1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/skbuff.h> 96 #include <linux/kthread.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dsa.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/gro.h> 108 #include <net/pkt_sched.h> 109 #include <net/pkt_cls.h> 110 #include <net/checksum.h> 111 #include <net/xfrm.h> 112 #include <net/tcx.h> 113 #include <linux/highmem.h> 114 #include <linux/init.h> 115 #include <linux/module.h> 116 #include <linux/netpoll.h> 117 #include <linux/rcupdate.h> 118 #include <linux/delay.h> 119 #include <net/iw_handler.h> 120 #include <asm/current.h> 121 #include <linux/audit.h> 122 #include <linux/dmaengine.h> 123 #include <linux/err.h> 124 #include <linux/ctype.h> 125 #include <linux/if_arp.h> 126 #include <linux/if_vlan.h> 127 #include <linux/ip.h> 128 #include <net/ip.h> 129 #include <net/mpls.h> 130 #include <linux/ipv6.h> 131 #include <linux/in.h> 132 #include <linux/jhash.h> 133 #include <linux/random.h> 134 #include <trace/events/napi.h> 135 #include <trace/events/net.h> 136 #include <trace/events/skb.h> 137 #include <trace/events/qdisc.h> 138 #include <trace/events/xdp.h> 139 #include <linux/inetdevice.h> 140 #include <linux/cpu_rmap.h> 141 #include <linux/static_key.h> 142 #include <linux/hashtable.h> 143 #include <linux/vmalloc.h> 144 #include <linux/if_macvlan.h> 145 #include <linux/errqueue.h> 146 #include <linux/hrtimer.h> 147 #include <linux/netfilter_netdev.h> 148 #include <linux/crash_dump.h> 149 #include <linux/sctp.h> 150 #include <net/udp_tunnel.h> 151 #include <linux/net_namespace.h> 152 #include <linux/indirect_call_wrapper.h> 153 #include <net/devlink.h> 154 #include <linux/pm_runtime.h> 155 #include <linux/prandom.h> 156 #include <linux/once_lite.h> 157 #include <net/netdev_rx_queue.h> 158 #include <net/page_pool/types.h> 159 #include <net/page_pool/helpers.h> 160 #include <net/rps.h> 161 162 #include "dev.h" 163 #include "net-sysfs.h" 164 165 static DEFINE_SPINLOCK(ptype_lock); 166 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 167 168 static int netif_rx_internal(struct sk_buff *skb); 169 static int call_netdevice_notifiers_extack(unsigned long val, 170 struct net_device *dev, 171 struct netlink_ext_ack *extack); 172 173 static DEFINE_MUTEX(ifalias_mutex); 174 175 /* protects napi_hash addition/deletion and napi_gen_id */ 176 static DEFINE_SPINLOCK(napi_hash_lock); 177 178 static unsigned int napi_gen_id = NR_CPUS; 179 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 180 181 static DECLARE_RWSEM(devnet_rename_sem); 182 183 static inline void dev_base_seq_inc(struct net *net) 184 { 185 unsigned int val = net->dev_base_seq + 1; 186 187 WRITE_ONCE(net->dev_base_seq, val ?: 1); 188 } 189 190 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 191 { 192 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 193 194 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 195 } 196 197 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 198 { 199 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 200 } 201 202 #ifndef CONFIG_PREEMPT_RT 203 204 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 205 206 static int __init setup_backlog_napi_threads(char *arg) 207 { 208 static_branch_enable(&use_backlog_threads_key); 209 return 0; 210 } 211 early_param("thread_backlog_napi", setup_backlog_napi_threads); 212 213 static bool use_backlog_threads(void) 214 { 215 return static_branch_unlikely(&use_backlog_threads_key); 216 } 217 218 #else 219 220 static bool use_backlog_threads(void) 221 { 222 return true; 223 } 224 225 #endif 226 227 static inline void backlog_lock_irq_save(struct softnet_data *sd, 228 unsigned long *flags) 229 { 230 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 231 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 232 else 233 local_irq_save(*flags); 234 } 235 236 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 237 { 238 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 239 spin_lock_irq(&sd->input_pkt_queue.lock); 240 else 241 local_irq_disable(); 242 } 243 244 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 245 unsigned long *flags) 246 { 247 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 248 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 249 else 250 local_irq_restore(*flags); 251 } 252 253 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 254 { 255 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 256 spin_unlock_irq(&sd->input_pkt_queue.lock); 257 else 258 local_irq_enable(); 259 } 260 261 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 262 const char *name) 263 { 264 struct netdev_name_node *name_node; 265 266 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 267 if (!name_node) 268 return NULL; 269 INIT_HLIST_NODE(&name_node->hlist); 270 name_node->dev = dev; 271 name_node->name = name; 272 return name_node; 273 } 274 275 static struct netdev_name_node * 276 netdev_name_node_head_alloc(struct net_device *dev) 277 { 278 struct netdev_name_node *name_node; 279 280 name_node = netdev_name_node_alloc(dev, dev->name); 281 if (!name_node) 282 return NULL; 283 INIT_LIST_HEAD(&name_node->list); 284 return name_node; 285 } 286 287 static void netdev_name_node_free(struct netdev_name_node *name_node) 288 { 289 kfree(name_node); 290 } 291 292 static void netdev_name_node_add(struct net *net, 293 struct netdev_name_node *name_node) 294 { 295 hlist_add_head_rcu(&name_node->hlist, 296 dev_name_hash(net, name_node->name)); 297 } 298 299 static void netdev_name_node_del(struct netdev_name_node *name_node) 300 { 301 hlist_del_rcu(&name_node->hlist); 302 } 303 304 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 305 const char *name) 306 { 307 struct hlist_head *head = dev_name_hash(net, name); 308 struct netdev_name_node *name_node; 309 310 hlist_for_each_entry(name_node, head, hlist) 311 if (!strcmp(name_node->name, name)) 312 return name_node; 313 return NULL; 314 } 315 316 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 317 const char *name) 318 { 319 struct hlist_head *head = dev_name_hash(net, name); 320 struct netdev_name_node *name_node; 321 322 hlist_for_each_entry_rcu(name_node, head, hlist) 323 if (!strcmp(name_node->name, name)) 324 return name_node; 325 return NULL; 326 } 327 328 bool netdev_name_in_use(struct net *net, const char *name) 329 { 330 return netdev_name_node_lookup(net, name); 331 } 332 EXPORT_SYMBOL(netdev_name_in_use); 333 334 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 335 { 336 struct netdev_name_node *name_node; 337 struct net *net = dev_net(dev); 338 339 name_node = netdev_name_node_lookup(net, name); 340 if (name_node) 341 return -EEXIST; 342 name_node = netdev_name_node_alloc(dev, name); 343 if (!name_node) 344 return -ENOMEM; 345 netdev_name_node_add(net, name_node); 346 /* The node that holds dev->name acts as a head of per-device list. */ 347 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 348 349 return 0; 350 } 351 352 static void netdev_name_node_alt_free(struct rcu_head *head) 353 { 354 struct netdev_name_node *name_node = 355 container_of(head, struct netdev_name_node, rcu); 356 357 kfree(name_node->name); 358 netdev_name_node_free(name_node); 359 } 360 361 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 362 { 363 netdev_name_node_del(name_node); 364 list_del(&name_node->list); 365 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 366 } 367 368 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 369 { 370 struct netdev_name_node *name_node; 371 struct net *net = dev_net(dev); 372 373 name_node = netdev_name_node_lookup(net, name); 374 if (!name_node) 375 return -ENOENT; 376 /* lookup might have found our primary name or a name belonging 377 * to another device. 378 */ 379 if (name_node == dev->name_node || name_node->dev != dev) 380 return -EINVAL; 381 382 __netdev_name_node_alt_destroy(name_node); 383 return 0; 384 } 385 386 static void netdev_name_node_alt_flush(struct net_device *dev) 387 { 388 struct netdev_name_node *name_node, *tmp; 389 390 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 391 list_del(&name_node->list); 392 netdev_name_node_alt_free(&name_node->rcu); 393 } 394 } 395 396 /* Device list insertion */ 397 static void list_netdevice(struct net_device *dev) 398 { 399 struct netdev_name_node *name_node; 400 struct net *net = dev_net(dev); 401 402 ASSERT_RTNL(); 403 404 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 405 netdev_name_node_add(net, dev->name_node); 406 hlist_add_head_rcu(&dev->index_hlist, 407 dev_index_hash(net, dev->ifindex)); 408 409 netdev_for_each_altname(dev, name_node) 410 netdev_name_node_add(net, name_node); 411 412 /* We reserved the ifindex, this can't fail */ 413 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 414 415 dev_base_seq_inc(net); 416 } 417 418 /* Device list removal 419 * caller must respect a RCU grace period before freeing/reusing dev 420 */ 421 static void unlist_netdevice(struct net_device *dev) 422 { 423 struct netdev_name_node *name_node; 424 struct net *net = dev_net(dev); 425 426 ASSERT_RTNL(); 427 428 xa_erase(&net->dev_by_index, dev->ifindex); 429 430 netdev_for_each_altname(dev, name_node) 431 netdev_name_node_del(name_node); 432 433 /* Unlink dev from the device chain */ 434 list_del_rcu(&dev->dev_list); 435 netdev_name_node_del(dev->name_node); 436 hlist_del_rcu(&dev->index_hlist); 437 438 dev_base_seq_inc(dev_net(dev)); 439 } 440 441 /* 442 * Our notifier list 443 */ 444 445 static RAW_NOTIFIER_HEAD(netdev_chain); 446 447 /* 448 * Device drivers call our routines to queue packets here. We empty the 449 * queue in the local softnet handler. 450 */ 451 452 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 453 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 454 }; 455 EXPORT_PER_CPU_SYMBOL(softnet_data); 456 457 /* Page_pool has a lockless array/stack to alloc/recycle pages. 458 * PP consumers must pay attention to run APIs in the appropriate context 459 * (e.g. NAPI context). 460 */ 461 static DEFINE_PER_CPU(struct page_pool *, system_page_pool); 462 463 #ifdef CONFIG_LOCKDEP 464 /* 465 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 466 * according to dev->type 467 */ 468 static const unsigned short netdev_lock_type[] = { 469 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 470 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 471 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 472 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 473 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 474 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 475 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 476 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 477 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 478 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 479 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 480 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 481 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 482 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 483 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 484 485 static const char *const netdev_lock_name[] = { 486 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 487 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 488 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 489 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 490 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 491 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 492 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 493 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 494 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 495 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 496 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 497 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 498 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 499 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 500 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 501 502 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 503 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 504 505 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 506 { 507 int i; 508 509 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 510 if (netdev_lock_type[i] == dev_type) 511 return i; 512 /* the last key is used by default */ 513 return ARRAY_SIZE(netdev_lock_type) - 1; 514 } 515 516 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 517 unsigned short dev_type) 518 { 519 int i; 520 521 i = netdev_lock_pos(dev_type); 522 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 523 netdev_lock_name[i]); 524 } 525 526 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 527 { 528 int i; 529 530 i = netdev_lock_pos(dev->type); 531 lockdep_set_class_and_name(&dev->addr_list_lock, 532 &netdev_addr_lock_key[i], 533 netdev_lock_name[i]); 534 } 535 #else 536 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 537 unsigned short dev_type) 538 { 539 } 540 541 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 542 { 543 } 544 #endif 545 546 /******************************************************************************* 547 * 548 * Protocol management and registration routines 549 * 550 *******************************************************************************/ 551 552 553 /* 554 * Add a protocol ID to the list. Now that the input handler is 555 * smarter we can dispense with all the messy stuff that used to be 556 * here. 557 * 558 * BEWARE!!! Protocol handlers, mangling input packets, 559 * MUST BE last in hash buckets and checking protocol handlers 560 * MUST start from promiscuous ptype_all chain in net_bh. 561 * It is true now, do not change it. 562 * Explanation follows: if protocol handler, mangling packet, will 563 * be the first on list, it is not able to sense, that packet 564 * is cloned and should be copied-on-write, so that it will 565 * change it and subsequent readers will get broken packet. 566 * --ANK (980803) 567 */ 568 569 static inline struct list_head *ptype_head(const struct packet_type *pt) 570 { 571 if (pt->type == htons(ETH_P_ALL)) 572 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all; 573 else 574 return pt->dev ? &pt->dev->ptype_specific : 575 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 576 } 577 578 /** 579 * dev_add_pack - add packet handler 580 * @pt: packet type declaration 581 * 582 * Add a protocol handler to the networking stack. The passed &packet_type 583 * is linked into kernel lists and may not be freed until it has been 584 * removed from the kernel lists. 585 * 586 * This call does not sleep therefore it can not 587 * guarantee all CPU's that are in middle of receiving packets 588 * will see the new packet type (until the next received packet). 589 */ 590 591 void dev_add_pack(struct packet_type *pt) 592 { 593 struct list_head *head = ptype_head(pt); 594 595 spin_lock(&ptype_lock); 596 list_add_rcu(&pt->list, head); 597 spin_unlock(&ptype_lock); 598 } 599 EXPORT_SYMBOL(dev_add_pack); 600 601 /** 602 * __dev_remove_pack - remove packet handler 603 * @pt: packet type declaration 604 * 605 * Remove a protocol handler that was previously added to the kernel 606 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 607 * from the kernel lists and can be freed or reused once this function 608 * returns. 609 * 610 * The packet type might still be in use by receivers 611 * and must not be freed until after all the CPU's have gone 612 * through a quiescent state. 613 */ 614 void __dev_remove_pack(struct packet_type *pt) 615 { 616 struct list_head *head = ptype_head(pt); 617 struct packet_type *pt1; 618 619 spin_lock(&ptype_lock); 620 621 list_for_each_entry(pt1, head, list) { 622 if (pt == pt1) { 623 list_del_rcu(&pt->list); 624 goto out; 625 } 626 } 627 628 pr_warn("dev_remove_pack: %p not found\n", pt); 629 out: 630 spin_unlock(&ptype_lock); 631 } 632 EXPORT_SYMBOL(__dev_remove_pack); 633 634 /** 635 * dev_remove_pack - remove packet handler 636 * @pt: packet type declaration 637 * 638 * Remove a protocol handler that was previously added to the kernel 639 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 640 * from the kernel lists and can be freed or reused once this function 641 * returns. 642 * 643 * This call sleeps to guarantee that no CPU is looking at the packet 644 * type after return. 645 */ 646 void dev_remove_pack(struct packet_type *pt) 647 { 648 __dev_remove_pack(pt); 649 650 synchronize_net(); 651 } 652 EXPORT_SYMBOL(dev_remove_pack); 653 654 655 /******************************************************************************* 656 * 657 * Device Interface Subroutines 658 * 659 *******************************************************************************/ 660 661 /** 662 * dev_get_iflink - get 'iflink' value of a interface 663 * @dev: targeted interface 664 * 665 * Indicates the ifindex the interface is linked to. 666 * Physical interfaces have the same 'ifindex' and 'iflink' values. 667 */ 668 669 int dev_get_iflink(const struct net_device *dev) 670 { 671 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 672 return dev->netdev_ops->ndo_get_iflink(dev); 673 674 return READ_ONCE(dev->ifindex); 675 } 676 EXPORT_SYMBOL(dev_get_iflink); 677 678 /** 679 * dev_fill_metadata_dst - Retrieve tunnel egress information. 680 * @dev: targeted interface 681 * @skb: The packet. 682 * 683 * For better visibility of tunnel traffic OVS needs to retrieve 684 * egress tunnel information for a packet. Following API allows 685 * user to get this info. 686 */ 687 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 688 { 689 struct ip_tunnel_info *info; 690 691 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 692 return -EINVAL; 693 694 info = skb_tunnel_info_unclone(skb); 695 if (!info) 696 return -ENOMEM; 697 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 698 return -EINVAL; 699 700 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 701 } 702 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 703 704 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 705 { 706 int k = stack->num_paths++; 707 708 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 709 return NULL; 710 711 return &stack->path[k]; 712 } 713 714 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 715 struct net_device_path_stack *stack) 716 { 717 const struct net_device *last_dev; 718 struct net_device_path_ctx ctx = { 719 .dev = dev, 720 }; 721 struct net_device_path *path; 722 int ret = 0; 723 724 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 725 stack->num_paths = 0; 726 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 727 last_dev = ctx.dev; 728 path = dev_fwd_path(stack); 729 if (!path) 730 return -1; 731 732 memset(path, 0, sizeof(struct net_device_path)); 733 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 734 if (ret < 0) 735 return -1; 736 737 if (WARN_ON_ONCE(last_dev == ctx.dev)) 738 return -1; 739 } 740 741 if (!ctx.dev) 742 return ret; 743 744 path = dev_fwd_path(stack); 745 if (!path) 746 return -1; 747 path->type = DEV_PATH_ETHERNET; 748 path->dev = ctx.dev; 749 750 return ret; 751 } 752 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 753 754 /** 755 * __dev_get_by_name - find a device by its name 756 * @net: the applicable net namespace 757 * @name: name to find 758 * 759 * Find an interface by name. Must be called under RTNL semaphore. 760 * If the name is found a pointer to the device is returned. 761 * If the name is not found then %NULL is returned. The 762 * reference counters are not incremented so the caller must be 763 * careful with locks. 764 */ 765 766 struct net_device *__dev_get_by_name(struct net *net, const char *name) 767 { 768 struct netdev_name_node *node_name; 769 770 node_name = netdev_name_node_lookup(net, name); 771 return node_name ? node_name->dev : NULL; 772 } 773 EXPORT_SYMBOL(__dev_get_by_name); 774 775 /** 776 * dev_get_by_name_rcu - find a device by its name 777 * @net: the applicable net namespace 778 * @name: name to find 779 * 780 * Find an interface by name. 781 * If the name is found a pointer to the device is returned. 782 * If the name is not found then %NULL is returned. 783 * The reference counters are not incremented so the caller must be 784 * careful with locks. The caller must hold RCU lock. 785 */ 786 787 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 788 { 789 struct netdev_name_node *node_name; 790 791 node_name = netdev_name_node_lookup_rcu(net, name); 792 return node_name ? node_name->dev : NULL; 793 } 794 EXPORT_SYMBOL(dev_get_by_name_rcu); 795 796 /* Deprecated for new users, call netdev_get_by_name() instead */ 797 struct net_device *dev_get_by_name(struct net *net, const char *name) 798 { 799 struct net_device *dev; 800 801 rcu_read_lock(); 802 dev = dev_get_by_name_rcu(net, name); 803 dev_hold(dev); 804 rcu_read_unlock(); 805 return dev; 806 } 807 EXPORT_SYMBOL(dev_get_by_name); 808 809 /** 810 * netdev_get_by_name() - find a device by its name 811 * @net: the applicable net namespace 812 * @name: name to find 813 * @tracker: tracking object for the acquired reference 814 * @gfp: allocation flags for the tracker 815 * 816 * Find an interface by name. This can be called from any 817 * context and does its own locking. The returned handle has 818 * the usage count incremented and the caller must use netdev_put() to 819 * release it when it is no longer needed. %NULL is returned if no 820 * matching device is found. 821 */ 822 struct net_device *netdev_get_by_name(struct net *net, const char *name, 823 netdevice_tracker *tracker, gfp_t gfp) 824 { 825 struct net_device *dev; 826 827 dev = dev_get_by_name(net, name); 828 if (dev) 829 netdev_tracker_alloc(dev, tracker, gfp); 830 return dev; 831 } 832 EXPORT_SYMBOL(netdev_get_by_name); 833 834 /** 835 * __dev_get_by_index - find a device by its ifindex 836 * @net: the applicable net namespace 837 * @ifindex: index of device 838 * 839 * Search for an interface by index. Returns %NULL if the device 840 * is not found or a pointer to the device. The device has not 841 * had its reference counter increased so the caller must be careful 842 * about locking. The caller must hold the RTNL semaphore. 843 */ 844 845 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 846 { 847 struct net_device *dev; 848 struct hlist_head *head = dev_index_hash(net, ifindex); 849 850 hlist_for_each_entry(dev, head, index_hlist) 851 if (dev->ifindex == ifindex) 852 return dev; 853 854 return NULL; 855 } 856 EXPORT_SYMBOL(__dev_get_by_index); 857 858 /** 859 * dev_get_by_index_rcu - find a device by its ifindex 860 * @net: the applicable net namespace 861 * @ifindex: index of device 862 * 863 * Search for an interface by index. Returns %NULL if the device 864 * is not found or a pointer to the device. The device has not 865 * had its reference counter increased so the caller must be careful 866 * about locking. The caller must hold RCU lock. 867 */ 868 869 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 870 { 871 struct net_device *dev; 872 struct hlist_head *head = dev_index_hash(net, ifindex); 873 874 hlist_for_each_entry_rcu(dev, head, index_hlist) 875 if (dev->ifindex == ifindex) 876 return dev; 877 878 return NULL; 879 } 880 EXPORT_SYMBOL(dev_get_by_index_rcu); 881 882 /* Deprecated for new users, call netdev_get_by_index() instead */ 883 struct net_device *dev_get_by_index(struct net *net, int ifindex) 884 { 885 struct net_device *dev; 886 887 rcu_read_lock(); 888 dev = dev_get_by_index_rcu(net, ifindex); 889 dev_hold(dev); 890 rcu_read_unlock(); 891 return dev; 892 } 893 EXPORT_SYMBOL(dev_get_by_index); 894 895 /** 896 * netdev_get_by_index() - find a device by its ifindex 897 * @net: the applicable net namespace 898 * @ifindex: index of device 899 * @tracker: tracking object for the acquired reference 900 * @gfp: allocation flags for the tracker 901 * 902 * Search for an interface by index. Returns NULL if the device 903 * is not found or a pointer to the device. The device returned has 904 * had a reference added and the pointer is safe until the user calls 905 * netdev_put() to indicate they have finished with it. 906 */ 907 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 908 netdevice_tracker *tracker, gfp_t gfp) 909 { 910 struct net_device *dev; 911 912 dev = dev_get_by_index(net, ifindex); 913 if (dev) 914 netdev_tracker_alloc(dev, tracker, gfp); 915 return dev; 916 } 917 EXPORT_SYMBOL(netdev_get_by_index); 918 919 /** 920 * dev_get_by_napi_id - find a device by napi_id 921 * @napi_id: ID of the NAPI struct 922 * 923 * Search for an interface by NAPI ID. Returns %NULL if the device 924 * is not found or a pointer to the device. The device has not had 925 * its reference counter increased so the caller must be careful 926 * about locking. The caller must hold RCU lock. 927 */ 928 929 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 930 { 931 struct napi_struct *napi; 932 933 WARN_ON_ONCE(!rcu_read_lock_held()); 934 935 if (napi_id < MIN_NAPI_ID) 936 return NULL; 937 938 napi = napi_by_id(napi_id); 939 940 return napi ? napi->dev : NULL; 941 } 942 EXPORT_SYMBOL(dev_get_by_napi_id); 943 944 static DEFINE_SEQLOCK(netdev_rename_lock); 945 946 void netdev_copy_name(struct net_device *dev, char *name) 947 { 948 unsigned int seq; 949 950 do { 951 seq = read_seqbegin(&netdev_rename_lock); 952 strscpy(name, dev->name, IFNAMSIZ); 953 } while (read_seqretry(&netdev_rename_lock, seq)); 954 } 955 956 /** 957 * netdev_get_name - get a netdevice name, knowing its ifindex. 958 * @net: network namespace 959 * @name: a pointer to the buffer where the name will be stored. 960 * @ifindex: the ifindex of the interface to get the name from. 961 */ 962 int netdev_get_name(struct net *net, char *name, int ifindex) 963 { 964 struct net_device *dev; 965 int ret; 966 967 rcu_read_lock(); 968 969 dev = dev_get_by_index_rcu(net, ifindex); 970 if (!dev) { 971 ret = -ENODEV; 972 goto out; 973 } 974 975 netdev_copy_name(dev, name); 976 977 ret = 0; 978 out: 979 rcu_read_unlock(); 980 return ret; 981 } 982 983 /** 984 * dev_getbyhwaddr_rcu - find a device by its hardware address 985 * @net: the applicable net namespace 986 * @type: media type of device 987 * @ha: hardware address 988 * 989 * Search for an interface by MAC address. Returns NULL if the device 990 * is not found or a pointer to the device. 991 * The caller must hold RCU or RTNL. 992 * The returned device has not had its ref count increased 993 * and the caller must therefore be careful about locking 994 * 995 */ 996 997 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 998 const char *ha) 999 { 1000 struct net_device *dev; 1001 1002 for_each_netdev_rcu(net, dev) 1003 if (dev->type == type && 1004 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1005 return dev; 1006 1007 return NULL; 1008 } 1009 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1010 1011 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1012 { 1013 struct net_device *dev, *ret = NULL; 1014 1015 rcu_read_lock(); 1016 for_each_netdev_rcu(net, dev) 1017 if (dev->type == type) { 1018 dev_hold(dev); 1019 ret = dev; 1020 break; 1021 } 1022 rcu_read_unlock(); 1023 return ret; 1024 } 1025 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1026 1027 /** 1028 * __dev_get_by_flags - find any device with given flags 1029 * @net: the applicable net namespace 1030 * @if_flags: IFF_* values 1031 * @mask: bitmask of bits in if_flags to check 1032 * 1033 * Search for any interface with the given flags. Returns NULL if a device 1034 * is not found or a pointer to the device. Must be called inside 1035 * rtnl_lock(), and result refcount is unchanged. 1036 */ 1037 1038 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1039 unsigned short mask) 1040 { 1041 struct net_device *dev, *ret; 1042 1043 ASSERT_RTNL(); 1044 1045 ret = NULL; 1046 for_each_netdev(net, dev) { 1047 if (((dev->flags ^ if_flags) & mask) == 0) { 1048 ret = dev; 1049 break; 1050 } 1051 } 1052 return ret; 1053 } 1054 EXPORT_SYMBOL(__dev_get_by_flags); 1055 1056 /** 1057 * dev_valid_name - check if name is okay for network device 1058 * @name: name string 1059 * 1060 * Network device names need to be valid file names to 1061 * allow sysfs to work. We also disallow any kind of 1062 * whitespace. 1063 */ 1064 bool dev_valid_name(const char *name) 1065 { 1066 if (*name == '\0') 1067 return false; 1068 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1069 return false; 1070 if (!strcmp(name, ".") || !strcmp(name, "..")) 1071 return false; 1072 1073 while (*name) { 1074 if (*name == '/' || *name == ':' || isspace(*name)) 1075 return false; 1076 name++; 1077 } 1078 return true; 1079 } 1080 EXPORT_SYMBOL(dev_valid_name); 1081 1082 /** 1083 * __dev_alloc_name - allocate a name for a device 1084 * @net: network namespace to allocate the device name in 1085 * @name: name format string 1086 * @res: result name string 1087 * 1088 * Passed a format string - eg "lt%d" it will try and find a suitable 1089 * id. It scans list of devices to build up a free map, then chooses 1090 * the first empty slot. The caller must hold the dev_base or rtnl lock 1091 * while allocating the name and adding the device in order to avoid 1092 * duplicates. 1093 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1094 * Returns the number of the unit assigned or a negative errno code. 1095 */ 1096 1097 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1098 { 1099 int i = 0; 1100 const char *p; 1101 const int max_netdevices = 8*PAGE_SIZE; 1102 unsigned long *inuse; 1103 struct net_device *d; 1104 char buf[IFNAMSIZ]; 1105 1106 /* Verify the string as this thing may have come from the user. 1107 * There must be one "%d" and no other "%" characters. 1108 */ 1109 p = strchr(name, '%'); 1110 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1111 return -EINVAL; 1112 1113 /* Use one page as a bit array of possible slots */ 1114 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1115 if (!inuse) 1116 return -ENOMEM; 1117 1118 for_each_netdev(net, d) { 1119 struct netdev_name_node *name_node; 1120 1121 netdev_for_each_altname(d, name_node) { 1122 if (!sscanf(name_node->name, name, &i)) 1123 continue; 1124 if (i < 0 || i >= max_netdevices) 1125 continue; 1126 1127 /* avoid cases where sscanf is not exact inverse of printf */ 1128 snprintf(buf, IFNAMSIZ, name, i); 1129 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1130 __set_bit(i, inuse); 1131 } 1132 if (!sscanf(d->name, name, &i)) 1133 continue; 1134 if (i < 0 || i >= max_netdevices) 1135 continue; 1136 1137 /* avoid cases where sscanf is not exact inverse of printf */ 1138 snprintf(buf, IFNAMSIZ, name, i); 1139 if (!strncmp(buf, d->name, IFNAMSIZ)) 1140 __set_bit(i, inuse); 1141 } 1142 1143 i = find_first_zero_bit(inuse, max_netdevices); 1144 bitmap_free(inuse); 1145 if (i == max_netdevices) 1146 return -ENFILE; 1147 1148 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1149 strscpy(buf, name, IFNAMSIZ); 1150 snprintf(res, IFNAMSIZ, buf, i); 1151 return i; 1152 } 1153 1154 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1155 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1156 const char *want_name, char *out_name, 1157 int dup_errno) 1158 { 1159 if (!dev_valid_name(want_name)) 1160 return -EINVAL; 1161 1162 if (strchr(want_name, '%')) 1163 return __dev_alloc_name(net, want_name, out_name); 1164 1165 if (netdev_name_in_use(net, want_name)) 1166 return -dup_errno; 1167 if (out_name != want_name) 1168 strscpy(out_name, want_name, IFNAMSIZ); 1169 return 0; 1170 } 1171 1172 /** 1173 * dev_alloc_name - allocate a name for a device 1174 * @dev: device 1175 * @name: name format string 1176 * 1177 * Passed a format string - eg "lt%d" it will try and find a suitable 1178 * id. It scans list of devices to build up a free map, then chooses 1179 * the first empty slot. The caller must hold the dev_base or rtnl lock 1180 * while allocating the name and adding the device in order to avoid 1181 * duplicates. 1182 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1183 * Returns the number of the unit assigned or a negative errno code. 1184 */ 1185 1186 int dev_alloc_name(struct net_device *dev, const char *name) 1187 { 1188 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1189 } 1190 EXPORT_SYMBOL(dev_alloc_name); 1191 1192 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1193 const char *name) 1194 { 1195 int ret; 1196 1197 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1198 return ret < 0 ? ret : 0; 1199 } 1200 1201 /** 1202 * dev_change_name - change name of a device 1203 * @dev: device 1204 * @newname: name (or format string) must be at least IFNAMSIZ 1205 * 1206 * Change name of a device, can pass format strings "eth%d". 1207 * for wildcarding. 1208 */ 1209 int dev_change_name(struct net_device *dev, const char *newname) 1210 { 1211 unsigned char old_assign_type; 1212 char oldname[IFNAMSIZ]; 1213 int err = 0; 1214 int ret; 1215 struct net *net; 1216 1217 ASSERT_RTNL(); 1218 BUG_ON(!dev_net(dev)); 1219 1220 net = dev_net(dev); 1221 1222 down_write(&devnet_rename_sem); 1223 1224 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1225 up_write(&devnet_rename_sem); 1226 return 0; 1227 } 1228 1229 memcpy(oldname, dev->name, IFNAMSIZ); 1230 1231 write_seqlock_bh(&netdev_rename_lock); 1232 err = dev_get_valid_name(net, dev, newname); 1233 write_sequnlock_bh(&netdev_rename_lock); 1234 1235 if (err < 0) { 1236 up_write(&devnet_rename_sem); 1237 return err; 1238 } 1239 1240 if (oldname[0] && !strchr(oldname, '%')) 1241 netdev_info(dev, "renamed from %s%s\n", oldname, 1242 dev->flags & IFF_UP ? " (while UP)" : ""); 1243 1244 old_assign_type = dev->name_assign_type; 1245 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1246 1247 rollback: 1248 ret = device_rename(&dev->dev, dev->name); 1249 if (ret) { 1250 memcpy(dev->name, oldname, IFNAMSIZ); 1251 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1252 up_write(&devnet_rename_sem); 1253 return ret; 1254 } 1255 1256 up_write(&devnet_rename_sem); 1257 1258 netdev_adjacent_rename_links(dev, oldname); 1259 1260 netdev_name_node_del(dev->name_node); 1261 1262 synchronize_net(); 1263 1264 netdev_name_node_add(net, dev->name_node); 1265 1266 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1267 ret = notifier_to_errno(ret); 1268 1269 if (ret) { 1270 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1271 if (err >= 0) { 1272 err = ret; 1273 down_write(&devnet_rename_sem); 1274 write_seqlock_bh(&netdev_rename_lock); 1275 memcpy(dev->name, oldname, IFNAMSIZ); 1276 write_sequnlock_bh(&netdev_rename_lock); 1277 memcpy(oldname, newname, IFNAMSIZ); 1278 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1279 old_assign_type = NET_NAME_RENAMED; 1280 goto rollback; 1281 } else { 1282 netdev_err(dev, "name change rollback failed: %d\n", 1283 ret); 1284 } 1285 } 1286 1287 return err; 1288 } 1289 1290 /** 1291 * dev_set_alias - change ifalias of a device 1292 * @dev: device 1293 * @alias: name up to IFALIASZ 1294 * @len: limit of bytes to copy from info 1295 * 1296 * Set ifalias for a device, 1297 */ 1298 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1299 { 1300 struct dev_ifalias *new_alias = NULL; 1301 1302 if (len >= IFALIASZ) 1303 return -EINVAL; 1304 1305 if (len) { 1306 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1307 if (!new_alias) 1308 return -ENOMEM; 1309 1310 memcpy(new_alias->ifalias, alias, len); 1311 new_alias->ifalias[len] = 0; 1312 } 1313 1314 mutex_lock(&ifalias_mutex); 1315 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1316 mutex_is_locked(&ifalias_mutex)); 1317 mutex_unlock(&ifalias_mutex); 1318 1319 if (new_alias) 1320 kfree_rcu(new_alias, rcuhead); 1321 1322 return len; 1323 } 1324 EXPORT_SYMBOL(dev_set_alias); 1325 1326 /** 1327 * dev_get_alias - get ifalias of a device 1328 * @dev: device 1329 * @name: buffer to store name of ifalias 1330 * @len: size of buffer 1331 * 1332 * get ifalias for a device. Caller must make sure dev cannot go 1333 * away, e.g. rcu read lock or own a reference count to device. 1334 */ 1335 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1336 { 1337 const struct dev_ifalias *alias; 1338 int ret = 0; 1339 1340 rcu_read_lock(); 1341 alias = rcu_dereference(dev->ifalias); 1342 if (alias) 1343 ret = snprintf(name, len, "%s", alias->ifalias); 1344 rcu_read_unlock(); 1345 1346 return ret; 1347 } 1348 1349 /** 1350 * netdev_features_change - device changes features 1351 * @dev: device to cause notification 1352 * 1353 * Called to indicate a device has changed features. 1354 */ 1355 void netdev_features_change(struct net_device *dev) 1356 { 1357 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1358 } 1359 EXPORT_SYMBOL(netdev_features_change); 1360 1361 /** 1362 * netdev_state_change - device changes state 1363 * @dev: device to cause notification 1364 * 1365 * Called to indicate a device has changed state. This function calls 1366 * the notifier chains for netdev_chain and sends a NEWLINK message 1367 * to the routing socket. 1368 */ 1369 void netdev_state_change(struct net_device *dev) 1370 { 1371 if (dev->flags & IFF_UP) { 1372 struct netdev_notifier_change_info change_info = { 1373 .info.dev = dev, 1374 }; 1375 1376 call_netdevice_notifiers_info(NETDEV_CHANGE, 1377 &change_info.info); 1378 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1379 } 1380 } 1381 EXPORT_SYMBOL(netdev_state_change); 1382 1383 /** 1384 * __netdev_notify_peers - notify network peers about existence of @dev, 1385 * to be called when rtnl lock is already held. 1386 * @dev: network device 1387 * 1388 * Generate traffic such that interested network peers are aware of 1389 * @dev, such as by generating a gratuitous ARP. This may be used when 1390 * a device wants to inform the rest of the network about some sort of 1391 * reconfiguration such as a failover event or virtual machine 1392 * migration. 1393 */ 1394 void __netdev_notify_peers(struct net_device *dev) 1395 { 1396 ASSERT_RTNL(); 1397 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1398 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1399 } 1400 EXPORT_SYMBOL(__netdev_notify_peers); 1401 1402 /** 1403 * netdev_notify_peers - notify network peers about existence of @dev 1404 * @dev: network device 1405 * 1406 * Generate traffic such that interested network peers are aware of 1407 * @dev, such as by generating a gratuitous ARP. This may be used when 1408 * a device wants to inform the rest of the network about some sort of 1409 * reconfiguration such as a failover event or virtual machine 1410 * migration. 1411 */ 1412 void netdev_notify_peers(struct net_device *dev) 1413 { 1414 rtnl_lock(); 1415 __netdev_notify_peers(dev); 1416 rtnl_unlock(); 1417 } 1418 EXPORT_SYMBOL(netdev_notify_peers); 1419 1420 static int napi_threaded_poll(void *data); 1421 1422 static int napi_kthread_create(struct napi_struct *n) 1423 { 1424 int err = 0; 1425 1426 /* Create and wake up the kthread once to put it in 1427 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1428 * warning and work with loadavg. 1429 */ 1430 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1431 n->dev->name, n->napi_id); 1432 if (IS_ERR(n->thread)) { 1433 err = PTR_ERR(n->thread); 1434 pr_err("kthread_run failed with err %d\n", err); 1435 n->thread = NULL; 1436 } 1437 1438 return err; 1439 } 1440 1441 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1442 { 1443 const struct net_device_ops *ops = dev->netdev_ops; 1444 int ret; 1445 1446 ASSERT_RTNL(); 1447 dev_addr_check(dev); 1448 1449 if (!netif_device_present(dev)) { 1450 /* may be detached because parent is runtime-suspended */ 1451 if (dev->dev.parent) 1452 pm_runtime_resume(dev->dev.parent); 1453 if (!netif_device_present(dev)) 1454 return -ENODEV; 1455 } 1456 1457 /* Block netpoll from trying to do any rx path servicing. 1458 * If we don't do this there is a chance ndo_poll_controller 1459 * or ndo_poll may be running while we open the device 1460 */ 1461 netpoll_poll_disable(dev); 1462 1463 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1464 ret = notifier_to_errno(ret); 1465 if (ret) 1466 return ret; 1467 1468 set_bit(__LINK_STATE_START, &dev->state); 1469 1470 if (ops->ndo_validate_addr) 1471 ret = ops->ndo_validate_addr(dev); 1472 1473 if (!ret && ops->ndo_open) 1474 ret = ops->ndo_open(dev); 1475 1476 netpoll_poll_enable(dev); 1477 1478 if (ret) 1479 clear_bit(__LINK_STATE_START, &dev->state); 1480 else { 1481 dev->flags |= IFF_UP; 1482 dev_set_rx_mode(dev); 1483 dev_activate(dev); 1484 add_device_randomness(dev->dev_addr, dev->addr_len); 1485 } 1486 1487 return ret; 1488 } 1489 1490 /** 1491 * dev_open - prepare an interface for use. 1492 * @dev: device to open 1493 * @extack: netlink extended ack 1494 * 1495 * Takes a device from down to up state. The device's private open 1496 * function is invoked and then the multicast lists are loaded. Finally 1497 * the device is moved into the up state and a %NETDEV_UP message is 1498 * sent to the netdev notifier chain. 1499 * 1500 * Calling this function on an active interface is a nop. On a failure 1501 * a negative errno code is returned. 1502 */ 1503 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1504 { 1505 int ret; 1506 1507 if (dev->flags & IFF_UP) 1508 return 0; 1509 1510 ret = __dev_open(dev, extack); 1511 if (ret < 0) 1512 return ret; 1513 1514 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1515 call_netdevice_notifiers(NETDEV_UP, dev); 1516 1517 return ret; 1518 } 1519 EXPORT_SYMBOL(dev_open); 1520 1521 static void __dev_close_many(struct list_head *head) 1522 { 1523 struct net_device *dev; 1524 1525 ASSERT_RTNL(); 1526 might_sleep(); 1527 1528 list_for_each_entry(dev, head, close_list) { 1529 /* Temporarily disable netpoll until the interface is down */ 1530 netpoll_poll_disable(dev); 1531 1532 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1533 1534 clear_bit(__LINK_STATE_START, &dev->state); 1535 1536 /* Synchronize to scheduled poll. We cannot touch poll list, it 1537 * can be even on different cpu. So just clear netif_running(). 1538 * 1539 * dev->stop() will invoke napi_disable() on all of it's 1540 * napi_struct instances on this device. 1541 */ 1542 smp_mb__after_atomic(); /* Commit netif_running(). */ 1543 } 1544 1545 dev_deactivate_many(head); 1546 1547 list_for_each_entry(dev, head, close_list) { 1548 const struct net_device_ops *ops = dev->netdev_ops; 1549 1550 /* 1551 * Call the device specific close. This cannot fail. 1552 * Only if device is UP 1553 * 1554 * We allow it to be called even after a DETACH hot-plug 1555 * event. 1556 */ 1557 if (ops->ndo_stop) 1558 ops->ndo_stop(dev); 1559 1560 dev->flags &= ~IFF_UP; 1561 netpoll_poll_enable(dev); 1562 } 1563 } 1564 1565 static void __dev_close(struct net_device *dev) 1566 { 1567 LIST_HEAD(single); 1568 1569 list_add(&dev->close_list, &single); 1570 __dev_close_many(&single); 1571 list_del(&single); 1572 } 1573 1574 void dev_close_many(struct list_head *head, bool unlink) 1575 { 1576 struct net_device *dev, *tmp; 1577 1578 /* Remove the devices that don't need to be closed */ 1579 list_for_each_entry_safe(dev, tmp, head, close_list) 1580 if (!