~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/core/filter.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Linux Socket Filter - Kernel level socket filtering
  4  *
  5  * Based on the design of the Berkeley Packet Filter. The new
  6  * internal format has been designed by PLUMgrid:
  7  *
  8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
  9  *
 10  * Authors:
 11  *
 12  *      Jay Schulist <jschlst@samba.org>
 13  *      Alexei Starovoitov <ast@plumgrid.com>
 14  *      Daniel Borkmann <dborkman@redhat.com>
 15  *
 16  * Andi Kleen - Fix a few bad bugs and races.
 17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
 18  */
 19 
 20 #include <linux/atomic.h>
 21 #include <linux/bpf_verifier.h>
 22 #include <linux/module.h>
 23 #include <linux/types.h>
 24 #include <linux/mm.h>
 25 #include <linux/fcntl.h>
 26 #include <linux/socket.h>
 27 #include <linux/sock_diag.h>
 28 #include <linux/in.h>
 29 #include <linux/inet.h>
 30 #include <linux/netdevice.h>
 31 #include <linux/if_packet.h>
 32 #include <linux/if_arp.h>
 33 #include <linux/gfp.h>
 34 #include <net/inet_common.h>
 35 #include <net/ip.h>
 36 #include <net/protocol.h>
 37 #include <net/netlink.h>
 38 #include <linux/skbuff.h>
 39 #include <linux/skmsg.h>
 40 #include <net/sock.h>
 41 #include <net/flow_dissector.h>
 42 #include <linux/errno.h>
 43 #include <linux/timer.h>
 44 #include <linux/uaccess.h>
 45 #include <asm/unaligned.h>
 46 #include <linux/filter.h>
 47 #include <linux/ratelimit.h>
 48 #include <linux/seccomp.h>
 49 #include <linux/if_vlan.h>
 50 #include <linux/bpf.h>
 51 #include <linux/btf.h>
 52 #include <net/sch_generic.h>
 53 #include <net/cls_cgroup.h>
 54 #include <net/dst_metadata.h>
 55 #include <net/dst.h>
 56 #include <net/sock_reuseport.h>
 57 #include <net/busy_poll.h>
 58 #include <net/tcp.h>
 59 #include <net/xfrm.h>
 60 #include <net/udp.h>
 61 #include <linux/bpf_trace.h>
 62 #include <net/xdp_sock.h>
 63 #include <linux/inetdevice.h>
 64 #include <net/inet_hashtables.h>
 65 #include <net/inet6_hashtables.h>
 66 #include <net/ip_fib.h>
 67 #include <net/nexthop.h>
 68 #include <net/flow.h>
 69 #include <net/arp.h>
 70 #include <net/ipv6.h>
 71 #include <net/net_namespace.h>
 72 #include <linux/seg6_local.h>
 73 #include <net/seg6.h>
 74 #include <net/seg6_local.h>
 75 #include <net/lwtunnel.h>
 76 #include <net/ipv6_stubs.h>
 77 #include <net/bpf_sk_storage.h>
 78 #include <net/transp_v6.h>
 79 #include <linux/btf_ids.h>
 80 #include <net/tls.h>
 81 #include <net/xdp.h>
 82 #include <net/mptcp.h>
 83 #include <net/netfilter/nf_conntrack_bpf.h>
 84 #include <net/netkit.h>
 85 #include <linux/un.h>
 86 #include <net/xdp_sock_drv.h>
 87 
 88 #include "dev.h"
 89 
 90 /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */
 91 static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check");
 92 
 93 static const struct bpf_func_proto *
 94 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
 95 
 96 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
 97 {
 98         if (in_compat_syscall()) {
 99                 struct compat_sock_fprog f32;
100 
101                 if (len != sizeof(f32))
102                         return -EINVAL;
103                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
104                         return -EFAULT;
105                 memset(dst, 0, sizeof(*dst));
106                 dst->len = f32.len;
107                 dst->filter = compat_ptr(f32.filter);
108         } else {
109                 if (len != sizeof(*dst))
110                         return -EINVAL;
111                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
112                         return -EFAULT;
113         }
114 
115         return 0;
116 }
117 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
118 
119 /**
120  *      sk_filter_trim_cap - run a packet through a socket filter
121  *      @sk: sock associated with &sk_buff
122  *      @skb: buffer to filter
123  *      @cap: limit on how short the eBPF program may trim the packet
124  *
125  * Run the eBPF program and then cut skb->data to correct size returned by
126  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
127  * than pkt_len we keep whole skb->data. This is the socket level
128  * wrapper to bpf_prog_run. It returns 0 if the packet should
129  * be accepted or -EPERM if the packet should be tossed.
130  *
131  */
132 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
133 {
134         int err;
135         struct sk_filter *filter;
136 
137         /*
138          * If the skb was allocated from pfmemalloc reserves, only
139          * allow SOCK_MEMALLOC sockets to use it as this socket is
140          * helping free memory
141          */
142         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
143                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
144                 return -ENOMEM;
145         }
146         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
147         if (err)
148                 return err;
149 
150         err = security_sock_rcv_skb(sk, skb);
151         if (err)
152                 return err;
153 
154         rcu_read_lock();
155         filter = rcu_dereference(sk->sk_filter);
156         if (filter) {
157                 struct sock *save_sk = skb->sk;
158                 unsigned int pkt_len;
159 
160                 skb->sk = sk;
161                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
162                 skb->sk = save_sk;
163                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
164         }
165         rcu_read_unlock();
166 
167         return err;
168 }
169 EXPORT_SYMBOL(sk_filter_trim_cap);
170 
171 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
172 {
173         return skb_get_poff(skb);
174 }
175 
176 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
177 {
178         struct nlattr *nla;
179 
180         if (skb_is_nonlinear(skb))
181                 return 0;
182 
183         if (skb->len < sizeof(struct nlattr))
184                 return 0;
185 
186         if (a > skb->len - sizeof(struct nlattr))
187                 return 0;
188 
189         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
190         if (nla)
191                 return (void *) nla - (void *) skb->data;
192 
193         return 0;
194 }
195 
196 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
197 {
198         struct nlattr *nla;
199 
200         if (skb_is_nonlinear(skb))
201                 return 0;
202 
203         if (skb->len < sizeof(struct nlattr))
204                 return 0;
205 
206         if (a > skb->len - sizeof(struct nlattr))
207                 return 0;
208 
209         nla = (struct nlattr *) &skb->data[a];
210         if (!nla_ok(nla, skb->len - a))
211                 return 0;
212 
213         nla = nla_find_nested(nla, x);
214         if (nla)
215                 return (void *) nla - (void *) skb->data;
216 
217         return 0;
218 }
219 
220 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
221            data, int, headlen, int, offset)
222 {
223         u8 tmp, *ptr;
224         const int len = sizeof(tmp);
225 
226         if (offset >= 0) {
227                 if (headlen - offset >= len)
228                         return *(u8 *)(data + offset);
229                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
230                         return tmp;
231         } else {
232                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
233                 if (likely(ptr))
234                         return *(u8 *)ptr;
235         }
236 
237         return -EFAULT;
238 }
239 
240 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
241            int, offset)
242 {
243         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
244                                          offset);
245 }
246 
247 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
248            data, int, headlen, int, offset)
249 {
250         __be16 tmp, *ptr;
251         const int len = sizeof(tmp);
252 
253         if (offset >= 0) {
254                 if (headlen - offset >= len)
255                         return get_unaligned_be16(data + offset);
256                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
257                         return be16_to_cpu(tmp);
258         } else {
259                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
260                 if (likely(ptr))
261                         return get_unaligned_be16(ptr);
262         }
263 
264         return -EFAULT;
265 }
266 
267 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
268            int, offset)
269 {
270         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
271                                           offset);
272 }
273 
274 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
275            data, int, headlen, int, offset)
276 {
277         __be32 tmp, *ptr;
278         const int len = sizeof(tmp);
279 
280         if (likely(offset >= 0)) {
281                 if (headlen - offset >= len)
282                         return get_unaligned_be32(data + offset);
283                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
284                         return be32_to_cpu(tmp);
285         } else {
286                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
287                 if (likely(ptr))
288                         return get_unaligned_be32(ptr);
289         }
290 
291         return -EFAULT;
292 }
293 
294 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
295            int, offset)
296 {
297         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
298                                           offset);
299 }
300 
301 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
302                               struct bpf_insn *insn_buf)
303 {
304         struct bpf_insn *insn = insn_buf;
305 
306         switch (skb_field) {
307         case SKF_AD_MARK:
308                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
309 
310                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
311                                       offsetof(struct sk_buff, mark));
312                 break;
313 
314         case SKF_AD_PKTTYPE:
315                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
316                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
317 #ifdef __BIG_ENDIAN_BITFIELD
318                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
319 #endif
320                 break;
321 
322         case SKF_AD_QUEUE:
323                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
324 
325                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326                                       offsetof(struct sk_buff, queue_mapping));
327                 break;
328 
329         case SKF_AD_VLAN_TAG:
330                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
331 
332                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
333                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
334                                       offsetof(struct sk_buff, vlan_tci));
335                 break;
336         case SKF_AD_VLAN_TAG_PRESENT:
337                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
338                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
339                                       offsetof(struct sk_buff, vlan_all));
340                 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
341                 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
342                 break;
343         }
344 
345         return insn - insn_buf;
346 }
347 
348 static bool convert_bpf_extensions(struct sock_filter *fp,
349                                    struct bpf_insn **insnp)
350 {
