1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 Copyright 2023-2024 NXP 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI connection handling. */ 27 28 #include <linux/export.h> 29 #include <linux/debugfs.h> 30 31 #include <net/bluetooth/bluetooth.h> 32 #include <net/bluetooth/hci_core.h> 33 #include <net/bluetooth/l2cap.h> 34 #include <net/bluetooth/iso.h> 35 #include <net/bluetooth/mgmt.h> 36 37 #include "smp.h" 38 #include "eir.h" 39 40 struct sco_param { 41 u16 pkt_type; 42 u16 max_latency; 43 u8 retrans_effort; 44 }; 45 46 struct conn_handle_t { 47 struct hci_conn *conn; 48 __u16 handle; 49 }; 50 51 static const struct sco_param esco_param_cvsd[] = { 52 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 53 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 54 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 55 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 56 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 57 }; 58 59 static const struct sco_param sco_param_cvsd[] = { 60 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 61 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 62 }; 63 64 static const struct sco_param esco_param_msbc[] = { 65 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 66 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 67 }; 68 69 /* This function requires the caller holds hdev->lock */ 70 void hci_connect_le_scan_cleanup(struct hci_conn *conn, u8 status) 71 { 72 struct hci_conn_params *params; 73 struct hci_dev *hdev = conn->hdev; 74 struct smp_irk *irk; 75 bdaddr_t *bdaddr; 76 u8 bdaddr_type; 77 78 bdaddr = &conn->dst; 79 bdaddr_type = conn->dst_type; 80 81 /* Check if we need to convert to identity address */ 82 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 83 if (irk) { 84 bdaddr = &irk->bdaddr; 85 bdaddr_type = irk->addr_type; 86 } 87 88 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 89 bdaddr_type); 90 if (!params) 91 return; 92 93 if (params->conn) { 94 hci_conn_drop(params->conn); 95 hci_conn_put(params->conn); 96 params->conn = NULL; 97 } 98 99 if (!params->explicit_connect) 100 return; 101 102 /* If the status indicates successful cancellation of 103 * the attempt (i.e. Unknown Connection Id) there's no point of 104 * notifying failure since we'll go back to keep trying to 105 * connect. The only exception is explicit connect requests 106 * where a timeout + cancel does indicate an actual failure. 107 */ 108 if (status && status != HCI_ERROR_UNKNOWN_CONN_ID) 109 mgmt_connect_failed(hdev, conn, status); 110 111 /* The connection attempt was doing scan for new RPA, and is 112 * in scan phase. If params are not associated with any other 113 * autoconnect action, remove them completely. If they are, just unmark 114 * them as waiting for connection, by clearing explicit_connect field. 115 */ 116 params->explicit_connect = false; 117 118 hci_pend_le_list_del_init(params); 119 120 switch (params->auto_connect) { 121 case HCI_AUTO_CONN_EXPLICIT: 122 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 123 /* return instead of break to avoid duplicate scan update */ 124 return; 125 case HCI_AUTO_CONN_DIRECT: 126 case HCI_AUTO_CONN_ALWAYS: 127 hci_pend_le_list_add(params, &hdev->pend_le_conns); 128 break; 129 case HCI_AUTO_CONN_REPORT: 130 hci_pend_le_list_add(params, &hdev->pend_le_reports); 131 break; 132 default: 133 break; 134 } 135 136 hci_update_passive_scan(hdev); 137 } 138 139 static void hci_conn_cleanup(struct hci_conn *conn) 140 { 141 struct hci_dev *hdev = conn->hdev; 142 143 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 144 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 145 146 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 147 hci_remove_link_key(hdev, &conn->dst); 148 149 hci_chan_list_flush(conn); 150 151 hci_conn_hash_del(hdev, conn); 152 153 if (HCI_CONN_HANDLE_UNSET(conn->handle)) 154 ida_free(&hdev->unset_handle_ida, conn->handle); 155 156 if (conn->cleanup) 157 conn->cleanup(conn); 158 159 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 160 switch (conn->setting & SCO_AIRMODE_MASK) { 161 case SCO_AIRMODE_CVSD: 162 case SCO_AIRMODE_TRANSP: 163 if (hdev->notify) 164 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 165 break; 166 } 167 } else { 168 if (hdev->notify) 169 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 170 } 171 172 debugfs_remove_recursive(conn->debugfs); 173 174 hci_conn_del_sysfs(conn); 175 176 hci_dev_put(hdev); 177 } 178 179 int hci_disconnect(struct hci_conn *conn, __u8 reason) 180 { 181 BT_DBG("hcon %p", conn); 182 183 /* When we are central of an established connection and it enters 184 * the disconnect timeout, then go ahead and try to read the 185 * current clock offset. Processing of the result is done 186 * within the event handling and hci_clock_offset_evt function. 187 */ 188 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 189 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 190 struct hci_dev *hdev = conn->hdev; 191 struct hci_cp_read_clock_offset clkoff_cp; 192 193 clkoff_cp.handle = cpu_to_le16(conn->handle); 194 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 195 &clkoff_cp); 196 } 197 198 return hci_abort_conn(conn, reason); 199 } 200 201 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 202 { 203 struct hci_dev *hdev = conn->hdev; 204 struct hci_cp_add_sco cp; 205 206 BT_DBG("hcon %p", conn); 207 208 conn->state = BT_CONNECT; 209 conn->out = true; 210 211 conn->attempt++; 212 213 cp.handle = cpu_to_le16(handle); 214 cp.pkt_type = cpu_to_le16(conn->pkt_type); 215 216 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 217 } 218 219 static bool find_next_esco_param(struct hci_conn *conn, 220 const struct sco_param *esco_param, int size) 221 { 222 if (!conn->parent) 223 return false; 224 225 for (; conn->attempt <= size; conn->attempt++) { 226 if (lmp_esco_2m_capable(conn->parent) || 227 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) 228 break; 229 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", 230 conn, conn->attempt); 231 } 232 233 return conn->attempt <= size; 234 } 235 236 static int configure_datapath_sync(struct hci_dev *hdev, struct bt_codec *codec) 237 { 238 int err; 239 __u8 vnd_len, *vnd_data = NULL; 240 struct hci_op_configure_data_path *cmd = NULL; 241 242 /* Do not take below 2 checks as error since the 1st means user do not 243 * want to use HFP offload mode and the 2nd means the vendor controller 244 * do not need to send below HCI command for offload mode. 245 */ 246 if (!codec->data_path || !hdev->get_codec_config_data) 247 return 0; 248 249 err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len, 250 &vnd_data); 251 if (err < 0) 252 goto error; 253 254 cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL); 255 if (!cmd) { 256 err = -ENOMEM; 257 goto error; 258 } 259 260 err = hdev->get_data_path_id(hdev, &cmd->data_path_id); 261 if (err < 0) 262 goto error; 263 264 cmd->vnd_len = vnd_len; 265 memcpy(cmd->vnd_data, vnd_data, vnd_len); 266 267 cmd->direction = 0x00; 268 __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH, 269 sizeof(*cmd) + vnd_len, cmd, HCI_CMD_TIMEOUT); 270 271 cmd->direction = 0x01; 272 err = __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH, 273 sizeof(*cmd) + vnd_len, cmd, 274 HCI_CMD_TIMEOUT); 275 error: 276 277 kfree(cmd); 278 kfree(vnd_data); 279 return err; 280 } 281 282 static int hci_enhanced_setup_sync(struct hci_dev *hdev, void *data) 283 { 284 struct conn_handle_t *conn_handle = data; 285 struct hci_conn *conn = conn_handle->conn; 286 __u16 handle = conn_handle->handle; 287 struct hci_cp_enhanced_setup_sync_conn cp; 288 const struct sco_param *param; 289 290 kfree(conn_handle); 291 292 if (!hci_conn_valid(hdev, conn)) 293 return -ECANCELED; 294 295 bt_dev_dbg(hdev, "hcon %p", conn); 296 297 configure_datapath_sync(hdev, &conn->codec); 298 299 conn->state = BT_CONNECT; 300 conn->out = true; 301 302 conn->attempt++; 303 304 memset(&cp, 0x00, sizeof(cp)); 305 306 cp.handle = cpu_to_le16(handle); 307 308 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 309 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 310 311 switch (conn->codec.id) { 312 case BT_CODEC_MSBC: 313 if (!find_next_esco_param(conn, esco_param_msbc, 314 ARRAY_SIZE(esco_param_msbc))) 315 return -EINVAL; 316 317 param = &esco_param_msbc[conn->attempt - 1]; 318 cp.tx_coding_format.id = 0x05; 319 cp.rx_coding_format.id = 0x05; 320 cp.tx_codec_frame_size = __cpu_to_le16(60); 321 cp.rx_codec_frame_size = __cpu_to_le16(60); 322 cp.in_bandwidth = __cpu_to_le32(32000); 323 cp.out_bandwidth = __cpu_to_le32(32000); 324 cp.in_coding_format.id = 0x04; 325 cp.out_coding_format.id = 0x04; 326 cp.in_coded_data_size = __cpu_to_le16(16); 327 cp.out_coded_data_size = __cpu_to_le16(16); 328 cp.in_pcm_data_format = 2; 329 cp.out_pcm_data_format = 2; 330 cp.in_pcm_sample_payload_msb_pos = 0; 331 cp.out_pcm_sample_payload_msb_pos = 0; 332 cp.in_data_path = conn->codec.data_path; 333 cp.out_data_path = conn->codec.data_path; 334 cp.in_transport_unit_size = 1; 335 cp.out_transport_unit_size = 1; 336 break; 337 338 case BT_CODEC_TRANSPARENT: 339 if (!find_next_esco_param(conn, esco_param_msbc, 340 ARRAY_SIZE(esco_param_msbc))) 341 return false; 342 param = &esco_param_msbc[conn->attempt - 1]; 343 cp.tx_coding_format.id = 0x03; 344 cp.rx_coding_format.id = 0x03; 345 cp.tx_codec_frame_size = __cpu_to_le16(60); 346 cp.rx_codec_frame_size = __cpu_to_le16(60); 347 cp.in_bandwidth = __cpu_to_le32(0x1f40); 348 cp.out_bandwidth = __cpu_to_le32(0x1f40); 349 cp.in_coding_format.id = 0x03; 350 cp.out_coding_format.id = 0x03; 351 cp.in_coded_data_size = __cpu_to_le16(16); 352 cp.out_coded_data_size = __cpu_to_le16(16); 353 cp.in_pcm_data_format = 2; 354 cp.out_pcm_data_format = 2; 355 cp.in_pcm_sample_payload_msb_pos = 0; 356 cp.out_pcm_sample_payload_msb_pos = 0; 357 cp.in_data_path = conn->codec.data_path; 358 cp.out_data_path = conn->codec.data_path; 359 cp.in_transport_unit_size = 1; 360 cp.out_transport_unit_size = 1; 361 break; 362 363 case BT_CODEC_CVSD: 364 if (conn->parent && lmp_esco_capable(conn->parent)) { 365 if (!find_next_esco_param(conn, esco_param_cvsd, 366 ARRAY_SIZE(esco_param_cvsd))) 367 return -EINVAL; 368 param = &esco_param_cvsd[conn->attempt - 1]; 369 } else { 370 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 371 return -EINVAL; 372 param = &sco_param_cvsd[conn->attempt - 1]; 373 } 374 cp.tx_coding_format.id = 2; 375 cp.rx_coding_format.id = 2; 376 cp.tx_codec_frame_size = __cpu_to_le16(60); 377 cp.rx_codec_frame_size = __cpu_to_le16(60); 378 cp.in_bandwidth = __cpu_to_le32(16000); 379 cp.out_bandwidth = __cpu_to_le32(16000); 380 cp.in_coding_format.id = 4; 381 cp.out_coding_format.id = 4; 382 cp.in_coded_data_size = __cpu_to_le16(16); 383 cp.out_coded_data_size = __cpu_to_le16(16); 384 cp.in_pcm_data_format = 2; 385 cp.out_pcm_data_format = 2; 386 cp.in_pcm_sample_payload_msb_pos = 0; 387 cp.out_pcm_sample_payload_msb_pos = 0; 388 cp.in_data_path = conn->codec.data_path; 389 cp.out_data_path = conn->codec.data_path; 390 cp.in_transport_unit_size = 16; 391 cp.out_transport_unit_size = 16; 392 break; 393 default: 394 return -EINVAL; 395 } 396 397 cp.retrans_effort = param->retrans_effort; 398 cp.pkt_type = __cpu_to_le16(param->pkt_type); 399 cp.max_latency = __cpu_to_le16(param->max_latency); 400 401 if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 402 return -EIO; 403 404 return 0; 405 } 406 407 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle) 408 { 409 struct hci_dev *hdev = conn->hdev; 410 struct hci_cp_setup_sync_conn cp; 411 const struct sco_param *param; 412 413 bt_dev_dbg(hdev, "hcon %p", conn); 414 415 conn->state = BT_CONNECT; 416 conn->out = true; 417 418 conn->attempt++; 419 420 cp.handle = cpu_to_le16(handle); 421 422 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 423 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 424 cp.voice_setting = cpu_to_le16(conn->setting); 425 426 switch (conn->setting & SCO_AIRMODE_MASK) { 427 case SCO_AIRMODE_TRANSP: 428 if (!find_next_esco_param(conn, esco_param_msbc, 429 ARRAY_SIZE(esco_param_msbc))) 430 return false; 431 param = &esco_param_msbc[conn->attempt - 1]; 432 break; 433 case SCO_AIRMODE_CVSD: 434 if (conn->parent && lmp_esco_capable(conn->parent)) { 435 if (!find_next_esco_param(conn, esco_param_cvsd, 436 ARRAY_SIZE(esco_param_cvsd))) 437 return false; 438 param = &esco_param_cvsd[conn->attempt - 1]; 439 } else { 440 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 441 return false; 442 param = &sco_param_cvsd[conn->attempt - 1]; 443 } 444 break; 445 default: 446 return false; 447 } 448 449 cp.retrans_effort = param->retrans_effort; 450 cp.pkt_type = __cpu_to_le16(param->pkt_type); 451 cp.max_latency = __cpu_to_le16(param->max_latency); 452 453 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 454 return false; 455 456 return true; 457 } 458 459 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 460 { 461 int result; 462 struct conn_handle_t *conn_handle; 463 464 if (enhanced_sync_conn_capable(conn->hdev)) { 465 conn_handle = kzalloc(sizeof(*conn_handle), GFP_KERNEL); 466 467 if (!conn_handle) 468 return false; 469 470 conn_handle->conn = conn; 471 conn_handle->handle = handle; 472 result = hci_cmd_sync_queue(conn->hdev, hci_enhanced_setup_sync, 473 conn_handle, NULL); 474 if (result < 0) 475 kfree(conn_handle); 476 477 return result == 0; 478 } 479 480 return hci_setup_sync_conn(conn, handle); 481 } 482 483 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 484 u16 to_multiplier) 485 { 486 struct hci_dev *hdev = conn->hdev; 487 struct hci_conn_params *params; 488 struct hci_cp_le_conn_update cp; 489 490 hci_dev_lock(hdev); 491 492 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 493 if (params) { 494 params->conn_min_interval = min; 495 params->conn_max_interval = max; 496 params->conn_latency = latency; 497 params->supervision_timeout = to_multiplier; 498 } 499 500 hci_dev_unlock(hdev); 501 502 memset(&cp, 0, sizeof(cp)); 503 cp.handle = cpu_to_le16(conn->handle); 504 cp.conn_interval_min = cpu_to_le16(min); 505 cp.conn_interval_max = cpu_to_le16(max); 506 cp.conn_latency = cpu_to_le16(latency); 507 cp.supervision_timeout = cpu_to_le16(to_multiplier); 508 cp.min_ce_len = cpu_to_le16(0x0000); 509 cp.max_ce_len = cpu_to_le16(0x0000); 510 511 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 512 513 if (params) 514 return 0x01; 515 516 return 0x00; 517 } 518 519 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 520 __u8 ltk[16], __u8 key_size) 521 { 522 struct hci_dev *hdev = conn->hdev; 523 struct hci_cp_le_start_enc cp; 524 525 BT_DBG("hcon %p", conn); 526 527 memset(&cp, 0, sizeof(cp)); 528 529 cp.handle = cpu_to_le16(conn->handle); 530 cp.rand = rand; 531 cp.ediv = ediv; 532 memcpy(cp.ltk, ltk, key_size); 533 534 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 535 } 536 537 /* Device _must_ be locked */ 538 void hci_sco_setup(struct hci_conn *conn, __u8 status) 539 { 540 struct hci_link *link; 541 542 link = list_first_entry_or_null(&conn->link_list, struct hci_link, list); 543 if (!link || !link->conn) 544 return; 545 546 BT_DBG("hcon %p", conn); 547 548 if (!status) { 549 if (lmp_esco_capable(conn->hdev)) 550 hci_setup_sync(link->conn, conn->handle); 551 else 552 hci_add_sco(link->conn, conn->handle); 553 } else { 554 hci_connect_cfm(link->conn, status); 555 hci_conn_del(link->conn); 556 } 557 } 558 559 static void hci_conn_timeout(struct work_struct *work) 560 { 561 struct hci_conn *conn = container_of(work, struct hci_conn, 562 disc_work.work); 563 int refcnt = atomic_read(&conn->refcnt); 564 565 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 566 567 WARN_ON(refcnt < 0); 568 569 /* FIXME: It was observed that in pairing failed scenario, refcnt 570 * drops below 0. Probably this is because l2cap_conn_del calls 571 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 572 * dropped. After that loop hci_chan_del is called which also drops 573 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 574 * otherwise drop it. 575 */ 576 if (refcnt > 0) 577 return; 578 579 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 580 } 581 582 /* Enter sniff mode */ 583 static void hci_conn_idle(struct work_struct *work) 584 { 585 struct hci_conn *conn = container_of(work, struct hci_conn, 586 idle_work.work); 587 struct hci_dev *hdev = conn->hdev; 588 589 BT_DBG("hcon %p mode %d", conn, conn->mode); 590 591 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 592 return; 593 594 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 595 return; 596 597 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 598 struct hci_cp_sniff_subrate cp; 599 cp.handle = cpu_to_le16(conn->handle); 600 cp.max_latency = cpu_to_le16(0); 601 cp.min_remote_timeout = cpu_to_le16(0); 602 cp.min_local_timeout = cpu_to_le16(0); 603 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 604 } 605 606 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 607 struct hci_cp_sniff_mode cp; 608 cp.handle = cpu_to_le16(conn->handle); 609 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 610 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 611 cp.attempt = cpu_to_le16(4); 612 cp.timeout = cpu_to_le16(1); 613 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 614 } 615 } 616 617 static void hci_conn_auto_accept(struct work_struct *work) 618 { 619 struct hci_conn *conn = container_of(work, struct hci_conn, 620 auto_accept_work.work); 621 622 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 623 &conn->dst); 624 } 625 626 static void le_disable_advertising(struct hci_dev *hdev) 627 { 628 if (ext_adv_capable(hdev)) { 629 struct hci_cp_le_set_ext_adv_enable cp; 630 631 cp.enable = 0x00; 632 cp.num_of_sets = 0x00; 633 634 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 635 &cp); 636 } else { 637 u8 enable = 0x00; 638 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 639 &enable); 640 } 641 } 642 643 static void le_conn_timeout(struct work_struct *work) 644 { 645 struct hci_conn *conn = container_of(work, struct hci_conn, 646 le_conn_timeout.work); 647 struct hci_dev *hdev = conn->hdev; 648 649 BT_DBG(""); 650 651 /* We could end up here due to having done directed advertising, 652 * so clean up the state if necessary. This should however only 653 * happen with broken hardware or if low duty cycle was used 654 * (which doesn't have a timeout of its own). 655 */ 656 if (conn->role == HCI_ROLE_SLAVE) { 657 /* Disable LE Advertising */ 658 le_disable_advertising(hdev); 659 hci_dev_lock(hdev); 660 hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 661 hci_dev_unlock(hdev); 662 return; 663 } 664 665 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 666 } 667 668 struct iso_list_data { 669 union { 670 u8 cig; 671 u8 big; 672 }; 673 union { 674 u8 cis; 675 u8 bis; 676 u16 sync_handle; 677 }; 678 int count; 679 bool big_term; 680 bool pa_sync_term; 681 bool big_sync_term; 682 }; 683 684 static void bis_list(struct hci_conn *conn, void *data) 685 { 686 struct iso_list_data *d = data; 687 688 /* Skip if not broadcast/ANY address */ 689 if (bacmp(&conn->dst, BDADDR_ANY)) 690 return; 691 692 if (d->big != conn->iso_qos.bcast.big || d->bis == BT_ISO_QOS_BIS_UNSET || 693 d->bis != conn->iso_qos.bcast.bis) 694 return; 695 696 d->count++; 697 } 698 699 static int terminate_big_sync(struct hci_dev *hdev, void *data) 700 { 701 struct iso_list_data *d = data; 702 703 bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", d->big, d->bis); 704 705 hci_disable_per_advertising_sync(hdev, d->bis); 706 hci_remove_ext_adv_instance_sync(hdev, d->bis, NULL); 707 708 /* Only terminate BIG if it has been created */ 709 if (!d->big_term) 710 return 0; 711 712 return hci_le_terminate_big_sync(hdev, d->big, 713 HCI_ERROR_LOCAL_HOST_TERM); 714 } 715 716 static void terminate_big_destroy(struct hci_dev *hdev, void *data, int err) 717 { 718 kfree(data); 719 } 720 721 static int hci_le_terminate_big(struct hci_dev *hdev, struct hci_conn *conn) 722 { 723 struct iso_list_data *d; 724 int ret; 725 726 bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", conn->iso_qos.bcast.big, 727 conn->iso_qos.bcast.bis); 728 729 d = kzalloc(sizeof(*d), GFP_KERNEL); 730 if (!d) 731 return -ENOMEM; 732 733 d->big = conn->iso_qos.bcast.big; 734 d->bis = conn->iso_qos.bcast.bis; 735 d->big_term = test_and_clear_bit(HCI_CONN_BIG_CREATED, &conn->flags); 736 737 ret = hci_cmd_sync_queue(hdev, terminate_big_sync, d, 738 terminate_big_destroy); 739 if (ret) 740 kfree(d); 741 742 