fullness group.
714  */
715 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
716 {
717         int newfg;
718 
719         newfg = get_fullness_group(class, zspage);
720         if (newfg == zspage->fullness)
721                 goto out;
722 
723         remove_zspage(class, zspage);
724         insert_zspage(class, zspage, newfg);
725 out:
726         return newfg;
727 }
728 
729 static struct zspage *get_zspage(struct page *page)
730 {
731         struct zspage *zspage = (struct zspage *)page_private(page);
732 
733         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
734         return zspage;
735 }
736 
737 static struct page *get_next_page(struct page *page)
738 {
739         struct zspage *zspage = get_zspage(page);
740 
741         if (unlikely(ZsHugePage(zspage)))
742                 return NULL;
743 
744         return (struct page *)page->index;
745 }
746 
747 /**
748  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
749  * @obj: the encoded object value
750  * @page: page object resides in zspage
751  * @obj_idx: object index
752  */
753 static void obj_to_location(unsigned long obj, struct page **page,
754                                 unsigned int *obj_idx)
755 {
756         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
757         *obj_idx = (obj & OBJ_INDEX_MASK);
758 }
759 
760 static void obj_to_page(unsigned long obj, struct page **page)
761 {
762         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
763 }
764 
765 /**
766  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
767  * @page: page object resides in zspage
768  * @obj_idx: object index
769  */
770 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
771 {
772         unsigned long obj;
773 
774         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
775         obj |= obj_idx & OBJ_INDEX_MASK;
776 
777         return obj;
778 }
779 
780 static unsigned long handle_to_obj(unsigned long handle)
781 {
782         return *(unsigned long *)handle;
783 }
784 
785 static inline bool obj_allocated(struct page *page, void *obj,
786                                  unsigned long *phandle)
787 {
788         unsigned long handle;
789         struct zspage *zspage = get_zspage(page);
790 
791         if (unlikely(ZsHugePage(zspage))) {
792                 VM_BUG_ON_PAGE(!is_first_page(page), page);
793                 handle = page->index;
794         } else
795                 handle = *(unsigned long *)obj;
796 
797         if (!(handle & OBJ_ALLOCATED_TAG))
798                 return false;
799 
800         /* Clear all tags before returning the handle */
801         *phandle = handle & ~OBJ_TAG_MASK;
802         return true;
803 }
804 
805 static void reset_page(struct page *page)
806 {
807         __ClearPageMovable(page);
808         ClearPagePrivate(page);
809         set_page_private(page, 0);
810         page->index = 0;
811         reset_first_obj_offset(page);
812         __ClearPageZsmalloc(page);
813 }
814 
815 static int trylock_zspage(struct zspage *zspage)
816 {
817         struct page *cursor, *fail;
818 
819         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
820                                         get_next_page(cursor)) {
821                 if (!trylock_page(cursor)) {
822                         fail = cursor;
823                         goto unlock;
824                 }
825         }
826 
827         return 1;
828 unlock:
829         for (cursor = get_first_page(zspage); cursor != fail; cursor =
830                                         get_next_page(cursor))
831                 unlock_page(cursor);
832 
833         return 0;
834 }
835 
836 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
837                                 struct zspage *zspage)
838 {
839         struct page *page, *next;
840 
841         assert_spin_locked(&class->lock);
842 
843         VM_BUG_ON(get_zspage_inuse(zspage));
844         VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
845 
846         next = page = get_first_page(zspage);
847         do {
848                 VM_BUG_ON_PAGE(!PageLocked(page), page);
849                 next = get_next_page(page);
850                 reset_page(page);
851                 unlock_page(page);
852                 dec_zone_page_state(page, NR_ZSPAGES);
853                 put_page(page);
854                 page = next;
855         } while (page != NULL);
856 
857         cache_free_zspage(pool, zspage);
858 
859         class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
860         atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
861 }
862 
863 static void free_zspage(struct zs_pool *pool, struct size_class *class,
864                                 struct zspage *zspage)
865 {
866         VM_BUG_ON(get_zspage_inuse(zspage));
867         VM_BUG_ON(list_empty(&zspage->list));
868 
869         /*
870          * Since zs_free couldn't be sleepable, this function cannot call
871          * lock_page. The page locks trylock_zspage got will be released
872          * by __free_zspage.
873          */
874         if (!trylock_zspage(zspage)) {
875                 kick_deferred_free(pool);
876                 return;
877         }
878 
879         remove_zspage(class, zspage);
880         __free_zspage(pool, class, zspage);
881 }
882 
883 /* Initialize a newly allocated zspage */
884 static void init_zspage(struct size_class *class, struct zspage *zspage)
885 {
886         unsigned int freeobj = 1;
887         unsigned long off = 0;
888         struct page *page = get_first_page(zspage);
889 
890         while (page) {
891                 struct page *next_page;
892                 struct link_free *link;
893                 void *vaddr;
894 
895                 set_first_obj_offset(page, off);
896 
897                 vaddr = kmap_atomic(page);
898                 link = (struct link_free *)vaddr + off / sizeof(*link);
899 
900                 while ((off += class->size) < PAGE_SIZE) {
901                         link->next = freeobj++ << OBJ_TAG_BITS;
902                         link += class->size / sizeof(*link);
903                 }
904 
905                 /*
906                  * We now come to the last (full or partial) object on this
907                  * page, which must point to the first object on the next
908                  * page (if present)
909                  */
910                 next_page = get_next_page(page);
911                 if (next_page) {
912                         link->next = freeobj++ << OBJ_TAG_BITS;
913                 } else {
914                         /*
915                          * Reset OBJ_TAG_BITS bit to last link to tell
916                          * whether it's allocated object or not.
917                          */
918                         link->next = -1UL << OBJ_TAG_BITS;
919                 }
920                 kunmap_atomic(vaddr);
921                 page = next_page;
922                 off %= PAGE_SIZE;
923         }
924 
925         set_freeobj(zspage, 0);
926 }
927 
928 static void create_page_chain(struct size_class *class, struct zspage *zspage,
929                                 struct page *pages[])
930 {
931         int i;
932         struct page *page;
933         struct page *prev_page = NULL;
934         int nr_pages = class->pages_per_zspage;
935 
936         /*
937          * Allocate individual pages and link them together as:
938          * 1. all pages are linked together using page->index
939          * 2. each sub-page point to zspage using page->private
940          *
941          * we set PG_private to identify the first page (i.e. no other sub-page
942          * has this flag set).