351         struct bpf_insn *insn = *insnp;
352         u32 cnt;
353 
354         switch (fp->k) {
355         case SKF_AD_OFF + SKF_AD_PROTOCOL:
356                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
357 
358                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
359                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
360                                       offsetof(struct sk_buff, protocol));
361                 /* A = ntohs(A) [emitting a nop or swap16] */
362                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
363                 break;
364 
365         case SKF_AD_OFF + SKF_AD_PKTTYPE:
366                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
367                 insn += cnt - 1;
368                 break;
369 
370         case SKF_AD_OFF + SKF_AD_IFINDEX:
371         case SKF_AD_OFF + SKF_AD_HATYPE:
372                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
373                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
374 
375                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
376                                       BPF_REG_TMP, BPF_REG_CTX,
377                                       offsetof(struct sk_buff, dev));
378                 /* if (tmp != 0) goto pc + 1 */
379                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
380                 *insn++ = BPF_EXIT_INSN();
381                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
382                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
383                                             offsetof(struct net_device, ifindex));
384                 else
385                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
386                                             offsetof(struct net_device, type));
387                 break;
388 
389         case SKF_AD_OFF + SKF_AD_MARK:
390                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
391                 insn += cnt - 1;
392                 break;
393 
394         case SKF_AD_OFF + SKF_AD_RXHASH:
395                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
396 
397                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
398                                     offsetof(struct sk_buff, hash));
399                 break;
400 
401         case SKF_AD_OFF + SKF_AD_QUEUE:
402                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
403                 insn += cnt - 1;
404                 break;
405 
406         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
407                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
408                                          BPF_REG_A, BPF_REG_CTX, insn);
409                 insn += cnt - 1;
410                 break;
411 
412         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
413                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
414                                          BPF_REG_A, BPF_REG_CTX, insn);
415                 insn += cnt - 1;
416                 break;
417 
418         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
419                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
420 
421                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
422                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
423                                       offsetof(struct sk_buff, vlan_proto));
424                 /* A = ntohs(A) [emitting a nop or swap16] */
425                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
426                 break;
427 
428         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
429         case SKF_AD_OFF + SKF_AD_NLATTR:
430         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
431         case SKF_AD_OFF + SKF_AD_CPU:
432         case SKF_AD_OFF + SKF_AD_RANDOM:
433                 /* arg1 = CTX */
434                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
435                 /* arg2 = A */
436                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
437                 /* arg3 = X */
438                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
439                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
440                 switch (fp->k) {
441                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
442                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
443                         break;
444                 case SKF_AD_OFF + SKF_AD_NLATTR:
445                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
446                         break;
447                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
448                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
449                         break;
450                 case SKF_AD_OFF + SKF_AD_CPU:
451                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
452                         break;
453                 case SKF_AD_OFF + SKF_AD_RANDOM:
454                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
455                         bpf_user_rnd_init_once();
456                         break;
457                 }
458                 break;
459 
460         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
461                 /* A ^= X */
462                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
463                 break;
464 
465         default:
466                 /* This is just a dummy call to avoid letting the compiler
467                  * evict __bpf_call_base() as an optimization. Placed here
468                  * where no-one bothers.
469                  */
470                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
471                 return false;
472         }
473 
474         *insnp = insn;
475         return true;
476 }
477 
478 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
479 {
480         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
481         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
482         bool endian = BPF_SIZE(fp->code) == BPF_H ||
483                       BPF_SIZE(fp->code) == BPF_W;
484         bool indirect = BPF_MODE(fp->code) == BPF_IND;
485         const int ip_align = NET_IP_ALIGN;
486         struct bpf_insn *insn = *insnp;
487         int offset = fp->k;
488 
489         if (!indirect &&
490             ((unaligned_ok && offset >= 0) ||
491              (!unaligned_ok && offset >= 0 &&
492               offset + ip_align >= 0 &&
493               offset + ip_align % size == 0))) {
494                 bool ldx_off_ok = offset <= S16_MAX;
495 
496                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
497                 if (offset)
498                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
499                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
500                                       size, 2 + endian + (!ldx_off_ok * 2));
501                 if (ldx_off_ok) {
502                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
503                                               BPF_REG_D, offset);
504                 } else {
505                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
506                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
507                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
508                                               BPF_REG_TMP, 0);
509                 }
510                 if (endian)
511                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
512                 *insn++ = BPF_JMP_A(8);
513         }
514 
515         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
516         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
517         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
518         if (!indirect) {
519                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
520         } else {
521                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
522                 if (fp->k)
523                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
524         }
525 
526         switch (BPF_SIZE(fp->code)) {
527         case BPF_B:
528                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
529                 break;
530         case BPF_H:
531                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
532                 break;
533         case BPF_W:
534                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
535                 break;
536         default:
537                 return false;
538         }
539 
540         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
541         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
542         *insn   = BPF_EXIT_INSN();
543 
544         *insnp = insn;
545         return true;
546 }
547 
548 /**
549  *      bpf_convert_filter - convert filter program
550  *      @prog: the user passed filter program
551  *      @len: the length of the user passed filter program
552  *      @new_prog: allocated 'struct bpf_prog' or NULL
553  *      @new_len: pointer to store length of converted program
554  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
555  *
556  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
557  * style extended BPF (eBPF).
558  * Conversion workflow:
559  *
560  * 1) First pass for calculating the new program length:
561  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
562  *
563  * 2) 2nd pass to remap in two passes: 1st pass finds new
564  *    jump offsets, 2nd pass remapping:
565  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
566  */
567 static int bpf_convert_filter(struct sock_filter *prog, int len,
568                               struct bpf_prog *new_prog, int *new_len,
569                               bool *seen_ld_abs)
570 {
571         int new_flen = 0, pass = 0, target, i, stack_off;
572         struct bpf_insn *new_insn, *first_insn = NULL;
573         struct sock_filter *fp;
574         int *addrs = NULL;
575         u8 bpf_src;
576 
577         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
578         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
579 
580         if (len <= 0 || len > BPF_MAXINSNS)
581                 return -EINVAL;
582 
583         if (new_prog) {
584                 first_insn = new_prog->insnsi;
585                 addrs = kcalloc(len, sizeof(*addrs),
586                                 GFP_KERNEL | __GFP_NOWARN);
587                 if (!addrs)
588                         return -ENOMEM;
589         }
590 
591 do_pass:
592         new_insn = first_insn;
593         fp = prog;
594 
595         /* Classic BPF related prologue emission. */
596         if (new_prog) {
597                 /* Classic BPF expects A and X to be reset first. These need
598                  * to be guaranteed to be the first two instructions.
599                  */
600                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
601                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
602 
603                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
604                  * In eBPF case it's done by the compiler, here we need to
605                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
606                  */
607                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
608                 if (*seen_ld_abs) {
609                         /* For packet access in classic BPF, cache skb->data
610                          * in callee-saved BPF R8 and skb->len - skb->data_len
611                          * (headlen) in BPF R9. Since classic BPF is read-only
612                          * on CTX, we only need to cache it once.
