1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/crc32c.h> 5 #include <linux/ctype.h> 6 #include <linux/highmem.h> 7 #include <linux/inet.h> 8 #include <linux/kthread.h> 9 #include <linux/net.h> 10 #include <linux/nsproxy.h> 11 #include <linux/sched/mm.h> 12 #include <linux/slab.h> 13 #include <linux/socket.h> 14 #include <linux/string.h> 15 #ifdef CONFIG_BLOCK 16 #include <linux/bio.h> 17 #endif /* CONFIG_BLOCK */ 18 #include <linux/dns_resolver.h> 19 #include <net/tcp.h> 20 #include <trace/events/sock.h> 21 22 #include <linux/ceph/ceph_features.h> 23 #include <linux/ceph/libceph.h> 24 #include <linux/ceph/messenger.h> 25 #include <linux/ceph/decode.h> 26 #include <linux/ceph/pagelist.h> 27 #include <linux/export.h> 28 29 /* 30 * Ceph uses the messenger to exchange ceph_msg messages with other 31 * hosts in the system. The messenger provides ordered and reliable 32 * delivery. We tolerate TCP disconnects by reconnecting (with 33 * exponential backoff) in the case of a fault (disconnection, bad 34 * crc, protocol error). Acks allow sent messages to be discarded by 35 * the sender. 36 */ 37 38 /* 39 * We track the state of the socket on a given connection using 40 * values defined below. The transition to a new socket state is 41 * handled by a function which verifies we aren't coming from an 42 * unexpected state. 43 * 44 * -------- 45 * | NEW* | transient initial state 46 * -------- 47 * | con_sock_state_init() 48 * v 49 * ---------- 50 * | CLOSED | initialized, but no socket (and no 51 * ---------- TCP connection) 52 * ^ \ 53 * | \ con_sock_state_connecting() 54 * | ---------------------- 55 * | \ 56 * + con_sock_state_closed() \ 57 * |+--------------------------- \ 58 * | \ \ \ 59 * | ----------- \ \ 60 * | | CLOSING | socket event; \ \ 61 * | ----------- await close \ \ 62 * | ^ \ | 63 * | | \ | 64 * | + con_sock_state_closing() \ | 65 * | / \ | | 66 * | / --------------- | | 67 * | / \ v v 68 * | / -------------- 69 * | / -----------------| CONNECTING | socket created, TCP 70 * | | / -------------- connect initiated 71 * | | | con_sock_state_connected() 72 * | | v 73 * ------------- 74 * | CONNECTED | TCP connection established 75 * ------------- 76 * 77 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 78 */ 79 80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 85 86 static bool con_flag_valid(unsigned long con_flag) 87 { 88 switch (con_flag) { 89 case CEPH_CON_F_LOSSYTX: 90 case CEPH_CON_F_KEEPALIVE_PENDING: 91 case CEPH_CON_F_WRITE_PENDING: 92 case CEPH_CON_F_SOCK_CLOSED: 93 case CEPH_CON_F_BACKOFF: 94 return true; 95 default: 96 return false; 97 } 98 } 99 100 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 101 { 102 BUG_ON(!con_flag_valid(con_flag)); 103 104 clear_bit(con_flag, &con->flags); 105 } 106 107 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag) 108 { 109 BUG_ON(!con_flag_valid(con_flag)); 110 111 set_bit(con_flag, &con->flags); 112 } 113 114 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag) 115 { 116 BUG_ON(!con_flag_valid(con_flag)); 117 118 return test_bit(con_flag, &con->flags); 119 } 120 121 bool ceph_con_flag_test_and_clear(struct ceph_connection *con, 122 unsigned long con_flag) 123 { 124 BUG_ON(!con_flag_valid(con_flag)); 125 126 return test_and_clear_bit(con_flag, &con->flags); 127 } 128 129 bool ceph_con_flag_test_and_set(struct ceph_connection *con, 130 unsigned long con_flag) 131 { 132 BUG_ON(!con_flag_valid(con_flag)); 133 134 return test_and_set_bit(con_flag, &con->flags); 135 } 136 137 /* Slab caches for frequently-allocated structures */ 138 139 static struct kmem_cache *ceph_msg_cache; 140 141 #ifdef CONFIG_LOCKDEP 142 static struct lock_class_key socket_class; 143 #endif 144 145 static void queue_con(struct ceph_connection *con); 146 static void cancel_con(struct ceph_connection *con); 147 static void ceph_con_workfn(struct work_struct *); 148 static void con_fault(struct ceph_connection *con); 149 150 /* 151 * Nicely render a sockaddr as a string. An array of formatted 152 * strings is used, to approximate reentrancy. 153 */ 154 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 155 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 156 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 157 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 158 159 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 160 static atomic_t addr_str_seq = ATOMIC_INIT(0); 161 162 struct page *ceph_zero_page; /* used in certain error cases */ 163 164 const char *ceph_pr_addr(const struct ceph_entity_addr *addr) 165 { 166 int i; 167 char *s; 168 struct sockaddr_storage ss = addr->in_addr; /* align */ 169 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss; 170 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss; 171 172 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 173 s = addr_str[i]; 174 175 switch (ss.ss_family) { 176 case AF_INET: 177 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu", 178 le32_to_cpu(addr->type), &in4->sin_addr, 179 ntohs(in4->sin_port)); 180 break; 181 182 case AF_INET6: 183 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu", 184 le32_to_cpu(addr->type), &in6->sin6_addr, 185 ntohs(in6->sin6_port)); 186 break; 187 188 default: 189 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 190 ss.ss_family); 191 } 192 193 return s; 194 } 195 EXPORT_SYMBOL(ceph_pr_addr); 196 197 void ceph_encode_my_addr(struct ceph_messenger *msgr) 198 { 199 if (!ceph_msgr2(from_msgr(msgr))) { 200 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, 201 sizeof(msgr->my_enc_addr)); 202 ceph_encode_banner_addr(&msgr->my_enc_addr); 203 } 204 } 205 206 /* 207 * work queue for all reading and writing to/from the socket. 208 */ 209 static struct workqueue_struct *ceph_msgr_wq; 210 211 static int ceph_msgr_slab_init(void) 212 { 213 BUG_ON(ceph_msg_cache); 214 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0); 215 if (!ceph_msg_cache) 216 return -ENOMEM; 217 218 return 0; 219 } 220 221 static void ceph_msgr_slab_exit(void) 222 { 223 BUG_ON(!ceph_msg_cache); 224 kmem_cache_destroy(ceph_msg_cache); 225 ceph_msg_cache = NULL; 226 } 227 228 static void _ceph_msgr_exit(void) 229 { 230 if (ceph_msgr_wq) { 231 destroy_workqueue(ceph_msgr_wq); 232 ceph_msgr_wq = NULL; 233 } 234 235 BUG_ON(!ceph_zero_page); 236 put_page(ceph_zero_page); 237 ceph_zero_page = NULL; 238 239 ceph_msgr_slab_exit(); 240 } 241 242 int __init ceph_msgr_init(void) 243 { 244 if (ceph_msgr_slab_init()) 245 return -ENOMEM; 246 247 BUG_ON(ceph_zero_page); 248 ceph_zero_page = ZERO_PAGE(0); 249 get_page(ceph_zero_page); 250 251 /* 252 * The number of active work items is limited by the number of 253 * connections, so leave @max_active at default. 