943          */
944         for (i = 0; i < nr_pages; i++) {
945                 page = pages[i];
946                 set_page_private(page, (unsigned long)zspage);
947                 page->index = 0;
948                 if (i == 0) {
949                         zspage->first_page = page;
950                         SetPagePrivate(page);
951                         if (unlikely(class->objs_per_zspage == 1 &&
952                                         class->pages_per_zspage == 1))
953                                 SetZsHugePage(zspage);
954                 } else {
955                         prev_page->index = (unsigned long)page;
956                 }
957                 prev_page = page;
958         }
959 }
960 
961 /*
962  * Allocate a zspage for the given size class
963  */
964 static struct zspage *alloc_zspage(struct zs_pool *pool,
965                                         struct size_class *class,
966                                         gfp_t gfp)
967 {
968         int i;
969         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
970         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
971 
972         if (!zspage)
973                 return NULL;
974 
975         zspage->magic = ZSPAGE_MAGIC;
976         migrate_lock_init(zspage);
977 
978         for (i = 0; i < class->pages_per_zspage; i++) {
979                 struct page *page;
980 
981                 page = alloc_page(gfp);
982                 if (!page) {
983                         while (--i >= 0) {
984                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
985                                 __ClearPageZsmalloc(pages[i]);
986                                 __free_page(pages[i]);
987                         }
988                         cache_free_zspage(pool, zspage);
989                         return NULL;
990                 }
991                 __SetPageZsmalloc(page);
992 
993                 inc_zone_page_state(page, NR_ZSPAGES);
994                 pages[i] = page;
995         }
996 
997         create_page_chain(class, zspage, pages);
998         init_zspage(class, zspage);
999         zspage->pool = pool;
1000         zspage->class = class->index;
1001 
1002         return zspage;
1003 }
1004 
1005 static struct zspage *find_get_zspage(struct size_class *class)
1006 {
1007         int i;
1008         struct zspage *zspage;
1009 
1010         for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1011                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1012                                                   struct zspage, list);
1013                 if (zspage)
1014                         break;
1015         }
1016 
1017         return zspage;
1018 }
1019 
1020 static inline int __zs_cpu_up(struct mapping_area *area)
1021 {
1022         /*
1023          * Make sure we don't leak memory if a cpu UP notification
1024          * and zs_init() race and both call zs_cpu_up() on the same cpu
1025          */
1026         if (area->vm_buf)
1027                 return 0;
1028         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1029         if (!area->vm_buf)
1030                 return -ENOMEM;
1031         return 0;
1032 }
1033 
1034 static inline void __zs_cpu_down(struct mapping_area *area)
1035 {
1036         kfree(area->vm_buf);
1037         area->vm_buf = NULL;
1038 }
1039 
1040 static void *__zs_map_object(struct mapping_area *area,
1041                         struct page *pages[2], int off, int size)
1042 {
1043         int sizes[2];
1044         void *addr;
1045         char *buf = area->vm_buf;
1046 
1047         /* disable page faults to match kmap_atomic() return conditions */
1048         pagefault_disable();
1049 
1050         /* no read fastpath */
1051         if (area->vm_mm == ZS_MM_WO)
1052                 goto out;
1053 
1054         sizes[0] = PAGE_SIZE - off;
1055         sizes[1] = size - sizes[0];
1056 
1057         /* copy object to per-cpu buffer */
1058         addr = kmap_atomic(pages[0]);
1059         memcpy(buf, addr + off, sizes[0]);
1060         kunmap_atomic(addr);
1061         addr = kmap_atomic(pages[1]);
1062         memcpy(buf + sizes[0], addr, sizes[1]);
1063         kunmap_atomic(addr);
1064 out:
1065         return area->vm_buf;
1066 }
1067 
1068 static void __zs_unmap_object(struct mapping_area *area,
1069                         struct page *pages[2], int off, int size)
1070 {
1071         int sizes[2];
1072         void *addr;
1073         char *buf;
1074 
1075         /* no write fastpath */
1076         if (area->vm_mm == ZS_MM_RO)
1077                 goto out;
1078 
1079         buf = area->vm_buf;
1080         buf = buf + ZS_HANDLE_SIZE;
1081         size -= ZS_HANDLE_SIZE;
1082         off += ZS_HANDLE_SIZE;
1083 
1084         sizes[0] = PAGE_SIZE - off;
1085         sizes[1] = size - sizes[0];
1086 
1087         /* copy per-cpu buffer to object */
1088         addr = kmap_atomic(pages[0]);
1089         memcpy(addr + off, buf, sizes[0]);
1090         kunmap_atomic(addr);
1091         addr = kmap_atomic(pages[1]);
1092         memcpy(addr, buf + sizes[0], sizes[1]);
1093         kunmap_atomic(addr);
1094 
1095 out:
1096         /* enable page faults to match kunmap_atomic() return conditions */
1097         pagefault_enable();
1098 }
1099 
1100 static int zs_cpu_prepare(unsigned int cpu)
1101 {
1102         struct mapping_area *area;
1103 
1104         area = &per_cpu(zs_map_area, cpu);
1105         return __zs_cpu_up(area);
1106 }
1107 
1108 static int zs_cpu_dead(unsigned int cpu)
1109 {
1110         struct mapping_area *area;
1111 
1112         area = &per_cpu(zs_map_area, cpu);
1113         __zs_cpu_down(area);
1114         return 0;
1115 }
1116 
1117 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1118                                         int objs_per_zspage)
1119 {
1120         if (prev->pages_per_zspage == pages_per_zspage &&
1121                 prev->objs_per_zspage == objs_per_zspage)
1122                 return true;
1123 
1124         return false;
1125 }
1126 
1127 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1128 {
1129         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1130 }
1131 
1132 static bool zspage_empty(struct zspage *zspage)
1133 {
1134         return get_zspage_inuse(zspage) == 0;
1135 }
1136 
1137 /**
1138  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1139  * that hold objects of the provided size.
