1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/kcov.h> 33 #include <linux/property.h> 34 #include <linux/suspend.h> 35 #include <linux/wait.h> 36 #include <asm/unaligned.h> 37 38 #include <net/bluetooth/bluetooth.h> 39 #include <net/bluetooth/hci_core.h> 40 #include <net/bluetooth/l2cap.h> 41 #include <net/bluetooth/mgmt.h> 42 43 #include "hci_debugfs.h" 44 #include "smp.h" 45 #include "leds.h" 46 #include "msft.h" 47 #include "aosp.h" 48 #include "hci_codec.h" 49 50 static void hci_rx_work(struct work_struct *work); 51 static void hci_cmd_work(struct work_struct *work); 52 static void hci_tx_work(struct work_struct *work); 53 54 /* HCI device list */ 55 LIST_HEAD(hci_dev_list); 56 DEFINE_RWLOCK(hci_dev_list_lock); 57 58 /* HCI callback list */ 59 LIST_HEAD(hci_cb_list); 60 DEFINE_MUTEX(hci_cb_list_lock); 61 62 /* HCI ID Numbering */ 63 static DEFINE_IDA(hci_index_ida); 64 65 /* Get HCI device by index. 66 * Device is held on return. */ 67 struct hci_dev *hci_dev_get(int index) 68 { 69 struct hci_dev *hdev = NULL, *d; 70 71 BT_DBG("%d", index); 72 73 if (index < 0) 74 return NULL; 75 76 read_lock(&hci_dev_list_lock); 77 list_for_each_entry(d, &hci_dev_list, list) { 78 if (d->id == index) { 79 hdev = hci_dev_hold(d); 80 break; 81 } 82 } 83 read_unlock(&hci_dev_list_lock); 84 return hdev; 85 } 86 87 /* ---- Inquiry support ---- */ 88 89 bool hci_discovery_active(struct hci_dev *hdev) 90 { 91 struct discovery_state *discov = &hdev->discovery; 92 93 switch (discov->state) { 94 case DISCOVERY_FINDING: 95 case DISCOVERY_RESOLVING: 96 return true; 97 98 default: 99 return false; 100 } 101 } 102 103 void hci_discovery_set_state(struct hci_dev *hdev, int state) 104 { 105 int old_state = hdev->discovery.state; 106 107 if (old_state == state) 108 return; 109 110 hdev->discovery.state = state; 111 112 switch (state) { 113 case DISCOVERY_STOPPED: 114 hci_update_passive_scan(hdev); 115 116 if (old_state != DISCOVERY_STARTING) 117 mgmt_discovering(hdev, 0); 118 break; 119 case DISCOVERY_STARTING: 120 break; 121 case DISCOVERY_FINDING: 122 mgmt_discovering(hdev, 1); 123 break; 124 case DISCOVERY_RESOLVING: 125 break; 126 case DISCOVERY_STOPPING: 127 break; 128 } 129 130 bt_dev_dbg(hdev, "state %u -> %u", old_state, state); 131 } 132 133 void hci_inquiry_cache_flush(struct hci_dev *hdev) 134 { 135 struct discovery_state *cache = &hdev->discovery; 136 struct inquiry_entry *p, *n; 137 138 list_for_each_entry_safe(p, n, &cache->all, all) { 139 list_del(&p->all); 140 kfree(p); 141 } 142 143 INIT_LIST_HEAD(&cache->unknown); 144 INIT_LIST_HEAD(&cache->resolve); 145 } 146 147 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 148 bdaddr_t *bdaddr) 149 { 150 struct discovery_state *cache = &hdev->discovery; 151 struct inquiry_entry *e; 152 153 BT_DBG("cache %p, %pMR", cache, bdaddr); 154 155 list_for_each_entry(e, &cache->all, all) { 156 if (!bacmp(&e->data.bdaddr, bdaddr)) 157 return e; 158 } 159 160 return NULL; 161 } 162 163 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 164 bdaddr_t *bdaddr) 165 { 166 struct discovery_state *cache = &hdev->discovery; 167 struct inquiry_entry *e; 168 169 BT_DBG("cache %p, %pMR", cache, bdaddr); 170 171 list_for_each_entry(e, &cache->unknown, list) { 172 if (!bacmp(&e->data.bdaddr, bdaddr)) 173 return e; 174 } 175 176 return NULL; 177 } 178 179 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 180 bdaddr_t *bdaddr, 181 int state) 182 { 183 struct discovery_state *cache = &hdev->discovery; 184 struct inquiry_entry *e; 185 186 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 187 188 list_for_each_entry(e, &cache->resolve, list) { 189 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 190 return e; 191 if (!bacmp(&e->data.bdaddr, bdaddr)) 192 return e; 193 } 194 195 return NULL; 196 } 197 198 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 199 struct inquiry_entry *ie) 200 { 201 struct discovery_state *cache = &hdev->discovery; 202 struct list_head *pos = &cache->resolve; 203 struct inquiry_entry *p; 204 205 list_del(&ie->list); 206 207 list_for_each_entry(p, &cache->resolve, list) { 208 if (p->name_state != NAME_PENDING && 209 abs(p->data.rssi) >= abs(ie->data.rssi)) 210 break; 211 pos = &p->list; 212 } 213 214 list_add(&ie->list, pos); 215 } 216 217 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 218 bool name_known) 219 { 220 struct discovery_state *cache = &hdev->discovery; 221 struct inquiry_entry *ie; 222 u32 flags = 0; 223 224 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 225 226 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 227 228 if (!data->ssp_mode) 229 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 230 231 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 232 if (ie) { 233 if (!ie->data.ssp_mode) 234 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 235 236 if (ie->name_state == NAME_NEEDED && 237 data->rssi != ie->data.rssi) { 238 ie->data.rssi = data->rssi; 239 hci_inquiry_cache_update_resolve(hdev, ie); 240 } 241 242 goto update; 243 } 244 245 /* Entry not in the cache. Add new one. */ 246 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 247 if (!ie) { 248 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 249 goto done; 250 } 251 252 list_add(&ie->all, &cache->all); 253 254 if (name_known) { 255 ie->name_state = NAME_KNOWN; 256 } else { 257 ie->name_state = NAME_NOT_KNOWN; 258 list_add(&ie->list, &cache->unknown); 259 } 260 261 update: 262 if (name_known && ie->name_state != NAME_KNOWN && 263 ie->name_state != NAME_PENDING) { 264 ie->name_state = NAME_KNOWN; 265 list_del(&ie->list); 266 } 267 268 memcpy(&ie->data, data, sizeof(*data)); 269 ie->timestamp = jiffies; 270 cache->timestamp = jiffies; 271 272 if (ie->name_state == NAME_NOT_KNOWN) 273 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 274 275 done: 276 return flags; 277 } 278 279 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 280 { 281 struct discovery_state *cache = &hdev->discovery; 282 struct inquiry_info *info = (struct inquiry_info *) buf; 283 struct inquiry_entry *e; 284 int copied = 0; 285 286 list_for_each_entry(e, &cache->all, all) { 287 struct inquiry_data *data = &e->data; 288 289 if (copied >= num) 290 break; 291 292 bacpy(&info->bdaddr, &data->bdaddr); 293 info->pscan_rep_mode = data->pscan_rep_mode; 294 info->pscan_period_mode = data->pscan_period_mode; 295 info->pscan_mode = data->pscan_mode; 296 memcpy(info->dev_class, data->dev_class, 3); 297 info->clock_offset = data->clock_offset; 298 299 info++; 300 copied++; 301 } 302 303 BT_DBG("cache %p, copied %d", cache, copied); 304 return copied; 305 } 306 307 int hci_inquiry(void __user *arg) 308 { 309 __u8 __user *ptr = arg; 310 struct hci_inquiry_req ir; 311 struct hci_dev *hdev; 312 int err = 0, do_inquiry = 0, max_rsp; 313 __u8 *buf; 314 315 if (copy_from_user(&ir, ptr, sizeof(ir))) 316 return -EFAULT; 317 318 hdev = hci_dev_get(ir.dev_id); 319 if (!hdev) 320 return -ENODEV; 321 322 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 323 err = -EBUSY; 324 goto done; 325 } 326 327 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 328 err = -EOPNOTSUPP; 329 goto done; 330 } 331 332 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 333 err = -EOPNOTSUPP; 334 goto done; 335 } 336 337 /* Restrict maximum inquiry length to 60 seconds */ 338 if (ir.length > 60) { 339 err = -EINVAL; 340 goto done; 341 } 342 343 hci_dev_lock(hdev); 344 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 345 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 346 hci_inquiry_cache_flush(hdev); 347 do_inquiry = 1; 348 } 349 hci_dev_unlock(hdev); 350 351 if (do_inquiry) { 352 hci_req_sync_lock(hdev); 353 err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp); 354 hci_req_sync_unlock(hdev); 355 356 if (err < 0) 357 goto done; 358 359 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 360 * cleared). If it is interrupted by a signal, return -EINTR. 361 */ 362 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 363 TASK_INTERRUPTIBLE)) { 364 err = -EINTR; 365 goto done; 366 } 367 } 368 369 /* for unlimited number of responses we will use buffer with 370 * 255 entries 371 */ 372 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 373 374 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 375 * copy it to the user space. 376 */ 377 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 378 if (!buf) { 379 err = -ENOMEM; 380 goto done; 381 } 382 383 hci_dev_lock(hdev); 384 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 385 hci_dev_unlock(hdev); 386 387 BT_DBG("num_rsp %d", ir.num_rsp); 388 389 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 390 ptr += sizeof(ir); 391 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 392 ir.num_rsp)) 393 err = -EFAULT; 394 } else 395 err = -EFAULT; 396 397 kfree(buf); 398 399 done: 400 hci_dev_put(hdev); 401 return err; 402 } 403 404 static int hci_dev_do_open(struct hci_dev *hdev) 405 { 406 int ret = 0; 407 408 BT_DBG("%s %p", hdev->name, hdev); 409 410 hci_req_sync_lock(hdev); 411 412 ret = hci_dev_open_sync(hdev); 413 414 hci_req_sync_unlock(hdev); 415 return ret; 416 } 417 418 /* ---- HCI ioctl helpers ---- */ 419 420 int hci_dev_open(__u16 dev) 421 { 422 struct hci_dev *hdev; 423 int err; 424 425 hdev = hci_dev_get(dev); 426 if (!hdev) 427 return -ENODEV; 428 429 /* Devices that are marked as unconfigured can only be powered 430 * up as user channel. Trying to bring them up as normal devices 431 * will result into a failure. Only user channel operation is 432 * possible. 433 * 434 * When this function is called for a user channel, the flag 435 * HCI_USER_CHANNEL will be set first before attempting to 436 * open the device. 437 */ 438 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 439 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 440 err = -EOPNOTSUPP; 441 goto done; 442 } 443 444 /* We need to ensure that no other power on/off work is pending 445 * before proceeding to call hci_dev_do_open. This is 446 * particularly important if the setup procedure has not yet 447 * completed. 448 */ 449 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 450 cancel_delayed_work(&hdev->power_off); 451 452 /* After this call it is guaranteed that the setup procedure 453 * has finished. This means that error conditions like RFKILL 454 * or no valid public or static random address apply. 455 */ 456 flush_workqueue(hdev->req_workqueue); 457 458 /* For controllers not using the management interface and that 459 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 460 * so that pairing works for them. Once the management interface 461 * is in use this bit will be cleared again and userspace has 462 * to explicitly enable it. 463 */ 464 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 465 !hci_dev_test_flag(hdev, HCI_MGMT)) 466 hci_dev_set_flag(hdev, HCI_BONDABLE); 467 468 err = hci_dev_do_open(hdev); 469 470 done: 471 hci_dev_put(hdev); 472 return err; 473 } 474 475 int hci_dev_do_close(struct hci_dev *hdev) 476 { 477 int err; 478 479 BT_DBG("%s %p", hdev->name, hdev); 480 481 hci_req_sync_lock(hdev); 482 483 err = hci_dev_close_sync(hdev); 484 485 hci_req_sync_unlock(hdev); 486 487 return err; 488 } 489 490 int hci_dev_close(__u16 dev) 491 { 492 struct hci_dev *hdev; 493 int err; 494 495 hdev = hci_dev_get(dev); 496 if (!hdev) 497 return -ENODEV; 498 499 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 500 err = -EBUSY; 501 goto done; 502 } 503 504 cancel_work_sync(&hdev->power_on); 505 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 506 cancel_delayed_work(&hdev->power_off); 507 508 err = hci_dev_do_close(hdev); 509 510 done: 511 hci_dev_put(hdev); 512 return err; 513 } 514 515 static int hci_dev_do_reset(struct hci_dev *hdev) 516 { 517 int ret; 518 519 BT_DBG("%s %p", hdev->name, hdev); 520 521 hci_req_sync_lock(hdev); 522 523 /* Drop queues */ 524 skb_queue_purge(&hdev->rx_q); 525 skb_queue_purge(&hdev->cmd_q); 526 527 /* Cancel these to avoid queueing non-chained pending work */ 528 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 529 /* Wait for 530 * 531 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 532 * queue_delayed_work(&hdev->{cmd,ncmd}_timer) 533 * 534 * inside RCU section to see the flag or complete scheduling. 535 */ 536 synchronize_rcu(); 537 /* Explicitly cancel works in case scheduled after setting the flag. */ 538 cancel_delayed_work(&hdev->cmd_timer); 539 cancel_delayed_work(&hdev->ncmd_timer); 540 541 /* Avoid potential lockdep warnings from the *_flush() calls by 542 * ensuring the workqueue is empty up front. 