254 */ 255 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 256 if (ceph_msgr_wq) 257 return 0; 258 259 pr_err("msgr_init failed to create workqueue\n"); 260 _ceph_msgr_exit(); 261 262 return -ENOMEM; 263 } 264 265 void ceph_msgr_exit(void) 266 { 267 BUG_ON(ceph_msgr_wq == NULL); 268 269 _ceph_msgr_exit(); 270 } 271 272 void ceph_msgr_flush(void) 273 { 274 flush_workqueue(ceph_msgr_wq); 275 } 276 EXPORT_SYMBOL(ceph_msgr_flush); 277 278 /* Connection socket state transition functions */ 279 280 static void con_sock_state_init(struct ceph_connection *con) 281 { 282 int old_state; 283 284 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 285 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 286 printk("%s: unexpected old state %d\n", __func__, old_state); 287 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 288 CON_SOCK_STATE_CLOSED); 289 } 290 291 static void con_sock_state_connecting(struct ceph_connection *con) 292 { 293 int old_state; 294 295 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 296 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 297 printk("%s: unexpected old state %d\n", __func__, old_state); 298 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 299 CON_SOCK_STATE_CONNECTING); 300 } 301 302 static void con_sock_state_connected(struct ceph_connection *con) 303 { 304 int old_state; 305 306 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 307 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 308 printk("%s: unexpected old state %d\n", __func__, old_state); 309 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 310 CON_SOCK_STATE_CONNECTED); 311 } 312 313 static void con_sock_state_closing(struct ceph_connection *con) 314 { 315 int old_state; 316 317 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 318 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 319 old_state != CON_SOCK_STATE_CONNECTED && 320 old_state != CON_SOCK_STATE_CLOSING)) 321 printk("%s: unexpected old state %d\n", __func__, old_state); 322 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 323 CON_SOCK_STATE_CLOSING); 324 } 325 326 static void con_sock_state_closed(struct ceph_connection *con) 327 { 328 int old_state; 329 330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 331 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 332 old_state != CON_SOCK_STATE_CLOSING && 333 old_state != CON_SOCK_STATE_CONNECTING && 334 old_state != CON_SOCK_STATE_CLOSED)) 335 printk("%s: unexpected old state %d\n", __func__, old_state); 336 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 337 CON_SOCK_STATE_CLOSED); 338 } 339 340 /* 341 * socket callback functions 342 */ 343 344 /* data available on socket, or listen socket received a connect */ 345 static void ceph_sock_data_ready(struct sock *sk) 346 { 347 struct ceph_connection *con = sk->sk_user_data; 348 349 trace_sk_data_ready(sk); 350 351 if (atomic_read(&con->msgr->stopping)) { 352 return; 353 } 354 355 if (sk->sk_state != TCP_CLOSE_WAIT) { 356 dout("%s %p state = %d, queueing work\n", __func__, 357 con, con->state); 358 queue_con(con); 359 } 360 } 361 362 /* socket has buffer space for writing */ 363 static void ceph_sock_write_space(struct sock *sk) 364 { 365 struct ceph_connection *con = sk->sk_user_data; 366 367 /* only queue to workqueue if there is data we want to write, 368 * and there is sufficient space in the socket buffer to accept 369 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 370 * doesn't get called again until try_write() fills the socket 371 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 372 * and net/core/stream.c:sk_stream_write_space(). 373 */ 374 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) { 375 if (sk_stream_is_writeable(sk)) { 376 dout("%s %p queueing write work\n", __func__, con); 377 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 378 queue_con(con); 379 } 380 } else { 381 dout("%s %p nothing to write\n", __func__, con); 382 } 383 } 384 385 /* socket's state has changed */ 386 static void ceph_sock_state_change(struct sock *sk) 387 { 388 struct ceph_connection *con = sk->sk_user_data; 389 390 dout("%s %p state = %d sk_state = %u\n", __func__, 391 con, con->state, sk->sk_state); 392 393 switch (sk->sk_state) { 394 case TCP_CLOSE: 395 dout("%s TCP_CLOSE\n", __func__); 396 fallthrough; 397 case TCP_CLOSE_WAIT: 398 dout("%s TCP_CLOSE_WAIT\n", __func__); 399 con_sock_state_closing(con); 400 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED); 401 queue_con(con); 402 break; 403 case TCP_ESTABLISHED: 404 dout("%s TCP_ESTABLISHED\n", __func__); 405 con_sock_state_connected(con); 406 queue_con(con); 407 break; 408 default: /* Everything else is uninteresting */ 409 break; 410 } 411 } 412 413 /* 414 * set up socket callbacks 415 */ 416 static void set_sock_callbacks(struct socket *sock, 417 struct ceph_connection *con) 418 { 419 struct sock *sk = sock->sk; 420 sk->sk_user_data = con; 421 sk->sk_data_ready = ceph_sock_data_ready; 422 sk->sk_write_space = ceph_sock_write_space; 423 sk->sk_state_change = ceph_sock_state_change; 424 } 425 426 427 /* 428 * socket helpers 429 */ 430 431 /* 432 * initiate connection to a remote socket. 433 */ 434 int ceph_tcp_connect(struct ceph_connection *con) 435 { 436 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */ 437 struct socket *sock; 438 unsigned int noio_flag; 439 int ret; 440 441 dout("%s con %p peer_addr %s\n", __func__, con, 442 ceph_pr_addr(&con->peer_addr)); 443 BUG_ON(con->sock); 444 445 /* sock_create_kern() allocates with GFP_KERNEL */ 446 noio_flag = memalloc_noio_save(); 447 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family, 448 SOCK_STREAM, IPPROTO_TCP, &sock); 449 memalloc_noio_restore(noio_flag); 450 if (ret) 451 return ret; 452 sock->sk->sk_allocation = GFP_NOFS; 453 sock->sk->sk_use_task_frag = false; 454 455 #ifdef CONFIG_LOCKDEP 456 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 457 #endif 458 459 set_sock_callbacks(sock, con); 460 461 con_sock_state_connecting(con); 462 ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss), 463 O_NONBLOCK); 464 if (ret == -EINPROGRESS) { 465 dout("connect %s EINPROGRESS sk_state = %u\n", 466 ceph_pr_addr(&con->peer_addr), 467 sock->sk->sk_state); 468 } else if (ret < 0) { 469 pr_err("connect %s error %d\n", 470 ceph_pr_addr(&con->peer_addr), ret); 471 sock_release(sock); 472 return ret; 473 } 474 475 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) 476 tcp_sock_set_nodelay(sock->sk); 477 478 con->sock = sock; 479 return 0; 480 } 481 482 /* 483 * Shutdown/close the socket for the given connection. 484 */ 485 int ceph_con_close_socket(struct ceph_connection *con) 486 { 487 int rc = 0; 488 489 dout("%s con %p sock %p\n", __func__, con, con->sock); 490 if (con->sock) { 491 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 492 sock_release(con->sock); 493 con->sock = NULL; 494 } 495 496 /* 497 * Forcibly clear the SOCK_CLOSED flag. It gets set 498 * independent of the connection mutex, and we could have 499 * received a socket close event before we had the chance to 500 * shut the socket down. 501 */ 502 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED); 503 504 con_sock_state_closed(con); 505 return rc; 506 } 507 508 static void ceph_con_reset_protocol(struct ceph_connection *con) 509 { 510 dout("%s con %p\n", __func__, con); 511 512 ceph_con_close_socket(con); 513 if (con->in_msg) { 514 WARN_ON(con->in_msg->con != con); 515 ceph_msg_put(con->in_msg); 516 con->in_msg = NULL; 517 } 518 if (con->out_msg) { 519 WARN_ON(con->out_msg->con != con); 520 ceph_msg_put(con->out_msg); 521 con->out_msg = NULL; 522 } 523 if (con->bounce_page) { 524 __free_page(con->bounce_page); 525 con->bounce_page = NULL; 526 } 527 528 if (ceph_msgr2(from_msgr(con->msgr))) 529 ceph_con_v2_reset_protocol(con); 530 else 531 ceph_con_v1_reset_protocol(con); 532 } 533 534 /* 535 * Reset a connection. Discard all incoming and outgoing messages 536 * and clear *_seq state. 537 */ 538 static void ceph_msg_remove(struct ceph_msg *msg) 539 { 540 list_del_init(&msg->list_head); 541 542 ceph_msg_put(msg); 543 } 544 545 static void ceph_msg_remove_list(struct list_head *head) 546 { 547 while (!list_empty(head)) { 548 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 549 list_head); 550 ceph_msg_remove(msg); 551 } 552 } 553 554 void ceph_con_reset_session(struct ceph_connection *con) 555 { 556 dout("%s con %p\n", __func__, con); 557 558 WARN_ON(con->in_msg); 559 WARN_ON(con->out_msg); 560 ceph_msg_remove_list(&con->out_queue); 561 ceph_msg_remove_list(&con->out_sent); 562 con->out_seq = 0; 563 con->in_seq = 0; 564 con->in_seq_acked = 0; 565 566 if (ceph_msgr2(from_msgr(con->msgr))) 567 ceph_con_v2_reset_session(con); 568 else 569 ceph_con_v1_reset_session(con); 570 } 571 572 /* 573 * mark a peer down. drop any open connections. 