1140  * @pool: zsmalloc pool to use
1141  * @size: object size
1142  *
1143  * Context: Any context.
1144  *
1145  * Return: the index of the zsmalloc &size_class that hold objects of the
1146  * provided size.
1147  */
1148 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1149 {
1150         struct size_class *class;
1151 
1152         class = pool->size_class[get_size_class_index(size)];
1153 
1154         return class->index;
1155 }
1156 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1157 
1158 unsigned long zs_get_total_pages(struct zs_pool *pool)
1159 {
1160         return atomic_long_read(&pool->pages_allocated);
1161 }
1162 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1163 
1164 /**
1165  * zs_map_object - get address of allocated object from handle.
1166  * @pool: pool from which the object was allocated
1167  * @handle: handle returned from zs_malloc
1168  * @mm: mapping mode to use
1169  *
1170  * Before using an object allocated from zs_malloc, it must be mapped using
1171  * this function. When done with the object, it must be unmapped using
1172  * zs_unmap_object.
1173  *
1174  * Only one object can be mapped per cpu at a time. There is no protection
1175  * against nested mappings.
1176  *
1177  * This function returns with preemption and page faults disabled.
1178  */
1179 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1180                         enum zs_mapmode mm)
1181 {
1182         struct zspage *zspage;
1183         struct page *page;
1184         unsigned long obj, off;
1185         unsigned int obj_idx;
1186 
1187         struct size_class *class;
1188         struct mapping_area *area;
1189         struct page *pages[2];
1190         void *ret;
1191 
1192         /*
1193          * Because we use per-cpu mapping areas shared among the
1194          * pools/users, we can't allow mapping in interrupt context
1195          * because it can corrupt another users mappings.
1196          */
1197         BUG_ON(in_interrupt());
1198 
1199         /* It guarantees it can get zspage from handle safely */
1200         read_lock(&pool->migrate_lock);
1201         obj = handle_to_obj(handle);
1202         obj_to_location(obj, &page, &obj_idx);
1203         zspage = get_zspage(page);
1204 
1205         /*
1206          * migration cannot move any zpages in this zspage. Here, class->lock
1207          * is too heavy since callers would take some time until they calls
1208          * zs_unmap_object API so delegate the locking from class to zspage
1209          * which is smaller granularity.
1210          */
1211         migrate_read_lock(zspage);
1212         read_unlock(&pool->migrate_lock);
1213 
1214         class = zspage_class(pool, zspage);
1215         off = offset_in_page(class->size * obj_idx);
1216 
1217         local_lock(&zs_map_area.lock);
1218         area = this_cpu_ptr(&zs_map_area);
1219         area->vm_mm = mm;
1220         if (off + class->size <= PAGE_SIZE) {
1221                 /* this object is contained entirely within a page */
1222                 area->vm_addr = kmap_atomic(page);
1223                 ret = area->vm_addr + off;
1224                 goto out;
1225         }
1226 
1227         /* this object spans two pages */
1228         pages[0] = page;
1229         pages[1] = get_next_page(page);
1230         BUG_ON(!pages[1]);
1231 
1232         ret = __zs_map_object(area, pages, off, class->size);
1233 out:
1234         if (likely(!ZsHugePage(zspage)))
1235                 ret += ZS_HANDLE_SIZE;
1236 
1237         return ret;
1238 }
1239 EXPORT_SYMBOL_GPL(zs_map_object);
1240 
1241 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1242 {
1243         struct zspage *zspage;
1244         struct page *page;
1245         unsigned long obj, off;
1246         unsigned int obj_idx;
1247 
1248         struct size_class *class;
1249         struct mapping_area *area;
1250 
1251         obj = handle_to_obj(handle);
1252         obj_to_location(obj, &page, &obj_idx);
1253         zspage = get_zspage(page);
1254         class = zspage_class(pool, zspage);
1255         off = offset_in_page(class->size * obj_idx);
1256 
1257         area = this_cpu_ptr(&zs_map_area);
1258         if (off + class->size <= PAGE_SIZE)
1259                 kunmap_atomic(area->vm_addr);
1260         else {
1261                 struct page *pages[2];
1262 
1263                 pages[0] = page;
1264                 pages[1] = get_next_page(page);
1265                 BUG_ON(!pages[1]);
1266 
1267                 __zs_unmap_object(area, pages, off, class->size);
1268         }
1269         local_unlock(&zs_map_area.lock);
1270 
1271         migrate_read_unlock(zspage);
1272 }
1273 EXPORT_SYMBOL_GPL(zs_unmap_object);
1274 
1275 /**
1276  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1277  *                        zsmalloc &size_class.
1278  * @pool: zsmalloc pool to use
1279  *
1280  * The function returns the size of the first huge class - any object of equal
1281  * or bigger size will be stored in zspage consisting of a single physical
1282  * page.
1283  *
1284  * Context: Any context.
1285  *
1286  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1287  */
1288 size_t zs_huge_class_size(struct zs_pool *pool)
1289 {
1290         return huge_class_size;
1291 }
1292 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1293 
1294 static unsigned long obj_malloc(struct zs_pool *pool,
1295                                 struct zspage *zspage, unsigned long handle)
1296 {
1297         int i, nr_page, offset;
1298         unsigned long obj;
1299         struct link_free *link;
1300         struct size_class *class;
1301 
1302         struct page *m_page;
1303         unsigned long m_offset;
1304         void *vaddr;
1305 
1306         class = pool->size_class[zspage->class];
1307         obj = get_freeobj(zspage);
1308 
1309         offset = obj * class->size;
1310         nr_page = offset >> PAGE_SHIFT;
1311         m_offset = offset_in_page(offset);
1312         m_page = get_first_page(zspage);
1313 
1314         for (i = 0; i < nr_page; i++)
1315                 m_page = get_next_page(m_page);
1316 
1317         vaddr = kmap_atomic(m_page);
1318         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1319         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1320         if (likely(!ZsHugePage(zspage)))
1321                 /* record handle in the header of allocated chunk */
1322                 link->handle = handle | OBJ_ALLOCATED_TAG;
1323         else
1324                 /* record handle to page->index */
1325                 zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
1326 
1327         kunmap_atomic(vaddr);
1328         mod_zspage_inuse(zspage, 1);
1329 
1330         obj = location_to_obj(m_page, obj);
1331         record_obj(handle, obj);
1332 
1333         return obj;
1334 }
1335 
1336 
1337 /**
1338  * zs_malloc - Allocate block of given size from pool.