613                          */
614                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
615                                                   BPF_REG_D, BPF_REG_CTX,
616                                                   offsetof(struct sk_buff, data));
617                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
618                                                   offsetof(struct sk_buff, len));
619                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
620                                                   offsetof(struct sk_buff, data_len));
621                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
622                 }
623         } else {
624                 new_insn += 3;
625         }
626 
627         for (i = 0; i < len; fp++, i++) {
628                 struct bpf_insn tmp_insns[32] = { };
629                 struct bpf_insn *insn = tmp_insns;
630 
631                 if (addrs)
632                         addrs[i] = new_insn - first_insn;
633 
634                 switch (fp->code) {
635                 /* All arithmetic insns and skb loads map as-is. */
636                 case BPF_ALU | BPF_ADD | BPF_X:
637                 case BPF_ALU | BPF_ADD | BPF_K:
638                 case BPF_ALU | BPF_SUB | BPF_X:
639                 case BPF_ALU | BPF_SUB | BPF_K:
640                 case BPF_ALU | BPF_AND | BPF_X:
641                 case BPF_ALU | BPF_AND | BPF_K:
642                 case BPF_ALU | BPF_OR | BPF_X:
643                 case BPF_ALU | BPF_OR | BPF_K:
644                 case BPF_ALU | BPF_LSH | BPF_X:
645                 case BPF_ALU | BPF_LSH | BPF_K:
646                 case BPF_ALU | BPF_RSH | BPF_X:
647                 case BPF_ALU | BPF_RSH | BPF_K:
648                 case BPF_ALU | BPF_XOR | BPF_X:
649                 case BPF_ALU | BPF_XOR | BPF_K:
650                 case BPF_ALU | BPF_MUL | BPF_X:
651                 case BPF_ALU | BPF_MUL | BPF_K:
652                 case BPF_ALU | BPF_DIV | BPF_X:
653                 case BPF_ALU | BPF_DIV | BPF_K:
654                 case BPF_ALU | BPF_MOD | BPF_X:
655                 case BPF_ALU | BPF_MOD | BPF_K:
656                 case BPF_ALU | BPF_NEG:
657                 case BPF_LD | BPF_ABS | BPF_W:
658                 case BPF_LD | BPF_ABS | BPF_H:
659                 case BPF_LD | BPF_ABS | BPF_B:
660                 case BPF_LD | BPF_IND | BPF_W:
661                 case BPF_LD | BPF_IND | BPF_H:
662                 case BPF_LD | BPF_IND | BPF_B:
663                         /* Check for overloaded BPF extension and
664                          * directly convert it if found, otherwise
665                          * just move on with mapping.
666                          */
667                         if (BPF_CLASS(fp->code) == BPF_LD &&
668                             BPF_MODE(fp->code) == BPF_ABS &&
669                             convert_bpf_extensions(fp, &insn))
670                                 break;
671                         if (BPF_CLASS(fp->code) == BPF_LD &&
672                             convert_bpf_ld_abs(fp, &insn)) {
673                                 *seen_ld_abs = true;
674                                 break;
675                         }
676 
677                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
678                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
679                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
680                                 /* Error with exception code on div/mod by 0.
681                                  * For cBPF programs, this was always return 0.
682                                  */
683                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
684                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
685                                 *insn++ = BPF_EXIT_INSN();
686                         }
687 
688                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
689                         break;
690 
691                 /* Jump transformation cannot use BPF block macros
692                  * everywhere as offset calculation and target updates
693                  * require a bit more work than the rest, i.e. jump
694                  * opcodes map as-is, but offsets need adjustment.
695                  */
696 
697 #define BPF_EMIT_JMP                                                    \
698         do {                                                            \
699                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
700                 s32 off;                                                \
701                                                                         \
702                 if (target >= len || target < 0)                        \
703                         goto err;                                       \
704                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
705                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
706                 off -= insn - tmp_insns;                                \
707                 /* Reject anything not fitting into insn->off. */       \
708                 if (off < off_min || off > off_max)                     \
709                         goto err;                                       \
710                 insn->off = off;                                        \
711         } while (0)
712 
713                 case BPF_JMP | BPF_JA:
714                         target = i + fp->k + 1;
715                         insn->code = fp->code;
716                         BPF_EMIT_JMP;
717                         break;
718 
719                 case BPF_JMP | BPF_JEQ | BPF_K:
720                 case BPF_JMP | BPF_JEQ | BPF_X:
721                 case BPF_JMP | BPF_JSET | BPF_K:
722                 case BPF_JMP | BPF_JSET | BPF_X:
723                 case BPF_JMP | BPF_JGT | BPF_K:
724                 case BPF_JMP | BPF_JGT | BPF_X:
725                 case BPF_JMP | BPF_JGE | BPF_K:
726                 case BPF_JMP | BPF_JGE | BPF_X:
727                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
728                                 /* BPF immediates are signed, zero extend
729                                  * immediate into tmp register and use it
730                                  * in compare insn.
731                                  */
732                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
733 
734                                 insn->dst_reg = BPF_REG_A;
735                                 insn->src_reg = BPF_REG_TMP;
736                                 bpf_src = BPF_X;
737                         } else {
738                                 insn->dst_reg = BPF_REG_A;
739                                 insn->imm = fp->k;
740                                 bpf_src = BPF_SRC(fp->code);
741                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
742                         }
743 
744                         /* Common case where 'jump_false' is next insn. */
745                         if (fp->jf == 0) {
746                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
747                                 target = i + fp->jt + 1;
748                                 BPF_EMIT_JMP;
749                                 break;
750                         }
751 
752                         /* Convert some jumps when 'jump_true' is next insn. */
753                         if (fp->jt == 0) {
754                                 switch (BPF_OP(fp->code)) {
755                                 case BPF_JEQ:
756                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
757                                         break;
758                                 case BPF_JGT:
759                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
760                                         break;
761                                 case BPF_JGE:
762                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
763                                         break;
764                                 default:
765                                         goto jmp_rest;
766                                 }
767 
768                                 target = i + fp->jf + 1;
769                                 BPF_EMIT_JMP;
770                                 break;
771                         }
772 jmp_rest:
773                         /* Other jumps are mapped into two insns: Jxx and JA. */
774                         target = i + fp->jt + 1;
775                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
776                         BPF_EMIT_JMP;
777                         insn++;
778 
779                         insn->code = BPF_JMP | BPF_JA;
780                         target = i + fp->jf + 1;
781                         BPF_EMIT_JMP;
782                         break;
783 
784                 /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */
785                 case BPF_LDX | BPF_MSH | BPF_B: {
786                         struct sock_filter tmp = {
787                                 .code   = BPF_LD | BPF_ABS | BPF_B,
788                                 .k      = fp->k,
789                         };
790 
791                         *seen_ld_abs = true;
792 
793                         /* X = A */
794                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
796                         convert_bpf_ld_abs(&tmp, &insn);
797                         insn++;
798                         /* A &= 0xf */
799                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
800                         /* A <<= 2 */
801                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
802                         /* tmp = X */
803                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
804                         /* X = A */
805                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
806                         /* A = tmp */
807                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
808                         break;
809                 }
810                 /* RET_K is remapped into 2 insns. RET_A case doesn't need an
811                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
812                  */
813                 case BPF_RET | BPF_A:
814                 case BPF_RET | BPF_K:
815                         if (BPF_RVAL(fp->code) == BPF_K)