574 */ 575 void ceph_con_close(struct ceph_connection *con) 576 { 577 mutex_lock(&con->mutex); 578 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr)); 579 con->state = CEPH_CON_S_CLOSED; 580 581 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next 582 connect */ 583 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING); 584 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 585 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF); 586 587 ceph_con_reset_protocol(con); 588 ceph_con_reset_session(con); 589 cancel_con(con); 590 mutex_unlock(&con->mutex); 591 } 592 EXPORT_SYMBOL(ceph_con_close); 593 594 /* 595 * Reopen a closed connection, with a new peer address. 596 */ 597 void ceph_con_open(struct ceph_connection *con, 598 __u8 entity_type, __u64 entity_num, 599 struct ceph_entity_addr *addr) 600 { 601 mutex_lock(&con->mutex); 602 dout("con_open %p %s\n", con, ceph_pr_addr(addr)); 603 604 WARN_ON(con->state != CEPH_CON_S_CLOSED); 605 con->state = CEPH_CON_S_PREOPEN; 606 607 con->peer_name.type = (__u8) entity_type; 608 con->peer_name.num = cpu_to_le64(entity_num); 609 610 memcpy(&con->peer_addr, addr, sizeof(*addr)); 611 con->delay = 0; /* reset backoff memory */ 612 mutex_unlock(&con->mutex); 613 queue_con(con); 614 } 615 EXPORT_SYMBOL(ceph_con_open); 616 617 /* 618 * return true if this connection ever successfully opened 619 */ 620 bool ceph_con_opened(struct ceph_connection *con) 621 { 622 if (ceph_msgr2(from_msgr(con->msgr))) 623 return ceph_con_v2_opened(con); 624 625 return ceph_con_v1_opened(con); 626 } 627 628 /* 629 * initialize a new connection. 630 */ 631 void ceph_con_init(struct ceph_connection *con, void *private, 632 const struct ceph_connection_operations *ops, 633 struct ceph_messenger *msgr) 634 { 635 dout("con_init %p\n", con); 636 memset(con, 0, sizeof(*con)); 637 con->private = private; 638 con->ops = ops; 639 con->msgr = msgr; 640 641 con_sock_state_init(con); 642 643 mutex_init(&con->mutex); 644 INIT_LIST_HEAD(&con->out_queue); 645 INIT_LIST_HEAD(&con->out_sent); 646 INIT_DELAYED_WORK(&con->work, ceph_con_workfn); 647 648 con->state = CEPH_CON_S_CLOSED; 649 } 650 EXPORT_SYMBOL(ceph_con_init); 651 652 /* 653 * We maintain a global counter to order connection attempts. Get 654 * a unique seq greater than @gt. 655 */ 656 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt) 657 { 658 u32 ret; 659 660 spin_lock(&msgr->global_seq_lock); 661 if (msgr->global_seq < gt) 662 msgr->global_seq = gt; 663 ret = ++msgr->global_seq; 664 spin_unlock(&msgr->global_seq_lock); 665 return ret; 666 } 667 668 /* 669 * Discard messages that have been acked by the server. 670 */ 671 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq) 672 { 673 struct ceph_msg *msg; 674 u64 seq; 675 676 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq); 677 while (!list_empty(&con->out_sent)) { 678 msg = list_first_entry(&con->out_sent, struct ceph_msg, 679 list_head); 680 WARN_ON(msg->needs_out_seq); 681 seq = le64_to_cpu(msg->hdr.seq); 682 if (seq > ack_seq) 683 break; 684 685 dout("%s con %p discarding msg %p seq %llu\n", __func__, con, 686 msg, seq); 687 ceph_msg_remove(msg); 688 } 689 } 690 691 /* 692 * Discard messages that have been requeued in con_fault(), up to 693 * reconnect_seq. This avoids gratuitously resending messages that 694 * the server had received and handled prior to reconnect. 695 */ 696 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq) 697 { 698 struct ceph_msg *msg; 699 u64 seq; 700 701 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq); 702 while (!list_empty(&con->out_queue)) { 703 msg = list_first_entry(&con->out_queue, struct ceph_msg, 704 list_head); 705 if (msg->needs_out_seq) 706 break; 707 seq = le64_to_cpu(msg->hdr.seq); 708 if (seq > reconnect_seq) 709 break; 710 711 dout("%s con %p discarding msg %p seq %llu\n", __func__, con, 712 msg, seq); 713 ceph_msg_remove(msg); 714 } 715 } 716 717 #ifdef CONFIG_BLOCK 718 719 /* 720 * For a bio data item, a piece is whatever remains of the next 721 * entry in the current bio iovec, or the first entry in the next 722 * bio in the list. 723 */ 724 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 725 size_t length) 726 { 727 struct ceph_msg_data *data = cursor->data; 728 struct ceph_bio_iter *it = &cursor->bio_iter; 729 730 cursor->resid = min_t(size_t, length, data->bio_length); 731 *it = data->bio_pos; 732 if (cursor->resid < it->iter.bi_size) 733 it->iter.bi_size = cursor->resid; 734 735 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 736 } 737 738 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 739 size_t *page_offset, 740 size_t *length) 741 { 742 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio, 743 cursor->bio_iter.iter); 744 745 *page_offset = bv.bv_offset; 746 *length = bv.bv_len; 747 return bv.bv_page; 748 } 749 750 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 751 size_t bytes) 752 { 753 struct ceph_bio_iter *it = &cursor->bio_iter; 754 struct page *page = bio_iter_page(it->bio, it->iter); 755 756 BUG_ON(bytes > cursor->resid); 757 BUG_ON(bytes > bio_iter_len(it->bio, it->iter)); 758 cursor->resid -= bytes; 759 bio_advance_iter(it->bio, &it->iter, bytes); 760 761 if (!cursor->resid) 762 return false; /* no more data */ 763 764 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done && 765 page == bio_iter_page(it->bio, it->iter))) 766 return false; /* more bytes to process in this segment */ 767 768 if (!it->iter.bi_size) { 769 it->bio = it->bio->bi_next; 770 it->iter = it->bio->bi_iter; 771 if (cursor->resid < it->iter.bi_size) 772 it->iter.bi_size = cursor->resid; 773 } 774 775 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter)); 776 return true; 777 } 778 #endif /* CONFIG_BLOCK */ 779 780 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor, 781 size_t length) 782 { 783 struct ceph_msg_data *data = cursor->data; 784 struct bio_vec *bvecs = data->bvec_pos.bvecs; 785 786 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size); 787 cursor->bvec_iter = data->bvec_pos.iter; 788 cursor->bvec_iter.bi_size = cursor->resid; 789 790 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 791 } 792 793 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor, 794 size_t *page_offset, 795 size_t *length) 796 { 797 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs, 798 cursor->bvec_iter); 799 800 *page_offset = bv.bv_offset; 801 *length = bv.bv_len; 802 return bv.bv_page; 803 } 804 805 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor, 806 size_t bytes) 807 { 808 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs; 809 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter); 810 811 BUG_ON(bytes > cursor->resid); 812 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter)); 813 cursor->resid -= bytes; 814 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes); 815 816 if (!cursor->resid) 817 return false; /* no more data */ 818 819 if (!bytes || (cursor->bvec_iter.bi_bvec_done && 820 page == bvec_iter_page(bvecs, cursor->bvec_iter))) 821 return false; /* more bytes to process in this segment */ 822 823 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter)); 824 return true; 825 } 826 827 /* 828 * For a page array, a piece comes from the first page in the array 829 * that has not already been fully consumed. 