1339  * @pool: pool to allocate from
1340  * @size: size of block to allocate
1341  * @gfp: gfp flags when allocating object
1342  *
1343  * On success, handle to the allocated object is returned,
1344  * otherwise an ERR_PTR().
1345  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1346  */
1347 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1348 {
1349         unsigned long handle;
1350         struct size_class *class;
1351         int newfg;
1352         struct zspage *zspage;
1353 
1354         if (unlikely(!size))
1355                 return (unsigned long)ERR_PTR(-EINVAL);
1356 
1357         if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1358                 return (unsigned long)ERR_PTR(-ENOSPC);
1359 
1360         handle = cache_alloc_handle(pool, gfp);
1361         if (!handle)
1362                 return (unsigned long)ERR_PTR(-ENOMEM);
1363 
1364         /* extra space in chunk to keep the handle */
1365         size += ZS_HANDLE_SIZE;
1366         class = pool->size_class[get_size_class_index(size)];
1367 
1368         /* class->lock effectively protects the zpage migration */
1369         spin_lock(&class->lock);
1370         zspage = find_get_zspage(class);
1371         if (likely(zspage)) {
1372                 obj_malloc(pool, zspage, handle);
1373                 /* Now move the zspage to another fullness group, if required */
1374                 fix_fullness_group(class, zspage);
1375                 class_stat_add(class, ZS_OBJS_INUSE, 1);
1376 
1377                 goto out;
1378         }
1379 
1380         spin_unlock(&class->lock);
1381 
1382         zspage = alloc_zspage(pool, class, gfp);
1383         if (!zspage) {
1384                 cache_free_handle(pool, handle);
1385                 return (unsigned long)ERR_PTR(-ENOMEM);
1386         }
1387 
1388         spin_lock(&class->lock);
1389         obj_malloc(pool, zspage, handle);
1390         newfg = get_fullness_group(class, zspage);
1391         insert_zspage(class, zspage, newfg);
1392         atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1393         class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1394         class_stat_add(class, ZS_OBJS_INUSE, 1);
1395 
1396         /* We completely set up zspage so mark them as movable */
1397         SetZsPageMovable(pool, zspage);
1398 out:
1399         spin_unlock(&class->lock);
1400 
1401         return handle;
1402 }
1403 EXPORT_SYMBOL_GPL(zs_malloc);
1404 
1405 static void obj_free(int class_size, unsigned long obj)
1406 {
1407         struct link_free *link;
1408         struct zspage *zspage;
1409         struct page *f_page;
1410         unsigned long f_offset;
1411         unsigned int f_objidx;
1412         void *vaddr;
1413 
1414         obj_to_location(obj, &f_page, &f_objidx);
1415         f_offset = offset_in_page(class_size * f_objidx);
1416         zspage = get_zspage(f_page);
1417 
1418         vaddr = kmap_atomic(f_page);
1419         link = (struct link_free *)(vaddr + f_offset);
1420 
1421         /* Insert this object in containing zspage's freelist */
1422         if (likely(!ZsHugePage(zspage)))
1423                 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1424         else
1425                 f_page->index = 0;
1426         set_freeobj(zspage, f_objidx);
1427 
1428         kunmap_atomic(vaddr);
1429         mod_zspage_inuse(zspage, -1);
1430 }
1431 
1432 void zs_free(struct zs_pool *pool, unsigned long handle)
1433 {
1434         struct zspage *zspage;
1435         struct page *f_page;
1436         unsigned long obj;
1437         struct size_class *class;
1438         int fullness;
1439 
1440         if (IS_ERR_OR_NULL((void *)handle))
1441                 return;
1442 
1443         /*
1444          * The pool->migrate_lock protects the race with zpage's migration
1445          * so it's safe to get the page from handle.
1446          */
1447         read_lock(&pool->migrate_lock);
1448         obj = handle_to_obj(handle);
1449         obj_to_page(obj, &f_page);
1450         zspage = get_zspage(f_page);
1451         class = zspage_class(pool, zspage);
1452         spin_lock(&class->lock);
1453         read_unlock(&pool->migrate_lock);
1454 
1455         class_stat_sub(class, ZS_OBJS_INUSE, 1);
1456         obj_free(class->size, obj);
1457 
1458         fullness = fix_fullness_group(class, zspage);
1459         if (fullness == ZS_INUSE_RATIO_0)
1460                 free_zspage(pool, class, zspage);
1461 
1462         spin_unlock(&class->lock);
1463         cache_free_handle(pool, handle);
1464 }
1465 EXPORT_SYMBOL_GPL(zs_free);
1466 
1467 static void zs_object_copy(struct size_class *class, unsigned long dst,
1468                                 unsigned long src)
1469 {
1470         struct page *s_page, *d_page;
1471         unsigned int s_objidx, d_objidx;
1472         unsigned long s_off, d_off;
1473         void *s_addr, *d_addr;
1474         int s_size, d_size, size;
1475         int written = 0;
1476 
1477         s_size = d_size = class->size;
1478 
1479         obj_to_location(src, &s_page, &s_objidx);
1480         obj_to_location(dst, &d_page, &d_objidx);
1481 
1482         s_off = offset_in_page(class->size * s_objidx);
1483         d_off = offset_in_page(class->size * d_objidx);
1484 
1485         if (s_off + class->size > PAGE_SIZE)
1486                 s_size = PAGE_SIZE - s_off;
1487 
1488         if (d_off + class->size > PAGE_SIZE)
1489                 d_size = PAGE_SIZE - d_off;
1490 
1491         s_addr = kmap_atomic(s_page);
1492         d_addr = kmap_atomic(d_page);
1493 
1494         while (1) {
1495                 size = min(s_size, d_size);
1496                 memcpy(d_addr + d_off, s_addr + s_off, size);
1497                 written += size;
1498 
1499                 if (written == class->size)
1500                         break;
1501 
1502                 s_off += size;
1503                 s_size -= size;
1504                 d_off += size;
1505                 d_size -= size;
1506 
1507                 /*
1508                  * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1509                  * calls must occurs in reverse order of calls to kmap_atomic().