(dev->flags & IFF_UP)) 1581 list_del_init(&dev->close_list); 1582 1583 __dev_close_many(head); 1584 1585 list_for_each_entry_safe(dev, tmp, head, close_list) { 1586 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1587 call_netdevice_notifiers(NETDEV_DOWN, dev); 1588 if (unlink) 1589 list_del_init(&dev->close_list); 1590 } 1591 } 1592 EXPORT_SYMBOL(dev_close_many); 1593 1594 /** 1595 * dev_close - shutdown an interface. 1596 * @dev: device to shutdown 1597 * 1598 * This function moves an active device into down state. A 1599 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1600 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1601 * chain. 1602 */ 1603 void dev_close(struct net_device *dev) 1604 { 1605 if (dev->flags & IFF_UP) { 1606 LIST_HEAD(single); 1607 1608 list_add(&dev->close_list, &single); 1609 dev_close_many(&single, true); 1610 list_del(&single); 1611 } 1612 } 1613 EXPORT_SYMBOL(dev_close); 1614 1615 1616 /** 1617 * dev_disable_lro - disable Large Receive Offload on a device 1618 * @dev: device 1619 * 1620 * Disable Large Receive Offload (LRO) on a net device. Must be 1621 * called under RTNL. This is needed if received packets may be 1622 * forwarded to another interface. 1623 */ 1624 void dev_disable_lro(struct net_device *dev) 1625 { 1626 struct net_device *lower_dev; 1627 struct list_head *iter; 1628 1629 dev->wanted_features &= ~NETIF_F_LRO; 1630 netdev_update_features(dev); 1631 1632 if (unlikely(dev->features & NETIF_F_LRO)) 1633 netdev_WARN(dev, "failed to disable LRO!\n"); 1634 1635 netdev_for_each_lower_dev(dev, lower_dev, iter) 1636 dev_disable_lro(lower_dev); 1637 } 1638 EXPORT_SYMBOL(dev_disable_lro); 1639 1640 /** 1641 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1642 * @dev: device 1643 * 1644 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1645 * called under RTNL. This is needed if Generic XDP is installed on 1646 * the device. 1647 */ 1648 static void dev_disable_gro_hw(struct net_device *dev) 1649 { 1650 dev->wanted_features &= ~NETIF_F_GRO_HW; 1651 netdev_update_features(dev); 1652 1653 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1654 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1655 } 1656 1657 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1658 { 1659 #define N(val) \ 1660 case NETDEV_##val: \ 1661 return "NETDEV_" __stringify(val); 1662 switch (cmd) { 1663 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1664 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1665 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1666 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1667 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1668 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1669 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1670 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1671 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1672 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1673 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1674 N(XDP_FEAT_CHANGE) 1675 } 1676 #undef N 1677 return "UNKNOWN_NETDEV_EVENT"; 1678 } 1679 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1680 1681 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1682 struct net_device *dev) 1683 { 1684 struct netdev_notifier_info info = { 1685 .dev = dev, 1686 }; 1687 1688 return nb->notifier_call(nb, val, &info); 1689 } 1690 1691 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1692 struct net_device *dev) 1693 { 1694 int err; 1695 1696 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1697 err = notifier_to_errno(err); 1698 if (err) 1699 return err; 1700 1701 if (!(dev->flags & IFF_UP)) 1702 return 0; 1703 1704 call_netdevice_notifier(nb, NETDEV_UP, dev); 1705 return 0; 1706 } 1707 1708 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1709 struct net_device *dev) 1710 { 1711 if (dev->flags & IFF_UP) { 1712 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1713 dev); 1714 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1715 } 1716 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1717 } 1718 1719 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1720 struct net *net) 1721 { 1722 struct net_device *dev; 1723 int err; 1724 1725 for_each_netdev(net, dev) { 1726 err = call_netdevice_register_notifiers(nb, dev); 1727 if (err) 1728 goto rollback; 1729 } 1730 return 0; 1731 1732 rollback: 1733 for_each_netdev_continue_reverse(net, dev) 1734 call_netdevice_unregister_notifiers(nb, dev); 1735 return err; 1736 } 1737 1738 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1739 struct net *net) 1740 { 1741 struct net_device *dev; 1742 1743 for_each_netdev(net, dev) 1744 call_netdevice_unregister_notifiers(nb, dev); 1745 } 1746 1747 static int dev_boot_phase = 1; 1748 1749 /** 1750 * register_netdevice_notifier - register a network notifier block 1751 * @nb: notifier 1752 * 1753 * Register a notifier to be called when network device events occur. 1754 * The notifier passed is linked into the kernel structures and must 1755 * not be reused until it has been unregistered. A negative errno code 1756 * is returned on a failure. 1757 * 1758 * When registered all registration and up events are replayed 1759 * to the new notifier to allow device to have a race free 1760 * view of the network device list. 1761 */ 1762 1763 int register_netdevice_notifier(struct notifier_block *nb) 1764 { 1765 struct net *net; 1766 int err; 1767 1768 /* Close race with setup_net() and cleanup_net() */ 1769 down_write(&pernet_ops_rwsem); 1770 rtnl_lock(); 1771 err = raw_notifier_chain_register(&netdev_chain, nb); 1772 if (err) 1773 goto unlock; 1774 if (dev_boot_phase) 1775 goto unlock; 1776 for_each_net(net) { 1777 err = call_netdevice_register_net_notifiers(nb, net); 1778 if (err) 1779 goto rollback; 1780 } 1781 1782 unlock: 1783 rtnl_unlock(); 1784 up_write(&pernet_ops_rwsem); 1785 return err; 1786 1787 rollback: 1788 for_each_net_continue_reverse(net) 1789 call_netdevice_unregister_net_notifiers(nb, net); 1790 1791 raw_notifier_chain_unregister(&netdev_chain, nb); 1792 goto unlock; 1793 } 1794 EXPORT_SYMBOL(register_netdevice_notifier); 1795 1796 /** 1797 * unregister_netdevice_notifier - unregister a network notifier block 1798 * @nb: notifier 1799 * 1800 * Unregister a notifier previously registered by 1801 * register_netdevice_notifier(). The notifier is unlinked into the 1802 * kernel structures and may then be reused. A negative errno code 1803 * is returned on a failure. 1804 * 1805 * After unregistering unregister and down device events are synthesized 1806 * for all devices on the device list to the removed notifier to remove 1807 * the need for special case cleanup code. 1808 */ 1809 1810 int unregister_netdevice_notifier(struct notifier_block *nb) 1811 { 1812 struct net *net; 1813 int err; 1814 1815 /* Close race with setup_net() and cleanup_net() */ 1816 down_write(&pernet_ops_rwsem); 1817 rtnl_lock(); 1818 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1819 if (err) 1820 goto unlock; 1821 1822 for_each_net(net) 1823 call_netdevice_unregister_net_notifiers(nb, net); 1824 1825 unlock: 1826 rtnl_unlock(); 1827 up_write(&pernet_ops_rwsem); 1828 return err; 1829 } 1830 EXPORT_SYMBOL(unregister_netdevice_notifier); 1831 1832 static int __register_netdevice_notifier_net(struct net *net, 1833 struct notifier_block *nb, 1834 bool ignore_call_fail) 1835 { 1836 int err; 1837 1838 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1839 if (err) 1840 return err; 1841 if (dev_boot_phase) 1842 return 0; 1843 1844 err = call_netdevice_register_net_notifiers(nb, net); 1845 if (err && !ignore_call_fail) 1846 goto chain_unregister; 1847 1848 return 0; 1849 1850 chain_unregister: 1851 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1852 return err; 1853 } 1854 1855 static int __unregister_netdevice_notifier_net(struct net *net, 1856 struct notifier_block *nb) 1857 { 1858 int err; 1859 1860 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1861 if (err) 1862 return err; 1863 1864 call_netdevice_unregister_net_notifiers(nb, net); 1865 return 0; 1866 } 1867 1868 /** 1869 * register_netdevice_notifier_net - register a per-netns network notifier block 1870 * @net: network namespace 1871 * @nb: notifier 1872 * 1873 * Register a notifier to be called when network device events occur. 1874 * The notifier passed is linked into the kernel structures and must 1875 * not be reused until it has been unregistered. A negative errno code 1876 * is returned on a failure. 1877 * 1878 * When registered all registration and up events are replayed 1879 * to the new notifier to allow device to have a race free 1880 * view of the network device list. 1881 */ 1882 1883 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1884 { 1885 int err; 1886 1887 rtnl_lock(); 1888 err = __register_netdevice_notifier_net(net, nb, false); 1889 rtnl_unlock(); 1890 return err; 1891 } 1892 EXPORT_SYMBOL(register_netdevice_notifier_net); 1893 1894 /** 1895 * unregister_netdevice_notifier_net - unregister a per-netns 1896 * network notifier block 1897 * @net: network namespace 1898 * @nb: notifier 1899 * 1900 * Unregister a notifier previously registered by 1901 * register_netdevice_notifier_net(). The notifier is unlinked from the 1902 * kernel structures and may then be reused. A negative errno code 1903 * is returned on a failure. 1904 * 1905 * After unregistering unregister and down device events are synthesized 1906 * for all devices on the device list to the removed notifier to remove 1907 * the need for special case cleanup code. 1908 */ 1909 1910 int unregister_netdevice_notifier_net(struct net *net, 1911 struct notifier_block *nb) 1912 { 1913 int err; 1914 1915 rtnl_lock(); 1916 err = __unregister_netdevice_notifier_net(net, nb); 1917 rtnl_unlock(); 1918 return err; 1919 } 1920 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1921 1922 static void __move_netdevice_notifier_net(struct net *src_net, 1923 struct net *dst_net, 1924 struct notifier_block *nb) 1925 { 1926 __unregister_netdevice_notifier_net(src_net, nb); 1927 __register_netdevice_notifier_net(dst_net, nb, true); 1928 } 1929 1930 int register_netdevice_notifier_dev_net(struct net_device *dev, 1931 struct notifier_block *nb, 1932 struct netdev_net_notifier *nn) 1933 { 1934 int err; 1935 1936 rtnl_lock(); 1937 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1938 if (!err) { 1939 nn->nb = nb; 1940 list_add(&nn->list, &dev->net_notifier_list); 1941 } 1942 rtnl_unlock(); 1943 return err; 1944 } 1945 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1946 1947 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1948 struct notifier_block *nb, 1949 struct netdev_net_notifier *nn) 1950 { 1951 int err; 1952 1953 rtnl_lock(); 1954 list_del(&nn->list); 1955 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1956 rtnl_unlock(); 1957 return err; 1958 } 1959 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1960 1961 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1962 struct net *net) 1963 { 1964 struct netdev_net_notifier *nn; 1965 1966 list_for_each_entry(nn, &dev->net_notifier_list, list) 1967 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1968 } 1969 1970 /** 1971 * call_netdevice_notifiers_info - call all network notifier blocks 1972 * @val: value passed unmodified to notifier function 1973 * @info: notifier information data 1974 * 1975 * Call all network notifier blocks. Parameters and return value 1976 * are as for raw_notifier_call_chain(). 1977 */ 1978 1979 int call_netdevice_notifiers_info(unsigned long val, 1980 struct netdev_notifier_info *info) 1981 { 1982 struct net *net = dev_net(info->dev); 1983 int ret; 1984 1985 ASSERT_RTNL(); 1986 1987 /* Run per-netns notifier block chain first, then run the global one. 1988 * Hopefully, one day, the global one is going to be removed after 1989 * all notifier block registrators get converted to be per-netns. 1990 */ 1991 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1992 if (ret & NOTIFY_STOP_MASK) 1993 return ret; 1994 return raw_notifier_call_chain(&netdev_chain, val, info); 1995 } 1996 1997 /** 1998 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1999 * for and rollback on error 2000 * @val_up: value passed unmodified to notifier function 2001 * @val_down: value passed unmodified to the notifier function when 2002 * recovering from an error on @val_up 2003 * @info: notifier information data 2004 * 2005 * Call all per-netns network notifier blocks, but not notifier blocks on 2006 * the global notifier chain. Parameters and return value are as for 2007 * raw_notifier_call_chain_robust(). 2008 */ 2009 2010 static int 2011 call_netdevice_notifiers_info_robust(unsigned long val_up, 2012 unsigned long val_down, 2013 struct netdev_notifier_info *info) 2014 { 2015 struct net *net = dev_net(info->dev); 2016 2017 ASSERT_RTNL(); 2018 2019 return raw_notifier_call_chain_robust(&net->netdev_chain, 2020 val_up, val_down, info); 2021 } 2022 2023 static int call_netdevice_notifiers_extack(unsigned long val, 2024 struct net_device *dev, 2025 struct netlink_ext_ack *extack) 2026 { 2027 struct netdev_notifier_info info = { 2028 .dev = dev, 2029 .extack = extack, 2030 }; 2031 2032 return call_netdevice_notifiers_info(val, &info); 2033 } 2034 2035 /** 2036 * call_netdevice_notifiers - call all network notifier blocks 2037 * @val: value passed unmodified to notifier function 2038 * @dev: net_device pointer passed unmodified to notifier function 2039 * 2040 * Call all network notifier blocks. Parameters and return value 2041 * are as for raw_notifier_call_chain(). 2042 */ 2043 2044 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2045 { 2046 return call_netdevice_notifiers_extack(val, dev, NULL); 2047 } 2048 EXPORT_SYMBOL(call_netdevice_notifiers); 2049 2050 /** 2051 * call_netdevice_notifiers_mtu - call all network notifier blocks 2052 * @val: value passed unmodified to notifier function 2053 * @dev: net_device pointer passed unmodified to notifier function 2054 * @arg: additional u32 argument passed to the notifier function 2055 * 2056 * Call all network notifier blocks. Parameters and return value 2057 * are as for raw_notifier_call_chain(). 2058 */ 2059 static int call_netdevice_notifiers_mtu(unsigned long val, 2060 struct net_device *dev, u32 arg) 2061 { 2062 struct netdev_notifier_info_ext info = { 2063 .info.dev = dev, 2064 .ext.mtu = arg, 2065 }; 2066 2067 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2068 2069 return call_netdevice_notifiers_info(val, &info.info); 2070 } 2071 2072 #ifdef CONFIG_NET_INGRESS 2073 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2074 2075 void net_inc_ingress_queue(void) 2076 { 2077 static_branch_inc(&ingress_needed_key); 2078 } 2079 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2080 2081 void net_dec_ingress_queue(void) 2082 { 2083 static_branch_dec(&ingress_needed_key); 2084 } 2085 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2086 #endif 2087 2088 #ifdef CONFIG_NET_EGRESS 2089 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2090 2091 void net_inc_egress_queue(void) 2092 { 2093 static_branch_inc(&egress_needed_key); 2094 } 2095 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2096 2097 void net_dec_egress_queue(void) 2098 { 2099 static_branch_dec(&egress_needed_key); 2100 } 2101 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2102 #endif 2103 2104 #ifdef CONFIG_NET_CLS_ACT 2105 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key); 2106 EXPORT_SYMBOL(tcf_bypass_check_needed_key); 2107 #endif 2108 2109 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2110 EXPORT_SYMBOL(netstamp_needed_key); 2111 #ifdef CONFIG_JUMP_LABEL 2112 static atomic_t netstamp_needed_deferred; 2113 static atomic_t netstamp_wanted; 2114 static void netstamp_clear(struct work_struct *work) 2115 { 2116 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2117 int wanted; 2118 2119 wanted = atomic_add_return(deferred, &netstamp_wanted); 2120 if (wanted > 0) 2121 static_branch_enable(&netstamp_needed_key); 2122 else 2123 static_branch_disable(&netstamp_needed_key); 2124 } 2125 static DECLARE_WORK(netstamp_work, netstamp_clear); 2126 #endif 2127 2128 void net_enable_timestamp(void) 2129 { 2130 #ifdef CONFIG_JUMP_LABEL 2131 int wanted = atomic_read(&netstamp_wanted); 2132 2133 while (wanted > 0) { 2134 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2135 return; 2136 } 2137 atomic_inc(&netstamp_needed_deferred); 2138 schedule_work(&netstamp_work); 2139 #else 2140 static_branch_inc(&netstamp_needed_key); 2141 #endif 2142 } 2143 EXPORT_SYMBOL(net_enable_timestamp); 2144 2145 void net_disable_timestamp(void) 2146 { 2147 #ifdef CONFIG_JUMP_LABEL 2148 int wanted = atomic_read(&netstamp_wanted); 2149 2150 while (wanted > 1) { 2151 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2152 return; 2153 } 2154 atomic_dec(&netstamp_needed_deferred); 2155 schedule_work(&netstamp_work); 2156 #else 2157 static_branch_dec(&netstamp_needed_key); 2158 #endif 2159 } 2160 EXPORT_SYMBOL(net_disable_timestamp); 2161 2162 static inline void net_timestamp_set(struct sk_buff *skb) 2163 { 2164 skb->tstamp = 0; 2165 skb->tstamp_type = SKB_CLOCK_REALTIME; 2166 if (static_branch_unlikely(&netstamp_needed_key)) 2167 skb->tstamp = ktime_get_real(); 2168 } 2169 2170 #define net_timestamp_check(COND, SKB) \ 2171 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2172 if ((COND) && !(SKB)->tstamp) \ 2173 (SKB)->tstamp = ktime_get_real(); \ 2174 } \ 2175 2176 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2177 { 2178 return __is_skb_forwardable(dev, skb, true); 2179 } 2180 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2181 2182 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2183 bool check_mtu) 2184 { 2185 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2186 2187 if (likely(!ret)) { 2188 skb->protocol = eth_type_trans(skb, dev); 2189 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2190 } 2191 2192 return ret; 2193 } 2194 2195 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2196 { 2197 return __dev_forward_skb2(dev, skb, true); 2198 } 2199 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2200 2201 /** 2202 * dev_forward_skb - loopback an skb to another netif 2203 * 2204 * @dev: destination network device 2205 * @skb: buffer to forward 2206 * 2207 * return values: 2208 * NET_RX_SUCCESS (no congestion) 2209 * NET_RX_DROP (packet was dropped, but freed) 2210 * 2211 * dev_forward_skb can be used for injecting an skb from the 2212 * start_xmit function of one device into the receive queue 2213 * of another device. 2214 * 2215 * The receiving device may be in another namespace, so 2216 * we have to clear all information in the skb that could 2217 * impact namespace isolation. 2218 */ 2219 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2220 { 2221 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2222 } 2223 EXPORT_SYMBOL_GPL(dev_forward_skb); 2224 2225 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2226 { 2227 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2228 } 2229 2230 static inline int deliver_skb(struct sk_buff *skb, 2231 struct packet_type *pt_prev, 2232 struct net_device *orig_dev) 2233 { 2234 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2235 return -ENOMEM; 2236 refcount_inc(&skb->users); 2237 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2238 } 2239 2240 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2241 struct packet_type **pt, 2242 struct net_device *orig_dev, 2243 __be16 type, 2244 struct list_head *ptype_list) 2245 { 2246 struct packet_type *ptype, *pt_prev = *pt; 2247 2248 list_for_each_entry_rcu(ptype, ptype_list, list) { 2249 if (ptype->type != type) 2250 continue; 2251 if (pt_prev) 2252 deliver_skb(skb, pt_prev, orig_dev); 2253 pt_prev = ptype; 2254 } 2255 *pt = pt_prev; 2256 } 2257 2258 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2259 { 2260 if (!ptype->af_packet_priv || !skb->sk) 2261 return false; 2262 2263 if (ptype->id_match) 2264 return ptype->id_match(ptype, skb->sk); 2265 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2266 return true; 2267 2268 return false; 2269 } 2270 2271 /** 2272 * dev_nit_active - return true if any network interface taps are in use 2273 * 2274 * @dev: network device to check for the presence of taps 2275 */ 2276 bool dev_nit_active(struct net_device *dev) 2277 { 2278 return !list_empty(&net_hotdata.ptype_all) || 2279 !list_empty(&dev->ptype_all); 2280 } 2281 EXPORT_SYMBOL_GPL(dev_nit_active); 2282 2283 /* 2284 * Support routine. Sends outgoing frames to any network 2285 * taps currently in use. 2286 */ 2287 2288 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2289 { 2290 struct list_head *ptype_list = &net_hotdata.ptype_all; 2291 struct packet_type *ptype, *pt_prev = NULL; 2292 struct sk_buff *skb2 = NULL; 2293 2294 rcu_read_lock(); 2295 again: 2296 list_for_each_entry_rcu(ptype, ptype_list, list) { 2297 if (READ_ONCE(ptype->ignore_outgoing)) 2298 continue; 2299 2300 /* Never send packets back to the socket 2301 * they originated from - MvS (miquels@drinkel.ow.org) 2302 */ 2303 if (skb_loop_sk(ptype, skb)) 2304 continue; 2305 2306 if (pt_prev) { 2307 deliver_skb(skb2, pt_prev, skb->dev); 2308 pt_prev = ptype; 2309 continue; 2310 } 2311 2312 /* need to clone skb, done only once */ 2313 skb2 = skb_clone(skb, GFP_ATOMIC); 2314 if (!skb2) 2315 goto out_unlock; 2316 2317 net_timestamp_set(skb2); 2318 2319 /* skb->nh should be correctly 2320 * set by sender, so that the second statement is 2321 * just protection against buggy protocols. 2322 */ 2323 skb_reset_mac_header(skb2); 2324 2325 if (skb_network_header(skb2) < skb2->data || 2326 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2327 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2328 ntohs(skb2->protocol), 2329 dev->name); 2330 skb_reset_network_header(skb2); 2331 } 2332 2333 skb2->transport_header = skb2->network_header; 2334 skb2->pkt_type = PACKET_OUTGOING; 2335 pt_prev = ptype; 2336 } 2337 2338 if (ptype_list == &net_hotdata.ptype_all) { 2339 ptype_list = &dev->ptype_all; 2340 goto again; 2341 } 2342 out_unlock: 2343 if (pt_prev) { 2344 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2345 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2346 else 2347 kfree_skb(skb2); 2348 } 2349 rcu_read_unlock(); 2350 } 2351 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2352 2353 /** 2354 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2355 * @dev: Network device 2356 * @txq: number of queues available 2357 * 2358 * If real_num_tx_queues is changed the tc mappings may no longer be 2359 * valid. To resolve this verify the tc mapping remains valid and if 2360 * not NULL the mapping. With no priorities mapping to this 2361 * offset/count pair it will no longer be used. In the worst case TC0 2362 * is invalid nothing can be done so disable priority mappings. If is 2363 * expected that drivers will fix this mapping if they can before 2364 * calling netif_set_real_num_tx_queues. 2365 */ 2366 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2367 { 2368 int i; 2369 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2370 2371 /* If TC0 is invalidated disable TC mapping */ 2372 if (tc->offset + tc->count > txq) { 2373 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2374 dev->num_tc = 0; 2375 return; 2376 } 2377 2378 /* Invalidated prio to tc mappings set to TC0 */ 2379 for (i = 1; i < TC_BITMASK + 1; i++) { 2380 int q = netdev_get_prio_tc_map(dev, i); 2381 2382 tc = &dev->tc_to_txq[q]; 2383 if (tc->offset + tc->count > txq) { 2384 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2385 i, q); 2386 netdev_set_prio_tc_map(dev, i, 0); 2387 } 2388 } 2389 } 2390 2391 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2392 { 2393 if (dev->num_tc) { 2394 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2395 int i; 2396 2397 /* walk through the TCs and see if it falls into any of them */ 2398 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2399 if ((txq - tc->offset) < tc->count) 2400 return i; 2401 } 2402 2403 /* didn't find it, just return -1 to indicate no match */ 2404 return -1; 2405 } 2406 2407 return 0; 2408 } 2409 EXPORT_SYMBOL(netdev_txq_to_tc); 2410 2411 #ifdef CONFIG_XPS 2412 static struct static_key xps_needed __read_mostly; 2413 static struct static_key xps_rxqs_needed __read_mostly; 2414 static DEFINE_MUTEX(xps_map_mutex); 2415 #define xmap_dereference(P) \ 2416 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2417 2418 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2419 struct xps_dev_maps *old_maps, int tci, u16 index) 2420 { 2421 struct xps_map *map = NULL; 2422 int pos; 2423 2424 map = xmap_dereference(dev_maps->attr_map[tci]); 2425 if (!map) 2426 return false; 2427 2428 for (pos = map->len; pos--;) { 2429 if (map->queues[pos] != index) 2430 continue; 2431 2432 if (map->len > 1) { 2433 map->queues[pos] = map->queues[--map->len]; 2434 break; 2435 } 2436 2437 if (old_maps) 2438 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2439 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2440 kfree_rcu(map, rcu); 2441 return false; 2442 } 2443 2444 return true; 2445 } 2446 2447 static bool remove_xps_queue_cpu(struct net_device *dev, 2448 struct xps_dev_maps *dev_maps, 2449 int cpu, u16 offset, u16 count) 2450 { 2451 int num_tc = dev_maps->num_tc; 2452 bool active = false; 2453 int tci; 2454 2455 for (tci = cpu * num_tc; num_tc--; tci++) { 2456 int i, j; 2457 2458 for (i = count, j = offset; i--; j++) { 2459 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2460 break; 2461 } 2462 2463 active |= i < 0; 2464 } 2465 2466 return active; 2467 } 2468 2469 static void reset_xps_maps(struct net_device *dev, 2470 struct xps_dev_maps *dev_maps, 2471 enum xps_map_type type) 2472 { 2473 static_key_slow_dec_cpuslocked(&xps_needed); 2474 if (type == XPS_RXQS) 2475 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2476 2477 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2478 2479 kfree_rcu(dev_maps, rcu); 2480 } 2481 2482 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2483 u16 offset, u16 count) 2484 { 2485 struct xps_dev_maps *dev_maps; 2486 bool active = false; 2487 int i, j; 2488 2489 dev_maps = xmap_dereference(dev->xps_maps[type]); 2490 if (!dev_maps) 2491 return; 2492 2493 for (j = 0; j < dev_maps->nr_ids; j++) 2494 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2495 if (!active) 2496 reset_xps_maps(dev, dev_maps, type); 2497 2498 if (type == XPS_CPUS) { 2499 for (i = offset + (count - 1); count--; i--) 2500 netdev_queue_numa_node_write( 2501 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2502 } 2503 } 2504 2505 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2506 u16 count) 2507 { 2508 if (!static_key_false(&xps_needed)) 2509 return; 2510 2511 cpus_read_lock(); 2512 mutex_lock(&xps_map_mutex); 2513 2514 if (static_key_false(&xps_rxqs_needed)) 2515 clean_xps_maps(dev, XPS_RXQS, offset, count); 2516 2517 clean_xps_maps(dev, XPS_CPUS, offset, count); 2518 2519 mutex_unlock(&xps_map_mutex); 2520 cpus_read_unlock(); 2521 } 2522 2523 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2524 { 2525 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2526 } 2527 2528 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2529 u16 index, bool is_rxqs_map) 2530 { 2531 struct xps_map *new_map; 2532 int alloc_len = XPS_MIN_MAP_ALLOC; 2533 int i, pos; 2534 2535 for (pos = 0; map && pos < map->len; pos++) { 2536 if (map->queues[pos] != index) 2537 continue; 2538 return map; 2539 } 2540 2541 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2542 if (map) { 2543 if (pos < map->alloc_len) 2544 return map; 2545 2546 alloc_len = map->alloc_len * 2; 2547 } 2548 2549 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2550 * map 2551 */ 2552 if (is_rxqs_map) 2553 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2554 else 2555 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2556 cpu_to_node(attr_index)); 2557 if (!new_map) 2558 return NULL; 2559 2560 for (i = 0; i < pos; i++) 2561 new_map->queues[i] = map->queues[i]; 2562 new_map->alloc_len = alloc_len; 2563 new_map->len = pos; 2564 2565 return new_map; 2566 } 2567 2568 /* Copy xps maps at a given index */ 2569 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2570 struct xps_dev_maps *new_dev_maps, int index, 2571 int tc, bool skip_tc) 2572 { 2573 int i, tci = index * dev_maps->num_tc; 2574 struct xps_map *map; 2575 2576 /* copy maps belonging to foreign traffic classes */ 2577 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2578 if (i == tc && skip_tc) 2579 continue; 2580 2581 /* fill in the new device map from the old device map */ 2582 map = xmap_dereference(dev_maps->attr_map[tci]); 2583 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2584 } 2585 } 2586 2587 /* Must be called under cpus_read_lock */ 2588 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2589 u16 index, enum xps_map_type type) 2590 { 2591 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2592 const unsigned long *online_mask = NULL; 2593 bool active = false, copy = false; 2594 int i, j, tci, numa_node_id = -2; 2595 int maps_sz, num_tc = 1, tc = 0; 2596 struct xps_map *map, *new_map; 2597 unsigned int nr_ids; 2598 2599 WARN_ON_ONCE(index >= dev->num_tx_queues); 2600 2601 if (dev->num_tc) { 2602 /* Do not allow XPS on subordinate device directly */ 2603 num_tc = dev->num_tc; 2604 if (num_tc < 0) 2605 return -EINVAL; 2606 2607 /* If queue belongs to subordinate dev use its map */ 2608 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2609 2610 tc = netdev_txq_to_tc(dev, index); 2611 if (tc < 0) 2612 return -EINVAL; 2613 } 2614 2615 mutex_lock(&xps_map_mutex); 2616 2617 dev_maps = xmap_dereference(dev->xps_maps[type]); 2618 if (type == XPS_RXQS) { 2619 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2620 nr_ids = dev->num_rx_queues; 2621 } else { 2622 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2623 if (num_possible_cpus() > 1) 2624 online_mask = cpumask_bits(cpu_online_mask); 2625 nr_ids = nr_cpu_ids; 2626 } 2627 2628 if (maps_sz < L1_CACHE_BYTES) 2629 maps_sz = L1_CACHE_BYTES; 2630 2631 /* The old dev_maps could be larger or smaller than the one we're 2632 * setting up now, as dev->num_tc or nr_ids could have been updated in 2633 * between. We could try to be smart, but let's be safe instead and only 2634 * copy foreign traffic classes if the two map sizes match. 2635 */ 2636 if (dev_maps && 2637 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2638 copy = true; 2639 2640 /* allocate memory for queue storage */ 2641 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2642 j < nr_ids;) { 2643 if (!new_dev_maps) { 2644 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2645 if (!new_dev_maps) { 2646 mutex_unlock(&xps_map_mutex); 2647 return -ENOMEM; 2648 } 2649 2650 new_dev_maps->nr_ids = nr_ids; 2651 new_dev_maps->num_tc = num_tc; 2652 } 2653 2654 tci = j * num_tc + tc; 2655 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2656 2657 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2658 if (!map) 2659 goto error; 2660 2661 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2662 } 2663 2664 if (!new_dev_maps) 2665 goto out_no_new_maps; 2666 2667 if (!dev_maps) { 2668 /* Increment static keys at most once per type */ 2669 static_key_slow_inc_cpuslocked(&xps_needed); 2670 if (type == XPS_RXQS) 2671 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2672 } 2673 2674 for (j = 0; j < nr_ids; j++) { 2675 bool skip_tc = false; 2676 2677 tci = j * num_tc + tc; 2678 if (netif_attr_test_mask(j, mask, nr_ids) && 2679 netif_attr_test_online(j, online_mask, nr_ids)) { 2680 /* add tx-queue to CPU/rx-queue maps */ 2681 int pos = 0; 2682 2683 skip_tc = true; 2684 2685 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2686 while ((pos < map->len) && (map->queues[pos] != index)) 2687 pos++; 2688 2689 if (pos == map->len) 2690 map->queues[map->len++] = index; 2691 #ifdef CONFIG_NUMA 2692 if (type == XPS_CPUS) { 2693 if (numa_node_id == -2) 2694 numa_node_id = cpu_to_node(j); 2695 else if (numa_node_id != cpu_to_node(j)) 2696 numa_node_id = -1; 2697 } 2698 #endif 2699 } 2700 2701 if (copy) 2702 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2703 skip_tc); 2704 } 2705 2706 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2707 2708 /* Cleanup old maps */ 2709 if (!dev_maps) 2710 goto out_no_old_maps; 2711 2712 for (j = 0; j < dev_maps->nr_ids; j++) { 2713 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2714 map = xmap_dereference(dev_maps->attr_map[tci]); 2715 if (!map) 2716 continue; 2717 2718 if (copy) { 2719 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2720 if (map == new_map) 2721 continue; 2722 } 2723 2724 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2725 kfree_rcu(map, rcu); 2726 } 2727 } 2728 2729 old_dev_maps = dev_maps; 2730 2731 out_no_old_maps: 2732 dev_maps = new_dev_maps; 2733 active = true; 2734 2735 out_no_new_maps: 2736 if (type == XPS_CPUS) 2737 /* update Tx queue numa node */ 2738 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2739 (numa_node_id >= 0) ? 2740 numa_node_id : NUMA_NO_NODE); 2741 2742 if (!dev_maps) 2743 goto out_no_maps; 2744 2745 /* removes tx-queue from unused CPUs/rx-queues */ 2746 for (j = 0; j < dev_maps->nr_ids; j++) { 2747 tci = j * dev_maps->num_tc; 2748 2749 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2750 if (i == tc && 2751 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2752 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2753 continue; 2754 2755 active |= remove_xps_queue(dev_maps, 2756 copy ? old_dev_maps : NULL, 2757 tci, index); 2758 } 2759 } 2760 2761 if (old_dev_maps) 2762 kfree_rcu(old_dev_maps, rcu); 2763 2764 /* free map if not active */ 2765 if (!active) 2766 reset_xps_maps(dev, dev_maps, type); 2767 2768 out_no_maps: 2769 mutex_unlock(&xps_map_mutex); 2770 2771 return 0; 2772 error: 2773 /* remove any maps that we added */ 2774 for (j = 0; j < nr_ids; j++) { 2775 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2776 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2777 map = copy ? 2778 xmap_dereference(dev_maps->attr_map[tci]) : 2779 NULL; 2780 if (new_map && new_map != map) 2781 kfree(new_map); 2782 } 2783 } 2784 2785 mutex_unlock(&xps_map_mutex); 2786 2787 kfree(new_dev_maps); 2788 return -ENOMEM; 2789 } 2790 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2791 2792 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2793 u16 index) 2794 { 2795 int ret; 2796 2797 cpus_read_lock(); 2798 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2799 cpus_read_unlock(); 2800 2801 return ret; 2802 } 2803 EXPORT_SYMBOL(netif_set_xps_queue); 2804 2805 #endif 2806 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2807 { 2808 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2809 2810 /* Unbind any subordinate channels */ 2811 while (txq-- != &dev->_tx[0]) { 2812 if (txq->sb_dev) 2813 netdev_unbind_sb_channel(dev, txq->sb_dev); 2814 } 2815 } 2816 2817 void netdev_reset_tc(struct net_device *dev) 2818 { 2819 #ifdef CONFIG_XPS 2820 netif_reset_xps_queues_gt(dev, 0); 2821 #endif 2822 netdev_unbind_all_sb_channels(dev); 2823 2824 /* Reset TC configuration of device */ 2825 dev->num_tc = 0; 2826 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2827 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2828 } 2829 EXPORT_SYMBOL(netdev_reset_tc); 2830 2831 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2832 { 2833 if (tc >= dev->num_tc) 2834 return -EINVAL; 2835 2836 #ifdef CONFIG_XPS 2837 netif_reset_xps_queues(dev, offset, count); 2838 #endif 2839 dev->tc_to_txq[tc].count = count; 2840 dev->tc_to_txq[tc].offset = offset; 2841 return 0; 2842 } 2843 EXPORT_SYMBOL(netdev_set_tc_queue); 2844 2845 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2846 { 2847 if (num_tc > TC_MAX_QUEUE) 2848 return -EINVAL; 2849 2850 #ifdef CONFIG_XPS 2851 netif_reset_xps_queues_gt(dev, 0); 2852 #endif 2853 netdev_unbind_all_sb_channels(dev); 2854 2855 dev->num_tc = num_tc; 2856 return 0; 2857 } 2858 EXPORT_SYMBOL(netdev_set_num_tc); 2859 2860 void netdev_unbind_sb_channel(struct net_device *dev, 2861 struct net_device *sb_dev) 2862 { 2863 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2864 2865 #ifdef CONFIG_XPS 2866 netif_reset_xps_queues_gt(sb_dev, 0); 2867 #endif 2868 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2869 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2870 2871 while (txq-- != &dev->_tx[0]) { 2872 if (txq->sb_dev == sb_dev) 2873 txq->sb_dev = NULL; 2874 } 2875 } 2876 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2877 2878 int netdev_bind_sb_channel_queue(struct net_device *dev, 2879 struct net_device *sb_dev, 2880 u8 tc, u16 count, u16 offset) 2881 { 2882 /* Make certain the sb_dev and dev are already configured */ 2883 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2884 return -EINVAL; 2885 2886 /* We cannot hand out queues we don't have */ 2887 if ((offset + count) > dev->real_num_tx_queues) 2888 return -EINVAL; 2889 2890 /* Record the mapping */ 2891 sb_dev->tc_to_txq[tc].count = count; 2892 sb_dev->tc_to_txq[tc].offset = offset; 2893 2894 /* Provide a way for Tx queue to find the tc_to_txq map or 2895 * XPS map for itself. 2896 */ 2897 while (count--) 2898 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2899 2900 return 0; 2901 } 2902 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2903 2904 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2905 { 2906 /* Do not use a multiqueue device to represent a subordinate channel */ 2907 if (netif_is_multiqueue(dev)) 2908 return -ENODEV; 2909 2910 /* We allow channels 1 - 32767 to be used for subordinate channels. 2911 * Channel 0 is meant to be "native" mode and used only to represent 2912 * the main root device. We allow writing 0 to reset the device back 2913 * to normal mode after being used as a subordinate channel. 2914 */ 2915 if (channel > S16_MAX) 2916 return -EINVAL; 2917 2918 dev->num_tc = -channel; 2919 2920 return 0; 2921 } 2922 EXPORT_SYMBOL(netdev_set_sb_channel); 2923 2924 /* 2925 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2926 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2927 */ 2928 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2929 { 2930 bool disabling; 2931 int rc; 2932 2933 disabling = txq < dev->real_num_tx_queues; 2934 2935 if (txq < 1 || txq > dev->num_tx_queues) 2936 return -EINVAL; 2937 2938 if (dev->reg_state == NETREG_REGISTERED || 2939 dev->reg_state == NETREG_UNREGISTERING) { 2940 ASSERT_RTNL(); 2941 2942 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2943 txq); 2944 if (rc) 2945 return rc; 2946 2947 if (dev->num_tc) 2948 netif_setup_tc(dev, txq); 2949 2950 dev_qdisc_change_real_num_tx(dev, txq); 2951 2952 dev->real_num_tx_queues = txq; 2953 2954 if (disabling) { 2955 synchronize_net(); 2956 qdisc_reset_all_tx_gt(dev, txq); 2957 #ifdef CONFIG_XPS 2958 netif_reset_xps_queues_gt(dev, txq); 2959 #endif 2960 } 2961 } else { 2962 dev->real_num_tx_queues = txq; 2963 } 2964 2965 return 0; 2966 } 2967 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2968 2969 #ifdef CONFIG_SYSFS 2970 /** 2971 * netif_set_real_num_rx_queues - set actual number of RX queues used 2972 * @dev: Network device 2973 * @rxq: Actual number of RX queues 2974 * 2975 * This must be called either with the rtnl_lock held or before 2976 * registration of the net device. Returns 0 on success, or a 2977 * negative error code. If called before registration, it always 2978 * succeeds. 2979 */ 2980 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2981 { 2982 int rc; 2983 2984 if (rxq < 1 || rxq > dev->num_rx_queues) 2985 return -EINVAL; 2986 2987 if (dev->reg_state == NETREG_REGISTERED) { 2988 ASSERT_RTNL(); 2989 2990 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2991 rxq); 2992 if (rc) 2993 return rc; 2994 } 2995 2996 dev->real_num_rx_queues = rxq; 2997 return 0; 2998 } 2999 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3000 #endif 3001 3002 /** 3003 * netif_set_real_num_queues - set actual number of RX and TX queues used 3004 * @dev: Network device 3005 * @txq: Actual number of TX queues 3006 * @rxq: Actual number of RX queues 3007 * 3008 * Set the real number of both TX and RX queues. 3009 * Does nothing if the number of queues is already correct. 3010 */ 3011 int netif_set_real_num_queues(struct net_device *dev, 3012 unsigned int txq, unsigned int rxq) 3013 { 3014 unsigned int old_rxq = dev->real_num_rx_queues; 3015 int err; 3016 3017 if (txq < 1 || txq > dev->num_tx_queues || 3018 rxq < 1 || rxq > dev->num_rx_queues) 3019 return -EINVAL; 3020 3021 /* Start from increases, so the error path only does decreases - 3022 * decreases can't fail. 3023 */ 3024 if (rxq > dev->real_num_rx_queues) { 3025 err = netif_set_real_num_rx_queues(dev, rxq); 3026 if (err) 3027 return err; 3028 } 3029 if (txq > dev->real_num_tx_queues) { 3030 err = netif_set_real_num_tx_queues(dev, txq); 3031 if (err) 3032 goto undo_rx; 3033 } 3034 if (rxq < dev->real_num_rx_queues) 3035 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3036 if (txq < dev->real_num_tx_queues) 3037 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3038 3039 return 0; 3040 undo_rx: 3041 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3042 return err; 3043 } 3044 EXPORT_SYMBOL(netif_set_real_num_queues); 3045 3046 /** 3047 * netif_set_tso_max_size() - set the max size of TSO frames supported 3048 * @dev: netdev to update 3049 * @size: max skb->len of a TSO frame 3050 * 3051 * Set the limit on the size of TSO super-frames the device can handle. 3052 * Unless explicitly set the stack will assume the value of 3053 * %GSO_LEGACY_MAX_SIZE. 3054 */ 3055 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3056 { 3057 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3058 if (size < READ_ONCE(dev->gso_max_size)) 3059 netif_set_gso_max_size(dev, size); 3060 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3061 netif_set_gso_ipv4_max_size(dev, size); 3062 } 3063 EXPORT_SYMBOL(netif_set_tso_max_size); 3064 3065 /** 3066 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3067 * @dev: netdev to update 3068 * @segs: max number of TCP segments 3069 * 3070 * Set the limit on the number of TCP segments the device can generate from 3071 * a single TSO super-frame. 