return ret; 743 } 744 745 static int big_terminate_sync(struct hci_dev *hdev, void *data) 746 { 747 struct iso_list_data *d = data; 748 749 bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", d->big, 750 d->sync_handle); 751 752 if (d->big_sync_term) 753 hci_le_big_terminate_sync(hdev, d->big); 754 755 if (d->pa_sync_term) 756 return hci_le_pa_terminate_sync(hdev, d->sync_handle); 757 758 return 0; 759 } 760 761 static void find_bis(struct hci_conn *conn, void *data) 762 { 763 struct iso_list_data *d = data; 764 765 /* Ignore if BIG doesn't match */ 766 if (d->big != conn->iso_qos.bcast.big) 767 return; 768 769 d->count++; 770 } 771 772 static int hci_le_big_terminate(struct hci_dev *hdev, u8 big, struct hci_conn *conn) 773 { 774 struct iso_list_data *d; 775 int ret; 776 777 bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", big, conn->sync_handle); 778 779 d = kzalloc(sizeof(*d), GFP_KERNEL); 780 if (!d) 781 return -ENOMEM; 782 783 memset(d, 0, sizeof(*d)); 784 d->big = big; 785 d->sync_handle = conn->sync_handle; 786 787 if (test_and_clear_bit(HCI_CONN_PA_SYNC, &conn->flags)) { 788 hci_conn_hash_list_flag(hdev, find_bis, ISO_LINK, 789 HCI_CONN_PA_SYNC, d); 790 791 if (!d->count) 792 d->pa_sync_term = true; 793 794 d->count = 0; 795 } 796 797 if (test_and_clear_bit(HCI_CONN_BIG_SYNC, &conn->flags)) { 798 hci_conn_hash_list_flag(hdev, find_bis, ISO_LINK, 799 HCI_CONN_BIG_SYNC, d); 800 801 if (!d->count) 802 d->big_sync_term = true; 803 } 804 805 ret = hci_cmd_sync_queue(hdev, big_terminate_sync, d, 806 terminate_big_destroy); 807 if (ret) 808 kfree(d); 809 810 return ret; 811 } 812 813 /* Cleanup BIS connection 814 * 815 * Detects if there any BIS left connected in a BIG 816 * broadcaster: Remove advertising instance and terminate BIG. 817 * broadcaster receiver: Teminate BIG sync and terminate PA sync. 818 */ 819 static void bis_cleanup(struct hci_conn *conn) 820 { 821 struct hci_dev *hdev = conn->hdev; 822 struct hci_conn *bis; 823 824 bt_dev_dbg(hdev, "conn %p", conn); 825 826 if (conn->role == HCI_ROLE_MASTER) { 827 if (!test_and_clear_bit(HCI_CONN_PER_ADV, &conn->flags)) 828 return; 829 830 /* Check if ISO connection is a BIS and terminate advertising 831 * set and BIG if there are no other connections using it. 832 */ 833 bis = hci_conn_hash_lookup_big(hdev, conn->iso_qos.bcast.big); 834 if (bis) 835 return; 836 837 hci_le_terminate_big(hdev, conn); 838 } else { 839 hci_le_big_terminate(hdev, conn->iso_qos.bcast.big, 840 conn); 841 } 842 } 843 844 static int remove_cig_sync(struct hci_dev *hdev, void *data) 845 { 846 u8 handle = PTR_UINT(data); 847 848 return hci_le_remove_cig_sync(hdev, handle); 849 } 850 851 static int hci_le_remove_cig(struct hci_dev *hdev, u8 handle) 852 { 853 bt_dev_dbg(hdev, "handle 0x%2.2x", handle); 854 855 return hci_cmd_sync_queue(hdev, remove_cig_sync, UINT_PTR(handle), 856 NULL); 857 } 858 859 static void find_cis(struct hci_conn *conn, void *data) 860 { 861 struct iso_list_data *d = data; 862 863 /* Ignore broadcast or if CIG don't match */ 864 if (!bacmp(&conn->dst, BDADDR_ANY) || d->cig != conn->iso_qos.ucast.cig) 865 return; 866 867 d->count++; 868 } 869 870 /* Cleanup CIS connection: 871 * 872 * Detects if there any CIS left connected in a CIG and remove it. 873 */ 874 static void cis_cleanup(struct hci_conn *conn) 875 { 876 struct hci_dev *hdev = conn->hdev; 877 struct iso_list_data d; 878 879 if (conn->iso_qos.ucast.cig == BT_ISO_QOS_CIG_UNSET) 880 return; 881 882 memset(&d, 0, sizeof(d)); 883 d.cig = conn->iso_qos.ucast.cig; 884 885 /* Check if ISO connection is a CIS and remove CIG if there are 886 * no other connections using it. 887 */ 888 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, BT_BOUND, &d); 889 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, BT_CONNECT, &d); 890 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, BT_CONNECTED, &d); 891 if (d.count) 892 return; 893 894 hci_le_remove_cig(hdev, conn->iso_qos.ucast.cig); 895 } 896 897 static int hci_conn_hash_alloc_unset(struct hci_dev *hdev) 898 { 899 return ida_alloc_range(&hdev->unset_handle_ida, HCI_CONN_HANDLE_MAX + 1, 900 U16_MAX, GFP_ATOMIC); 901 } 902 903 static struct hci_conn *__hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 904 u8 role, u16 handle) 905 { 906 struct hci_conn *conn; 907 908 switch (type) { 909 case ACL_LINK: 910 if (!hdev->acl_mtu) 911 return ERR_PTR(-ECONNREFUSED); 912 break; 913 case ISO_LINK: 914 if (hdev->iso_mtu) 915 /* Dedicated ISO Buffer exists */ 916 break; 917 fallthrough; 918 case LE_LINK: 919 if (hdev->le_mtu && hdev->le_mtu < HCI_MIN_LE_MTU) 920 return ERR_PTR(-ECONNREFUSED); 921 if (!hdev->le_mtu && hdev->acl_mtu < HCI_MIN_LE_MTU) 922 return ERR_PTR(-ECONNREFUSED); 923 break; 924 case SCO_LINK: 925 case ESCO_LINK: 926 if (!hdev->sco_pkts) 927 /* Controller does not support SCO or eSCO over HCI */ 928 return ERR_PTR(-ECONNREFUSED); 929 break; 930 default: 931 return ERR_PTR(-ECONNREFUSED); 932 } 933 934 bt_dev_dbg(hdev, "dst %pMR handle 0x%4.4x", dst, handle); 935 936 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 937 if (!conn) 938 return ERR_PTR(-ENOMEM); 939 940 bacpy(&conn->dst, dst); 941 bacpy(&conn->src, &hdev->bdaddr); 942 conn->handle = handle; 943 conn->hdev = hdev; 944 conn->type = type; 945 conn->role = role; 946 conn->mode = HCI_CM_ACTIVE; 947 conn->state = BT_OPEN; 948 conn->auth_type = HCI_AT_GENERAL_BONDING; 949 conn->io_capability = hdev->io_capability; 950 conn->remote_auth = 0xff; 951 conn->key_type = 0xff; 952 conn->rssi = HCI_RSSI_INVALID; 953 conn->tx_power = HCI_TX_POWER_INVALID; 954 conn->max_tx_power = HCI_TX_POWER_INVALID; 955 conn->sync_handle = HCI_SYNC_HANDLE_INVALID; 956 957 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 958 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 959 960 /* Set Default Authenticated payload timeout to 30s */ 961 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 962 963 if (conn->role == HCI_ROLE_MASTER) 964 conn->out = true; 965 966 switch (type) { 967 case ACL_LINK: 968 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 969 conn->mtu = hdev->acl_mtu; 970 break; 971 case LE_LINK: 972 /* conn->src should reflect the local identity address */ 973 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 974 conn->mtu = hdev->le_mtu ? hdev->le_mtu : hdev->acl_mtu; 975 break; 976 case ISO_LINK: 977 /* conn->src should reflect the local identity address */ 978 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 979 980 /* set proper cleanup function */ 981 if (!bacmp(dst, BDADDR_ANY)) 982 conn->cleanup = bis_cleanup; 983 else if (conn->role == HCI_ROLE_MASTER) 984 conn->cleanup = cis_cleanup; 985 986 conn->mtu = hdev->iso_mtu ? hdev->iso_mtu : 987 hdev->le_mtu ? hdev->le_mtu : hdev->acl_mtu; 988 break; 989 case SCO_LINK: 990 if (lmp_esco_capable(hdev)) 991 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 992 (hdev->esco_type & EDR_ESCO_MASK); 993 else 994 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 995 996 conn->mtu = hdev->sco_mtu; 997 break; 998 case ESCO_LINK: 999 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 1000 conn->mtu = hdev->sco_mtu; 1001 break; 1002 } 1003 1004 skb_queue_head_init(&conn->data_q); 1005 1006 INIT_LIST_HEAD(&conn->chan_list); 1007 INIT_LIST_HEAD(&conn->link_list); 1008 1009 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 1010 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 1011 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 1012 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 1013 1014 atomic_set(&conn->refcnt, 0); 1015 1016 hci_dev_hold(hdev); 1017 1018 hci_conn_hash_add(hdev, conn); 1019 1020 /* The SCO and eSCO connections will only be notified when their 1021 * setup has been completed. This is different to ACL links which 1022 * can be notified right away. 1023 */ 1024 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 1025 if (hdev->notify) 1026 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 1027 } 1028 1029 hci_conn_init_sysfs(conn); 1030 1031 return conn; 1032 } 1033 1034 struct hci_conn *hci_conn_add_unset(struct hci_dev *hdev, int type, 1035 bdaddr_t *dst, u8 role) 1036 { 1037 int handle; 1038 1039 bt_dev_dbg(hdev, "dst %pMR", dst); 1040 1041 handle = hci_conn_hash_alloc_unset(hdev); 1042 if (unlikely(handle < 0)) 1043 return ERR_PTR(-ECONNREFUSED); 1044 1045 return __hci_conn_add(hdev, type, dst, role, handle); 1046 } 1047 1048 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 1049 u8 role, u16 handle) 1050 { 1051 if (handle > HCI_CONN_HANDLE_MAX) 1052 return ERR_PTR(-EINVAL); 1053 1054 return __hci_conn_add(hdev, type, dst, role, handle); 1055 } 1056 1057 static void hci_conn_cleanup_child(struct hci_conn *conn, u8 reason) 1058 { 1059 if (!reason) 1060 reason = HCI_ERROR_REMOTE_USER_TERM; 1061 1062 /* Due to race, SCO/ISO conn might be not established yet at this point, 1063 * and nothing else will clean it up. In other cases it is done via HCI 1064 * events. 1065 */ 1066 switch (conn->type) { 1067 case SCO_LINK: 1068 case ESCO_LINK: 1069 if (HCI_CONN_HANDLE_UNSET(conn->handle)) 1070 hci_conn_failed(conn, reason); 1071 break; 1072 case ISO_LINK: 1073 if ((conn->state != BT_CONNECTED && 1074 !test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) || 1075 test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) 1076 hci_conn_failed(conn, reason); 1077 break; 1078 } 1079 } 1080 1081 static void hci_conn_unlink(struct hci_conn *conn) 1082 { 1083 struct hci_dev *hdev = conn->hdev; 1084 1085 bt_dev_dbg(hdev, "hcon %p", conn); 1086 1087 if (!conn->parent) { 1088 struct hci_link *link, *t; 1089 1090 list_for_each_entry_safe(link, t, &conn->link_list, list) { 1091 struct hci_conn *child = link->conn; 1092 1093 hci_conn_unlink(child); 1094 1095 /* If hdev is down it means 1096 * hci_dev_close_sync/hci_conn_hash_flush is in progress 1097 * and links don't need to be cleanup as all connections 1098 * would be cleanup. 