816                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
817                                                         0, fp->k);
818                         *insn = BPF_EXIT_INSN();
819                         break;
820 
821                 /* Store to stack. */
822                 case BPF_ST:
823                 case BPF_STX:
824                         stack_off = fp->k * 4  + 4;
825                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
826                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
827                                             -stack_off);
828                         /* check_load_and_stores() verifies that classic BPF can
829                          * load from stack only after write, so tracking
830                          * stack_depth for ST|STX insns is enough
831                          */
832                         if (new_prog && new_prog->aux->stack_depth < stack_off)
833                                 new_prog->aux->stack_depth = stack_off;
834                         break;
835 
836                 /* Load from stack. */
837                 case BPF_LD | BPF_MEM:
838                 case BPF_LDX | BPF_MEM:
839                         stack_off = fp->k * 4  + 4;
840                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
841                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
842                                             -stack_off);
843                         break;
844 
845                 /* A = K or X = K */
846                 case BPF_LD | BPF_IMM:
847                 case BPF_LDX | BPF_IMM:
848                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
849                                               BPF_REG_A : BPF_REG_X, fp->k);
850                         break;
851 
852                 /* X = A */
853                 case BPF_MISC | BPF_TAX:
854                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
855                         break;
856 
857                 /* A = X */
858                 case BPF_MISC | BPF_TXA:
859                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
860                         break;
861 
862                 /* A = skb->len or X = skb->len */
863                 case BPF_LD | BPF_W | BPF_LEN:
864                 case BPF_LDX | BPF_W | BPF_LEN:
865                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
866                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
867                                             offsetof(struct sk_buff, len));
868                         break;
869 
870                 /* Access seccomp_data fields. */
871                 case BPF_LDX | BPF_ABS | BPF_W:
872                         /* A = *(u32 *) (ctx + K) */
873                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
874                         break;
875 
876                 /* Unknown instruction. */
877                 default:
878                         goto err;
879                 }
880 
881                 insn++;
882                 if (new_prog)
883                         memcpy(new_insn, tmp_insns,
884                                sizeof(*insn) * (insn - tmp_insns));
885                 new_insn += insn - tmp_insns;
886         }
887 
888         if (!new_prog) {
889                 /* Only calculating new length. */
890                 *new_len = new_insn - first_insn;
891                 if (*seen_ld_abs)
892                         *new_len += 4; /* Prologue bits. */
893                 return 0;
894         }
895 
896         pass++;
897         if (new_flen != new_insn - first_insn) {
898                 new_flen = new_insn - first_insn;
899                 if (pass > 2)
900                         goto err;
901                 goto do_pass;
902         }
903 
904         kfree(addrs);
905         BUG_ON(*new_len != new_flen);
906         return 0;
907 err:
908         kfree(addrs);
909         return -EINVAL;
910 }
911 
912 /* Security:
913  *
914  * As we dont want to clear mem[] array for each packet going through
915  * __bpf_prog_run(), we check that filter loaded by user never try to read
916  * a cell if not previously written, and we check all branches to be sure
917  * a malicious user doesn't try to abuse us.
918  */
919 static int check_load_and_stores(const struct sock_filter *filter, int flen)
920 {
921         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
922         int pc, ret = 0;
923 
924         BUILD_BUG_ON(BPF_MEMWORDS > 16);
925 
926         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
927         if (!masks)
928                 return -ENOMEM;
929 
930         memset(masks, 0xff, flen * sizeof(*masks));
931 
932         for (pc = 0; pc < flen; pc++) {
933                 memvalid &= masks[pc];
934 
935                 switch (filter[pc].code) {
936                 case BPF_ST:
937                 case BPF_STX:
938                         memvalid |= (1 << filter[pc].k);
939                         break;
940                 case BPF_LD | BPF_MEM:
941                 case BPF_LDX | BPF_MEM:
942                         if (!(memvalid & (1 << filter[pc].k))) {
943                                 ret = -EINVAL;
944                                 goto error;
945                         }
946                         break;
947                 case BPF_JMP | BPF_JA:
948                         /* A jump must set masks on target */
949                         masks[pc + 1 + filter[pc].k] &= memvalid;
950                         memvalid = ~0;
951                         break;
952                 case BPF_JMP | BPF_JEQ | BPF_K:
953                 case BPF_JMP | BPF_JEQ | BPF_X:
954                 case BPF_JMP | BPF_JGE | BPF_K:
955                 case BPF_JMP | BPF_JGE | BPF_X:
956                 case BPF_JMP | BPF_JGT | BPF_K:
957                 case BPF_JMP | BPF_JGT | BPF_X:
958                 case BPF_JMP | BPF_JSET | BPF_K:
959                 case BPF_JMP | BPF_JSET | BPF_X:
960                         /* A jump must set masks on targets */
961                         masks[pc + 1 + filter[pc].jt] &= memvalid;
962                         masks[pc + 1 + filter[pc].jf] &= memvalid;
963                         memvalid = ~0;
964                         break;
965                 }
966         }
967 error:
968         kfree(masks);
969         return ret;
970 }
971 
972 static bool chk_code_allowed(u16 code_to_probe)
973 {
974         static const bool codes[] = {
975                 /* 32 bit ALU operations */
976                 [BPF_ALU | BPF_ADD | BPF_K] = true,
977                 [BPF_ALU | BPF_ADD | BPF_X] = true,
978                 [BPF_ALU | BPF_SUB | BPF_K] = true,
979                 [BPF_ALU | BPF_SUB | BPF_X] = true,
980                 [BPF_ALU | BPF_MUL | BPF_K] = true,
981                 [BPF_ALU | BPF_MUL | BPF_X] = true,
982                 [BPF_ALU | BPF_DIV | BPF_K] = true,
983                 [BPF_ALU | BPF_DIV | BPF_X] = true,
984                 [BPF_ALU | BPF_MOD | BPF_K] = true,
985                 [BPF_ALU | BPF_MOD | BPF_X] = true,
986                 [BPF_ALU | BPF_AND | BPF_K] = true,
987                 [BPF_ALU | BPF_AND | BPF_X] = true,
988                 [BPF_ALU | BPF_OR | BPF_K] = true,
989                 [BPF_ALU | BPF_OR | BPF_X] = true,
990                 [BPF_ALU | BPF_XOR | BPF_K] = true,
991                 [BPF_ALU | BPF_XOR | BPF_X] = true,
992                 [BPF_ALU | BPF_LSH | BPF_K] = true,
993                 [BPF_ALU | BPF_LSH | BPF_X] = true,
994                 [BPF_ALU | BPF_RSH | BPF_K] = true,
995                 [BPF_ALU | BPF_RSH | BPF_X] = true,
996                 [BPF_ALU | BPF_NEG] = true,
997                 /* Load instructions */
998                 [BPF_LD | BPF_W | BPF_ABS] = true,
999                 [BPF_LD | BPF_H | BPF_ABS] = true,
1000                 [BPF_LD | BPF_B | BPF_ABS] = true,
1001                 [BPF_LD | BPF_W | BPF_LEN] = true,
1002                 [BPF_LD | BPF_W | BPF_IND] = true,
1003                 [BPF_LD | BPF_H | BPF_IND] = true,
1004                 [BPF_LD | BPF_B | BPF_IND] = true,
1005                 [BPF_LD | BPF_IMM] = true,
1006                 [BPF_LD | BPF_MEM] = true,
1007                 [BPF_LDX | BPF_W | BPF_LEN] = true,
1008                 [BPF_LDX | BPF_B | BPF_MSH] = true,
1009                 [BPF_LDX | BPF_IMM] = true,
1010                 [BPF_LDX | BPF_MEM] = true,
1011                 /* Store instructions */
1012                 [BPF_ST] = true,
1013                 [BPF_STX] = true,
1014                 /* Misc instructions */
1015                 [BPF_MISC | BPF_TAX] = true,
1016                 [BPF_MISC | BPF_TXA] = true,
1017                 /* Return instructions */
1018                 [BPF_RET | BPF_K] = true,
1019                 [BPF_RET | BPF_A] = true,
1020                 /* Jump instructions */
1021                 [BPF_JMP | BPF_JA] = true,
1022                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1023                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1024                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1025                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1026                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1027                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1028                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1029                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1030         };
1031 
1032         if (code_to_probe >= ARRAY_SIZE(codes))
1033                 return false;
1034 
1035         return codes[code_to_probe];
1036 }
1037 
1038 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1039                                 unsigned int flen)
1040 {
1041         if (filter == NULL)
1042                 return false;
1043         if (flen == 0 || flen > BPF_MAXINSNS)
1044                 return false;
1045 
1046         return true;
1047 }
1048 
1049 /**
1050  *      bpf_check_classic - verify socket filter code
1051  *      @filter: filter to verify
1052  *      @flen: length of filter
1053  *
1054  * Check the user's filter code. If we let some ugly
1055  * filter code slip through kaboom! The filter must contain
1056  * no references or jumps that are out of range, no illegal
1057  * instructions, and must end with a RET instruction.