3072 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3073 */ 3074 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3075 { 3076 dev->tso_max_segs = segs; 3077 if (segs < READ_ONCE(dev->gso_max_segs)) 3078 netif_set_gso_max_segs(dev, segs); 3079 } 3080 EXPORT_SYMBOL(netif_set_tso_max_segs); 3081 3082 /** 3083 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3084 * @to: netdev to update 3085 * @from: netdev from which to copy the limits 3086 */ 3087 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3088 { 3089 netif_set_tso_max_size(to, from->tso_max_size); 3090 netif_set_tso_max_segs(to, from->tso_max_segs); 3091 } 3092 EXPORT_SYMBOL(netif_inherit_tso_max); 3093 3094 /** 3095 * netif_get_num_default_rss_queues - default number of RSS queues 3096 * 3097 * Default value is the number of physical cores if there are only 1 or 2, or 3098 * divided by 2 if there are more. 3099 */ 3100 int netif_get_num_default_rss_queues(void) 3101 { 3102 cpumask_var_t cpus; 3103 int cpu, count = 0; 3104 3105 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3106 return 1; 3107 3108 cpumask_copy(cpus, cpu_online_mask); 3109 for_each_cpu(cpu, cpus) { 3110 ++count; 3111 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3112 } 3113 free_cpumask_var(cpus); 3114 3115 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3116 } 3117 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3118 3119 static void __netif_reschedule(struct Qdisc *q) 3120 { 3121 struct softnet_data *sd; 3122 unsigned long flags; 3123 3124 local_irq_save(flags); 3125 sd = this_cpu_ptr(&softnet_data); 3126 q->next_sched = NULL; 3127 *sd->output_queue_tailp = q; 3128 sd->output_queue_tailp = &q->next_sched; 3129 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3130 local_irq_restore(flags); 3131 } 3132 3133 void __netif_schedule(struct Qdisc *q) 3134 { 3135 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3136 __netif_reschedule(q); 3137 } 3138 EXPORT_SYMBOL(__netif_schedule); 3139 3140 struct dev_kfree_skb_cb { 3141 enum skb_drop_reason reason; 3142 }; 3143 3144 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3145 { 3146 return (struct dev_kfree_skb_cb *)skb->cb; 3147 } 3148 3149 void netif_schedule_queue(struct netdev_queue *txq) 3150 { 3151 rcu_read_lock(); 3152 if (!netif_xmit_stopped(txq)) { 3153 struct Qdisc *q = rcu_dereference(txq->qdisc); 3154 3155 __netif_schedule(q); 3156 } 3157 rcu_read_unlock(); 3158 } 3159 EXPORT_SYMBOL(netif_schedule_queue); 3160 3161 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3162 { 3163 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3164 struct Qdisc *q; 3165 3166 rcu_read_lock(); 3167 q = rcu_dereference(dev_queue->qdisc); 3168 __netif_schedule(q); 3169 rcu_read_unlock(); 3170 } 3171 } 3172 EXPORT_SYMBOL(netif_tx_wake_queue); 3173 3174 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3175 { 3176 unsigned long flags; 3177 3178 if (unlikely(!skb)) 3179 return; 3180 3181 if (likely(refcount_read(&skb->users) == 1)) { 3182 smp_rmb(); 3183 refcount_set(&skb->users, 0); 3184 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3185 return; 3186 } 3187 get_kfree_skb_cb(skb)->reason = reason; 3188 local_irq_save(flags); 3189 skb->next = __this_cpu_read(softnet_data.completion_queue); 3190 __this_cpu_write(softnet_data.completion_queue, skb); 3191 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3192 local_irq_restore(flags); 3193 } 3194 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3195 3196 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3197 { 3198 if (in_hardirq() || irqs_disabled()) 3199 dev_kfree_skb_irq_reason(skb, reason); 3200 else 3201 kfree_skb_reason(skb, reason); 3202 } 3203 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3204 3205 3206 /** 3207 * netif_device_detach - mark device as removed 3208 * @dev: network device 3209 * 3210 * Mark device as removed from system and therefore no longer available. 3211 */ 3212 void netif_device_detach(struct net_device *dev) 3213 { 3214 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3215 netif_running(dev)) { 3216 netif_tx_stop_all_queues(dev); 3217 } 3218 } 3219 EXPORT_SYMBOL(netif_device_detach); 3220 3221 /** 3222 * netif_device_attach - mark device as attached 3223 * @dev: network device 3224 * 3225 * Mark device as attached from system and restart if needed. 3226 */ 3227 void netif_device_attach(struct net_device *dev) 3228 { 3229 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3230 netif_running(dev)) { 3231 netif_tx_wake_all_queues(dev); 3232 __netdev_watchdog_up(dev); 3233 } 3234 } 3235 EXPORT_SYMBOL(netif_device_attach); 3236 3237 /* 3238 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3239 * to be used as a distribution range. 3240 */ 3241 static u16 skb_tx_hash(const struct net_device *dev, 3242 const struct net_device *sb_dev, 3243 struct sk_buff *skb) 3244 { 3245 u32 hash; 3246 u16 qoffset = 0; 3247 u16 qcount = dev->real_num_tx_queues; 3248 3249 if (dev->num_tc) { 3250 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3251 3252 qoffset = sb_dev->tc_to_txq[tc].offset; 3253 qcount = sb_dev->tc_to_txq[tc].count; 3254 if (unlikely(!qcount)) { 3255 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3256 sb_dev->name, qoffset, tc); 3257 qoffset = 0; 3258 qcount = dev->real_num_tx_queues; 3259 } 3260 } 3261 3262 if (skb_rx_queue_recorded(skb)) { 3263 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3264 hash = skb_get_rx_queue(skb); 3265 if (hash >= qoffset) 3266 hash -= qoffset; 3267 while (unlikely(hash >= qcount)) 3268 hash -= qcount; 3269 return hash + qoffset; 3270 } 3271 3272 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3273 } 3274 3275 void skb_warn_bad_offload(const struct sk_buff *skb) 3276 { 3277 static const netdev_features_t null_features; 3278 struct net_device *dev = skb->dev; 3279 const char *name = ""; 3280 3281 if (!net_ratelimit()) 3282 return; 3283 3284 if (dev) { 3285 if (dev->dev.parent) 3286 name = dev_driver_string(dev->dev.parent); 3287 else 3288 name = netdev_name(dev); 3289 } 3290 skb_dump(KERN_WARNING, skb, false); 3291 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3292 name, dev ? &dev->features : &null_features, 3293 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3294 } 3295 3296 /* 3297 * Invalidate hardware checksum when packet is to be mangled, and 3298 * complete checksum manually on outgoing path. 3299 */ 3300 int skb_checksum_help(struct sk_buff *skb) 3301 { 3302 __wsum csum; 3303 int ret = 0, offset; 3304 3305 if (skb->ip_summed == CHECKSUM_COMPLETE) 3306 goto out_set_summed; 3307 3308 if (unlikely(skb_is_gso(skb))) { 3309 skb_warn_bad_offload(skb); 3310 return -EINVAL; 3311 } 3312 3313 /* Before computing a checksum, we should make sure no frag could 3314 * be modified by an external entity : checksum could be wrong. 3315 */ 3316 if (skb_has_shared_frag(skb)) { 3317 ret = __skb_linearize(skb); 3318 if (ret) 3319 goto out; 3320 } 3321 3322 offset = skb_checksum_start_offset(skb); 3323 ret = -EINVAL; 3324 if (unlikely(offset >= skb_headlen(skb))) { 3325 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3326 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3327 offset, skb_headlen(skb)); 3328 goto out; 3329 } 3330 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3331 3332 offset += skb->csum_offset; 3333 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3334 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3335 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3336 offset + sizeof(__sum16), skb_headlen(skb)); 3337 goto out; 3338 } 3339 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3340 if (ret) 3341 goto out; 3342 3343 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3344 out_set_summed: 3345 skb->ip_summed = CHECKSUM_NONE; 3346 out: 3347 return ret; 3348 } 3349 EXPORT_SYMBOL(skb_checksum_help); 3350 3351 int skb_crc32c_csum_help(struct sk_buff *skb) 3352 { 3353 __le32 crc32c_csum; 3354 int ret = 0, offset, start; 3355 3356 if (skb->ip_summed != CHECKSUM_PARTIAL) 3357 goto out; 3358 3359 if (unlikely(skb_is_gso(skb))) 3360 goto out; 3361 3362 /* Before computing a checksum, we should make sure no frag could 3363 * be modified by an external entity : checksum could be wrong. 3364 */ 3365 if (unlikely(skb_has_shared_frag(skb))) { 3366 ret = __skb_linearize(skb); 3367 if (ret) 3368 goto out; 3369 } 3370 start = skb_checksum_start_offset(skb); 3371 offset = start + offsetof(struct sctphdr, checksum); 3372 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3373 ret = -EINVAL; 3374 goto out; 3375 } 3376 3377 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3378 if (ret) 3379 goto out; 3380 3381 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3382 skb->len - start, ~(__u32)0, 3383 crc32c_csum_stub)); 3384 *(__le32 *)(skb->data + offset) = crc32c_csum; 3385 skb_reset_csum_not_inet(skb); 3386 out: 3387 return ret; 3388 } 3389 3390 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3391 { 3392 __be16 type = skb->protocol; 3393 3394 /* Tunnel gso handlers can set protocol to ethernet. */ 3395 if (type == htons(ETH_P_TEB)) { 3396 struct ethhdr *eth; 3397 3398 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3399 return 0; 3400 3401 eth = (struct ethhdr *)skb->data; 3402 type = eth->h_proto; 3403 } 3404 3405 return vlan_get_protocol_and_depth(skb, type, depth); 3406 } 3407 3408 3409 /* Take action when hardware reception checksum errors are detected. */ 3410 #ifdef CONFIG_BUG 3411 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3412 { 3413 netdev_err(dev, "hw csum failure\n"); 3414 skb_dump(KERN_ERR, skb, true); 3415 dump_stack(); 3416 } 3417 3418 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3419 { 3420 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3421 } 3422 EXPORT_SYMBOL(netdev_rx_csum_fault); 3423 #endif 3424 3425 /* XXX: check that highmem exists at all on the given machine. */ 3426 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3427 { 3428 #ifdef CONFIG_HIGHMEM 3429 int i; 3430 3431 if (!(dev->features & NETIF_F_HIGHDMA)) { 3432 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3433 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3434 3435 if (PageHighMem(skb_frag_page(frag))) 3436 return 1; 3437 } 3438 } 3439 #endif 3440 return 0; 3441 } 3442 3443 /* If MPLS offload request, verify we are testing hardware MPLS features 3444 * instead of standard features for the netdev. 3445 */ 3446 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3447 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3448 netdev_features_t features, 3449 __be16 type) 3450 { 3451 if (eth_p_mpls(type)) 3452 features &= skb->dev->mpls_features; 3453 3454 return features; 3455 } 3456 #else 3457 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3458 netdev_features_t features, 3459 __be16 type) 3460 { 3461 return features; 3462 } 3463 #endif 3464 3465 static netdev_features_t harmonize_features(struct sk_buff *skb, 3466 netdev_features_t features) 3467 { 3468 __be16 type; 3469 3470 type = skb_network_protocol(skb, NULL); 3471 features = net_mpls_features(skb, features, type); 3472 3473 if (skb->ip_summed != CHECKSUM_NONE && 3474 !can_checksum_protocol(features, type)) { 3475 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3476 } 3477 if (illegal_highdma(skb->dev, skb)) 3478 features &= ~NETIF_F_SG; 3479 3480 return features; 3481 } 3482 3483 netdev_features_t passthru_features_check(struct sk_buff *skb, 3484 struct net_device *dev, 3485 netdev_features_t features) 3486 { 3487 return features; 3488 } 3489 EXPORT_SYMBOL(passthru_features_check); 3490 3491 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3492 struct net_device *dev, 3493 netdev_features_t features) 3494 { 3495 return vlan_features_check(skb, features); 3496 } 3497 3498 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3499 struct net_device *dev, 3500 netdev_features_t features) 3501 { 3502 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3503 3504 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3505 return features & ~NETIF_F_GSO_MASK; 3506 3507 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3508 return features & ~NETIF_F_GSO_MASK; 3509 3510 if (!skb_shinfo(skb)->gso_type) { 3511 skb_warn_bad_offload(skb); 3512 return features & ~NETIF_F_GSO_MASK; 3513 } 3514 3515 /* Support for GSO partial features requires software 3516 * intervention before we can actually process the packets 3517 * so we need to strip support for any partial features now 3518 * and we can pull them back in after we have partially 3519 * segmented the frame. 3520 */ 3521 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3522 features &= ~dev->gso_partial_features; 3523 3524 /* Make sure to clear the IPv4 ID mangling feature if the 3525 * IPv4 header has the potential to be fragmented. 3526 */ 3527 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3528 struct iphdr *iph = skb->encapsulation ? 3529 inner_ip_hdr(skb) : ip_hdr(skb); 3530 3531 if (!(iph->frag_off & htons(IP_DF))) 3532 features &= ~NETIF_F_TSO_MANGLEID; 3533 } 3534 3535 return features; 3536 } 3537 3538 netdev_features_t netif_skb_features(struct sk_buff *skb) 3539 { 3540 struct net_device *dev = skb->dev; 3541 netdev_features_t features = dev->features; 3542 3543 if (skb_is_gso(skb)) 3544 features = gso_features_check(skb, dev, features); 3545 3546 /* If encapsulation offload request, verify we are testing 3547 * hardware encapsulation features instead of standard 3548 * features for the netdev 3549 */ 3550 if (skb->encapsulation) 3551 features &= dev->hw_enc_features; 3552 3553 if (skb_vlan_tagged(skb)) 3554 features = netdev_intersect_features(features, 3555 dev->vlan_features | 3556 NETIF_F_HW_VLAN_CTAG_TX | 3557 NETIF_F_HW_VLAN_STAG_TX); 3558 3559 if (dev->netdev_ops->ndo_features_check) 3560 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3561 features); 3562 else 3563 features &= dflt_features_check(skb, dev, features); 3564 3565 return harmonize_features(skb, features); 3566 } 3567 EXPORT_SYMBOL(netif_skb_features); 3568 3569 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3570 struct netdev_queue *txq, bool more) 3571 { 3572 unsigned int len; 3573 int rc; 3574 3575 if (dev_nit_active(dev)) 3576 dev_queue_xmit_nit(skb, dev); 3577 3578 len = skb->len; 3579 trace_net_dev_start_xmit(skb, dev); 3580 rc = netdev_start_xmit(skb, dev, txq, more); 3581 trace_net_dev_xmit(skb, rc, dev, len); 3582 3583 return rc; 3584 } 3585 3586 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3587 struct netdev_queue *txq, int *ret) 3588 { 3589 struct sk_buff *skb = first; 3590 int rc = NETDEV_TX_OK; 3591 3592 while (skb) { 3593 struct sk_buff *next = skb->next; 3594 3595 skb_mark_not_on_list(skb); 3596 rc = xmit_one(skb, dev, txq, next != NULL); 3597 if (unlikely(!dev_xmit_complete(rc))) { 3598 skb->next = next; 3599 goto out; 3600 } 3601 3602 skb = next; 3603 if (netif_tx_queue_stopped(txq) && skb) { 3604 rc = NETDEV_TX_BUSY; 3605 break; 3606 } 3607 } 3608 3609 out: 3610 *ret = rc; 3611 return skb; 3612 } 3613 3614 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3615 netdev_features_t features) 3616 { 3617 if (skb_vlan_tag_present(skb) && 3618 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3619 skb = __vlan_hwaccel_push_inside(skb); 3620 return skb; 3621 } 3622 3623 int skb_csum_hwoffload_help(struct sk_buff *skb, 3624 const netdev_features_t features) 3625 { 3626 if (unlikely(skb_csum_is_sctp(skb))) 3627 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3628 skb_crc32c_csum_help(skb); 3629 3630 if (features & NETIF_F_HW_CSUM) 3631 return 0; 3632 3633 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3634 switch (skb->csum_offset) { 3635 case offsetof(struct tcphdr, check): 3636 case offsetof(struct udphdr, check): 3637 return 0; 3638 } 3639 } 3640 3641 return skb_checksum_help(skb); 3642 } 3643 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3644 3645 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3646 { 3647 netdev_features_t features; 3648 3649 features = netif_skb_features(skb); 3650 skb = validate_xmit_vlan(skb, features); 3651 if (unlikely(!skb)) 3652 goto out_null; 3653 3654 skb = sk_validate_xmit_skb(skb, dev); 3655 if (unlikely(!skb)) 3656 goto out_null; 3657 3658 if (netif_needs_gso(skb, features)) { 3659 struct sk_buff *segs; 3660 3661 segs = skb_gso_segment(skb, features); 3662 if (IS_ERR(segs)) { 3663 goto out_kfree_skb; 3664 } else if (segs) { 3665 consume_skb(skb); 3666 skb = segs; 3667 } 3668 } else { 3669 if (skb_needs_linearize(skb, features) && 3670 __skb_linearize(skb)) 3671 goto out_kfree_skb; 3672 3673 /* If packet is not checksummed and device does not 3674 * support checksumming for this protocol, complete 3675 * checksumming here. 3676 */ 3677 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3678 if (skb->encapsulation) 3679 skb_set_inner_transport_header(skb, 3680 skb_checksum_start_offset(skb)); 3681 else 3682 skb_set_transport_header(skb, 3683 skb_checksum_start_offset(skb)); 3684 if (skb_csum_hwoffload_help(skb, features)) 3685 goto out_kfree_skb; 3686 } 3687 } 3688 3689 skb = validate_xmit_xfrm(skb, features, again); 3690 3691 return skb; 3692 3693 out_kfree_skb: 3694 kfree_skb(skb); 3695 out_null: 3696 dev_core_stats_tx_dropped_inc(dev); 3697 return NULL; 3698 } 3699 3700 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3701 { 3702 struct sk_buff *next, *head = NULL, *tail; 3703 3704 for (; skb != NULL; skb = next) { 3705 next = skb->next; 3706 skb_mark_not_on_list(skb); 3707 3708 /* in case skb wont be segmented, point to itself */ 3709 skb->prev = skb; 3710 3711 skb = validate_xmit_skb(skb, dev, again); 3712 if (!skb) 3713 continue; 3714 3715 if (!head) 3716 head = skb; 3717 else 3718 tail->next = skb; 3719 /* If skb was segmented, skb->prev points to 3720 * the last segment. If not, it still contains skb. 3721 */ 3722 tail = skb->prev; 3723 } 3724 return head; 3725 } 3726 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3727 3728 static void qdisc_pkt_len_init(struct sk_buff *skb) 3729 { 3730 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3731 3732 qdisc_skb_cb(skb)->pkt_len = skb->len; 3733 3734 /* To get more precise estimation of bytes sent on wire, 3735 * we add to pkt_len the headers size of all segments 3736 */ 3737 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3738 u16 gso_segs = shinfo->gso_segs; 3739 unsigned int hdr_len; 3740 3741 /* mac layer + network layer */ 3742 hdr_len = skb_transport_offset(skb); 3743 3744 /* + transport layer */ 3745 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3746 const struct tcphdr *th; 3747 struct tcphdr _tcphdr; 3748 3749 th = skb_header_pointer(skb, hdr_len, 3750 sizeof(_tcphdr), &_tcphdr); 3751 if (likely(th)) 3752 hdr_len += __tcp_hdrlen(th); 3753 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 3754 struct udphdr _udphdr; 3755 3756 if (skb_header_pointer(skb, hdr_len, 3757 sizeof(_udphdr), &_udphdr)) 3758 hdr_len += sizeof(struct udphdr); 3759 } 3760 3761 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 3762 int payload = skb->len - hdr_len; 3763 3764 /* Malicious packet. */ 3765 if (payload <= 0) 3766 return; 3767 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 3768 } 3769 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3770 } 3771 } 3772 3773 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3774 struct sk_buff **to_free, 3775 struct netdev_queue *txq) 3776 { 3777 int rc; 3778 3779 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3780 if (rc == NET_XMIT_SUCCESS) 3781 trace_qdisc_enqueue(q, txq, skb); 3782 return rc; 3783 } 3784 3785 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3786 struct net_device *dev, 3787 struct netdev_queue *txq) 3788 { 3789 spinlock_t *root_lock = qdisc_lock(q); 3790 struct sk_buff *to_free = NULL; 3791 bool contended; 3792 int rc; 3793 3794 qdisc_calculate_pkt_len(skb, q); 3795 3796 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 3797 3798 if (q->flags & TCQ_F_NOLOCK) { 3799 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3800 qdisc_run_begin(q)) { 3801 /* Retest nolock_qdisc_is_empty() within the protection 3802 * of q->seqlock to protect from racing with requeuing. 3803 */ 3804 if (unlikely(!nolock_qdisc_is_empty(q))) { 3805 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3806 __qdisc_run(q); 3807 qdisc_run_end(q); 3808 3809 goto no_lock_out; 3810 } 3811 3812 qdisc_bstats_cpu_update(q, skb); 3813 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3814 !nolock_qdisc_is_empty(q)) 3815 __qdisc_run(q); 3816 3817 qdisc_run_end(q); 3818 return NET_XMIT_SUCCESS; 3819 } 3820 3821 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3822 qdisc_run(q); 3823 3824 no_lock_out: 3825 if (unlikely(to_free)) 3826 kfree_skb_list_reason(to_free, 3827 tcf_get_drop_reason(to_free)); 3828 return rc; 3829 } 3830 3831 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 3832 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 3833 return NET_XMIT_DROP; 3834 } 3835 /* 3836 * Heuristic to force contended enqueues to serialize on a 3837 * separate lock before trying to get qdisc main lock. 3838 * This permits qdisc->running owner to get the lock more 3839 * often and dequeue packets faster. 3840 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3841 * and then other tasks will only enqueue packets. The packets will be 3842 * sent after the qdisc owner is scheduled again. To prevent this 3843 * scenario the task always serialize on the lock. 3844 */ 3845 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3846 if (unlikely(contended)) 3847 spin_lock(&q->busylock); 3848 3849 spin_lock(root_lock); 3850 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3851 __qdisc_drop(skb, &to_free); 3852 rc = NET_XMIT_DROP; 3853 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3854 qdisc_run_begin(q)) { 3855 /* 3856 * This is a work-conserving queue; there are no old skbs 3857 * waiting to be sent out; and the qdisc is not running - 3858 * xmit the skb directly. 3859 */ 3860 3861 qdisc_bstats_update(q, skb); 3862 3863 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3864 if (unlikely(contended)) { 3865 spin_unlock(&q->busylock); 3866 contended = false; 3867 } 3868 __qdisc_run(q); 3869 } 3870 3871 qdisc_run_end(q); 3872 rc = NET_XMIT_SUCCESS; 3873 } else { 3874 WRITE_ONCE(q->owner, smp_processor_id()); 3875 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3876 WRITE_ONCE(q->owner, -1); 3877 if (qdisc_run_begin(q)) { 3878 if (unlikely(contended)) { 3879 spin_unlock(&q->busylock); 3880 contended = false; 3881 } 3882 __qdisc_run(q); 3883 qdisc_run_end(q); 3884 } 3885 } 3886 spin_unlock(root_lock); 3887 if (unlikely(to_free)) 3888 kfree_skb_list_reason(to_free, 3889 tcf_get_drop_reason(to_free)); 3890 if (unlikely(contended)) 3891 spin_unlock(&q->busylock); 3892 return rc; 3893 } 3894 3895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3896 static void skb_update_prio(struct sk_buff *skb) 3897 { 3898 const struct netprio_map *map; 3899 const struct sock *sk; 3900 unsigned int prioidx; 3901 3902 if (skb->priority) 3903 return; 3904 map = rcu_dereference_bh(skb->dev->priomap); 3905 if (!map) 3906 return; 3907 sk = skb_to_full_sk(skb); 3908 if (!sk) 3909 return; 3910 3911 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3912 3913 if (prioidx < map->priomap_len) 3914 skb->priority = map->priomap[prioidx]; 3915 } 3916 #else 3917 #define skb_update_prio(skb) 3918 #endif 3919 3920 /** 3921 * dev_loopback_xmit - loop back @skb 3922 * @net: network namespace this loopback is happening in 3923 * @sk: sk needed to be a netfilter okfn 3924 * @skb: buffer to transmit 3925 */ 3926 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3927 { 3928 skb_reset_mac_header(skb); 3929 __skb_pull(skb, skb_network_offset(skb)); 3930 skb->pkt_type = PACKET_LOOPBACK; 3931 if (skb->ip_summed == CHECKSUM_NONE) 3932 skb->ip_summed = CHECKSUM_UNNECESSARY; 3933 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3934 skb_dst_force(skb); 3935 netif_rx(skb); 3936 return 0; 3937 } 3938 EXPORT_SYMBOL(dev_loopback_xmit); 3939 3940 #ifdef CONFIG_NET_EGRESS 3941 static struct netdev_queue * 3942 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3943 { 3944 int qm = skb_get_queue_mapping(skb); 3945 3946 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3947 } 3948 3949 #ifndef CONFIG_PREEMPT_RT 3950 static bool netdev_xmit_txqueue_skipped(void) 3951 { 3952 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3953 } 3954 3955 void netdev_xmit_skip_txqueue(bool skip) 3956 { 3957 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3958 } 3959 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3960 3961 #else 3962 static bool netdev_xmit_txqueue_skipped(void) 3963 { 3964 return current->net_xmit.skip_txqueue; 3965 } 3966 3967 void netdev_xmit_skip_txqueue(bool skip) 3968 { 3969 current->net_xmit.skip_txqueue = skip; 3970 } 3971 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3972 #endif 3973 #endif /* CONFIG_NET_EGRESS */ 3974 3975 #ifdef CONFIG_NET_XGRESS 3976 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 3977 enum skb_drop_reason *drop_reason) 3978 { 3979 int ret = TC_ACT_UNSPEC; 3980 #ifdef CONFIG_NET_CLS_ACT 3981 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3982 struct tcf_result res; 3983 3984 if (!miniq) 3985 return ret; 3986 3987 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) { 3988 if (tcf_block_bypass_sw(miniq->block)) 3989 return ret; 3990 } 3991 3992 tc_skb_cb(skb)->mru = 0; 3993 tc_skb_cb(skb)->post_ct = false; 3994 tcf_set_drop_reason(skb, *drop_reason); 3995 3996 mini_qdisc_bstats_cpu_update(miniq, skb); 3997 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 3998 /* Only tcf related quirks below. */ 3999 switch (ret) { 4000 case TC_ACT_SHOT: 4001 *drop_reason = tcf_get_drop_reason(skb); 4002 mini_qdisc_qstats_cpu_drop(miniq); 4003 break; 4004 case TC_ACT_OK: 4005 case TC_ACT_RECLASSIFY: 4006 skb->tc_index = TC_H_MIN(res.classid); 4007 break; 4008 } 4009 #endif /* CONFIG_NET_CLS_ACT */ 4010 return ret; 4011 } 4012 4013 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4014 4015 void tcx_inc(void) 4016 { 4017 static_branch_inc(&tcx_needed_key); 4018 } 4019 4020 void tcx_dec(void) 4021 { 4022 static_branch_dec(&tcx_needed_key); 4023 } 4024 4025 static __always_inline enum tcx_action_base 4026 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4027 const bool needs_mac) 4028 { 4029 const struct bpf_mprog_fp *fp; 4030 const struct bpf_prog *prog; 4031 int ret = TCX_NEXT; 4032 4033 if (needs_mac) 4034 __skb_push(skb, skb->mac_len); 4035 bpf_mprog_foreach_prog(entry, fp, prog) { 4036 bpf_compute_data_pointers(skb); 4037 ret = bpf_prog_run(prog, skb); 4038 if (ret != TCX_NEXT) 4039 break; 4040 } 4041 if (needs_mac) 4042 __skb_pull(skb, skb->mac_len); 4043 return tcx_action_code(skb, ret); 4044 } 4045 4046 static __always_inline struct sk_buff * 4047 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4048 struct net_device *orig_dev, bool *another) 4049 { 4050 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4051 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4052 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4053 int sch_ret; 4054 4055 if (!entry) 4056 return skb; 4057 4058 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4059 if (*pt_prev) { 4060 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4061 *pt_prev = NULL; 4062 } 4063 4064 qdisc_skb_cb(skb)->pkt_len = skb->len; 4065 tcx_set_ingress(skb, true); 4066 4067 if (static_branch_unlikely(&tcx_needed_key)) { 4068 sch_ret = tcx_run(entry, skb, true); 4069 if (sch_ret != TC_ACT_UNSPEC) 4070 goto ingress_verdict; 4071 } 4072 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4073 ingress_verdict: 4074 switch (sch_ret) { 4075 case TC_ACT_REDIRECT: 4076 /* skb_mac_header check was done by BPF, so we can safely 4077 * push the L2 header back before redirecting to another 4078 * netdev. 4079 */ 4080 __skb_push(skb, skb->mac_len); 4081 if (skb_do_redirect(skb) == -EAGAIN) { 4082 __skb_pull(skb, skb->mac_len); 4083 *another = true; 4084 break; 4085 } 4086 *ret = NET_RX_SUCCESS; 4087 bpf_net_ctx_clear(bpf_net_ctx); 4088 return NULL; 4089 case TC_ACT_SHOT: 4090 kfree_skb_reason(skb, drop_reason); 4091 *ret = NET_RX_DROP; 4092 bpf_net_ctx_clear(bpf_net_ctx); 4093 return NULL; 4094 /* used by tc_run */ 4095 case TC_ACT_STOLEN: 4096 case TC_ACT_QUEUED: 4097 case TC_ACT_TRAP: 4098 consume_skb(skb); 4099 fallthrough; 4100 case TC_ACT_CONSUMED: 4101 *ret = NET_RX_SUCCESS; 4102 bpf_net_ctx_clear(bpf_net_ctx); 4103 return NULL; 4104 } 4105 bpf_net_ctx_clear(bpf_net_ctx); 4106 4107 return skb; 4108 } 4109 4110 static __always_inline struct sk_buff * 4111 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4112 { 4113 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4114 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4115 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4116 int sch_ret; 4117 4118 if (!entry) 4119 return skb; 4120 4121 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4122 4123 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4124 * already set by the caller. 4125 */ 4126 if (static_branch_unlikely(&tcx_needed_key)) { 4127 sch_ret = tcx_run(entry, skb, false); 4128 if (sch_ret != TC_ACT_UNSPEC) 4129 goto egress_verdict; 4130 } 4131 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4132 egress_verdict: 4133 switch (sch_ret) { 4134 case TC_ACT_REDIRECT: 4135 /* No need to push/pop skb's mac_header here on egress! */ 4136 skb_do_redirect(skb); 4137 *ret = NET_XMIT_SUCCESS; 4138 bpf_net_ctx_clear(bpf_net_ctx); 4139 return NULL; 4140 case TC_ACT_SHOT: 4141 kfree_skb_reason(skb, drop_reason); 4142 *ret = NET_XMIT_DROP; 4143 bpf_net_ctx_clear(bpf_net_ctx); 4144 return NULL; 4145 /* used by tc_run */ 4146 case TC_ACT_STOLEN: 4147 case TC_ACT_QUEUED: 4148 case TC_ACT_TRAP: 4149 consume_skb(skb); 4150 fallthrough; 4151 case TC_ACT_CONSUMED: 4152 *ret = NET_XMIT_SUCCESS; 4153 bpf_net_ctx_clear(bpf_net_ctx); 4154 return NULL; 4155 } 4156 bpf_net_ctx_clear(bpf_net_ctx); 4157 4158 return skb; 4159 } 4160 #else 4161 static __always_inline struct sk_buff * 4162 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4163 struct net_device *orig_dev, bool *another) 4164 { 4165 return skb; 4166 } 4167 4168 static __always_inline struct sk_buff * 4169 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4170 { 4171 return skb; 4172 } 4173 #endif /* CONFIG_NET_XGRESS */ 4174 4175 #ifdef CONFIG_XPS 4176 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4177 struct xps_dev_maps *dev_maps, unsigned int tci) 4178 { 4179 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4180 struct xps_map *map; 4181 int queue_index = -1; 4182 4183 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4184 return queue_index; 4185 4186 tci *= dev_maps->num_tc; 4187 tci += tc; 4188 4189 map = rcu_dereference(dev_maps->attr_map[tci]); 4190 if (map) { 4191 if (map->len == 1) 4192 queue_index = map->queues[0]; 4193 else 4194 queue_index = map->queues[reciprocal_scale( 4195 skb_get_hash(skb), map->len)]; 4196 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4197 queue_index = -1; 4198 } 4199 return queue_index; 4200 } 4201 #endif 4202 4203 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4204 struct sk_buff *skb) 4205 { 4206 #ifdef CONFIG_XPS 4207 struct xps_dev_maps *dev_maps; 4208 struct sock *sk = skb->sk; 4209 int queue_index = -1; 4210 4211 if (!static_key_false(&xps_needed)) 4212 return -1; 4213 4214 rcu_read_lock(); 4215 if (!static_key_false(&xps_rxqs_needed)) 4216 goto get_cpus_map; 4217 4218 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4219 if (dev_maps) { 4220 int tci = sk_rx_queue_get(sk); 4221 4222 if (tci >= 0) 4223 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4224 tci); 4225 } 4226 4227 get_cpus_map: 4228 if (queue_index < 0) { 4229 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4230 if (dev_maps) { 4231 unsigned int tci = skb->sender_cpu - 1; 4232 4233 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4234 tci); 4235 } 4236 } 4237 rcu_read_unlock(); 4238 4239 return queue_index; 4240 #else 4241 return -1; 4242 #endif 4243 } 4244 4245 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4246 struct net_device *sb_dev) 4247 { 4248 return 0; 4249 } 4250 EXPORT_SYMBOL(dev_pick_tx_zero); 4251 4252 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4253 struct net_device *sb_dev) 4254 { 4255 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4256 } 4257 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4258 4259 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4260 struct net_device *sb_dev) 4261 { 4262 struct sock *sk = skb->sk; 4263 int queue_index = sk_tx_queue_get(sk); 4264 4265 sb_dev = sb_dev ? : dev; 4266 4267 if (queue_index < 0 || skb->ooo_okay || 4268 queue_index >= dev->real_num_tx_queues) { 4269 int new_index = get_xps_queue(dev, sb_dev, skb); 4270 4271 if (new_index < 0) 4272 new_index = skb_tx_hash(dev, sb_dev, skb); 4273 4274 if (queue_index != new_index && sk && 4275 sk_fullsock(sk) && 4276 rcu_access_pointer(sk->sk_dst_cache)) 4277 sk_tx_queue_set(sk, new_index); 4278 4279 queue_index = new_index; 4280 } 4281 4282 return queue_index; 4283 } 4284 EXPORT_SYMBOL(netdev_pick_tx); 4285 4286 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4287 struct sk_buff *skb, 4288 struct net_device *sb_dev) 4289 { 4290 int queue_index = 0; 4291 4292 #ifdef CONFIG_XPS 4293 u32 sender_cpu = skb->sender_cpu - 1; 4294 4295 if (sender_cpu >= (u32)NR_CPUS) 4296 skb->sender_cpu = raw_smp_processor_id() + 1; 4297 #endif 4298 4299 if (dev->real_num_tx_queues != 1) { 4300 const struct net_device_ops *ops = dev->netdev_ops; 4301 4302 if (ops->ndo_select_queue) 4303 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4304 else 4305 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4306 4307 queue_index = netdev_cap_txqueue(dev, queue_index); 4308 } 4309 4310 skb_set_queue_mapping(skb, queue_index); 4311 return netdev_get_tx_queue(dev, queue_index); 4312 } 4313 4314 /** 4315 * __dev_queue_xmit() - transmit a buffer 4316 * @skb: buffer to transmit 4317 * @sb_dev: suboordinate device used for L2 forwarding offload 4318 * 4319 * Queue a buffer for transmission to a network device. The caller must 4320 * have set the device and priority and built the buffer before calling 4321 * this function. The function can be called from an interrupt. 4322 * 4323 * When calling this method, interrupts MUST be enabled. This is because 4324 * the BH enable code must have IRQs enabled so that it will not deadlock. 4325 * 4326 * Regardless of the return value, the skb is consumed, so it is currently 4327 * difficult to retry a send to this method. (You can bump the ref count 4328 * before sending to hold a reference for retry if you are careful.) 4329 * 4330 * Return: 4331 * * 0 - buffer successfully transmitted 4332 * * positive qdisc return code - NET_XMIT_DROP etc. 4333 * * negative errno - other errors 4334 */ 4335 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4336 { 4337 struct net_device *dev = skb->dev; 4338 struct netdev_queue *txq = NULL; 4339 struct Qdisc *q; 4340 int rc = -ENOMEM; 4341 bool again = false; 4342 4343 skb_reset_mac_header(skb); 4344 skb_assert_len(skb); 4345 4346 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4347 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4348 4349 /* Disable soft irqs for various locks below. Also 4350 * stops preemption for RCU. 4351 */ 4352 rcu_read_lock_bh(); 4353 4354 skb_update_prio(skb); 4355 4356 qdisc_pkt_len_init(skb); 4357 tcx_set_ingress(skb, false); 4358 #ifdef CONFIG_NET_EGRESS 4359 if (static_branch_unlikely(&egress_needed_key)) { 4360 if (nf_hook_egress_active()) { 4361 skb = nf_hook_egress(skb, &rc, dev); 4362 if (!skb) 4363 goto out; 4364 } 4365 4366 netdev_xmit_skip_txqueue(false); 4367 4368 nf_skip_egress(skb, true); 4369 skb = sch_handle_egress(skb, &rc, dev); 4370 if (!skb) 4371 goto out; 4372 nf_skip_egress(skb, false); 4373 4374 if (netdev_xmit_txqueue_skipped()) 4375 txq = netdev_tx_queue_mapping(dev, skb); 4376 } 4377 #endif 4378 /* If device/qdisc don't need skb->dst, release it right now while 4379 * its hot in this cpu cache. 4380 */ 4381 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4382 skb_dst_drop(skb); 4383 else 4384 skb_dst_force(skb); 4385 4386 if (!txq) 4387 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4388 4389 q = rcu_dereference_bh(txq->qdisc); 4390 4391 trace_net_dev_queue(skb); 4392 if (q->enqueue) { 4393 rc = __dev_xmit_skb(skb, q, dev, txq); 4394 goto out; 4395 } 4396 4397 /* The device has no queue. Common case for software devices: 4398 * loopback, all the sorts of tunnels... 4399 4400 * Really, it is unlikely that netif_tx_lock protection is necessary 4401 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4402 * counters.) 4403 * However, it is possible, that they rely on protection 4404 * made by us here. 4405 4406 * Check this and shot the lock. It is not prone from deadlocks. 4407 *Either shot noqueue qdisc, it is even simpler 8) 4408 */ 4409 if (dev->flags & IFF_UP) { 4410 int cpu = smp_processor_id(); /* ok because BHs are off */ 4411 4412 /* Other cpus might concurrently change txq->xmit_lock_owner 4413 * to -1 or to their cpu id, but not to our id. 4414 */ 4415 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4416 if (dev_xmit_recursion()) 4417 goto recursion_alert; 4418 4419 skb = validate_xmit_skb(skb, dev, &again); 4420 if (!skb) 4421 goto out; 4422 4423 HARD_TX_LOCK(dev, txq, cpu); 4424 4425 if (!netif_xmit_stopped(txq)) { 4426 dev_xmit_recursion_inc(); 4427 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4428 dev_xmit_recursion_dec(); 4429 if (dev_xmit_complete(rc)) { 4430 HARD_TX_UNLOCK(dev, txq); 4431 goto out; 4432 } 4433 } 4434 HARD_TX_UNLOCK(dev, txq); 4435 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4436 dev->name); 4437 } else { 4438 /* Recursion is detected! It is possible, 4439 * unfortunately 4440 */ 4441 recursion_alert: 4442 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4443 dev->name); 4444 } 4445 } 4446 4447 rc = -ENETDOWN; 4448 rcu_read_unlock_bh(); 4449 4450 dev_core_stats_tx_dropped_inc(dev); 4451 kfree_skb_list(skb); 4452 return rc; 4453 out: 4454 rcu_read_unlock_bh(); 4455 return rc; 4456 } 4457 EXPORT_SYMBOL(__dev_queue_xmit); 4458 4459 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4460 { 4461 struct net_device *dev = skb->dev; 4462 struct sk_buff *orig_skb = skb; 4463 struct netdev_queue *txq; 4464 int ret = NETDEV_TX_BUSY; 4465 bool again = false; 4466 4467 if (unlikely(!netif_running(dev) || 4468 !netif_carrier_ok(dev))) 4469 goto drop; 4470 4471 skb = validate_xmit_skb_list(skb, dev, &again); 4472 if (skb != orig_skb) 4473 goto drop; 4474 4475 skb_set_queue_mapping(skb, queue_id); 4476 txq = skb_get_tx_queue(dev, skb); 4477 4478 local_bh_disable(); 4479 4480 dev_xmit_recursion_inc(); 4481 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4482 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4483 ret = netdev_start_xmit(skb, dev, txq, false); 4484 HARD_TX_UNLOCK(dev, txq); 4485 dev_xmit_recursion_dec(); 4486 4487 local_bh_enable(); 4488 return ret; 4489 drop: 4490 dev_core_stats_tx_dropped_inc(dev); 4491 kfree_skb_list(skb); 4492 return NET_XMIT_DROP; 4493 } 4494 EXPORT_SYMBOL(__dev_direct_xmit); 4495 4496 /************************************************************************* 4497 * Receiver routines 4498 *************************************************************************/ 4499 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4500 4501 int weight_p __read_mostly = 64; /* old backlog weight */ 4502 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4503 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4504 4505 /* Called with irq disabled */ 4506 static inline void ____napi_schedule(struct softnet_data *sd, 4507 struct napi_struct *napi) 4508 { 4509 struct task_struct *thread; 4510 4511 lockdep_assert_irqs_disabled(); 4512 4513 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4514 /* Paired with smp_mb__before_atomic() in 4515 * napi_enable()/dev_set_threaded(). 4516 * Use READ_ONCE() to guarantee a complete 4517 * read on napi->thread. Only call 4518 * wake_up_process() when it's not NULL. 4519 */ 4520 thread = READ_ONCE(napi->thread); 4521 if (thread) { 4522 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4523 goto use_local_napi; 4524 4525 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4526 wake_up_process(thread); 4527 return; 4528 } 4529 } 4530 4531 use_local_napi: 4532 list_add_tail(&napi->poll_list, &sd->poll_list); 4533 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4534 /* If not called from net_rx_action() 4535 * we have to raise NET_RX_SOFTIRQ. 4536 */ 4537 if (!sd->in_net_rx_action) 4538 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4539 } 4540 4541 #ifdef CONFIG_RPS 4542 4543 struct static_key_false rps_needed __read_mostly; 4544 EXPORT_SYMBOL(rps_needed); 4545 struct static_key_false rfs_needed __read_mostly; 4546 EXPORT_SYMBOL(rfs_needed); 4547 4548 static struct rps_dev_flow * 4549 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4550 struct rps_dev_flow *rflow, u16 next_cpu) 4551 { 4552 if (next_cpu < nr_cpu_ids) { 4553 u32 head; 4554 #ifdef CONFIG_RFS_ACCEL 4555 struct netdev_rx_queue *rxqueue; 4556 struct rps_dev_flow_table *flow_table; 4557 struct rps_dev_flow *old_rflow; 4558 u16 rxq_index; 4559 u32 flow_id; 4560 int rc; 4561 4562 /* Should we steer this flow to a different hardware queue? */ 4563 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4564 !(dev->features & NETIF_F_NTUPLE)) 4565 goto out; 4566 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4567 if (rxq_index == skb_get_rx_queue(skb)) 4568 goto out; 4569 4570 rxqueue = dev->_rx + rxq_index; 4571 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4572 if (!flow_table) 4573 goto out; 4574 flow_id = skb_get_hash(skb) & flow_table->mask; 4575 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4576 rxq_index, flow_id); 4577 if (rc < 0) 4578 goto out; 4579 old_rflow = rflow; 4580 rflow = &flow_table->flows[flow_id]; 4581 WRITE_ONCE(rflow->filter, rc); 4582 if (old_rflow->filter == rc) 4583 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4584 out: 4585 #endif 4586 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4587 rps_input_queue_tail_save(&rflow->last_qtail, head); 4588 } 4589 4590 WRITE_ONCE(rflow->cpu, next_cpu); 4591 return rflow; 4592 } 4593 4594 /* 4595 * get_rps_cpu is called from netif_receive_skb and returns the target 4596 * CPU from the RPS map of the receiving queue for a given skb. 4597 * rcu_read_lock must be held on entry. 4598 */ 4599 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4600 struct rps_dev_flow **rflowp) 4601 { 4602 const struct rps_sock_flow_table *sock_flow_table; 4603 struct netdev_rx_queue *rxqueue = dev->_rx; 4604 struct rps_dev_flow_table *flow_table; 4605 struct rps_map *map; 4606 int cpu = -1; 4607 u32 tcpu; 4608 u32 hash; 4609 4610 if (skb_rx_queue_recorded(skb)) { 4611 u16 index = skb_get_rx_queue(skb); 4612 4613 if (unlikely(index >= dev->real_num_rx_queues)) { 4614 WARN_ONCE(dev->real_num_rx_queues > 1, 4615 "%s received packet on queue %u, but number " 4616 "of RX queues is %u\n", 4617 dev->name, index, dev->real_num_rx_queues); 4618 goto done; 4619 } 4620 rxqueue += index; 4621 } 4622 4623 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4624 4625 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4626 map = rcu_dereference(rxqueue->rps_map); 4627 if (!flow_table && !map) 4628 goto done; 4629 4630 skb_reset_network_header(skb); 4631 hash = skb_get_hash(skb); 4632 if (!hash) 4633 goto done; 4634 4635 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4636 if (flow_table && sock_flow_table) { 4637 struct rps_dev_flow *rflow; 4638 u32 next_cpu; 4639 u32 ident; 4640 4641 /* First check into global flow table if there is a match. 