1510                  * So, to call kunmap_atomic(s_addr) we should first call
1511                  * kunmap_atomic(d_addr). For more details see
1512                  * Documentation/mm/highmem.rst.
1513                  */
1514                 if (s_off >= PAGE_SIZE) {
1515                         kunmap_atomic(d_addr);
1516                         kunmap_atomic(s_addr);
1517                         s_page = get_next_page(s_page);
1518                         s_addr = kmap_atomic(s_page);
1519                         d_addr = kmap_atomic(d_page);
1520                         s_size = class->size - written;
1521                         s_off = 0;
1522                 }
1523 
1524                 if (d_off >= PAGE_SIZE) {
1525                         kunmap_atomic(d_addr);
1526                         d_page = get_next_page(d_page);
1527                         d_addr = kmap_atomic(d_page);
1528                         d_size = class->size - written;
1529                         d_off = 0;
1530                 }
1531         }
1532 
1533         kunmap_atomic(d_addr);
1534         kunmap_atomic(s_addr);
1535 }
1536 
1537 /*
1538  * Find alloced object in zspage from index object and
1539  * return handle.
1540  */
1541 static unsigned long find_alloced_obj(struct size_class *class,
1542                                       struct page *page, int *obj_idx)
1543 {
1544         unsigned int offset;
1545         int index = *obj_idx;
1546         unsigned long handle = 0;
1547         void *addr = kmap_atomic(page);
1548 
1549         offset = get_first_obj_offset(page);
1550         offset += class->size * index;
1551 
1552         while (offset < PAGE_SIZE) {
1553                 if (obj_allocated(page, addr + offset, &handle))
1554                         break;
1555 
1556                 offset += class->size;
1557                 index++;
1558         }
1559 
1560         kunmap_atomic(addr);
1561 
1562         *obj_idx = index;
1563 
1564         return handle;
1565 }
1566 
1567 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1568                            struct zspage *dst_zspage)
1569 {
1570         unsigned long used_obj, free_obj;
1571         unsigned long handle;
1572         int obj_idx = 0;
1573         struct page *s_page = get_first_page(src_zspage);
1574         struct size_class *class = pool->size_class[src_zspage->class];
1575 
1576         while (1) {
1577                 handle = find_alloced_obj(class, s_page, &obj_idx);
1578                 if (!handle) {
1579                         s_page = get_next_page(s_page);
1580                         if (!s_page)
1581                                 break;
1582                         obj_idx = 0;
1583                         continue;
1584                 }
1585 
1586                 used_obj = handle_to_obj(handle);
1587                 free_obj = obj_malloc(pool, dst_zspage, handle);
1588                 zs_object_copy(class, free_obj, used_obj);
1589                 obj_idx++;
1590                 obj_free(class->size, used_obj);
1591 
1592                 /* Stop if there is no more space */
1593                 if (zspage_full(class, dst_zspage))
1594                         break;
1595 
1596                 /* Stop if there are no more objects to migrate */
1597                 if (zspage_empty(src_zspage))
1598                         break;
1599         }
1600 }
1601 
1602 static struct zspage *isolate_src_zspage(struct size_class *class)
1603 {
1604         struct zspage *zspage;
1605         int fg;
1606 
1607         for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1608                 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1609                                                   struct zspage, list);
1610                 if (zspage) {
1611                         remove_zspage(class, zspage);
1612                         return zspage;
1613                 }
1614         }
1615 
1616         return zspage;
1617 }
1618 
1619 static struct zspage *isolate_dst_zspage(struct size_class *class)
1620 {
1621         struct zspage *zspage;
1622         int fg;
1623 
1624         for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1625                 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1626                                                   struct zspage, list);
1627                 if (zspage) {
1628                         remove_zspage(class, zspage);
1629                         return zspage;
1630                 }
1631         }
1632 
1633         return zspage;
1634 }
1635 
1636 /*
1637  * putback_zspage - add @zspage into right class's fullness list
1638  * @class: destination class
1639  * @zspage: target page
1640  *
1641  * Return @zspage's fullness status
1642  */
1643 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1644 {
1645         int fullness;
1646 
1647         fullness = get_fullness_group(class, zspage);
1648         insert_zspage(class, zspage, fullness);
1649 
1650         return fullness;
1651 }
1652 
1653 #ifdef CONFIG_COMPACTION
1654 /*
1655  * To prevent zspage destroy during migration, zspage freeing should
1656  * hold locks of all pages in the zspage.
1657  */
1658 static void lock_zspage(struct zspage *zspage)
1659 {
1660         struct page *curr_page, *page;
1661 
1662         /*
1663          * Pages we haven't locked yet can be migrated off the list while we're
1664          * trying to lock them, so we need to be careful and only attempt to
1665          * lock each page under migrate_read_lock(). Otherwise, the page we lock
1666          * may no longer belong to the zspage. This means that we may wait for
1667          * the wrong page to unlock, so we must take a reference to the page
1668          * prior to waiting for it to unlock outside migrate_read_lock().