543 */ 544 drain_workqueue(hdev->workqueue); 545 546 hci_dev_lock(hdev); 547 hci_inquiry_cache_flush(hdev); 548 hci_conn_hash_flush(hdev); 549 hci_dev_unlock(hdev); 550 551 if (hdev->flush) 552 hdev->flush(hdev); 553 554 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 555 556 atomic_set(&hdev->cmd_cnt, 1); 557 hdev->acl_cnt = 0; 558 hdev->sco_cnt = 0; 559 hdev->le_cnt = 0; 560 hdev->iso_cnt = 0; 561 562 ret = hci_reset_sync(hdev); 563 564 hci_req_sync_unlock(hdev); 565 return ret; 566 } 567 568 int hci_dev_reset(__u16 dev) 569 { 570 struct hci_dev *hdev; 571 int err; 572 573 hdev = hci_dev_get(dev); 574 if (!hdev) 575 return -ENODEV; 576 577 if (!test_bit(HCI_UP, &hdev->flags)) { 578 err = -ENETDOWN; 579 goto done; 580 } 581 582 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 583 err = -EBUSY; 584 goto done; 585 } 586 587 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 588 err = -EOPNOTSUPP; 589 goto done; 590 } 591 592 err = hci_dev_do_reset(hdev); 593 594 done: 595 hci_dev_put(hdev); 596 return err; 597 } 598 599 int hci_dev_reset_stat(__u16 dev) 600 { 601 struct hci_dev *hdev; 602 int ret = 0; 603 604 hdev = hci_dev_get(dev); 605 if (!hdev) 606 return -ENODEV; 607 608 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 609 ret = -EBUSY; 610 goto done; 611 } 612 613 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 614 ret = -EOPNOTSUPP; 615 goto done; 616 } 617 618 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 619 620 done: 621 hci_dev_put(hdev); 622 return ret; 623 } 624 625 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan) 626 { 627 bool conn_changed, discov_changed; 628 629 BT_DBG("%s scan 0x%02x", hdev->name, scan); 630 631 if ((scan & SCAN_PAGE)) 632 conn_changed = !hci_dev_test_and_set_flag(hdev, 633 HCI_CONNECTABLE); 634 else 635 conn_changed = hci_dev_test_and_clear_flag(hdev, 636 HCI_CONNECTABLE); 637 638 if ((scan & SCAN_INQUIRY)) { 639 discov_changed = !hci_dev_test_and_set_flag(hdev, 640 HCI_DISCOVERABLE); 641 } else { 642 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 643 discov_changed = hci_dev_test_and_clear_flag(hdev, 644 HCI_DISCOVERABLE); 645 } 646 647 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 648 return; 649 650 if (conn_changed || discov_changed) { 651 /* In case this was disabled through mgmt */ 652 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 653 654 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 655 hci_update_adv_data(hdev, hdev->cur_adv_instance); 656 657 mgmt_new_settings(hdev); 658 } 659 } 660 661 int hci_dev_cmd(unsigned int cmd, void __user *arg) 662 { 663 struct hci_dev *hdev; 664 struct hci_dev_req dr; 665 __le16 policy; 666 int err = 0; 667 668 if (copy_from_user(&dr, arg, sizeof(dr))) 669 return -EFAULT; 670 671 hdev = hci_dev_get(dr.dev_id); 672 if (!hdev) 673 return -ENODEV; 674 675 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 676 err = -EBUSY; 677 goto done; 678 } 679 680 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 681 err = -EOPNOTSUPP; 682 goto done; 683 } 684 685 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 686 err = -EOPNOTSUPP; 687 goto done; 688 } 689 690 switch (cmd) { 691 case HCISETAUTH: 692 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 693 1, &dr.dev_opt, HCI_CMD_TIMEOUT); 694 break; 695 696 case HCISETENCRYPT: 697 if (!lmp_encrypt_capable(hdev)) { 698 err = -EOPNOTSUPP; 699 break; 700 } 701 702 if (!test_bit(HCI_AUTH, &hdev->flags)) { 703 /* Auth must be enabled first */ 704 err = hci_cmd_sync_status(hdev, 705 HCI_OP_WRITE_AUTH_ENABLE, 706 1, &dr.dev_opt, 707 HCI_CMD_TIMEOUT); 708 if (err) 709 break; 710 } 711 712 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 713 1, &dr.dev_opt, HCI_CMD_TIMEOUT); 714 break; 715 716 case HCISETSCAN: 717 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 718 1, &dr.dev_opt, HCI_CMD_TIMEOUT); 719 720 /* Ensure that the connectable and discoverable states 721 * get correctly modified as this was a non-mgmt change. 722 */ 723 if (!err) 724 hci_update_passive_scan_state(hdev, dr.dev_opt); 725 break; 726 727 case HCISETLINKPOL: 728 policy = cpu_to_le16(dr.dev_opt); 729 730 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 731 2, &policy, HCI_CMD_TIMEOUT); 732 break; 733 734 case HCISETLINKMODE: 735 hdev->link_mode = ((__u16) dr.dev_opt) & 736 (HCI_LM_MASTER | HCI_LM_ACCEPT); 737 break; 738 739 case HCISETPTYPE: 740 if (hdev->pkt_type == (__u16) dr.dev_opt) 741 break; 742 743 hdev->pkt_type = (__u16) dr.dev_opt; 744 mgmt_phy_configuration_changed(hdev, NULL); 745 break; 746 747 case HCISETACLMTU: 748 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 749 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 750 break; 751 752 case HCISETSCOMTU: 753 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 754 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 755 break; 756 757 default: 758 err = -EINVAL; 759 break; 760 } 761 762 done: 763 hci_dev_put(hdev); 764 return err; 765 } 766 767 int hci_get_dev_list(void __user *arg) 768 { 769 struct hci_dev *hdev; 770 struct hci_dev_list_req *dl; 771 struct hci_dev_req *dr; 772 int n = 0, err; 773 __u16 dev_num; 774 775 if (get_user(dev_num, (__u16 __user *) arg)) 776 return -EFAULT; 777 778 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 779 return -EINVAL; 780 781 dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL); 782 if (!dl) 783 return -ENOMEM; 784 785 dl->dev_num = dev_num; 786 dr = dl->dev_req; 787 788 read_lock(&hci_dev_list_lock); 789 list_for_each_entry(hdev, &hci_dev_list, list) { 790 unsigned long flags = hdev->flags; 791 792 /* When the auto-off is configured it means the transport 793 * is running, but in that case still indicate that the 794 * device is actually down. 795 */ 796 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 797 flags &= ~BIT(HCI_UP); 798 799 dr[n].dev_id = hdev->id; 800 dr[n].dev_opt = flags; 801 802 if (++n >= dev_num) 803 break; 804 } 805 read_unlock(&hci_dev_list_lock); 806 807 dl->dev_num = n; 808 err = copy_to_user(arg, dl, struct_size(dl, dev_req, n)); 809 kfree(dl); 810 811 return err ? -EFAULT : 0; 812 } 813 814 int hci_get_dev_info(void __user *arg) 815 { 816 struct hci_dev *hdev; 817 struct hci_dev_info di; 818 unsigned long flags; 819 int err = 0; 820 821 if (copy_from_user(&di, arg, sizeof(di))) 822 return -EFAULT; 823 824 hdev = hci_dev_get(di.dev_id); 825 if (!hdev) 826 return -ENODEV; 827 828 /* When the auto-off is configured it means the transport 829 * is running, but in that case still indicate that the 830 * device is actually down. 831 */ 832 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 833 flags = hdev->flags & ~BIT(HCI_UP); 834 else 835 flags = hdev->flags; 836 837 strscpy(di.name, hdev->name, sizeof(di.name)); 838 di.bdaddr = hdev->bdaddr; 839 di.type = (hdev->bus & 0x0f); 840 di.flags = flags; 841 di.pkt_type = hdev->pkt_type; 842 if (lmp_bredr_capable(hdev)) { 843 di.acl_mtu = hdev->acl_mtu; 844 di.acl_pkts = hdev->acl_pkts; 845 di.sco_mtu = hdev->sco_mtu; 846 di.sco_pkts = hdev->sco_pkts; 847 } else { 848 di.acl_mtu = hdev->le_mtu; 849 di.acl_pkts = hdev->le_pkts; 850 di.sco_mtu = 0; 851 di.sco_pkts = 0; 852 } 853 di.link_policy = hdev->link_policy; 854 di.link_mode = hdev->link_mode; 855 856 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 857 memcpy(&di.features, &hdev->features, sizeof(di.features)); 858 859 if (copy_to_user(arg, &di, sizeof(di))) 860 err = -EFAULT; 861 862 hci_dev_put(hdev); 863 864 return err; 865 } 866 867 /* ---- Interface to HCI drivers ---- */ 868 869 static int hci_dev_do_poweroff(struct hci_dev *hdev) 870 { 871 int err; 872 873 BT_DBG("%s %p", hdev->name, hdev); 874 875 hci_req_sync_lock(hdev); 876 877 err = hci_set_powered_sync(hdev, false); 878 879 hci_req_sync_unlock(hdev); 880 881 return err; 882 } 883 884 static int hci_rfkill_set_block(void *data, bool blocked) 885 { 886 struct hci_dev *hdev = data; 887 int err; 888 889 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 890 891 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 892 return -EBUSY; 893 894 if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED)) 895 return 0; 896 897 if (blocked) { 898 hci_dev_set_flag(hdev, HCI_RFKILLED); 899 900 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 901 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 902 err = hci_dev_do_poweroff(hdev); 903 if (err) { 904 bt_dev_err(hdev, "Error when powering off device on rfkill (%d)", 905 err); 906 907 /* Make sure the device is still closed even if 908 * anything during power off sequence (eg. 909 * disconnecting devices) failed. 910 */ 911 hci_dev_do_close(hdev); 912 } 913 } 914 } else { 915 hci_dev_clear_flag(hdev, HCI_RFKILLED); 916 } 917 918 return 0; 919 } 920 921 static const struct rfkill_ops hci_rfkill_ops = { 922 .set_block = hci_rfkill_set_block, 923 }; 924 925 static void hci_power_on(struct work_struct *work) 926 { 927 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 928 int err; 929 930 BT_DBG("%s", hdev->name); 931 932 if (test_bit(HCI_UP, &hdev->flags) && 933 hci_dev_test_flag(hdev, HCI_MGMT) && 934 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 935 cancel_delayed_work(&hdev->power_off); 936 err = hci_powered_update_sync(hdev); 937 mgmt_power_on(hdev, err); 938 return; 939 } 940 941 err = hci_dev_do_open(hdev); 942 if (err < 0) { 943 hci_dev_lock(hdev); 944 mgmt_set_powered_failed(hdev, err); 945 hci_dev_unlock(hdev); 946 return; 947 } 948 949 /* During the HCI setup phase, a few error conditions are 950 * ignored and they need to be checked now. If they are still 951 * valid, it is important to turn the device back off. 952 */ 953 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 954 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 955 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 956 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 957 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 958 hci_dev_do_close(hdev); 959 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 960 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 961 HCI_AUTO_OFF_TIMEOUT); 962 } 963 964 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 965 /* For unconfigured devices, set the HCI_RAW flag 966 * so that userspace can easily identify them. 967 */ 968 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 969 set_bit(HCI_RAW, &hdev->flags); 970 971 /* For fully configured devices, this will send 972 * the Index Added event. For unconfigured devices, 973 * it will send Unconfigued Index Added event. 974 * 975 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 976 * and no event will be send. 977 */ 978 mgmt_index_added(hdev); 979 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 980 /* When the controller is now configured, then it 981 * is important to clear the HCI_RAW flag. 982 */ 983 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 984 clear_bit(HCI_RAW, &hdev->flags); 985 986 /* Powering on the controller with HCI_CONFIG set only 987 * happens with the transition from unconfigured to 988 * configured. This will send the Index Added event. 989 */ 990 mgmt_index_added(hdev); 991 } 992 } 993 994 static void hci_power_off(struct work_struct *work) 995 { 996 struct hci_dev *hdev = container_of(work, struct hci_dev, 997 power_off.work); 998 999 BT_DBG("%s", hdev->name); 1000 1001 hci_dev_do_close(hdev); 1002 } 1003 1004 static void hci_error_reset(struct work_struct *work) 1005 { 1006 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 1007 1008 hci_dev_hold(hdev); 1009 BT_DBG("%s", hdev->name); 1010 1011 if (hdev->hw_error) 1012 hdev->hw_error(hdev, hdev->hw_error_code); 1013 else 1014 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 1015 1016 if (!hci_dev_do_close(hdev)) 1017 hci_dev_do_open(hdev); 1018 1019 hci_dev_put(hdev); 1020 } 1021 1022 void hci_uuids_clear(struct hci_dev *hdev) 1023 { 1024 struct bt_uuid *uuid, *tmp; 1025 1026 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 1027 list_del(&uuid->list); 1028 kfree(uuid); 1029 } 1030 } 1031 1032 void hci_link_keys_clear(struct hci_dev *hdev) 1033 { 1034 struct link_key *key, *tmp; 1035 1036 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) { 1037 list_del_rcu(&key->list); 1038 kfree_rcu(key, rcu); 1039 } 1040 } 1041 1042 void hci_smp_ltks_clear(struct hci_dev *hdev) 1043 { 1044 struct smp_ltk *k, *tmp; 1045 1046 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1047 list_del_rcu(&k->list); 1048 kfree_rcu(k, rcu); 1049 } 1050 } 1051 1052 void hci_smp_irks_clear(struct hci_dev *hdev) 1053 { 1054 struct smp_irk *k, *tmp; 1055 1056 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1057 list_del_rcu(&k->list); 1058 kfree_rcu(k, rcu); 1059 } 1060 } 1061 1062 void hci_blocked_keys_clear(struct hci_dev *hdev) 1063 { 1064 struct blocked_key *b, *tmp; 1065 1066 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) { 1067 list_del_rcu(&b->list); 1068 kfree_rcu(b, rcu); 1069 } 1070 } 1071 1072 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 1073 { 1074 bool blocked = false; 1075 struct blocked_key *b; 1076 1077 rcu_read_lock(); 1078 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 1079 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 1080 blocked = true; 1081 break; 1082 } 1083 } 1084 1085 rcu_read_unlock(); 1086 return blocked; 1087 } 1088 1089 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1090 { 1091 struct link_key *k; 1092 1093 rcu_read_lock(); 1094 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 1095 if (bacmp(bdaddr, &k->bdaddr) == 0) { 1096 rcu_read_unlock(); 1097 1098 if (hci_is_blocked_key(hdev, 1099 HCI_BLOCKED_KEY_TYPE_LINKKEY, 1100 k->val)) { 1101 bt_dev_warn_ratelimited(hdev, 1102 "Link key blocked for %pMR", 1103 &k->bdaddr); 1104 return NULL; 1105 } 1106 1107 return k; 1108 } 1109 } 1110 rcu_read_unlock(); 1111 1112 return NULL; 1113 } 1114 1115 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 1116 u8 key_type, u8 old_key_type) 1117 { 1118 /* Legacy key */ 1119 if (key_type < 0x03) 1120 return true; 1121 1122 /* Debug keys are insecure so don't store them persistently */ 1123 if (key_type == HCI_LK_DEBUG_COMBINATION) 1124 return false; 1125 1126 /* Changed combination key and there's no previous one */ 1127 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 1128 return false; 1129 1130 /* Security mode 3 case */ 1131 if (!conn) 1132 return true; 1133 1134 /* BR/EDR key derived using SC from an LE link */ 1135 if (conn->type == LE_LINK) 1136 return true; 1137 1138 /* Neither local nor remote side had no-bonding as requirement */ 1139 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 1140 return true; 1141 1142 /* Local side had dedicated bonding as requirement */ 1143 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 1144 return true; 1145 1146 /* Remote side had dedicated bonding as requirement */ 1147 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 1148 return true; 1149 1150 /* If none of the above criteria match, then don't store the key 1151 * persistently */ 1152 return false; 1153 } 1154 1155 static u8 ltk_role(u8 type) 1156 { 1157 if (type == SMP_LTK) 1158 return HCI_ROLE_MASTER; 1159 1160 return HCI_ROLE_SLAVE; 1161 } 1162 1163 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1164 u8 addr_type, u8 role) 1165 { 1166 struct smp_ltk *k; 1167 1168 rcu_read_lock(); 1169 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1170 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 1171 continue; 1172 1173 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 1174 rcu_read_unlock(); 1175 1176 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 1177 k->val)) { 1178 bt_dev_warn_ratelimited(hdev, 1179 "LTK blocked for %pMR", 1180 &k->bdaddr); 1181 return NULL; 1182 } 1183 1184 return k; 1185 } 1186 } 1187 rcu_read_unlock(); 1188 1189 return NULL; 1190 } 1191 1192 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 1193 { 1194 struct smp_irk *irk_to_return = NULL; 1195 struct smp_irk *irk; 1196 1197 rcu_read_lock(); 1198 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1199 if (!bacmp(&irk->rpa, rpa)) { 1200 irk_to_return = irk; 1201 goto done; 1202 } 1203 } 1204 1205 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1206 if (smp_irk_matches(hdev, irk->val, rpa)) { 1207 bacpy(&irk->rpa, rpa); 1208 irk_to_return = irk; 1209 goto done; 1210 } 1211 } 1212 1213 done: 1214 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1215 irk_to_return->val)) { 1216 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1217 &irk_to_return->bdaddr); 1218 irk_to_return = NULL; 1219 } 1220 1221 rcu_read_unlock(); 1222 1223 return irk_to_return; 1224 } 1225 1226 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1227 u8 addr_type) 1228 { 1229 struct smp_irk *irk_to_return = NULL; 1230 struct smp_irk *irk; 1231 1232 /* Identity Address must be public or static random */ 1233 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 1234 return NULL; 1235 1236 rcu_read_lock(); 1237 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1238 if (addr_type == irk->addr_type && 1239 bacmp(bdaddr, &irk->bdaddr) == 0) { 1240 irk_to_return = irk; 1241 goto done; 1242 } 1243 } 1244 1245 done: 1246 1247 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1248 irk_to_return->val)) { 1249 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1250 &irk_to_return->bdaddr); 1251 irk_to_return = NULL; 1252 } 1253 1254 rcu_read_unlock(); 1255 1256 return irk_to_return; 1257 } 1258 1259 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1260 bdaddr_t *bdaddr, u8 *val, u8 type, 1261 u8 pin_len, bool *persistent) 1262 { 1263 struct link_key *key, *old_key; 1264 u8 old_key_type; 1265 1266 old_key = hci_find_link_key(hdev, bdaddr); 1267 if (old_key) { 1268 old_key_type = old_key->type; 1269 key = old_key; 1270 } else { 1271 old_key_type = conn ? conn->key_type : 0xff; 1272 key = kzalloc(sizeof(*key), GFP_KERNEL); 1273 if (!key) 1274 return NULL; 1275 list_add_rcu(&key->list, &hdev->link_keys); 1276 } 1277 1278 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 1279 1280 /* Some buggy controller combinations generate a changed 1281 * combination key for legacy pairing even when there's no 1282 * previous key */ 1283 if (type == HCI_LK_CHANGED_COMBINATION && 1284 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 1285 type = HCI_LK_COMBINATION; 1286 if (conn) 1287 conn->key_type = type; 1288 } 1289 1290 bacpy(&key->bdaddr, bdaddr); 1291 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 1292 key->pin_len = pin_len; 1293 1294 if (type == HCI_LK_CHANGED_COMBINATION) 1295 key->type = old_key_type; 1296 else 1297 key->type = type; 1298 1299 if (persistent) 1300 *persistent = hci_persistent_key(hdev, conn, type, 1301 old_key_type); 1302 1303 return key; 1304 } 1305 1306 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1307 u8 addr_type, u8 type, u8 authenticated, 1308 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 1309 { 1310 struct smp_ltk *key, *old_key; 1311 u8 role = ltk_role(type); 1312 1313 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 1314 if (old_key) 1315 key = old_key; 1316 else { 1317 key = kzalloc(sizeof(*key), GFP_KERNEL); 1318 if (!key) 1319 return NULL; 1320 list_add_rcu(&key->list, &hdev->long_term_keys); 1321 } 1322 1323 bacpy(&key->bdaddr, bdaddr); 1324 key->bdaddr_type = addr_type; 1325 memcpy(key->val, tk, sizeof(key->val)); 1326 key->authenticated = authenticated; 1327 key->ediv = ediv; 1328 key->rand = rand; 1329 key->enc_size = enc_size; 1330 key->type = type; 1331 1332 return key; 1333 } 1334 1335 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1336 u8 addr_type, u8 val[16], bdaddr_t *rpa) 1337 { 1338 struct smp_irk *irk; 1339 1340 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 1341 if (!irk) { 1342 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 1343 if (!irk) 1344 return NULL; 1345 1346 bacpy(&irk->bdaddr, bdaddr); 1347 irk->addr_type = addr_type; 1348 1349 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 1350 } 1351 1352 memcpy(irk->val, val, 16); 1353 bacpy(&irk->rpa, rpa); 1354 1355 return irk; 1356 } 1357 1358 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1359 { 1360 struct link_key *key; 1361 1362 key = hci_find_link_key(hdev, bdaddr); 1363 if (!key) 1364 return -ENOENT; 1365 1366 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1367 1368 list_del_rcu(&key->list); 1369 kfree_rcu(key, rcu); 1370 1371 return 0; 1372 } 1373 1374 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 1375 { 1376 struct smp_ltk *k, *tmp; 1377 int removed = 0; 1378 1379 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1380 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 1381 continue; 1382 1383 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1384 1385 list_del_rcu(&k->list); 1386 kfree_rcu(k, rcu); 1387 removed++; 1388 } 1389 1390 return removed ? 0 : -ENOENT; 1391 } 1392 1393 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 1394 { 1395 struct smp_irk *k, *tmp; 1396 1397 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1398 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 1399 continue; 1400 1401 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1402 1403 list_del_rcu(&k->list); 1404 kfree_rcu(k, rcu); 1405 } 1406 } 1407 1408 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 1409 { 1410 struct smp_ltk *k; 1411 struct smp_irk *irk; 1412 u8 addr_type; 1413 1414 if (type == BDADDR_BREDR) { 1415 if (hci_find_link_key(hdev, bdaddr)) 1416 return true; 1417 return false; 1418 } 1419 1420 /* Convert to HCI addr type which struct smp_ltk uses */ 1421 if (type == BDADDR_LE_PUBLIC) 1422 addr_type = ADDR_LE_DEV_PUBLIC; 1423 else 1424 addr_type = ADDR_LE_DEV_RANDOM; 1425 1426 irk = hci_get_irk(hdev, bdaddr, addr_type); 1427 if (irk) { 1428 bdaddr = &irk->bdaddr; 1429 addr_type = irk->addr_type; 1430 } 1431 1432 rcu_read_lock(); 1433 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1434 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 1435 rcu_read_unlock(); 1436 return true; 1437 } 1438 } 1439 rcu_read_unlock(); 1440 1441 return false; 1442 } 1443 1444 /* HCI command timer function */ 1445 static void hci_cmd_timeout(struct work_struct *work) 1446 { 1447 struct hci_dev *hdev = container_of(work, struct hci_dev, 1448 cmd_timer.work); 1449 1450 if (hdev->req_skb) { 1451 u16 opcode = hci_skb_opcode(hdev->req_skb); 1452 1453 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 1454 1455 hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT); 1456 } else { 1457 bt_dev_err(hdev, "command tx timeout"); 1458 } 1459 1460 if (hdev->cmd_timeout) 1461 hdev->cmd_timeout(hdev); 1462 1463 atomic_set(&hdev->cmd_cnt, 1); 1464 queue_work(hdev->workqueue, &hdev->cmd_work); 1465 } 1466 1467 /* HCI ncmd timer function */ 1468 static void hci_ncmd_timeout(struct work_struct *work) 1469 { 1470 struct hci_dev *hdev = container_of(work, struct hci_dev, 1471 ncmd_timer.work); 1472 1473 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0"); 1474 1475 /* During HCI_INIT phase no events can be injected if the ncmd timer 1476 * triggers since the procedure has its own timeout handling. 1477 */ 1478 if (test_bit(HCI_INIT, &hdev->flags)) 1479 return; 1480 1481 /* This is an irrecoverable state, inject hardware error event */ 1482 hci_reset_dev(hdev); 1483 } 1484 1485 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1486 bdaddr_t *bdaddr, u8 bdaddr_type) 1487 { 1488 struct oob_data *data; 1489 1490 list_for_each_entry(data, &hdev->remote_oob_data, list) { 1491 if (bacmp(bdaddr, &data->bdaddr) != 0) 1492 continue; 1493 if (data->bdaddr_type != bdaddr_type) 1494 continue; 1495 return data; 1496 } 1497 1498 return NULL; 1499 } 1500 1501 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1502 u8 bdaddr_type) 1503 { 1504 struct oob_data *data; 1505 1506 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1507 if (!data) 1508 return -ENOENT; 1509 1510 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 1511 1512 list_del(&data->list); 1513 kfree(data); 1514 1515 return 0; 1516 } 1517 1518 void hci_remote_oob_data_clear(struct hci_dev *hdev) 1519 { 1520 struct oob_data *data, *n; 1521 1522 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 1523 list_del(&data->list); 1524 kfree(data); 1525 } 1526 } 1527 1528 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1529 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1530 u8 *hash256, u8 *rand256) 1531 { 1532 struct oob_data *data; 1533 1534 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1535 if (!data) { 1536 data = kmalloc(sizeof(*data), GFP_KERNEL); 1537 if (!data) 1538 return -ENOMEM; 1539 1540 bacpy(&data->bdaddr, bdaddr); 1541 data->bdaddr_type = bdaddr_type; 1542 list_add(&data->list, &hdev->remote_oob_data); 1543 } 1544 1545 if (hash192 && rand192) { 1546 memcpy(data->hash192, hash192, sizeof(data->hash192)); 1547 memcpy(data->rand192, rand192, sizeof(data->rand192)); 1548 if (hash256 && rand256) 1549 data->present = 0x03; 1550 } else { 1551 memset(data->hash192, 0, sizeof(data->hash192)); 1552 memset(data->rand192, 0, sizeof(data->rand192)); 1553 if (hash256 && rand256) 1554 data->present = 0x02; 1555 else 1556 data->present = 0x00; 1557 } 1558 1559 if (hash256 && rand256) { 1560 memcpy(data->hash256, hash256, sizeof(data->hash256)); 1561 memcpy(data->rand256, rand256, sizeof(data->rand256)); 1562 } else { 1563 memset(data->hash256, 0, sizeof(data->hash256)); 1564 memset(data->rand256, 0, sizeof(data->rand256)); 1565 if (hash192 && rand192) 1566 data->present = 0x01; 1567 } 1568 1569 BT_DBG("%s for %pMR", hdev->name, bdaddr); 1570 1571 return 0; 1572 } 1573 1574 /* This function requires the caller holds hdev->lock */ 1575 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 1576 { 1577 struct adv_info *adv_instance; 1578 1579 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 1580 if (adv_instance->instance == instance) 1581 return adv_instance; 1582 } 1583 1584 return NULL; 1585 } 1586 1587 /* This function requires the caller holds hdev->lock */ 1588 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 1589 { 1590 struct adv_info *cur_instance; 1591 1592 cur_instance = hci_find_adv_instance(hdev, instance); 1593 if (!cur_instance) 1594 return NULL; 1595 1596 if (cur_instance == list_last_entry(&hdev->adv_instances, 1597 struct adv_info, list)) 1598 return list_first_entry(&hdev->adv_instances, 1599 struct adv_info, list); 1600 else 1601 return list_next_entry(cur_instance, list); 1602 } 1603 1604 /* This function requires the caller holds hdev->lock */ 1605 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 1606 { 1607 struct adv_info *adv_instance; 1608 1609 adv_instance = hci_find_adv_instance(hdev, instance); 1610 if (!adv_instance) 1611 return -ENOENT; 1612 1613 BT_DBG("%s removing %dMR", hdev->name, instance); 1614 1615 if (hdev->cur_adv_instance == instance) { 1616 if (hdev->adv_instance_timeout) { 1617 cancel_delayed_work(&hdev->adv_instance_expire); 1618 hdev->adv_instance_timeout = 0; 1619 } 1620 hdev->cur_adv_instance = 0x00; 1621 } 1622 1623 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1624 1625 list_del(&adv_instance->list); 1626 kfree(adv_instance); 1627 1628 hdev->adv_instance_cnt--; 1629 1630 return 0; 1631 } 1632 1633 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 1634 { 1635 struct adv_info *adv_instance, *n; 1636 1637 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 1638 adv_instance->rpa_expired = rpa_expired; 1639 } 1640 1641 /* This function requires the caller holds hdev->lock */ 1642 void hci_adv_instances_clear(struct hci_dev *hdev) 1643 { 1644 struct adv_info *adv_instance, *n; 1645 1646 if (hdev->adv_instance_timeout) { 1647 cancel_delayed_work(&hdev->adv_instance_expire); 1648 hdev->adv_instance_timeout = 0; 1649 } 1650 1651 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 1652 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1653 list_del(&adv_instance->list); 1654 kfree(adv_instance); 1655 } 1656 1657 hdev->adv_instance_cnt = 0; 1658 hdev->cur_adv_instance = 0x00; 1659 } 1660 1661 static void adv_instance_rpa_expired(struct work_struct *work) 1662 { 1663 struct adv_info *adv_instance = container_of(work, struct adv_info, 1664 rpa_expired_cb.work); 1665 1666 BT_DBG(""); 1667 1668 adv_instance->rpa_expired = true; 1669 } 1670 1671 /* This function requires the caller holds hdev->lock */ 1672 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance, 1673 u32 flags, u16 adv_data_len, u8 *adv_data, 1674 u16 scan_rsp_len, u8 *scan_rsp_data, 1675 u16 timeout, u16 duration, s8 tx_power, 1676 u32 min_interval, u32 max_interval, 1677 u8 mesh_handle) 1678 { 1679 struct adv_info *adv; 1680 1681 adv = hci_find_adv_instance(hdev, instance); 1682 if (adv) { 1683 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1684 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1685 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data)); 1686 } else { 1687 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 1688 instance < 1 || instance > hdev->le_num_of_adv_sets + 1) 1689 return ERR_PTR(-EOVERFLOW); 1690 1691 adv = kzalloc(sizeof(*adv), GFP_KERNEL); 1692 if (!adv) 1693 return ERR_PTR(-ENOMEM); 1694 1695 adv->pending = true; 1696 adv->instance = instance; 1697 1698 /* If controller support only one set and the instance is set to 1699 * 1 then there is no option other than using handle 0x00. 