830 */ 831 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 832 size_t length) 833 { 834 struct ceph_msg_data *data = cursor->data; 835 int page_count; 836 837 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 838 839 BUG_ON(!data->pages); 840 BUG_ON(!data->length); 841 842 cursor->resid = min(length, data->length); 843 page_count = calc_pages_for(data->alignment, (u64)data->length); 844 cursor->page_offset = data->alignment & ~PAGE_MASK; 845 cursor->page_index = 0; 846 BUG_ON(page_count > (int)USHRT_MAX); 847 cursor->page_count = (unsigned short)page_count; 848 BUG_ON(length > SIZE_MAX - cursor->page_offset); 849 } 850 851 static struct page * 852 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 853 size_t *page_offset, size_t *length) 854 { 855 struct ceph_msg_data *data = cursor->data; 856 857 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 858 859 BUG_ON(cursor->page_index >= cursor->page_count); 860 BUG_ON(cursor->page_offset >= PAGE_SIZE); 861 862 *page_offset = cursor->page_offset; 863 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset); 864 return data->pages[cursor->page_index]; 865 } 866 867 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 868 size_t bytes) 869 { 870 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 871 872 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 873 874 /* Advance the cursor page offset */ 875 876 cursor->resid -= bytes; 877 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 878 if (!bytes || cursor->page_offset) 879 return false; /* more bytes to process in the current page */ 880 881 if (!cursor->resid) 882 return false; /* no more data */ 883 884 /* Move on to the next page; offset is already at 0 */ 885 886 BUG_ON(cursor->page_index >= cursor->page_count); 887 cursor->page_index++; 888 return true; 889 } 890 891 /* 892 * For a pagelist, a piece is whatever remains to be consumed in the 893 * first page in the list, or the front of the next page. 894 */ 895 static void 896 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 897 size_t length) 898 { 899 struct ceph_msg_data *data = cursor->data; 900 struct ceph_pagelist *pagelist; 901 struct page *page; 902 903 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 904 905 pagelist = data->pagelist; 906 BUG_ON(!pagelist); 907 908 if (!length) 909 return; /* pagelist can be assigned but empty */ 910 911 BUG_ON(list_empty(&pagelist->head)); 912 page = list_first_entry(&pagelist->head, struct page, lru); 913 914 cursor->resid = min(length, pagelist->length); 915 cursor->page = page; 916 cursor->offset = 0; 917 } 918 919 static struct page * 920 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 921 size_t *page_offset, size_t *length) 922 { 923 struct ceph_msg_data *data = cursor->data; 924 struct ceph_pagelist *pagelist; 925 926 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 927 928 pagelist = data->pagelist; 929 BUG_ON(!pagelist); 930 931 BUG_ON(!cursor->page); 932 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 933 934 /* offset of first page in pagelist is always 0 */ 935 *page_offset = cursor->offset & ~PAGE_MASK; 936 *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset); 937 return cursor->page; 938 } 939 940 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 941 size_t bytes) 942 { 943 struct ceph_msg_data *data = cursor->data; 944 struct ceph_pagelist *pagelist; 945 946 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 947 948 pagelist = data->pagelist; 949 BUG_ON(!pagelist); 950 951 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 952 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 953 954 /* Advance the cursor offset */ 955 956 cursor->resid -= bytes; 957 cursor->offset += bytes; 958 /* offset of first page in pagelist is always 0 */ 959 if (!bytes || cursor->offset & ~PAGE_MASK) 960 return false; /* more bytes to process in the current page */ 961 962 if (!cursor->resid) 963 return false; /* no more data */ 964 965 /* Move on to the next page */ 966 967 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 968 cursor->page = list_next_entry(cursor->page, lru); 969 return true; 970 } 971 972 static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor, 973 size_t length) 974 { 975 struct ceph_msg_data *data = cursor->data; 976 977 cursor->iov_iter = data->iter; 978 cursor->lastlen = 0; 979 iov_iter_truncate(&cursor->iov_iter, length); 980 cursor->resid = iov_iter_count(&cursor->iov_iter); 981 } 982 983 static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor, 984 size_t *page_offset, size_t *length) 985 { 986 struct page *page; 987 ssize_t len; 988 989 if (cursor->lastlen) 990 iov_iter_revert(&cursor->iov_iter, cursor->lastlen); 991 992 len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE, 993 1, page_offset); 994 BUG_ON(len < 0); 995 996 cursor->lastlen = len; 997 998 /* 999 * FIXME: The assumption is that the pages represented by the iov_iter 1000 * are pinned, with the references held by the upper-level 1001 * callers, or by virtue of being under writeback. Eventually, 1002 * we'll get an iov_iter_get_pages2 variant that doesn't take 1003 * page refs. Until then, just put the page ref. 1004 */ 1005 VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page); 1006 put_page(page); 1007 1008 *length = min_t(size_t, len, cursor->resid); 1009 return page; 1010 } 1011 1012 static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor, 1013 size_t bytes) 1014 { 1015 BUG_ON(bytes > cursor->resid); 1016 cursor->resid -= bytes; 1017 1018 if (bytes < cursor->lastlen) { 1019 cursor->lastlen -= bytes; 1020 } else { 1021 iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen); 1022 cursor->lastlen = 0; 1023 } 1024 1025 return cursor->resid; 1026 } 1027 1028 /* 1029 * Message data is handled (sent or received) in pieces, where each 1030 * piece resides on a single page. The network layer might not 1031 * consume an entire piece at once. A data item's cursor keeps 1032 * track of which piece is next to process and how much remains to 1033 * be processed in that piece. It also tracks whether the current 1034 * piece is the last one in the data item. 1035 */ 1036 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1037 { 1038 size_t length = cursor->total_resid; 1039 1040 switch (cursor->data->type) { 1041 case CEPH_MSG_DATA_PAGELIST: 1042 ceph_msg_data_pagelist_cursor_init(cursor, length); 1043 break; 1044 case CEPH_MSG_DATA_PAGES: 1045 ceph_msg_data_pages_cursor_init(cursor, length); 1046 break; 1047 #ifdef CONFIG_BLOCK 1048 case CEPH_MSG_DATA_BIO: 1049 ceph_msg_data_bio_cursor_init(cursor, length); 1050 break; 1051 #endif /* CONFIG_BLOCK */ 1052 case CEPH_MSG_DATA_BVECS: 1053 ceph_msg_data_bvecs_cursor_init(cursor, length); 1054 break; 1055 case CEPH_MSG_DATA_ITER: 1056 ceph_msg_data_iter_cursor_init(cursor, length); 1057 break; 1058 case CEPH_MSG_DATA_NONE: 1059 default: 1060 /* BUG(); */ 1061 break; 1062 } 1063 cursor->need_crc = true; 1064 } 1065 1066 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor, 1067 struct ceph_msg *msg, size_t length) 1068 { 1069 BUG_ON(!length); 1070 BUG_ON(length > msg->data_length); 1071 BUG_ON(!msg->num_data_items); 1072 1073 cursor->total_resid = length; 1074 cursor->data = msg->data; 1075 cursor->sr_resid = 0; 1076 1077 __ceph_msg_data_cursor_init(cursor); 1078 } 1079 1080 /* 1081 * Return the page containing the next piece to process for a given 1082 * data item, and supply the page offset and length of that piece. 1083 * Indicate whether this is the last piece in this data item. 1084 */ 1085 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1086 size_t *page_offset, size_t *length) 1087 { 1088 struct page *page; 1089 1090 switch (cursor->data->type) { 1091 case CEPH_MSG_DATA_PAGELIST: 1092 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1093 break; 1094 case CEPH_MSG_DATA_PAGES: 1095 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1096 break; 1097 #ifdef CONFIG_BLOCK 1098 case CEPH_MSG_DATA_BIO: 1099 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1100 break; 1101 #endif /* CONFIG_BLOCK */ 1102 case CEPH_MSG_DATA_BVECS: 1103 page = ceph_msg_data_bvecs_next(cursor, page_offset, length); 1104 break; 1105 case CEPH_MSG_DATA_ITER: 1106 page = ceph_msg_data_iter_next(cursor, page_offset, length); 1107 break; 1108 case CEPH_MSG_DATA_NONE: 1109 default: 1110 page = NULL; 1111 break; 1112 } 1113 1114 BUG_ON(!page); 1115 BUG_ON(*page_offset + *length > PAGE_SIZE); 1116 BUG_ON(!