1669          */
1670         while (1) {
1671                 migrate_read_lock(zspage);
1672                 page = get_first_page(zspage);
1673                 if (trylock_page(page))
1674                         break;
1675                 get_page(page);
1676                 migrate_read_unlock(zspage);
1677                 wait_on_page_locked(page);
1678                 put_page(page);
1679         }
1680 
1681         curr_page = page;
1682         while ((page = get_next_page(curr_page))) {
1683                 if (trylock_page(page)) {
1684                         curr_page = page;
1685                 } else {
1686                         get_page(page);
1687                         migrate_read_unlock(zspage);
1688                         wait_on_page_locked(page);
1689                         put_page(page);
1690                         migrate_read_lock(zspage);
1691                 }
1692         }
1693         migrate_read_unlock(zspage);
1694 }
1695 #endif /* CONFIG_COMPACTION */
1696 
1697 static void migrate_lock_init(struct zspage *zspage)
1698 {
1699         rwlock_init(&zspage->lock);
1700 }
1701 
1702 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1703 {
1704         read_lock(&zspage->lock);
1705 }
1706 
1707 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1708 {
1709         read_unlock(&zspage->lock);
1710 }
1711 
1712 static void migrate_write_lock(struct zspage *zspage)
1713 {
1714         write_lock(&zspage->lock);
1715 }
1716 
1717 static void migrate_write_unlock(struct zspage *zspage)
1718 {
1719         write_unlock(&zspage->lock);
1720 }
1721 
1722 #ifdef CONFIG_COMPACTION
1723 
1724 static const struct movable_operations zsmalloc_mops;
1725 
1726 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1727                                 struct page *newpage, struct page *oldpage)
1728 {
1729         struct page *page;
1730         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1731         int idx = 0;
1732 
1733         page = get_first_page(zspage);
1734         do {
1735                 if (page == oldpage)
1736                         pages[idx] = newpage;
1737                 else
1738                         pages[idx] = page;
1739                 idx++;
1740         } while ((page = get_next_page(page)) != NULL);
1741 
1742         create_page_chain(class, zspage, pages);
1743         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1744         if (unlikely(ZsHugePage(zspage)))
1745                 newpage->index = oldpage->index;
1746         __SetPageMovable(newpage, &zsmalloc_mops);
1747 }
1748 
1749 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1750 {
1751         /*
1752          * Page is locked so zspage couldn't be destroyed. For detail, look at
1753          * lock_zspage in free_zspage.
1754          */
1755         VM_BUG_ON_PAGE(PageIsolated(page), page);
1756 
1757         return true;
1758 }
1759 
1760 static int zs_page_migrate(struct page *newpage, struct page *page,
1761                 enum migrate_mode mode)
1762 {
1763         struct zs_pool *pool;
1764         struct size_class *class;
1765         struct zspage *zspage;
1766         struct page *dummy;
1767         void *s_addr, *d_addr, *addr;
1768         unsigned int offset;
1769         unsigned long handle;
1770         unsigned long old_obj, new_obj;
1771         unsigned int obj_idx;
1772 
1773         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1774 
1775         /* We're committed, tell the world that this is a Zsmalloc page. */
1776         __SetPageZsmalloc(newpage);
1777 
1778         /* The page is locked, so this pointer must remain valid */
1779         zspage = get_zspage(page);
1780         pool = zspage->pool;
1781 
1782         /*
1783          * The pool migrate_lock protects the race between zpage migration
1784          * and zs_free.
1785          */
1786         write_lock(&pool->migrate_lock);
1787         class = zspage_class(pool, zspage);
1788 
1789         /*
1790          * the class lock protects zpage alloc/free in the zspage.
1791          */
1792         spin_lock(&class->lock);
1793         /* the migrate_write_lock protects zpage access via zs_map_object */
1794         migrate_write_lock(zspage);
1795 
1796         offset = get_first_obj_offset(page);
1797         s_addr = kmap_atomic(page);
1798 
1799         /*
1800          * Here, any user cannot access all objects in the zspage so let's move.
1801          */
1802         d_addr = kmap_atomic(newpage);
1803         copy_page(d_addr, s_addr);
1804         kunmap_atomic(d_addr);
1805 
1806         for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1807                                         addr += class->size) {
1808                 if (obj_allocated(page, addr, &handle)) {
1809 
1810                         old_obj = handle_to_obj(handle);
1811                         obj_to_location(old_obj, &dummy, &obj_idx);
1812                         new_obj = (unsigned long)location_to_obj(newpage,
1813                                                                 obj_idx);
1814                         record_obj(handle, new_obj);
1815                 }
1816         }
1817         kunmap_atomic(s_addr);
1818 
1819         replace_sub_page(class, zspage, newpage, page);
1820         /*
1821          * Since we complete the data copy and set up new zspage structure,
1822          * it's okay to release migration_lock.
1823          */
1824         write_unlock(&pool->migrate_lock);
1825         spin_unlock(&class->lock);
1826         migrate_write_unlock(zspage);
1827 
1828         get_page(newpage);
1829         if (page_zone(newpage) != page_zone(page)) {
1830                 dec_zone_page_state(page, NR_ZSPAGES);
1831                 inc_zone_page_state(newpage, NR_ZSPAGES);
1832         }
1833 
1834         reset_page(page);
1835         put_page(page);
1836 
1837         return MIGRATEPAGE_SUCCESS;
1838 }
1839 
1840 static void zs_page_putback(struct page *page)
1841 {
1842         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1843 }
1844 
1845 static const struct movable_operations zsmalloc_mops = {
1846         .isolate_page = zs_page_isolate,
1847         .migrate_page = zs_page_migrate,
1848         .putback_page = zs_page_putback,
1849 };
1850 
1851 /*
1852  * Caller should hold page_lock of all pages in the zspage
1853  * In here, we cannot use zspage meta data.
1854  */
1855 static void async_free_zspage(struct work_struct *work)
1856 {
1857         int i;
1858         struct size_class *class;
1859         struct zspage *zspage, *tmp;
1860         LIST_HEAD(free_pages);
1861         struct zs_pool *pool = container_of(work, struct zs_pool,
1862                                         free_work);
1863 
1864         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1865                 class = pool->size_class[i];
1866                 if (class->index != i)
1867                         continue;
1868 
1869                 spin_lock(&class->lock);
1870                 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1871                                  &free_pages);
1872                 spin_unlock(&class->lock);
1873         }
1874 
1875         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1876                 list_del(&zspage->list);
1877                 lock_zspage(zspage);
1878 
1879                 class = zspage_class(pool, zspage);
1880                 spin_lock(&class->lock);
1881                 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1882                 __free_zspage(pool, class, zspage);
1883                 spin_unlock(&class->lock);
1884         }
1885 };
1886 
1887 static void kick_deferred_free(struct zs_pool *pool)
1888 {
1889         schedule_work(&pool->free_work);
1890 }
1891 
1892 static void zs_flush_migration(struct zs_pool *pool)
1893 {
1894         flush_work(&pool->free_work);
1895 }
1896 
1897 static void init_deferred_free(struct zs_pool *pool)
1898 {
1899         INIT_WORK(&pool->free_work, async_free_zspage);
1900 }
1901 
1902 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1903 {
1904         struct page *page = get_first_page(zspage);
1905 
1906         do {
1907                 WARN_ON(!trylock_page(page));
1908                 __SetPageMovable(page, &zsmalloc_mops);
1909                 unlock_page(page);
1910         } while ((page = get_next_page(page)) != NULL);
1911 }
1912 #else
1913 static inline void zs_flush_migration(struct zs_pool *pool) { }
1914 #endif
1915 
1916 /*
1917  *
1918  * Based on the number of unused allocated objects calculate
1919  * and return the number of pages that we can free.