1099 */ 1100 if (!test_bit(HCI_UP, &hdev->flags)) 1101 continue; 1102 1103 hci_conn_cleanup_child(child, conn->abort_reason); 1104 } 1105 1106 return; 1107 } 1108 1109 if (!conn->link) 1110 return; 1111 1112 list_del_rcu(&conn->link->list); 1113 synchronize_rcu(); 1114 1115 hci_conn_drop(conn->parent); 1116 hci_conn_put(conn->parent); 1117 conn->parent = NULL; 1118 1119 kfree(conn->link); 1120 conn->link = NULL; 1121 } 1122 1123 void hci_conn_del(struct hci_conn *conn) 1124 { 1125 struct hci_dev *hdev = conn->hdev; 1126 1127 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 1128 1129 hci_conn_unlink(conn); 1130 1131 cancel_delayed_work_sync(&conn->disc_work); 1132 cancel_delayed_work_sync(&conn->auto_accept_work); 1133 cancel_delayed_work_sync(&conn->idle_work); 1134 1135 if (conn->type == ACL_LINK) { 1136 /* Unacked frames */ 1137 hdev->acl_cnt += conn->sent; 1138 } else if (conn->type == LE_LINK) { 1139 cancel_delayed_work(&conn->le_conn_timeout); 1140 1141 if (hdev->le_pkts) 1142 hdev->le_cnt += conn->sent; 1143 else 1144 hdev->acl_cnt += conn->sent; 1145 } else { 1146 /* Unacked ISO frames */ 1147 if (conn->type == ISO_LINK) { 1148 if (hdev->iso_pkts) 1149 hdev->iso_cnt += conn->sent; 1150 else if (hdev->le_pkts) 1151 hdev->le_cnt += conn->sent; 1152 else 1153 hdev->acl_cnt += conn->sent; 1154 } 1155 } 1156 1157 skb_queue_purge(&conn->data_q); 1158 1159 /* Remove the connection from the list and cleanup its remaining 1160 * state. This is a separate function since for some cases like 1161 * BT_CONNECT_SCAN we *only* want the cleanup part without the 1162 * rest of hci_conn_del. 1163 */ 1164 hci_conn_cleanup(conn); 1165 1166 /* Dequeue callbacks using connection pointer as data */ 1167 hci_cmd_sync_dequeue(hdev, NULL, conn, NULL); 1168 } 1169 1170 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 1171 { 1172 int use_src = bacmp(src, BDADDR_ANY); 1173 struct hci_dev *hdev = NULL, *d; 1174 1175 BT_DBG("%pMR -> %pMR", src, dst); 1176 1177 read_lock(&hci_dev_list_lock); 1178 1179 list_for_each_entry(d, &hci_dev_list, list) { 1180 if (!test_bit(HCI_UP, &d->flags) || 1181 hci_dev_test_flag(d, HCI_USER_CHANNEL)) 1182 continue; 1183 1184 /* Simple routing: 1185 * No source address - find interface with bdaddr != dst 1186 * Source address - find interface with bdaddr == src 1187 */ 1188 1189 if (use_src) { 1190 bdaddr_t id_addr; 1191 u8 id_addr_type; 1192 1193 if (src_type == BDADDR_BREDR) { 1194 if (!lmp_bredr_capable(d)) 1195 continue; 1196 bacpy(&id_addr, &d->bdaddr); 1197 id_addr_type = BDADDR_BREDR; 1198 } else { 1199 if (!lmp_le_capable(d)) 1200 continue; 1201 1202 hci_copy_identity_address(d, &id_addr, 1203 &id_addr_type); 1204 1205 /* Convert from HCI to three-value type */ 1206 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 1207 id_addr_type = BDADDR_LE_PUBLIC; 1208 else 1209 id_addr_type = BDADDR_LE_RANDOM; 1210 } 1211 1212 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 1213 hdev = d; break; 1214 } 1215 } else { 1216 if (bacmp(&d->bdaddr, dst)) { 1217 hdev = d; break; 1218 } 1219 } 1220 } 1221 1222 if (hdev) 1223 hdev = hci_dev_hold(hdev); 1224 1225 read_unlock(&hci_dev_list_lock); 1226 return hdev; 1227 } 1228 EXPORT_SYMBOL(hci_get_route); 1229 1230 /* This function requires the caller holds hdev->lock */ 1231 static void hci_le_conn_failed(struct hci_conn *conn, u8 status) 1232 { 1233 struct hci_dev *hdev = conn->hdev; 1234 1235 hci_connect_le_scan_cleanup(conn, status); 1236 1237 /* Enable advertising in case this was a failed connection 1238 * attempt as a peripheral. 1239 */ 1240 hci_enable_advertising(hdev); 1241 } 1242 1243 /* This function requires the caller holds hdev->lock */ 1244 void hci_conn_failed(struct hci_conn *conn, u8 status) 1245 { 1246 struct hci_dev *hdev = conn->hdev; 1247 1248 bt_dev_dbg(hdev, "status 0x%2.2x", status); 1249 1250 switch (conn->type) { 1251 case LE_LINK: 1252 hci_le_conn_failed(conn, status); 1253 break; 1254 case ACL_LINK: 1255 mgmt_connect_failed(hdev, conn, status); 1256 break; 1257 } 1258 1259 /* In case of BIG/PA sync failed, clear conn flags so that 1260 * the conns will be correctly cleaned up by ISO layer 1261 */ 1262 test_and_clear_bit(HCI_CONN_BIG_SYNC_FAILED, &conn->flags); 1263 test_and_clear_bit(HCI_CONN_PA_SYNC_FAILED, &conn->flags); 1264 1265 conn->state = BT_CLOSED; 1266 hci_connect_cfm(conn, status); 1267 hci_conn_del(conn); 1268 } 1269 1270 /* This function requires the caller holds hdev->lock */ 1271 u8 hci_conn_set_handle(struct hci_conn *conn, u16 handle) 1272 { 1273 struct hci_dev *hdev = conn->hdev; 1274 1275 bt_dev_dbg(hdev, "hcon %p handle 0x%4.4x", conn, handle); 1276 1277 if (conn->handle == handle) 1278 return 0; 1279 1280 if (handle > HCI_CONN_HANDLE_MAX) { 1281 bt_dev_err(hdev, "Invalid handle: 0x%4.4x > 0x%4.4x", 1282 handle, HCI_CONN_HANDLE_MAX); 1283 return HCI_ERROR_INVALID_PARAMETERS; 1284 } 1285 1286 /* If abort_reason has been sent it means the connection is being 1287 * aborted and the handle shall not be changed. 1288 */ 1289 if (conn->abort_reason) 1290 return conn->abort_reason; 1291 1292 if (HCI_CONN_HANDLE_UNSET(conn->handle)) 1293 ida_free(&hdev->unset_handle_ida, conn->handle); 1294 1295 conn->handle = handle; 1296 1297 return 0; 1298 } 1299 1300 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1301 u8 dst_type, bool dst_resolved, u8 sec_level, 1302 u16 conn_timeout, u8 role, u8 phy, u8 sec_phy) 1303 { 1304 struct hci_conn *conn; 1305 struct smp_irk *irk; 1306 int err; 1307 1308 /* Let's make sure that le is enabled.*/ 1309 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1310 if (lmp_le_capable(hdev)) 1311 return ERR_PTR(-ECONNREFUSED); 1312 1313 return ERR_PTR(-EOPNOTSUPP); 1314 } 1315 1316 /* Since the controller supports only one LE connection attempt at a 1317 * time, we return -EBUSY if there is any connection attempt running. 1318 */ 1319 if (hci_lookup_le_connect(hdev)) 1320 return ERR_PTR(-EBUSY); 1321 1322 /* If there's already a connection object but it's not in 1323 * scanning state it means it must already be established, in 1324 * which case we can't do anything else except report a failure 1325 * to connect. 1326 */ 1327 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1328 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 1329 return ERR_PTR(-EBUSY); 1330 } 1331 1332 /* Check if the destination address has been resolved by the controller 1333 * since if it did then the identity address shall be used. 1334 */ 1335 if (!dst_resolved) { 1336 /* When given an identity address with existing identity 1337 * resolving key, the connection needs to be established 1338 * to a resolvable random address. 1339 * 1340 * Storing the resolvable random address is required here 1341 * to handle connection failures. The address will later 1342 * be resolved back into the original identity address 1343 * from the connect request. 1344 */ 1345 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1346 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1347 dst = &irk->rpa; 1348 dst_type = ADDR_LE_DEV_RANDOM; 1349 } 1350 } 1351 1352 if (conn) { 1353 bacpy(&conn->dst, dst); 1354 } else { 1355 conn = hci_conn_add_unset(hdev, LE_LINK, dst, role); 1356 if (IS_ERR(conn)) 1357 return conn; 1358 hci_conn_hold(conn); 1359 conn->pending_sec_level = sec_level; 1360 } 1361 1362 conn->dst_type = dst_type; 1363 conn->sec_level = BT_SECURITY_LOW; 1364 conn->conn_timeout = conn_timeout; 1365 conn->le_adv_phy = phy; 1366 conn->le_adv_sec_phy = sec_phy; 1367 1368 err = hci_connect_le_sync(hdev, conn); 1369 if (err) { 1370 hci_conn_del(conn); 1371 return ERR_PTR(err); 1372 } 1373 1374 return conn; 1375 } 1376 1377 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1378 { 1379 struct hci_conn *conn; 1380 1381 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1382 if (!conn) 1383 return false; 1384 1385 if (conn->state != BT_CONNECTED) 1386 return false; 1387 1388 return true; 1389 } 1390 1391 /* This function requires the caller holds hdev->lock */ 1392 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1393 bdaddr_t *addr, u8 addr_type) 1394 { 1395 struct hci_conn_params *params; 1396 1397 if (is_connected(hdev, addr, addr_type)) 1398 return -EISCONN; 1399 1400 params = hci_conn_params_lookup(hdev, addr, addr_type); 1401 if (!params) { 1402 params = hci_conn_params_add(hdev, addr, addr_type); 1403 if (!params) 1404 return -ENOMEM; 1405 1406 /* If we created new params, mark them to be deleted in 1407 * hci_connect_le_scan_cleanup. It's different case than 1408 * existing disabled params, those will stay after cleanup. 1409 */ 1410 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1411 } 1412 1413 /* We're trying to connect, so make sure params are at pend_le_conns */ 1414 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1415 params->auto_connect == HCI_AUTO_CONN_REPORT || 1416 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1417 hci_pend_le_list_del_init(params); 1418 hci_pend_le_list_add(params, &hdev->pend_le_conns); 1419 } 1420 1421 params->explicit_connect = true; 1422 1423 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1424 params->auto_connect); 1425 1426 return 0; 1427 } 1428 1429 static int qos_set_big(struct hci_dev *hdev, struct bt_iso_qos *qos) 1430 { 1431 struct hci_conn *conn; 1432 u8 big; 1433 1434 /* Allocate a BIG if not set */ 1435 if (qos->bcast.big == BT_ISO_QOS_BIG_UNSET) { 1436 for (big = 0x00; big < 0xef; big++) { 1437 1438 conn = hci_conn_hash_lookup_big(hdev, big); 1439 if (!conn) 1440 break; 1441 } 1442 1443 if (big == 0xef) 1444 return -EADDRNOTAVAIL; 1445 1446 /* Update BIG */ 1447 qos->bcast.big = big; 1448 } 1449 1450 return 0; 1451 } 1452 1453 static int qos_set_bis(struct hci_dev *hdev, struct bt_iso_qos *qos) 1454 { 1455 struct hci_conn *conn; 1456 u8 bis; 1457 1458 /* Allocate BIS if not set */ 1459 if (qos->bcast.bis == BT_ISO_QOS_BIS_UNSET) { 1460 if (qos->bcast.big != BT_ISO_QOS_BIG_UNSET) { 1461 conn = hci_conn_hash_lookup_big(hdev, qos->bcast.big); 1462 1463 if (conn) { 1464 /* If the BIG handle is already matched to an advertising 1465 * handle, do not allocate a new one. 1466 */ 1467 qos->bcast.bis = conn->iso_qos.bcast.bis; 1468 return 0; 1469 } 1470 } 1471 1472 /* Find an unused adv set to advertise BIS, skip instance 0x00 1473 * since it is reserved as general purpose set. 1474 */ 1475 for (bis = 0x01; bis < hdev->le_num_of_adv_sets; 1476 bis++) { 1477 1478 conn = hci_conn_hash_lookup_bis(hdev, BDADDR_ANY, bis); 1479 if (!conn) 1480 break; 1481 } 1482 1483 if (bis == hdev->le_num_of_adv_sets) 1484 return -EADDRNOTAVAIL; 1485 1486 /* Update BIS */ 1487 qos->bcast.bis = bis; 1488 } 1489 1490 return 0; 1491 } 1492 1493 /* This function requires the caller holds hdev->lock */ 1494 static struct hci_conn *hci_add_bis(struct hci_dev *hdev, bdaddr_t *dst, 1495 struct bt_iso_qos *qos, __u8 base_len, 1496 __u8 *base) 1497 { 1498 struct hci_conn *conn; 1499 int err; 1500 1501 /* Let's make sure that le is enabled.