1058  *
1059  * All jumps are forward as they are not signed.
1060  *
1061  * Returns 0 if the rule set is legal or -EINVAL if not.
1062  */
1063 static int bpf_check_classic(const struct sock_filter *filter,
1064                              unsigned int flen)
1065 {
1066         bool anc_found;
1067         int pc;
1068 
1069         /* Check the filter code now */
1070         for (pc = 0; pc < flen; pc++) {
1071                 const struct sock_filter *ftest = &filter[pc];
1072 
1073                 /* May we actually operate on this code? */
1074                 if (!chk_code_allowed(ftest->code))
1075                         return -EINVAL;
1076 
1077                 /* Some instructions need special checks */
1078                 switch (ftest->code) {
1079                 case BPF_ALU | BPF_DIV | BPF_K:
1080                 case BPF_ALU | BPF_MOD | BPF_K:
1081                         /* Check for division by zero */
1082                         if (ftest->k == 0)
1083                                 return -EINVAL;
1084                         break;
1085                 case BPF_ALU | BPF_LSH | BPF_K:
1086                 case BPF_ALU | BPF_RSH | BPF_K:
1087                         if (ftest->k >= 32)
1088                                 return -EINVAL;
1089                         break;
1090                 case BPF_LD | BPF_MEM:
1091                 case BPF_LDX | BPF_MEM:
1092                 case BPF_ST:
1093                 case BPF_STX:
1094                         /* Check for invalid memory addresses */
1095                         if (ftest->k >= BPF_MEMWORDS)
1096                                 return -EINVAL;
1097                         break;
1098                 case BPF_JMP | BPF_JA:
1099                         /* Note, the large ftest->k might cause loops.
1100                          * Compare this with conditional jumps below,
1101                          * where offsets are limited. --ANK (981016)
1102                          */
1103                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1104                                 return -EINVAL;
1105                         break;
1106                 case BPF_JMP | BPF_JEQ | BPF_K:
1107                 case BPF_JMP | BPF_JEQ | BPF_X:
1108                 case BPF_JMP | BPF_JGE | BPF_K:
1109                 case BPF_JMP | BPF_JGE | BPF_X:
1110                 case BPF_JMP | BPF_JGT | BPF_K:
1111                 case BPF_JMP | BPF_JGT | BPF_X:
1112                 case BPF_JMP | BPF_JSET | BPF_K:
1113                 case BPF_JMP | BPF_JSET | BPF_X:
1114                         /* Both conditionals must be safe */
1115                         if (pc + ftest->jt + 1 >= flen ||
1116                             pc + ftest->jf + 1 >= flen)
1117                                 return -EINVAL;
1118                         break;
1119                 case BPF_LD | BPF_W | BPF_ABS:
1120                 case BPF_LD | BPF_H | BPF_ABS:
1121                 case BPF_LD | BPF_B | BPF_ABS:
1122                         anc_found = false;
1123                         if (bpf_anc_helper(ftest) & BPF_ANC)
1124                                 anc_found = true;
1125                         /* Ancillary operation unknown or unsupported */
1126                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1127                                 return -EINVAL;
1128                 }
1129         }
1130 
1131         /* Last instruction must be a RET code */
1132         switch (filter[flen - 1].code) {
1133         case BPF_RET | BPF_K:
1134         case BPF_RET | BPF_A:
1135                 return check_load_and_stores(filter, flen);
1136         }
1137 
1138         return -EINVAL;
1139 }
1140 
1141 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1142                                       const struct sock_fprog *fprog)
1143 {
1144         unsigned int fsize = bpf_classic_proglen(fprog);
1145         struct sock_fprog_kern *fkprog;
1146 
1147         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1148         if (!fp->orig_prog)
1149                 return -ENOMEM;
1150 
1151         fkprog = fp->orig_prog;
1152         fkprog->len = fprog->len;
1153 
1154         fkprog->filter = kmemdup(fp->insns, fsize,
1155                                  GFP_KERNEL | __GFP_NOWARN);
1156         if (!fkprog->filter) {
1157                 kfree(fp->orig_prog);
1158                 return -ENOMEM;
1159         }
1160 
1161         return 0;
1162 }
1163 
1164 static void bpf_release_orig_filter(struct bpf_prog *fp)
1165 {
1166         struct sock_fprog_kern *fprog = fp->orig_prog;
1167 
1168         if (fprog) {
1169                 kfree(fprog->filter);
1170                 kfree(fprog);
1171         }
1172 }
1173 
1174 static void __bpf_prog_release(struct bpf_prog *prog)
1175 {
1176         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1177                 bpf_prog_put(prog);
1178         } else {
1179                 bpf_release_orig_filter(prog);
1180                 bpf_prog_free(prog);
1181         }
1182 }
1183 
1184 static void __sk_filter_release(struct sk_filter *fp)
1185 {
1186         __bpf_prog_release(fp->prog);
1187         kfree(fp);
1188 }
1189 
1190 /**
1191  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1192  *      @rcu: rcu_head that contains the sk_filter to free
1193  */
1194 static void sk_filter_release_rcu(struct rcu_head *rcu)
1195 {
1196         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1197 
1198         __sk_filter_release(fp);
1199 }
1200 
1201 /**
1202  *      sk_filter_release - release a socket filter
1203  *      @fp: filter to remove
1204  *
1205  *      Remove a filter from a socket and release its resources.
1206  */
1207 static void sk_filter_release(struct sk_filter *fp)
1208 {
1209         if (refcount_dec_and_test(&fp->refcnt))
1210                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1211 }
1212 
1213 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1214 {
1215         u32 filter_size = bpf_prog_size(fp->prog->len);
1216 
1217         atomic_sub(filter_size, &sk->sk_omem_alloc);
1218         sk_filter_release(fp);
1219 }
1220 
1221 /* try to charge the socket memory if there is space available
1222  * return true on success
1223  */
1224 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1225 {
1226         int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1227         u32 filter_size = bpf_prog_size(fp->prog->len);
1228 
1229         /* same check as in sock_kmalloc() */
1230         if (filter_size <= optmem_max &&
1231             atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1232                 atomic_add(filter_size, &sk->sk_omem_alloc);
1233                 return true;
1234         }
1235         return false;
1236 }
1237 
1238 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1239 {
1240         if (!refcount_inc_not_zero(&fp->refcnt))
1241                 return false;
1242 
1243         if (!__sk_filter_charge(sk, fp)) {
1244                 sk_filter_release(fp);
1245                 return false;
1246         }
1247         return true;
1248 }
1249 
1250 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1251 {
1252         struct sock_filter *old_prog;
1253         struct bpf_prog *old_fp;
1254         int err, new_len, old_len = fp->len;
1255         bool seen_ld_abs = false;
1256 
1257         /* We are free to overwrite insns et al right here as it won't be used at
1258          * this point in time anymore internally after the migration to the eBPF
1259          * instruction representation.
1260          */
1261         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1262                      sizeof(struct bpf_insn));
1263 
1264         /* Conversion cannot happen on overlapping memory areas,
1265          * so we need to keep the user BPF around until the 2nd
1266          * pass. At this time, the user BPF is stored in fp->insns.
1267          */
1268         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1269                            GFP_KERNEL | __GFP_NOWARN);
1270         if (!old_prog) {
1271                 err = -ENOMEM;
1272                 goto out_err;
1273         }
1274 
1275         /* 1st pass: calculate the new program length. */
1276         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1277                                  &seen_ld_abs);
1278         if (err)
1279                 goto out_err_free;
1280 
1281         /* Expand fp for appending the new filter representation. */
1282         old_fp = fp;
1283         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1284         if (!fp) {
1285                 /* The old_fp is still around in case we couldn't
1286                  * allocate new memory, so uncharge on that one.