4642 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4643 */ 4644 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4645 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4646 goto try_rps; 4647 4648 next_cpu = ident & net_hotdata.rps_cpu_mask; 4649 4650 /* OK, now we know there is a match, 4651 * we can look at the local (per receive queue) flow table 4652 */ 4653 rflow = &flow_table->flows[hash & flow_table->mask]; 4654 tcpu = rflow->cpu; 4655 4656 /* 4657 * If the desired CPU (where last recvmsg was done) is 4658 * different from current CPU (one in the rx-queue flow 4659 * table entry), switch if one of the following holds: 4660 * - Current CPU is unset (>= nr_cpu_ids). 4661 * - Current CPU is offline. 4662 * - The current CPU's queue tail has advanced beyond the 4663 * last packet that was enqueued using this table entry. 4664 * This guarantees that all previous packets for the flow 4665 * have been dequeued, thus preserving in order delivery. 4666 */ 4667 if (unlikely(tcpu != next_cpu) && 4668 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4669 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4670 rflow->last_qtail)) >= 0)) { 4671 tcpu = next_cpu; 4672 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4673 } 4674 4675 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4676 *rflowp = rflow; 4677 cpu = tcpu; 4678 goto done; 4679 } 4680 } 4681 4682 try_rps: 4683 4684 if (map) { 4685 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4686 if (cpu_online(tcpu)) { 4687 cpu = tcpu; 4688 goto done; 4689 } 4690 } 4691 4692 done: 4693 return cpu; 4694 } 4695 4696 #ifdef CONFIG_RFS_ACCEL 4697 4698 /** 4699 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4700 * @dev: Device on which the filter was set 4701 * @rxq_index: RX queue index 4702 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4703 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4704 * 4705 * Drivers that implement ndo_rx_flow_steer() should periodically call 4706 * this function for each installed filter and remove the filters for 4707 * which it returns %true. 4708 */ 4709 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4710 u32 flow_id, u16 filter_id) 4711 { 4712 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4713 struct rps_dev_flow_table *flow_table; 4714 struct rps_dev_flow *rflow; 4715 bool expire = true; 4716 unsigned int cpu; 4717 4718 rcu_read_lock(); 4719 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4720 if (flow_table && flow_id <= flow_table->mask) { 4721 rflow = &flow_table->flows[flow_id]; 4722 cpu = READ_ONCE(rflow->cpu); 4723 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 4724 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 4725 READ_ONCE(rflow->last_qtail)) < 4726 (int)(10 * flow_table->mask))) 4727 expire = false; 4728 } 4729 rcu_read_unlock(); 4730 return expire; 4731 } 4732 EXPORT_SYMBOL(rps_may_expire_flow); 4733 4734 #endif /* CONFIG_RFS_ACCEL */ 4735 4736 /* Called from hardirq (IPI) context */ 4737 static void rps_trigger_softirq(void *data) 4738 { 4739 struct softnet_data *sd = data; 4740 4741 ____napi_schedule(sd, &sd->backlog); 4742 sd->received_rps++; 4743 } 4744 4745 #endif /* CONFIG_RPS */ 4746 4747 /* Called from hardirq (IPI) context */ 4748 static void trigger_rx_softirq(void *data) 4749 { 4750 struct softnet_data *sd = data; 4751 4752 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4753 smp_store_release(&sd->defer_ipi_scheduled, 0); 4754 } 4755 4756 /* 4757 * After we queued a packet into sd->input_pkt_queue, 4758 * we need to make sure this queue is serviced soon. 4759 * 4760 * - If this is another cpu queue, link it to our rps_ipi_list, 4761 * and make sure we will process rps_ipi_list from net_rx_action(). 4762 * 4763 * - If this is our own queue, NAPI schedule our backlog. 4764 * Note that this also raises NET_RX_SOFTIRQ. 4765 */ 4766 static void napi_schedule_rps(struct softnet_data *sd) 4767 { 4768 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4769 4770 #ifdef CONFIG_RPS 4771 if (sd != mysd) { 4772 if (use_backlog_threads()) { 4773 __napi_schedule_irqoff(&sd->backlog); 4774 return; 4775 } 4776 4777 sd->rps_ipi_next = mysd->rps_ipi_list; 4778 mysd->rps_ipi_list = sd; 4779 4780 /* If not called from net_rx_action() or napi_threaded_poll() 4781 * we have to raise NET_RX_SOFTIRQ. 4782 */ 4783 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4784 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4785 return; 4786 } 4787 #endif /* CONFIG_RPS */ 4788 __napi_schedule_irqoff(&mysd->backlog); 4789 } 4790 4791 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 4792 { 4793 unsigned long flags; 4794 4795 if (use_backlog_threads()) { 4796 backlog_lock_irq_save(sd, &flags); 4797 4798 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4799 __napi_schedule_irqoff(&sd->backlog); 4800 4801 backlog_unlock_irq_restore(sd, &flags); 4802 4803 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 4804 smp_call_function_single_async(cpu, &sd->defer_csd); 4805 } 4806 } 4807 4808 #ifdef CONFIG_NET_FLOW_LIMIT 4809 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4810 #endif 4811 4812 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4813 { 4814 #ifdef CONFIG_NET_FLOW_LIMIT 4815 struct sd_flow_limit *fl; 4816 struct softnet_data *sd; 4817 unsigned int old_flow, new_flow; 4818 4819 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 4820 return false; 4821 4822 sd = this_cpu_ptr(&softnet_data); 4823 4824 rcu_read_lock(); 4825 fl = rcu_dereference(sd->flow_limit); 4826 if (fl) { 4827 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4828 old_flow = fl->history[fl->history_head]; 4829 fl->history[fl->history_head] = new_flow; 4830 4831 fl->history_head++; 4832 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4833 4834 if (likely(fl->buckets[old_flow])) 4835 fl->buckets[old_flow]--; 4836 4837 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4838 fl->count++; 4839 rcu_read_unlock(); 4840 return true; 4841 } 4842 } 4843 rcu_read_unlock(); 4844 #endif 4845 return false; 4846 } 4847 4848 /* 4849 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4850 * queue (may be a remote CPU queue). 4851 */ 4852 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4853 unsigned int *qtail) 4854 { 4855 enum skb_drop_reason reason; 4856 struct softnet_data *sd; 4857 unsigned long flags; 4858 unsigned int qlen; 4859 int max_backlog; 4860 u32 tail; 4861 4862 reason = SKB_DROP_REASON_DEV_READY; 4863 if (!netif_running(skb->dev)) 4864 goto bad_dev; 4865 4866 reason = SKB_DROP_REASON_CPU_BACKLOG; 4867 sd = &per_cpu(softnet_data, cpu); 4868 4869 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 4870 max_backlog = READ_ONCE(net_hotdata.max_backlog); 4871 if (unlikely(qlen > max_backlog)) 4872 goto cpu_backlog_drop; 4873 backlog_lock_irq_save(sd, &flags); 4874 qlen = skb_queue_len(&sd->input_pkt_queue); 4875 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 4876 if (!qlen) { 4877 /* Schedule NAPI for backlog device. We can use 4878 * non atomic operation as we own the queue lock. 4879 */ 4880 if (!__test_and_set_bit(NAPI_STATE_SCHED, 4881 &sd->backlog.state)) 4882 napi_schedule_rps(sd); 4883 } 4884 __skb_queue_tail(&sd->input_pkt_queue, skb); 4885 tail = rps_input_queue_tail_incr(sd); 4886 backlog_unlock_irq_restore(sd, &flags); 4887 4888 /* save the tail outside of the critical section */ 4889 rps_input_queue_tail_save(qtail, tail); 4890 return NET_RX_SUCCESS; 4891 } 4892 4893 backlog_unlock_irq_restore(sd, &flags); 4894 4895 cpu_backlog_drop: 4896 atomic_inc(&sd->dropped); 4897 bad_dev: 4898 dev_core_stats_rx_dropped_inc(skb->dev); 4899 kfree_skb_reason(skb, reason); 4900 return NET_RX_DROP; 4901 } 4902 4903 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4904 { 4905 struct net_device *dev = skb->dev; 4906 struct netdev_rx_queue *rxqueue; 4907 4908 rxqueue = dev->_rx; 4909 4910 if (skb_rx_queue_recorded(skb)) { 4911 u16 index = skb_get_rx_queue(skb); 4912 4913 if (unlikely(index >= dev->real_num_rx_queues)) { 4914 WARN_ONCE(dev->real_num_rx_queues > 1, 4915 "%s received packet on queue %u, but number " 4916 "of RX queues is %u\n", 4917 dev->name, index, dev->real_num_rx_queues); 4918 4919 return rxqueue; /* Return first rxqueue */ 4920 } 4921 rxqueue += index; 4922 } 4923 return rxqueue; 4924 } 4925 4926 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4927 struct bpf_prog *xdp_prog) 4928 { 4929 void *orig_data, *orig_data_end, *hard_start; 4930 struct netdev_rx_queue *rxqueue; 4931 bool orig_bcast, orig_host; 4932 u32 mac_len, frame_sz; 4933 __be16 orig_eth_type; 4934 struct ethhdr *eth; 4935 u32 metalen, act; 4936 int off; 4937 4938 /* The XDP program wants to see the packet starting at the MAC 4939 * header. 4940 */ 4941 mac_len = skb->data - skb_mac_header(skb); 4942 hard_start = skb->data - skb_headroom(skb); 4943 4944 /* SKB "head" area always have tailroom for skb_shared_info */ 4945 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4946 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4947 4948 rxqueue = netif_get_rxqueue(skb); 4949 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4950 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4951 skb_headlen(skb) + mac_len, true); 4952 if (skb_is_nonlinear(skb)) { 4953 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 4954 xdp_buff_set_frags_flag(xdp); 4955 } else { 4956 xdp_buff_clear_frags_flag(xdp); 4957 } 4958 4959 orig_data_end = xdp->data_end; 4960 orig_data = xdp->data; 4961 eth = (struct ethhdr *)xdp->data; 4962 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4963 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4964 orig_eth_type = eth->h_proto; 4965 4966 act = bpf_prog_run_xdp(xdp_prog, xdp); 4967 4968 /* check if bpf_xdp_adjust_head was used */ 4969 off = xdp->data - orig_data; 4970 if (off) { 4971 if (off > 0) 4972 __skb_pull(skb, off); 4973 else if (off < 0) 4974 __skb_push(skb, -off); 4975 4976 skb->mac_header += off; 4977 skb_reset_network_header(skb); 4978 } 4979 4980 /* check if bpf_xdp_adjust_tail was used */ 4981 off = xdp->data_end - orig_data_end; 4982 if (off != 0) { 4983 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4984 skb->len += off; /* positive on grow, negative on shrink */ 4985 } 4986 4987 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 4988 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 4989 */ 4990 if (xdp_buff_has_frags(xdp)) 4991 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 4992 else 4993 skb->data_len = 0; 4994 4995 /* check if XDP changed eth hdr such SKB needs update */ 4996 eth = (struct ethhdr *)xdp->data; 4997 if ((orig_eth_type != eth->h_proto) || 4998 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4999 skb->dev->dev_addr)) || 5000 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5001 __skb_push(skb, ETH_HLEN); 5002 skb->pkt_type = PACKET_HOST; 5003 skb->protocol = eth_type_trans(skb, skb->dev); 5004 } 5005 5006 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5007 * before calling us again on redirect path. We do not call do_redirect 5008 * as we leave that up to the caller. 5009 * 5010 * Caller is responsible for managing lifetime of skb (i.e. calling 5011 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5012 */ 5013 switch (act) { 5014 case XDP_REDIRECT: 5015 case XDP_TX: 5016 __skb_push(skb, mac_len); 5017 break; 5018 case XDP_PASS: 5019 metalen = xdp->data - xdp->data_meta; 5020 if (metalen) 5021 skb_metadata_set(skb, metalen); 5022 break; 5023 } 5024 5025 return act; 5026 } 5027 5028 static int 5029 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog) 5030 { 5031 struct sk_buff *skb = *pskb; 5032 int err, hroom, troom; 5033 5034 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) 5035 return 0; 5036 5037 /* In case we have to go down the path and also linearize, 5038 * then lets do the pskb_expand_head() work just once here. 5039 */ 5040 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5041 troom = skb->tail + skb->data_len - skb->end; 5042 err = pskb_expand_head(skb, 5043 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5044 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5045 if (err) 5046 return err; 5047 5048 return skb_linearize(skb); 5049 } 5050 5051 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5052 struct xdp_buff *xdp, 5053 struct bpf_prog *xdp_prog) 5054 { 5055 struct sk_buff *skb = *pskb; 5056 u32 mac_len, act = XDP_DROP; 5057 5058 /* Reinjected packets coming from act_mirred or similar should 5059 * not get XDP generic processing. 5060 */ 5061 if (skb_is_redirected(skb)) 5062 return XDP_PASS; 5063 5064 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5065 * bytes. This is the guarantee that also native XDP provides, 5066 * thus we need to do it here as well. 5067 */ 5068 mac_len = skb->data - skb_mac_header(skb); 5069 __skb_push(skb, mac_len); 5070 5071 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5072 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5073 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5074 goto do_drop; 5075 } 5076 5077 __skb_pull(*pskb, mac_len); 5078 5079 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5080 switch (act) { 5081 case XDP_REDIRECT: 5082 case XDP_TX: 5083 case XDP_PASS: 5084 break; 5085 default: 5086 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5087 fallthrough; 5088 case XDP_ABORTED: 5089 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5090 fallthrough; 5091 case XDP_DROP: 5092 do_drop: 5093 kfree_skb(*pskb); 5094 break; 5095 } 5096 5097 return act; 5098 } 5099 5100 /* When doing generic XDP we have to bypass the qdisc layer and the 5101 * network taps in order to match in-driver-XDP behavior. This also means 5102 * that XDP packets are able to starve other packets going through a qdisc, 5103 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5104 * queues, so they do not have this starvation issue. 5105 */ 5106 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 5107 { 5108 struct net_device *dev = skb->dev; 5109 struct netdev_queue *txq; 5110 bool free_skb = true; 5111 int cpu, rc; 5112 5113 txq = netdev_core_pick_tx(dev, skb, NULL); 5114 cpu = smp_processor_id(); 5115 HARD_TX_LOCK(dev, txq, cpu); 5116 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5117 rc = netdev_start_xmit(skb, dev, txq, 0); 5118 if (dev_xmit_complete(rc)) 5119 free_skb = false; 5120 } 5121 HARD_TX_UNLOCK(dev, txq); 5122 if (free_skb) { 5123 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5124 dev_core_stats_tx_dropped_inc(dev); 5125 kfree_skb(skb); 5126 } 5127 } 5128 5129 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5130 5131 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5132 { 5133 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5134 5135 if (xdp_prog) { 5136 struct xdp_buff xdp; 5137 u32 act; 5138 int err; 5139 5140 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5141 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5142 if (act != XDP_PASS) { 5143 switch (act) { 5144 case XDP_REDIRECT: 5145 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5146 &xdp, xdp_prog); 5147 if (err) 5148 goto out_redir; 5149 break; 5150 case XDP_TX: 5151 generic_xdp_tx(*pskb, xdp_prog); 5152 break; 5153 } 5154 bpf_net_ctx_clear(bpf_net_ctx); 5155 return XDP_DROP; 5156 } 5157 bpf_net_ctx_clear(bpf_net_ctx); 5158 } 5159 return XDP_PASS; 5160 out_redir: 5161 bpf_net_ctx_clear(bpf_net_ctx); 5162 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5163 return XDP_DROP; 5164 } 5165 EXPORT_SYMBOL_GPL(do_xdp_generic); 5166 5167 static int netif_rx_internal(struct sk_buff *skb) 5168 { 5169 int ret; 5170 5171 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5172 5173 trace_netif_rx(skb); 5174 5175 #ifdef CONFIG_RPS 5176 if (static_branch_unlikely(&rps_needed)) { 5177 struct rps_dev_flow voidflow, *rflow = &voidflow; 5178 int cpu; 5179 5180 rcu_read_lock(); 5181 5182 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5183 if (cpu < 0) 5184 cpu = smp_processor_id(); 5185 5186 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5187 5188 rcu_read_unlock(); 5189 } else 5190 #endif 5191 { 5192 unsigned int qtail; 5193 5194 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5195 } 5196 return ret; 5197 } 5198 5199 /** 5200 * __netif_rx - Slightly optimized version of netif_rx 5201 * @skb: buffer to post 5202 * 5203 * This behaves as netif_rx except that it does not disable bottom halves. 5204 * As a result this function may only be invoked from the interrupt context 5205 * (either hard or soft interrupt). 5206 */ 5207 int __netif_rx(struct sk_buff *skb) 5208 { 5209 int ret; 5210 5211 lockdep_assert_once(hardirq_count() | softirq_count()); 5212 5213 trace_netif_rx_entry(skb); 5214 ret = netif_rx_internal(skb); 5215 trace_netif_rx_exit(ret); 5216 return ret; 5217 } 5218 EXPORT_SYMBOL(__netif_rx); 5219 5220 /** 5221 * netif_rx - post buffer to the network code 5222 * @skb: buffer to post 5223 * 5224 * This function receives a packet from a device driver and queues it for 5225 * the upper (protocol) levels to process via the backlog NAPI device. It 5226 * always succeeds. The buffer may be dropped during processing for 5227 * congestion control or by the protocol layers. 5228 * The network buffer is passed via the backlog NAPI device. Modern NIC 5229 * driver should use NAPI and GRO. 5230 * This function can used from interrupt and from process context. The 5231 * caller from process context must not disable interrupts before invoking 5232 * this function. 5233 * 5234 * return values: 5235 * NET_RX_SUCCESS (no congestion) 5236 * NET_RX_DROP (packet was dropped) 5237 * 5238 */ 5239 int netif_rx(struct sk_buff *skb) 5240 { 5241 bool need_bh_off = !(hardirq_count() | softirq_count()); 5242 int ret; 5243 5244 if (need_bh_off) 5245 local_bh_disable(); 5246 trace_netif_rx_entry(skb); 5247 ret = netif_rx_internal(skb); 5248 trace_netif_rx_exit(ret); 5249 if (need_bh_off) 5250 local_bh_enable(); 5251 return ret; 5252 } 5253 EXPORT_SYMBOL(netif_rx); 5254 5255 static __latent_entropy void net_tx_action(struct softirq_action *h) 5256 { 5257 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5258 5259 if (sd->completion_queue) { 5260 struct sk_buff *clist; 5261 5262 local_irq_disable(); 5263 clist = sd->completion_queue; 5264 sd->completion_queue = NULL; 5265 local_irq_enable(); 5266 5267 while (clist) { 5268 struct sk_buff *skb = clist; 5269 5270 clist = clist->next; 5271 5272 WARN_ON(refcount_read(&skb->users)); 5273 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5274 trace_consume_skb(skb, net_tx_action); 5275 else 5276 trace_kfree_skb(skb, net_tx_action, 5277 get_kfree_skb_cb(skb)->reason, NULL); 5278 5279 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5280 __kfree_skb(skb); 5281 else 5282 __napi_kfree_skb(skb, 5283 get_kfree_skb_cb(skb)->reason); 5284 } 5285 } 5286 5287 if (sd->output_queue) { 5288 struct Qdisc *head; 5289 5290 local_irq_disable(); 5291 head = sd->output_queue; 5292 sd->output_queue = NULL; 5293 sd->output_queue_tailp = &sd->output_queue; 5294 local_irq_enable(); 5295 5296 rcu_read_lock(); 5297 5298 while (head) { 5299 struct Qdisc *q = head; 5300 spinlock_t *root_lock = NULL; 5301 5302 head = head->next_sched; 5303 5304 /* We need to make sure head->next_sched is read 5305 * before clearing __QDISC_STATE_SCHED 5306 */ 5307 smp_mb__before_atomic(); 5308 5309 if (!(q->flags & TCQ_F_NOLOCK)) { 5310 root_lock = qdisc_lock(q); 5311 spin_lock(root_lock); 5312 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5313 &q->state))) { 5314 /* There is a synchronize_net() between 5315 * STATE_DEACTIVATED flag being set and 5316 * qdisc_reset()/some_qdisc_is_busy() in 5317 * dev_deactivate(), so we can safely bail out 5318 * early here to avoid data race between 5319 * qdisc_deactivate() and some_qdisc_is_busy() 5320 * for lockless qdisc. 5321 */ 5322 clear_bit(__QDISC_STATE_SCHED, &q->state); 5323 continue; 5324 } 5325 5326 clear_bit(__QDISC_STATE_SCHED, &q->state); 5327 qdisc_run(q); 5328 if (root_lock) 5329 spin_unlock(root_lock); 5330 } 5331 5332 rcu_read_unlock(); 5333 } 5334 5335 xfrm_dev_backlog(sd); 5336 } 5337 5338 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5339 /* This hook is defined here for ATM LANE */ 5340 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5341 unsigned char *addr) __read_mostly; 5342 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5343 #endif 5344 5345 /** 5346 * netdev_is_rx_handler_busy - check if receive handler is registered 5347 * @dev: device to check 5348 * 5349 * Check if a receive handler is already registered for a given device. 5350 * Return true if there one. 5351 * 5352 * The caller must hold the rtnl_mutex. 5353 */ 5354 bool netdev_is_rx_handler_busy(struct net_device *dev) 5355 { 5356 ASSERT_RTNL(); 5357 return dev && rtnl_dereference(dev->rx_handler); 5358 } 5359 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5360 5361 /** 5362 * netdev_rx_handler_register - register receive handler 5363 * @dev: device to register a handler for 5364 * @rx_handler: receive handler to register 5365 * @rx_handler_data: data pointer that is used by rx handler 5366 * 5367 * Register a receive handler for a device. This handler will then be 5368 * called from __netif_receive_skb. A negative errno code is returned 5369 * on a failure. 5370 * 5371 * The caller must hold the rtnl_mutex. 5372 * 5373 * For a general description of rx_handler, see enum rx_handler_result. 5374 */ 5375 int netdev_rx_handler_register(struct net_device *dev, 5376 rx_handler_func_t *rx_handler, 5377 void *rx_handler_data) 5378 { 5379 if (netdev_is_rx_handler_busy(dev)) 5380 return -EBUSY; 5381 5382 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5383 return -EINVAL; 5384 5385 /* Note: rx_handler_data must be set before rx_handler */ 5386 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5387 rcu_assign_pointer(dev->rx_handler, rx_handler); 5388 5389 return 0; 5390 } 5391 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5392 5393 /** 5394 * netdev_rx_handler_unregister - unregister receive handler 5395 * @dev: device to unregister a handler from 5396 * 5397 * Unregister a receive handler from a device. 5398 * 5399 * The caller must hold the rtnl_mutex. 5400 */ 5401 void netdev_rx_handler_unregister(struct net_device *dev) 5402 { 5403 5404 ASSERT_RTNL(); 5405 RCU_INIT_POINTER(dev->rx_handler, NULL); 5406 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5407 * section has a guarantee to see a non NULL rx_handler_data 5408 * as well. 5409 */ 5410 synchronize_net(); 5411 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5412 } 5413 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5414 5415 /* 5416 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5417 * the special handling of PFMEMALLOC skbs. 5418 */ 5419 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5420 { 5421 switch (skb->protocol) { 5422 case htons(ETH_P_ARP): 5423 case htons(ETH_P_IP): 5424 case htons(ETH_P_IPV6): 5425 case htons(ETH_P_8021Q): 5426 case htons(ETH_P_8021AD): 5427 return true; 5428 default: 5429 return false; 5430 } 5431 } 5432 5433 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5434 int *ret, struct net_device *orig_dev) 5435 { 5436 if (nf_hook_ingress_active(skb)) { 5437 int ingress_retval; 5438 5439 if (*pt_prev) { 5440 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5441 *pt_prev = NULL; 5442 } 5443 5444 rcu_read_lock(); 5445 ingress_retval = nf_hook_ingress(skb); 5446 rcu_read_unlock(); 5447 return ingress_retval; 5448 } 5449 return 0; 5450 } 5451 5452 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5453 struct packet_type **ppt_prev) 5454 { 5455 struct packet_type *ptype, *pt_prev; 5456 rx_handler_func_t *rx_handler; 5457 struct sk_buff *skb = *pskb; 5458 struct net_device *orig_dev; 5459 bool deliver_exact = false; 5460 int ret = NET_RX_DROP; 5461 __be16 type; 5462 5463 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5464 5465 trace_netif_receive_skb(skb); 5466 5467 orig_dev = skb->dev; 5468 5469 skb_reset_network_header(skb); 5470 if (!skb_transport_header_was_set(skb)) 5471 skb_reset_transport_header(skb); 5472 skb_reset_mac_len(skb); 5473 5474 pt_prev = NULL; 5475 5476 another_round: 5477 skb->skb_iif = skb->dev->ifindex; 5478 5479 __this_cpu_inc(softnet_data.processed); 5480 5481 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5482 int ret2; 5483 5484 migrate_disable(); 5485 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5486 &skb); 5487 migrate_enable(); 5488 5489 if (ret2 != XDP_PASS) { 5490 ret = NET_RX_DROP; 5491 goto out; 5492 } 5493 } 5494 5495 if (eth_type_vlan(skb->protocol)) { 5496 skb = skb_vlan_untag(skb); 5497 if (unlikely(!skb)) 5498 goto out; 5499 } 5500 5501 if (skb_skip_tc_classify(skb)) 5502 goto skip_classify; 5503 5504 if (pfmemalloc) 5505 goto skip_taps; 5506 5507 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) { 5508 if (pt_prev) 5509 ret = deliver_skb(skb, pt_prev, orig_dev); 5510 pt_prev = ptype; 5511 } 5512 5513 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5514 if (pt_prev) 5515 ret = deliver_skb(skb, pt_prev, orig_dev); 5516 pt_prev = ptype; 5517 } 5518 5519 skip_taps: 5520 #ifdef CONFIG_NET_INGRESS 5521 if (static_branch_unlikely(&ingress_needed_key)) { 5522 bool another = false; 5523 5524 nf_skip_egress(skb, true); 5525 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5526 &another); 5527 if (another) 5528 goto another_round; 5529 if (!skb) 5530 goto out; 5531 5532 nf_skip_egress(skb, false); 5533 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5534 goto out; 5535 } 5536 #endif 5537 skb_reset_redirect(skb); 5538 skip_classify: 5539 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5540 goto drop; 5541 5542 if (skb_vlan_tag_present(skb)) { 5543 if (pt_prev) { 5544 ret = deliver_skb(skb, pt_prev, orig_dev); 5545 pt_prev = NULL; 5546 } 5547 if (vlan_do_receive(&skb)) 5548 goto another_round; 5549 else if (unlikely(!skb)) 5550 goto out; 5551 } 5552 5553 rx_handler = rcu_dereference(skb->dev->rx_handler); 5554 if (rx_handler) { 5555 if (pt_prev) { 5556 ret = deliver_skb(skb, pt_prev, orig_dev); 5557 pt_prev = NULL; 5558 } 5559 switch (rx_handler(&skb)) { 5560 case RX_HANDLER_CONSUMED: 5561 ret = NET_RX_SUCCESS; 5562 goto out; 5563 case RX_HANDLER_ANOTHER: 5564 goto another_round; 5565 case RX_HANDLER_EXACT: 5566 deliver_exact = true; 5567 break; 5568 case RX_HANDLER_PASS: 5569 break; 5570 default: 5571 BUG(); 5572 } 5573 } 5574 5575 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5576 check_vlan_id: 5577 if (skb_vlan_tag_get_id(skb)) { 5578 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5579 * find vlan device. 5580 */ 5581 skb->pkt_type = PACKET_OTHERHOST; 5582 } else if (eth_type_vlan(skb->protocol)) { 5583 /* Outer header is 802.1P with vlan 0, inner header is 5584 * 802.1Q or 802.1AD and vlan_do_receive() above could 5585 * not find vlan dev for vlan id 0. 5586 */ 5587 __vlan_hwaccel_clear_tag(skb); 5588 skb = skb_vlan_untag(skb); 5589 if (unlikely(!skb)) 5590 goto out; 5591 if (vlan_do_receive(&skb)) 5592 /* After stripping off 802.1P header with vlan 0 5593 * vlan dev is found for inner header. 5594 */ 5595 goto another_round; 5596 else if (unlikely(!skb)) 5597 goto out; 5598 else 5599 /* We have stripped outer 802.1P vlan 0 header. 5600 * But could not find vlan dev. 5601 * check again for vlan id to set OTHERHOST. 5602 */ 5603 goto check_vlan_id; 5604 } 5605 /* Note: we might in the future use prio bits 5606 * and set skb->priority like in vlan_do_receive() 5607 * For the time being, just ignore Priority Code Point 5608 */ 5609 __vlan_hwaccel_clear_tag(skb); 5610 } 5611 5612 type = skb->protocol; 5613 5614 /* deliver only exact match when indicated */ 5615 if (likely(!deliver_exact)) { 5616 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5617 &ptype_base[ntohs(type) & 5618 PTYPE_HASH_MASK]); 5619 } 5620 5621 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5622 &orig_dev->ptype_specific); 5623 5624 if (unlikely(skb->dev != orig_dev)) { 5625 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5626 &skb->dev->ptype_specific); 5627 } 5628 5629 if (pt_prev) { 5630 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5631 goto drop; 5632 *ppt_prev = pt_prev; 5633 } else { 5634 drop: 5635 if (!deliver_exact) 5636 dev_core_stats_rx_dropped_inc(skb->dev); 5637 else 5638 dev_core_stats_rx_nohandler_inc(skb->dev); 5639 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5640 /* Jamal, now you will not able to escape explaining 5641 * me how you were going to use this. :-) 5642 */ 5643 ret = NET_RX_DROP; 5644 } 5645 5646 out: 5647 /* The invariant here is that if *ppt_prev is not NULL 5648 * then skb should also be non-NULL. 5649 * 5650 * Apparently *ppt_prev assignment above holds this invariant due to 5651 * skb dereferencing near it. 5652 */ 5653 *pskb = skb; 5654 return ret; 5655 } 5656 5657 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5658 { 5659 struct net_device *orig_dev = skb->dev; 5660 struct packet_type *pt_prev = NULL; 5661 int ret; 5662 5663 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5664 if (pt_prev) 5665 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5666 skb->dev, pt_prev, orig_dev); 5667 return ret; 5668 } 5669 5670 /** 5671 * netif_receive_skb_core - special purpose version of netif_receive_skb 5672 * @skb: buffer to process 5673 * 5674 * More direct receive version of netif_receive_skb(). It should 5675 * only be used by callers that have a need to skip RPS and Generic XDP. 5676 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5677 * 5678 * This function may only be called from softirq context and interrupts 5679 * should be enabled. 5680 * 5681 * Return values (usually ignored): 5682 * NET_RX_SUCCESS: no congestion 5683 * NET_RX_DROP: packet was dropped 5684 */ 5685 int netif_receive_skb_core(struct sk_buff *skb) 5686 { 5687 int ret; 5688 5689 rcu_read_lock(); 5690 ret = __netif_receive_skb_one_core(skb, false); 5691 rcu_read_unlock(); 5692 5693 return ret; 5694 } 5695 EXPORT_SYMBOL(netif_receive_skb_core); 5696 5697 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5698 struct packet_type *pt_prev, 5699 struct net_device *orig_dev) 5700 { 5701 struct sk_buff *skb, *next; 5702 5703 if (!pt_prev) 5704 return; 5705 if (list_empty(head)) 5706 return; 5707 if (pt_prev->list_func != NULL) 5708 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5709 ip_list_rcv, head, pt_prev, orig_dev); 5710 else 5711 list_for_each_entry_safe(skb, next, head, list) { 5712 skb_list_del_init(skb); 5713 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5714 } 5715 } 5716 5717 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5718 { 5719 /* Fast-path assumptions: 5720 * - There is no RX handler. 5721 * - Only one packet_type matches. 5722 * If either of these fails, we will end up doing some per-packet 5723 * processing in-line, then handling the 'last ptype' for the whole 5724 * sublist. This can't cause out-of-order delivery to any single ptype, 5725 * because the 'last ptype' must be constant across the sublist, and all 5726 * other ptypes are handled per-packet. 5727 */ 5728 /* Current (common) ptype of sublist */ 5729 struct packet_type *pt_curr = NULL; 5730 /* Current (common) orig_dev of sublist */ 5731 struct net_device *od_curr = NULL; 5732 struct list_head sublist; 5733 struct sk_buff *skb, *next; 5734 5735 INIT_LIST_HEAD(&sublist); 5736 list_for_each_entry_safe(skb, next, head, list) { 5737 struct net_device *orig_dev = skb->dev; 5738 struct packet_type *pt_prev = NULL; 5739 5740 skb_list_del_init(skb); 5741 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5742 if (!pt_prev) 5743 continue; 5744 if (pt_curr != pt_prev || od_curr != orig_dev) { 5745 /* dispatch old sublist */ 5746 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5747 /* start new sublist */ 5748 INIT_LIST_HEAD(&sublist); 5749 pt_curr = pt_prev; 5750 od_curr = orig_dev; 5751 } 5752 list_add_tail(&skb->list, &sublist); 5753 } 5754 5755 /* dispatch final sublist */ 5756 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5757 } 5758 5759 static int __netif_receive_skb(struct sk_buff *skb) 5760 { 5761 int ret; 5762 5763 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5764 unsigned int noreclaim_flag; 5765 5766 /* 5767 * PFMEMALLOC skbs are special, they should 5768 * - be delivered to SOCK_MEMALLOC sockets only 5769 * - stay away from userspace 5770 * - have bounded memory usage 5771 * 5772 * Use PF_MEMALLOC as this saves us from propagating the allocation 5773 * context down to all allocation sites. 5774 */ 5775 noreclaim_flag = memalloc_noreclaim_save(); 5776 ret = __netif_receive_skb_one_core(skb, true); 5777 memalloc_noreclaim_restore(noreclaim_flag); 5778 } else 5779 ret = __netif_receive_skb_one_core(skb, false); 5780 5781 return ret; 5782 } 5783 5784 static void __netif_receive_skb_list(struct list_head *head) 5785 { 5786 unsigned long noreclaim_flag = 0; 5787 struct sk_buff *skb, *next; 5788 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5789 5790 list_for_each_entry_safe(skb, next, head, list) { 5791 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5792 struct list_head sublist; 5793 5794 /* Handle the previous sublist */ 5795 list_cut_before(&sublist, head, &skb->list); 5796 if (!list_empty(&sublist)) 5797 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5798 pfmemalloc = !pfmemalloc; 5799 /* See comments in __netif_receive_skb */ 5800 if (pfmemalloc) 5801 noreclaim_flag = memalloc_noreclaim_save(); 5802 else 5803 memalloc_noreclaim_restore(noreclaim_flag); 5804 } 5805 } 5806 /* Handle the remaining sublist */ 5807 if (!list_empty(head)) 5808 __netif_receive_skb_list_core(head, pfmemalloc); 5809 /* Restore pflags */ 5810 if (pfmemalloc) 5811 memalloc_noreclaim_restore(noreclaim_flag); 5812 } 5813 5814 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5815 { 5816 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5817 struct bpf_prog *new = xdp->prog; 5818 int ret = 0; 5819 5820 switch (xdp->command) { 5821 case XDP_SETUP_PROG: 5822 rcu_assign_pointer(dev->xdp_prog, new); 5823 if (old) 5824 bpf_prog_put(old); 5825 5826 if (old && !new) { 5827 static_branch_dec(&generic_xdp_needed_key); 5828 } else if (new && !old) { 5829 static_branch_inc(&generic_xdp_needed_key); 5830 dev_disable_lro(dev); 5831 dev_disable_gro_hw(dev); 5832 } 5833 break; 5834 5835 default: 5836 ret = -EINVAL; 5837 break; 5838 } 5839 5840 return ret; 5841 } 5842 5843 static int netif_receive_skb_internal(struct sk_buff *skb) 5844 { 5845 int ret; 5846 5847 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5848 5849 if (skb_defer_rx_timestamp(skb)) 5850 return NET_RX_SUCCESS; 5851 5852 rcu_read_lock(); 5853 #ifdef CONFIG_RPS 5854 if (static_branch_unlikely(&rps_needed)) { 5855 struct rps_dev_flow voidflow, *rflow = &voidflow; 5856 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5857 5858 if (cpu >= 0) { 5859 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5860 rcu_read_unlock(); 5861 return ret; 5862 } 5863 } 5864 #endif 5865 ret = __netif_receive_skb(skb); 5866 rcu_read_unlock(); 5867 return ret; 5868 } 5869 5870 void netif_receive_skb_list_internal(struct list_head *head) 5871 { 5872 struct sk_buff *skb, *next; 5873 struct list_head sublist; 5874 5875 INIT_LIST_HEAD(&sublist); 5876 list_for_each_entry_safe(skb, next, head, list) { 5877 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 5878 skb); 5879 skb_list_del_init(skb); 5880 if (!skb_defer_rx_timestamp(skb)) 5881 list_add_tail(&skb->list, &sublist); 5882 } 5883 list_splice_init(&sublist, head); 5884 5885 rcu_read_lock(); 5886 #ifdef CONFIG_RPS 5887 if (static_branch_unlikely(&rps_needed)) { 5888 list_for_each_entry_safe(skb, next, head, list) { 5889 struct rps_dev_flow voidflow, *rflow = &voidflow; 5890 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5891 5892 if (cpu >= 0) { 5893 /* Will be handled, remove from list */ 5894 skb_list_del_init(skb); 5895 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5896 } 5897 } 5898 } 5899 #endif 5900 __netif_receive_skb_list(head); 5901 rcu_read_unlock(); 5902 } 5903 5904 /** 5905 * netif_receive_skb - process receive buffer from network 5906 * @skb: buffer to process 5907 * 5908 * netif_receive_skb() is the main receive data processing function. 5909 * It always succeeds. The buffer may be dropped during processing 5910 * for congestion control or by the protocol layers. 5911 * 5912 * This function may only be called from softirq context and interrupts 5913 * should be enabled. 5914 * 5915 * Return values (usually ignored): 5916 * NET_RX_SUCCESS: no congestion 5917 * NET_RX_DROP: packet was dropped 5918 */ 5919 int netif_receive_skb(struct sk_buff *skb) 5920 { 5921 int ret; 5922 5923 trace_netif_receive_skb_entry(skb); 5924 5925 ret = netif_receive_skb_internal(skb); 5926 trace_netif_receive_skb_exit(ret); 5927 5928 return ret; 5929 } 5930 EXPORT_SYMBOL(netif_receive_skb); 5931 5932 /** 5933 * netif_receive_skb_list - process many receive buffers from network 5934 * @head: list of skbs to process. 5935 * 5936 * Since return value of netif_receive_skb() is normally ignored, and 5937 * wouldn't be meaningful for a list, this function returns void. 5938 * 5939 * This function may only be called from softirq context and interrupts 5940 * should be enabled. 5941 */ 5942 void netif_receive_skb_list(struct list_head *head) 5943 { 5944 struct sk_buff *skb; 5945 5946 if (list_empty(head)) 5947 return; 5948 if (trace_netif_receive_skb_list_entry_enabled()) { 5949 list_for_each_entry(skb, head, list) 5950 trace_netif_receive_skb_list_entry(skb); 5951 } 5952 netif_receive_skb_list_internal(head); 5953 trace_netif_receive_skb_list_exit(0); 5954 } 5955 EXPORT_SYMBOL(netif_receive_skb_list); 5956 5957 static DEFINE_PER_CPU(struct work_struct, flush_works); 5958 5959 /* Network device is going away, flush any packets still pending */ 5960 static void flush_backlog(struct work_struct *work) 5961 { 5962 struct sk_buff *skb, *tmp; 5963 struct softnet_data *sd; 5964 5965 local_bh_disable(); 5966 sd = this_cpu_ptr(&softnet_data); 5967 5968 backlog_lock_irq_disable(sd); 5969 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5970 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5971 __skb_unlink(skb, &sd->input_pkt_queue); 5972 dev_kfree_skb_irq(skb); 5973 rps_input_queue_head_incr(sd); 5974 } 5975 } 5976 backlog_unlock_irq_enable(sd); 5977 5978 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 5979 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5980 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5981 __skb_unlink(skb, &sd->process_queue); 5982 kfree_skb(skb); 5983 rps_input_queue_head_incr(sd); 5984 } 5985 } 5986 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 5987 local_bh_enable(); 5988 } 5989 5990 static bool flush_required(int cpu) 5991 { 5992 #if IS_ENABLED(CONFIG_RPS) 5993 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5994 bool do_flush; 5995 5996 backlog_lock_irq_disable(sd); 5997 5998 /* as insertion into process_queue happens with the rps lock held, 5999 * process_queue access may race only with dequeue 6000 */ 6001 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6002 !skb_queue_empty_lockless(&sd->process_queue); 6003 backlog_unlock_irq_enable(sd); 6004 6005 return do_flush; 6006 #endif 6007 /* without RPS we can't safely check input_pkt_queue: during a 6008 * concurrent remote skb_queue_splice() we can detect as empty both 6009 * input_pkt_queue and process_queue even if the latter could end-up 6010 * containing a lot of packets. 6011 */ 6012 return true; 6013 } 6014 6015 static void flush_all_backlogs(void) 6016 { 6017 static cpumask_t flush_cpus; 6018 unsigned int cpu; 6019 6020 /* since we are under rtnl lock protection we can use static data 6021 * for the cpumask and avoid allocating on stack the possibly 6022 * large mask 6023 */ 6024 ASSERT_RTNL(); 6025 6026 cpus_read_lock(); 6027 6028 cpumask_clear(&flush_cpus); 6029 for_each_online_cpu(cpu) { 6030 if (flush_required(cpu)) { 6031 queue_work_on(cpu, system_highpri_wq, 6032 per_cpu_ptr(&flush_works, cpu)); 6033 cpumask_set_cpu(cpu, &flush_cpus); 6034 } 6035 } 6036 6037 /* we can have in flight packet[s] on the cpus we are not flushing, 6038 * synchronize_net() in unregister_netdevice_many() will take care of 6039 * them 6040 */ 6041 for_each_cpu(cpu, &flush_cpus) 6042 flush_work(per_cpu_ptr(&flush_works, cpu)); 6043 6044 cpus_read_unlock(); 6045 } 6046 6047 static void net_rps_send_ipi(struct softnet_data *remsd) 6048 { 6049 #ifdef CONFIG_RPS 6050 while (remsd) { 6051 struct softnet_data *next = remsd->rps_ipi_next; 6052 6053 if (cpu_online(remsd->cpu)) 6054 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6055 remsd = next; 6056 } 6057 #endif 6058 } 6059 6060 /* 6061 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6062 * Note: called with local irq disabled, but exits with local irq enabled. 6063 */ 6064 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6065 { 6066 #ifdef CONFIG_RPS 6067 struct softnet_data *remsd = sd->rps_ipi_list; 6068 6069 if (!use_backlog_threads() && remsd) { 6070 sd->rps_ipi_list = NULL; 6071 6072 local_irq_enable(); 6073 6074 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6075 net_rps_send_ipi(remsd); 6076 } else 6077 #endif 6078 local_irq_enable(); 6079 } 6080 6081 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6082 { 6083 #ifdef CONFIG_RPS 6084 return !use_backlog_threads() && sd->rps_ipi_list; 6085 #else 6086 return false; 6087 #endif 6088 } 6089 6090 static int process_backlog(struct napi_struct *napi, int quota) 6091 { 6092 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6093 bool again = true; 6094 int work = 0; 6095 6096 /* Check if we have pending ipi, its better to send them now, 6097 * not waiting net_rx_action() end. 6098 */ 6099 if (sd_has_rps_ipi_waiting(sd)) { 6100 local_irq_disable(); 6101 net_rps_action_and_irq_enable(sd); 6102 } 6103 6104 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6105 while (again) { 6106 struct sk_buff *skb; 6107 6108 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6109 while ((skb = __skb_dequeue(&sd->process_queue))) { 6110 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6111 rcu_read_lock(); 6112 __netif_receive_skb(skb); 6113 rcu_read_unlock(); 6114 if (++work >= quota) { 6115 rps_input_queue_head_add(sd, work); 6116 return work; 6117 } 6118 6119 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6120 } 6121 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6122 6123 backlog_lock_irq_disable(sd); 6124 if (skb_queue_empty(&sd->input_pkt_queue)) { 6125 /* 6126 * Inline a custom version of __napi_complete(). 6127 * only current cpu owns and manipulates this napi, 6128 * and NAPI_STATE_SCHED is the only possible flag set 6129 * on backlog. 6130 * We can use a plain write instead of clear_bit(), 6131 * and we dont need an smp_mb() memory barrier. 6132 */ 6133 napi->state &= NAPIF_STATE_THREADED; 6134 again = false; 6135 } else { 6136 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6137 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6138 &sd->process_queue); 6139 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6140 } 6141 backlog_unlock_irq_enable(sd); 6142 } 6143 6144 if (work) 6145 rps_input_queue_head_add(sd, work); 6146 return work; 6147 } 6148 6149 /** 6150 * __napi_schedule - schedule for receive 6151 * @n: entry to schedule 6152 * 6153 * The entry's receive function will be scheduled to run. 6154 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6155 */ 6156 void __napi_schedule(struct napi_struct *n) 6157 { 6158 unsigned long flags; 6159 6160 local_irq_save(flags); 6161 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6162 local_irq_restore(flags); 6163 } 6164 EXPORT_SYMBOL(__napi_schedule); 6165 6166 /** 6167 * napi_schedule_prep - check if napi can be scheduled 6168 * @n: napi context 6169 * 6170 * Test if NAPI routine is already running, and if not mark 6171 * it as running. This is used as a condition variable to 6172 * insure only one NAPI poll instance runs. We also make 6173 * sure there is no pending NAPI disable. 