*length); 1117 BUG_ON(*length > cursor->resid); 1118 1119 return page; 1120 } 1121 1122 /* 1123 * Returns true if the result moves the cursor on to the next piece 1124 * of the data item. 1125 */ 1126 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes) 1127 { 1128 bool new_piece; 1129 1130 BUG_ON(bytes > cursor->resid); 1131 switch (cursor->data->type) { 1132 case CEPH_MSG_DATA_PAGELIST: 1133 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1134 break; 1135 case CEPH_MSG_DATA_PAGES: 1136 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1137 break; 1138 #ifdef CONFIG_BLOCK 1139 case CEPH_MSG_DATA_BIO: 1140 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1141 break; 1142 #endif /* CONFIG_BLOCK */ 1143 case CEPH_MSG_DATA_BVECS: 1144 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes); 1145 break; 1146 case CEPH_MSG_DATA_ITER: 1147 new_piece = ceph_msg_data_iter_advance(cursor, bytes); 1148 break; 1149 case CEPH_MSG_DATA_NONE: 1150 default: 1151 BUG(); 1152 break; 1153 } 1154 cursor->total_resid -= bytes; 1155 1156 if (!cursor->resid && cursor->total_resid) { 1157 cursor->data++; 1158 __ceph_msg_data_cursor_init(cursor); 1159 new_piece = true; 1160 } 1161 cursor->need_crc = new_piece; 1162 } 1163 1164 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset, 1165 unsigned int length) 1166 { 1167 char *kaddr; 1168 1169 kaddr = kmap(page); 1170 BUG_ON(kaddr == NULL); 1171 crc = crc32c(crc, kaddr + page_offset, length); 1172 kunmap(page); 1173 1174 return crc; 1175 } 1176 1177 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr) 1178 { 1179 struct sockaddr_storage ss = addr->in_addr; /* align */ 1180 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr; 1181 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr; 1182 1183 switch (ss.ss_family) { 1184 case AF_INET: 1185 return addr4->s_addr == htonl(INADDR_ANY); 1186 case AF_INET6: 1187 return ipv6_addr_any(addr6); 1188 default: 1189 return true; 1190 } 1191 } 1192 EXPORT_SYMBOL(ceph_addr_is_blank); 1193 1194 int ceph_addr_port(const struct ceph_entity_addr *addr) 1195 { 1196 switch (get_unaligned(&addr->in_addr.ss_family)) { 1197 case AF_INET: 1198 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port)); 1199 case AF_INET6: 1200 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port)); 1201 } 1202 return 0; 1203 } 1204 1205 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p) 1206 { 1207 switch (get_unaligned(&addr->in_addr.ss_family)) { 1208 case AF_INET: 1209 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port); 1210 break; 1211 case AF_INET6: 1212 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port); 1213 break; 1214 } 1215 } 1216 1217 /* 1218 * Unlike other *_pton function semantics, zero indicates success. 1219 */ 1220 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr, 1221 char delim, const char **ipend) 1222 { 1223 memset(&addr->in_addr, 0, sizeof(addr->in_addr)); 1224 1225 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) { 1226 put_unaligned(AF_INET, &addr->in_addr.ss_family); 1227 return 0; 1228 } 1229 1230 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) { 1231 put_unaligned(AF_INET6, &addr->in_addr.ss_family); 1232 return 0; 1233 } 1234 1235 return -EINVAL; 1236 } 1237 1238 /* 1239 * Extract hostname string and resolve using kernel DNS facility. 1240 */ 1241 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1242 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1243 struct ceph_entity_addr *addr, char delim, const char **ipend) 1244 { 1245 const char *end, *delim_p; 1246 char *colon_p, *ip_addr = NULL; 1247 int ip_len, ret; 1248 1249 /* 1250 * The end of the hostname occurs immediately preceding the delimiter or 1251 * the port marker (':') where the delimiter takes precedence. 1252 */ 1253 delim_p = memchr(name, delim, namelen); 1254 colon_p = memchr(name, ':', namelen); 1255 1256 if (delim_p && colon_p) 1257 end = delim_p < colon_p ? delim_p : colon_p; 1258 else if (!delim_p && colon_p) 1259 end = colon_p; 1260 else { 1261 end = delim_p; 1262 if (!end) /* case: hostname:/ */ 1263 end = name + namelen; 1264 } 1265 1266 if (end <= name) 1267 return -EINVAL; 1268 1269 /* do dns_resolve upcall */ 1270 ip_len = dns_query(current->nsproxy->net_ns, 1271 NULL, name, end - name, NULL, &ip_addr, NULL, false); 1272 if (ip_len > 0) 1273 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL); 1274 else 1275 ret = -ESRCH; 1276 1277 kfree(ip_addr); 1278 1279 *ipend = end; 1280 1281 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1282 ret, ret ? "failed" : ceph_pr_addr(addr)); 1283 1284 return ret; 1285 } 1286 #else 1287 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1288 struct ceph_entity_addr *addr, char delim, const char **ipend) 1289 { 1290 return -EINVAL; 1291 } 1292 #endif 1293 1294 /* 1295 * Parse a server name (IP or hostname). If a valid IP address is not found 1296 * then try to extract a hostname to resolve using userspace DNS upcall. 1297 */ 1298 static int ceph_parse_server_name(const char *name, size_t namelen, 1299 struct ceph_entity_addr *addr, char delim, const char **ipend) 1300 { 1301 int ret; 1302 1303 ret = ceph_pton(name, namelen, addr, delim, ipend); 1304 if (ret) 1305 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend); 1306 1307 return ret; 1308 } 1309 1310 /* 1311 * Parse an ip[:port] list into an addr array. Use the default 1312 * monitor port if a port isn't specified. 1313 */ 1314 int ceph_parse_ips(const char *c, const char *end, 1315 struct ceph_entity_addr *addr, 1316 int max_count, int *count, char delim) 1317 { 1318 int i, ret = -EINVAL; 1319 const char *p = c; 1320 1321 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1322 for (i = 0; i < max_count; i++) { 1323 char cur_delim = delim; 1324 const char *ipend; 1325 int port; 1326 1327 if (*p == '[') { 1328 cur_delim = ']'; 1329 p++; 1330 } 1331 1332 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim, 1333 &ipend); 1334 if (ret) 1335 goto bad; 1336 ret = -EINVAL; 1337 1338 p = ipend; 1339 1340 if (cur_delim == ']') { 1341 if (*p != ']') { 1342 dout("missing matching ']'\n"); 1343 goto bad; 1344 } 1345 p++; 1346 } 1347 1348 /* port? */ 1349 if (p < end && *p == ':') { 1350 port = 0; 1351 p++; 1352 while (p < end && *p >= '' && *p <= '9') { 1353 port = (port * 10) + (*p - ''); 1354 p++; 1355 } 1356 if (port == 0) 1357 port = CEPH_MON_PORT; 1358 else if (port > 65535) 1359 goto bad; 1360 } else { 1361 port = CEPH_MON_PORT; 1362 } 1363 1364 ceph_addr_set_port(&addr[i], port); 1365 /* 1366 * We want the type to be set according to ms_mode 1367 * option, but options are normally parsed after mon 1368 * addresses. Rather than complicating parsing, set 1369 * to LEGACY and override in build_initial_monmap() 1370 * for mon addresses and ceph_messenger_init() for 1371 * ip option. 1372 */ 1373 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY; 1374 addr[i].nonce = 0; 1375 1376 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i])); 1377 1378 if (p == end) 1379 break; 1380 if (*p != delim) 1381 goto bad; 1382 p++; 1383 } 1384 1385 if (p != end) 1386 goto bad; 1387 1388 if (count) 1389 *count = i + 1; 1390 return 0; 1391 1392 bad: 1393 return ret; 1394 } 1395 1396 /* 1397 * Process message. This happens in the worker thread. The callback should 1398 * be careful not to do anything that waits on other incoming messages or it 1399 * may deadlock. 