1287                  */
1288                 fp = old_fp;
1289                 err = -ENOMEM;
1290                 goto out_err_free;
1291         }
1292 
1293         fp->len = new_len;
1294 
1295         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1296         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1297                                  &seen_ld_abs);
1298         if (err)
1299                 /* 2nd bpf_convert_filter() can fail only if it fails
1300                  * to allocate memory, remapping must succeed. Note,
1301                  * that at this time old_fp has already been released
1302                  * by krealloc().
1303                  */
1304                 goto out_err_free;
1305 
1306         fp = bpf_prog_select_runtime(fp, &err);
1307         if (err)
1308                 goto out_err_free;
1309 
1310         kfree(old_prog);
1311         return fp;
1312 
1313 out_err_free:
1314         kfree(old_prog);
1315 out_err:
1316         __bpf_prog_release(fp);
1317         return ERR_PTR(err);
1318 }
1319 
1320 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1321                                            bpf_aux_classic_check_t trans)
1322 {
1323         int err;
1324 
1325         fp->bpf_func = NULL;
1326         fp->jited = 0;
1327 
1328         err = bpf_check_classic(fp->insns, fp->len);
1329         if (err) {
1330                 __bpf_prog_release(fp);
1331                 return ERR_PTR(err);
1332         }
1333 
1334         /* There might be additional checks and transformations
1335          * needed on classic filters, f.e. in case of seccomp.
1336          */
1337         if (trans) {
1338                 err = trans(fp->insns, fp->len);
1339                 if (err) {
1340                         __bpf_prog_release(fp);
1341                         return ERR_PTR(err);
1342                 }
1343         }
1344 
1345         /* Probe if we can JIT compile the filter and if so, do
1346          * the compilation of the filter.
1347          */
1348         bpf_jit_compile(fp);
1349 
1350         /* JIT compiler couldn't process this filter, so do the eBPF translation
1351          * for the optimized interpreter.
1352          */
1353         if (!fp->jited)
1354                 fp = bpf_migrate_filter(fp);
1355 
1356         return fp;
1357 }
1358 
1359 /**
1360  *      bpf_prog_create - create an unattached filter
1361  *      @pfp: the unattached filter that is created
1362  *      @fprog: the filter program
1363  *
1364  * Create a filter independent of any socket. We first run some
1365  * sanity checks on it to make sure it does not explode on us later.
1366  * If an error occurs or there is insufficient memory for the filter
1367  * a negative errno code is returned. On success the return is zero.
1368  */
1369 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1370 {
1371         unsigned int fsize = bpf_classic_proglen(fprog);
1372         struct bpf_prog *fp;
1373 
1374         /* Make sure new filter is there and in the right amounts. */
1375         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1376                 return -EINVAL;
1377 
1378         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1379         if (!fp)
1380                 return -ENOMEM;
1381 
1382         memcpy(fp->insns, fprog->filter, fsize);
1383 
1384         fp->len = fprog->len;
1385         /* Since unattached filters are not copied back to user
1386          * space through sk_get_filter(), we do not need to hold
1387          * a copy here, and can spare us the work.
1388          */
1389         fp->orig_prog = NULL;
1390 
1391         /* bpf_prepare_filter() already takes care of freeing
1392          * memory in case something goes wrong.
1393          */
1394         fp = bpf_prepare_filter(fp, NULL);
1395         if (IS_ERR(fp))
1396                 return PTR_ERR(fp);
1397 
1398         *pfp = fp;
1399         return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(bpf_prog_create);
1402 
1403 /**
1404  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1405  *      @pfp: the unattached filter that is created
1406  *      @fprog: the filter program
1407  *      @trans: post-classic verifier transformation handler
1408  *      @save_orig: save classic BPF program
1409  *
1410  * This function effectively does the same as bpf_prog_create(), only
1411  * that it builds up its insns buffer from user space provided buffer.
1412  * It also allows for passing a bpf_aux_classic_check_t handler.
1413  */
1414 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1415                               bpf_aux_classic_check_t trans, bool save_orig)
1416 {
1417         unsigned int fsize = bpf_classic_proglen(fprog);
1418         struct bpf_prog *fp;
1419         int err;
1420 
1421         /* Make sure new filter is there and in the right amounts. */
1422         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1423                 return -EINVAL;
1424 
1425         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1426         if (!fp)
1427                 return -ENOMEM;
1428 
1429         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1430                 __bpf_prog_free(fp);
1431                 return -EFAULT;
1432         }
1433 
1434         fp->len = fprog->len;
1435         fp->orig_prog = NULL;
1436 
1437         if (save_orig) {
1438                 err = bpf_prog_store_orig_filter(fp, fprog);
1439                 if (err) {
1440                         __bpf_prog_free(fp);
1441                         return -ENOMEM;
1442                 }
1443         }
1444 
1445         /* bpf_prepare_filter() already takes care of freeing
1446          * memory in case something goes wrong.
1447          */
1448         fp = bpf_prepare_filter(fp, trans);
1449         if (IS_ERR(fp))
1450                 return PTR_ERR(fp);
1451 
1452         *pfp = fp;
1453         return 0;
1454 }
1455 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1456 
1457 void bpf_prog_destroy(struct bpf_prog *fp)
1458 {
1459         __bpf_prog_release(fp);
1460 }
1461 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1462 
1463 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1464 {
1465         struct sk_filter *fp, *old_fp;
1466 
1467         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1468         if (!fp)
1469                 return -ENOMEM;
1470 
1471         fp->prog = prog;
1472 
1473         if (!__sk_filter_charge(sk, fp)) {
1474                 kfree(fp);
1475                 return -ENOMEM;
1476         }
1477         refcount_set(&fp->refcnt, 1);
1478 
1479         old_fp = rcu_dereference_protected(sk->sk_filter,
1480                                            lockdep_sock_is_held(sk));
1481         rcu_assign_pointer(sk->sk_filter, fp);
1482 
1483         if (old_fp)
1484                 sk_filter_uncharge(sk, old_fp);
1485 
1486         return 0;
1487 }
1488 
1489 static
1490 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1491 {
1492         unsigned int fsize = bpf_classic_proglen(fprog);
1493         struct bpf_prog *prog;
1494         int err;
1495 
1496         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1497                 return ERR_PTR(-EPERM);
1498 
1499         /* Make sure new filter is there and in the right amounts. */
1500         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1501                 return ERR_PTR(-EINVAL);
1502 
1503         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1504         if (!prog)
1505                 return ERR_PTR(-ENOMEM);
1506 
1507         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1508                 __bpf_prog_free(prog);
1509                 return ERR_PTR(-EFAULT);
1510         }
1511 
1512         prog->len = fprog->len;
1513 
1514         err = bpf_prog_store_orig_filter(prog, fprog);
1515         if (err) {
1516                 __bpf_prog_free(prog);
1517                 return ERR_PTR(-ENOMEM);
1518         }
1519 
1520         /* bpf_prepare_filter() already takes care of freeing
1521          * memory in case something goes wrong.
1522          */
1523         return bpf_prepare_filter(prog, NULL);
1524 }
1525 
1526 /**
1527  *      sk_attach_filter - attach a socket filter
1528  *      @fprog: the filter program
1529  *      @sk: the socket to use
1530  *
1531  * Attach the user's filter code. We first run some sanity checks on
1532  * it to make sure it does not explode on us later. If an error
1533  * occurs or there is insufficient memory for the filter a negative
1534  * errno code is returned. On success the return is zero.