*/ 1502 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1503 if (lmp_le_capable(hdev)) 1504 return ERR_PTR(-ECONNREFUSED); 1505 return ERR_PTR(-EOPNOTSUPP); 1506 } 1507 1508 err = qos_set_big(hdev, qos); 1509 if (err) 1510 return ERR_PTR(err); 1511 1512 err = qos_set_bis(hdev, qos); 1513 if (err) 1514 return ERR_PTR(err); 1515 1516 /* Check if the LE Create BIG command has already been sent */ 1517 conn = hci_conn_hash_lookup_per_adv_bis(hdev, dst, qos->bcast.big, 1518 qos->bcast.big); 1519 if (conn) 1520 return ERR_PTR(-EADDRINUSE); 1521 1522 /* Check BIS settings against other bound BISes, since all 1523 * BISes in a BIG must have the same value for all parameters 1524 */ 1525 conn = hci_conn_hash_lookup_big(hdev, qos->bcast.big); 1526 1527 if (conn && (memcmp(qos, &conn->iso_qos, sizeof(*qos)) || 1528 base_len != conn->le_per_adv_data_len || 1529 memcmp(conn->le_per_adv_data, base, base_len))) 1530 return ERR_PTR(-EADDRINUSE); 1531 1532 conn = hci_conn_add_unset(hdev, ISO_LINK, dst, HCI_ROLE_MASTER); 1533 if (IS_ERR(conn)) 1534 return conn; 1535 1536 conn->state = BT_CONNECT; 1537 1538 hci_conn_hold(conn); 1539 return conn; 1540 } 1541 1542 /* This function requires the caller holds hdev->lock */ 1543 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1544 u8 dst_type, u8 sec_level, 1545 u16 conn_timeout, 1546 enum conn_reasons conn_reason) 1547 { 1548 struct hci_conn *conn; 1549 1550 /* Let's make sure that le is enabled.*/ 1551 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1552 if (lmp_le_capable(hdev)) 1553 return ERR_PTR(-ECONNREFUSED); 1554 1555 return ERR_PTR(-EOPNOTSUPP); 1556 } 1557 1558 /* Some devices send ATT messages as soon as the physical link is 1559 * established. To be able to handle these ATT messages, the user- 1560 * space first establishes the connection and then starts the pairing 1561 * process. 1562 * 1563 * So if a hci_conn object already exists for the following connection 1564 * attempt, we simply update pending_sec_level and auth_type fields 1565 * and return the object found. 1566 */ 1567 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1568 if (conn) { 1569 if (conn->pending_sec_level < sec_level) 1570 conn->pending_sec_level = sec_level; 1571 goto done; 1572 } 1573 1574 BT_DBG("requesting refresh of dst_addr"); 1575 1576 conn = hci_conn_add_unset(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1577 if (IS_ERR(conn)) 1578 return conn; 1579 1580 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1581 hci_conn_del(conn); 1582 return ERR_PTR(-EBUSY); 1583 } 1584 1585 conn->state = BT_CONNECT; 1586 set_bit(HCI_CONN_SCANNING, &conn->flags); 1587 conn->dst_type = dst_type; 1588 conn->sec_level = BT_SECURITY_LOW; 1589 conn->pending_sec_level = sec_level; 1590 conn->conn_timeout = conn_timeout; 1591 conn->conn_reason = conn_reason; 1592 1593 hci_update_passive_scan(hdev); 1594 1595 done: 1596 hci_conn_hold(conn); 1597 return conn; 1598 } 1599 1600 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1601 u8 sec_level, u8 auth_type, 1602 enum conn_reasons conn_reason, u16 timeout) 1603 { 1604 struct hci_conn *acl; 1605 1606 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1607 if (lmp_bredr_capable(hdev)) 1608 return ERR_PTR(-ECONNREFUSED); 1609 1610 return ERR_PTR(-EOPNOTSUPP); 1611 } 1612 1613 /* Reject outgoing connection to device with same BD ADDR against 1614 * CVE-2020-26555 1615 */ 1616 if (!bacmp(&hdev->bdaddr, dst)) { 1617 bt_dev_dbg(hdev, "Reject connection with same BD_ADDR %pMR\n", 1618 dst); 1619 return ERR_PTR(-ECONNREFUSED); 1620 } 1621 1622 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1623 if (!acl) { 1624 acl = hci_conn_add_unset(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1625 if (IS_ERR(acl)) 1626 return acl; 1627 } 1628 1629 hci_conn_hold(acl); 1630 1631 acl->conn_reason = conn_reason; 1632 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1633 int err; 1634 1635 acl->sec_level = BT_SECURITY_LOW; 1636 acl->pending_sec_level = sec_level; 1637 acl->auth_type = auth_type; 1638 acl->conn_timeout = timeout; 1639 1640 err = hci_connect_acl_sync(hdev, acl); 1641 if (err) { 1642 hci_conn_del(acl); 1643 return ERR_PTR(err); 1644 } 1645 } 1646 1647 return acl; 1648 } 1649 1650 static struct hci_link *hci_conn_link(struct hci_conn *parent, 1651 struct hci_conn *conn) 1652 { 1653 struct hci_dev *hdev = parent->hdev; 1654 struct hci_link *link; 1655 1656 bt_dev_dbg(hdev, "parent %p hcon %p", parent, conn); 1657 1658 if (conn->link) 1659 return conn->link; 1660 1661 if (conn->parent) 1662 return NULL; 1663 1664 link = kzalloc(sizeof(*link), GFP_KERNEL); 1665 if (!link) 1666 return NULL; 1667 1668 link->conn = hci_conn_hold(conn); 1669 conn->link = link; 1670 conn->parent = hci_conn_get(parent); 1671 1672 /* Use list_add_tail_rcu append to the list */ 1673 list_add_tail_rcu(&link->list, &parent->link_list); 1674 1675 return link; 1676 } 1677 1678 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1679 __u16 setting, struct bt_codec *codec, 1680 u16 timeout) 1681 { 1682 struct hci_conn *acl; 1683 struct hci_conn *sco; 1684 struct hci_link *link; 1685 1686 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1687 CONN_REASON_SCO_CONNECT, timeout); 1688 if (IS_ERR(acl)) 1689 return acl; 1690 1691 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1692 if (!sco) { 1693 sco = hci_conn_add_unset(hdev, type, dst, HCI_ROLE_MASTER); 1694 if (IS_ERR(sco)) { 1695 hci_conn_drop(acl); 1696 return sco; 1697 } 1698 } 1699 1700 link = hci_conn_link(acl, sco); 1701 if (!link) { 1702 hci_conn_drop(acl); 1703 hci_conn_drop(sco); 1704 return ERR_PTR(-ENOLINK); 1705 } 1706 1707 sco->setting = setting; 1708 sco->codec = *codec; 1709 1710 if (acl->state == BT_CONNECTED && 1711 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1712 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1713 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1714 1715 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1716 /* defer SCO setup until mode change completed */ 1717 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1718 return sco; 1719 } 1720 1721 hci_sco_setup(acl, 0x00); 1722 } 1723 1724 return sco; 1725 } 1726 1727 static int hci_le_create_big(struct hci_conn *conn, struct bt_iso_qos *qos) 1728 { 1729 struct hci_dev *hdev = conn->hdev; 1730 struct hci_cp_le_create_big cp; 1731 struct iso_list_data data; 1732 1733 memset(&cp, 0, sizeof(cp)); 1734 1735 data.big = qos->bcast.big; 1736 data.bis = qos->bcast.bis; 1737 data.count = 0; 1738 1739 /* Create a BIS for each bound connection */ 1740 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, 1741 BT_BOUND, &data); 1742 1743 cp.handle = qos->bcast.big; 1744 cp.adv_handle = qos->bcast.bis; 1745 cp.num_bis = data.count; 1746 hci_cpu_to_le24(qos->bcast.out.interval, cp.bis.sdu_interval); 1747 cp.bis.sdu = cpu_to_le16(qos->bcast.out.sdu); 1748 cp.bis.latency = cpu_to_le16(qos->bcast.out.latency); 1749 cp.bis.rtn = qos->bcast.out.rtn; 1750 cp.bis.phy = qos->bcast.out.phy; 1751 cp.bis.packing = qos->bcast.packing; 1752 cp.bis.framing = qos->bcast.framing; 1753 cp.bis.encryption = qos->bcast.encryption; 1754 memcpy(cp.bis.bcode, qos->bcast.bcode, sizeof(cp.bis.bcode)); 1755 1756 return hci_send_cmd(hdev, HCI_OP_LE_CREATE_BIG, sizeof(cp), &cp); 1757 } 1758 1759 static int set_cig_params_sync(struct hci_dev *hdev, void *data) 1760 { 1761 DEFINE_FLEX(struct hci_cp_le_set_cig_params, pdu, cis, num_cis, 0x1f); 1762 u8 cig_id = PTR_UINT(data); 1763 struct hci_conn *conn; 1764 struct bt_iso_qos *qos; 1765 u8 aux_num_cis = 0; 1766 u8 cis_id; 1767 1768 conn = hci_conn_hash_lookup_cig(hdev, cig_id); 1769 if (!conn) 1770 return 0; 1771 1772 qos = &conn->iso_qos; 1773 pdu->cig_id = cig_id; 1774 hci_cpu_to_le24(qos->ucast.out.interval, pdu->c_interval); 1775 hci_cpu_to_le24(qos->ucast.in.interval, pdu->p_interval); 1776 pdu->sca = qos->ucast.sca; 1777 pdu->packing = qos->ucast.packing; 1778 pdu->framing = qos->ucast.framing; 1779 pdu->c_latency = cpu_to_le16(qos->ucast.out.latency); 1780 pdu->p_latency = cpu_to_le16(qos->ucast.in.latency); 1781 1782 /* Reprogram all CIS(s) with the same CIG, valid range are: 1783 * num_cis: 0x00 to 0x1F 1784 * cis_id: 0x00 to 0xEF 1785 */ 1786 for (cis_id = 0x00; cis_id < 0xf0 && 1787 aux_num_cis < pdu->num_cis; cis_id++) { 1788 struct hci_cis_params *cis; 1789 1790 conn = hci_conn_hash_lookup_cis(hdev, NULL, 0, cig_id, cis_id); 1791 if (!conn) 1792 continue; 1793 1794 qos = &conn->iso_qos; 1795 1796 cis = &pdu->cis[aux_num_cis++]; 1797 cis->cis_id = cis_id; 1798 cis->c_sdu = cpu_to_le16(conn->iso_qos.ucast.out.sdu); 1799 cis->p_sdu = cpu_to_le16(conn->iso_qos.ucast.in.sdu); 1800 cis->c_phy = qos->ucast.out.phy ? qos->ucast.out.phy : 1801 qos->ucast.in.phy; 1802 cis->p_phy = qos->ucast.in.phy ? qos->ucast.in.phy : 1803 qos->ucast.out.phy; 1804 cis->c_rtn = qos->ucast.out.rtn; 1805 cis->p_rtn = qos->ucast.in.rtn; 1806 } 1807 pdu->num_cis = aux_num_cis; 1808 1809 if (!pdu->num_cis) 1810 return 0; 1811 1812 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_CIG_PARAMS, 1813 struct_size(pdu, cis, pdu->num_cis), 1814 pdu, HCI_CMD_TIMEOUT); 1815 } 1816 1817 static bool hci_le_set_cig_params(struct hci_conn *conn, struct bt_iso_qos *qos) 1818 { 1819 struct hci_dev *hdev = conn->hdev; 1820 struct iso_list_data data; 1821 1822 memset(&data, 0, sizeof(data)); 1823 1824 /* Allocate first still reconfigurable CIG if not set */ 1825 if (qos->ucast.cig == BT_ISO_QOS_CIG_UNSET) { 1826 for (data.cig = 0x00; data.cig < 0xf0; data.cig++) { 1827 data.count = 0; 1828 1829 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, 1830 BT_CONNECT, &data); 1831 if (data.count) 1832 continue; 1833 1834 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, 1835 BT_CONNECTED, &data); 1836 if (!data.count) 1837 break; 1838 } 1839 1840 if (data.cig == 0xf0) 1841 return false; 1842 1843 /* Update CIG */ 1844 qos->ucast.cig = data.cig; 1845 } 