6174 */ 6175 bool napi_schedule_prep(struct napi_struct *n) 6176 { 6177 unsigned long new, val = READ_ONCE(n->state); 6178 6179 do { 6180 if (unlikely(val & NAPIF_STATE_DISABLE)) 6181 return false; 6182 new = val | NAPIF_STATE_SCHED; 6183 6184 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6185 * This was suggested by Alexander Duyck, as compiler 6186 * emits better code than : 6187 * if (val & NAPIF_STATE_SCHED) 6188 * new |= NAPIF_STATE_MISSED; 6189 */ 6190 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6191 NAPIF_STATE_MISSED; 6192 } while (!try_cmpxchg(&n->state, &val, new)); 6193 6194 return !(val & NAPIF_STATE_SCHED); 6195 } 6196 EXPORT_SYMBOL(napi_schedule_prep); 6197 6198 /** 6199 * __napi_schedule_irqoff - schedule for receive 6200 * @n: entry to schedule 6201 * 6202 * Variant of __napi_schedule() assuming hard irqs are masked. 6203 * 6204 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6205 * because the interrupt disabled assumption might not be true 6206 * due to force-threaded interrupts and spinlock substitution. 6207 */ 6208 void __napi_schedule_irqoff(struct napi_struct *n) 6209 { 6210 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6211 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6212 else 6213 __napi_schedule(n); 6214 } 6215 EXPORT_SYMBOL(__napi_schedule_irqoff); 6216 6217 bool napi_complete_done(struct napi_struct *n, int work_done) 6218 { 6219 unsigned long flags, val, new, timeout = 0; 6220 bool ret = true; 6221 6222 /* 6223 * 1) Don't let napi dequeue from the cpu poll list 6224 * just in case its running on a different cpu. 6225 * 2) If we are busy polling, do nothing here, we have 6226 * the guarantee we will be called later. 6227 */ 6228 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6229 NAPIF_STATE_IN_BUSY_POLL))) 6230 return false; 6231 6232 if (work_done) { 6233 if (n->gro_bitmask) 6234 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6235 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6236 } 6237 if (n->defer_hard_irqs_count > 0) { 6238 n->defer_hard_irqs_count--; 6239 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6240 if (timeout) 6241 ret = false; 6242 } 6243 if (n->gro_bitmask) { 6244 /* When the NAPI instance uses a timeout and keeps postponing 6245 * it, we need to bound somehow the time packets are kept in 6246 * the GRO layer 6247 */ 6248 napi_gro_flush(n, !!timeout); 6249 } 6250 6251 gro_normal_list(n); 6252 6253 if (unlikely(!list_empty(&n->poll_list))) { 6254 /* If n->poll_list is not empty, we need to mask irqs */ 6255 local_irq_save(flags); 6256 list_del_init(&n->poll_list); 6257 local_irq_restore(flags); 6258 } 6259 WRITE_ONCE(n->list_owner, -1); 6260 6261 val = READ_ONCE(n->state); 6262 do { 6263 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6264 6265 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6266 NAPIF_STATE_SCHED_THREADED | 6267 NAPIF_STATE_PREFER_BUSY_POLL); 6268 6269 /* If STATE_MISSED was set, leave STATE_SCHED set, 6270 * because we will call napi->poll() one more time. 6271 * This C code was suggested by Alexander Duyck to help gcc. 6272 */ 6273 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6274 NAPIF_STATE_SCHED; 6275 } while (!try_cmpxchg(&n->state, &val, new)); 6276 6277 if (unlikely(val & NAPIF_STATE_MISSED)) { 6278 __napi_schedule(n); 6279 return false; 6280 } 6281 6282 if (timeout) 6283 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6284 HRTIMER_MODE_REL_PINNED); 6285 return ret; 6286 } 6287 EXPORT_SYMBOL(napi_complete_done); 6288 6289 /* must be called under rcu_read_lock(), as we dont take a reference */ 6290 struct napi_struct *napi_by_id(unsigned int napi_id) 6291 { 6292 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6293 struct napi_struct *napi; 6294 6295 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6296 if (napi->napi_id == napi_id) 6297 return napi; 6298 6299 return NULL; 6300 } 6301 6302 static void skb_defer_free_flush(struct softnet_data *sd) 6303 { 6304 struct sk_buff *skb, *next; 6305 6306 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6307 if (!READ_ONCE(sd->defer_list)) 6308 return; 6309 6310 spin_lock(&sd->defer_lock); 6311 skb = sd->defer_list; 6312 sd->defer_list = NULL; 6313 sd->defer_count = 0; 6314 spin_unlock(&sd->defer_lock); 6315 6316 while (skb != NULL) { 6317 next = skb->next; 6318 napi_consume_skb(skb, 1); 6319 skb = next; 6320 } 6321 } 6322 6323 #if defined(CONFIG_NET_RX_BUSY_POLL) 6324 6325 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6326 { 6327 if (!skip_schedule) { 6328 gro_normal_list(napi); 6329 __napi_schedule(napi); 6330 return; 6331 } 6332 6333 if (napi->gro_bitmask) { 6334 /* flush too old packets 6335 * If HZ < 1000, flush all packets. 6336 */ 6337 napi_gro_flush(napi, HZ >= 1000); 6338 } 6339 6340 gro_normal_list(napi); 6341 clear_bit(NAPI_STATE_SCHED, &napi->state); 6342 } 6343 6344 enum { 6345 NAPI_F_PREFER_BUSY_POLL = 1, 6346 NAPI_F_END_ON_RESCHED = 2, 6347 }; 6348 6349 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6350 unsigned flags, u16 budget) 6351 { 6352 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6353 bool skip_schedule = false; 6354 unsigned long timeout; 6355 int rc; 6356 6357 /* Busy polling means there is a high chance device driver hard irq 6358 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6359 * set in napi_schedule_prep(). 6360 * Since we are about to call napi->poll() once more, we can safely 6361 * clear NAPI_STATE_MISSED. 6362 * 6363 * Note: x86 could use a single "lock and ..." instruction 6364 * to perform these two clear_bit() 6365 */ 6366 clear_bit(NAPI_STATE_MISSED, &napi->state); 6367 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6368 6369 local_bh_disable(); 6370 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6371 6372 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6373 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6374 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6375 if (napi->defer_hard_irqs_count && timeout) { 6376 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6377 skip_schedule = true; 6378 } 6379 } 6380 6381 /* All we really want here is to re-enable device interrupts. 6382 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6383 */ 6384 rc = napi->poll(napi, budget); 6385 /* We can't gro_normal_list() here, because napi->poll() might have 6386 * rearmed the napi (napi_complete_done()) in which case it could 6387 * already be running on another CPU. 6388 */ 6389 trace_napi_poll(napi, rc, budget); 6390 netpoll_poll_unlock(have_poll_lock); 6391 if (rc == budget) 6392 __busy_poll_stop(napi, skip_schedule); 6393 bpf_net_ctx_clear(bpf_net_ctx); 6394 local_bh_enable(); 6395 } 6396 6397 static void __napi_busy_loop(unsigned int napi_id, 6398 bool (*loop_end)(void *, unsigned long), 6399 void *loop_end_arg, unsigned flags, u16 budget) 6400 { 6401 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6402 int (*napi_poll)(struct napi_struct *napi, int budget); 6403 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6404 void *have_poll_lock = NULL; 6405 struct napi_struct *napi; 6406 6407 WARN_ON_ONCE(!rcu_read_lock_held()); 6408 6409 restart: 6410 napi_poll = NULL; 6411 6412 napi = napi_by_id(napi_id); 6413 if (!napi) 6414 return; 6415 6416 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6417 preempt_disable(); 6418 for (;;) { 6419 int work = 0; 6420 6421 local_bh_disable(); 6422 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6423 if (!napi_poll) { 6424 unsigned long val = READ_ONCE(napi->state); 6425 6426 /* If multiple threads are competing for this napi, 6427 * we avoid dirtying napi->state as much as we can. 6428 */ 6429 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6430 NAPIF_STATE_IN_BUSY_POLL)) { 6431 if (flags & NAPI_F_PREFER_BUSY_POLL) 6432 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6433 goto count; 6434 } 6435 if (cmpxchg(&napi->state, val, 6436 val | NAPIF_STATE_IN_BUSY_POLL | 6437 NAPIF_STATE_SCHED) != val) { 6438 if (flags & NAPI_F_PREFER_BUSY_POLL) 6439 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6440 goto count; 6441 } 6442 have_poll_lock = netpoll_poll_lock(napi); 6443 napi_poll = napi->poll; 6444 } 6445 work = napi_poll(napi, budget); 6446 trace_napi_poll(napi, work, budget); 6447 gro_normal_list(napi); 6448 count: 6449 if (work > 0) 6450 __NET_ADD_STATS(dev_net(napi->dev), 6451 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6452 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6453 bpf_net_ctx_clear(bpf_net_ctx); 6454 local_bh_enable(); 6455 6456 if (!loop_end || loop_end(loop_end_arg, start_time)) 6457 break; 6458 6459 if (unlikely(need_resched())) { 6460 if (flags & NAPI_F_END_ON_RESCHED) 6461 break; 6462 if (napi_poll) 6463 busy_poll_stop(napi, have_poll_lock, flags, budget); 6464 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6465 preempt_enable(); 6466 rcu_read_unlock(); 6467 cond_resched(); 6468 rcu_read_lock(); 6469 if (loop_end(loop_end_arg, start_time)) 6470 return; 6471 goto restart; 6472 } 6473 cpu_relax(); 6474 } 6475 if (napi_poll) 6476 busy_poll_stop(napi, have_poll_lock, flags, budget); 6477 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6478 preempt_enable(); 6479 } 6480 6481 void napi_busy_loop_rcu(unsigned int napi_id, 6482 bool (*loop_end)(void *, unsigned long), 6483 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6484 { 6485 unsigned flags = NAPI_F_END_ON_RESCHED; 6486 6487 if (prefer_busy_poll) 6488 flags |= NAPI_F_PREFER_BUSY_POLL; 6489 6490 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6491 } 6492 6493 void napi_busy_loop(unsigned int napi_id, 6494 bool (*loop_end)(void *, unsigned long), 6495 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6496 { 6497 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6498 6499 rcu_read_lock(); 6500 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6501 rcu_read_unlock(); 6502 } 6503 EXPORT_SYMBOL(napi_busy_loop); 6504 6505 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6506 6507 static void napi_hash_add(struct napi_struct *napi) 6508 { 6509 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6510 return; 6511 6512 spin_lock(&napi_hash_lock); 6513 6514 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6515 do { 6516 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6517 napi_gen_id = MIN_NAPI_ID; 6518 } while (napi_by_id(napi_gen_id)); 6519 napi->napi_id = napi_gen_id; 6520 6521 hlist_add_head_rcu(&napi->napi_hash_node, 6522 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6523 6524 spin_unlock(&napi_hash_lock); 6525 } 6526 6527 /* Warning : caller is responsible to make sure rcu grace period 6528 * is respected before freeing memory containing @napi 6529 */ 6530 static void napi_hash_del(struct napi_struct *napi) 6531 { 6532 spin_lock(&napi_hash_lock); 6533 6534 hlist_del_init_rcu(&napi->napi_hash_node); 6535 6536 spin_unlock(&napi_hash_lock); 6537 } 6538 6539 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6540 { 6541 struct napi_struct *napi; 6542 6543 napi = container_of(timer, struct napi_struct, timer); 6544 6545 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6546 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6547 */ 6548 if (!napi_disable_pending(napi) && 6549 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6550 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6551 __napi_schedule_irqoff(napi); 6552 } 6553 6554 return HRTIMER_NORESTART; 6555 } 6556 6557 static void init_gro_hash(struct napi_struct *napi) 6558 { 6559 int i; 6560 6561 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6562 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6563 napi->gro_hash[i].count = 0; 6564 } 6565 napi->gro_bitmask = 0; 6566 } 6567 6568 int dev_set_threaded(struct net_device *dev, bool threaded) 6569 { 6570 struct napi_struct *napi; 6571 int err = 0; 6572 6573 if (dev->threaded == threaded) 6574 return 0; 6575 6576 if (threaded) { 6577 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6578 if (!napi->thread) { 6579 err = napi_kthread_create(napi); 6580 if (err) { 6581 threaded = false; 6582 break; 6583 } 6584 } 6585 } 6586 } 6587 6588 WRITE_ONCE(dev->threaded, threaded); 6589 6590 /* Make sure kthread is created before THREADED bit 6591 * is set. 6592 */ 6593 smp_mb__before_atomic(); 6594 6595 /* Setting/unsetting threaded mode on a napi might not immediately 6596 * take effect, if the current napi instance is actively being 6597 * polled. In this case, the switch between threaded mode and 6598 * softirq mode will happen in the next round of napi_schedule(). 6599 * This should not cause hiccups/stalls to the live traffic. 6600 */ 6601 list_for_each_entry(napi, &dev->napi_list, dev_list) 6602 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6603 6604 return err; 6605 } 6606 EXPORT_SYMBOL(dev_set_threaded); 6607 6608 /** 6609 * netif_queue_set_napi - Associate queue with the napi 6610 * @dev: device to which NAPI and queue belong 6611 * @queue_index: Index of queue 6612 * @type: queue type as RX or TX 6613 * @napi: NAPI context, pass NULL to clear previously set NAPI 6614 * 6615 * Set queue with its corresponding napi context. This should be done after 6616 * registering the NAPI handler for the queue-vector and the queues have been 6617 * mapped to the corresponding interrupt vector. 6618 */ 6619 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6620 enum netdev_queue_type type, struct napi_struct *napi) 6621 { 6622 struct netdev_rx_queue *rxq; 6623 struct netdev_queue *txq; 6624 6625 if (WARN_ON_ONCE(napi && !napi->dev)) 6626 return; 6627 if (dev->reg_state >= NETREG_REGISTERED) 6628 ASSERT_RTNL(); 6629 6630 switch (type) { 6631 case NETDEV_QUEUE_TYPE_RX: 6632 rxq = __netif_get_rx_queue(dev, queue_index); 6633 rxq->napi = napi; 6634 return; 6635 case NETDEV_QUEUE_TYPE_TX: 6636 txq = netdev_get_tx_queue(dev, queue_index); 6637 txq->napi = napi; 6638 return; 6639 default: 6640 return; 6641 } 6642 } 6643 EXPORT_SYMBOL(netif_queue_set_napi); 6644 6645 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6646 int (*poll)(struct napi_struct *, int), int weight) 6647 { 6648 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6649 return; 6650 6651 INIT_LIST_HEAD(&napi->poll_list); 6652 INIT_HLIST_NODE(&napi->napi_hash_node); 6653 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6654 napi->timer.function = napi_watchdog; 6655 init_gro_hash(napi); 6656 napi->skb = NULL; 6657 INIT_LIST_HEAD(&napi->rx_list); 6658 napi->rx_count = 0; 6659 napi->poll = poll; 6660 if (weight > NAPI_POLL_WEIGHT) 6661 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6662 weight); 6663 napi->weight = weight; 6664 napi->dev = dev; 6665 #ifdef CONFIG_NETPOLL 6666 napi->poll_owner = -1; 6667 #endif 6668 napi->list_owner = -1; 6669 set_bit(NAPI_STATE_SCHED, &napi->state); 6670 set_bit(NAPI_STATE_NPSVC, &napi->state); 6671 list_add_rcu(&napi->dev_list, &dev->napi_list); 6672 napi_hash_add(napi); 6673 napi_get_frags_check(napi); 6674 /* Create kthread for this napi if dev->threaded is set. 6675 * Clear dev->threaded if kthread creation failed so that 6676 * threaded mode will not be enabled in napi_enable(). 6677 */ 6678 if (dev->threaded && napi_kthread_create(napi)) 6679 dev->threaded = false; 6680 netif_napi_set_irq(napi, -1); 6681 } 6682 EXPORT_SYMBOL(netif_napi_add_weight); 6683 6684 void napi_disable(struct napi_struct *n) 6685 { 6686 unsigned long val, new; 6687 6688 might_sleep(); 6689 set_bit(NAPI_STATE_DISABLE, &n->state); 6690 6691 val = READ_ONCE(n->state); 6692 do { 6693 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6694 usleep_range(20, 200); 6695 val = READ_ONCE(n->state); 6696 } 6697 6698 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6699 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6700 } while (!try_cmpxchg(&n->state, &val, new)); 6701 6702 hrtimer_cancel(&n->timer); 6703 6704 clear_bit(NAPI_STATE_DISABLE, &n->state); 6705 } 6706 EXPORT_SYMBOL(napi_disable); 6707 6708 /** 6709 * napi_enable - enable NAPI scheduling 6710 * @n: NAPI context 6711 * 6712 * Resume NAPI from being scheduled on this context. 6713 * Must be paired with napi_disable. 6714 */ 6715 void napi_enable(struct napi_struct *n) 6716 { 6717 unsigned long new, val = READ_ONCE(n->state); 6718 6719 do { 6720 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6721 6722 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6723 if (n->dev->threaded && n->thread) 6724 new |= NAPIF_STATE_THREADED; 6725 } while (!try_cmpxchg(&n->state, &val, new)); 6726 } 6727 EXPORT_SYMBOL(napi_enable); 6728 6729 static void flush_gro_hash(struct napi_struct *napi) 6730 { 6731 int i; 6732 6733 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6734 struct sk_buff *skb, *n; 6735 6736 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6737 kfree_skb(skb); 6738 napi->gro_hash[i].count = 0; 6739 } 6740 } 6741 6742 /* Must be called in process context */ 6743 void __netif_napi_del(struct napi_struct *napi) 6744 { 6745 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6746 return; 6747 6748 napi_hash_del(napi); 6749 list_del_rcu(&napi->dev_list); 6750 napi_free_frags(napi); 6751 6752 flush_gro_hash(napi); 6753 napi->gro_bitmask = 0; 6754 6755 if (napi->thread) { 6756 kthread_stop(napi->thread); 6757 napi->thread = NULL; 6758 } 6759 } 6760 EXPORT_SYMBOL(__netif_napi_del); 6761 6762 static int __napi_poll(struct napi_struct *n, bool *repoll) 6763 { 6764 int work, weight; 6765 6766 weight = n->weight; 6767 6768 /* This NAPI_STATE_SCHED test is for avoiding a race 6769 * with netpoll's poll_napi(). Only the entity which 6770 * obtains the lock and sees NAPI_STATE_SCHED set will 6771 * actually make the ->poll() call. Therefore we avoid 6772 * accidentally calling ->poll() when NAPI is not scheduled. 6773 */ 6774 work = 0; 6775 if (napi_is_scheduled(n)) { 6776 work = n->poll(n, weight); 6777 trace_napi_poll(n, work, weight); 6778 6779 xdp_do_check_flushed(n); 6780 } 6781 6782 if (unlikely(work > weight)) 6783 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6784 n->poll, work, weight); 6785 6786 if (likely(work < weight)) 6787 return work; 6788 6789 /* Drivers must not modify the NAPI state if they 6790 * consume the entire weight. In such cases this code 6791 * still "owns" the NAPI instance and therefore can 6792 * move the instance around on the list at-will. 6793 */ 6794 if (unlikely(napi_disable_pending(n))) { 6795 napi_complete(n); 6796 return work; 6797 } 6798 6799 /* The NAPI context has more processing work, but busy-polling 6800 * is preferred. Exit early. 6801 */ 6802 if (napi_prefer_busy_poll(n)) { 6803 if (napi_complete_done(n, work)) { 6804 /* If timeout is not set, we need to make sure 6805 * that the NAPI is re-scheduled. 6806 */ 6807 napi_schedule(n); 6808 } 6809 return work; 6810 } 6811 6812 if (n->gro_bitmask) { 6813 /* flush too old packets 6814 * If HZ < 1000, flush all packets. 6815 */ 6816 napi_gro_flush(n, HZ >= 1000); 6817 } 6818 6819 gro_normal_list(n); 6820 6821 /* Some drivers may have called napi_schedule 6822 * prior to exhausting their budget. 6823 */ 6824 if (unlikely(!list_empty(&n->poll_list))) { 6825 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6826 n->dev ? n->dev->name : "backlog"); 6827 return work; 6828 } 6829 6830 *repoll = true; 6831 6832 return work; 6833 } 6834 6835 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6836 { 6837 bool do_repoll = false; 6838 void *have; 6839 int work; 6840 6841 list_del_init(&n->poll_list); 6842 6843 have = netpoll_poll_lock(n); 6844 6845 work = __napi_poll(n, &do_repoll); 6846 6847 if (do_repoll) 6848 list_add_tail(&n->poll_list, repoll); 6849 6850 netpoll_poll_unlock(have); 6851 6852 return work; 6853 } 6854 6855 static int napi_thread_wait(struct napi_struct *napi) 6856 { 6857 set_current_state(TASK_INTERRUPTIBLE); 6858 6859 while (!kthread_should_stop()) { 6860 /* Testing SCHED_THREADED bit here to make sure the current 6861 * kthread owns this napi and could poll on this napi. 6862 * Testing SCHED bit is not enough because SCHED bit might be 6863 * set by some other busy poll thread or by napi_disable(). 6864 */ 6865 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 6866 WARN_ON(!list_empty(&napi->poll_list)); 6867 __set_current_state(TASK_RUNNING); 6868 return 0; 6869 } 6870 6871 schedule(); 6872 set_current_state(TASK_INTERRUPTIBLE); 6873 } 6874 __set_current_state(TASK_RUNNING); 6875 6876 return -1; 6877 } 6878 6879 static void napi_threaded_poll_loop(struct napi_struct *napi) 6880 { 6881 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6882 struct softnet_data *sd; 6883 unsigned long last_qs = jiffies; 6884 6885 for (;;) { 6886 bool repoll = false; 6887 void *have; 6888 6889 local_bh_disable(); 6890 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6891 6892 sd = this_cpu_ptr(&softnet_data); 6893 sd->in_napi_threaded_poll = true; 6894 6895 have = netpoll_poll_lock(napi); 6896 __napi_poll(napi, &repoll); 6897 netpoll_poll_unlock(have); 6898 6899 sd->in_napi_threaded_poll = false; 6900 barrier(); 6901 6902 if (sd_has_rps_ipi_waiting(sd)) { 6903 local_irq_disable(); 6904 net_rps_action_and_irq_enable(sd); 6905 } 6906 skb_defer_free_flush(sd); 6907 bpf_net_ctx_clear(bpf_net_ctx); 6908 local_bh_enable(); 6909 6910 if (!repoll) 6911 break; 6912 6913 rcu_softirq_qs_periodic(last_qs); 6914 cond_resched(); 6915 } 6916 } 6917 6918 static int napi_threaded_poll(void *data) 6919 { 6920 struct napi_struct *napi = data; 6921 6922 while (!napi_thread_wait(napi)) 6923 napi_threaded_poll_loop(napi); 6924 6925 return 0; 6926 } 6927 6928 static __latent_entropy void net_rx_action(struct softirq_action *h) 6929 { 6930 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6931 unsigned long time_limit = jiffies + 6932 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 6933 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6934 int budget = READ_ONCE(net_hotdata.netdev_budget); 6935 LIST_HEAD(list); 6936 LIST_HEAD(repoll); 6937 6938 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6939 start: 6940 sd->in_net_rx_action = true; 6941 local_irq_disable(); 6942 list_splice_init(&sd->poll_list, &list); 6943 local_irq_enable(); 6944 6945 for (;;) { 6946 struct napi_struct *n; 6947 6948 skb_defer_free_flush(sd); 6949 6950 if (list_empty(&list)) { 6951 if (list_empty(&repoll)) { 6952 sd->in_net_rx_action = false; 6953 barrier(); 6954 /* We need to check if ____napi_schedule() 6955 * had refilled poll_list while 6956 * sd->in_net_rx_action was true. 6957 */ 6958 if (!list_empty(&sd->poll_list)) 6959 goto start; 6960 if (!sd_has_rps_ipi_waiting(sd)) 6961 goto end; 6962 } 6963 break; 6964 } 6965 6966 n = list_first_entry(&list, struct napi_struct, poll_list); 6967 budget -= napi_poll(n, &repoll); 6968 6969 /* If softirq window is exhausted then punt. 6970 * Allow this to run for 2 jiffies since which will allow 6971 * an average latency of 1.5/HZ. 6972 */ 6973 if (unlikely(budget <= 0 || 6974 time_after_eq(jiffies, time_limit))) { 6975 sd->time_squeeze++; 6976 break; 6977 } 6978 } 6979 6980 local_irq_disable(); 6981 6982 list_splice_tail_init(&sd->poll_list, &list); 6983 list_splice_tail(&repoll, &list); 6984 list_splice(&list, &sd->poll_list); 6985 if (!list_empty(&sd->poll_list)) 6986 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6987 else 6988 sd->in_net_rx_action = false; 6989 6990 net_rps_action_and_irq_enable(sd); 6991 end: 6992 bpf_net_ctx_clear(bpf_net_ctx); 6993 } 6994 6995 struct netdev_adjacent { 6996 struct net_device *dev; 6997 netdevice_tracker dev_tracker; 6998 6999 /* upper master flag, there can only be one master device per list */ 7000 bool master; 7001 7002 /* lookup ignore flag */ 7003 bool ignore; 7004 7005 /* counter for the number of times this device was added to us */ 7006 u16 ref_nr; 7007 7008 /* private field for the users */ 7009 void *private; 7010 7011 struct list_head list; 7012 struct rcu_head rcu; 7013 }; 7014 7015 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7016 struct list_head *adj_list) 7017 { 7018 struct netdev_adjacent *adj; 7019 7020 list_for_each_entry(adj, adj_list, list) { 7021 if (adj->dev == adj_dev) 7022 return adj; 7023 } 7024 return NULL; 7025 } 7026 7027 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7028 struct netdev_nested_priv *priv) 7029 { 7030 struct net_device *dev = (struct net_device *)priv->data; 7031 7032 return upper_dev == dev; 7033 } 7034 7035 /** 7036 * netdev_has_upper_dev - Check if device is linked to an upper device 7037 * @dev: device 7038 * @upper_dev: upper device to check 7039 * 7040 * Find out if a device is linked to specified upper device and return true 7041 * in case it is. Note that this checks only immediate upper device, 7042 * not through a complete stack of devices. The caller must hold the RTNL lock. 7043 */ 7044 bool netdev_has_upper_dev(struct net_device *dev, 7045 struct net_device *upper_dev) 7046 { 7047 struct netdev_nested_priv priv = { 7048 .data = (void *)upper_dev, 7049 }; 7050 7051 ASSERT_RTNL(); 7052 7053 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7054 &priv); 7055 } 7056 EXPORT_SYMBOL(netdev_has_upper_dev); 7057 7058 /** 7059 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7060 * @dev: device 7061 * @upper_dev: upper device to check 7062 * 7063 * Find out if a device is linked to specified upper device and return true 7064 * in case it is. Note that this checks the entire upper device chain. 7065 * The caller must hold rcu lock. 7066 */ 7067 7068 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7069 struct net_device *upper_dev) 7070 { 7071 struct netdev_nested_priv priv = { 7072 .data = (void *)upper_dev, 7073 }; 7074 7075 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7076 &priv); 7077 } 7078 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7079 7080 /** 7081 * netdev_has_any_upper_dev - Check if device is linked to some device 7082 * @dev: device 7083 * 7084 * Find out if a device is linked to an upper device and return true in case 7085 * it is. The caller must hold the RTNL lock. 7086 */ 7087 bool netdev_has_any_upper_dev(struct net_device *dev) 7088 { 7089 ASSERT_RTNL(); 7090 7091 return !list_empty(&dev->adj_list.upper); 7092 } 7093 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7094 7095 /** 7096 * netdev_master_upper_dev_get - Get master upper device 7097 * @dev: device 7098 * 7099 * Find a master upper device and return pointer to it or NULL in case 7100 * it's not there. The caller must hold the RTNL lock. 7101 */ 7102 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7103 { 7104 struct netdev_adjacent *upper; 7105 7106 ASSERT_RTNL(); 7107 7108 if (list_empty(&dev->adj_list.upper)) 7109 return NULL; 7110 7111 upper = list_first_entry(&dev->adj_list.upper, 7112 struct netdev_adjacent, list); 7113 if (likely(upper->master)) 7114 return upper->dev; 7115 return NULL; 7116 } 7117 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7118 7119 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7120 { 7121 struct netdev_adjacent *upper; 7122 7123 ASSERT_RTNL(); 7124 7125 if (list_empty(&dev->adj_list.upper)) 7126 return NULL; 7127 7128 upper = list_first_entry(&dev->adj_list.upper, 7129 struct netdev_adjacent, list); 7130 if (likely(upper->master) && !upper->ignore) 7131 return upper->dev; 7132 return NULL; 7133 } 7134 7135 /** 7136 * netdev_has_any_lower_dev - Check if device is linked to some device 7137 * @dev: device 7138 * 7139 * Find out if a device is linked to a lower device and return true in case 7140 * it is. The caller must hold the RTNL lock. 7141 */ 7142 static bool netdev_has_any_lower_dev(struct net_device *dev) 7143 { 7144 ASSERT_RTNL(); 7145 7146 return !list_empty(&dev->adj_list.lower); 7147 } 7148 7149 void *netdev_adjacent_get_private(struct list_head *adj_list) 7150 { 7151 struct netdev_adjacent *adj; 7152 7153 adj = list_entry(adj_list, struct netdev_adjacent, list); 7154 7155 return adj->private; 7156 } 7157 EXPORT_SYMBOL(netdev_adjacent_get_private); 7158 7159 /** 7160 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7161 * @dev: device 7162 * @iter: list_head ** of the current position 7163 * 7164 * Gets the next device from the dev's upper list, starting from iter 7165 * position. The caller must hold RCU read lock. 7166 */ 7167 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7168 struct list_head **iter) 7169 { 7170 struct netdev_adjacent *upper; 7171 7172 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7173 7174 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7175 7176 if (&upper->list == &dev->adj_list.upper) 7177 return NULL; 7178 7179 *iter = &upper->list; 7180 7181 return upper->dev; 7182 } 7183 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7184 7185 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7186 struct list_head **iter, 7187 bool *ignore) 7188 { 7189 struct netdev_adjacent *upper; 7190 7191 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7192 7193 if (&upper->list == &dev->adj_list.upper) 7194 return NULL; 7195 7196 *iter = &upper->list; 7197 *ignore = upper->ignore; 7198 7199 return upper->dev; 7200 } 7201 7202 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7203 struct list_head **iter) 7204 { 7205 struct netdev_adjacent *upper; 7206 7207 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7208 7209 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7210 7211 if (&upper->list == &dev->adj_list.upper) 7212 return NULL; 7213 7214 *iter = &upper->list; 7215 7216 return upper->dev; 7217 } 7218 7219 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7220 int (*fn)(struct net_device *dev, 7221 struct netdev_nested_priv *priv), 7222 struct netdev_nested_priv *priv) 7223 { 7224 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7225 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7226 int ret, cur = 0; 7227 bool ignore; 7228 7229 now = dev; 7230 iter = &dev->adj_list.upper; 7231 7232 while (1) { 7233 if (now != dev) { 7234 ret = fn(now, priv); 7235 if (ret) 7236 return ret; 7237 } 7238 7239 next = NULL; 7240 while (1) { 7241 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7242 if (!udev) 7243 break; 7244 if (ignore) 7245 continue; 7246 7247 next = udev; 7248 niter = &udev->adj_list.upper; 7249 dev_stack[cur] = now; 7250 iter_stack[cur++] = iter; 7251 break; 7252 } 7253 7254 if (!next) { 7255 if (!cur) 7256 return 0; 7257 next = dev_stack[--cur]; 7258 niter = iter_stack[cur]; 7259 } 7260 7261 now = next; 7262 iter = niter; 7263 } 7264 7265 return 0; 7266 } 7267 7268 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7269 int (*fn)(struct net_device *dev, 7270 struct netdev_nested_priv *priv), 7271 struct netdev_nested_priv *priv) 7272 { 7273 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7274 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7275 int ret, cur = 0; 7276 7277 now = dev; 7278 iter = &dev->adj_list.upper; 7279 7280 while (1) { 7281 if (now != dev) { 7282 ret = fn(now, priv); 7283 if (ret) 7284 return ret; 7285 } 7286 7287 next = NULL; 7288 while (1) { 7289 udev = netdev_next_upper_dev_rcu(now, &iter); 7290 if (!udev) 7291 break; 7292 7293 next = udev; 7294 niter = &udev->adj_list.upper; 7295 dev_stack[cur] = now; 7296 iter_stack[cur++] = iter; 7297 break; 7298 } 7299 7300 if (!next) { 7301 if (!cur) 7302 return 0; 7303 next = dev_stack[--cur]; 7304 niter = iter_stack[cur]; 7305 } 7306 7307 now = next; 7308 iter = niter; 7309 } 7310 7311 return 0; 7312 } 7313 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7314 7315 static bool __netdev_has_upper_dev(struct net_device *dev, 7316 struct net_device *upper_dev) 7317 { 7318 struct netdev_nested_priv priv = { 7319 .flags = 0, 7320 .data = (void *)upper_dev, 7321 }; 7322 7323 ASSERT_RTNL(); 7324 7325 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7326 &priv); 7327 } 7328 7329 /** 7330 * netdev_lower_get_next_private - Get the next ->private from the 7331 * lower neighbour list 7332 * @dev: device 7333 * @iter: list_head ** of the current position 7334 * 7335 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7336 * list, starting from iter position. The caller must hold either hold the 7337 * RTNL lock or its own locking that guarantees that the neighbour lower 7338 * list will remain unchanged. 7339 */ 7340 void *netdev_lower_get_next_private(struct net_device *dev, 7341 struct list_head **iter) 7342 { 7343 struct netdev_adjacent *lower; 7344 7345 lower = list_entry(*iter, struct netdev_adjacent, list); 7346 7347 if (&lower->list == &dev->adj_list.lower) 7348 return NULL; 7349 7350 *iter = lower->list.next; 7351 7352 return lower->private; 7353 } 7354 EXPORT_SYMBOL(netdev_lower_get_next_private); 7355 7356 /** 7357 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7358 * lower neighbour list, RCU 7359 * variant 7360 * @dev: device 7361 * @iter: list_head ** of the current position 7362 * 7363 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7364 * list, starting from iter position. The caller must hold RCU read lock. 7365 */ 7366 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7367 struct list_head **iter) 7368 { 7369 struct netdev_adjacent *lower; 7370 7371 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7372 7373 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7374 7375 if (&lower->list == &dev->adj_list.lower) 7376 return NULL; 7377 7378 *iter = &lower->list; 7379 7380 return lower->private; 7381 } 7382 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7383 7384 /** 7385 * netdev_lower_get_next - Get the next device from the lower neighbour 7386 * list 7387 * @dev: device 7388 * @iter: list_head ** of the current position 7389 * 7390 * Gets the next netdev_adjacent from the dev's lower neighbour 7391 * list, starting from iter position. The caller must hold RTNL lock or 7392 * its own locking that guarantees that the neighbour lower 7393 * list will remain unchanged. 7394 */ 7395 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7396 { 7397 struct netdev_adjacent *lower; 7398 7399 lower = list_entry(*iter, struct netdev_adjacent, list); 7400 7401 if (&lower->list == &dev->adj_list.lower) 7402 return NULL; 7403 7404 *iter = lower->list.next; 7405 7406 return lower->dev; 7407 } 7408 EXPORT_SYMBOL(netdev_lower_get_next); 7409 7410 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7411 struct list_head **iter) 7412 { 7413 struct netdev_adjacent *lower; 7414 7415 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7416 7417 if (&lower->list == &dev->adj_list.lower) 7418 return NULL; 7419 7420 *iter = &lower->list; 7421 7422 return lower->dev; 7423 } 7424 7425 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7426 struct list_head **iter, 7427 bool *ignore) 7428 { 7429 struct netdev_adjacent *lower; 7430 7431 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7432 7433 if (&lower->list == &dev->adj_list.lower) 7434 return NULL; 7435 7436 *iter = &lower->list; 7437 *ignore = lower->ignore; 7438 7439 return lower->dev; 7440 } 7441 7442 int netdev_walk_all_lower_dev(struct net_device *dev, 7443 int (*fn)(struct net_device *dev, 7444 struct netdev_nested_priv *priv), 7445 struct netdev_nested_priv *priv) 7446 { 7447 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7448 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7449 int ret, cur = 0; 7450 7451 now = dev; 7452 iter = &dev->adj_list.lower; 7453 7454 while (1) { 7455 if (now != dev) { 7456 ret = fn(now, priv); 7457 if (ret) 7458 return ret; 7459 } 7460 7461 next = NULL; 7462 while (1) { 7463 ldev = netdev_next_lower_dev(now, &iter); 7464 if (!ldev) 7465 break; 7466 7467 next = ldev; 7468 niter = &ldev->adj_list.lower; 7469 dev_stack[cur] = now; 7470 iter_stack[cur++] = iter; 7471 break; 7472 } 7473 7474 if (!next) { 7475 if (!cur) 7476 return 0; 7477 next = dev_stack[--cur]; 7478 niter = iter_stack[cur]; 7479 } 7480 7481 now = next; 7482 iter = niter; 7483 } 7484 7485 return 0; 7486 } 7487 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7488 7489 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7490 int (*fn)(struct net_device *dev, 7491 struct netdev_nested_priv *priv), 7492 struct netdev_nested_priv *priv) 7493 { 7494 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7495 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7496 int ret, cur = 0; 7497 bool ignore; 7498 7499 now = dev; 7500 iter = &dev->adj_list.lower; 7501 7502 while (1) { 7503 if (now != dev) { 7504 ret = fn(now, priv); 7505 if (ret) 7506 return ret; 7507 } 7508 7509 next = NULL; 7510 while (1) { 7511 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7512 if (!ldev) 7513 break; 7514 if (ignore) 7515 continue; 7516 7517 next = ldev; 7518 niter = &ldev->adj_list.lower; 7519 dev_stack[cur] = now; 7520 iter_stack[cur++] = iter; 7521 break; 7522 } 7523 7524 if (!next) { 7525 if (!cur) 7526 return 0; 7527 next = dev_stack[--cur]; 7528 niter = iter_stack[cur]; 7529 } 7530 7531 now = next; 7532 iter = niter; 7533 } 7534 7535 return 0; 7536 } 7537 7538 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7539 struct list_head **iter) 7540 { 7541 struct netdev_adjacent *lower; 7542 7543 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7544 if (&lower->list == &dev->adj_list.lower) 7545 return NULL; 7546 7547 *iter = &lower->list; 7548 7549 return lower->dev; 7550 } 7551 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7552 7553 static u8 __netdev_upper_depth(struct net_device *dev) 7554 { 7555 struct net_device *udev; 7556 struct list_head *iter; 7557 u8 max_depth = 0; 7558 bool ignore; 7559 7560 for (iter = &dev->adj_list.upper, 7561 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7562 udev; 7563 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7564 if (ignore) 7565 continue; 7566 if (max_depth < udev->upper_level) 7567 max_depth = udev->upper_level; 7568 } 7569 7570 return max_depth; 7571 } 7572 7573 static u8 __netdev_lower_depth(struct net_device *dev) 7574 { 7575 struct net_device *ldev; 7576 struct list_head *iter; 7577 u8 max_depth = 0; 7578 bool ignore; 7579 7580 for (iter = &dev->adj_list.lower, 7581 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7582 ldev; 7583 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7584 if (ignore) 7585 continue; 7586 if (max_depth < ldev->lower_level) 7587 max_depth = ldev->lower_level; 7588 } 7589 7590 return max_depth; 7591 } 7592 7593 static int __netdev_update_upper_level(struct net_device *dev, 7594 struct netdev_nested_priv *__unused) 7595 { 7596 dev->upper_level = __netdev_upper_depth(dev) + 1; 7597 return 0; 7598 } 7599 7600 #ifdef CONFIG_LOCKDEP 7601 static LIST_HEAD(net_unlink_list); 7602 7603 static void net_unlink_todo(struct net_device *dev) 7604 { 7605 if (list_empty(&dev->unlink_list)) 7606 list_add_tail(&dev->unlink_list, &net_unlink_list); 7607 } 7608 #endif 7609 7610 static int __netdev_update_lower_level(struct net_device *dev, 7611 struct netdev_nested_priv *priv) 7612 { 7613 dev->lower_level = __netdev_lower_depth(dev) + 1; 7614 7615 #ifdef CONFIG_LOCKDEP 7616 if (!priv) 7617 return 0; 7618 7619 if (priv->flags & NESTED_SYNC_IMM) 7620 dev->nested_level = dev->lower_level - 1; 7621 if (priv->flags & NESTED_SYNC_TODO) 7622 net_unlink_todo(dev); 7623 #endif 7624 return 0; 7625 } 7626 7627 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7628 int (*fn)(struct net_device *dev, 7629 struct netdev_nested_priv *priv), 7630 struct netdev_nested_priv *priv) 7631 { 7632 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7633 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7634 int ret, cur = 0; 7635 7636 now = dev; 7637 iter = &dev->adj_list.lower; 7638 7639 while (1) { 7640 if (now != dev) { 7641 ret = fn(now, priv); 7642 if (ret) 7643 return ret; 7644 } 7645 7646 next = NULL; 7647 while (1) { 7648 ldev = netdev_next_lower_dev_rcu(now, &iter); 7649 if (!ldev) 7650 break; 7651 7652 next = ldev; 7653 niter = &ldev->adj_list.lower; 7654 dev_stack[cur] = now; 7655 iter_stack[cur++] = iter; 7656 break; 7657 } 7658 7659 if (!next) { 7660 if (!cur) 7661 return 0; 7662 next = dev_stack[--cur]; 7663 niter = iter_stack[cur]; 7664 } 7665 7666 now = next; 7667 iter = niter; 7668 } 7669 7670 return 0; 7671 } 7672 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7673 7674 /** 7675 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7676 * lower neighbour list, RCU 7677 * variant 7678 * @dev: device 7679 * 7680 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7681 * list. The caller must hold RCU read lock. 7682 */ 7683 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7684 { 7685 struct netdev_adjacent *lower; 7686 7687 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7688 struct netdev_adjacent, list); 7689 if (lower) 7690 return lower->private; 7691 return NULL; 7692 } 7693 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7694 7695 /** 7696 * netdev_master_upper_dev_get_rcu - Get master upper device 7697 * @dev: device 7698 * 7699 * Find a master upper device and return pointer to it or NULL in case 7700 * it's not there. The caller must hold the RCU read lock. 7701 */ 7702 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7703 { 7704 struct netdev_adjacent *upper; 7705 7706 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7707 struct netdev_adjacent, list); 7708 if (upper && likely(upper->master)) 7709 return upper->dev; 7710 return NULL; 7711 } 7712 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7713 7714 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7715 struct net_device *adj_dev, 7716 struct list_head *dev_list) 7717 { 7718 char linkname[IFNAMSIZ+7]; 7719 7720 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7721 "upper_%s" : "lower_%s", adj_dev->name); 7722 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7723 linkname); 7724 } 7725 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7726 char *name, 7727 struct list_head *dev_list) 7728 { 7729 char linkname[IFNAMSIZ+7]; 7730 7731 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7732 "upper_%s" : "lower_%s", name); 7733 sysfs_remove_link(&(dev->dev.kobj), linkname); 7734 } 7735 7736 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7737 struct net_device *adj_dev, 7738 struct list_head *dev_list) 7739 { 7740 return (dev_list == &dev->adj_list.upper || 7741 dev_list == &dev->adj_list.lower) && 7742 net_eq(dev_net(dev), dev_net(adj_dev)); 7743 } 7744 7745 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7746 struct net_device *adj_dev, 7747 struct list_head *dev_list, 7748 void *private, bool master) 7749 { 7750 struct netdev_adjacent *adj; 7751 int ret; 7752 7753 adj = __netdev_find_adj(adj_dev, dev_list); 7754 7755 if (adj) { 7756 adj->ref_nr += 1; 7757 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7758 dev->name, adj_dev->name, adj->ref_nr); 7759 7760 return 0; 7761 } 7762 7763 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7764 if (!adj) 7765 return -ENOMEM; 7766 7767 adj->dev = adj_dev; 7768 adj->master = master; 7769 adj->ref_nr = 1; 7770 adj->private = private; 7771 adj->ignore = false; 7772 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7773 7774 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7775 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7776 7777 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7778 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7779 if (ret) 7780 goto free_adj; 7781 } 7782 7783 /* Ensure that master link is always the first item in list. */ 7784 if (master) { 7785 ret = sysfs_create_link(&(dev->dev.kobj), 7786 &(adj_dev->dev.kobj), "master"); 7787 if (ret) 7788 goto remove_symlinks; 7789 7790 list_add_rcu(&adj->list, dev_list); 7791 } else { 7792 list_add_tail_rcu(&adj->list, dev_list); 7793 } 7794 7795 return 0; 7796 7797 remove_symlinks: 7798 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7799 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7800 free_adj: 7801 netdev_put(adj_dev, &adj->dev_tracker); 7802 kfree(adj); 7803 7804 return ret; 7805 } 7806 7807 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7808 struct net_device *adj_dev, 7809 u16 ref_nr, 7810 struct list_head *dev_list) 7811 { 7812 struct netdev_adjacent *adj; 7813 7814 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7815 dev->name, adj_dev->name, ref_nr); 7816 7817 adj = __netdev_find_adj(adj_dev, dev_list); 7818 7819 if (!adj) { 7820 pr_err("Adjacency does not exist for device %s from %s\n", 7821 dev->name, adj_dev->name); 7822 WARN_ON(1); 7823 return; 7824 } 7825 7826 if (adj->ref_nr > ref_nr) { 7827 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7828 dev->name, adj_dev->name, ref_nr, 7829 adj->ref_nr - ref_nr); 7830 adj->ref_nr -= ref_nr; 7831 return; 7832 } 7833 7834 if (adj->master) 7835 sysfs_remove_link(&(dev->dev.kobj), "master"); 7836 7837 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7838 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7839 7840 list_del_rcu(&adj->list); 7841 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7842 adj_dev->name, dev->name, adj_dev->name); 7843 netdev_put(adj_dev, &adj->dev_tracker); 7844 kfree_rcu(adj, rcu); 7845 } 7846 7847 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7848 struct net_device *upper_dev, 7849 struct list_head *up_list, 7850 struct list_head *down_list, 7851 void *private, bool master) 7852 { 7853 int ret; 7854 7855 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7856 private, master); 7857 if (ret) 7858 return ret; 7859 7860 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7861 private, false); 7862 if (ret) { 7863 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7864 return ret; 7865 } 7866 7867 return 0; 7868 } 7869 7870 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7871 struct net_device *upper_dev, 7872 u16 ref_nr, 7873 struct list_head *up_list, 7874 struct list_head *down_list) 7875 { 7876 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7877 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7878 } 7879 7880 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7881 struct net_device *upper_dev, 7882 void *private, bool master) 7883 { 7884 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7885 &dev->adj_list.upper, 7886 &upper_dev->adj_list.lower, 7887 private, master); 7888 } 7889 7890 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7891 struct net_device *upper_dev) 7892 { 7893 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7894 &dev->adj_list.upper, 7895 &upper_dev->adj_list.lower); 7896 } 7897 7898 static int __netdev_upper_dev_link(struct net_device *dev, 7899 struct net_device *upper_dev, bool master, 7900 void *upper_priv, void *upper_info, 7901 struct netdev_nested_priv *priv, 7902 struct netlink_ext_ack *extack) 7903 { 7904 struct netdev_notifier_changeupper_info changeupper_info = { 7905 .info = { 7906 .dev = dev, 7907 .extack = extack, 7908 }, 7909 .upper_dev = upper_dev, 7910 .master = master, 7911 .linking = true, 7912 .upper_info = upper_info, 7913 }; 7914 struct net_device *master_dev; 7915 int ret = 0; 7916 7917 ASSERT_RTNL(); 7918 7919 if (dev == upper_dev) 7920 return -EBUSY; 7921 7922 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7923 if (__netdev_has_upper_dev(upper_dev, dev)) 7924 return -EBUSY; 7925 7926 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7927 return -EMLINK; 7928 7929 if (!master) { 7930 if (__netdev_has_upper_dev(dev, upper_dev)) 7931 return -EEXIST; 7932 } else { 7933 master_dev = __netdev_master_upper_dev_get(dev); 7934 if (master_dev) 7935 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7936 } 7937 7938 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7939 &changeupper_info.info); 7940 ret = notifier_to_errno(ret); 7941 if (ret) 7942 return ret; 7943 7944 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7945 master); 7946 if (ret) 7947 return ret; 7948 7949 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7950 &changeupper_info.info); 7951 ret = notifier_to_errno(ret); 7952 if (ret) 7953 goto rollback; 7954 7955 __netdev_update_upper_level(dev, NULL); 7956 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7957 7958 __netdev_update_lower_level(upper_dev, priv); 7959 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7960 priv); 7961 7962 return 0; 7963 7964 rollback: 7965 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7966 7967 return ret; 7968 } 7969 7970 /** 7971 * netdev_upper_dev_link - Add a link to the upper device 7972 * @dev: device 7973 * @upper_dev: new upper device 7974 * @extack: netlink extended ack 7975 * 7976 * Adds a link to device which is upper to this one. The caller must hold 7977 * the RTNL lock. On a failure a negative errno code is returned. 