1535  */
1536 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1537 {
1538         struct bpf_prog *prog = __get_filter(fprog, sk);
1539         int err;
1540 
1541         if (IS_ERR(prog))
1542                 return PTR_ERR(prog);
1543 
1544         err = __sk_attach_prog(prog, sk);
1545         if (err < 0) {
1546                 __bpf_prog_release(prog);
1547                 return err;
1548         }
1549 
1550         return 0;
1551 }
1552 EXPORT_SYMBOL_GPL(sk_attach_filter);
1553 
1554 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1555 {
1556         struct bpf_prog *prog = __get_filter(fprog, sk);
1557         int err, optmem_max;
1558 
1559         if (IS_ERR(prog))
1560                 return PTR_ERR(prog);
1561 
1562         optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1563         if (bpf_prog_size(prog->len) > optmem_max)
1564                 err = -ENOMEM;
1565         else
1566                 err = reuseport_attach_prog(sk, prog);
1567 
1568         if (err)
1569                 __bpf_prog_release(prog);
1570 
1571         return err;
1572 }
1573 
1574 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1575 {
1576         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1577                 return ERR_PTR(-EPERM);
1578 
1579         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1580 }
1581 
1582 int sk_attach_bpf(u32 ufd, struct sock *sk)
1583 {
1584         struct bpf_prog *prog = __get_bpf(ufd, sk);
1585         int err;
1586 
1587         if (IS_ERR(prog))
1588                 return PTR_ERR(prog);
1589 
1590         err = __sk_attach_prog(prog, sk);
1591         if (err < 0) {
1592                 bpf_prog_put(prog);
1593                 return err;
1594         }
1595 
1596         return 0;
1597 }
1598 
1599 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1600 {
1601         struct bpf_prog *prog;
1602         int err, optmem_max;
1603 
1604         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1605                 return -EPERM;
1606 
1607         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1608         if (PTR_ERR(prog) == -EINVAL)
1609                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1610         if (IS_ERR(prog))
1611                 return PTR_ERR(prog);
1612 
1613         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1614                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1615                  * bpf prog (e.g. sockmap).  It depends on the
1616                  * limitation imposed by bpf_prog_load().
1617                  * Hence, sysctl_optmem_max is not checked.
1618                  */
1619                 if ((sk->sk_type != SOCK_STREAM &&
1620                      sk->sk_type != SOCK_DGRAM) ||
1621                     (sk->sk_protocol != IPPROTO_UDP &&
1622                      sk->sk_protocol != IPPROTO_TCP) ||
1623                     (sk->sk_family != AF_INET &&
1624                      sk->sk_family != AF_INET6)) {
1625                         err = -ENOTSUPP;
1626                         goto err_prog_put;
1627                 }
1628         } else {
1629                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1630                 optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1631                 if (bpf_prog_size(prog->len) > optmem_max) {
1632                         err = -ENOMEM;
1633                         goto err_prog_put;
1634                 }
1635         }
1636 
1637         err = reuseport_attach_prog(sk, prog);
1638 err_prog_put:
1639         if (err)
1640                 bpf_prog_put(prog);
1641 
1642         return err;
1643 }
1644 
1645 void sk_reuseport_prog_free(struct bpf_prog *prog)
1646 {
1647         if (!prog)
1648                 return;
1649 
1650         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1651                 bpf_prog_put(prog);
1652         else
1653                 bpf_prog_destroy(prog);
1654 }
1655 
1656 struct bpf_scratchpad {
1657         union {
1658                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1659                 u8     buff[MAX_BPF_STACK];
1660         };
1661         local_lock_t    bh_lock;
1662 };
1663 
1664 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp) = {
1665         .bh_lock        = INIT_LOCAL_LOCK(bh_lock),
1666 };
1667 
1668 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1669                                           unsigned int write_len)
1670 {
1671 #ifdef CONFIG_DEBUG_NET
1672         /* Avoid a splat in pskb_may_pull_reason() */
1673         if (write_len > INT_MAX)
1674                 return -EINVAL;
1675 #endif
1676         return skb_ensure_writable(skb, write_len);
1677 }
1678 
1679 static inline int bpf_try_make_writable(struct sk_buff *skb,
1680                                         unsigned int write_len)
1681 {
1682         int err = __bpf_try_make_writable(skb, write_len);
1683 
1684         bpf_compute_data_pointers(skb);
1685         return err;
1686 }
1687 
1688 static int bpf_try_make_head_writable(struct sk_buff *skb)
1689 {
1690         return bpf_try_make_writable(skb, skb_headlen(skb));
1691 }
1692 
1693 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1694 {
1695         if (skb_at_tc_ingress(skb))
1696                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1697 }
1698 
1699 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1700 {
1701         if (skb_at_tc_ingress(skb))
1702                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1703 }
1704 
1705 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1706            const void *, from, u32, len, u64, flags)
1707 {
1708         void *ptr;
1709 
1710         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1711                 return -EINVAL;
1712         if (unlikely(offset > INT_MAX))
1713                 return -EFAULT;
1714         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1715                 return -EFAULT;
1716 
1717         ptr = skb->data + offset;
1718         if (flags & BPF_F_RECOMPUTE_CSUM)
1719                 __skb_postpull_rcsum(skb, ptr, len, offset);
1720 
1721         memcpy(ptr, from, len);
1722 
1723         if (flags & BPF_F_RECOMPUTE_CSUM)
1724                 __skb_postpush_rcsum(skb, ptr, len, offset);
1725         if (flags & BPF_F_INVALIDATE_HASH)
1726                 skb_clear_hash(skb);
1727 
1728         return 0;
1729 }
1730 
1731 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1732         .func           = bpf_skb_store_bytes,
1733         .gpl_only       = false,
1734         .ret_type       = RET_INTEGER,
1735         .arg1_type      = ARG_PTR_TO_CTX,
1736         .arg2_type      = ARG_ANYTHING,
1737         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1738         .arg4_type      = ARG_CONST_SIZE,
1739         .arg5_type      = ARG_ANYTHING,
1740 };
1741 
1742 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1743                           u32 len, u64 flags)
1744 {
1745         return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1746 }
1747 
1748 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1749            void *, to, u32, len)
1750 {
1751         void *ptr;
1752 
1753         if (unlikely(offset > INT_MAX))
1754                 goto err_clear;
1755 
1756         ptr = skb_header_pointer(skb, offset, len, to);
1757         if (unlikely(!ptr))
1758                 goto err_clear;
1759         if (ptr != to)
1760                 memcpy(to, ptr, len);
1761 
1762         return 0;
1763 err_clear:
1764         memset(to, 0, len);
1765         return -EFAULT;
1766 }
1767 
1768 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1769         .func           = bpf_skb_load_bytes,
1770         .gpl_only       = false,
1771         .ret_type       = RET_INTEGER,
1772         .arg1_type      = ARG_PTR_TO_CTX,
1773         .arg2_type      = ARG_ANYTHING,
1774         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1775         .arg4_type      = ARG_CONST_SIZE,
1776 };
1777 
1778 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1779 {
1780         return ____bpf_skb_load_bytes(skb, offset, to, len);
1781 }
1782 
1783 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1784            const struct bpf_flow_dissector *, ctx, u32, offset,
1785            void *, to, u32, len)
1786 {
1787         void *ptr;
1788 
1789         if (unlikely(offset > 0xffff))
1790                 goto err_clear;
1791 
1792         if (unlikely(!ctx->skb))
1793                 goto err_clear;
1794 
1795         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1796         if (unlikely(!ptr))
1797                 goto err_clear;
1798         if (ptr != to)
1799                 memcpy(to, ptr, len);
1800 
1801         return 0;
1802 err_clear:
1803         memset(to, 0, len);
1804         return -EFAULT;
1805 }
1806 
1807 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1808         .func           = bpf_flow_dissector_load_bytes,
1809         .gpl_only       = false,
1810         .ret_type       = RET_INTEGER,
1811         .arg1_type      = ARG_PTR_TO_CTX,
1812         .arg2_type      = ARG_ANYTHING,
1813         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1814         .arg4_type      = ARG_CONST_SIZE,
1815 };
1816 
1817 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1818            u32, offset, void *, to, u32, len, u32, start_header)
1819 {
1820         u8 *end = skb_tail_pointer(skb);
1821         u8 *start, *ptr;
1822 
1823         if (unlikely(offset > 0xffff))
1824                 goto err_clear;
1825 
1826         switch (start_header) {
1827         case BPF_HDR_START_MAC:
1828                 if (unlikely(!skb_mac_header_was_set(skb)))
1829                         goto err_clear;
1830                 start = skb_mac_header(skb);
1831                 break;
1832         case BPF_HDR_START_NET:
1833                 start = skb_network_header(skb);
1834                 break;
1835         default:
1836                 goto err_clear;
1837         }
1838 
1839         ptr = start + offset;
1840 
1841         if (likely(ptr + len <= end)) {
1842                 memcpy(to, ptr, len);
1843                 return 0;
1844         }
1845 
1846 err_clear:
1847         memset(to, 0, len);
1848         return -EFAULT;
1849 }
1850 
1851 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1852         .func           = bpf_skb_load_bytes_relative,
1853         .gpl_only       = false,
1854         .ret_type       = RET_INTEGER,
1855         .arg1_type      = ARG_PTR_TO_CTX,
1856         .arg2_type      = ARG_ANYTHING,
1857         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1858         .arg4_type      = ARG_CONST_SIZE,
1859         .arg5_type      = ARG_ANYTHING,
1860 };
1861 
1862 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1863 {
1864         /* Idea is the following: should the needed direct read/write
1865          * test fail during runtime, we can pull in more data and redo
1866          * again, since implicitly, we invalidate previous checks here.