1846 1847 if (qos->ucast.cis != BT_ISO_QOS_CIS_UNSET) { 1848 if (hci_conn_hash_lookup_cis(hdev, NULL, 0, qos->ucast.cig, 1849 qos->ucast.cis)) 1850 return false; 1851 goto done; 1852 } 1853 1854 /* Allocate first available CIS if not set */ 1855 for (data.cig = qos->ucast.cig, data.cis = 0x00; data.cis < 0xf0; 1856 data.cis++) { 1857 if (!hci_conn_hash_lookup_cis(hdev, NULL, 0, data.cig, 1858 data.cis)) { 1859 /* Update CIS */ 1860 qos->ucast.cis = data.cis; 1861 break; 1862 } 1863 } 1864 1865 if (qos->ucast.cis == BT_ISO_QOS_CIS_UNSET) 1866 return false; 1867 1868 done: 1869 if (hci_cmd_sync_queue(hdev, set_cig_params_sync, 1870 UINT_PTR(qos->ucast.cig), NULL) < 0) 1871 return false; 1872 1873 return true; 1874 } 1875 1876 struct hci_conn *hci_bind_cis(struct hci_dev *hdev, bdaddr_t *dst, 1877 __u8 dst_type, struct bt_iso_qos *qos) 1878 { 1879 struct hci_conn *cis; 1880 1881 cis = hci_conn_hash_lookup_cis(hdev, dst, dst_type, qos->ucast.cig, 1882 qos->ucast.cis); 1883 if (!cis) { 1884 cis = hci_conn_add_unset(hdev, ISO_LINK, dst, HCI_ROLE_MASTER); 1885 if (IS_ERR(cis)) 1886 return cis; 1887 cis->cleanup = cis_cleanup; 1888 cis->dst_type = dst_type; 1889 cis->iso_qos.ucast.cig = BT_ISO_QOS_CIG_UNSET; 1890 cis->iso_qos.ucast.cis = BT_ISO_QOS_CIS_UNSET; 1891 } 1892 1893 if (cis->state == BT_CONNECTED) 1894 return cis; 1895 1896 /* Check if CIS has been set and the settings matches */ 1897 if (cis->state == BT_BOUND && 1898 !memcmp(&cis->iso_qos, qos, sizeof(*qos))) 1899 return cis; 1900 1901 /* Update LINK PHYs according to QoS preference */ 1902 cis->le_tx_phy = qos->ucast.out.phy; 1903 cis->le_rx_phy = qos->ucast.in.phy; 1904 1905 /* If output interval is not set use the input interval as it cannot be 1906 * 0x000000. 1907 */ 1908 if (!qos->ucast.out.interval) 1909 qos->ucast.out.interval = qos->ucast.in.interval; 1910 1911 /* If input interval is not set use the output interval as it cannot be 1912 * 0x000000. 1913 */ 1914 if (!qos->ucast.in.interval) 1915 qos->ucast.in.interval = qos->ucast.out.interval; 1916 1917 /* If output latency is not set use the input latency as it cannot be 1918 * 0x0000. 1919 */ 1920 if (!qos->ucast.out.latency) 1921 qos->ucast.out.latency = qos->ucast.in.latency; 1922 1923 /* If input latency is not set use the output latency as it cannot be 1924 * 0x0000. 1925 */ 1926 if (!qos->ucast.in.latency) 1927 qos->ucast.in.latency = qos->ucast.out.latency; 1928 1929 if (!hci_le_set_cig_params(cis, qos)) { 1930 hci_conn_drop(cis); 1931 return ERR_PTR(-EINVAL); 1932 } 1933 1934 hci_conn_hold(cis); 1935 1936 cis->iso_qos = *qos; 1937 cis->state = BT_BOUND; 1938 1939 return cis; 1940 } 1941 1942 bool hci_iso_setup_path(struct hci_conn *conn) 1943 { 1944 struct hci_dev *hdev = conn->hdev; 1945 struct hci_cp_le_setup_iso_path cmd; 1946 1947 memset(&cmd, 0, sizeof(cmd)); 1948 1949 if (conn->iso_qos.ucast.out.sdu) { 1950 cmd.handle = cpu_to_le16(conn->handle); 1951 cmd.direction = 0x00; /* Input (Host to Controller) */ 1952 cmd.path = 0x00; /* HCI path if enabled */ 1953 cmd.codec = 0x03; /* Transparent Data */ 1954 1955 if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd), 1956 &cmd) < 0) 1957 return false; 1958 } 1959 1960 if (conn->iso_qos.ucast.in.sdu) { 1961 cmd.handle = cpu_to_le16(conn->handle); 1962 cmd.direction = 0x01; /* Output (Controller to Host) */ 1963 cmd.path = 0x00; /* HCI path if enabled */ 1964 cmd.codec = 0x03; /* Transparent Data */ 1965 1966 if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd), 1967 &cmd) < 0) 1968 return false; 1969 } 1970 1971 return true; 1972 } 1973 1974 int hci_conn_check_create_cis(struct hci_conn *conn) 1975 { 1976 if (conn->type != ISO_LINK || !bacmp(&conn->dst, BDADDR_ANY)) 1977 return -EINVAL; 1978 1979 if (!conn->parent || conn->parent->state != BT_CONNECTED || 1980 conn->state != BT_CONNECT || HCI_CONN_HANDLE_UNSET(conn->handle)) 1981 return 1; 1982 1983 return 0; 1984 } 1985 1986 static int hci_create_cis_sync(struct hci_dev *hdev, void *data) 1987 { 1988 return hci_le_create_cis_sync(hdev); 1989 } 1990 1991 int hci_le_create_cis_pending(struct hci_dev *hdev) 1992 { 1993 struct hci_conn *conn; 1994 bool pending = false; 1995 1996 rcu_read_lock(); 1997 1998 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 1999 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) { 2000 rcu_read_unlock(); 2001 return -EBUSY; 2002 } 2003 2004 if (!hci_conn_check_create_cis(conn)) 2005 pending = true; 2006 } 2007 2008 rcu_read_unlock(); 2009 2010 if (!pending) 2011 return 0; 2012 2013 /* Queue Create CIS */ 2014 return hci_cmd_sync_queue(hdev, hci_create_cis_sync, NULL, NULL); 2015 } 2016 2017 static void hci_iso_qos_setup(struct hci_dev *hdev, struct hci_conn *conn, 2018 struct bt_iso_io_qos *qos, __u8 phy) 2019 { 2020 /* Only set MTU if PHY is enabled */ 2021 if (!qos->sdu && qos->phy) 2022 qos->sdu = conn->mtu; 2023 2024 /* Use the same PHY as ACL if set to any */ 2025 if (qos->phy == BT_ISO_PHY_ANY) 2026 qos->phy = phy; 2027 2028 /* Use LE ACL connection interval if not set */ 2029 if (!qos->interval) 2030 /* ACL interval unit in 1.25 ms to us */ 2031 qos->interval = conn->le_conn_interval * 1250; 2032 2033 /* Use LE ACL connection latency if not set */ 2034 if (!qos->latency) 2035 qos->latency = conn->le_conn_latency; 2036 } 2037 2038 static int create_big_sync(struct hci_dev *hdev, void *data) 2039 { 2040 struct hci_conn *conn = data; 2041 struct bt_iso_qos *qos = &conn->iso_qos; 2042 u16 interval, sync_interval = 0; 2043 u32 flags = 0; 2044 int err; 2045 2046 if (qos->bcast.out.phy == 0x02) 2047 flags |= MGMT_ADV_FLAG_SEC_2M; 2048 2049 /* Align intervals */ 2050 interval = (qos->bcast.out.interval / 1250) * qos->bcast.sync_factor; 2051 2052 if (qos->bcast.bis) 2053 sync_interval = interval * 4; 2054 2055 err = hci_start_per_adv_sync(hdev, qos->bcast.bis, conn->le_per_adv_data_len, 2056 conn->le_per_adv_data, flags, interval, 2057 interval, sync_interval); 2058 if (err) 2059 return err; 2060 2061 return hci_le_create_big(conn, &conn->iso_qos); 2062 } 2063 2064 static void create_pa_complete(struct hci_dev *hdev, void *data, int err) 2065 { 2066 struct hci_cp_le_pa_create_sync *cp = data; 2067 2068 bt_dev_dbg(hdev, ""); 2069 2070 if (err) 2071 bt_dev_err(hdev, "Unable to create PA: %d", err); 2072 2073 kfree(cp); 2074 } 2075 2076 static int create_pa_sync(struct hci_dev *hdev, void *data) 2077 { 2078 struct hci_cp_le_pa_create_sync *cp = data; 2079 int err; 2080 2081 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_CREATE_SYNC, 2082 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2083 if (err) { 2084 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 2085 return err; 2086 } 2087 2088 return hci_update_passive_scan_sync(hdev); 2089 } 2090 2091 struct hci_conn *hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst, 2092 __u8 dst_type, __u8 sid, 2093 struct bt_iso_qos *qos) 2094 { 2095 struct hci_cp_le_pa_create_sync *cp; 2096 struct hci_conn *conn; 2097 int err; 2098 2099 if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC)) 2100 return ERR_PTR(-EBUSY); 2101 2102 conn = hci_conn_add_unset(hdev, ISO_LINK, dst, HCI_ROLE_SLAVE); 2103 if (IS_ERR(conn)) 2104 return conn; 2105 2106 conn->iso_qos = *qos; 2107 conn->state = BT_LISTEN; 2108 2109 hci_conn_hold(conn); 2110 2111 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 2112 if (!cp) { 2113 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 2114 hci_conn_drop(conn); 2115 return ERR_PTR(-ENOMEM); 2116 } 2117 2118 cp->options = qos->bcast.options; 2119 cp->sid = sid; 2120 cp->addr_type = dst_type; 2121 bacpy(&cp->addr, dst); 2122 cp->skip = cpu_to_le16(qos->bcast.skip); 2123 cp->sync_timeout = cpu_to_le16(qos->bcast.sync_timeout); 2124 cp->sync_cte_type = qos->bcast.sync_cte_type; 2125 2126 /* Queue start pa_create_sync and scan */ 2127 err = hci_cmd_sync_queue(hdev, create_pa_sync, cp, create_pa_complete); 2128 if (err < 0) { 2129 hci_conn_drop(conn); 2130 kfree(cp); 2131 return ERR_PTR(err); 2132 } 2133 2134 return conn; 2135 } 2136 2137 int hci_le_big_create_sync(struct hci_dev *hdev, struct hci_conn *hcon, 2138 struct bt_iso_qos *qos, 2139 __u16 sync_handle, __u8 num_bis, __u8 bis[]) 2140 { 2141 DEFINE_FLEX(struct hci_cp_le_big_create_sync, pdu, bis, num_bis, 0x11); 2142 int err; 2143 2144 if (num_bis < 0x01 || num_bis > pdu->num_bis) 2145 return -EINVAL; 2146 2147 err = qos_set_big(hdev, qos); 2148 if (err) 2149 return err; 2150 2151 if (hcon) 2152 hcon->iso_qos.bcast.big = qos->bcast.big; 2153 2154 pdu->handle = qos->bcast.big; 2155 pdu->sync_handle = cpu_to_le16(sync_handle); 2156 pdu->encryption = qos->bcast.encryption; 2157 memcpy(pdu->bcode, qos->bcast.bcode, sizeof(pdu->bcode)); 2158 pdu->mse = qos->bcast.mse; 2159 pdu->timeout = cpu_to_le16(qos->bcast.timeout); 2160 pdu->num_bis = num_bis; 2161 memcpy(pdu->bis, bis, num_bis); 2162 2163 return hci_send_cmd(hdev, HCI_OP_LE_BIG_CREATE_SYNC, 2164 struct_size(pdu, bis, num_bis), pdu); 2165 } 2166 2167 static void create_big_complete(struct hci_dev *hdev, void *data, int err) 2168 { 2169 struct hci_conn *conn = data; 2170 2171 bt_dev_dbg(hdev, "conn %p", conn); 2172 2173 if (err) { 2174 bt_dev_err(hdev, "Unable to create BIG: %d", err); 2175 hci_connect_cfm(conn, err); 2176 hci_conn_del(conn); 2177 } 2178 } 2179 2180 struct hci_conn *hci_bind_bis(struct hci_dev *hdev, bdaddr_t *dst, 2181 struct bt_iso_qos *qos, 2182 __u8 base_len, __u8 *base) 2183 { 2184 struct hci_conn *conn; 2185 struct hci_conn *parent; 2186 __u8 eir[HCI_MAX_PER_AD_LENGTH]; 2187 struct hci_link *link; 2188 2189 /* Look for any BIS that is open for rebinding */ 2190 conn = hci_conn_hash_lookup_big_state(hdev, qos->bcast.big, BT_OPEN); 2191 if (conn) { 2192 memcpy(qos, &conn->iso_qos, sizeof(*qos)); 2193 conn->state = BT_CONNECTED; 2194 return conn; 2195 } 2196 2197 if (base_len && base) 2198 base_len = eir_append_service_data(eir, 0, 0x1851, 2199 base, base_len); 2200 2201 /* We need hci_conn object using the BDADDR_ANY as dst */ 2202 conn = hci_add_bis(hdev, dst, qos, base_len, eir); 2203 if (IS_ERR(conn)) 2204 return conn; 2205 2206 /* Update LINK PHYs according to QoS preference */ 2207 conn->le_tx_phy = qos->bcast.out.phy; 2208 conn->le_tx_phy = qos->bcast.out.phy; 2209 2210 /* Add Basic Announcement into Peridic Adv Data if