1920  */
1921 static unsigned long zs_can_compact(struct size_class *class)
1922 {
1923         unsigned long obj_wasted;
1924         unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1925         unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1926 
1927         if (obj_allocated <= obj_used)
1928                 return 0;
1929 
1930         obj_wasted = obj_allocated - obj_used;
1931         obj_wasted /= class->objs_per_zspage;
1932 
1933         return obj_wasted * class->pages_per_zspage;
1934 }
1935 
1936 static unsigned long __zs_compact(struct zs_pool *pool,
1937                                   struct size_class *class)
1938 {
1939         struct zspage *src_zspage = NULL;
1940         struct zspage *dst_zspage = NULL;
1941         unsigned long pages_freed = 0;
1942 
1943         /*
1944          * protect the race between zpage migration and zs_free
1945          * as well as zpage allocation/free
1946          */
1947         write_lock(&pool->migrate_lock);
1948         spin_lock(&class->lock);
1949         while (zs_can_compact(class)) {
1950                 int fg;
1951 
1952                 if (!dst_zspage) {
1953                         dst_zspage = isolate_dst_zspage(class);
1954                         if (!dst_zspage)
1955                                 break;
1956                 }
1957 
1958                 src_zspage = isolate_src_zspage(class);
1959                 if (!src_zspage)
1960                         break;
1961 
1962                 migrate_write_lock(src_zspage);
1963                 migrate_zspage(pool, src_zspage, dst_zspage);
1964                 migrate_write_unlock(src_zspage);
1965 
1966                 fg = putback_zspage(class, src_zspage);
1967                 if (fg == ZS_INUSE_RATIO_0) {
1968                         free_zspage(pool, class, src_zspage);
1969                         pages_freed += class->pages_per_zspage;
1970                 }
1971                 src_zspage = NULL;
1972 
1973                 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1974                     || rwlock_is_contended(&pool->migrate_lock)) {
1975                         putback_zspage(class, dst_zspage);
1976                         dst_zspage = NULL;
1977 
1978                         spin_unlock(&class->lock);
1979                         write_unlock(&pool->migrate_lock);
1980                         cond_resched();
1981                         write_lock(&pool->migrate_lock);
1982                         spin_lock(&class->lock);
1983                 }
1984         }
1985 
1986         if (src_zspage)
1987                 putback_zspage(class, src_zspage);
1988 
1989         if (dst_zspage)
1990                 putback_zspage(class, dst_zspage);
1991 
1992         spin_unlock(&class->lock);
1993         write_unlock(&pool->migrate_lock);
1994 
1995         return pages_freed;
1996 }
1997 
1998 unsigned long zs_compact(struct zs_pool *pool)
1999 {
2000         int i;
2001         struct size_class *class;
2002         unsigned long pages_freed = 0;
2003 
2004         /*
2005          * Pool compaction is performed under pool->migrate_lock so it is basically
2006          * single-threaded. Having more than one thread in __zs_compact()
2007          * will increase pool->migrate_lock contention, which will impact other
2008          * zsmalloc operations that need pool->migrate_lock.
2009          */
2010         if (atomic_xchg(&pool->compaction_in_progress, 1))
2011                 return 0;
2012 
2013         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2014                 class = pool->size_class[i];
2015                 if (class->index != i)
2016                         continue;
2017                 pages_freed += __zs_compact(pool, class);
2018         }
2019         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2020         atomic_set(&pool->compaction_in_progress, 0);
2021 
2022         return pages_freed;
2023 }
2024 EXPORT_SYMBOL_GPL(zs_compact);
2025 
2026 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2027 {
2028         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2029 }
2030 EXPORT_SYMBOL_GPL(zs_pool_stats);
2031 
2032 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2033                 struct shrink_control *sc)
2034 {
2035         unsigned long pages_freed;
2036         struct zs_pool *pool = shrinker->private_data;
2037 
2038         /*
2039          * Compact classes and calculate compaction delta.
2040          * Can run concurrently with a manually triggered
2041          * (by user) compaction.
2042          */
2043         pages_freed = zs_compact(pool);
2044 
2045         return pages_freed ? pages_freed : SHRINK_STOP;
2046 }
2047 
2048 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2049                 struct shrink_control *sc)
2050 {
2051         int i;
2052         struct size_class *class;
2053         unsigned long pages_to_free = 0;
2054         struct zs_pool *pool = shrinker->private_data;
2055 
2056         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2057                 class = pool->size_class[i];
2058                 if (class->index != i)
2059                         continue;
2060 
2061                 pages_to_free += zs_can_compact(class);
2062         }
2063 
2064         return pages_to_free;
2065 }
2066 
2067 static void zs_unregister_shrinker(struct zs_pool *pool)
2068 {
2069         shrinker_free(pool->shrinker);
2070 }
2071 
2072 static int zs_register_shrinker(struct zs_pool *pool)
2073 {
2074         pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2075         if (!pool->shrinker)
2076                 return -ENOMEM;
2077 
2078         pool->shrinker->scan_objects = zs_shrinker_scan;
2079         pool->shrinker->count_objects = zs_shrinker_count;
2080         pool->shrinker->batch = 0;
2081         pool->shrinker->private_data = pool;
2082 
2083         shrinker_register(pool->shrinker);
2084 
2085         return 0;
2086 }
2087 
2088 static int calculate_zspage_chain_size(int class_size)
2089 {
2090         int i, min_waste = INT_MAX;
2091         int chain_size = 1;
2092 
2093         if (is_power_of_2(class_size))
2094                 return chain_size;
2095 
2096         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2097                 int waste;
2098 
2099                 waste = (i * PAGE_SIZE) % class_size;
2100                 if (waste < min_waste) {
2101                         min_waste = waste;
2102                         chain_size = i;
2103                 }
2104         }
2105 
2106         return chain_size;
2107 }
2108 
2109 /**
2110  * zs_create_pool - Creates an allocation pool to work from.