1400 */ 1401 void ceph_con_process_message(struct ceph_connection *con) 1402 { 1403 struct ceph_msg *msg = con->in_msg; 1404 1405 BUG_ON(con->in_msg->con != con); 1406 con->in_msg = NULL; 1407 1408 /* if first message, set peer_name */ 1409 if (con->peer_name.type == 0) 1410 con->peer_name = msg->hdr.src; 1411 1412 con->in_seq++; 1413 mutex_unlock(&con->mutex); 1414 1415 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n", 1416 msg, le64_to_cpu(msg->hdr.seq), 1417 ENTITY_NAME(msg->hdr.src), 1418 le16_to_cpu(msg->hdr.type), 1419 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1420 le32_to_cpu(msg->hdr.front_len), 1421 le32_to_cpu(msg->hdr.middle_len), 1422 le32_to_cpu(msg->hdr.data_len), 1423 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 1424 con->ops->dispatch(con, msg); 1425 1426 mutex_lock(&con->mutex); 1427 } 1428 1429 /* 1430 * Atomically queue work on a connection after the specified delay. 1431 * Bump @con reference to avoid races with connection teardown. 1432 * Returns 0 if work was queued, or an error code otherwise. 1433 */ 1434 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 1435 { 1436 if (!con->ops->get(con)) { 1437 dout("%s %p ref count 0\n", __func__, con); 1438 return -ENOENT; 1439 } 1440 1441 if (delay >= HZ) 1442 delay = round_jiffies_relative(delay); 1443 1444 dout("%s %p %lu\n", __func__, con, delay); 1445 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 1446 dout("%s %p - already queued\n", __func__, con); 1447 con->ops->put(con); 1448 return -EBUSY; 1449 } 1450 1451 return 0; 1452 } 1453 1454 static void queue_con(struct ceph_connection *con) 1455 { 1456 (void) queue_con_delay(con, 0); 1457 } 1458 1459 static void cancel_con(struct ceph_connection *con) 1460 { 1461 if (cancel_delayed_work(&con->work)) { 1462 dout("%s %p\n", __func__, con); 1463 con->ops->put(con); 1464 } 1465 } 1466 1467 static bool con_sock_closed(struct ceph_connection *con) 1468 { 1469 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED)) 1470 return false; 1471 1472 #define CASE(x) \ 1473 case CEPH_CON_S_ ## x: \ 1474 con->error_msg = "socket closed (con state " #x ")"; \ 1475 break; 1476 1477 switch (con->state) { 1478 CASE(CLOSED); 1479 CASE(PREOPEN); 1480 CASE(V1_BANNER); 1481 CASE(V1_CONNECT_MSG); 1482 CASE(V2_BANNER_PREFIX); 1483 CASE(V2_BANNER_PAYLOAD); 1484 CASE(V2_HELLO); 1485 CASE(V2_AUTH); 1486 CASE(V2_AUTH_SIGNATURE); 1487 CASE(V2_SESSION_CONNECT); 1488 CASE(V2_SESSION_RECONNECT); 1489 CASE(OPEN); 1490 CASE(STANDBY); 1491 default: 1492 BUG(); 1493 } 1494 #undef CASE 1495 1496 return true; 1497 } 1498 1499 static bool con_backoff(struct ceph_connection *con) 1500 { 1501 int ret; 1502 1503 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF)) 1504 return false; 1505 1506 ret = queue_con_delay(con, con->delay); 1507 if (ret) { 1508 dout("%s: con %p FAILED to back off %lu\n", __func__, 1509 con, con->delay); 1510 BUG_ON(ret == -ENOENT); 1511 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); 1512 } 1513 1514 return true; 1515 } 1516 1517 /* Finish fault handling; con->mutex must *not* be held here */ 1518 1519 static void con_fault_finish(struct ceph_connection *con) 1520 { 1521 dout("%s %p\n", __func__, con); 1522 1523 /* 1524 * in case we faulted due to authentication, invalidate our 1525 * current tickets so that we can get new ones. 1526 */ 1527 if (con->v1.auth_retry) { 1528 dout("auth_retry %d, invalidating\n", con->v1.auth_retry); 1529 if (con->ops->invalidate_authorizer) 1530 con->ops->invalidate_authorizer(con); 1531 con->v1.auth_retry = 0; 1532 } 1533 1534 if (con->ops->fault) 1535 con->ops->fault(con); 1536 } 1537 1538 /* 1539 * Do some work on a connection. Drop a connection ref when we're done. 1540 */ 1541 static void ceph_con_workfn(struct work_struct *work) 1542 { 1543 struct ceph_connection *con = container_of(work, struct ceph_connection, 1544 work.work); 1545 bool fault; 1546 1547 mutex_lock(&con->mutex); 1548 while (true) { 1549 int ret; 1550 1551 if ((fault = con_sock_closed(con))) { 1552 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 1553 break; 1554 } 1555 if (con_backoff(con)) { 1556 dout("%s: con %p BACKOFF\n", __func__, con); 1557 break; 1558 } 1559 if (con->state == CEPH_CON_S_STANDBY) { 1560 dout("%s: con %p STANDBY\n", __func__, con); 1561 break; 1562 } 1563 if (con->state == CEPH_CON_S_CLOSED) { 1564 dout("%s: con %p CLOSED\n", __func__, con); 1565 BUG_ON(con->sock); 1566 break; 1567 } 1568 if (con->state == CEPH_CON_S_PREOPEN) { 1569 dout("%s: con %p PREOPEN\n", __func__, con); 1570 BUG_ON(con->sock); 1571 } 1572 1573 if (ceph_msgr2(from_msgr(con->msgr))) 1574 ret = ceph_con_v2_try_read(con); 1575 else 1576 ret = ceph_con_v1_try_read(con); 1577 if (ret < 0) { 1578 if (ret == -EAGAIN) 1579 continue; 1580 if (!con->error_msg) 1581 con->error_msg = "socket error on read"; 1582 fault = true; 1583 break; 1584 } 1585 1586 if (ceph_msgr2(from_msgr(con->msgr))) 1587 ret = ceph_con_v2_try_write(con); 1588 else 1589 ret = ceph_con_v1_try_write(con); 1590 if (ret < 0) { 1591 if (ret == -EAGAIN) 1592 continue; 1593 if (!con->error_msg) 1594 con->error_msg = "socket error on write"; 1595 fault = true; 1596 } 1597 1598 break; /* If we make it to here, we're done */ 1599 } 1600 if (fault) 1601 con_fault(con); 1602 mutex_unlock(&con->mutex); 1603 1604 if (fault) 1605 con_fault_finish(con); 1606 1607 con->ops->put(con); 1608 } 1609 1610 /* 1611 * Generic error/fault handler. A retry mechanism is used with 1612 * exponential backoff 1613 */ 1614 static void con_fault(struct ceph_connection *con) 1615 { 1616 dout("fault %p state %d to peer %s\n", 1617 con, con->state, ceph_pr_addr(&con->peer_addr)); 1618 1619 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 1620 ceph_pr_addr(&con->peer_addr), con->error_msg); 1621 con->error_msg = NULL; 1622 1623 WARN_ON(con->state == CEPH_CON_S_STANDBY || 1624 con->state == CEPH_CON_S_CLOSED); 1625 1626 ceph_con_reset_protocol(con); 1627 1628 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) { 1629 dout("fault on LOSSYTX channel, marking CLOSED\n"); 1630 con->state = CEPH_CON_S_CLOSED; 1631 return; 1632 } 1633 1634 /* Requeue anything that hasn't been acked */ 1635 list_splice_init(&con->out_sent, &con->out_queue); 1636 1637 /* If there are no messages queued or keepalive pending, place 1638 * the connection in a STANDBY state */ 1639 if (list_empty(&con->out_queue) && 1640 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) { 1641 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 1642 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING); 1643 con->state = CEPH_CON_S_STANDBY; 1644 } else { 1645 /* retry after a delay. */ 1646 con->state = CEPH_CON_S_PREOPEN; 1647 if (!con->delay) { 1648 con->delay = BASE_DELAY_INTERVAL; 1649 } else if (con->delay < MAX_DELAY_INTERVAL) { 1650 con->delay *= 2; 1651 if (con->delay > MAX_DELAY_INTERVAL) 1652 con->delay = MAX_DELAY_INTERVAL; 1653 } 1654 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF); 1655 queue_con(con); 1656 } 1657 } 1658 1659 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr) 1660 { 1661 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000; 1662 msgr->inst.addr.nonce = cpu_to_le32(nonce); 1663 ceph_encode_my_addr(msgr); 1664 } 1665 1666 /* 1667 * initialize a new messenger instance 1668 */ 1669 void ceph_messenger_init(struct ceph_messenger *msgr, 1670 struct ceph_entity_addr *myaddr) 1671 { 1672 spin_lock_init(&msgr->global_seq_lock); 1673 1674 if (myaddr) { 1675 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr, 1676 