7978 * On success the reference counts are adjusted and the function 7979 * returns zero. 7980 */ 7981 int netdev_upper_dev_link(struct net_device *dev, 7982 struct net_device *upper_dev, 7983 struct netlink_ext_ack *extack) 7984 { 7985 struct netdev_nested_priv priv = { 7986 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7987 .data = NULL, 7988 }; 7989 7990 return __netdev_upper_dev_link(dev, upper_dev, false, 7991 NULL, NULL, &priv, extack); 7992 } 7993 EXPORT_SYMBOL(netdev_upper_dev_link); 7994 7995 /** 7996 * netdev_master_upper_dev_link - Add a master link to the upper device 7997 * @dev: device 7998 * @upper_dev: new upper device 7999 * @upper_priv: upper device private 8000 * @upper_info: upper info to be passed down via notifier 8001 * @extack: netlink extended ack 8002 * 8003 * Adds a link to device which is upper to this one. In this case, only 8004 * one master upper device can be linked, although other non-master devices 8005 * might be linked as well. The caller must hold the RTNL lock. 8006 * On a failure a negative errno code is returned. On success the reference 8007 * counts are adjusted and the function returns zero. 8008 */ 8009 int netdev_master_upper_dev_link(struct net_device *dev, 8010 struct net_device *upper_dev, 8011 void *upper_priv, void *upper_info, 8012 struct netlink_ext_ack *extack) 8013 { 8014 struct netdev_nested_priv priv = { 8015 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8016 .data = NULL, 8017 }; 8018 8019 return __netdev_upper_dev_link(dev, upper_dev, true, 8020 upper_priv, upper_info, &priv, extack); 8021 } 8022 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8023 8024 static void __netdev_upper_dev_unlink(struct net_device *dev, 8025 struct net_device *upper_dev, 8026 struct netdev_nested_priv *priv) 8027 { 8028 struct netdev_notifier_changeupper_info changeupper_info = { 8029 .info = { 8030 .dev = dev, 8031 }, 8032 .upper_dev = upper_dev, 8033 .linking = false, 8034 }; 8035 8036 ASSERT_RTNL(); 8037 8038 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8039 8040 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8041 &changeupper_info.info); 8042 8043 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8044 8045 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8046 &changeupper_info.info); 8047 8048 __netdev_update_upper_level(dev, NULL); 8049 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8050 8051 __netdev_update_lower_level(upper_dev, priv); 8052 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8053 priv); 8054 } 8055 8056 /** 8057 * netdev_upper_dev_unlink - Removes a link to upper device 8058 * @dev: device 8059 * @upper_dev: new upper device 8060 * 8061 * Removes a link to device which is upper to this one. The caller must hold 8062 * the RTNL lock. 8063 */ 8064 void netdev_upper_dev_unlink(struct net_device *dev, 8065 struct net_device *upper_dev) 8066 { 8067 struct netdev_nested_priv priv = { 8068 .flags = NESTED_SYNC_TODO, 8069 .data = NULL, 8070 }; 8071 8072 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8073 } 8074 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8075 8076 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8077 struct net_device *lower_dev, 8078 bool val) 8079 { 8080 struct netdev_adjacent *adj; 8081 8082 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8083 if (adj) 8084 adj->ignore = val; 8085 8086 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8087 if (adj) 8088 adj->ignore = val; 8089 } 8090 8091 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8092 struct net_device *lower_dev) 8093 { 8094 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8095 } 8096 8097 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8098 struct net_device *lower_dev) 8099 { 8100 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8101 } 8102 8103 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8104 struct net_device *new_dev, 8105 struct net_device *dev, 8106 struct netlink_ext_ack *extack) 8107 { 8108 struct netdev_nested_priv priv = { 8109 .flags = 0, 8110 .data = NULL, 8111 }; 8112 int err; 8113 8114 if (!new_dev) 8115 return 0; 8116 8117 if (old_dev && new_dev != old_dev) 8118 netdev_adjacent_dev_disable(dev, old_dev); 8119 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8120 extack); 8121 if (err) { 8122 if (old_dev && new_dev != old_dev) 8123 netdev_adjacent_dev_enable(dev, old_dev); 8124 return err; 8125 } 8126 8127 return 0; 8128 } 8129 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8130 8131 void netdev_adjacent_change_commit(struct net_device *old_dev, 8132 struct net_device *new_dev, 8133 struct net_device *dev) 8134 { 8135 struct netdev_nested_priv priv = { 8136 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8137 .data = NULL, 8138 }; 8139 8140 if (!new_dev || !old_dev) 8141 return; 8142 8143 if (new_dev == old_dev) 8144 return; 8145 8146 netdev_adjacent_dev_enable(dev, old_dev); 8147 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8148 } 8149 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8150 8151 void netdev_adjacent_change_abort(struct net_device *old_dev, 8152 struct net_device *new_dev, 8153 struct net_device *dev) 8154 { 8155 struct netdev_nested_priv priv = { 8156 .flags = 0, 8157 .data = NULL, 8158 }; 8159 8160 if (!new_dev) 8161 return; 8162 8163 if (old_dev && new_dev != old_dev) 8164 netdev_adjacent_dev_enable(dev, old_dev); 8165 8166 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8167 } 8168 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8169 8170 /** 8171 * netdev_bonding_info_change - Dispatch event about slave change 8172 * @dev: device 8173 * @bonding_info: info to dispatch 8174 * 8175 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8176 * The caller must hold the RTNL lock. 8177 */ 8178 void netdev_bonding_info_change(struct net_device *dev, 8179 struct netdev_bonding_info *bonding_info) 8180 { 8181 struct netdev_notifier_bonding_info info = { 8182 .info.dev = dev, 8183 }; 8184 8185 memcpy(&info.bonding_info, bonding_info, 8186 sizeof(struct netdev_bonding_info)); 8187 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8188 &info.info); 8189 } 8190 EXPORT_SYMBOL(netdev_bonding_info_change); 8191 8192 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8193 struct netlink_ext_ack *extack) 8194 { 8195 struct netdev_notifier_offload_xstats_info info = { 8196 .info.dev = dev, 8197 .info.extack = extack, 8198 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8199 }; 8200 int err; 8201 int rc; 8202 8203 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8204 GFP_KERNEL); 8205 if (!dev->offload_xstats_l3) 8206 return -ENOMEM; 8207 8208 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8209 NETDEV_OFFLOAD_XSTATS_DISABLE, 8210 &info.info); 8211 err = notifier_to_errno(rc); 8212 if (err) 8213 goto free_stats; 8214 8215 return 0; 8216 8217 free_stats: 8218 kfree(dev->offload_xstats_l3); 8219 dev->offload_xstats_l3 = NULL; 8220 return err; 8221 } 8222 8223 int netdev_offload_xstats_enable(struct net_device *dev, 8224 enum netdev_offload_xstats_type type, 8225 struct netlink_ext_ack *extack) 8226 { 8227 ASSERT_RTNL(); 8228 8229 if (netdev_offload_xstats_enabled(dev, type)) 8230 return -EALREADY; 8231 8232 switch (type) { 8233 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8234 return netdev_offload_xstats_enable_l3(dev, extack); 8235 } 8236 8237 WARN_ON(1); 8238 return -EINVAL; 8239 } 8240 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8241 8242 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8243 { 8244 struct netdev_notifier_offload_xstats_info info = { 8245 .info.dev = dev, 8246 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8247 }; 8248 8249 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8250 &info.info); 8251 kfree(dev->offload_xstats_l3); 8252 dev->offload_xstats_l3 = NULL; 8253 } 8254 8255 int netdev_offload_xstats_disable(struct net_device *dev, 8256 enum netdev_offload_xstats_type type) 8257 { 8258 ASSERT_RTNL(); 8259 8260 if (!netdev_offload_xstats_enabled(dev, type)) 8261 return -EALREADY; 8262 8263 switch (type) { 8264 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8265 netdev_offload_xstats_disable_l3(dev); 8266 return 0; 8267 } 8268 8269 WARN_ON(1); 8270 return -EINVAL; 8271 } 8272 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8273 8274 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8275 { 8276 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8277 } 8278 8279 static struct rtnl_hw_stats64 * 8280 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8281 enum netdev_offload_xstats_type type) 8282 { 8283 switch (type) { 8284 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8285 return dev->offload_xstats_l3; 8286 } 8287 8288 WARN_ON(1); 8289 return NULL; 8290 } 8291 8292 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8293 enum netdev_offload_xstats_type type) 8294 { 8295 ASSERT_RTNL(); 8296 8297 return netdev_offload_xstats_get_ptr(dev, type); 8298 } 8299 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8300 8301 struct netdev_notifier_offload_xstats_ru { 8302 bool used; 8303 }; 8304 8305 struct netdev_notifier_offload_xstats_rd { 8306 struct rtnl_hw_stats64 stats; 8307 bool used; 8308 }; 8309 8310 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8311 const struct rtnl_hw_stats64 *src) 8312 { 8313 dest->rx_packets += src->rx_packets; 8314 dest->tx_packets += src->tx_packets; 8315 dest->rx_bytes += src->rx_bytes; 8316 dest->tx_bytes += src->tx_bytes; 8317 dest->rx_errors += src->rx_errors; 8318 dest->tx_errors += src->tx_errors; 8319 dest->rx_dropped += src->rx_dropped; 8320 dest->tx_dropped += src->tx_dropped; 8321 dest->multicast += src->multicast; 8322 } 8323 8324 static int netdev_offload_xstats_get_used(struct net_device *dev, 8325 enum netdev_offload_xstats_type type, 8326 bool *p_used, 8327 struct netlink_ext_ack *extack) 8328 { 8329 struct netdev_notifier_offload_xstats_ru report_used = {}; 8330 struct netdev_notifier_offload_xstats_info info = { 8331 .info.dev = dev, 8332 .info.extack = extack, 8333 .type = type, 8334 .report_used = &report_used, 8335 }; 8336 int rc; 8337 8338 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8339 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8340 &info.info); 8341 *p_used = report_used.used; 8342 return notifier_to_errno(rc); 8343 } 8344 8345 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8346 enum netdev_offload_xstats_type type, 8347 struct rtnl_hw_stats64 *p_stats, 8348 bool *p_used, 8349 struct netlink_ext_ack *extack) 8350 { 8351 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8352 struct netdev_notifier_offload_xstats_info info = { 8353 .info.dev = dev, 8354 .info.extack = extack, 8355 .type = type, 8356 .report_delta = &report_delta, 8357 }; 8358 struct rtnl_hw_stats64 *stats; 8359 int rc; 8360 8361 stats = netdev_offload_xstats_get_ptr(dev, type); 8362 if (WARN_ON(!stats)) 8363 return -EINVAL; 8364 8365 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8366 &info.info); 8367 8368 /* Cache whatever we got, even if there was an error, otherwise the 8369 * successful stats retrievals would get lost. 8370 */ 8371 netdev_hw_stats64_add(stats, &report_delta.stats); 8372 8373 if (p_stats) 8374 *p_stats = *stats; 8375 *p_used = report_delta.used; 8376 8377 return notifier_to_errno(rc); 8378 } 8379 8380 int netdev_offload_xstats_get(struct net_device *dev, 8381 enum netdev_offload_xstats_type type, 8382 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8383 struct netlink_ext_ack *extack) 8384 { 8385 ASSERT_RTNL(); 8386 8387 if (p_stats) 8388 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8389 p_used, extack); 8390 else 8391 return netdev_offload_xstats_get_used(dev, type, p_used, 8392 extack); 8393 } 8394 EXPORT_SYMBOL(netdev_offload_xstats_get); 8395 8396 void 8397 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8398 const struct rtnl_hw_stats64 *stats) 8399 { 8400 report_delta->used = true; 8401 netdev_hw_stats64_add(&report_delta->stats, stats); 8402 } 8403 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8404 8405 void 8406 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8407 { 8408 report_used->used = true; 8409 } 8410 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8411 8412 void netdev_offload_xstats_push_delta(struct net_device *dev, 8413 enum netdev_offload_xstats_type type, 8414 const struct rtnl_hw_stats64 *p_stats) 8415 { 8416 struct rtnl_hw_stats64 *stats; 8417 8418 ASSERT_RTNL(); 8419 8420 stats = netdev_offload_xstats_get_ptr(dev, type); 8421 if (WARN_ON(!stats)) 8422 return; 8423 8424 netdev_hw_stats64_add(stats, p_stats); 8425 } 8426 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8427 8428 /** 8429 * netdev_get_xmit_slave - Get the xmit slave of master device 8430 * @dev: device 8431 * @skb: The packet 8432 * @all_slaves: assume all the slaves are active 8433 * 8434 * The reference counters are not incremented so the caller must be 8435 * careful with locks. The caller must hold RCU lock. 8436 * %NULL is returned if no slave is found. 8437 */ 8438 8439 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8440 struct sk_buff *skb, 8441 bool all_slaves) 8442 { 8443 const struct net_device_ops *ops = dev->netdev_ops; 8444 8445 if (!ops->ndo_get_xmit_slave) 8446 return NULL; 8447 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8448 } 8449 EXPORT_SYMBOL(netdev_get_xmit_slave); 8450 8451 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8452 struct sock *sk) 8453 { 8454 const struct net_device_ops *ops = dev->netdev_ops; 8455 8456 if (!ops->ndo_sk_get_lower_dev) 8457 return NULL; 8458 return ops->ndo_sk_get_lower_dev(dev, sk); 8459 } 8460 8461 /** 8462 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8463 * @dev: device 8464 * @sk: the socket 8465 * 8466 * %NULL is returned if no lower device is found. 8467 */ 8468 8469 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8470 struct sock *sk) 8471 { 8472 struct net_device *lower; 8473 8474 lower = netdev_sk_get_lower_dev(dev, sk); 8475 while (lower) { 8476 dev = lower; 8477 lower = netdev_sk_get_lower_dev(dev, sk); 8478 } 8479 8480 return dev; 8481 } 8482 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8483 8484 static void netdev_adjacent_add_links(struct net_device *dev) 8485 { 8486 struct netdev_adjacent *iter; 8487 8488 struct net *net = dev_net(dev); 8489 8490 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8491 if (!net_eq(net, dev_net(iter->dev))) 8492 continue; 8493 netdev_adjacent_sysfs_add(iter->dev, dev, 8494 &iter->dev->adj_list.lower); 8495 netdev_adjacent_sysfs_add(dev, iter->dev, 8496 &dev->adj_list.upper); 8497 } 8498 8499 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8500 if (!net_eq(net, dev_net(iter->dev))) 8501 continue; 8502 netdev_adjacent_sysfs_add(iter->dev, dev, 8503 &iter->dev->adj_list.upper); 8504 netdev_adjacent_sysfs_add(dev, iter->dev, 8505 &dev->adj_list.lower); 8506 } 8507 } 8508 8509 static void netdev_adjacent_del_links(struct net_device *dev) 8510 { 8511 struct netdev_adjacent *iter; 8512 8513 struct net *net = dev_net(dev); 8514 8515 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8516 if (!net_eq(net, dev_net(iter->dev))) 8517 continue; 8518 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8519 &iter->dev->adj_list.lower); 8520 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8521 &dev->adj_list.upper); 8522 } 8523 8524 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8525 if (!net_eq(net, dev_net(iter->dev))) 8526 continue; 8527 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8528 &iter->dev->adj_list.upper); 8529 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8530 &dev->adj_list.lower); 8531 } 8532 } 8533 8534 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8535 { 8536 struct netdev_adjacent *iter; 8537 8538 struct net *net = dev_net(dev); 8539 8540 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8541 if (!net_eq(net, dev_net(iter->dev))) 8542 continue; 8543 netdev_adjacent_sysfs_del(iter->dev, oldname, 8544 &iter->dev->adj_list.lower); 8545 netdev_adjacent_sysfs_add(iter->dev, dev, 8546 &iter->dev->adj_list.lower); 8547 } 8548 8549 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8550 if (!net_eq(net, dev_net(iter->dev))) 8551 continue; 8552 netdev_adjacent_sysfs_del(iter->dev, oldname, 8553 &iter->dev->adj_list.upper); 8554 netdev_adjacent_sysfs_add(iter->dev, dev, 8555 &iter->dev->adj_list.upper); 8556 } 8557 } 8558 8559 void *netdev_lower_dev_get_private(struct net_device *dev, 8560 struct net_device *lower_dev) 8561 { 8562 struct netdev_adjacent *lower; 8563 8564 if (!lower_dev) 8565 return NULL; 8566 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8567 if (!lower) 8568 return NULL; 8569 8570 return lower->private; 8571 } 8572 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8573 8574 8575 /** 8576 * netdev_lower_state_changed - Dispatch event about lower device state change 8577 * @lower_dev: device 8578 * @lower_state_info: state to dispatch 8579 * 8580 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8581 * The caller must hold the RTNL lock. 8582 */ 8583 void netdev_lower_state_changed(struct net_device *lower_dev, 8584 void *lower_state_info) 8585 { 8586 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8587 .info.dev = lower_dev, 8588 }; 8589 8590 ASSERT_RTNL(); 8591 changelowerstate_info.lower_state_info = lower_state_info; 8592 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8593 &changelowerstate_info.info); 8594 } 8595 EXPORT_SYMBOL(netdev_lower_state_changed); 8596 8597 static void dev_change_rx_flags(struct net_device *dev, int flags) 8598 { 8599 const struct net_device_ops *ops = dev->netdev_ops; 8600 8601 if (ops->ndo_change_rx_flags) 8602 ops->ndo_change_rx_flags(dev, flags); 8603 } 8604 8605 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8606 { 8607 unsigned int old_flags = dev->flags; 8608 unsigned int promiscuity, flags; 8609 kuid_t uid; 8610 kgid_t gid; 8611 8612 ASSERT_RTNL(); 8613 8614 promiscuity = dev->promiscuity + inc; 8615 if (promiscuity == 0) { 8616 /* 8617 * Avoid overflow. 8618 * If inc causes overflow, untouch promisc and return error. 8619 */ 8620 if (unlikely(inc > 0)) { 8621 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8622 return -EOVERFLOW; 8623 } 8624 flags = old_flags & ~IFF_PROMISC; 8625 } else { 8626 flags = old_flags | IFF_PROMISC; 8627 } 8628 WRITE_ONCE(dev->promiscuity, promiscuity); 8629 if (flags != old_flags) { 8630 WRITE_ONCE(dev->flags, flags); 8631 netdev_info(dev, "%s promiscuous mode\n", 8632 dev->flags & IFF_PROMISC ? "entered" : "left"); 8633 if (audit_enabled) { 8634 current_uid_gid(&uid, &gid); 8635 audit_log(audit_context(), GFP_ATOMIC, 8636 AUDIT_ANOM_PROMISCUOUS, 8637 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8638 dev->name, (dev->flags & IFF_PROMISC), 8639 (old_flags & IFF_PROMISC), 8640 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8641 from_kuid(&init_user_ns, uid), 8642 from_kgid(&init_user_ns, gid), 8643 audit_get_sessionid(current)); 8644 } 8645 8646 dev_change_rx_flags(dev, IFF_PROMISC); 8647 } 8648 if (notify) 8649 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8650 return 0; 8651 } 8652 8653 /** 8654 * dev_set_promiscuity - update promiscuity count on a device 8655 * @dev: device 8656 * @inc: modifier 8657 * 8658 * Add or remove promiscuity from a device. While the count in the device 8659 * remains above zero the interface remains promiscuous. Once it hits zero 8660 * the device reverts back to normal filtering operation. A negative inc 8661 * value is used to drop promiscuity on the device. 8662 * Return 0 if successful or a negative errno code on error. 8663 */ 8664 int dev_set_promiscuity(struct net_device *dev, int inc) 8665 { 8666 unsigned int old_flags = dev->flags; 8667 int err; 8668 8669 err = __dev_set_promiscuity(dev, inc, true); 8670 if (err < 0) 8671 return err; 8672 if (dev->flags != old_flags) 8673 dev_set_rx_mode(dev); 8674 return err; 8675 } 8676 EXPORT_SYMBOL(dev_set_promiscuity); 8677 8678 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8679 { 8680 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8681 unsigned int allmulti, flags; 8682 8683 ASSERT_RTNL(); 8684 8685 allmulti = dev->allmulti + inc; 8686 if (allmulti == 0) { 8687 /* 8688 * Avoid overflow. 8689 * If inc causes overflow, untouch allmulti and return error. 8690 */ 8691 if (unlikely(inc > 0)) { 8692 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8693 return -EOVERFLOW; 8694 } 8695 flags = old_flags & ~IFF_ALLMULTI; 8696 } else { 8697 flags = old_flags | IFF_ALLMULTI; 8698 } 8699 WRITE_ONCE(dev->allmulti, allmulti); 8700 if (flags != old_flags) { 8701 WRITE_ONCE(dev->flags, flags); 8702 netdev_info(dev, "%s allmulticast mode\n", 8703 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8704 dev_change_rx_flags(dev, IFF_ALLMULTI); 8705 dev_set_rx_mode(dev); 8706 if (notify) 8707 __dev_notify_flags(dev, old_flags, 8708 dev->gflags ^ old_gflags, 0, NULL); 8709 } 8710 return 0; 8711 } 8712 8713 /** 8714 * dev_set_allmulti - update allmulti count on a device 8715 * @dev: device 8716 * @inc: modifier 8717 * 8718 * Add or remove reception of all multicast frames to a device. While the 8719 * count in the device remains above zero the interface remains listening 8720 * to all interfaces. Once it hits zero the device reverts back to normal 8721 * filtering operation. A negative @inc value is used to drop the counter 8722 * when releasing a resource needing all multicasts. 8723 * Return 0 if successful or a negative errno code on error. 8724 */ 8725 8726 int dev_set_allmulti(struct net_device *dev, int inc) 8727 { 8728 return __dev_set_allmulti(dev, inc, true); 8729 } 8730 EXPORT_SYMBOL(dev_set_allmulti); 8731 8732 /* 8733 * Upload unicast and multicast address lists to device and 8734 * configure RX filtering. When the device doesn't support unicast 8735 * filtering it is put in promiscuous mode while unicast addresses 8736 * are present. 8737 */ 8738 void __dev_set_rx_mode(struct net_device *dev) 8739 { 8740 const struct net_device_ops *ops = dev->netdev_ops; 8741 8742 /* dev_open will call this function so the list will stay sane. */ 8743 if (!(dev->flags&IFF_UP)) 8744 return; 8745 8746 if (!netif_device_present(dev)) 8747 return; 8748 8749 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8750 /* Unicast addresses changes may only happen under the rtnl, 8751 * therefore calling __dev_set_promiscuity here is safe. 8752 */ 8753 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8754 __dev_set_promiscuity(dev, 1, false); 8755 dev->uc_promisc = true; 8756 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8757 __dev_set_promiscuity(dev, -1, false); 8758 dev->uc_promisc = false; 8759 } 8760 } 8761 8762 if (ops->ndo_set_rx_mode) 8763 ops->ndo_set_rx_mode(dev); 8764 } 8765 8766 void dev_set_rx_mode(struct net_device *dev) 8767 { 8768 netif_addr_lock_bh(dev); 8769 __dev_set_rx_mode(dev); 8770 netif_addr_unlock_bh(dev); 8771 } 8772 8773 /** 8774 * dev_get_flags - get flags reported to userspace 8775 * @dev: device 8776 * 8777 * Get the combination of flag bits exported through APIs to userspace. 8778 */ 8779 unsigned int dev_get_flags(const struct net_device *dev) 8780 { 8781 unsigned int flags; 8782 8783 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 8784 IFF_ALLMULTI | 8785 IFF_RUNNING | 8786 IFF_LOWER_UP | 8787 IFF_DORMANT)) | 8788 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 8789 IFF_ALLMULTI)); 8790 8791 if (netif_running(dev)) { 8792 if (netif_oper_up(dev)) 8793 flags |= IFF_RUNNING; 8794 if (netif_carrier_ok(dev)) 8795 flags |= IFF_LOWER_UP; 8796 if (netif_dormant(dev)) 8797 flags |= IFF_DORMANT; 8798 } 8799 8800 return flags; 8801 } 8802 EXPORT_SYMBOL(dev_get_flags); 8803 8804 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8805 struct netlink_ext_ack *extack) 8806 { 8807 unsigned int old_flags = dev->flags; 8808 int ret; 8809 8810 ASSERT_RTNL(); 8811 8812 /* 8813 * Set the flags on our device. 8814 */ 8815 8816 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8817 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8818 IFF_AUTOMEDIA)) | 8819 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8820 IFF_ALLMULTI)); 8821 8822 /* 8823 * Load in the correct multicast list now the flags have changed. 8824 */ 8825 8826 if ((old_flags ^ flags) & IFF_MULTICAST) 8827 dev_change_rx_flags(dev, IFF_MULTICAST); 8828 8829 dev_set_rx_mode(dev); 8830 8831 /* 8832 * Have we downed the interface. We handle IFF_UP ourselves 8833 * according to user attempts to set it, rather than blindly 8834 * setting it. 8835 */ 8836 8837 ret = 0; 8838 if ((old_flags ^ flags) & IFF_UP) { 8839 if (old_flags & IFF_UP) 8840 __dev_close(dev); 8841 else 8842 ret = __dev_open(dev, extack); 8843 } 8844 8845 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8846 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8847 unsigned int old_flags = dev->flags; 8848 8849 dev->gflags ^= IFF_PROMISC; 8850 8851 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8852 if (dev->flags != old_flags) 8853 dev_set_rx_mode(dev); 8854 } 8855 8856 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8857 * is important. Some (broken) drivers set IFF_PROMISC, when 8858 * IFF_ALLMULTI is requested not asking us and not reporting. 8859 */ 8860 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8861 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8862 8863 dev->gflags ^= IFF_ALLMULTI; 8864 __dev_set_allmulti(dev, inc, false); 8865 } 8866 8867 return ret; 8868 } 8869 8870 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8871 unsigned int gchanges, u32 portid, 8872 const struct nlmsghdr *nlh) 8873 { 8874 unsigned int changes = dev->flags ^ old_flags; 8875 8876 if (gchanges) 8877 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8878 8879 if (changes & IFF_UP) { 8880 if (dev->flags & IFF_UP) 8881 call_netdevice_notifiers(NETDEV_UP, dev); 8882 else 8883 call_netdevice_notifiers(NETDEV_DOWN, dev); 8884 } 8885 8886 if (dev->flags & IFF_UP && 8887 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8888 struct netdev_notifier_change_info change_info = { 8889 .info = { 8890 .dev = dev, 8891 }, 8892 .flags_changed = changes, 8893 }; 8894 8895 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8896 } 8897 } 8898 8899 /** 8900 * dev_change_flags - change device settings 8901 * @dev: device 8902 * @flags: device state flags 8903 * @extack: netlink extended ack 8904 * 8905 * Change settings on device based state flags. The flags are 8906 * in the userspace exported format. 8907 */ 8908 int dev_change_flags(struct net_device *dev, unsigned int flags, 8909 struct netlink_ext_ack *extack) 8910 { 8911 int ret; 8912 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8913 8914 ret = __dev_change_flags(dev, flags, extack); 8915 if (ret < 0) 8916 return ret; 8917 8918 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8919 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8920 return ret; 8921 } 8922 EXPORT_SYMBOL(dev_change_flags); 8923 8924 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8925 { 8926 const struct net_device_ops *ops = dev->netdev_ops; 8927 8928 if (ops->ndo_change_mtu) 8929 return ops->ndo_change_mtu(dev, new_mtu); 8930 8931 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8932 WRITE_ONCE(dev->mtu, new_mtu); 8933 return 0; 8934 } 8935 EXPORT_SYMBOL(__dev_set_mtu); 8936 8937 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8938 struct netlink_ext_ack *extack) 8939 { 8940 /* MTU must be positive, and in range */ 8941 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8942 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8943 return -EINVAL; 8944 } 8945 8946 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8947 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8948 return -EINVAL; 8949 } 8950 return 0; 8951 } 8952 8953 /** 8954 * dev_set_mtu_ext - Change maximum transfer unit 8955 * @dev: device 8956 * @new_mtu: new transfer unit 8957 * @extack: netlink extended ack 8958 * 8959 * Change the maximum transfer size of the network device. 8960 */ 8961 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8962 struct netlink_ext_ack *extack) 8963 { 8964 int err, orig_mtu; 8965 8966 if (new_mtu == dev->mtu) 8967 return 0; 8968 8969 err = dev_validate_mtu(dev, new_mtu, extack); 8970 if (err) 8971 return err; 8972 8973 if (!netif_device_present(dev)) 8974 return -ENODEV; 8975 8976 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8977 err = notifier_to_errno(err); 8978 if (err) 8979 return err; 8980 8981 orig_mtu = dev->mtu; 8982 err = __dev_set_mtu(dev, new_mtu); 8983 8984 if (!err) { 8985 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8986 orig_mtu); 8987 err = notifier_to_errno(err); 8988 if (err) { 8989 /* setting mtu back and notifying everyone again, 8990 * so that they have a chance to revert changes. 8991 */ 8992 __dev_set_mtu(dev, orig_mtu); 8993 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8994 new_mtu); 8995 } 8996 } 8997 return err; 8998 } 8999 9000 int dev_set_mtu(struct net_device *dev, int new_mtu) 9001 { 9002 struct netlink_ext_ack extack; 9003 int err; 9004 9005 memset(&extack, 0, sizeof(extack)); 9006 err = dev_set_mtu_ext(dev, new_mtu, &extack); 9007 if (err && extack._msg) 9008 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9009 return err; 9010 } 9011 EXPORT_SYMBOL(dev_set_mtu); 9012 9013 /** 9014 * dev_change_tx_queue_len - Change TX queue length of a netdevice 9015 * @dev: device 9016 * @new_len: new tx queue length 9017 */ 9018 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9019 { 9020 unsigned int orig_len = dev->tx_queue_len; 9021 int res; 9022 9023 if (new_len != (unsigned int)new_len) 9024 return -ERANGE; 9025 9026 if (new_len != orig_len) { 9027 WRITE_ONCE(dev->tx_queue_len, new_len); 9028 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9029 res = notifier_to_errno(res); 9030 if (res) 9031 goto err_rollback; 9032 res = dev_qdisc_change_tx_queue_len(dev); 9033 if (res) 9034 goto err_rollback; 9035 } 9036 9037 return 0; 9038 9039 err_rollback: 9040 netdev_err(dev, "refused to change device tx_queue_len\n"); 9041 WRITE_ONCE(dev->tx_queue_len, orig_len); 9042 return res; 9043 } 9044 9045 /** 9046 * dev_set_group - Change group this device belongs to 9047 * @dev: device 9048 * @new_group: group this device should belong to 9049 */ 9050 void dev_set_group(struct net_device *dev, int new_group) 9051 { 9052 dev->group = new_group; 9053 } 9054 9055 /** 9056 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9057 * @dev: device 9058 * @addr: new address 9059 * @extack: netlink extended ack 9060 */ 9061 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9062 struct netlink_ext_ack *extack) 9063 { 9064 struct netdev_notifier_pre_changeaddr_info info = { 9065 .info.dev = dev, 9066 .info.extack = extack, 9067 .dev_addr = addr, 9068 }; 9069 int rc; 9070 9071 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9072 return notifier_to_errno(rc); 9073 } 9074 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9075 9076 /** 9077 * dev_set_mac_address - Change Media Access Control Address 9078 * @dev: device 9079 * @sa: new address 9080 * @extack: netlink extended ack 9081 * 9082 * Change the hardware (MAC) address of the device 9083 */ 9084 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9085 struct netlink_ext_ack *extack) 9086 { 9087 const struct net_device_ops *ops = dev->netdev_ops; 9088 int err; 9089 9090 if (!ops->ndo_set_mac_address) 9091 return -EOPNOTSUPP; 9092 if (sa->sa_family != dev->type) 9093 return -EINVAL; 9094 if (!netif_device_present(dev)) 9095 return -ENODEV; 9096 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9097 if (err) 9098 return err; 9099 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 9100 err = ops->ndo_set_mac_address(dev, sa); 9101 if (err) 9102 return err; 9103 } 9104 dev->addr_assign_type = NET_ADDR_SET; 9105 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9106 add_device_randomness(dev->dev_addr, dev->addr_len); 9107 return 0; 9108 } 9109 EXPORT_SYMBOL(dev_set_mac_address); 9110 9111 DECLARE_RWSEM(dev_addr_sem); 9112 9113 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 9114 struct netlink_ext_ack *extack) 9115 { 9116 int ret; 9117 9118 down_write(&dev_addr_sem); 9119 ret = dev_set_mac_address(dev, sa, extack); 9120 up_write(&dev_addr_sem); 9121 return ret; 9122 } 9123 EXPORT_SYMBOL(dev_set_mac_address_user); 9124 9125 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9126 { 9127 size_t size = sizeof(sa->sa_data_min); 9128 struct net_device *dev; 9129 int ret = 0; 9130 9131 down_read(&dev_addr_sem); 9132 rcu_read_lock(); 9133 9134 dev = dev_get_by_name_rcu(net, dev_name); 9135 if (!dev) { 9136 ret = -ENODEV; 9137 goto unlock; 9138 } 9139 if (!dev->addr_len) 9140 memset(sa->sa_data, 0, size); 9141 else 9142 memcpy(sa->sa_data, dev->dev_addr, 9143 min_t(size_t, size, dev->addr_len)); 9144 sa->sa_family = dev->type; 9145 9146 unlock: 9147 rcu_read_unlock(); 9148 up_read(&dev_addr_sem); 9149 return ret; 9150 } 9151 EXPORT_SYMBOL(dev_get_mac_address); 9152 9153 /** 9154 * dev_change_carrier - Change device carrier 9155 * @dev: device 9156 * @new_carrier: new value 9157 * 9158 * Change device carrier 9159 */ 9160 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9161 { 9162 const struct net_device_ops *ops = dev->netdev_ops; 9163 9164 if (!ops->ndo_change_carrier) 9165 return -EOPNOTSUPP; 9166 if (!netif_device_present(dev)) 9167 return -ENODEV; 9168 return ops->ndo_change_carrier(dev, new_carrier); 9169 } 9170 9171 /** 9172 * dev_get_phys_port_id - Get device physical port ID 9173 * @dev: device 9174 * @ppid: port ID 9175 * 9176 * Get device physical port ID 9177 */ 9178 int dev_get_phys_port_id(struct net_device *dev, 9179 struct netdev_phys_item_id *ppid) 9180 { 9181 const struct net_device_ops *ops = dev->netdev_ops; 9182 9183 if (!ops->ndo_get_phys_port_id) 9184 return -EOPNOTSUPP; 9185 return ops->ndo_get_phys_port_id(dev, ppid); 9186 } 9187 9188 /** 9189 * dev_get_phys_port_name - Get device physical port name 9190 * @dev: device 9191 * @name: port name 9192 * @len: limit of bytes to copy to name 9193 * 9194 * Get device physical port name 9195 */ 9196 int dev_get_phys_port_name(struct net_device *dev, 9197 char *name, size_t len) 9198 { 9199 const struct net_device_ops *ops = dev->netdev_ops; 9200 int err; 9201 9202 if (ops->ndo_get_phys_port_name) { 9203 err = ops->ndo_get_phys_port_name(dev, name, len); 9204 if (err != -EOPNOTSUPP) 9205 return err; 9206 } 9207 return devlink_compat_phys_port_name_get(dev, name, len); 9208 } 9209 9210 /** 9211 * dev_get_port_parent_id - Get the device's port parent identifier 9212 * @dev: network device 9213 * @ppid: pointer to a storage for the port's parent identifier 9214 * @recurse: allow/disallow recursion to lower devices 9215 * 9216 * Get the devices's port parent identifier 9217 */ 9218 int dev_get_port_parent_id(struct net_device *dev, 9219 struct netdev_phys_item_id *ppid, 9220 bool recurse) 9221 { 9222 const struct net_device_ops *ops = dev->netdev_ops; 9223 struct netdev_phys_item_id first = { }; 9224 struct net_device *lower_dev; 9225 struct list_head *iter; 9226 int err; 9227 9228 if (ops->ndo_get_port_parent_id) { 9229 err = ops->ndo_get_port_parent_id(dev, ppid); 9230 if (err != -EOPNOTSUPP) 9231 return err; 9232 } 9233 9234 err = devlink_compat_switch_id_get(dev, ppid); 9235 if (!recurse || err != -EOPNOTSUPP) 9236 return err; 9237 9238 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9239 err = dev_get_port_parent_id(lower_dev, ppid, true); 9240 if (err) 9241 break; 9242 if (!first.id_len) 9243 first = *ppid; 9244 else if (memcmp(&first, ppid, sizeof(*ppid))) 9245 return -EOPNOTSUPP; 9246 } 9247 9248 return err; 9249 } 9250 EXPORT_SYMBOL(dev_get_port_parent_id); 9251 9252 /** 9253 * netdev_port_same_parent_id - Indicate if two network devices have 9254 * the same port parent identifier 9255 * @a: first network device 9256 * @b: second network device 9257 */ 9258 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9259 { 9260 struct netdev_phys_item_id a_id = { }; 9261 struct netdev_phys_item_id b_id = { }; 9262 9263 if (dev_get_port_parent_id(a, &a_id, true) || 9264 dev_get_port_parent_id(b, &b_id, true)) 9265 return false; 9266 9267 return netdev_phys_item_id_same(&a_id, &b_id); 9268 } 9269 EXPORT_SYMBOL(netdev_port_same_parent_id); 9270 9271 /** 9272 * dev_change_proto_down - set carrier according to proto_down. 9273 * 9274 * @dev: device 9275 * @proto_down: new value 9276 */ 9277 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9278 { 9279 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 9280 return -EOPNOTSUPP; 9281 if (!netif_device_present(dev)) 9282 return -ENODEV; 9283 if (proto_down) 9284 netif_carrier_off(dev); 9285 else 9286 netif_carrier_on(dev); 9287 WRITE_ONCE(dev->proto_down, proto_down); 9288 return 0; 9289 } 9290 9291 /** 9292 * dev_change_proto_down_reason - proto down reason 9293 * 9294 * @dev: device 9295 * @mask: proto down mask 9296 * @value: proto down value 9297 */ 9298 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9299 u32 value) 9300 { 9301 u32 proto_down_reason; 9302 int b; 9303 9304 if (!mask) { 9305 proto_down_reason = value; 9306 } else { 9307 proto_down_reason = dev->proto_down_reason; 9308 for_each_set_bit(b, &mask, 32) { 9309 if (value & (1 << b)) 9310 proto_down_reason |= BIT(b); 9311 else 9312 proto_down_reason &= ~BIT(b); 9313 } 9314 } 9315 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9316 } 9317 9318 struct bpf_xdp_link { 9319 struct bpf_link link; 9320 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9321 int flags; 9322 }; 9323 9324 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9325 { 9326 if (flags & XDP_FLAGS_HW_MODE) 9327 return XDP_MODE_HW; 9328 if (flags & XDP_FLAGS_DRV_MODE) 9329 return XDP_MODE_DRV; 9330 if (flags & XDP_FLAGS_SKB_MODE) 9331 return XDP_MODE_SKB; 9332 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9333 } 9334 9335 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9336 { 9337 switch (mode) { 9338 case XDP_MODE_SKB: 9339 return generic_xdp_install; 9340 case XDP_MODE_DRV: 9341 case XDP_MODE_HW: 9342 return dev->netdev_ops->ndo_bpf; 9343 default: 9344 return NULL; 9345 } 9346 } 9347 9348 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9349 enum bpf_xdp_mode mode) 9350 { 9351 return dev->xdp_state[mode].link; 9352 } 9353 9354 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9355 enum bpf_xdp_mode mode) 9356 { 9357 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9358 9359 if (link) 9360 return link->link.prog; 9361 return dev->xdp_state[mode].prog; 9362 } 9363 9364 u8 dev_xdp_prog_count(struct net_device *dev) 9365 { 9366 u8 count = 0; 9367 int i; 9368 9369 for (i = 0; i < __MAX_XDP_MODE; i++) 9370 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9371 count++; 9372 return count; 9373 } 9374 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9375 9376 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9377 { 9378 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9379 9380 return prog ? prog->aux->id : 0; 9381 } 9382 9383 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9384 struct bpf_xdp_link *link) 9385 { 9386 dev->xdp_state[mode].link = link; 9387 dev->xdp_state[mode].prog = NULL; 9388 } 9389 9390 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9391 struct bpf_prog *prog) 9392 { 9393 dev->xdp_state[mode].link = NULL; 9394 dev->xdp_state[mode].prog = prog; 9395 } 9396 9397 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9398 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9399 u32 flags, struct bpf_prog *prog) 9400 { 9401 struct netdev_bpf xdp; 9402 int err; 9403 9404 memset(&xdp, 0, sizeof(xdp)); 9405 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9406 xdp.extack = extack; 9407 xdp.flags = flags; 9408 xdp.prog = prog; 9409 9410 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9411 * "moved" into driver), so they don't increment it on their own, but 9412 * they do decrement refcnt when program is detached or replaced. 