2111  * @name: pool name to be created
2112  *
2113  * This function must be called before anything when using
2114  * the zsmalloc allocator.
2115  *
2116  * On success, a pointer to the newly created pool is returned,
2117  * otherwise NULL.
2118  */
2119 struct zs_pool *zs_create_pool(const char *name)
2120 {
2121         int i;
2122         struct zs_pool *pool;
2123         struct size_class *prev_class = NULL;
2124 
2125         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2126         if (!pool)
2127                 return NULL;
2128 
2129         init_deferred_free(pool);
2130         rwlock_init(&pool->migrate_lock);
2131         atomic_set(&pool->compaction_in_progress, 0);
2132 
2133         pool->name = kstrdup(name, GFP_KERNEL);
2134         if (!pool->name)
2135                 goto err;
2136 
2137         if (create_cache(pool))
2138                 goto err;
2139 
2140         /*
2141          * Iterate reversely, because, size of size_class that we want to use
2142          * for merging should be larger or equal to current size.
2143          */
2144         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2145                 int size;
2146                 int pages_per_zspage;
2147                 int objs_per_zspage;
2148                 struct size_class *class;
2149                 int fullness;
2150 
2151                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2152                 if (size > ZS_MAX_ALLOC_SIZE)
2153                         size = ZS_MAX_ALLOC_SIZE;
2154                 pages_per_zspage = calculate_zspage_chain_size(size);
2155                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2156 
2157                 /*
2158                  * We iterate from biggest down to smallest classes,
2159                  * so huge_class_size holds the size of the first huge
2160                  * class. Any object bigger than or equal to that will
2161                  * endup in the huge class.
2162                  */
2163                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2164                                 !huge_class_size) {
2165                         huge_class_size = size;
2166                         /*
2167                          * The object uses ZS_HANDLE_SIZE bytes to store the
2168                          * handle. We need to subtract it, because zs_malloc()
2169                          * unconditionally adds handle size before it performs
2170                          * size class search - so object may be smaller than
2171                          * huge class size, yet it still can end up in the huge
2172                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2173                          * right before class lookup.
2174                          */
2175                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2176                 }
2177 
2178                 /*
2179                  * size_class is used for normal zsmalloc operation such
2180                  * as alloc/free for that size. Although it is natural that we
2181                  * have one size_class for each size, there is a chance that we
2182                  * can get more memory utilization if we use one size_class for
2183                  * many different sizes whose size_class have same
2184                  * characteristics. So, we makes size_class point to
2185                  * previous size_class if possible.
2186                  */
2187                 if (prev_class) {
2188                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2189                                 pool->size_class[i] = prev_class;
2190                                 continue;
2191                         }
2192                 }
2193 
2194                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2195                 if (!class)
2196                         goto err;
2197 
2198                 class->size = size;
2199                 class->index = i;
2200                 class->pages_per_zspage = pages_per_zspage;
2201                 class->objs_per_zspage = objs_per_zspage;
2202                 spin_lock_init(&class->lock);
2203                 pool->size_class[i] = class;
2204 
2205                 fullness = ZS_INUSE_RATIO_0;
2206                 while (fullness < NR_FULLNESS_GROUPS) {
2207                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2208                         fullness++;
2209                 }
2210 
2211                 prev_class = class;
2212         }
2213 
2214         /* debug only, don't abort if it fails */
2215         zs_pool_stat_create(pool, name);
2216 
2217         /*
2218          * Not critical since shrinker is only used to trigger internal
2219          * defragmentation of the pool which is pretty optional thing.  If
2220          * registration fails we still can use the pool normally and user can
2221          * trigger compaction manually. Thus, ignore return code.
2222          */
2223         zs_register_shrinker(pool);
2224 
2225         return pool;
2226 
2227 err:
2228         zs_destroy_pool(pool);
2229         return NULL;
2230 }
2231 EXPORT_SYMBOL_GPL(zs_create_pool);
2232 
2233 void zs_destroy_pool(struct zs_pool *pool)
2234 {
2235         int i;
2236 
2237         zs_unregister_shrinker(pool);
2238         zs_flush_migration(pool);
2239         zs_pool_stat_destroy(pool);
2240 
2241         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2242                 int fg;
2243                 struct size_class *class = pool->size_class[i];
2244 
2245                 if (!class)
2246                         continue;
2247 
2248                 if (class->index != i)
2249                         continue;
2250 
2251                 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2252                         if (list_empty(&class->fullness_list[fg]))
2253                                 continue;
2254 
2255                         pr_err("Class-%d fullness group %d is not empty\n",
2256                                class->size, fg);
2257                 }
2258                 kfree(class);
2259         }
2260 
2261         destroy_cache(pool);
2262         kfree(pool->name);
2263         kfree(pool);
2264 }
2265 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2266 
2267 static int __init zs_init(void)
2268 {
2269         int ret;
2270 
2271         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2272                                 zs_cpu_prepare, zs_cpu_dead);
2273         if (ret)
2274                 goto out;
2275 
2276 #ifdef CONFIG_ZPOOL
2277         zpool_register_driver(&zs_zpool_driver);
2278 #endif
2279 
2280         zs_stat_init();
2281 
2282         return 0;
2283 
2284 out:
2285         return ret;
2286 }
2287 
2288 static void __exit zs_exit(void)
2289 {
2290 #ifdef CONFIG_ZPOOL
2291         zpool_unregister_driver(&zs_zpool_driver);
2292 #endif
2293         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2294 
2295         zs_stat_exit();
2296 }
2297 
2298 module_init(zs_init);
2299 module_exit(zs_exit);
2300 
2301 MODULE_LICENSE("Dual BSD/GPL");
2302 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2303 MODULE_DESCRIPTION("zsmalloc memory allocator");
2304 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php