sizeof(msgr->inst.addr.in_addr)); 1677 ceph_addr_set_port(&msgr->inst.addr, 0); 1678 } 1679 1680 /* 1681 * Since nautilus, clients are identified using type ANY. 1682 * For msgr1, ceph_encode_banner_addr() munges it to NONE. 1683 */ 1684 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY; 1685 1686 /* generate a random non-zero nonce */ 1687 do { 1688 get_random_bytes(&msgr->inst.addr.nonce, 1689 sizeof(msgr->inst.addr.nonce)); 1690 } while (!msgr->inst.addr.nonce); 1691 ceph_encode_my_addr(msgr); 1692 1693 atomic_set(&msgr->stopping, 0); 1694 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns)); 1695 1696 dout("%s %p\n", __func__, msgr); 1697 } 1698 1699 void ceph_messenger_fini(struct ceph_messenger *msgr) 1700 { 1701 put_net(read_pnet(&msgr->net)); 1702 } 1703 1704 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con) 1705 { 1706 if (msg->con) 1707 msg->con->ops->put(msg->con); 1708 1709 msg->con = con ? con->ops->get(con) : NULL; 1710 BUG_ON(msg->con != con); 1711 } 1712 1713 static void clear_standby(struct ceph_connection *con) 1714 { 1715 /* come back from STANDBY? */ 1716 if (con->state == CEPH_CON_S_STANDBY) { 1717 dout("clear_standby %p and ++connect_seq\n", con); 1718 con->state = CEPH_CON_S_PREOPEN; 1719 con->v1.connect_seq++; 1720 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)); 1721 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)); 1722 } 1723 } 1724 1725 /* 1726 * Queue up an outgoing message on the given connection. 1727 * 1728 * Consumes a ref on @msg. 1729 */ 1730 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 1731 { 1732 /* set src+dst */ 1733 msg->hdr.src = con->msgr->inst.name; 1734 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 1735 msg->needs_out_seq = true; 1736 1737 mutex_lock(&con->mutex); 1738 1739 if (con->state == CEPH_CON_S_CLOSED) { 1740 dout("con_send %p closed, dropping %p\n", con, msg); 1741 ceph_msg_put(msg); 1742 mutex_unlock(&con->mutex); 1743 return; 1744 } 1745 1746 msg_con_set(msg, con); 1747 1748 BUG_ON(!list_empty(&msg->list_head)); 1749 list_add_tail(&msg->list_head, &con->out_queue); 1750 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 1751 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 1752 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 1753 le32_to_cpu(msg->hdr.front_len), 1754 le32_to_cpu(msg->hdr.middle_len), 1755 le32_to_cpu(msg->hdr.data_len)); 1756 1757 clear_standby(con); 1758 mutex_unlock(&con->mutex); 1759 1760 /* if there wasn't anything waiting to send before, queue 1761 * new work */ 1762 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) 1763 queue_con(con); 1764 } 1765 EXPORT_SYMBOL(ceph_con_send); 1766 1767 /* 1768 * Revoke a message that was previously queued for send 1769 */ 1770 void ceph_msg_revoke(struct ceph_msg *msg) 1771 { 1772 struct ceph_connection *con = msg->con; 1773 1774 if (!con) { 1775 dout("%s msg %p null con\n", __func__, msg); 1776 return; /* Message not in our possession */ 1777 } 1778 1779 mutex_lock(&con->mutex); 1780 if (list_empty(&msg->list_head)) { 1781 WARN_ON(con->out_msg == msg); 1782 dout("%s con %p msg %p not linked\n", __func__, con, msg); 1783 mutex_unlock(&con->mutex); 1784 return; 1785 } 1786 1787 dout("%s con %p msg %p was linked\n", __func__, con, msg); 1788 msg->hdr.seq = 0; 1789 ceph_msg_remove(msg); 1790 1791 if (con->out_msg == msg) { 1792 WARN_ON(con->state != CEPH_CON_S_OPEN); 1793 dout("%s con %p msg %p was sending\n", __func__, con, msg); 1794 if (ceph_msgr2(from_msgr(con->msgr))) 1795 ceph_con_v2_revoke(con); 1796 else 1797 ceph_con_v1_revoke(con); 1798 ceph_msg_put(con->out_msg); 1799 con->out_msg = NULL; 1800 } else { 1801 dout("%s con %p msg %p not current, out_msg %p\n", __func__, 1802 con, msg, con->out_msg); 1803 } 1804 mutex_unlock(&con->mutex); 1805 } 1806 1807 /* 1808 * Revoke a message that we may be reading data into 1809 */ 1810 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 1811 { 1812 struct ceph_connection *con = msg->con; 1813 1814 if (!con) { 1815 dout("%s msg %p null con\n", __func__, msg); 1816 return; /* Message not in our possession */ 1817 } 1818 1819 mutex_lock(&con->mutex); 1820 if (con->in_msg == msg) { 1821 WARN_ON(con->state != CEPH_CON_S_OPEN); 1822 dout("%s con %p msg %p was recving\n", __func__, con, msg); 1823 if (ceph_msgr2(from_msgr(con->msgr))) 1824 ceph_con_v2_revoke_incoming(con); 1825 else 1826 ceph_con_v1_revoke_incoming(con); 1827 ceph_msg_put(con->in_msg); 1828 con->in_msg = NULL; 1829 } else { 1830 dout("%s con %p msg %p not current, in_msg %p\n", __func__, 1831 con, msg, con->in_msg); 1832 } 1833 mutex_unlock(&con->mutex); 1834 } 1835 1836 /* 1837 * Queue a keepalive byte to ensure the tcp connection is alive. 1838 */ 1839 void ceph_con_keepalive(struct ceph_connection *con) 1840 { 1841 dout("con_keepalive %p\n", con); 1842 mutex_lock(&con->mutex); 1843 clear_standby(con); 1844 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING); 1845 mutex_unlock(&con->mutex); 1846 1847 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING)) 1848 queue_con(con); 1849 } 1850 EXPORT_SYMBOL(ceph_con_keepalive); 1851 1852 bool ceph_con_keepalive_expired(struct ceph_connection *con, 1853 unsigned long interval) 1854 { 1855 if (interval > 0 && 1856 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) { 1857 struct timespec64 now; 1858 struct timespec64 ts; 1859 ktime_get_real_ts64(&now); 1860 jiffies_to_timespec64(interval, &ts); 1861 ts = timespec64_add(con->last_keepalive_ack, ts); 1862 return timespec64_compare(&now, &ts) >= 0; 1863 } 1864 return false; 1865 } 1866 1867 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg) 1868 { 1869 BUG_ON(msg->num_data_items >= msg->max_data_items); 1870 return &msg->data[msg->num_data_items++]; 1871 } 1872 1873 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 1874 { 1875 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) { 1876 int num_pages = calc_pages_for(data->alignment, data->length); 1877 ceph_release_page_vector(data->pages, num_pages); 1878 } else if (data->type == CEPH_MSG_DATA_PAGELIST) { 1879 ceph_pagelist_release(data->pagelist); 1880 } 1881 } 1882 1883 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 1884 size_t length, size_t alignment, bool own_pages) 1885 { 1886 struct ceph_msg_data *data; 1887 1888 BUG_ON(!pages); 1889 BUG_ON(!length); 1890 1891 data = ceph_msg_data_add(msg); 1892 data->type = CEPH_MSG_DATA_PAGES; 1893 data->pages = pages; 1894 data->length = length; 1895 data->alignment = alignment & ~PAGE_MASK; 1896 data->own_pages = own_pages; 1897 1898 msg->data_length += length; 1899 } 1900 EXPORT_SYMBOL(ceph_msg_data_add_pages); 1901 1902 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 1903 struct ceph_pagelist *pagelist) 1904 { 1905 struct ceph_msg_data *data; 1906 1907 BUG_ON(!pagelist); 1908 BUG_ON(!pagelist->length); 1909 1910 data = ceph_msg_data_add(msg); 1911 data->type = CEPH_MSG_DATA_PAGELIST; 1912 refcount_inc(&pagelist->refcnt); 1913 data->pagelist = pagelist; 1914 1915 msg->data_length += pagelist->length; 1916 } 1917 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 1918 1919 #ifdef CONFIG_BLOCK 1920 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos, 1921 u32 length) 1922 { 1923 struct ceph_msg_data *data; 1924 1925 data = ceph_msg_data_add(msg); 1926 data->type = CEPH_MSG_DATA_BIO; 1927 data->bio_pos = *bio_pos; 1928 data->bio_length = length; 1929 1930 msg->data_length += length; 1931 } 1932 EXPORT_SYMBOL(ceph_msg_data_add_bio); 1933 #endif /* CONFIG_BLOCK */ 1934 1935 void ceph_msg_data_add_bvecs(struct ceph_msg *msg, 1936 struct ceph_bvec_iter *bvec_pos) 1937 { 1938 struct ceph_msg_data *data; 1939 1940 data = ceph_msg_data_add(msg); 1941 data->type = CEPH_MSG_DATA_BVECS; 1942 data->bvec_pos = *bvec_pos; 1943 1944 msg->data_length += bvec_pos->iter.bi_size; 1945 } 1946 EXPORT_SYMBOL(ceph_msg_data_add_bvecs); 1947 1948 void ceph_msg_data_add_iter(struct ceph_msg *msg, 1949 struct iov_iter *iter) 1950 { 1951 struct ceph_msg_data *data; 1952 1953 data = ceph_msg_data_add(msg); 1954 data->type = CEPH_MSG_DATA_ITER; 1955 data->iter = *iter; 1956 1957 msg->data_length += iov_iter_count(&data->iter); 1958 } 1959 1960 /* 1961 * construct a new message with given type, size 1962 * the new msg has a ref count of 1. 