1700 */ 1701 if (hdev->le_num_of_adv_sets == 1 && instance == 1) 1702 adv->handle = 0x00; 1703 else 1704 adv->handle = instance; 1705 1706 list_add(&adv->list, &hdev->adv_instances); 1707 hdev->adv_instance_cnt++; 1708 } 1709 1710 adv->flags = flags; 1711 adv->min_interval = min_interval; 1712 adv->max_interval = max_interval; 1713 adv->tx_power = tx_power; 1714 /* Defining a mesh_handle changes the timing units to ms, 1715 * rather than seconds, and ties the instance to the requested 1716 * mesh_tx queue. 1717 */ 1718 adv->mesh = mesh_handle; 1719 1720 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data, 1721 scan_rsp_len, scan_rsp_data); 1722 1723 adv->timeout = timeout; 1724 adv->remaining_time = timeout; 1725 1726 if (duration == 0) 1727 adv->duration = hdev->def_multi_adv_rotation_duration; 1728 else 1729 adv->duration = duration; 1730 1731 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired); 1732 1733 BT_DBG("%s for %dMR", hdev->name, instance); 1734 1735 return adv; 1736 } 1737 1738 /* This function requires the caller holds hdev->lock */ 1739 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance, 1740 u32 flags, u8 data_len, u8 *data, 1741 u32 min_interval, u32 max_interval) 1742 { 1743 struct adv_info *adv; 1744 1745 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL, 1746 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE, 1747 min_interval, max_interval, 0); 1748 if (IS_ERR(adv)) 1749 return adv; 1750 1751 adv->periodic = true; 1752 adv->per_adv_data_len = data_len; 1753 1754 if (data) 1755 memcpy(adv->per_adv_data, data, data_len); 1756 1757 return adv; 1758 } 1759 1760 /* This function requires the caller holds hdev->lock */ 1761 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1762 u16 adv_data_len, u8 *adv_data, 1763 u16 scan_rsp_len, u8 *scan_rsp_data) 1764 { 1765 struct adv_info *adv; 1766 1767 adv = hci_find_adv_instance(hdev, instance); 1768 1769 /* If advertisement doesn't exist, we can't modify its data */ 1770 if (!adv) 1771 return -ENOENT; 1772 1773 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) { 1774 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1775 memcpy(adv->adv_data, adv_data, adv_data_len); 1776 adv->adv_data_len = adv_data_len; 1777 adv->adv_data_changed = true; 1778 } 1779 1780 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) { 1781 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1782 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len); 1783 adv->scan_rsp_len = scan_rsp_len; 1784 adv->scan_rsp_changed = true; 1785 } 1786 1787 /* Mark as changed if there are flags which would affect it */ 1788 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) || 1789 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1790 adv->scan_rsp_changed = true; 1791 1792 return 0; 1793 } 1794 1795 /* This function requires the caller holds hdev->lock */ 1796 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance) 1797 { 1798 u32 flags; 1799 struct adv_info *adv; 1800 1801 if (instance == 0x00) { 1802 /* Instance 0 always manages the "Tx Power" and "Flags" 1803 * fields 1804 */ 1805 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 1806 1807 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 1808 * corresponds to the "connectable" instance flag. 1809 */ 1810 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 1811 flags |= MGMT_ADV_FLAG_CONNECTABLE; 1812 1813 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1814 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 1815 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1816 flags |= MGMT_ADV_FLAG_DISCOV; 1817 1818 return flags; 1819 } 1820 1821 adv = hci_find_adv_instance(hdev, instance); 1822 1823 /* Return 0 when we got an invalid instance identifier. */ 1824 if (!adv) 1825 return 0; 1826 1827 return adv->flags; 1828 } 1829 1830 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance) 1831 { 1832 struct adv_info *adv; 1833 1834 /* Instance 0x00 always set local name */ 1835 if (instance == 0x00) 1836 return true; 1837 1838 adv = hci_find_adv_instance(hdev, instance); 1839 if (!adv) 1840 return false; 1841 1842 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE || 1843 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1844 return true; 1845 1846 return adv->scan_rsp_len ? true : false; 1847 } 1848 1849 /* This function requires the caller holds hdev->lock */ 1850 void hci_adv_monitors_clear(struct hci_dev *hdev) 1851 { 1852 struct adv_monitor *monitor; 1853 int handle; 1854 1855 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 1856 hci_free_adv_monitor(hdev, monitor); 1857 1858 idr_destroy(&hdev->adv_monitors_idr); 1859 } 1860 1861 /* Frees the monitor structure and do some bookkeepings. 1862 * This function requires the caller holds hdev->lock. 1863 */ 1864 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1865 { 1866 struct adv_pattern *pattern; 1867 struct adv_pattern *tmp; 1868 1869 if (!monitor) 1870 return; 1871 1872 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) { 1873 list_del(&pattern->list); 1874 kfree(pattern); 1875 } 1876 1877 if (monitor->handle) 1878 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 1879 1880 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) { 1881 hdev->adv_monitors_cnt--; 1882 mgmt_adv_monitor_removed(hdev, monitor->handle); 1883 } 1884 1885 kfree(monitor); 1886 } 1887 1888 /* Assigns handle to a monitor, and if offloading is supported and power is on, 1889 * also attempts to forward the request to the controller. 1890 * This function requires the caller holds hci_req_sync_lock. 1891 */ 1892 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1893 { 1894 int min, max, handle; 1895 int status = 0; 1896 1897 if (!monitor) 1898 return -EINVAL; 1899 1900 hci_dev_lock(hdev); 1901 1902 min = HCI_MIN_ADV_MONITOR_HANDLE; 1903 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 1904 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 1905 GFP_KERNEL); 1906 1907 hci_dev_unlock(hdev); 1908 1909 if (handle < 0) 1910 return handle; 1911 1912 monitor->handle = handle; 1913 1914 if (!hdev_is_powered(hdev)) 1915 return status; 1916 1917 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1918 case HCI_ADV_MONITOR_EXT_NONE: 1919 bt_dev_dbg(hdev, "add monitor %d status %d", 1920 monitor->handle, status); 1921 /* Message was not forwarded to controller - not an error */ 1922 break; 1923 1924 case HCI_ADV_MONITOR_EXT_MSFT: 1925 status = msft_add_monitor_pattern(hdev, monitor); 1926 bt_dev_dbg(hdev, "add monitor %d msft status %d", 1927 handle, status); 1928 break; 1929 } 1930 1931 return status; 1932 } 1933 1934 /* Attempts to tell the controller and free the monitor. If somehow the 1935 * controller doesn't have a corresponding handle, remove anyway. 1936 * This function requires the caller holds hci_req_sync_lock. 1937 */ 1938 static int hci_remove_adv_monitor(struct hci_dev *hdev, 1939 struct adv_monitor *monitor) 1940 { 1941 int status = 0; 1942 int handle; 1943 1944 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1945 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */ 1946 bt_dev_dbg(hdev, "remove monitor %d status %d", 1947 monitor->handle, status); 1948 goto free_monitor; 1949 1950 case HCI_ADV_MONITOR_EXT_MSFT: 1951 handle = monitor->handle; 1952 status = msft_remove_monitor(hdev, monitor); 1953 bt_dev_dbg(hdev, "remove monitor %d msft status %d", 1954 handle, status); 1955 break; 1956 } 1957 1958 /* In case no matching handle registered, just free the monitor */ 1959 if (status == -ENOENT) 1960 goto free_monitor; 1961 1962 return status; 1963 1964 free_monitor: 1965 if (status == -ENOENT) 1966 bt_dev_warn(hdev, "Removing monitor with no matching handle %d", 1967 monitor->handle); 1968 hci_free_adv_monitor(hdev, monitor); 1969 1970 return status; 1971 } 1972 1973 /* This function requires the caller holds hci_req_sync_lock */ 1974 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle) 1975 { 1976 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle); 1977 1978 if (!monitor) 1979 return -EINVAL; 1980 1981 return hci_remove_adv_monitor(hdev, monitor); 1982 } 1983 1984 /* This function requires the caller holds hci_req_sync_lock */ 1985 int hci_remove_all_adv_monitor(struct hci_dev *hdev) 1986 { 1987 struct adv_monitor *monitor; 1988 int idr_next_id = 0; 1989 int status = 0; 1990 1991 while (1) { 1992 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id); 1993 if (!monitor) 1994 break; 1995 1996 status = hci_remove_adv_monitor(hdev, monitor); 1997 if (status) 1998 return status; 1999 2000 idr_next_id++; 2001 } 2002 2003 return status; 2004 } 2005 2006 /* This function requires the caller holds hdev->lock */ 2007 bool hci_is_adv_monitoring(struct hci_dev *hdev) 2008 { 2009 return !idr_is_empty(&hdev->adv_monitors_idr); 2010 } 2011 2012 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev) 2013 { 2014 if (msft_monitor_supported(hdev)) 2015 return HCI_ADV_MONITOR_EXT_MSFT; 2016 2017 return HCI_ADV_MONITOR_EXT_NONE; 2018 } 2019 2020 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2021 bdaddr_t *bdaddr, u8 type) 2022 { 2023 struct bdaddr_list *b; 2024 2025 list_for_each_entry(b, bdaddr_list, list) { 2026 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2027 return b; 2028 } 2029 2030 return NULL; 2031 } 2032 2033 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 2034 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 2035 u8 type) 2036 { 2037 struct bdaddr_list_with_irk *b; 2038 2039 list_for_each_entry(b, bdaddr_list, list) { 2040 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2041 return b; 2042 } 2043 2044 return NULL; 2045 } 2046 2047 struct bdaddr_list_with_flags * 2048 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 2049 bdaddr_t *bdaddr, u8 type) 2050 { 2051 struct bdaddr_list_with_flags *b; 2052 2053 list_for_each_entry(b, bdaddr_list, list) { 2054 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2055 return b; 2056 } 2057 2058 return NULL; 2059 } 2060 2061 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2062 { 2063 struct bdaddr_list *b, *n; 2064 2065 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2066 list_del(&b->list); 2067 kfree(b); 2068 } 2069 } 2070 2071 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2072 { 2073 struct bdaddr_list *entry; 2074 2075 if (!bacmp(bdaddr, BDADDR_ANY)) 2076 return -EBADF; 2077 2078 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2079 return -EEXIST; 2080 2081 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2082 if (!entry) 2083 return -ENOMEM; 2084 2085 bacpy(&entry->bdaddr, bdaddr); 2086 entry->bdaddr_type = type; 2087 2088 list_add(&entry->list, list); 2089 2090 return 0; 2091 } 2092 2093 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2094 u8 type, u8 *peer_irk, u8 *local_irk) 2095 { 2096 struct bdaddr_list_with_irk *entry; 2097 2098 if (!bacmp(bdaddr, BDADDR_ANY)) 2099 return -EBADF; 2100 2101 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2102 return -EEXIST; 2103 2104 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2105 if (!entry) 2106 return -ENOMEM; 2107 2108 bacpy(&entry->bdaddr, bdaddr); 2109 entry->bdaddr_type = type; 2110 2111 if (peer_irk) 2112 memcpy(entry->peer_irk, peer_irk, 16); 2113 2114 if (local_irk) 2115 memcpy(entry->local_irk, local_irk, 16); 2116 2117 list_add(&entry->list, list); 2118 2119 return 0; 2120 } 2121 2122 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2123 u8 type, u32 flags) 2124 { 2125 struct bdaddr_list_with_flags *entry; 2126 2127 if (!bacmp(bdaddr, BDADDR_ANY)) 2128 return -EBADF; 2129 2130 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2131 return -EEXIST; 2132 2133 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2134 if (!entry) 2135 return -ENOMEM; 2136 2137 bacpy(&entry->bdaddr, bdaddr); 2138 entry->bdaddr_type = type; 2139 entry->flags = flags; 2140 2141 list_add(&entry->list, list); 2142 2143 return 0; 2144 } 2145 2146 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2147 { 2148 struct bdaddr_list *entry; 2149 2150 if (!bacmp(bdaddr, BDADDR_ANY)) { 2151 hci_bdaddr_list_clear(list); 2152 return 0; 2153 } 2154 2155 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2156 if (!entry) 2157 return -ENOENT; 2158 2159 list_del(&entry->list); 2160 kfree(entry); 2161 2162 return 0; 2163 } 2164 2165 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2166 u8 type) 2167 { 2168 struct bdaddr_list_with_irk *entry; 2169 2170 if (!bacmp(bdaddr, BDADDR_ANY)) { 2171 hci_bdaddr_list_clear(list); 2172 return 0; 2173 } 2174 2175 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 2176 if (!entry) 2177 return -ENOENT; 2178 2179 list_del(&entry->list); 2180 kfree(entry); 2181 2182 return 0; 2183 } 2184 2185 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2186 u8 type) 2187 { 2188 struct bdaddr_list_with_flags *entry; 2189 2190 if (!bacmp(bdaddr, BDADDR_ANY)) { 2191 hci_bdaddr_list_clear(list); 2192 return 0; 2193 } 2194 2195 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type); 2196 if (!entry) 2197 return -ENOENT; 2198 2199 list_del(&entry->list); 2200 kfree(entry); 2201 2202 return 0; 2203 } 2204 2205 /* This function requires the caller holds hdev->lock */ 2206 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2207 bdaddr_t *addr, u8 addr_type) 2208 { 2209 struct hci_conn_params *params; 2210 2211 list_for_each_entry(params, &hdev->le_conn_params, list) { 2212 if (bacmp(¶ms->addr, addr) == 0 && 2213 params->addr_type == addr_type) { 2214 return params; 2215 } 2216 } 2217 2218 return NULL; 2219 } 2220 2221 /* This function requires the caller holds hdev->lock or rcu_read_lock */ 2222 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2223 bdaddr_t *addr, u8 addr_type) 2224 { 2225 struct hci_conn_params *param; 2226 2227 rcu_read_lock(); 2228 2229 list_for_each_entry_rcu(param, list, action) { 2230 if (bacmp(¶m->addr, addr) == 0 && 2231 param->addr_type == addr_type) { 2232 rcu_read_unlock(); 2233 return param; 2234 } 2235 } 2236 2237 rcu_read_unlock(); 2238 2239 return NULL; 2240 } 2241 2242 /* This function requires the caller holds hdev->lock */ 2243 void hci_pend_le_list_del_init(struct hci_conn_params *param) 2244 { 2245 if (list_empty(¶m->action)) 2246 return; 2247 2248 list_del_rcu(¶m->action); 2249 synchronize_rcu(); 2250 INIT_LIST_HEAD(¶m->action); 2251 } 2252 2253 /* This function requires the caller holds hdev->lock */ 2254 void hci_pend_le_list_add(struct hci_conn_params *param, 2255 struct list_head *list) 2256 { 2257 list_add_rcu(¶m->action, list); 2258 } 2259 2260 /* This function requires the caller holds hdev->lock */ 2261 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2262 bdaddr_t *addr, u8 addr_type) 2263 { 2264 struct hci_conn_params *params; 2265 2266 params = hci_conn_params_lookup(hdev, addr, addr_type); 2267 if (params) 2268 return params; 2269 2270 params = kzalloc(sizeof(*params), GFP_KERNEL); 2271 if (!params) { 2272 bt_dev_err(hdev, "out of memory"); 2273 return NULL; 2274 } 2275 2276 bacpy(¶ms->addr, addr); 2277 params->addr_type = addr_type; 2278 2279 list_add(¶ms->list, &hdev->le_conn_params); 2280 INIT_LIST_HEAD(¶ms->action); 2281 2282 params->conn_min_interval = hdev->le_conn_min_interval; 2283 params->conn_max_interval = hdev->le_conn_max_interval; 2284 params->conn_latency = hdev->le_conn_latency; 2285 params->supervision_timeout = hdev->le_supv_timeout; 2286 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2287 2288 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2289 2290 return params; 2291 } 2292 2293 void hci_conn_params_free(struct hci_conn_params *params) 2294 { 2295 hci_pend_le_list_del_init(params); 2296 2297 if (params->conn) { 2298 hci_conn_drop(params->conn); 2299 hci_conn_put(params->conn); 2300 } 2301 2302 list_del(¶ms->list); 2303 kfree(params); 2304 } 2305 2306 /* This function requires the caller holds hdev->lock */ 2307 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2308 { 2309 struct hci_conn_params *params; 2310 2311 params = hci_conn_params_lookup(hdev, addr, addr_type); 2312 if (!params) 2313 return; 2314 2315 hci_conn_params_free(params); 2316 2317 hci_update_passive_scan(hdev); 2318 2319 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2320 } 2321 2322 /* This function requires the caller holds hdev->lock */ 2323 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2324 { 2325 struct hci_conn_params *params, *tmp; 2326 2327 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2328 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2329 continue; 2330 2331 /* If trying to establish one time connection to disabled 2332 * device, leave the params, but mark them as just once. 2333 */ 2334 if (params->explicit_connect) { 2335 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 2336 continue; 2337 } 2338 2339 hci_conn_params_free(params); 2340 } 2341 2342 BT_DBG("All LE disabled connection parameters were removed"); 2343 } 2344 2345 /* This function requires the caller holds hdev->lock */ 2346 static void hci_conn_params_clear_all(struct hci_dev *hdev) 2347 { 2348 struct hci_conn_params *params, *tmp; 2349 2350 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2351 hci_conn_params_free(params); 2352 2353 BT_DBG("All LE connection parameters were removed"); 2354 } 2355 2356 /* Copy the Identity Address of the controller. 2357 * 2358 * If the controller has a public BD_ADDR, then by default use that one. 2359 * If this is a LE only controller without a public address, default to 2360 * the static random address. 2361 * 2362 * For debugging purposes it is possible to force controllers with a 2363 * public address to use the static random address instead. 2364 * 2365 * In case BR/EDR has been disabled on a dual-mode controller and 2366 * userspace has configured a static address, then that address 2367 * becomes the identity address instead of the public BR/EDR address. 2368 */ 2369 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2370 u8 *bdaddr_type) 2371 { 2372 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2373 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2374 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2375 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2376 bacpy(bdaddr, &hdev->static_addr); 2377 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2378 } else { 2379 bacpy(bdaddr, &hdev->bdaddr); 2380 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 2381 } 2382 } 2383 2384 static void hci_clear_wake_reason(struct hci_dev *hdev) 2385 { 2386 hci_dev_lock(hdev); 2387 2388 hdev->wake_reason = 0; 2389 bacpy(&hdev->wake_addr, BDADDR_ANY); 2390 hdev->wake_addr_type = 0; 2391 2392 hci_dev_unlock(hdev); 2393 } 2394 2395 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 2396 void *data) 2397 { 2398 struct hci_dev *hdev = 2399 container_of(nb, struct hci_dev, suspend_notifier); 2400 int ret = 0; 2401 2402 /* Userspace has full control of this device. Do nothing. */ 2403 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2404 return NOTIFY_DONE; 2405 2406 /* To avoid a potential race with hci_unregister_dev. */ 2407 hci_dev_hold(hdev); 2408 2409 switch (action) { 2410 case PM_HIBERNATION_PREPARE: 2411 case PM_SUSPEND_PREPARE: 2412 ret = hci_suspend_dev(hdev); 2413 break; 2414 case PM_POST_HIBERNATION: 2415 case PM_POST_SUSPEND: 2416 ret = hci_resume_dev(hdev); 2417 break; 2418 } 2419 2420 if (ret) 2421 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 2422 action, ret); 2423 2424 hci_dev_put(hdev); 2425 return NOTIFY_DONE; 2426 } 2427 2428 /* Alloc HCI device */ 2429 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv) 2430 { 2431 struct hci_dev *hdev; 2432 unsigned int alloc_size; 2433 2434 alloc_size = sizeof(*hdev); 2435 if (sizeof_priv) { 2436 /* Fixme: May need ALIGN-ment? */ 2437 alloc_size += sizeof_priv; 2438 } 2439 2440 hdev = kzalloc(alloc_size, GFP_KERNEL); 2441 if (!hdev) 2442 return NULL; 2443 2444 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 2445 hdev->esco_type = (ESCO_HV1); 2446 hdev->link_mode = (HCI_LM_ACCEPT); 2447 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 2448 hdev->io_capability = 0x03; /* No Input No Output */ 2449 hdev->manufacturer = 0xffff; /* Default to internal use */ 2450 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 2451 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 2452 hdev->adv_instance_cnt = 0; 2453 hdev->cur_adv_instance = 0x00; 2454 hdev->adv_instance_timeout = 0; 2455 2456 hdev->advmon_allowlist_duration = 300; 2457 hdev->advmon_no_filter_duration = 500; 2458 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */ 2459 2460 hdev->sniff_max_interval = 800; 2461 hdev->sniff_min_interval = 80; 2462 2463 hdev->le_adv_channel_map = 0x07; 2464 hdev->le_adv_min_interval = 0x0800; 2465 hdev->le_adv_max_interval = 0x0800; 2466 hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST; 2467 hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST; 2468 hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1; 2469 hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1; 2470 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 2471 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 2472 hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST; 2473 hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST; 2474 hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN; 2475 hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN; 2476 hdev->le_conn_min_interval = 0x0018; 2477 hdev->le_conn_max_interval = 0x0028; 2478 hdev->le_conn_latency = 0x0000; 2479 hdev->le_supv_timeout = 0x002a; 2480 hdev->le_def_tx_len = 0x001b; 2481 hdev->le_def_tx_time = 0x0148; 2482 hdev->le_max_tx_len = 0x001b; 2483 hdev->le_max_tx_time = 0x0148; 2484 hdev->le_max_rx_len = 0x001b; 2485 hdev->le_max_rx_time = 0x0148; 2486 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 2487 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 2488 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 2489 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 2490 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 2491 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 2492 hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT; 2493 hdev->min_le_tx_power = HCI_TX_POWER_INVALID; 2494 hdev->max_le_tx_power = HCI_TX_POWER_INVALID; 2495 2496 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 2497 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 2498 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 2499 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 2500 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 2501 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 2502 2503 /* default 1.28 sec page scan */ 2504 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 2505 hdev->def_page_scan_int = 0x0800; 2506 hdev->def_page_scan_window = 0x0012; 2507 2508 mutex_init(&hdev->lock); 2509 mutex_init(&hdev->req_lock); 2510 2511 ida_init(&hdev->unset_handle_ida); 2512 2513 INIT_LIST_HEAD(&hdev->mesh_pending); 2514 INIT_LIST_HEAD(&hdev->mgmt_pending); 2515 INIT_LIST_HEAD(&hdev->reject_list); 2516 INIT_LIST_HEAD(&hdev->accept_list); 2517 INIT_LIST_HEAD(&hdev->uuids); 2518 INIT_LIST_HEAD(&hdev->link_keys); 2519 INIT_LIST_HEAD(&hdev->long_term_keys); 2520 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 2521 INIT_LIST_HEAD(&hdev->remote_oob_data); 2522 INIT_LIST_HEAD(&hdev->le_accept_list); 2523 INIT_LIST_HEAD(&hdev->le_resolv_list); 2524 INIT_LIST_HEAD(&hdev->le_conn_params); 2525 INIT_LIST_HEAD(&hdev->pend_le_conns); 2526 INIT_LIST_HEAD(&hdev->pend_le_reports); 2527 INIT_LIST_HEAD(&hdev->conn_hash.list); 2528 INIT_LIST_HEAD(&hdev->adv_instances); 2529 INIT_LIST_HEAD(&hdev->blocked_keys); 2530 INIT_LIST_HEAD(&hdev->monitored_devices); 2531 2532 INIT_LIST_HEAD(&hdev->local_codecs); 2533 INIT_WORK(&hdev->rx_work, hci_rx_work); 2534 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 2535 INIT_WORK(&hdev->tx_work, hci_tx_work); 2536 INIT_WORK(&hdev->power_on, hci_power_on); 2537 INIT_WORK(&hdev->error_reset, hci_error_reset); 2538 2539 hci_cmd_sync_init(hdev); 2540 2541 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 2542 2543 skb_queue_head_init(&hdev->rx_q); 2544 skb_queue_head_init(&hdev->cmd_q); 2545 skb_queue_head_init(&hdev->raw_q); 2546 2547 init_waitqueue_head(&hdev->req_wait_q); 2548 2549 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 2550 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout); 2551 2552 hci_devcd_setup(hdev); 2553 2554 hci_init_sysfs(hdev); 2555 discovery_init(hdev); 2556 2557 return hdev; 2558 } 2559 EXPORT_SYMBOL(hci_alloc_dev_priv); 2560 2561 /* Free HCI device */ 2562 void hci_free_dev(struct hci_dev *hdev) 2563 { 2564 /* will free via device release */ 2565 put_device(&hdev->dev); 2566 } 2567 EXPORT_SYMBOL(hci_free_dev); 2568 2569 /* Register HCI device */ 2570 int hci_register_dev(struct hci_dev *hdev) 2571 { 2572 int id, error; 2573 2574 if (!hdev->open || !hdev->close || !hdev->send) 2575 return -EINVAL; 2576 2577 id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL); 2578 if (id < 0) 2579 return id; 2580 2581 error = dev_set_name(&hdev->dev, "hci%u", id); 2582 if (error) 2583 return error; 2584 2585 hdev->name = dev_name(&hdev->dev); 2586 hdev->id = id; 2587 2588 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2589 2590 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 2591 if (!hdev->workqueue) { 2592 error = -ENOMEM; 2593 goto err; 2594 } 2595 2596 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 2597 hdev->name); 2598 if (!hdev->req_workqueue) { 2599 destroy_workqueue(hdev->workqueue); 2600 error = -ENOMEM; 2601 goto err; 2602 } 2603 2604 if (!IS_ERR_OR_NULL(bt_debugfs)) 2605 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 2606 2607 error = device_add(&hdev->dev); 2608 if (error < 0) 2609 goto err_wqueue; 2610 2611 hci_leds_init(hdev); 2612 2613 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 2614 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 2615 hdev); 2616 if (hdev->rfkill) { 2617 if (rfkill_register(hdev->rfkill) < 0) { 2618 rfkill_destroy(hdev->rfkill); 2619 hdev->rfkill = NULL; 2620 } 2621 } 2622 2623 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 2624 hci_dev_set_flag(hdev, HCI_RFKILLED); 2625 2626 hci_dev_set_flag(hdev, HCI_SETUP); 2627 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 2628 2629 /* Assume BR/EDR support until proven otherwise (such as 2630 * through reading supported features during init. 2631 */ 2632 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 2633 2634 write_lock(&hci_dev_list_lock); 2635 list_add(&hdev->list, &hci_dev_list); 2636 write_unlock(&hci_dev_list_lock); 2637 2638 /* Devices that are marked for raw-only usage are unconfigured 2639 * and should not be included in normal operation. 