BASE is set */ 2211 if (base_len && base) { 2212 memcpy(conn->le_per_adv_data, eir, sizeof(eir)); 2213 conn->le_per_adv_data_len = base_len; 2214 } 2215 2216 hci_iso_qos_setup(hdev, conn, &qos->bcast.out, 2217 conn->le_tx_phy ? conn->le_tx_phy : 2218 hdev->le_tx_def_phys); 2219 2220 conn->iso_qos = *qos; 2221 conn->state = BT_BOUND; 2222 2223 /* Link BISes together */ 2224 parent = hci_conn_hash_lookup_big(hdev, 2225 conn->iso_qos.bcast.big); 2226 if (parent && parent != conn) { 2227 link = hci_conn_link(parent, conn); 2228 if (!link) { 2229 hci_conn_drop(conn); 2230 return ERR_PTR(-ENOLINK); 2231 } 2232 2233 /* Link takes the refcount */ 2234 hci_conn_drop(conn); 2235 } 2236 2237 return conn; 2238 } 2239 2240 static void bis_mark_per_adv(struct hci_conn *conn, void *data) 2241 { 2242 struct iso_list_data *d = data; 2243 2244 /* Skip if not broadcast/ANY address */ 2245 if (bacmp(&conn->dst, BDADDR_ANY)) 2246 return; 2247 2248 if (d->big != conn->iso_qos.bcast.big || 2249 d->bis == BT_ISO_QOS_BIS_UNSET || 2250 d->bis != conn->iso_qos.bcast.bis) 2251 return; 2252 2253 set_bit(HCI_CONN_PER_ADV, &conn->flags); 2254 } 2255 2256 struct hci_conn *hci_connect_bis(struct hci_dev *hdev, bdaddr_t *dst, 2257 __u8 dst_type, struct bt_iso_qos *qos, 2258 __u8 base_len, __u8 *base) 2259 { 2260 struct hci_conn *conn; 2261 int err; 2262 struct iso_list_data data; 2263 2264 conn = hci_bind_bis(hdev, dst, qos, base_len, base); 2265 if (IS_ERR(conn)) 2266 return conn; 2267 2268 if (conn->state == BT_CONNECTED) 2269 return conn; 2270 2271 data.big = qos->bcast.big; 2272 data.bis = qos->bcast.bis; 2273 2274 /* Set HCI_CONN_PER_ADV for all bound connections, to mark that 2275 * the start periodic advertising and create BIG commands have 2276 * been queued 2277 */ 2278 hci_conn_hash_list_state(hdev, bis_mark_per_adv, ISO_LINK, 2279 BT_BOUND, &data); 2280 2281 /* Queue start periodic advertising and create BIG */ 2282 err = hci_cmd_sync_queue(hdev, create_big_sync, conn, 2283 create_big_complete); 2284 if (err < 0) { 2285 hci_conn_drop(conn); 2286 return ERR_PTR(err); 2287 } 2288 2289 return conn; 2290 } 2291 2292 struct hci_conn *hci_connect_cis(struct hci_dev *hdev, bdaddr_t *dst, 2293 __u8 dst_type, struct bt_iso_qos *qos) 2294 { 2295 struct hci_conn *le; 2296 struct hci_conn *cis; 2297 struct hci_link *link; 2298 2299 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2300 le = hci_connect_le(hdev, dst, dst_type, false, 2301 BT_SECURITY_LOW, 2302 HCI_LE_CONN_TIMEOUT, 2303 HCI_ROLE_SLAVE, 0, 0); 2304 else 2305 le = hci_connect_le_scan(hdev, dst, dst_type, 2306 BT_SECURITY_LOW, 2307 HCI_LE_CONN_TIMEOUT, 2308 CONN_REASON_ISO_CONNECT); 2309 if (IS_ERR(le)) 2310 return le; 2311 2312 hci_iso_qos_setup(hdev, le, &qos->ucast.out, 2313 le->le_tx_phy ? le->le_tx_phy : hdev->le_tx_def_phys); 2314 hci_iso_qos_setup(hdev, le, &qos->ucast.in, 2315 le->le_rx_phy ? le->le_rx_phy : hdev->le_rx_def_phys); 2316 2317 cis = hci_bind_cis(hdev, dst, dst_type, qos); 2318 if (IS_ERR(cis)) { 2319 hci_conn_drop(le); 2320 return cis; 2321 } 2322 2323 link = hci_conn_link(le, cis); 2324 if (!link) { 2325 hci_conn_drop(le); 2326 hci_conn_drop(cis); 2327 return ERR_PTR(-ENOLINK); 2328 } 2329 2330 /* Link takes the refcount */ 2331 hci_conn_drop(cis); 2332 2333 cis->state = BT_CONNECT; 2334 2335 hci_le_create_cis_pending(hdev); 2336 2337 return cis; 2338 } 2339 2340 /* Check link security requirement */ 2341 int hci_conn_check_link_mode(struct hci_conn *conn) 2342 { 2343 BT_DBG("hcon %p", conn); 2344 2345 /* In Secure Connections Only mode, it is required that Secure 2346 * Connections is used and the link is encrypted with AES-CCM 2347 * using a P-256 authenticated combination key. 2348 */ 2349 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 2350 if (!hci_conn_sc_enabled(conn) || 2351 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 2352 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 2353 return 0; 2354 } 2355 2356 /* AES encryption is required for Level 4: 2357 * 2358 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 2359 * page 1319: 2360 * 2361 * 128-bit equivalent strength for link and encryption keys 2362 * required using FIPS approved algorithms (E0 not allowed, 2363 * SAFER+ not allowed, and P-192 not allowed; encryption key 2364 * not shortened) 2365 */ 2366 if (conn->sec_level == BT_SECURITY_FIPS && 2367 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 2368 bt_dev_err(conn->hdev, 2369 "Invalid security: Missing AES-CCM usage"); 2370 return 0; 2371 } 2372 2373 if (hci_conn_ssp_enabled(conn) && 2374 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2375 return 0; 2376 2377 return 1; 2378 } 2379 2380 /* Authenticate remote device */ 2381 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 2382 { 2383 BT_DBG("hcon %p", conn); 2384 2385 if (conn->pending_sec_level > sec_level) 2386 sec_level = conn->pending_sec_level; 2387 2388 if (sec_level > conn->sec_level) 2389 conn->pending_sec_level = sec_level; 2390 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 2391 return 1; 2392 2393 /* Make sure we preserve an existing MITM requirement*/ 2394 auth_type |= (conn->auth_type & 0x01); 2395 2396 conn->auth_type = auth_type; 2397 2398 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 2399 struct hci_cp_auth_requested cp; 2400 2401 cp.handle = cpu_to_le16(conn->handle); 2402 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 2403 sizeof(cp), &cp); 2404 2405 /* Set the ENCRYPT_PEND to trigger encryption after 2406 * authentication. 2407 */ 2408 if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2409 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 2410 } 2411 2412 return 0; 2413 } 2414 2415 /* Encrypt the link */ 2416 static void hci_conn_encrypt(struct hci_conn *conn) 2417 { 2418 BT_DBG("hcon %p", conn); 2419 2420 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 2421 struct hci_cp_set_conn_encrypt cp; 2422 cp.handle = cpu_to_le16(conn->handle); 2423 cp.encrypt = 0x01; 2424 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 2425 &cp); 2426 } 2427 } 2428 2429 /* Enable security */ 2430 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 2431 bool initiator) 2432 { 2433 BT_DBG("hcon %p", conn); 2434 2435 if (conn->type == LE_LINK) 2436 return smp_conn_security(conn, sec_level); 2437 2438 /* For sdp we don't need the link key. */ 2439 if (sec_level == BT_SECURITY_SDP) 2440 return 1; 2441 2442 /* For non 2.1 devices and low security level we don't need the link 2443 key. */ 2444 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 2445 return 1; 2446 2447 /* For other security levels we need the link key. */ 2448 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 2449 goto auth; 2450 2451 switch (conn->key_type) { 2452 case HCI_LK_AUTH_COMBINATION_P256: 2453 /* An authenticated FIPS approved combination key has 2454 * sufficient security for security level 4 or lower. 2455 */ 2456 if (sec_level <= BT_SECURITY_FIPS) 2457 goto encrypt; 2458 break; 2459 case HCI_LK_AUTH_COMBINATION_P192: 2460 /* An authenticated combination key has sufficient security for 2461 * security level 3 or lower. 2462 */ 2463 if (sec_level <= BT_SECURITY_HIGH) 2464 goto encrypt; 2465 break; 2466 case HCI_LK_UNAUTH_COMBINATION_P192: 2467 case HCI_LK_UNAUTH_COMBINATION_P256: 2468 /* An unauthenticated combination key has sufficient security 2469 * for security level 2 or lower. 2470 */ 2471 if (sec_level <= BT_SECURITY_MEDIUM) 2472 goto encrypt; 2473 break; 2474 case HCI_LK_COMBINATION: 2475 /* A combination key has always sufficient security for the 2476 * security levels 2 or lower. High security level requires the 2477 * combination key is generated using maximum PIN code length 2478 * (16). For pre 2.1 units. 2479 */ 2480 if (sec_level <= BT_SECURITY_MEDIUM || conn->pin_length == 16) 2481 goto encrypt; 2482 break; 2483 default: 2484 break; 2485 } 2486 2487 auth: 2488 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 2489 return 0; 2490 2491 if (initiator) 2492 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 2493 2494 if (!hci_conn_auth(conn, sec_level, auth_type)) 2495 return 0; 2496 2497 encrypt: 2498 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 2499 /* Ensure that the encryption key size has been read, 2500 * otherwise stall the upper layer responses. 2501 */ 2502 if (!conn->enc_key_size) 2503 return 0; 2504 2505 /* Nothing else needed, all requirements are met */ 2506 return 1; 2507 } 2508 2509 hci_conn_encrypt(conn); 2510 return 0; 2511 } 2512 EXPORT_SYMBOL(hci_conn_security); 2513 2514 /* Check secure link requirement */ 2515 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 2516 { 2517 BT_DBG("hcon %p", conn); 2518 2519 /* Accept if non-secure or higher security level is required */ 2520 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 2521 return 1; 2522 2523 /* Accept if secure or higher security level is already present */ 2524 if (conn->sec_level == BT_SECURITY_HIGH || 2525 conn->sec_level == BT_SECURITY_FIPS) 2526 return 1; 2527 2528 /* Reject not secure link */ 2529 return 0; 2530 } 2531 EXPORT_SYMBOL(hci_conn_check_secure); 2532 2533 /* Switch role */ 2534 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 2535 { 2536 BT_DBG("hcon %p", conn); 2537 2538 if (role == conn->role) 2539 return 1; 2540 2541 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 2542 struct hci_cp_switch_role cp; 2543 bacpy(&cp.bdaddr, &conn->dst); 2544 cp.role = role; 2545 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 2546 } 2547 2548 return 0; 2549 } 2550 EXPORT_SYMBOL(hci_conn_switch_role); 2551 2552 /* Enter active mode */ 2553 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 2554 { 2555 struct hci_dev *hdev = conn->hdev; 2556 2557 BT_DBG("hcon %p mode %d", conn, conn->mode); 2558 2559 if (conn->mode != HCI_CM_SNIFF) 2560 goto timer; 2561 2562 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 2563 goto timer; 2564 2565 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 2566 struct hci_cp_exit_sniff_mode cp; 2567 cp.handle = cpu_to_le16(conn->handle); 2568 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 2569 } 2570 2571 timer: 2572 if (hdev->idle_timeout > 0) 2573 queue_delayed_work(hdev->workqueue, &conn->idle_work, 2574 msecs_to_jiffies(hdev->idle_timeout)); 2575 } 2576 2577 /* Drop all connection on the device */ 2578 void hci_conn_hash_flush(struct hci_dev *hdev) 2579 { 2580 struct list_head *head = &hdev->conn_hash.list; 2581 struct hci_conn *conn; 2582 2583 BT_DBG("hdev %s", hdev->name); 2584 2585 /* We should not traverse the list here, because hci_conn_del 2586 * can remove extra links, which may cause the list traversal 2587 * to hit items that have already been released. 