9413 * Given net_device also owns link/prog, we need to bump refcnt here 9414 * to prevent drivers from underflowing it. 9415 */ 9416 if (prog) 9417 bpf_prog_inc(prog); 9418 err = bpf_op(dev, &xdp); 9419 if (err) { 9420 if (prog) 9421 bpf_prog_put(prog); 9422 return err; 9423 } 9424 9425 if (mode != XDP_MODE_HW) 9426 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9427 9428 return 0; 9429 } 9430 9431 static void dev_xdp_uninstall(struct net_device *dev) 9432 { 9433 struct bpf_xdp_link *link; 9434 struct bpf_prog *prog; 9435 enum bpf_xdp_mode mode; 9436 bpf_op_t bpf_op; 9437 9438 ASSERT_RTNL(); 9439 9440 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9441 prog = dev_xdp_prog(dev, mode); 9442 if (!prog) 9443 continue; 9444 9445 bpf_op = dev_xdp_bpf_op(dev, mode); 9446 if (!bpf_op) 9447 continue; 9448 9449 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9450 9451 /* auto-detach link from net device */ 9452 link = dev_xdp_link(dev, mode); 9453 if (link) 9454 link->dev = NULL; 9455 else 9456 bpf_prog_put(prog); 9457 9458 dev_xdp_set_link(dev, mode, NULL); 9459 } 9460 } 9461 9462 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9463 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9464 struct bpf_prog *old_prog, u32 flags) 9465 { 9466 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9467 struct bpf_prog *cur_prog; 9468 struct net_device *upper; 9469 struct list_head *iter; 9470 enum bpf_xdp_mode mode; 9471 bpf_op_t bpf_op; 9472 int err; 9473 9474 ASSERT_RTNL(); 9475 9476 /* either link or prog attachment, never both */ 9477 if (link && (new_prog || old_prog)) 9478 return -EINVAL; 9479 /* link supports only XDP mode flags */ 9480 if (link && (flags & ~XDP_FLAGS_MODES)) { 9481 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9482 return -EINVAL; 9483 } 9484 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9485 if (num_modes > 1) { 9486 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9487 return -EINVAL; 9488 } 9489 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9490 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9491 NL_SET_ERR_MSG(extack, 9492 "More than one program loaded, unset mode is ambiguous"); 9493 return -EINVAL; 9494 } 9495 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9496 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9497 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9498 return -EINVAL; 9499 } 9500 9501 mode = dev_xdp_mode(dev, flags); 9502 /* can't replace attached link */ 9503 if (dev_xdp_link(dev, mode)) { 9504 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9505 return -EBUSY; 9506 } 9507 9508 /* don't allow if an upper device already has a program */ 9509 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9510 if (dev_xdp_prog_count(upper) > 0) { 9511 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9512 return -EEXIST; 9513 } 9514 } 9515 9516 cur_prog = dev_xdp_prog(dev, mode); 9517 /* can't replace attached prog with link */ 9518 if (link && cur_prog) { 9519 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9520 return -EBUSY; 9521 } 9522 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9523 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9524 return -EEXIST; 9525 } 9526 9527 /* put effective new program into new_prog */ 9528 if (link) 9529 new_prog = link->link.prog; 9530 9531 if (new_prog) { 9532 bool offload = mode == XDP_MODE_HW; 9533 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9534 ? XDP_MODE_DRV : XDP_MODE_SKB; 9535 9536 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9537 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9538 return -EBUSY; 9539 } 9540 if (!offload && dev_xdp_prog(dev, other_mode)) { 9541 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9542 return -EEXIST; 9543 } 9544 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9545 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9546 return -EINVAL; 9547 } 9548 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9549 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9550 return -EINVAL; 9551 } 9552 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9553 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9554 return -EINVAL; 9555 } 9556 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9557 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9558 return -EINVAL; 9559 } 9560 } 9561 9562 /* don't call drivers if the effective program didn't change */ 9563 if (new_prog != cur_prog) { 9564 bpf_op = dev_xdp_bpf_op(dev, mode); 9565 if (!bpf_op) { 9566 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9567 return -EOPNOTSUPP; 9568 } 9569 9570 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9571 if (err) 9572 return err; 9573 } 9574 9575 if (link) 9576 dev_xdp_set_link(dev, mode, link); 9577 else 9578 dev_xdp_set_prog(dev, mode, new_prog); 9579 if (cur_prog) 9580 bpf_prog_put(cur_prog); 9581 9582 return 0; 9583 } 9584 9585 static int dev_xdp_attach_link(struct net_device *dev, 9586 struct netlink_ext_ack *extack, 9587 struct bpf_xdp_link *link) 9588 { 9589 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9590 } 9591 9592 static int dev_xdp_detach_link(struct net_device *dev, 9593 struct netlink_ext_ack *extack, 9594 struct bpf_xdp_link *link) 9595 { 9596 enum bpf_xdp_mode mode; 9597 bpf_op_t bpf_op; 9598 9599 ASSERT_RTNL(); 9600 9601 mode = dev_xdp_mode(dev, link->flags); 9602 if (dev_xdp_link(dev, mode) != link) 9603 return -EINVAL; 9604 9605 bpf_op = dev_xdp_bpf_op(dev, mode); 9606 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9607 dev_xdp_set_link(dev, mode, NULL); 9608 return 0; 9609 } 9610 9611 static void bpf_xdp_link_release(struct bpf_link *link) 9612 { 9613 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9614 9615 rtnl_lock(); 9616 9617 /* if racing with net_device's tear down, xdp_link->dev might be 9618 * already NULL, in which case link was already auto-detached 9619 */ 9620 if (xdp_link->dev) { 9621 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9622 xdp_link->dev = NULL; 9623 } 9624 9625 rtnl_unlock(); 9626 } 9627 9628 static int bpf_xdp_link_detach(struct bpf_link *link) 9629 { 9630 bpf_xdp_link_release(link); 9631 return 0; 9632 } 9633 9634 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9635 { 9636 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9637 9638 kfree(xdp_link); 9639 } 9640 9641 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9642 struct seq_file *seq) 9643 { 9644 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9645 u32 ifindex = 0; 9646 9647 rtnl_lock(); 9648 if (xdp_link->dev) 9649 ifindex = xdp_link->dev->ifindex; 9650 rtnl_unlock(); 9651 9652 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9653 } 9654 9655 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9656 struct bpf_link_info *info) 9657 { 9658 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9659 u32 ifindex = 0; 9660 9661 rtnl_lock(); 9662 if (xdp_link->dev) 9663 ifindex = xdp_link->dev->ifindex; 9664 rtnl_unlock(); 9665 9666 info->xdp.ifindex = ifindex; 9667 return 0; 9668 } 9669 9670 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9671 struct bpf_prog *old_prog) 9672 { 9673 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9674 enum bpf_xdp_mode mode; 9675 bpf_op_t bpf_op; 9676 int err = 0; 9677 9678 rtnl_lock(); 9679 9680 /* link might have been auto-released already, so fail */ 9681 if (!xdp_link->dev) { 9682 err = -ENOLINK; 9683 goto out_unlock; 9684 } 9685 9686 if (old_prog && link->prog != old_prog) { 9687 err = -EPERM; 9688 goto out_unlock; 9689 } 9690 old_prog = link->prog; 9691 if (old_prog->type != new_prog->type || 9692 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9693 err = -EINVAL; 9694 goto out_unlock; 9695 } 9696 9697 if (old_prog == new_prog) { 9698 /* no-op, don't disturb drivers */ 9699 bpf_prog_put(new_prog); 9700 goto out_unlock; 9701 } 9702 9703 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9704 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9705 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9706 xdp_link->flags, new_prog); 9707 if (err) 9708 goto out_unlock; 9709 9710 old_prog = xchg(&link->prog, new_prog); 9711 bpf_prog_put(old_prog); 9712 9713 out_unlock: 9714 rtnl_unlock(); 9715 return err; 9716 } 9717 9718 static const struct bpf_link_ops bpf_xdp_link_lops = { 9719 .release = bpf_xdp_link_release, 9720 .dealloc = bpf_xdp_link_dealloc, 9721 .detach = bpf_xdp_link_detach, 9722 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9723 .fill_link_info = bpf_xdp_link_fill_link_info, 9724 .update_prog = bpf_xdp_link_update, 9725 }; 9726 9727 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9728 { 9729 struct net *net = current->nsproxy->net_ns; 9730 struct bpf_link_primer link_primer; 9731 struct netlink_ext_ack extack = {}; 9732 struct bpf_xdp_link *link; 9733 struct net_device *dev; 9734 int err, fd; 9735 9736 rtnl_lock(); 9737 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9738 if (!dev) { 9739 rtnl_unlock(); 9740 return -EINVAL; 9741 } 9742 9743 link = kzalloc(sizeof(*link), GFP_USER); 9744 if (!link) { 9745 err = -ENOMEM; 9746 goto unlock; 9747 } 9748 9749 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9750 link->dev = dev; 9751 link->flags = attr->link_create.flags; 9752 9753 err = bpf_link_prime(&link->link, &link_primer); 9754 if (err) { 9755 kfree(link); 9756 goto unlock; 9757 } 9758 9759 err = dev_xdp_attach_link(dev, &extack, link); 9760 rtnl_unlock(); 9761 9762 if (err) { 9763 link->dev = NULL; 9764 bpf_link_cleanup(&link_primer); 9765 trace_bpf_xdp_link_attach_failed(extack._msg); 9766 goto out_put_dev; 9767 } 9768 9769 fd = bpf_link_settle(&link_primer); 9770 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9771 dev_put(dev); 9772 return fd; 9773 9774 unlock: 9775 rtnl_unlock(); 9776 9777 out_put_dev: 9778 dev_put(dev); 9779 return err; 9780 } 9781 9782 /** 9783 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9784 * @dev: device 9785 * @extack: netlink extended ack 9786 * @fd: new program fd or negative value to clear 9787 * @expected_fd: old program fd that userspace expects to replace or clear 9788 * @flags: xdp-related flags 9789 * 9790 * Set or clear a bpf program for a device 9791 */ 9792 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9793 int fd, int expected_fd, u32 flags) 9794 { 9795 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9796 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9797 int err; 9798 9799 ASSERT_RTNL(); 9800 9801 if (fd >= 0) { 9802 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9803 mode != XDP_MODE_SKB); 9804 if (IS_ERR(new_prog)) 9805 return PTR_ERR(new_prog); 9806 } 9807 9808 if (expected_fd >= 0) { 9809 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9810 mode != XDP_MODE_SKB); 9811 if (IS_ERR(old_prog)) { 9812 err = PTR_ERR(old_prog); 9813 old_prog = NULL; 9814 goto err_out; 9815 } 9816 } 9817 9818 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9819 9820 err_out: 9821 if (err && new_prog) 9822 bpf_prog_put(new_prog); 9823 if (old_prog) 9824 bpf_prog_put(old_prog); 9825 return err; 9826 } 9827 9828 /** 9829 * dev_index_reserve() - allocate an ifindex in a namespace 9830 * @net: the applicable net namespace 9831 * @ifindex: requested ifindex, pass %0 to get one allocated 9832 * 9833 * Allocate a ifindex for a new device. Caller must either use the ifindex 9834 * to store the device (via list_netdevice()) or call dev_index_release() 9835 * to give the index up. 9836 * 9837 * Return: a suitable unique value for a new device interface number or -errno. 9838 */ 9839 static int dev_index_reserve(struct net *net, u32 ifindex) 9840 { 9841 int err; 9842 9843 if (ifindex > INT_MAX) { 9844 DEBUG_NET_WARN_ON_ONCE(1); 9845 return -EINVAL; 9846 } 9847 9848 if (!ifindex) 9849 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9850 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9851 else 9852 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9853 if (err < 0) 9854 return err; 9855 9856 return ifindex; 9857 } 9858 9859 static void dev_index_release(struct net *net, int ifindex) 9860 { 9861 /* Expect only unused indexes, unlist_netdevice() removes the used */ 9862 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 9863 } 9864 9865 /* Delayed registration/unregisteration */ 9866 LIST_HEAD(net_todo_list); 9867 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9868 atomic_t dev_unreg_count = ATOMIC_INIT(0); 9869 9870 static void net_set_todo(struct net_device *dev) 9871 { 9872 list_add_tail(&dev->todo_list, &net_todo_list); 9873 } 9874 9875 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9876 struct net_device *upper, netdev_features_t features) 9877 { 9878 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9879 netdev_features_t feature; 9880 int feature_bit; 9881 9882 for_each_netdev_feature(upper_disables, feature_bit) { 9883 feature = __NETIF_F_BIT(feature_bit); 9884 if (!(upper->wanted_features & feature) 9885 && (features & feature)) { 9886 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9887 &feature, upper->name); 9888 features &= ~feature; 9889 } 9890 } 9891 9892 return features; 9893 } 9894 9895 static void netdev_sync_lower_features(struct net_device *upper, 9896 struct net_device *lower, netdev_features_t features) 9897 { 9898 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9899 netdev_features_t feature; 9900 int feature_bit; 9901 9902 for_each_netdev_feature(upper_disables, feature_bit) { 9903 feature = __NETIF_F_BIT(feature_bit); 9904 if (!(features & feature) && (lower->features & feature)) { 9905 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9906 &feature, lower->name); 9907 lower->wanted_features &= ~feature; 9908 __netdev_update_features(lower); 9909 9910 if (unlikely(lower->features & feature)) 9911 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9912 &feature, lower->name); 9913 else 9914 netdev_features_change(lower); 9915 } 9916 } 9917 } 9918 9919 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 9920 { 9921 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 9922 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 9923 bool hw_csum = features & NETIF_F_HW_CSUM; 9924 9925 return ip_csum || hw_csum; 9926 } 9927 9928 static netdev_features_t netdev_fix_features(struct net_device *dev, 9929 netdev_features_t features) 9930 { 9931 /* Fix illegal checksum combinations */ 9932 if ((features & NETIF_F_HW_CSUM) && 9933 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9934 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9935 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9936 } 9937 9938 /* TSO requires that SG is present as well. */ 9939 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9940 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9941 features &= ~NETIF_F_ALL_TSO; 9942 } 9943 9944 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9945 !(features & NETIF_F_IP_CSUM)) { 9946 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9947 features &= ~NETIF_F_TSO; 9948 features &= ~NETIF_F_TSO_ECN; 9949 } 9950 9951 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9952 !(features & NETIF_F_IPV6_CSUM)) { 9953 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9954 features &= ~NETIF_F_TSO6; 9955 } 9956 9957 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9958 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9959 features &= ~NETIF_F_TSO_MANGLEID; 9960 9961 /* TSO ECN requires that TSO is present as well. */ 9962 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9963 features &= ~NETIF_F_TSO_ECN; 9964 9965 /* Software GSO depends on SG. */ 9966 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9967 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9968 features &= ~NETIF_F_GSO; 9969 } 9970 9971 /* GSO partial features require GSO partial be set */ 9972 if ((features & dev->gso_partial_features) && 9973 !(features & NETIF_F_GSO_PARTIAL)) { 9974 netdev_dbg(dev, 9975 "Dropping partially supported GSO features since no GSO partial.\n"); 9976 features &= ~dev->gso_partial_features; 9977 } 9978 9979 if (!(features & NETIF_F_RXCSUM)) { 9980 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9981 * successfully merged by hardware must also have the 9982 * checksum verified by hardware. If the user does not 9983 * want to enable RXCSUM, logically, we should disable GRO_HW. 9984 */ 9985 if (features & NETIF_F_GRO_HW) { 9986 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9987 features &= ~NETIF_F_GRO_HW; 9988 } 9989 } 9990 9991 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9992 if (features & NETIF_F_RXFCS) { 9993 if (features & NETIF_F_LRO) { 9994 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9995 features &= ~NETIF_F_LRO; 9996 } 9997 9998 if (features & NETIF_F_GRO_HW) { 9999 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10000 features &= ~NETIF_F_GRO_HW; 10001 } 10002 } 10003 10004 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10005 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10006 features &= ~NETIF_F_LRO; 10007 } 10008 10009 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10010 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10011 features &= ~NETIF_F_HW_TLS_TX; 10012 } 10013 10014 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10015 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10016 features &= ~NETIF_F_HW_TLS_RX; 10017 } 10018 10019 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10020 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10021 features &= ~NETIF_F_GSO_UDP_L4; 10022 } 10023 10024 return features; 10025 } 10026 10027 int __netdev_update_features(struct net_device *dev) 10028 { 10029 struct net_device *upper, *lower; 10030 netdev_features_t features; 10031 struct list_head *iter; 10032 int err = -1; 10033 10034 ASSERT_RTNL(); 10035 10036 features = netdev_get_wanted_features(dev); 10037 10038 if (dev->netdev_ops->ndo_fix_features) 10039 features = dev->netdev_ops->ndo_fix_features(dev, features); 10040 10041 /* driver might be less strict about feature dependencies */ 10042 features = netdev_fix_features(dev, features); 10043 10044 /* some features can't be enabled if they're off on an upper device */ 10045 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10046 features = netdev_sync_upper_features(dev, upper, features); 10047 10048 if (dev->features == features) 10049 goto sync_lower; 10050 10051 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10052 &dev->features, &features); 10053 10054 if (dev->netdev_ops->ndo_set_features) 10055 err = dev->netdev_ops->ndo_set_features(dev, features); 10056 else 10057 err = 0; 10058 10059 if (unlikely(err < 0)) { 10060 netdev_err(dev, 10061 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10062 err, &features, &dev->features); 10063 /* return non-0 since some features might have changed and 10064 * it's better to fire a spurious notification than miss it 10065 */ 10066 return -1; 10067 } 10068 10069 sync_lower: 10070 /* some features must be disabled on lower devices when disabled 10071 * on an upper device (think: bonding master or bridge) 10072 */ 10073 netdev_for_each_lower_dev(dev, lower, iter) 10074 netdev_sync_lower_features(dev, lower, features); 10075 10076 if (!err) { 10077 netdev_features_t diff = features ^ dev->features; 10078 10079 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10080 /* udp_tunnel_{get,drop}_rx_info both need 10081 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10082 * device, or they won't do anything. 10083 * Thus we need to update dev->features 10084 * *before* calling udp_tunnel_get_rx_info, 10085 * but *after* calling udp_tunnel_drop_rx_info. 10086 */ 10087 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10088 dev->features = features; 10089 udp_tunnel_get_rx_info(dev); 10090 } else { 10091 udp_tunnel_drop_rx_info(dev); 10092 } 10093 } 10094 10095 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10096 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10097 dev->features = features; 10098 err |= vlan_get_rx_ctag_filter_info(dev); 10099 } else { 10100 vlan_drop_rx_ctag_filter_info(dev); 10101 } 10102 } 10103 10104 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10105 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10106 dev->features = features; 10107 err |= vlan_get_rx_stag_filter_info(dev); 10108 } else { 10109 vlan_drop_rx_stag_filter_info(dev); 10110 } 10111 } 10112 10113 dev->features = features; 10114 } 10115 10116 return err < 0 ? 0 : 1; 10117 } 10118 10119 /** 10120 * netdev_update_features - recalculate device features 10121 * @dev: the device to check 10122 * 10123 * Recalculate dev->features set and send notifications if it 10124 * has changed. Should be called after driver or hardware dependent 10125 * conditions might have changed that influence the features. 10126 */ 10127 void netdev_update_features(struct net_device *dev) 10128 { 10129 if (__netdev_update_features(dev)) 10130 netdev_features_change(dev); 10131 } 10132 EXPORT_SYMBOL(netdev_update_features); 10133 10134 /** 10135 * netdev_change_features - recalculate device features 10136 * @dev: the device to check 10137 * 10138 * Recalculate dev->features set and send notifications even 10139 * if they have not changed. Should be called instead of 10140 * netdev_update_features() if also dev->vlan_features might 10141 * have changed to allow the changes to be propagated to stacked 10142 * VLAN devices. 10143 */ 10144 void netdev_change_features(struct net_device *dev) 10145 { 10146 __netdev_update_features(dev); 10147 netdev_features_change(dev); 10148 } 10149 EXPORT_SYMBOL(netdev_change_features); 10150 10151 /** 10152 * netif_stacked_transfer_operstate - transfer operstate 10153 * @rootdev: the root or lower level device to transfer state from 10154 * @dev: the device to transfer operstate to 10155 * 10156 * Transfer operational state from root to device. This is normally 10157 * called when a stacking relationship exists between the root 10158 * device and the device(a leaf device). 10159 */ 10160 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10161 struct net_device *dev) 10162 { 10163 if (rootdev->operstate == IF_OPER_DORMANT) 10164 netif_dormant_on(dev); 10165 else 10166 netif_dormant_off(dev); 10167 10168 if (rootdev->operstate == IF_OPER_TESTING) 10169 netif_testing_on(dev); 10170 else 10171 netif_testing_off(dev); 10172 10173 if (netif_carrier_ok(rootdev)) 10174 netif_carrier_on(dev); 10175 else 10176 netif_carrier_off(dev); 10177 } 10178 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10179 10180 static int netif_alloc_rx_queues(struct net_device *dev) 10181 { 10182 unsigned int i, count = dev->num_rx_queues; 10183 struct netdev_rx_queue *rx; 10184 size_t sz = count * sizeof(*rx); 10185 int err = 0; 10186 10187 BUG_ON(count < 1); 10188 10189 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10190 if (!rx) 10191 return -ENOMEM; 10192 10193 dev->_rx = rx; 10194 10195 for (i = 0; i < count; i++) { 10196 rx[i].dev = dev; 10197 10198 /* XDP RX-queue setup */ 10199 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10200 if (err < 0) 10201 goto err_rxq_info; 10202 } 10203 return 0; 10204 10205 err_rxq_info: 10206 /* Rollback successful reg's and free other resources */ 10207 while (i--) 10208 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10209 kvfree(dev->_rx); 10210 dev->_rx = NULL; 10211 return err; 10212 } 10213 10214 static void netif_free_rx_queues(struct net_device *dev) 10215 { 10216 unsigned int i, count = dev->num_rx_queues; 10217 10218 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10219 if (!dev->_rx) 10220 return; 10221 10222 for (i = 0; i < count; i++) 10223 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10224 10225 kvfree(dev->_rx); 10226 } 10227 10228 static void netdev_init_one_queue(struct net_device *dev, 10229 struct netdev_queue *queue, void *_unused) 10230 { 10231 /* Initialize queue lock */ 10232 spin_lock_init(&queue->_xmit_lock); 10233 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10234 queue->xmit_lock_owner = -1; 10235 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10236 queue->dev = dev; 10237 #ifdef CONFIG_BQL 10238 dql_init(&queue->dql, HZ); 10239 #endif 10240 } 10241 10242 static void netif_free_tx_queues(struct net_device *dev) 10243 { 10244 kvfree(dev->_tx); 10245 } 10246 10247 static int netif_alloc_netdev_queues(struct net_device *dev) 10248 { 10249 unsigned int count = dev->num_tx_queues; 10250 struct netdev_queue *tx; 10251 size_t sz = count * sizeof(*tx); 10252 10253 if (count < 1 || count > 0xffff) 10254 return -EINVAL; 10255 10256 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10257 if (!tx) 10258 return -ENOMEM; 10259 10260 dev->_tx = tx; 10261 10262 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10263 spin_lock_init(&dev->tx_global_lock); 10264 10265 return 0; 10266 } 10267 10268 void netif_tx_stop_all_queues(struct net_device *dev) 10269 { 10270 unsigned int i; 10271 10272 for (i = 0; i < dev->num_tx_queues; i++) { 10273 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10274 10275 netif_tx_stop_queue(txq); 10276 } 10277 } 10278 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10279 10280 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10281 { 10282 void __percpu *v; 10283 10284 /* Drivers implementing ndo_get_peer_dev must support tstat 10285 * accounting, so that skb_do_redirect() can bump the dev's 10286 * RX stats upon network namespace switch. 10287 */ 10288 if (dev->netdev_ops->ndo_get_peer_dev && 10289 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10290 return -EOPNOTSUPP; 10291 10292 switch (dev->pcpu_stat_type) { 10293 case NETDEV_PCPU_STAT_NONE: 10294 return 0; 10295 case NETDEV_PCPU_STAT_LSTATS: 10296 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10297 break; 10298 case NETDEV_PCPU_STAT_TSTATS: 10299 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10300 break; 10301 case NETDEV_PCPU_STAT_DSTATS: 10302 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10303 break; 10304 default: 10305 return -EINVAL; 10306 } 10307 10308 return v ? 0 : -ENOMEM; 10309 } 10310 10311 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10312 { 10313 switch (dev->pcpu_stat_type) { 10314 case NETDEV_PCPU_STAT_NONE: 10315 return; 10316 case NETDEV_PCPU_STAT_LSTATS: 10317 free_percpu(dev->lstats); 10318 break; 10319 case NETDEV_PCPU_STAT_TSTATS: 10320 free_percpu(dev->tstats); 10321 break; 10322 case NETDEV_PCPU_STAT_DSTATS: 10323 free_percpu(dev->dstats); 10324 break; 10325 } 10326 } 10327 10328 /** 10329 * register_netdevice() - register a network device 10330 * @dev: device to register 10331 * 10332 * Take a prepared network device structure and make it externally accessible. 10333 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10334 * Callers must hold the rtnl lock - you may want register_netdev() 10335 * instead of this. 10336 */ 10337 int register_netdevice(struct net_device *dev) 10338 { 10339 int ret; 10340 struct net *net = dev_net(dev); 10341 10342 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10343 NETDEV_FEATURE_COUNT); 10344 BUG_ON(dev_boot_phase); 10345 ASSERT_RTNL(); 10346 10347 might_sleep(); 10348 10349 /* When net_device's are persistent, this will be fatal. */ 10350 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10351 BUG_ON(!net); 10352 10353 ret = ethtool_check_ops(dev->ethtool_ops); 10354 if (ret) 10355 return ret; 10356 10357 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 10358 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 10359 mutex_init(&dev->ethtool->rss_lock); 10360 10361 spin_lock_init(&dev->addr_list_lock); 10362 netdev_set_addr_lockdep_class(dev); 10363 10364 ret = dev_get_valid_name(net, dev, dev->name); 10365 if (ret < 0) 10366 goto out; 10367 10368 ret = -ENOMEM; 10369 dev->name_node = netdev_name_node_head_alloc(dev); 10370 if (!dev->name_node) 10371 goto out; 10372 10373 /* Init, if this function is available */ 10374 if (dev->netdev_ops->ndo_init) { 10375 ret = dev->netdev_ops->ndo_init(dev); 10376 if (ret) { 10377 if (ret > 0) 10378 ret = -EIO; 10379 goto err_free_name; 10380 } 10381 } 10382 10383 if (((dev->hw_features | dev->features) & 10384 NETIF_F_HW_VLAN_CTAG_FILTER) && 10385 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10386 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10387 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10388 ret = -EINVAL; 10389 goto err_uninit; 10390 } 10391 10392 ret = netdev_do_alloc_pcpu_stats(dev); 10393 if (ret) 10394 goto err_uninit; 10395 10396 ret = dev_index_reserve(net, dev->ifindex); 10397 if (ret < 0) 10398 goto err_free_pcpu; 10399 dev->ifindex = ret; 10400 10401 /* Transfer changeable features to wanted_features and enable 10402 * software offloads (GSO and GRO). 10403 */ 10404 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10405 dev->features |= NETIF_F_SOFT_FEATURES; 10406 10407 if (dev->udp_tunnel_nic_info) { 10408 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10409 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10410 } 10411 10412 dev->wanted_features = dev->features & dev->hw_features; 10413 10414 if (!(dev->flags & IFF_LOOPBACK)) 10415 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10416 10417 /* If IPv4 TCP segmentation offload is supported we should also 10418 * allow the device to enable segmenting the frame with the option 10419 * of ignoring a static IP ID value. This doesn't enable the 10420 * feature itself but allows the user to enable it later. 10421 */ 10422 if (dev->hw_features & NETIF_F_TSO) 10423 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10424 if (dev->vlan_features & NETIF_F_TSO) 10425 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10426 if (dev->mpls_features & NETIF_F_TSO) 10427 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10428 if (dev->hw_enc_features & NETIF_F_TSO) 10429 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10430 10431 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10432 */ 10433 dev->vlan_features |= NETIF_F_HIGHDMA; 10434 10435 /* Make NETIF_F_SG inheritable to tunnel devices. 10436 */ 10437 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10438 10439 /* Make NETIF_F_SG inheritable to MPLS. 10440 */ 10441 dev->mpls_features |= NETIF_F_SG; 10442 10443 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10444 ret = notifier_to_errno(ret); 10445 if (ret) 10446 goto err_ifindex_release; 10447 10448 ret = netdev_register_kobject(dev); 10449 10450 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 10451 10452 if (ret) 10453 goto err_uninit_notify; 10454 10455 __netdev_update_features(dev); 10456 10457 /* 10458 * Default initial state at registry is that the 10459 * device is present. 10460 */ 10461 10462 set_bit(__LINK_STATE_PRESENT, &dev->state); 10463 10464 linkwatch_init_dev(dev); 10465 10466 dev_init_scheduler(dev); 10467 10468 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10469 list_netdevice(dev); 10470 10471 add_device_randomness(dev->dev_addr, dev->addr_len); 10472 10473 /* If the device has permanent device address, driver should 10474 * set dev_addr and also addr_assign_type should be set to 10475 * NET_ADDR_PERM (default value). 10476 */ 10477 if (dev->addr_assign_type == NET_ADDR_PERM) 10478 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10479 10480 /* Notify protocols, that a new device appeared. */ 10481 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10482 ret = notifier_to_errno(ret); 10483 if (ret) { 10484 /* Expect explicit free_netdev() on failure */ 10485 dev->needs_free_netdev = false; 10486 unregister_netdevice_queue(dev, NULL); 10487 goto out; 10488 } 10489 /* 10490 * Prevent userspace races by waiting until the network 10491 * device is fully setup before sending notifications. 10492 */ 10493 if (!dev->rtnl_link_ops || 10494 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10495 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10496 10497 out: 10498 return ret; 10499 10500 err_uninit_notify: 10501 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10502 err_ifindex_release: 10503 dev_index_release(net, dev->ifindex); 10504 err_free_pcpu: 10505 netdev_do_free_pcpu_stats(dev); 10506 err_uninit: 10507 if (dev->netdev_ops->ndo_uninit) 10508 dev->netdev_ops->ndo_uninit(dev); 10509 if (dev->priv_destructor) 10510 dev->priv_destructor(dev); 10511 err_free_name: 10512 netdev_name_node_free(dev->name_node); 10513 goto out; 10514 } 10515 EXPORT_SYMBOL(register_netdevice); 10516 10517 /* Initialize the core of a dummy net device. 10518 * This is useful if you are calling this function after alloc_netdev(), 10519 * since it does not memset the net_device fields. 10520 */ 10521 static void init_dummy_netdev_core(struct net_device *dev) 10522 { 10523 /* make sure we BUG if trying to hit standard 10524 * register/unregister code path 10525 */ 10526 dev->reg_state = NETREG_DUMMY; 10527 10528 /* NAPI wants this */ 10529 INIT_LIST_HEAD(&dev->napi_list); 10530 10531 /* a dummy interface is started by default */ 10532 set_bit(__LINK_STATE_PRESENT, &dev->state); 10533 set_bit(__LINK_STATE_START, &dev->state); 10534 10535 /* napi_busy_loop stats accounting wants this */ 10536 dev_net_set(dev, &init_net); 10537 10538 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10539 * because users of this 'device' dont need to change 10540 * its refcount. 10541 */ 10542 } 10543 10544 /** 10545 * init_dummy_netdev - init a dummy network device for NAPI 10546 * @dev: device to init 10547 * 10548 * This takes a network device structure and initializes the minimum 10549 * amount of fields so it can be used to schedule NAPI polls without 10550 * registering a full blown interface. This is to be used by drivers 10551 * that need to tie several hardware interfaces to a single NAPI 10552 * poll scheduler due to HW limitations. 10553 */ 10554 void init_dummy_netdev(struct net_device *dev) 10555 { 10556 /* Clear everything. Note we don't initialize spinlocks 10557 * as they aren't supposed to be taken by any of the 10558 * NAPI code and this dummy netdev is supposed to be 10559 * only ever used for NAPI polls 10560 */ 10561 memset(dev, 0, sizeof(struct net_device)); 10562 init_dummy_netdev_core(dev); 10563 } 10564 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10565 10566 /** 10567 * register_netdev - register a network device 10568 * @dev: device to register 10569 * 10570 * Take a completed network device structure and add it to the kernel 10571 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10572 * chain. 0 is returned on success. A negative errno code is returned 10573 * on a failure to set up the device, or if the name is a duplicate. 10574 * 10575 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10576 * and expands the device name if you passed a format string to 10577 * alloc_netdev. 10578 */ 10579 int register_netdev(struct net_device *dev) 10580 { 10581 int err; 10582 10583 if (rtnl_lock_killable()) 10584 return -EINTR; 10585 err = register_netdevice(dev); 10586 rtnl_unlock(); 10587 return err; 10588 } 10589 EXPORT_SYMBOL(register_netdev); 10590 10591 int netdev_refcnt_read(const struct net_device *dev) 10592 { 10593 #ifdef CONFIG_PCPU_DEV_REFCNT 10594 int i, refcnt = 0; 10595 10596 for_each_possible_cpu(i) 10597 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10598 return refcnt; 10599 #else 10600 return refcount_read(&dev->dev_refcnt); 10601 #endif 10602 } 10603 EXPORT_SYMBOL(netdev_refcnt_read); 10604 10605 int netdev_unregister_timeout_secs __read_mostly = 10; 10606 10607 #define WAIT_REFS_MIN_MSECS 1 10608 #define WAIT_REFS_MAX_MSECS 250 10609 /** 10610 * netdev_wait_allrefs_any - wait until all references are gone. 10611 * @list: list of net_devices to wait on 10612 * 10613 * This is called when unregistering network devices. 10614 * 10615 * Any protocol or device that holds a reference should register 10616 * for netdevice notification, and cleanup and put back the 10617 * reference if they receive an UNREGISTER event. 10618 * We can get stuck here if buggy protocols don't correctly 10619 * call dev_put. 10620 */ 10621 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10622 { 10623 unsigned long rebroadcast_time, warning_time; 10624 struct net_device *dev; 10625 int wait = 0; 10626 10627 rebroadcast_time = warning_time = jiffies; 10628 10629 list_for_each_entry(dev, list, todo_list) 10630 if (netdev_refcnt_read(dev) == 1) 10631 return dev; 10632 10633 while (true) { 10634 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10635 rtnl_lock(); 10636 10637 /* Rebroadcast unregister notification */ 10638 list_for_each_entry(dev, list, todo_list) 10639 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10640 10641 __rtnl_unlock(); 10642 rcu_barrier(); 10643 rtnl_lock(); 10644 10645 list_for_each_entry(dev, list, todo_list) 10646 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10647 &dev->state)) { 10648 /* We must not have linkwatch events 10649 * pending on unregister. If this 10650 * happens, we simply run the queue 10651 * unscheduled, resulting in a noop 10652 * for this device. 10653 */ 10654 linkwatch_run_queue(); 10655 break; 10656 } 10657 10658 __rtnl_unlock(); 10659 10660 rebroadcast_time = jiffies; 10661 } 10662 10663 rcu_barrier(); 10664 10665 if (!wait) { 10666 wait = WAIT_REFS_MIN_MSECS; 10667 } else { 10668 msleep(wait); 10669 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10670 } 10671 10672 list_for_each_entry(dev, list, todo_list) 10673 if (netdev_refcnt_read(dev) == 1) 10674 return dev; 10675 10676 if (time_after(jiffies, warning_time + 10677 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10678 list_for_each_entry(dev, list, todo_list) { 10679 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10680 dev->name, netdev_refcnt_read(dev)); 10681 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10682 } 10683 10684 warning_time = jiffies; 10685 } 10686 } 10687 } 10688 10689 /* The sequence is: 10690 * 10691 * rtnl_lock(); 10692 * ... 10693 * register_netdevice(x1); 10694 * register_netdevice(x2); 10695 * ... 10696 * unregister_netdevice(y1); 10697 * unregister_netdevice(y2); 10698 * ... 10699 * rtnl_unlock(); 10700 * free_netdev(y1); 10701 * free_netdev(y2); 10702 * 10703 * We are invoked by rtnl_unlock(). 10704 * This allows us to deal with problems: 10705 * 1) We can delete sysfs objects which invoke hotplug 10706 * without deadlocking with linkwatch via keventd. 10707 * 2) Since we run with the RTNL semaphore not held, we can sleep 10708 * safely in order to wait for the netdev refcnt to drop to zero. 10709 * 10710 * We must not return until all unregister events added during 10711 * the interval the lock was held have been completed. 10712 */ 10713 void netdev_run_todo(void) 10714 { 10715 struct net_device *dev, *tmp; 10716 struct list_head list; 10717 int cnt; 10718 #ifdef CONFIG_LOCKDEP 10719 struct list_head unlink_list; 10720 10721 list_replace_init(&net_unlink_list, &unlink_list); 10722 10723 while (!list_empty(&unlink_list)) { 10724 struct net_device *dev = list_first_entry(&unlink_list, 10725 struct net_device, 10726 unlink_list); 10727 list_del_init(&dev->unlink_list); 10728 dev->nested_level = dev->lower_level - 1; 10729 } 10730 #endif 10731 10732 /* Snapshot list, allow later requests */ 10733 list_replace_init(&net_todo_list, &list); 10734 10735 __rtnl_unlock(); 10736 10737 /* Wait for rcu callbacks to finish before next phase */ 10738 if (!list_empty(&list)) 10739 rcu_barrier(); 10740 10741 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10742 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10743 netdev_WARN(dev, "run_todo but not unregistering\n"); 10744 list_del(&dev->todo_list); 10745 continue; 10746 } 10747 10748 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 10749 linkwatch_sync_dev(dev); 10750 } 10751 10752 cnt = 0; 10753 while (!list_empty(&list)) { 10754 dev = netdev_wait_allrefs_any(&list); 10755 list_del(&dev->todo_list); 10756 10757 /* paranoia */ 10758 BUG_ON(netdev_refcnt_read(dev) != 1); 10759 BUG_ON(!list_empty(&dev->ptype_all)); 10760 BUG_ON(!list_empty(&dev->ptype_specific)); 10761 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10762 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10763 10764 netdev_do_free_pcpu_stats(dev); 10765 if (dev->priv_destructor) 10766 dev->priv_destructor(dev); 10767 if (dev->needs_free_netdev) 10768 free_netdev(dev); 10769 10770 cnt++; 10771 10772 /* Free network device */ 10773 kobject_put(&dev->dev.kobj); 10774 } 10775 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 10776 wake_up(&netdev_unregistering_wq); 10777 } 10778 10779 /* Collate per-cpu network dstats statistics 10780 * 10781 * Read per-cpu network statistics from dev->dstats and populate the related 10782 * fields in @s. 10783 */ 10784 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 10785 const struct pcpu_dstats __percpu *dstats) 10786 { 10787 int cpu; 10788 10789 for_each_possible_cpu(cpu) { 10790 u64 rx_packets, rx_bytes, rx_drops; 10791 u64 tx_packets, tx_bytes, tx_drops; 10792 const struct pcpu_dstats *stats; 10793 unsigned int start; 10794 10795 stats = per_cpu_ptr(dstats, cpu); 10796 do { 10797 start = u64_stats_fetch_begin(&stats->syncp); 10798 rx_packets = u64_stats_read(&stats->rx_packets); 10799 rx_bytes = u64_stats_read(&stats->rx_bytes); 10800 rx_drops = u64_stats_read(&stats->rx_drops); 10801 tx_packets = u64_stats_read(&stats->tx_packets); 10802 tx_bytes = u64_stats_read(&stats->tx_bytes); 10803 tx_drops = u64_stats_read(&stats->tx_drops); 10804 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10805 10806 s->rx_packets += rx_packets; 10807 s->rx_bytes += rx_bytes; 10808 s->rx_dropped += rx_drops; 10809 s->tx_packets += tx_packets; 10810 s->tx_bytes += tx_bytes; 10811 s->tx_dropped += tx_drops; 10812 } 10813 } 10814 10815 /* ndo_get_stats64 implementation for dtstats-based accounting. 