2640 */ 2641 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2642 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 2643 2644 /* Mark Remote Wakeup connection flag as supported if driver has wakeup 2645 * callback. 2646 */ 2647 if (hdev->wakeup) 2648 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP; 2649 2650 hci_sock_dev_event(hdev, HCI_DEV_REG); 2651 hci_dev_hold(hdev); 2652 2653 error = hci_register_suspend_notifier(hdev); 2654 if (error) 2655 BT_WARN("register suspend notifier failed error:%d\n", error); 2656 2657 queue_work(hdev->req_workqueue, &hdev->power_on); 2658 2659 idr_init(&hdev->adv_monitors_idr); 2660 msft_register(hdev); 2661 2662 return id; 2663 2664 err_wqueue: 2665 debugfs_remove_recursive(hdev->debugfs); 2666 destroy_workqueue(hdev->workqueue); 2667 destroy_workqueue(hdev->req_workqueue); 2668 err: 2669 ida_free(&hci_index_ida, hdev->id); 2670 2671 return error; 2672 } 2673 EXPORT_SYMBOL(hci_register_dev); 2674 2675 /* Unregister HCI device */ 2676 void hci_unregister_dev(struct hci_dev *hdev) 2677 { 2678 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2679 2680 mutex_lock(&hdev->unregister_lock); 2681 hci_dev_set_flag(hdev, HCI_UNREGISTER); 2682 mutex_unlock(&hdev->unregister_lock); 2683 2684 write_lock(&hci_dev_list_lock); 2685 list_del(&hdev->list); 2686 write_unlock(&hci_dev_list_lock); 2687 2688 cancel_work_sync(&hdev->rx_work); 2689 cancel_work_sync(&hdev->cmd_work); 2690 cancel_work_sync(&hdev->tx_work); 2691 cancel_work_sync(&hdev->power_on); 2692 cancel_work_sync(&hdev->error_reset); 2693 2694 hci_cmd_sync_clear(hdev); 2695 2696 hci_unregister_suspend_notifier(hdev); 2697 2698 hci_dev_do_close(hdev); 2699 2700 if (!test_bit(HCI_INIT, &hdev->flags) && 2701 !hci_dev_test_flag(hdev, HCI_SETUP) && 2702 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 2703 hci_dev_lock(hdev); 2704 mgmt_index_removed(hdev); 2705 hci_dev_unlock(hdev); 2706 } 2707 2708 /* mgmt_index_removed should take care of emptying the 2709 * pending list */ 2710 BUG_ON(!list_empty(&hdev->mgmt_pending)); 2711 2712 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 2713 2714 if (hdev->rfkill) { 2715 rfkill_unregister(hdev->rfkill); 2716 rfkill_destroy(hdev->rfkill); 2717 } 2718 2719 device_del(&hdev->dev); 2720 /* Actual cleanup is deferred until hci_release_dev(). */ 2721 hci_dev_put(hdev); 2722 } 2723 EXPORT_SYMBOL(hci_unregister_dev); 2724 2725 /* Release HCI device */ 2726 void hci_release_dev(struct hci_dev *hdev) 2727 { 2728 debugfs_remove_recursive(hdev->debugfs); 2729 kfree_const(hdev->hw_info); 2730 kfree_const(hdev->fw_info); 2731 2732 destroy_workqueue(hdev->workqueue); 2733 destroy_workqueue(hdev->req_workqueue); 2734 2735 hci_dev_lock(hdev); 2736 hci_bdaddr_list_clear(&hdev->reject_list); 2737 hci_bdaddr_list_clear(&hdev->accept_list); 2738 hci_uuids_clear(hdev); 2739 hci_link_keys_clear(hdev); 2740 hci_smp_ltks_clear(hdev); 2741 hci_smp_irks_clear(hdev); 2742 hci_remote_oob_data_clear(hdev); 2743 hci_adv_instances_clear(hdev); 2744 hci_adv_monitors_clear(hdev); 2745 hci_bdaddr_list_clear(&hdev->le_accept_list); 2746 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2747 hci_conn_params_clear_all(hdev); 2748 hci_discovery_filter_clear(hdev); 2749 hci_blocked_keys_clear(hdev); 2750 hci_codec_list_clear(&hdev->local_codecs); 2751 msft_release(hdev); 2752 hci_dev_unlock(hdev); 2753 2754 ida_destroy(&hdev->unset_handle_ida); 2755 ida_free(&hci_index_ida, hdev->id); 2756 kfree_skb(hdev->sent_cmd); 2757 kfree_skb(hdev->req_skb); 2758 kfree_skb(hdev->recv_event); 2759 kfree(hdev); 2760 } 2761 EXPORT_SYMBOL(hci_release_dev); 2762 2763 int hci_register_suspend_notifier(struct hci_dev *hdev) 2764 { 2765 int ret = 0; 2766 2767 if (!hdev->suspend_notifier.notifier_call && 2768 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 2769 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 2770 ret = register_pm_notifier(&hdev->suspend_notifier); 2771 } 2772 2773 return ret; 2774 } 2775 2776 int hci_unregister_suspend_notifier(struct hci_dev *hdev) 2777 { 2778 int ret = 0; 2779 2780 if (hdev->suspend_notifier.notifier_call) { 2781 ret = unregister_pm_notifier(&hdev->suspend_notifier); 2782 if (!ret) 2783 hdev->suspend_notifier.notifier_call = NULL; 2784 } 2785 2786 return ret; 2787 } 2788 2789 /* Cancel ongoing command synchronously: 2790 * 2791 * - Cancel command timer 2792 * - Reset command counter 2793 * - Cancel command request 2794 */ 2795 static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err) 2796 { 2797 bt_dev_dbg(hdev, "err 0x%2.2x", err); 2798 2799 cancel_delayed_work_sync(&hdev->cmd_timer); 2800 cancel_delayed_work_sync(&hdev->ncmd_timer); 2801 atomic_set(&hdev->cmd_cnt, 1); 2802 2803 hci_cmd_sync_cancel_sync(hdev, err); 2804 } 2805 2806 /* Suspend HCI device */ 2807 int hci_suspend_dev(struct hci_dev *hdev) 2808 { 2809 int ret; 2810 2811 bt_dev_dbg(hdev, ""); 2812 2813 /* Suspend should only act on when powered. */ 2814 if (!hdev_is_powered(hdev) || 2815 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2816 return 0; 2817 2818 /* If powering down don't attempt to suspend */ 2819 if (mgmt_powering_down(hdev)) 2820 return 0; 2821 2822 /* Cancel potentially blocking sync operation before suspend */ 2823 hci_cancel_cmd_sync(hdev, EHOSTDOWN); 2824 2825 hci_req_sync_lock(hdev); 2826 ret = hci_suspend_sync(hdev); 2827 hci_req_sync_unlock(hdev); 2828 2829 hci_clear_wake_reason(hdev); 2830 mgmt_suspending(hdev, hdev->suspend_state); 2831 2832 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 2833 return ret; 2834 } 2835 EXPORT_SYMBOL(hci_suspend_dev); 2836 2837 /* Resume HCI device */ 2838 int hci_resume_dev(struct hci_dev *hdev) 2839 { 2840 int ret; 2841 2842 bt_dev_dbg(hdev, ""); 2843 2844 /* Resume should only act on when powered. */ 2845 if (!hdev_is_powered(hdev) || 2846 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2847 return 0; 2848 2849 /* If powering down don't attempt to resume */ 2850 if (mgmt_powering_down(hdev)) 2851 return 0; 2852 2853 hci_req_sync_lock(hdev); 2854 ret = hci_resume_sync(hdev); 2855 hci_req_sync_unlock(hdev); 2856 2857 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 2858 hdev->wake_addr_type); 2859 2860 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 2861 return ret; 2862 } 2863 EXPORT_SYMBOL(hci_resume_dev); 2864 2865 /* Reset HCI device */ 2866 int hci_reset_dev(struct hci_dev *hdev) 2867 { 2868 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 2869 struct sk_buff *skb; 2870 2871 skb = bt_skb_alloc(3, GFP_ATOMIC); 2872 if (!skb) 2873 return -ENOMEM; 2874 2875 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 2876 skb_put_data(skb, hw_err, 3); 2877 2878 bt_dev_err(hdev, "Injecting HCI hardware error event"); 2879 2880 /* Send Hardware Error to upper stack */ 2881 return hci_recv_frame(hdev, skb); 2882 } 2883 EXPORT_SYMBOL(hci_reset_dev); 2884 2885 static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb) 2886 { 2887 if (hdev->classify_pkt_type) 2888 return hdev->classify_pkt_type(hdev, skb); 2889 2890 return hci_skb_pkt_type(skb); 2891 } 2892 2893 /* Receive frame from HCI drivers */ 2894 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 2895 { 2896 u8 dev_pkt_type; 2897 2898 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 2899 && !test_bit(HCI_INIT, &hdev->flags))) { 2900 kfree_skb(skb); 2901 return -ENXIO; 2902 } 2903 2904 /* Check if the driver agree with packet type classification */ 2905 dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb); 2906 if (hci_skb_pkt_type(skb) != dev_pkt_type) { 2907 hci_skb_pkt_type(skb) = dev_pkt_type; 2908 } 2909 2910 switch (hci_skb_pkt_type(skb)) { 2911 case HCI_EVENT_PKT: 2912 break; 2913 case HCI_ACLDATA_PKT: 2914 /* Detect if ISO packet has been sent as ACL */ 2915 if (hci_conn_num(hdev, ISO_LINK)) { 2916 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle); 2917 __u8 type; 2918 2919 type = hci_conn_lookup_type(hdev, hci_handle(handle)); 2920 if (type == ISO_LINK) 2921 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 2922 } 2923 break; 2924 case HCI_SCODATA_PKT: 2925 break; 2926 case HCI_ISODATA_PKT: 2927 break; 2928 default: 2929 kfree_skb(skb); 2930 return -EINVAL; 2931 } 2932 2933 /* Incoming skb */ 2934 bt_cb(skb)->incoming = 1; 2935 2936 /* Time stamp */ 2937 __net_timestamp(skb); 2938 2939 skb_queue_tail(&hdev->rx_q, skb); 2940 queue_work(hdev->workqueue, &hdev->rx_work); 2941 2942 return 0; 2943 } 2944 EXPORT_SYMBOL(hci_recv_frame); 2945 2946 /* Receive diagnostic message from HCI drivers */ 2947 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 2948 { 2949 /* Mark as diagnostic packet */ 2950 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 2951 2952 /* Time stamp */ 2953 __net_timestamp(skb); 2954 2955 skb_queue_tail(&hdev->rx_q, skb); 2956 queue_work(hdev->workqueue, &hdev->rx_work); 2957 2958 return 0; 2959 } 2960 EXPORT_SYMBOL(hci_recv_diag); 2961 2962 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 2963 { 2964 va_list vargs; 2965 2966 va_start(vargs, fmt); 2967 kfree_const(hdev->hw_info); 2968 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2969 va_end(vargs); 2970 } 2971 EXPORT_SYMBOL(hci_set_hw_info); 2972 2973 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 2974 { 2975 va_list vargs; 2976 2977 va_start(vargs, fmt); 2978 kfree_const(hdev->fw_info); 2979 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2980 va_end(vargs); 2981 } 2982 EXPORT_SYMBOL(hci_set_fw_info); 2983 2984 /* ---- Interface to upper protocols ---- */ 2985 2986 int hci_register_cb(struct hci_cb *cb) 2987 { 2988 BT_DBG("%p name %s", cb, cb->name); 2989 2990 mutex_lock(&hci_cb_list_lock); 2991 list_add_tail(&cb->list, &hci_cb_list); 2992 mutex_unlock(&hci_cb_list_lock); 2993 2994 return 0; 2995 } 2996 EXPORT_SYMBOL(hci_register_cb); 2997 2998 int hci_unregister_cb(struct hci_cb *cb) 2999 { 3000 BT_DBG("%p name %s", cb, cb->name); 3001 3002 mutex_lock(&hci_cb_list_lock); 3003 list_del(&cb->list); 3004 mutex_unlock(&hci_cb_list_lock); 3005 3006 return 0; 3007 } 3008 EXPORT_SYMBOL(hci_unregister_cb); 3009 3010 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 3011 { 3012 int err; 3013 3014 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 3015 skb->len); 3016 3017 /* Time stamp */ 3018 __net_timestamp(skb); 3019 3020 /* Send copy to monitor */ 3021 hci_send_to_monitor(hdev, skb); 3022 3023 if (atomic_read(&hdev->promisc)) { 3024 /* Send copy to the sockets */ 3025 hci_send_to_sock(hdev, skb); 3026 } 3027 3028 /* Get rid of skb owner, prior to sending to the driver. */ 3029 skb_orphan(skb); 3030 3031 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3032 kfree_skb(skb); 3033 return -EINVAL; 3034 } 3035 3036 err = hdev->send(hdev, skb); 3037 if (err < 0) { 3038 bt_dev_err(hdev, "sending frame failed (%d)", err); 3039 kfree_skb(skb); 3040 return err; 3041 } 3042 3043 return 0; 3044 } 3045 3046 /* Send HCI command */ 3047 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3048 const void *param) 3049 { 3050 struct sk_buff *skb; 3051 3052 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3053 3054 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL); 3055 if (!skb) { 3056 bt_dev_err(hdev, "no memory for command"); 3057 return -ENOMEM; 3058 } 3059 3060 /* Stand-alone HCI commands must be flagged as 3061 * single-command requests. 