2588 */ 2589 while ((conn = list_first_entry_or_null(head, 2590 struct hci_conn, 2591 list)) != NULL) { 2592 conn->state = BT_CLOSED; 2593 hci_disconn_cfm(conn, HCI_ERROR_LOCAL_HOST_TERM); 2594 hci_conn_del(conn); 2595 } 2596 } 2597 2598 static u32 get_link_mode(struct hci_conn *conn) 2599 { 2600 u32 link_mode = 0; 2601 2602 if (conn->role == HCI_ROLE_MASTER) 2603 link_mode |= HCI_LM_MASTER; 2604 2605 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2606 link_mode |= HCI_LM_ENCRYPT; 2607 2608 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 2609 link_mode |= HCI_LM_AUTH; 2610 2611 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 2612 link_mode |= HCI_LM_SECURE; 2613 2614 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 2615 link_mode |= HCI_LM_FIPS; 2616 2617 return link_mode; 2618 } 2619 2620 int hci_get_conn_list(void __user *arg) 2621 { 2622 struct hci_conn *c; 2623 struct hci_conn_list_req req, *cl; 2624 struct hci_conn_info *ci; 2625 struct hci_dev *hdev; 2626 int n = 0, size, err; 2627 2628 if (copy_from_user(&req, arg, sizeof(req))) 2629 return -EFAULT; 2630 2631 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 2632 return -EINVAL; 2633 2634 size = sizeof(req) + req.conn_num * sizeof(*ci); 2635 2636 cl = kmalloc(size, GFP_KERNEL); 2637 if (!cl) 2638 return -ENOMEM; 2639 2640 hdev = hci_dev_get(req.dev_id); 2641 if (!hdev) { 2642 kfree(cl); 2643 return -ENODEV; 2644 } 2645 2646 ci = cl->conn_info; 2647 2648 hci_dev_lock(hdev); 2649 list_for_each_entry(c, &hdev->conn_hash.list, list) { 2650 bacpy(&(ci + n)->bdaddr, &c->dst); 2651 (ci + n)->handle = c->handle; 2652 (ci + n)->type = c->type; 2653 (ci + n)->out = c->out; 2654 (ci + n)->state = c->state; 2655 (ci + n)->link_mode = get_link_mode(c); 2656 if (++n >= req.conn_num) 2657 break; 2658 } 2659 hci_dev_unlock(hdev); 2660 2661 cl->dev_id = hdev->id; 2662 cl->conn_num = n; 2663 size = sizeof(req) + n * sizeof(*ci); 2664 2665 hci_dev_put(hdev); 2666 2667 err = copy_to_user(arg, cl, size); 2668 kfree(cl); 2669 2670 return err ? -EFAULT : 0; 2671 } 2672 2673 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 2674 { 2675 struct hci_conn_info_req req; 2676 struct hci_conn_info ci; 2677 struct hci_conn *conn; 2678 char __user *ptr = arg + sizeof(req); 2679 2680 if (copy_from_user(&req, arg, sizeof(req))) 2681 return -EFAULT; 2682 2683 hci_dev_lock(hdev); 2684 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 2685 if (conn) { 2686 bacpy(&ci.bdaddr, &conn->dst); 2687 ci.handle = conn->handle; 2688 ci.type = conn->type; 2689 ci.out = conn->out; 2690 ci.state = conn->state; 2691 ci.link_mode = get_link_mode(conn); 2692 } 2693 hci_dev_unlock(hdev); 2694 2695 if (!conn) 2696 return -ENOENT; 2697 2698 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 2699 } 2700 2701 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 2702 { 2703 struct hci_auth_info_req req; 2704 struct hci_conn *conn; 2705 2706 if (copy_from_user(&req, arg, sizeof(req))) 2707 return -EFAULT; 2708 2709 hci_dev_lock(hdev); 2710 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 2711 if (conn) 2712 req.type = conn->auth_type; 2713 hci_dev_unlock(hdev); 2714 2715 if (!conn) 2716 return -ENOENT; 2717 2718 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 2719 } 2720 2721 struct hci_chan *hci_chan_create(struct hci_conn *conn) 2722 { 2723 struct hci_dev *hdev = conn->hdev; 2724 struct hci_chan *chan; 2725 2726 BT_DBG("%s hcon %p", hdev->name, conn); 2727 2728 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 2729 BT_DBG("Refusing to create new hci_chan"); 2730 return NULL; 2731 } 2732 2733 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 2734 if (!chan) 2735 return NULL; 2736 2737 chan->conn = hci_conn_get(conn); 2738 skb_queue_head_init(&chan->data_q); 2739 chan->state = BT_CONNECTED; 2740 2741 list_add_rcu(&chan->list, &conn->chan_list); 2742 2743 return chan; 2744 } 2745 2746 void hci_chan_del(struct hci_chan *chan) 2747 { 2748 struct hci_conn *conn = chan->conn; 2749 struct hci_dev *hdev = conn->hdev; 2750 2751 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 2752 2753 list_del_rcu(&chan->list); 2754 2755 synchronize_rcu(); 2756 2757 /* Prevent new hci_chan's to be created for this hci_conn */ 2758 set_bit(HCI_CONN_DROP, &conn->flags); 2759 2760 hci_conn_put(conn); 2761 2762 skb_queue_purge(&chan->data_q); 2763 kfree(chan); 2764 } 2765 2766 void hci_chan_list_flush(struct hci_conn *conn) 2767 { 2768 struct hci_chan *chan, *n; 2769 2770 BT_DBG("hcon %p", conn); 2771 2772 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 2773 hci_chan_del(chan); 2774 } 2775 2776 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 2777 __u16 handle) 2778 { 2779 struct hci_chan *hchan; 2780 2781 list_for_each_entry(hchan, &hcon->chan_list, list) { 2782 if (hchan->handle == handle) 2783 return hchan; 2784 } 2785 2786 return NULL; 2787 } 2788 2789 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 2790 { 2791 struct hci_conn_hash *h = &hdev->conn_hash; 2792 struct hci_conn *hcon; 2793 struct hci_chan *hchan = NULL; 2794 2795 rcu_read_lock(); 2796 2797 list_for_each_entry_rcu(hcon, &h->list, list) { 2798 hchan = __hci_chan_lookup_handle(hcon, handle); 2799 if (hchan) 2800 break; 2801 } 2802 2803 rcu_read_unlock(); 2804 2805 return hchan; 2806 } 2807 2808 u32 hci_conn_get_phy(struct hci_conn *conn) 2809 { 2810 u32 phys = 0; 2811 2812 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 2813 * Table 6.2: Packets defined for synchronous, asynchronous, and 2814 * CPB logical transport types. 2815 */ 2816 switch (conn->type) { 2817 case SCO_LINK: 2818 /* SCO logical transport (1 Mb/s): 2819 * HV1, HV2, HV3 and DV. 2820 */ 2821 phys |= BT_PHY_BR_1M_1SLOT; 2822 2823 break; 2824 2825 case ACL_LINK: 2826 /* ACL logical transport (1 Mb/s) ptt=0: 2827 * DH1, DM3, DH3, DM5 and DH5. 2828 */ 2829 phys |= BT_PHY_BR_1M_1SLOT; 2830 2831 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 2832 phys |= BT_PHY_BR_1M_3SLOT; 2833 2834 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 2835 phys |= BT_PHY_BR_1M_5SLOT; 2836 2837 /* ACL logical transport (2 Mb/s) ptt=1: 2838 * 2-DH1, 2-DH3 and 2-DH5. 2839 */ 2840 if (!(conn->pkt_type & HCI_2DH1)) 2841 phys |= BT_PHY_EDR_2M_1SLOT; 2842 2843 if (!(conn->pkt_type & HCI_2DH3)) 2844 phys |= BT_PHY_EDR_2M_3SLOT; 2845 2846 if (!(conn->pkt_type & HCI_2DH5)) 2847 phys |= BT_PHY_EDR_2M_5SLOT; 2848 2849 /* ACL logical transport (3 Mb/s) ptt=1: 2850 * 3-DH1, 3-DH3 and 3-DH5. 2851 */ 2852 if (!(conn->pkt_type & HCI_3DH1)) 2853 phys |= BT_PHY_EDR_3M_1SLOT; 2854 2855 if (!(conn->pkt_type & HCI_3DH3)) 2856 phys |= BT_PHY_EDR_3M_3SLOT; 2857 2858 if (!(conn->pkt_type & HCI_3DH5)) 2859 phys |= BT_PHY_EDR_3M_5SLOT; 2860 2861 break; 2862 2863 case ESCO_LINK: 2864 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 2865 phys |= BT_PHY_BR_1M_1SLOT; 2866 2867 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 2868 phys |= BT_PHY_BR_1M_3SLOT; 2869 2870 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 2871 if (!(conn->pkt_type & ESCO_2EV3)) 2872 phys |= BT_PHY_EDR_2M_1SLOT; 2873 2874 if (!(conn->pkt_type & ESCO_2EV5)) 2875 phys |= BT_PHY_EDR_2M_3SLOT; 2876 2877 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 2878 if (!(conn->pkt_type & ESCO_3EV3)) 2879 phys |= BT_PHY_EDR_3M_1SLOT; 2880 2881 if (!(conn->pkt_type & ESCO_3EV5)) 2882 phys |= BT_PHY_EDR_3M_3SLOT; 2883 2884 break; 2885 2886 case LE_LINK: 2887 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 2888 phys |= BT_PHY_LE_1M_TX; 2889 2890 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 2891 phys |= BT_PHY_LE_1M_RX; 2892 2893 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 2894 phys |= BT_PHY_LE_2M_TX; 2895 2896 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 2897 phys |= BT_PHY_LE_2M_RX; 2898 2899 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 2900 phys |= BT_PHY_LE_CODED_TX; 2901 2902 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 2903 phys |= BT_PHY_LE_CODED_RX; 2904 2905 break; 2906 } 2907 2908 return phys; 2909 } 2910 2911 static int abort_conn_sync(struct hci_dev *hdev, void *data) 2912 { 2913 struct hci_conn *conn = data; 2914 2915 if (!hci_conn_valid(hdev, conn)) 2916 return -ECANCELED; 2917 2918 return hci_abort_conn_sync(hdev, conn, conn->abort_reason); 2919 } 2920 2921 int hci_abort_conn(struct hci_conn *conn, u8 reason) 2922 { 2923 struct hci_dev *hdev = conn->hdev; 2924 2925 /* If abort_reason has already been set it means the connection is 2926 * already being aborted so don't attempt to overwrite it. 2927 */ 2928 if (conn->abort_reason) 2929 return 0; 2930 2931 bt_dev_dbg(hdev, "handle 0x%2.2x reason 0x%2.2x", conn->handle, reason); 2932 2933 conn->abort_reason = reason; 2934 2935 /* If the connection is pending check the command opcode since that 2936 * might be blocking on hci_cmd_sync_work while waiting its respective 2937 * event so we need to hci_cmd_sync_cancel to cancel it. 2938 * 2939 * hci_connect_le serializes the connection attempts so only one 2940 * connection can be in BT_CONNECT at time. 2941 */ 2942 if (conn->state == BT_CONNECT && hdev->req_status == HCI_REQ_PEND) { 2943 switch (hci_skb_event(hdev->sent_cmd)) { 2944 case HCI_EV_CONN_COMPLETE: 2945 case HCI_EV_LE_CONN_COMPLETE: 2946 case HCI_EV_LE_ENHANCED_CONN_COMPLETE: 2947 case HCI_EVT_LE_CIS_ESTABLISHED: 2948 hci_cmd_sync_cancel(hdev, ECANCELED); 2949 break; 2950 } 2951 /* Cancel connect attempt if still queued/pending */ 2952 } else if (!hci_cancel_connect_sync(hdev, conn)) { 2953 return 0; 2954 } 2955 2956 /* Run immediately if on cmd_sync_work since this may be called 2957 * as a result to MGMT_OP_DISCONNECT/MGMT_OP_UNPAIR which does 2958 * already queue its callback on cmd_sync_work. 2959 */ 2960 return hci_cmd_sync_run_once(hdev, abort_conn_sync, conn, NULL); 2961 } 2962
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.