1963 */ 1964 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items, 1965 gfp_t flags, bool can_fail) 1966 { 1967 struct ceph_msg *m; 1968 1969 m = kmem_cache_zalloc(ceph_msg_cache, flags); 1970 if (m == NULL) 1971 goto out; 1972 1973 m->hdr.type = cpu_to_le16(type); 1974 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 1975 m->hdr.front_len = cpu_to_le32(front_len); 1976 1977 INIT_LIST_HEAD(&m->list_head); 1978 kref_init(&m->kref); 1979 1980 /* front */ 1981 if (front_len) { 1982 m->front.iov_base = kvmalloc(front_len, flags); 1983 if (m->front.iov_base == NULL) { 1984 dout("ceph_msg_new can't allocate %d bytes\n", 1985 front_len); 1986 goto out2; 1987 } 1988 } else { 1989 m->front.iov_base = NULL; 1990 } 1991 m->front_alloc_len = m->front.iov_len = front_len; 1992 1993 if (max_data_items) { 1994 m->data = kmalloc_array(max_data_items, sizeof(*m->data), 1995 flags); 1996 if (!m->data) 1997 goto out2; 1998 1999 m->max_data_items = max_data_items; 2000 } 2001 2002 dout("ceph_msg_new %p front %d\n", m, front_len); 2003 return m; 2004 2005 out2: 2006 ceph_msg_put(m); 2007 out: 2008 if (!can_fail) { 2009 pr_err("msg_new can't create type %d front %d\n", type, 2010 front_len); 2011 WARN_ON(1); 2012 } else { 2013 dout("msg_new can't create type %d front %d\n", type, 2014 front_len); 2015 } 2016 return NULL; 2017 } 2018 EXPORT_SYMBOL(ceph_msg_new2); 2019 2020 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 2021 bool can_fail) 2022 { 2023 return ceph_msg_new2(type, front_len, 0, flags, can_fail); 2024 } 2025 EXPORT_SYMBOL(ceph_msg_new); 2026 2027 /* 2028 * Allocate "middle" portion of a message, if it is needed and wasn't 2029 * allocated by alloc_msg. This allows us to read a small fixed-size 2030 * per-type header in the front and then gracefully fail (i.e., 2031 * propagate the error to the caller based on info in the front) when 2032 * the middle is too large. 2033 */ 2034 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 2035 { 2036 int type = le16_to_cpu(msg->hdr.type); 2037 int middle_len = le32_to_cpu(msg->hdr.middle_len); 2038 2039 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 2040 ceph_msg_type_name(type), middle_len); 2041 BUG_ON(!middle_len); 2042 BUG_ON(msg->middle); 2043 2044 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 2045 if (!msg->middle) 2046 return -ENOMEM; 2047 return 0; 2048 } 2049 2050 /* 2051 * Allocate a message for receiving an incoming message on a 2052 * connection, and save the result in con->in_msg. Uses the 2053 * connection's private alloc_msg op if available. 2054 * 2055 * Returns 0 on success, or a negative error code. 2056 * 2057 * On success, if we set *skip = 1: 2058 * - the next message should be skipped and ignored. 2059 * - con->in_msg == NULL 2060 * or if we set *skip = 0: 2061 * - con->in_msg is non-null. 2062 * On error (ENOMEM, EAGAIN, ...), 2063 * - con->in_msg == NULL 2064 */ 2065 int ceph_con_in_msg_alloc(struct ceph_connection *con, 2066 struct ceph_msg_header *hdr, int *skip) 2067 { 2068 int middle_len = le32_to_cpu(hdr->middle_len); 2069 struct ceph_msg *msg; 2070 int ret = 0; 2071 2072 BUG_ON(con->in_msg != NULL); 2073 BUG_ON(!con->ops->alloc_msg); 2074 2075 mutex_unlock(&con->mutex); 2076 msg = con->ops->alloc_msg(con, hdr, skip); 2077 mutex_lock(&con->mutex); 2078 if (con->state != CEPH_CON_S_OPEN) { 2079 if (msg) 2080 ceph_msg_put(msg); 2081 return -EAGAIN; 2082 } 2083 if (msg) { 2084 BUG_ON(*skip); 2085 msg_con_set(msg, con); 2086 con->in_msg = msg; 2087 } else { 2088 /* 2089 * Null message pointer means either we should skip 2090 * this message or we couldn't allocate memory. The 2091 * former is not an error. 2092 */ 2093 if (*skip) 2094 return 0; 2095 2096 con->error_msg = "error allocating memory for incoming message"; 2097 return -ENOMEM; 2098 } 2099 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr)); 2100 2101 if (middle_len && !con->in_msg->middle) { 2102 ret = ceph_alloc_middle(con, con->in_msg); 2103 if (ret < 0) { 2104 ceph_msg_put(con->in_msg); 2105 con->in_msg = NULL; 2106 } 2107 } 2108 2109 return ret; 2110 } 2111 2112 void ceph_con_get_out_msg(struct ceph_connection *con) 2113 { 2114 struct ceph_msg *msg; 2115 2116 BUG_ON(list_empty(&con->out_queue)); 2117 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 2118 WARN_ON(msg->con != con); 2119 2120 /* 2121 * Put the message on "sent" list using a ref from ceph_con_send(). 2122 * It is put when the message is acked or revoked. 2123 */ 2124 list_move_tail(&msg->list_head, &con->out_sent); 2125 2126 /* 2127 * Only assign outgoing seq # if we haven't sent this message 2128 * yet. If it is requeued, resend with it's original seq. 2129 */ 2130 if (msg->needs_out_seq) { 2131 msg->hdr.seq = cpu_to_le64(++con->out_seq); 2132 msg->needs_out_seq = false; 2133 2134 if (con->ops->reencode_message) 2135 con->ops->reencode_message(msg); 2136 } 2137 2138 /* 2139 * Get a ref for out_msg. It is put when we are done sending the 2140 * message or in case of a fault. 2141 */ 2142 WARN_ON(con->out_msg); 2143 con->out_msg = ceph_msg_get(msg); 2144 } 2145 2146 /* 2147 * Free a generically kmalloc'd message. 2148 */ 2149 static void ceph_msg_free(struct ceph_msg *m) 2150 { 2151 dout("%s %p\n", __func__, m); 2152 kvfree(m->front.iov_base); 2153 kfree(m->data); 2154 kmem_cache_free(ceph_msg_cache, m); 2155 } 2156 2157 static void ceph_msg_release(struct kref *kref) 2158 { 2159 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 2160 int i; 2161 2162 dout("%s %p\n", __func__, m); 2163 WARN_ON(!list_empty(&m->list_head)); 2164 2165 msg_con_set(m, NULL); 2166 2167 /* drop middle, data, if any */ 2168 if (m->middle) { 2169 ceph_buffer_put(m->middle); 2170 m->middle = NULL; 2171 } 2172 2173 for (i = 0; i < m->num_data_items; i++) 2174 ceph_msg_data_destroy(&m->data[i]); 2175 2176 if (m->pool) 2177 ceph_msgpool_put(m->pool, m); 2178 else 2179 ceph_msg_free(m); 2180 } 2181 2182 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 2183 { 2184 dout("%s %p (was %d)\n", __func__, msg, 2185 kref_read(&msg->kref)); 2186 kref_get(&msg->kref); 2187 return msg; 2188 } 2189 EXPORT_SYMBOL(ceph_msg_get); 2190 2191 void ceph_msg_put(struct ceph_msg *msg) 2192 { 2193 dout("%s %p (was %d)\n", __func__, msg, 2194 kref_read(&msg->kref)); 2195 kref_put(&msg->kref, ceph_msg_release); 2196 } 2197 EXPORT_SYMBOL(ceph_msg_put); 2198 2199 void ceph_msg_dump(struct ceph_msg *msg) 2200 { 2201 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 2202 msg->front_alloc_len, msg->data_length); 2203 print_hex_dump(KERN_DEBUG, "header: ", 2204 DUMP_PREFIX_OFFSET, 16, 1, 2205 &msg->hdr, sizeof(msg->hdr), true); 2206 print_hex_dump(KERN_DEBUG, " front: ", 2207 DUMP_PREFIX_OFFSET, 16, 1, 2208 msg->front.iov_base, msg->front.iov_len, true); 2209 if (msg->middle) 2210 print_hex_dump(KERN_DEBUG, "middle: ", 2211 DUMP_PREFIX_OFFSET, 16, 1, 2212 msg->middle->vec.iov_base, 2213 msg->middle->vec.iov_len, true); 2214 print_hex_dump(KERN_DEBUG, "footer: ", 2215 DUMP_PREFIX_OFFSET, 16, 1, 2216 &msg->footer, sizeof(msg->footer), true); 2217 } 2218 EXPORT_SYMBOL(ceph_msg_dump); 2219
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.