3062 */ 3063 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3064 3065 skb_queue_tail(&hdev->cmd_q, skb); 3066 queue_work(hdev->workqueue, &hdev->cmd_work); 3067 3068 return 0; 3069 } 3070 3071 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3072 const void *param) 3073 { 3074 struct sk_buff *skb; 3075 3076 if (hci_opcode_ogf(opcode) != 0x3f) { 3077 /* A controller receiving a command shall respond with either 3078 * a Command Status Event or a Command Complete Event. 3079 * Therefore, all standard HCI commands must be sent via the 3080 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3081 * Some vendors do not comply with this rule for vendor-specific 3082 * commands and do not return any event. We want to support 3083 * unresponded commands for such cases only. 3084 */ 3085 bt_dev_err(hdev, "unresponded command not supported"); 3086 return -EINVAL; 3087 } 3088 3089 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL); 3090 if (!skb) { 3091 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3092 opcode); 3093 return -ENOMEM; 3094 } 3095 3096 hci_send_frame(hdev, skb); 3097 3098 return 0; 3099 } 3100 EXPORT_SYMBOL(__hci_cmd_send); 3101 3102 /* Get data from the previously sent command */ 3103 static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode) 3104 { 3105 struct hci_command_hdr *hdr; 3106 3107 if (!skb || skb->len < HCI_COMMAND_HDR_SIZE) 3108 return NULL; 3109 3110 hdr = (void *)skb->data; 3111 3112 if (hdr->opcode != cpu_to_le16(opcode)) 3113 return NULL; 3114 3115 return skb->data + HCI_COMMAND_HDR_SIZE; 3116 } 3117 3118 /* Get data from the previously sent command */ 3119 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3120 { 3121 void *data; 3122 3123 /* Check if opcode matches last sent command */ 3124 data = hci_cmd_data(hdev->sent_cmd, opcode); 3125 if (!data) 3126 /* Check if opcode matches last request */ 3127 data = hci_cmd_data(hdev->req_skb, opcode); 3128 3129 return data; 3130 } 3131 3132 /* Get data from last received event */ 3133 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event) 3134 { 3135 struct hci_event_hdr *hdr; 3136 int offset; 3137 3138 if (!hdev->recv_event) 3139 return NULL; 3140 3141 hdr = (void *)hdev->recv_event->data; 3142 offset = sizeof(*hdr); 3143 3144 if (hdr->evt != event) { 3145 /* In case of LE metaevent check the subevent match */ 3146 if (hdr->evt == HCI_EV_LE_META) { 3147 struct hci_ev_le_meta *ev; 3148 3149 ev = (void *)hdev->recv_event->data + offset; 3150 offset += sizeof(*ev); 3151 if (ev->subevent == event) 3152 goto found; 3153 } 3154 return NULL; 3155 } 3156 3157 found: 3158 bt_dev_dbg(hdev, "event 0x%2.2x", event); 3159 3160 return hdev->recv_event->data + offset; 3161 } 3162 3163 /* Send ACL data */ 3164 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3165 { 3166 struct hci_acl_hdr *hdr; 3167 int len = skb->len; 3168 3169 skb_push(skb, HCI_ACL_HDR_SIZE); 3170 skb_reset_transport_header(skb); 3171 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3172 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3173 hdr->dlen = cpu_to_le16(len); 3174 } 3175 3176 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3177 struct sk_buff *skb, __u16 flags) 3178 { 3179 struct hci_conn *conn = chan->conn; 3180 struct hci_dev *hdev = conn->hdev; 3181 struct sk_buff *list; 3182 3183 skb->len = skb_headlen(skb); 3184 skb->data_len = 0; 3185 3186 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3187 3188 hci_add_acl_hdr(skb, conn->handle, flags); 3189 3190 list = skb_shinfo(skb)->frag_list; 3191 if (!list) { 3192 /* Non fragmented */ 3193 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3194 3195 skb_queue_tail(queue, skb); 3196 } else { 3197 /* Fragmented */ 3198 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3199 3200 skb_shinfo(skb)->frag_list = NULL; 3201 3202 /* Queue all fragments atomically. We need to use spin_lock_bh 3203 * here because of 6LoWPAN links, as there this function is 3204 * called from softirq and using normal spin lock could cause 3205 * deadlocks. 3206 */ 3207 spin_lock_bh(&queue->lock); 3208 3209 __skb_queue_tail(queue, skb); 3210 3211 flags &= ~ACL_START; 3212 flags |= ACL_CONT; 3213 do { 3214 skb = list; list = list->next; 3215 3216 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3217 hci_add_acl_hdr(skb, conn->handle, flags); 3218 3219 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3220 3221 __skb_queue_tail(queue, skb); 3222 } while (list); 3223 3224 spin_unlock_bh(&queue->lock); 3225 } 3226 } 3227 3228 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3229 { 3230 struct hci_dev *hdev = chan->conn->hdev; 3231 3232 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3233 3234 hci_queue_acl(chan, &chan->data_q, skb, flags); 3235 3236 queue_work(hdev->workqueue, &hdev->tx_work); 3237 } 3238 3239 /* Send SCO data */ 3240 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3241 { 3242 struct hci_dev *hdev = conn->hdev; 3243 struct hci_sco_hdr hdr; 3244 3245 BT_DBG("%s len %d", hdev->name, skb->len); 3246 3247 hdr.handle = cpu_to_le16(conn->handle); 3248 hdr.dlen = skb->len; 3249 3250 skb_push(skb, HCI_SCO_HDR_SIZE); 3251 skb_reset_transport_header(skb); 3252 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3253 3254 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3255 3256 skb_queue_tail(&conn->data_q, skb); 3257 queue_work(hdev->workqueue, &hdev->tx_work); 3258 } 3259 3260 /* Send ISO data */ 3261 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags) 3262 { 3263 struct hci_iso_hdr *hdr; 3264 int len = skb->len; 3265 3266 skb_push(skb, HCI_ISO_HDR_SIZE); 3267 skb_reset_transport_header(skb); 3268 hdr = (struct hci_iso_hdr *)skb_transport_header(skb); 3269 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3270 hdr->dlen = cpu_to_le16(len); 3271 } 3272 3273 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue, 3274 struct sk_buff *skb) 3275 { 3276 struct hci_dev *hdev = conn->hdev; 3277 struct sk_buff *list; 3278 __u16 flags; 3279 3280 skb->len = skb_headlen(skb); 3281 skb->data_len = 0; 3282 3283 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3284 3285 list = skb_shinfo(skb)->frag_list; 3286 3287 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00); 3288 hci_add_iso_hdr(skb, conn->handle, flags); 3289 3290 if (!list) { 3291 /* Non fragmented */ 3292 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3293 3294 skb_queue_tail(queue, skb); 3295 } else { 3296 /* Fragmented */ 3297 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3298 3299 skb_shinfo(skb)->frag_list = NULL; 3300 3301 __skb_queue_tail(queue, skb); 3302 3303 do { 3304 skb = list; list = list->next; 3305 3306 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3307 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END, 3308 0x00); 3309 hci_add_iso_hdr(skb, conn->handle, flags); 3310 3311 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3312 3313 __skb_queue_tail(queue, skb); 3314 } while (list); 3315 } 3316 } 3317 3318 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb) 3319 { 3320 struct hci_dev *hdev = conn->hdev; 3321 3322 BT_DBG("%s len %d", hdev->name, skb->len); 3323 3324 hci_queue_iso(conn, &conn->data_q, skb); 3325 3326 queue_work(hdev->workqueue, &hdev->tx_work); 3327 } 3328 3329 /* ---- HCI TX task (outgoing data) ---- */ 3330 3331 /* HCI Connection scheduler */ 3332 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote) 3333 { 3334 struct hci_dev *hdev; 3335 int cnt, q; 3336 3337 if (!conn) { 3338 *quote = 0; 3339 return; 3340 } 3341 3342 hdev = conn->hdev; 3343 3344 switch (conn->type) { 3345 case ACL_LINK: 3346 cnt = hdev->acl_cnt; 3347 break; 3348 case SCO_LINK: 3349 case ESCO_LINK: 3350 cnt = hdev->sco_cnt; 3351 break; 3352 case LE_LINK: 3353 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3354 break; 3355 case ISO_LINK: 3356 cnt = hdev->iso_mtu ? hdev->iso_cnt : 3357 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3358 break; 3359 default: 3360 cnt = 0; 3361 bt_dev_err(hdev, "unknown link type %d", conn->type); 3362 } 3363 3364 q = cnt / num; 3365 *quote = q ? q : 1; 3366 } 3367 3368 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3369 int *quote) 3370 { 3371 struct hci_conn_hash *h = &hdev->conn_hash; 3372 struct hci_conn *conn = NULL, *c; 3373 unsigned int num = 0, min = ~0; 3374 3375 /* We don't have to lock device here. Connections are always 3376 * added and removed with TX task disabled. */ 3377 3378 rcu_read_lock(); 3379 3380 list_for_each_entry_rcu(c, &h->list, list) { 3381 if (c->type != type || skb_queue_empty(&c->data_q)) 3382 continue; 3383 3384 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3385 continue; 3386 3387 num++; 3388 3389 if (c->sent < min) { 3390 min = c->sent; 3391 conn = c; 3392 } 3393 3394 if (hci_conn_num(hdev, type) == num) 3395 break; 3396 } 3397 3398 rcu_read_unlock(); 3399 3400 hci_quote_sent(conn, num, quote); 3401 3402 BT_DBG("conn %p quote %d", conn, *quote); 3403 return conn; 3404 } 3405 3406 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3407 { 3408 struct hci_conn_hash *h = &hdev->conn_hash; 3409 struct hci_conn *c; 3410 3411 bt_dev_err(hdev, "link tx timeout"); 3412 3413 rcu_read_lock(); 3414 3415 /* Kill stalled connections */ 3416 list_for_each_entry_rcu(c, &h->list, list) { 3417 if (c->type == type && c->sent) { 3418 bt_dev_err(hdev, "killing stalled connection %pMR", 3419 &c->dst); 3420 /* hci_disconnect might sleep, so, we have to release 3421 * the RCU read lock before calling it. 3422 */ 3423 rcu_read_unlock(); 3424 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3425 rcu_read_lock(); 3426 } 3427 } 3428 3429 rcu_read_unlock(); 3430 } 3431 3432 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3433 int *quote) 3434 { 3435 struct hci_conn_hash *h = &hdev->conn_hash; 3436 struct hci_chan *chan = NULL; 3437 unsigned int num = 0, min = ~0, cur_prio = 0; 3438 struct hci_conn *conn; 3439 int conn_num = 0; 3440 3441 BT_DBG("%s", hdev->name); 3442 3443 rcu_read_lock(); 3444 3445 list_for_each_entry_rcu(conn, &h->list, list) { 3446 struct hci_chan *tmp; 3447 3448 if (conn->type != type) 3449 continue; 3450 3451 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3452 continue; 3453 3454 conn_num++; 3455 3456 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3457 struct sk_buff *skb; 3458 3459 if (skb_queue_empty(&tmp->data_q)) 3460 continue; 3461 3462 skb = skb_peek(&tmp->data_q); 3463 if (skb->priority < cur_prio) 3464 continue; 3465 3466 if (skb->priority > cur_prio) { 3467 num = 0; 3468 min = ~0; 3469 cur_prio = skb->priority; 3470 } 3471 3472 num++; 3473 3474 if (conn->sent < min) { 3475 min = conn->sent; 3476 chan = tmp; 3477 } 3478 } 3479 3480 if (hci_conn_num(hdev, type) == conn_num) 3481 break; 3482 } 3483 3484 rcu_read_unlock(); 3485 3486 if (!chan) 3487 return NULL; 3488 3489 hci_quote_sent(chan->conn, num, quote); 3490 3491 BT_DBG("chan %p quote %d", chan, *quote); 3492 return chan; 3493 } 3494 3495 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3496 { 3497 struct hci_conn_hash *h = &hdev->conn_hash; 3498 struct hci_conn *conn; 3499 int num = 0; 3500 3501 BT_DBG("%s", hdev->name); 3502 3503 rcu_read_lock(); 3504 3505 list_for_each_entry_rcu(conn, &h->list, list) { 3506 struct hci_chan *chan; 3507 3508 if (conn->type != type) 3509 continue; 3510 3511 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3512 continue; 3513 3514 num++; 3515 3516 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3517 struct sk_buff *skb; 3518 3519 if (chan->sent) { 3520 chan->sent = 0; 3521 continue; 3522 } 3523 3524 if (skb_queue_empty(&chan->data_q)) 3525 continue; 3526 3527 skb = skb_peek(&chan->data_q); 3528 if (skb->priority >= HCI_PRIO_MAX - 1) 3529 continue; 3530 3531 skb->priority = HCI_PRIO_MAX - 1; 3532 3533 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3534 skb->priority); 3535 } 3536 3537 if (hci_conn_num(hdev, type) == num) 3538 break; 3539 } 3540 3541 rcu_read_unlock(); 3542 3543 } 3544 3545 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type) 3546 { 3547 unsigned long last_tx; 3548 3549 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3550 return; 3551 3552 switch (type) { 3553 case LE_LINK: 3554 last_tx = hdev->le_last_tx; 3555 break; 3556 default: 3557 last_tx = hdev->acl_last_tx; 3558 break; 3559 } 3560 3561 /* tx timeout must be longer than maximum link supervision timeout 3562 * (40.9 seconds) 3563 */ 3564 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT)) 3565 hci_link_tx_to(hdev, type); 3566 } 3567 3568 /* Schedule SCO */ 3569 static void hci_sched_sco(struct hci_dev *hdev) 3570 { 3571 struct hci_conn *conn; 3572 struct sk_buff *skb; 3573 int quote; 3574 3575 BT_DBG("%s", hdev->name); 3576 3577 if (!hci_conn_num(hdev, SCO_LINK)) 3578 return; 3579 3580 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 3581 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3582 BT_DBG("skb %p len %d", skb, skb->len); 3583 hci_send_frame(hdev, skb); 3584 3585 conn->sent++; 3586 if (conn->sent == ~0) 3587 conn->sent = 0; 3588 } 3589 } 3590 } 3591 3592 static void hci_sched_esco(struct hci_dev *hdev) 3593 { 3594 struct hci_conn *conn; 3595 struct sk_buff *skb; 3596 int quote; 3597 3598 BT_DBG("%s", hdev->name); 3599 3600 if (!hci_conn_num(hdev, ESCO_LINK)) 3601 return; 3602 3603 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 3604 "e))) { 3605 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3606 BT_DBG("skb %p len %d", skb, skb->len); 3607 hci_send_frame(hdev, skb); 3608 3609 conn->sent++; 3610 if (conn->sent == ~0) 3611 conn->sent = 0; 3612 } 3613 } 3614 } 3615 3616 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3617 { 3618 unsigned int cnt = hdev->acl_cnt; 3619 struct hci_chan *chan; 3620 struct sk_buff *skb; 3621 int quote; 3622 3623 __check_timeout(hdev, cnt, ACL_LINK); 3624 3625 while (hdev->acl_cnt && 3626 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3627 u32 priority = (skb_peek(&chan->data_q))->priority; 3628 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3629 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3630 skb->len, skb->priority); 3631 3632 /* Stop if priority has changed */ 3633 if (skb->priority < priority) 3634 break; 3635 3636 skb = skb_dequeue(&chan->data_q); 3637 3638 hci_conn_enter_active_mode(chan->conn, 3639 bt_cb(skb)->force_active); 3640 3641 hci_send_frame(hdev, skb); 3642 hdev->acl_last_tx = jiffies; 3643 3644 hdev->acl_cnt--; 3645 chan->sent++; 3646 chan->conn->sent++; 3647 3648 /* Send pending SCO packets right away */ 3649 hci_sched_sco(hdev); 3650 hci_sched_esco(hdev); 3651 } 3652 } 3653 3654 if (cnt != hdev->acl_cnt) 3655 hci_prio_recalculate(hdev, ACL_LINK); 3656 } 3657 3658 static void hci_sched_acl(struct hci_dev *hdev) 3659 { 3660 BT_DBG("%s", hdev->name); 3661 3662 /* No ACL link over BR/EDR controller */ 3663 if (!hci_conn_num(hdev, ACL_LINK)) 3664 return; 3665 3666 hci_sched_acl_pkt(hdev); 3667 } 3668 3669 static void hci_sched_le(struct hci_dev *hdev) 3670 { 3671 struct hci_chan *chan; 3672 struct sk_buff *skb; 3673 int quote, *cnt, tmp; 3674 3675 BT_DBG("%s", hdev->name); 3676 3677 if (!hci_conn_num(hdev, LE_LINK)) 3678 return; 3679 3680 cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3681 3682 __check_timeout(hdev, *cnt, LE_LINK); 3683 3684 tmp = *cnt; 3685 while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 3686 u32 priority = (skb_peek(&chan->data_q))->priority; 3687 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3688 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3689 skb->len, skb->priority); 3690 3691 /* Stop if priority has changed */ 3692 if (skb->priority < priority) 3693 break; 3694 3695 skb = skb_dequeue(&chan->data_q); 3696 3697 hci_send_frame(hdev, skb); 3698 hdev->le_last_tx = jiffies; 3699 3700 (*cnt)--; 3701 chan->sent++; 3702 chan->conn->sent++; 3703 3704 /* Send pending SCO packets right away */ 3705 hci_sched_sco(hdev); 3706 hci_sched_esco(hdev); 3707 } 3708 } 3709 3710 if (*cnt != tmp) 3711 hci_prio_recalculate(hdev, LE_LINK); 3712 } 3713 3714 /* Schedule CIS */ 3715 static void hci_sched_iso(struct hci_dev *hdev) 3716 { 3717 struct hci_conn *conn; 3718 struct sk_buff *skb; 3719 int quote, *cnt; 3720 3721 BT_DBG("%s", hdev->name); 3722 3723 if (!hci_conn_num(hdev, ISO_LINK)) 3724 return; 3725 3726 cnt = hdev->iso_pkts ? &hdev->iso_cnt : 3727 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3728 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) { 3729 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3730 BT_DBG("skb %p len %d", skb, skb->len); 3731 hci_send_frame(hdev, skb); 3732 3733 conn->sent++; 3734 if (conn->sent == ~0) 3735 conn->sent = 0; 3736 (*cnt)--; 3737 } 3738 } 3739 } 3740 3741 static void hci_tx_work(struct work_struct *work) 3742 { 3743 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 3744 struct sk_buff *skb; 3745 3746 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt, 3747 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt); 3748 3749 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3750 /* Schedule queues and send stuff to HCI driver */ 3751 hci_sched_sco(hdev); 3752 hci_sched_esco(hdev); 3753 hci_sched_iso(hdev); 3754 hci_sched_acl(hdev); 3755 hci_sched_le(hdev); 3756 } 3757 3758 /* Send next queued raw (unknown type) packet */ 3759 while ((skb = skb_dequeue(&hdev->raw_q))) 3760 hci_send_frame(hdev, skb); 3761 } 3762 3763 /* ----- HCI RX task (incoming data processing) ----- */ 3764 3765 /* ACL data packet */ 3766 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3767 { 3768 struct hci_acl_hdr *hdr = (void *) skb->data; 3769 struct hci_conn *conn; 3770 __u16 handle, flags; 3771 3772 skb_pull(skb, HCI_ACL_HDR_SIZE); 3773 3774 handle = __le16_to_cpu(hdr->handle); 3775 flags = hci_flags(handle); 3776 handle = hci_handle(handle); 3777 3778 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3779 handle, flags); 3780 3781 hdev->stat.acl_rx++; 3782 3783 hci_dev_lock(hdev); 3784 conn = hci_conn_hash_lookup_handle(hdev, handle); 3785 if (conn && hci_dev_test_flag(hdev, HCI_MGMT)) 3786 mgmt_device_connected(hdev, conn, NULL, 0); 3787 hci_dev_unlock(hdev); 3788 3789 if (conn) { 3790 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 3791 3792 /* Send to upper protocol */ 3793 l2cap_recv_acldata(conn, skb, flags); 3794 return; 3795 } else { 3796 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 3797 handle); 3798 } 3799 3800 kfree_skb(skb); 3801 } 3802 3803 /* SCO data packet */ 3804 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3805 { 3806 struct hci_sco_hdr *hdr = (void *) skb->data; 3807 struct hci_conn *conn; 3808 __u16 handle, flags; 3809 3810 skb_pull(skb, HCI_SCO_HDR_SIZE); 3811 3812 handle = __le16_to_cpu(hdr->handle); 3813 flags = hci_flags(handle); 3814 handle = hci_handle(handle); 3815 3816 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3817 handle, flags); 3818 3819 hdev->stat.sco_rx++; 3820 3821 hci_dev_lock(hdev); 3822 conn = hci_conn_hash_lookup_handle(hdev, handle); 3823 hci_dev_unlock(hdev); 3824 3825 if (conn) { 3826 /* Send to upper protocol */ 3827 hci_skb_pkt_status(skb) = flags & 0x03; 3828 sco_recv_scodata(conn, skb); 3829 return; 3830 } else { 3831 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d", 3832 handle); 3833 } 3834 3835 kfree_skb(skb); 3836 } 3837 3838 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3839 { 3840 struct hci_iso_hdr *hdr; 3841 struct hci_conn *conn; 3842 __u16 handle, flags; 3843 3844 hdr = skb_pull_data(skb, sizeof(*hdr)); 3845 if (!hdr) { 3846 bt_dev_err(hdev, "ISO packet too small"); 3847 goto drop; 3848 } 3849 3850 handle = __le16_to_cpu(hdr->handle); 3851 flags = hci_flags(handle); 3852 handle = hci_handle(handle); 3853 3854 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len, 3855 handle, flags); 3856 3857 hci_dev_lock(hdev); 3858 conn = hci_conn_hash_lookup_handle(hdev, handle); 3859 hci_dev_unlock(hdev); 3860 3861 if (!conn) { 3862 bt_dev_err(hdev, "ISO packet for unknown connection handle %d", 3863 handle); 3864 goto drop; 3865 } 3866 3867 /* Send to upper protocol */ 3868 iso_recv(conn, skb, flags); 3869 return; 3870 3871 drop: 3872 kfree_skb(skb); 3873 } 3874 3875 static bool hci_req_is_complete(struct hci_dev *hdev) 3876 { 3877 struct sk_buff *skb; 3878 3879 skb = skb_peek(&hdev->cmd_q); 3880 if (!skb) 3881 return true; 3882 3883 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 3884 } 3885 3886 static void hci_resend_last(struct hci_dev *hdev) 3887 { 3888 struct hci_command_hdr *sent; 3889 struct sk_buff *skb; 3890 u16 opcode; 3891 3892 if (!hdev->sent_cmd) 3893 return; 3894 3895 sent = (void *) hdev->sent_cmd->data; 3896 opcode = __le16_to_cpu(sent->opcode); 3897 if (opcode == HCI_OP_RESET) 3898 return; 3899 3900 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 3901 if (!skb) 3902 return; 3903 3904 skb_queue_head(&hdev->cmd_q, skb); 3905 queue_work(hdev->workqueue, &hdev->cmd_work); 3906 } 3907 3908 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 3909 hci_req_complete_t *req_complete, 3910 hci_req_complete_skb_t *req_complete_skb) 3911 { 3912 struct sk_buff *skb; 3913 unsigned long flags; 3914 3915 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 3916 3917 /* If the completed command doesn't match the last one that was 3918 * sent we need to do special handling of it. 3919 */ 3920 if (!hci_sent_cmd_data(hdev, opcode)) { 3921 /* Some CSR based controllers generate a spontaneous 3922 * reset complete event during init and any pending 3923 * command will never be completed. In such a case we 3924 * need to resend whatever was the last sent 3925 * command. 3926 */ 3927 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 3928 hci_resend_last(hdev); 3929 3930 return; 3931 } 3932 3933 /* If we reach this point this event matches the last command sent */ 3934 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 3935 3936 /* If the command succeeded and there's still more commands in 3937 * this request the request is not yet complete. 3938 */ 3939 if (!status && !hci_req_is_complete(hdev)) 3940 return; 3941 3942 skb = hdev->req_skb; 3943 3944 /* If this was the last command in a request the complete 3945 * callback would be found in hdev->req_skb instead of the 3946 * command queue (hdev->cmd_q). 3947 */ 3948 if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) { 3949 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 3950 return; 3951 } 3952 3953 if (skb && bt_cb(skb)->hci.req_complete) { 3954 *req_complete = bt_cb(skb)->hci.req_complete; 3955 return; 3956 } 3957 3958 /* Remove all pending commands belonging to this request */ 3959 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 3960 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 3961 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 3962 __skb_queue_head(&hdev->cmd_q, skb); 3963 break; 3964 } 3965 3966 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 3967 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 3968 else 3969 *req_complete = bt_cb(skb)->hci.req_complete; 3970 dev_kfree_skb_irq(skb); 3971 } 3972 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 3973 } 3974 3975 static void hci_rx_work(struct work_struct *work) 3976 { 3977 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 3978 struct sk_buff *skb; 3979 3980 BT_DBG("%s", hdev->name); 3981 3982 /* The kcov_remote functions used for collecting packet parsing 3983 * coverage information from this background thread and associate 3984 * the coverage with the syscall's thread which originally injected 3985 * the packet. This helps fuzzing the kernel. 3986 */ 3987 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) { 3988 kcov_remote_start_common(skb_get_kcov_handle(skb)); 3989 3990 /* Send copy to monitor */ 3991 hci_send_to_monitor(hdev, skb); 3992 3993 if (atomic_read(&hdev->promisc)) { 3994 /* Send copy to the sockets */ 3995 hci_send_to_sock(hdev, skb); 3996 } 3997 3998 /* If the device has been opened in HCI_USER_CHANNEL, 3999 * the userspace has exclusive access to device. 4000 * When device is HCI_INIT, we still need to process 4001 * the data packets to the driver in order 4002 * to complete its setup(). 4003 */ 4004 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4005 !test_bit(HCI_INIT, &hdev->flags)) { 4006 kfree_skb(skb); 4007 continue; 4008 } 4009 4010 if (test_bit(HCI_INIT, &hdev->flags)) { 4011 /* Don't process data packets in this states. */ 4012 switch (hci_skb_pkt_type(skb)) { 4013 case HCI_ACLDATA_PKT: 4014 case HCI_SCODATA_PKT: 4015 case HCI_ISODATA_PKT: 4016 kfree_skb(skb); 4017 continue; 4018 } 4019 } 4020 4021 /* Process frame */ 4022 switch (hci_skb_pkt_type(skb)) { 4023 case HCI_EVENT_PKT: 4024 BT_DBG("%s Event packet", hdev->name); 4025 hci_event_packet(hdev, skb); 4026 break; 4027 4028 case HCI_ACLDATA_PKT: 4029 BT_DBG("%s ACL data packet", hdev->name); 4030 hci_acldata_packet(hdev, skb); 4031 break; 4032 4033 case HCI_SCODATA_PKT: 4034 BT_DBG("%s SCO data packet", hdev->name); 4035 hci_scodata_packet(hdev, skb); 4036 break; 4037 4038 case HCI_ISODATA_PKT: 4039 BT_DBG("%s ISO data packet", hdev->name); 4040 hci_isodata_packet(hdev, skb); 4041 break; 4042 4043 default: 4044 kfree_skb(skb); 4045 break; 4046 } 4047 } 4048 } 4049 4050 static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb) 4051 { 4052 int err; 4053 4054 bt_dev_dbg(hdev, "skb %p", skb); 4055 4056 kfree_skb(hdev->sent_cmd); 4057 4058 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4059 if (!hdev->sent_cmd) { 4060 skb_queue_head(&hdev->cmd_q, skb); 4061 queue_work(hdev->workqueue, &hdev->cmd_work); 4062 return; 4063 } 4064 4065 err = hci_send_frame(hdev, skb); 4066 if (err < 0) { 4067 hci_cmd_sync_cancel_sync(hdev, -err); 4068 return; 4069 } 4070 4071 if (hdev->req_status == HCI_REQ_PEND && 4072 !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) { 4073 kfree_skb(hdev->req_skb); 4074 hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4075 } 4076 4077 atomic_dec(&hdev->cmd_cnt); 4078 } 4079 4080 static void hci_cmd_work(struct work_struct *work) 4081 { 4082 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4083 struct sk_buff *skb; 4084 4085 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4086 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4087 4088 /* Send queued commands */ 4089 if (atomic_read(&hdev->cmd_cnt)) { 4090 skb = skb_dequeue(&hdev->cmd_q); 4091 if (!skb) 4092 return; 4093 4094 hci_send_cmd_sync(hdev, skb); 4095 4096 rcu_read_lock(); 4097 if (test_bit(HCI_RESET, &hdev->flags) || 4098 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 4099 cancel_delayed_work(&hdev->cmd_timer); 4100 else 4101 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer, 4102 HCI_CMD_TIMEOUT); 4103 rcu_read_unlock(); 4104 } 4105 } 4106
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.