10816 * 10817 * Populate @s from dev->stats and dev->dstats. This is used internally by the 10818 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 10819 */ 10820 static void dev_get_dstats64(const struct net_device *dev, 10821 struct rtnl_link_stats64 *s) 10822 { 10823 netdev_stats_to_stats64(s, &dev->stats); 10824 dev_fetch_dstats(s, dev->dstats); 10825 } 10826 10827 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10828 * all the same fields in the same order as net_device_stats, with only 10829 * the type differing, but rtnl_link_stats64 may have additional fields 10830 * at the end for newer counters. 10831 */ 10832 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10833 const struct net_device_stats *netdev_stats) 10834 { 10835 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10836 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10837 u64 *dst = (u64 *)stats64; 10838 10839 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10840 for (i = 0; i < n; i++) 10841 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10842 /* zero out counters that only exist in rtnl_link_stats64 */ 10843 memset((char *)stats64 + n * sizeof(u64), 0, 10844 sizeof(*stats64) - n * sizeof(u64)); 10845 } 10846 EXPORT_SYMBOL(netdev_stats_to_stats64); 10847 10848 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 10849 struct net_device *dev) 10850 { 10851 struct net_device_core_stats __percpu *p; 10852 10853 p = alloc_percpu_gfp(struct net_device_core_stats, 10854 GFP_ATOMIC | __GFP_NOWARN); 10855 10856 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10857 free_percpu(p); 10858 10859 /* This READ_ONCE() pairs with the cmpxchg() above */ 10860 return READ_ONCE(dev->core_stats); 10861 } 10862 10863 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 10864 { 10865 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10866 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 10867 unsigned long __percpu *field; 10868 10869 if (unlikely(!p)) { 10870 p = netdev_core_stats_alloc(dev); 10871 if (!p) 10872 return; 10873 } 10874 10875 field = (__force unsigned long __percpu *)((__force void *)p + offset); 10876 this_cpu_inc(*field); 10877 } 10878 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 10879 10880 /** 10881 * dev_get_stats - get network device statistics 10882 * @dev: device to get statistics from 10883 * @storage: place to store stats 10884 * 10885 * Get network statistics from device. Return @storage. 10886 * The device driver may provide its own method by setting 10887 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10888 * otherwise the internal statistics structure is used. 10889 */ 10890 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10891 struct rtnl_link_stats64 *storage) 10892 { 10893 const struct net_device_ops *ops = dev->netdev_ops; 10894 const struct net_device_core_stats __percpu *p; 10895 10896 if (ops->ndo_get_stats64) { 10897 memset(storage, 0, sizeof(*storage)); 10898 ops->ndo_get_stats64(dev, storage); 10899 } else if (ops->ndo_get_stats) { 10900 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10901 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 10902 dev_get_tstats64(dev, storage); 10903 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 10904 dev_get_dstats64(dev, storage); 10905 } else { 10906 netdev_stats_to_stats64(storage, &dev->stats); 10907 } 10908 10909 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10910 p = READ_ONCE(dev->core_stats); 10911 if (p) { 10912 const struct net_device_core_stats *core_stats; 10913 int i; 10914 10915 for_each_possible_cpu(i) { 10916 core_stats = per_cpu_ptr(p, i); 10917 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10918 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10919 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10920 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10921 } 10922 } 10923 return storage; 10924 } 10925 EXPORT_SYMBOL(dev_get_stats); 10926 10927 /** 10928 * dev_fetch_sw_netstats - get per-cpu network device statistics 10929 * @s: place to store stats 10930 * @netstats: per-cpu network stats to read from 10931 * 10932 * Read per-cpu network statistics and populate the related fields in @s. 10933 */ 10934 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10935 const struct pcpu_sw_netstats __percpu *netstats) 10936 { 10937 int cpu; 10938 10939 for_each_possible_cpu(cpu) { 10940 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10941 const struct pcpu_sw_netstats *stats; 10942 unsigned int start; 10943 10944 stats = per_cpu_ptr(netstats, cpu); 10945 do { 10946 start = u64_stats_fetch_begin(&stats->syncp); 10947 rx_packets = u64_stats_read(&stats->rx_packets); 10948 rx_bytes = u64_stats_read(&stats->rx_bytes); 10949 tx_packets = u64_stats_read(&stats->tx_packets); 10950 tx_bytes = u64_stats_read(&stats->tx_bytes); 10951 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10952 10953 s->rx_packets += rx_packets; 10954 s->rx_bytes += rx_bytes; 10955 s->tx_packets += tx_packets; 10956 s->tx_bytes += tx_bytes; 10957 } 10958 } 10959 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10960 10961 /** 10962 * dev_get_tstats64 - ndo_get_stats64 implementation 10963 * @dev: device to get statistics from 10964 * @s: place to store stats 10965 * 10966 * Populate @s from dev->stats and dev->tstats. Can be used as 10967 * ndo_get_stats64() callback. 10968 */ 10969 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10970 { 10971 netdev_stats_to_stats64(s, &dev->stats); 10972 dev_fetch_sw_netstats(s, dev->tstats); 10973 } 10974 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10975 10976 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10977 { 10978 struct netdev_queue *queue = dev_ingress_queue(dev); 10979 10980 #ifdef CONFIG_NET_CLS_ACT 10981 if (queue) 10982 return queue; 10983 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10984 if (!queue) 10985 return NULL; 10986 netdev_init_one_queue(dev, queue, NULL); 10987 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10988 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 10989 rcu_assign_pointer(dev->ingress_queue, queue); 10990 #endif 10991 return queue; 10992 } 10993 10994 static const struct ethtool_ops default_ethtool_ops; 10995 10996 void netdev_set_default_ethtool_ops(struct net_device *dev, 10997 const struct ethtool_ops *ops) 10998 { 10999 if (dev->ethtool_ops == &default_ethtool_ops) 11000 dev->ethtool_ops = ops; 11001 } 11002 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11003 11004 /** 11005 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11006 * @dev: netdev to enable the IRQ coalescing on 11007 * 11008 * Sets a conservative default for SW IRQ coalescing. Users can use 11009 * sysfs attributes to override the default values. 11010 */ 11011 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11012 { 11013 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11014 11015 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11016 dev->gro_flush_timeout = 20000; 11017 dev->napi_defer_hard_irqs = 1; 11018 } 11019 } 11020 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11021 11022 /** 11023 * alloc_netdev_mqs - allocate network device 11024 * @sizeof_priv: size of private data to allocate space for 11025 * @name: device name format string 11026 * @name_assign_type: origin of device name 11027 * @setup: callback to initialize device 11028 * @txqs: the number of TX subqueues to allocate 11029 * @rxqs: the number of RX subqueues to allocate 11030 * 11031 * Allocates a struct net_device with private data area for driver use 11032 * and performs basic initialization. Also allocates subqueue structs 11033 * for each queue on the device. 11034 */ 11035 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11036 unsigned char name_assign_type, 11037 void (*setup)(struct net_device *), 11038 unsigned int txqs, unsigned int rxqs) 11039 { 11040 struct net_device *dev; 11041 11042 BUG_ON(strlen(name) >= sizeof(dev->name)); 11043 11044 if (txqs < 1) { 11045 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11046 return NULL; 11047 } 11048 11049 if (rxqs < 1) { 11050 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11051 return NULL; 11052 } 11053 11054 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11055 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11056 if (!dev) 11057 return NULL; 11058 11059 dev->priv_len = sizeof_priv; 11060 11061 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 11062 #ifdef CONFIG_PCPU_DEV_REFCNT 11063 dev->pcpu_refcnt = alloc_percpu(int); 11064 if (!dev->pcpu_refcnt) 11065 goto free_dev; 11066 __dev_hold(dev); 11067 #else 11068 refcount_set(&dev->dev_refcnt, 1); 11069 #endif 11070 11071 if (dev_addr_init(dev)) 11072 goto free_pcpu; 11073 11074 dev_mc_init(dev); 11075 dev_uc_init(dev); 11076 11077 dev_net_set(dev, &init_net); 11078 11079 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11080 dev->xdp_zc_max_segs = 1; 11081 dev->gso_max_segs = GSO_MAX_SEGS; 11082 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11083 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11084 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11085 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11086 dev->tso_max_segs = TSO_MAX_SEGS; 11087 dev->upper_level = 1; 11088 dev->lower_level = 1; 11089 #ifdef CONFIG_LOCKDEP 11090 dev->nested_level = 0; 11091 INIT_LIST_HEAD(&dev->unlink_list); 11092 #endif 11093 11094 INIT_LIST_HEAD(&dev->napi_list); 11095 INIT_LIST_HEAD(&dev->unreg_list); 11096 INIT_LIST_HEAD(&dev->close_list); 11097 INIT_LIST_HEAD(&dev->link_watch_list); 11098 INIT_LIST_HEAD(&dev->adj_list.upper); 11099 INIT_LIST_HEAD(&dev->adj_list.lower); 11100 INIT_LIST_HEAD(&dev->ptype_all); 11101 INIT_LIST_HEAD(&dev->ptype_specific); 11102 INIT_LIST_HEAD(&dev->net_notifier_list); 11103 #ifdef CONFIG_NET_SCHED 11104 hash_init(dev->qdisc_hash); 11105 #endif 11106 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11107 setup(dev); 11108 11109 if (!dev->tx_queue_len) { 11110 dev->priv_flags |= IFF_NO_QUEUE; 11111 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11112 } 11113 11114 dev->num_tx_queues = txqs; 11115 dev->real_num_tx_queues = txqs; 11116 if (netif_alloc_netdev_queues(dev)) 11117 goto free_all; 11118 11119 dev->num_rx_queues = rxqs; 11120 dev->real_num_rx_queues = rxqs; 11121 if (netif_alloc_rx_queues(dev)) 11122 goto free_all; 11123 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11124 if (!dev->ethtool) 11125 goto free_all; 11126 11127 strcpy(dev->name, name); 11128 dev->name_assign_type = name_assign_type; 11129 dev->group = INIT_NETDEV_GROUP; 11130 if (!dev->ethtool_ops) 11131 dev->ethtool_ops = &default_ethtool_ops; 11132 11133 nf_hook_netdev_init(dev); 11134 11135 return dev; 11136 11137 free_all: 11138 free_netdev(dev); 11139 return NULL; 11140 11141 free_pcpu: 11142 #ifdef CONFIG_PCPU_DEV_REFCNT 11143 free_percpu(dev->pcpu_refcnt); 11144 free_dev: 11145 #endif 11146 kvfree(dev); 11147 return NULL; 11148 } 11149 EXPORT_SYMBOL(alloc_netdev_mqs); 11150 11151 /** 11152 * free_netdev - free network device 11153 * @dev: device 11154 * 11155 * This function does the last stage of destroying an allocated device 11156 * interface. The reference to the device object is released. If this 11157 * is the last reference then it will be freed.Must be called in process 11158 * context. 11159 */ 11160 void free_netdev(struct net_device *dev) 11161 { 11162 struct napi_struct *p, *n; 11163 11164 might_sleep(); 11165 11166 /* When called immediately after register_netdevice() failed the unwind 11167 * handling may still be dismantling the device. Handle that case by 11168 * deferring the free. 11169 */ 11170 if (dev->reg_state == NETREG_UNREGISTERING) { 11171 ASSERT_RTNL(); 11172 dev->needs_free_netdev = true; 11173 return; 11174 } 11175 11176 kfree(dev->ethtool); 11177 netif_free_tx_queues(dev); 11178 netif_free_rx_queues(dev); 11179 11180 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11181 11182 /* Flush device addresses */ 11183 dev_addr_flush(dev); 11184 11185 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11186 netif_napi_del(p); 11187 11188 ref_tracker_dir_exit(&dev->refcnt_tracker); 11189 #ifdef CONFIG_PCPU_DEV_REFCNT 11190 free_percpu(dev->pcpu_refcnt); 11191 dev->pcpu_refcnt = NULL; 11192 #endif 11193 free_percpu(dev->core_stats); 11194 dev->core_stats = NULL; 11195 free_percpu(dev->xdp_bulkq); 11196 dev->xdp_bulkq = NULL; 11197 11198 /* Compatibility with error handling in drivers */ 11199 if (dev->reg_state == NETREG_UNINITIALIZED || 11200 dev->reg_state == NETREG_DUMMY) { 11201 kvfree(dev); 11202 return; 11203 } 11204 11205 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11206 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11207 11208 /* will free via device release */ 11209 put_device(&dev->dev); 11210 } 11211 EXPORT_SYMBOL(free_netdev); 11212 11213 /** 11214 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11215 * @sizeof_priv: size of private data to allocate space for 11216 * 11217 * Return: the allocated net_device on success, NULL otherwise 11218 */ 11219 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11220 { 11221 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11222 init_dummy_netdev_core); 11223 } 11224 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11225 11226 /** 11227 * synchronize_net - Synchronize with packet receive processing 11228 * 11229 * Wait for packets currently being received to be done. 11230 * Does not block later packets from starting. 11231 */ 11232 void synchronize_net(void) 11233 { 11234 might_sleep(); 11235 if (rtnl_is_locked()) 11236 synchronize_rcu_expedited(); 11237 else 11238 synchronize_rcu(); 11239 } 11240 EXPORT_SYMBOL(synchronize_net); 11241 11242 static void netdev_rss_contexts_free(struct net_device *dev) 11243 { 11244 struct ethtool_rxfh_context *ctx; 11245 unsigned long context; 11246 11247 mutex_lock(&dev->ethtool->rss_lock); 11248 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11249 struct ethtool_rxfh_param rxfh; 11250 11251 rxfh.indir = ethtool_rxfh_context_indir(ctx); 11252 rxfh.key = ethtool_rxfh_context_key(ctx); 11253 rxfh.hfunc = ctx->hfunc; 11254 rxfh.input_xfrm = ctx->input_xfrm; 11255 rxfh.rss_context = context; 11256 rxfh.rss_delete = true; 11257 11258 xa_erase(&dev->ethtool->rss_ctx, context); 11259 if (dev->ethtool_ops->create_rxfh_context) 11260 dev->ethtool_ops->remove_rxfh_context(dev, ctx, 11261 context, NULL); 11262 else 11263 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); 11264 kfree(ctx); 11265 } 11266 xa_destroy(&dev->ethtool->rss_ctx); 11267 mutex_unlock(&dev->ethtool->rss_lock); 11268 } 11269 11270 /** 11271 * unregister_netdevice_queue - remove device from the kernel 11272 * @dev: device 11273 * @head: list 11274 * 11275 * This function shuts down a device interface and removes it 11276 * from the kernel tables. 11277 * If head not NULL, device is queued to be unregistered later. 11278 * 11279 * Callers must hold the rtnl semaphore. You may want 11280 * unregister_netdev() instead of this. 11281 */ 11282 11283 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11284 { 11285 ASSERT_RTNL(); 11286 11287 if (head) { 11288 list_move_tail(&dev->unreg_list, head); 11289 } else { 11290 LIST_HEAD(single); 11291 11292 list_add(&dev->unreg_list, &single); 11293 unregister_netdevice_many(&single); 11294 } 11295 } 11296 EXPORT_SYMBOL(unregister_netdevice_queue); 11297 11298 void unregister_netdevice_many_notify(struct list_head *head, 11299 u32 portid, const struct nlmsghdr *nlh) 11300 { 11301 struct net_device *dev, *tmp; 11302 LIST_HEAD(close_head); 11303 int cnt = 0; 11304 11305 BUG_ON(dev_boot_phase); 11306 ASSERT_RTNL(); 11307 11308 if (list_empty(head)) 11309 return; 11310 11311 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11312 /* Some devices call without registering 11313 * for initialization unwind. Remove those 11314 * devices and proceed with the remaining. 11315 */ 11316 if (dev->reg_state == NETREG_UNINITIALIZED) { 11317 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11318 dev->name, dev); 11319 11320 WARN_ON(1); 11321 list_del(&dev->unreg_list); 11322 continue; 11323 } 11324 dev->dismantle = true; 11325 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11326 } 11327 11328 /* If device is running, close it first. */ 11329 list_for_each_entry(dev, head, unreg_list) 11330 list_add_tail(&dev->close_list, &close_head); 11331 dev_close_many(&close_head, true); 11332 11333 list_for_each_entry(dev, head, unreg_list) { 11334 /* And unlink it from device chain. */ 11335 unlist_netdevice(dev); 11336 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 11337 } 11338 flush_all_backlogs(); 11339 11340 synchronize_net(); 11341 11342 list_for_each_entry(dev, head, unreg_list) { 11343 struct sk_buff *skb = NULL; 11344 11345 /* Shutdown queueing discipline. */ 11346 dev_shutdown(dev); 11347 dev_tcx_uninstall(dev); 11348 dev_xdp_uninstall(dev); 11349 bpf_dev_bound_netdev_unregister(dev); 11350 11351 netdev_offload_xstats_disable_all(dev); 11352 11353 /* Notify protocols, that we are about to destroy 11354 * this device. They should clean all the things. 11355 */ 11356 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11357 11358 if (!dev->rtnl_link_ops || 11359 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11360 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11361 GFP_KERNEL, NULL, 0, 11362 portid, nlh); 11363 11364 /* 11365 * Flush the unicast and multicast chains 11366 */ 11367 dev_uc_flush(dev); 11368 dev_mc_flush(dev); 11369 11370 netdev_name_node_alt_flush(dev); 11371 netdev_name_node_free(dev->name_node); 11372 11373 netdev_rss_contexts_free(dev); 11374 11375 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11376 11377 if (dev->netdev_ops->ndo_uninit) 11378 dev->netdev_ops->ndo_uninit(dev); 11379 11380 mutex_destroy(&dev->ethtool->rss_lock); 11381 11382 if (skb) 11383 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11384 11385 /* Notifier chain MUST detach us all upper devices. */ 11386 WARN_ON(netdev_has_any_upper_dev(dev)); 11387 WARN_ON(netdev_has_any_lower_dev(dev)); 11388 11389 /* Remove entries from kobject tree */ 11390 netdev_unregister_kobject(dev); 11391 #ifdef CONFIG_XPS 11392 /* Remove XPS queueing entries */ 11393 netif_reset_xps_queues_gt(dev, 0); 11394 #endif 11395 } 11396 11397 synchronize_net(); 11398 11399 list_for_each_entry(dev, head, unreg_list) { 11400 netdev_put(dev, &dev->dev_registered_tracker); 11401 net_set_todo(dev); 11402 cnt++; 11403 } 11404 atomic_add(cnt, &dev_unreg_count); 11405 11406 list_del(head); 11407 } 11408 11409 /** 11410 * unregister_netdevice_many - unregister many devices 11411 * @head: list of devices 11412 * 11413 * Note: As most callers use a stack allocated list_head, 11414 * we force a list_del() to make sure stack wont be corrupted later. 11415 */ 11416 void unregister_netdevice_many(struct list_head *head) 11417 { 11418 unregister_netdevice_many_notify(head, 0, NULL); 11419 } 11420 EXPORT_SYMBOL(unregister_netdevice_many); 11421 11422 /** 11423 * unregister_netdev - remove device from the kernel 11424 * @dev: device 11425 * 11426 * This function shuts down a device interface and removes it 11427 * from the kernel tables. 11428 * 11429 * This is just a wrapper for unregister_netdevice that takes 11430 * the rtnl semaphore. In general you want to use this and not 11431 * unregister_netdevice. 11432 */ 11433 void unregister_netdev(struct net_device *dev) 11434 { 11435 rtnl_lock(); 11436 unregister_netdevice(dev); 11437 rtnl_unlock(); 11438 } 11439 EXPORT_SYMBOL(unregister_netdev); 11440 11441 /** 11442 * __dev_change_net_namespace - move device to different nethost namespace 11443 * @dev: device 11444 * @net: network namespace 11445 * @pat: If not NULL name pattern to try if the current device name 11446 * is already taken in the destination network namespace. 11447 * @new_ifindex: If not zero, specifies device index in the target 11448 * namespace. 11449 * 11450 * This function shuts down a device interface and moves it 11451 * to a new network namespace. On success 0 is returned, on 11452 * a failure a netagive errno code is returned. 11453 * 11454 * Callers must hold the rtnl semaphore. 11455 */ 11456 11457 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11458 const char *pat, int new_ifindex) 11459 { 11460 struct netdev_name_node *name_node; 11461 struct net *net_old = dev_net(dev); 11462 char new_name[IFNAMSIZ] = {}; 11463 int err, new_nsid; 11464 11465 ASSERT_RTNL(); 11466 11467 /* Don't allow namespace local devices to be moved. */ 11468 err = -EINVAL; 11469 if (dev->features & NETIF_F_NETNS_LOCAL) 11470 goto out; 11471 11472 /* Ensure the device has been registrered */ 11473 if (dev->reg_state != NETREG_REGISTERED) 11474 goto out; 11475 11476 /* Get out if there is nothing todo */ 11477 err = 0; 11478 if (net_eq(net_old, net)) 11479 goto out; 11480 11481 /* Pick the destination device name, and ensure 11482 * we can use it in the destination network namespace. 11483 */ 11484 err = -EEXIST; 11485 if (netdev_name_in_use(net, dev->name)) { 11486 /* We get here if we can't use the current device name */ 11487 if (!pat) 11488 goto out; 11489 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 11490 if (err < 0) 11491 goto out; 11492 } 11493 /* Check that none of the altnames conflicts. */ 11494 err = -EEXIST; 11495 netdev_for_each_altname(dev, name_node) 11496 if (netdev_name_in_use(net, name_node->name)) 11497 goto out; 11498 11499 /* Check that new_ifindex isn't used yet. */ 11500 if (new_ifindex) { 11501 err = dev_index_reserve(net, new_ifindex); 11502 if (err < 0) 11503 goto out; 11504 } else { 11505 /* If there is an ifindex conflict assign a new one */ 11506 err = dev_index_reserve(net, dev->ifindex); 11507 if (err == -EBUSY) 11508 err = dev_index_reserve(net, 0); 11509 if (err < 0) 11510 goto out; 11511 new_ifindex = err; 11512 } 11513 11514 /* 11515 * And now a mini version of register_netdevice unregister_netdevice. 11516 */ 11517 11518 /* If device is running close it first. */ 11519 dev_close(dev); 11520 11521 /* And unlink it from device chain */ 11522 unlist_netdevice(dev); 11523 11524 synchronize_net(); 11525 11526 /* Shutdown queueing discipline. */ 11527 dev_shutdown(dev); 11528 11529 /* Notify protocols, that we are about to destroy 11530 * this device. They should clean all the things. 11531 * 11532 * Note that dev->reg_state stays at NETREG_REGISTERED. 11533 * This is wanted because this way 8021q and macvlan know 11534 * the device is just moving and can keep their slaves up. 11535 */ 11536 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11537 rcu_barrier(); 11538 11539 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11540 11541 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11542 new_ifindex); 11543 11544 /* 11545 * Flush the unicast and multicast chains 11546 */ 11547 dev_uc_flush(dev); 11548 dev_mc_flush(dev); 11549 11550 /* Send a netdev-removed uevent to the old namespace */ 11551 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11552 netdev_adjacent_del_links(dev); 11553 11554 /* Move per-net netdevice notifiers that are following the netdevice */ 11555 move_netdevice_notifiers_dev_net(dev, net); 11556 11557 /* Actually switch the network namespace */ 11558 dev_net_set(dev, net); 11559 dev->ifindex = new_ifindex; 11560 11561 if (new_name[0]) { 11562 /* Rename the netdev to prepared name */ 11563 write_seqlock_bh(&netdev_rename_lock); 11564 strscpy(dev->name, new_name, IFNAMSIZ); 11565 write_sequnlock_bh(&netdev_rename_lock); 11566 } 11567 11568 /* Fixup kobjects */ 11569 dev_set_uevent_suppress(&dev->dev, 1); 11570 err = device_rename(&dev->dev, dev->name); 11571 dev_set_uevent_suppress(&dev->dev, 0); 11572 WARN_ON(err); 11573 11574 /* Send a netdev-add uevent to the new namespace */ 11575 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11576 netdev_adjacent_add_links(dev); 11577 11578 /* Adapt owner in case owning user namespace of target network 11579 * namespace is different from the original one. 11580 */ 11581 err = netdev_change_owner(dev, net_old, net); 11582 WARN_ON(err); 11583 11584 /* Add the device back in the hashes */ 11585 list_netdevice(dev); 11586 11587 /* Notify protocols, that a new device appeared. */ 11588 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11589 11590 /* 11591 * Prevent userspace races by waiting until the network 11592 * device is fully setup before sending notifications. 11593 */ 11594 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11595 11596 synchronize_net(); 11597 err = 0; 11598 out: 11599 return err; 11600 } 11601 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11602 11603 static int dev_cpu_dead(unsigned int oldcpu) 11604 { 11605 struct sk_buff **list_skb; 11606 struct sk_buff *skb; 11607 unsigned int cpu; 11608 struct softnet_data *sd, *oldsd, *remsd = NULL; 11609 11610 local_irq_disable(); 11611 cpu = smp_processor_id(); 11612 sd = &per_cpu(softnet_data, cpu); 11613 oldsd = &per_cpu(softnet_data, oldcpu); 11614 11615 /* Find end of our completion_queue. */ 11616 list_skb = &sd->completion_queue; 11617 while (*list_skb) 11618 list_skb = &(*list_skb)->next; 11619 /* Append completion queue from offline CPU. */ 11620 *list_skb = oldsd->completion_queue; 11621 oldsd->completion_queue = NULL; 11622 11623 /* Append output queue from offline CPU. */ 11624 if (oldsd->output_queue) { 11625 *sd->output_queue_tailp = oldsd->output_queue; 11626 sd->output_queue_tailp = oldsd->output_queue_tailp; 11627 oldsd->output_queue = NULL; 11628 oldsd->output_queue_tailp = &oldsd->output_queue; 11629 } 11630 /* Append NAPI poll list from offline CPU, with one exception : 11631 * process_backlog() must be called by cpu owning percpu backlog. 11632 * We properly handle process_queue & input_pkt_queue later. 11633 */ 11634 while (!list_empty(&oldsd->poll_list)) { 11635 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11636 struct napi_struct, 11637 poll_list); 11638 11639 list_del_init(&napi->poll_list); 11640 if (napi->poll == process_backlog) 11641 napi->state &= NAPIF_STATE_THREADED; 11642 else 11643 ____napi_schedule(sd, napi); 11644 } 11645 11646 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11647 local_irq_enable(); 11648 11649 if (!use_backlog_threads()) { 11650 #ifdef CONFIG_RPS 11651 remsd = oldsd->rps_ipi_list; 11652 oldsd->rps_ipi_list = NULL; 11653 #endif 11654 /* send out pending IPI's on offline CPU */ 11655 net_rps_send_ipi(remsd); 11656 } 11657 11658 /* Process offline CPU's input_pkt_queue */ 11659 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11660 netif_rx(skb); 11661 rps_input_queue_head_incr(oldsd); 11662 } 11663 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11664 netif_rx(skb); 11665 rps_input_queue_head_incr(oldsd); 11666 } 11667 11668 return 0; 11669 } 11670 11671 /** 11672 * netdev_increment_features - increment feature set by one 11673 * @all: current feature set 11674 * @one: new feature set 11675 * @mask: mask feature set 11676 * 11677 * Computes a new feature set after adding a device with feature set 11678 * @one to the master device with current feature set @all. Will not 11679 * enable anything that is off in @mask. Returns the new feature set. 11680 */ 11681 netdev_features_t netdev_increment_features(netdev_features_t all, 11682 netdev_features_t one, netdev_features_t mask) 11683 { 11684 if (mask & NETIF_F_HW_CSUM) 11685 mask |= NETIF_F_CSUM_MASK; 11686 mask |= NETIF_F_VLAN_CHALLENGED; 11687 11688 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11689 all &= one | ~NETIF_F_ALL_FOR_ALL; 11690 11691 /* If one device supports hw checksumming, set for all. */ 11692 if (all & NETIF_F_HW_CSUM) 11693 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11694 11695 return all; 11696 } 11697 EXPORT_SYMBOL(netdev_increment_features); 11698 11699 static struct hlist_head * __net_init netdev_create_hash(void) 11700 { 11701 int i; 11702 struct hlist_head *hash; 11703 11704 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11705 if (hash != NULL) 11706 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11707 INIT_HLIST_HEAD(&hash[i]); 11708 11709 return hash; 11710 } 11711 11712 /* Initialize per network namespace state */ 11713 static int __net_init netdev_init(struct net *net) 11714 { 11715 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11716 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11717 11718 INIT_LIST_HEAD(&net->dev_base_head); 11719 11720 net->dev_name_head = netdev_create_hash(); 11721 if (net->dev_name_head == NULL) 11722 goto err_name; 11723 11724 net->dev_index_head = netdev_create_hash(); 11725 if (net->dev_index_head == NULL) 11726 goto err_idx; 11727 11728 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11729 11730 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11731 11732 return 0; 11733 11734 err_idx: 11735 kfree(net->dev_name_head); 11736 err_name: 11737 return -ENOMEM; 11738 } 11739 11740 /** 11741 * netdev_drivername - network driver for the device 11742 * @dev: network device 11743 * 11744 * Determine network driver for device. 11745 */ 11746 const char *netdev_drivername(const struct net_device *dev) 11747 { 11748 const struct device_driver *driver; 11749 const struct device *parent; 11750 const char *empty = ""; 11751 11752 parent = dev->dev.parent; 11753 if (!parent) 11754 return empty; 11755 11756 driver = parent->driver; 11757 if (driver && driver->name) 11758 return driver->name; 11759 return empty; 11760 } 11761 11762 static void __netdev_printk(const char *level, const struct net_device *dev, 11763 struct va_format *vaf) 11764 { 11765 if (dev && dev->dev.parent) { 11766 dev_printk_emit(level[1] - '', 11767 dev->dev.parent, 11768 "%s %s %s%s: %pV", 11769 dev_driver_string(dev->dev.parent), 11770 dev_name(dev->dev.parent), 11771 netdev_name(dev), netdev_reg_state(dev), 11772 vaf); 11773 } else if (dev) { 11774 printk("%s%s%s: %pV", 11775 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11776 } else { 11777 printk("%s(NULL net_device): %pV", level, vaf); 11778 } 11779 } 11780 11781 void netdev_printk(const char *level, const struct net_device *dev, 11782 const char *format, ...) 11783 { 11784 struct va_format vaf; 11785 va_list args; 11786 11787 va_start(args, format); 11788 11789 vaf.fmt = format; 11790 vaf.va = &args; 11791 11792 __netdev_printk(level, dev, &vaf); 11793 11794 va_end(args); 11795 } 11796 EXPORT_SYMBOL(netdev_printk); 11797 11798 #define define_netdev_printk_level(func, level) \ 11799 void func(const struct net_device *dev, const char *fmt, ...) \ 11800 { \ 11801 struct va_format vaf; \ 11802 va_list args; \ 11803 \ 11804 va_start(args, fmt); \ 11805 \ 11806 vaf.fmt = fmt; \ 11807 vaf.va = &args; \ 11808 \ 11809 __netdev_printk(level, dev, &vaf); \ 11810 \ 11811 va_end(args); \ 11812 } \ 11813 EXPORT_SYMBOL(func); 11814 11815 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11816 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11817 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11818 define_netdev_printk_level(netdev_err, KERN_ERR); 11819 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11820 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11821 define_netdev_printk_level(netdev_info, KERN_INFO); 11822 11823 static void __net_exit netdev_exit(struct net *net) 11824 { 11825 kfree(net->dev_name_head); 11826 kfree(net->dev_index_head); 11827 xa_destroy(&net->dev_by_index); 11828 if (net != &init_net) 11829 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11830 } 11831 11832 static struct pernet_operations __net_initdata netdev_net_ops = { 11833 .init = netdev_init, 11834 .exit = netdev_exit, 11835 }; 11836 11837 static void __net_exit default_device_exit_net(struct net *net) 11838 { 11839 struct netdev_name_node *name_node, *tmp; 11840 struct net_device *dev, *aux; 11841 /* 11842 * Push all migratable network devices back to the 11843 * initial network namespace 11844 */ 11845 ASSERT_RTNL(); 11846 for_each_netdev_safe(net, dev, aux) { 11847 int err; 11848 char fb_name[IFNAMSIZ]; 11849 11850 /* Ignore unmoveable devices (i.e. loopback) */ 11851 if (dev->features & NETIF_F_NETNS_LOCAL) 11852 continue; 11853 11854 /* Leave virtual devices for the generic cleanup */ 11855 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11856 continue; 11857 11858 /* Push remaining network devices to init_net */ 11859 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11860 if (netdev_name_in_use(&init_net, fb_name)) 11861 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11862 11863 netdev_for_each_altname_safe(dev, name_node, tmp) 11864 if (netdev_name_in_use(&init_net, name_node->name)) 11865 __netdev_name_node_alt_destroy(name_node); 11866 11867 err = dev_change_net_namespace(dev, &init_net, fb_name); 11868 if (err) { 11869 pr_emerg("%s: failed to move %s to init_net: %d\n", 11870 __func__, dev->name, err); 11871 BUG(); 11872 } 11873 } 11874 } 11875 11876 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11877 { 11878 /* At exit all network devices most be removed from a network 11879 * namespace. Do this in the reverse order of registration. 11880 * Do this across as many network namespaces as possible to 11881 * improve batching efficiency. 11882 */ 11883 struct net_device *dev; 11884 struct net *net; 11885 LIST_HEAD(dev_kill_list); 11886 11887 rtnl_lock(); 11888 list_for_each_entry(net, net_list, exit_list) { 11889 default_device_exit_net(net); 11890 cond_resched(); 11891 } 11892 11893 list_for_each_entry(net, net_list, exit_list) { 11894 for_each_netdev_reverse(net, dev) { 11895 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11896 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11897 else 11898 unregister_netdevice_queue(dev, &dev_kill_list); 11899 } 11900 } 11901 unregister_netdevice_many(&dev_kill_list); 11902 rtnl_unlock(); 11903 } 11904 11905 static struct pernet_operations __net_initdata default_device_ops = { 11906 .exit_batch = default_device_exit_batch, 11907 }; 11908 11909 static void __init net_dev_struct_check(void) 11910 { 11911 /* TX read-mostly hotpath */ 11912 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags); 11913 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 11914 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 11915 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 11916 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 11917 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 11918 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 11919 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 11920 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 11921 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 11922 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 11923 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 11924 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 11925 #ifdef CONFIG_XPS 11926 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 11927 #endif 11928 #ifdef CONFIG_NETFILTER_EGRESS 11929 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 11930 #endif 11931 #ifdef CONFIG_NET_XGRESS 11932 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 11933 #endif 11934 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 11935 11936 /* TXRX read-mostly hotpath */ 11937 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 11938 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 11939 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 11940 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 11941 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 11942 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 11943 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 11944 11945 /* RX read-mostly hotpath */ 11946 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 11947 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 11948 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 11949 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 11950 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout); 11951 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs); 11952 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 11953 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 11954 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 11955 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 11956 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 11957 #ifdef CONFIG_NETPOLL 11958 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 11959 #endif 11960 #ifdef CONFIG_NET_XGRESS 11961 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 11962 #endif 11963 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104); 11964 } 11965 11966 /* 11967 * Initialize the DEV module. At boot time this walks the device list and 11968 * unhooks any devices that fail to initialise (normally hardware not 11969 * present) and leaves us with a valid list of present and active devices. 11970 * 11971 */ 11972 11973 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 11974 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 11975 11976 static int net_page_pool_create(int cpuid) 11977 { 11978 #if IS_ENABLED(CONFIG_PAGE_POOL) 11979 struct page_pool_params page_pool_params = { 11980 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 11981 .flags = PP_FLAG_SYSTEM_POOL, 11982 .nid = cpu_to_mem(cpuid), 11983 }; 11984 struct page_pool *pp_ptr; 11985 11986 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 11987 if (IS_ERR(pp_ptr)) 11988 return -ENOMEM; 11989 11990 per_cpu(system_page_pool, cpuid) = pp_ptr; 11991 #endif 11992 return 0; 11993 } 11994 11995 static int backlog_napi_should_run(unsigned int cpu) 11996 { 11997 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 11998 struct napi_struct *napi = &sd->backlog; 11999 12000 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12001 } 12002 12003 static void run_backlog_napi(unsigned int cpu) 12004 { 12005 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12006 12007 napi_threaded_poll_loop(&sd->backlog); 12008 } 12009 12010 static void backlog_napi_setup(unsigned int cpu) 12011 { 12012 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12013 struct napi_struct *napi = &sd->backlog; 12014 12015 napi->thread = this_cpu_read(backlog_napi); 12016 set_bit(NAPI_STATE_THREADED, &napi->state); 12017 } 12018 12019 static struct smp_hotplug_thread backlog_threads = { 12020 .store = &backlog_napi, 12021 .thread_should_run = backlog_napi_should_run, 12022 .thread_fn = run_backlog_napi, 12023 .thread_comm = "backlog_napi/%u", 12024 .setup = backlog_napi_setup, 12025 }; 12026 12027 /* 12028 * This is called single threaded during boot, so no need 12029 * to take the rtnl semaphore. 12030 */ 12031 static int __init net_dev_init(void) 12032 { 12033 int i, rc = -ENOMEM; 12034 12035 BUG_ON(!dev_boot_phase); 12036 12037 net_dev_struct_check(); 12038 12039 if (dev_proc_init()) 12040 goto out; 12041 12042 if (netdev_kobject_init()) 12043 goto out; 12044 12045 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12046 INIT_LIST_HEAD(&ptype_base[i]); 12047 12048 if (register_pernet_subsys(&netdev_net_ops)) 12049 goto out; 12050 12051 /* 12052 * Initialise the packet receive queues. 12053 */ 12054 12055 for_each_possible_cpu(i) { 12056 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 12057 struct softnet_data *sd = &per_cpu(softnet_data, i); 12058 12059 INIT_WORK(flush, flush_backlog); 12060 12061 skb_queue_head_init(&sd->input_pkt_queue); 12062 skb_queue_head_init(&sd->process_queue); 12063 #ifdef CONFIG_XFRM_OFFLOAD 12064 skb_queue_head_init(&sd->xfrm_backlog); 12065 #endif 12066 INIT_LIST_HEAD(&sd->poll_list); 12067 sd->output_queue_tailp = &sd->output_queue; 12068 #ifdef CONFIG_RPS 12069 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12070 sd->cpu = i; 12071 #endif 12072 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12073 spin_lock_init(&sd->defer_lock); 12074 12075 init_gro_hash(&sd->backlog); 12076 sd->backlog.poll = process_backlog; 12077 sd->backlog.weight = weight_p; 12078 INIT_LIST_HEAD(&sd->backlog.poll_list); 12079 12080 if (net_page_pool_create(i)) 12081 goto out; 12082 } 12083 if (use_backlog_threads()) 12084 smpboot_register_percpu_thread(&backlog_threads); 12085 12086 dev_boot_phase = 0; 12087 12088 /* The loopback device is special if any other network devices 12089 * is present in a network namespace the loopback device must 12090 * be present. Since we now dynamically allocate and free the 12091 * loopback device ensure this invariant is maintained by 12092 * keeping the loopback device as the first device on the 12093 * list of network devices. Ensuring the loopback devices 12094 * is the first device that appears and the last network device 12095 * that disappears. 12096 */ 12097 if (register_pernet_device(&loopback_net_ops)) 12098 goto out; 12099 12100 if (register_pernet_device(&default_device_ops)) 12101 goto out; 12102 12103 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12104 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12105 12106 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12107 NULL, dev_cpu_dead); 12108 WARN_ON(rc < 0); 12109 rc = 0; 12110 12111 /* avoid static key IPIs to isolated CPUs */ 12112 if (housekeeping_enabled(HK_TYPE_MISC)) 12113 net_enable_timestamp(); 12114 out: 12115 if (rc < 0) { 12116 for_each_possible_cpu(i) { 12117 struct page_pool *pp_ptr; 12118 12119 pp_ptr = per_cpu(system_page_pool, i); 12120 if (!pp_ptr) 12121 continue; 12122 12123 page_pool_destroy(pp_ptr); 12124 per_cpu(system_page_pool, i) = NULL; 12125 } 12126 } 12127 12128 return rc; 12129 } 12130 12131 subsys_initcall(net_dev_init); 12132
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.