1867          *
1868          * Or, since we know how much we need to make read/writeable,
1869          * this can be done once at the program beginning for direct
1870          * access case. By this we overcome limitations of only current
1871          * headroom being accessible.
1872          */
1873         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1874 }
1875 
1876 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1877         .func           = bpf_skb_pull_data,
1878         .gpl_only       = false,
1879         .ret_type       = RET_INTEGER,
1880         .arg1_type      = ARG_PTR_TO_CTX,
1881         .arg2_type      = ARG_ANYTHING,
1882 };
1883 
1884 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1885 {
1886         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1887 }
1888 
1889 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1890         .func           = bpf_sk_fullsock,
1891         .gpl_only       = false,
1892         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1893         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1894 };
1895 
1896 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1897                                            unsigned int write_len)
1898 {
1899         return __bpf_try_make_writable(skb, write_len);
1900 }
1901 
1902 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1903 {
1904         /* Idea is the following: should the needed direct read/write
1905          * test fail during runtime, we can pull in more data and redo
1906          * again, since implicitly, we invalidate previous checks here.
1907          *
1908          * Or, since we know how much we need to make read/writeable,
1909          * this can be done once at the program beginning for direct
1910          * access case. By this we overcome limitations of only current
1911          * headroom being accessible.
1912          */
1913         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1914 }
1915 
1916 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1917         .func           = sk_skb_pull_data,
1918         .gpl_only       = false,
1919         .ret_type       = RET_INTEGER,
1920         .arg1_type      = ARG_PTR_TO_CTX,
1921         .arg2_type      = ARG_ANYTHING,
1922 };
1923 
1924 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1925            u64, from, u64, to, u64, flags)
1926 {
1927         __sum16 *ptr;
1928 
1929         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1930                 return -EINVAL;
1931         if (unlikely(offset > 0xffff || offset & 1))
1932                 return -EFAULT;
1933         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1934                 return -EFAULT;
1935 
1936         ptr = (__sum16 *)(skb->data + offset);
1937         switch (flags & BPF_F_HDR_FIELD_MASK) {
1938         case 0:
1939                 if (unlikely(from != 0))
1940                         return -EINVAL;
1941 
1942                 csum_replace_by_diff(ptr, to);
1943                 break;
1944         case 2:
1945                 csum_replace2(ptr, from, to);
1946                 break;
1947         case 4:
1948                 csum_replace4(ptr, from, to);
1949                 break;
1950         default:
1951                 return -EINVAL;
1952         }
1953 
1954         return 0;
1955 }
1956 
1957 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1958         .func           = bpf_l3_csum_replace,
1959         .gpl_only       = false,
1960         .ret_type       = RET_INTEGER,
1961         .arg1_type      = ARG_PTR_TO_CTX,
1962         .arg2_type      = ARG_ANYTHING,
1963         .arg3_type      = ARG_ANYTHING,
1964         .arg4_type      = ARG_ANYTHING,
1965         .arg5_type      = ARG_ANYTHING,
1966 };
1967 
1968 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1969            u64, from, u64, to, u64, flags)
1970 {
1971         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1972         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1973         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1974         __sum16 *ptr;
1975 
1976         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1977                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1978                 return -EINVAL;
1979         if (unlikely(offset > 0xffff || offset & 1))
1980                 return -EFAULT;
1981         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1982                 return -EFAULT;
1983 
1984         ptr = (__sum16 *)(skb->data + offset);
1985         if (is_mmzero && !do_mforce && !*ptr)
1986                 return 0;
1987 
1988         switch (flags & BPF_F_HDR_FIELD_MASK) {
1989         case 0:
1990                 if (unlikely(from != 0))
1991                         return -EINVAL;
1992 
1993                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1994                 break;
1995         case 2:
1996                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1997                 break;
1998         case 4:
1999                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
2000                 break;
2001         default:
2002                 return -EINVAL;
2003         }
2004 
2005         if (is_mmzero && !*ptr)
2006                 *ptr = CSUM_MANGLED_0;
2007         return 0;
2008 }
2009 
2010 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2011         .func           = bpf_l4_csum_replace,
2012         .gpl_only       = false,
2013         .ret_type       = RET_INTEGER,
2014         .arg1_type      = ARG_PTR_TO_CTX,
2015         .arg2_type      = ARG_ANYTHING,
2016         .arg3_type      = ARG_ANYTHING,
2017         .arg4_type      = ARG_ANYTHING,
2018         .arg5_type      = ARG_ANYTHING,
2019 };
2020 
2021 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2022            __be32 *, to, u32, to_size, __wsum, seed)
2023 {
2024         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2025         u32 diff_size = from_size + to_size;
2026         int i, j = 0;
2027         __wsum ret;
2028 
2029         /* This is quite flexible, some examples:
2030          *
2031          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2032          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2033          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2034          *
2035          * Even for diffing, from_size and to_size don't need to be equal.
2036          */
2037         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2038                      diff_size > sizeof(sp->diff)))
2039                 return -EINVAL;
2040 
2041         local_lock_nested_bh(&bpf_sp.bh_lock);
2042         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2043                 sp->diff[j] = ~from[i];
2044         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2045                 sp->diff[j] = to[i];
2046 
2047         ret = csum_partial(sp->diff, diff_size, seed);
2048         local_unlock_nested_bh(&bpf_sp.bh_lock);
2049         return ret;
2050 }
2051 
2052 static const struct bpf_func_proto bpf_csum_diff_proto = {
2053         .func           = bpf_csum_diff,
2054         .gpl_only       = false,
2055         .pkt_access     = true,
2056         .ret_type       = RET_INTEGER,
2057         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2058         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2059         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2060         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2061         .arg5_type      = ARG_ANYTHING,
2062 };
2063 
2064 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2065 {
2066         /* The interface is to be used in combination with bpf_csum_diff()
2067          * for direct packet writes. csum rotation for alignment as well
2068          * as emulating csum_sub() can be done from the eBPF program.
2069          */
2070         if (skb->ip_summed == CHECKSUM_COMPLETE)
2071                 return (skb->csum = csum_add(skb->csum, csum));
2072 
2073         return -ENOTSUPP;
2074 }
2075 
2076 static const struct bpf_func_proto bpf_csum_update_proto = {
2077         .func           = bpf_csum_update,
2078         .gpl_only       = false,
2079         .ret_type       = RET_INTEGER,
2080         .arg1_type      = ARG_PTR_TO_CTX,
2081         .arg2_type      = ARG_ANYTHING,
2082 };
2083 
2084 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2085 {
2086         /* The interface is to be used in combination with bpf_skb_adjust_room()
2087          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2088          * is passed as flags, for example.
2089          */
2090         switch (level) {
2091         case BPF_CSUM_LEVEL_INC:
2092                 __skb_incr_checksum_unnecessary(skb);
2093                 break;
2094         case BPF_CSUM_LEVEL_DEC:
2095                 __skb_decr_checksum_unnecessary(skb);
2096                 break;
2097         case BPF_CSUM_LEVEL_RESET:
2098                 __skb_reset_checksum_unnecessary(skb);
2099                 break;
2100         case BPF_CSUM_LEVEL_QUERY:
2101                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2102                        skb->csum_level : -EACCES;
2103         default:
2104                 return -EINVAL;
2105         }
2106 
2107         return 0;
2108 }
2109 
2110 static const struct bpf_func_proto bpf_csum_level_proto = {
2111         .func           = bpf_csum_level,
2112         .gpl_only       = false,
2113         .ret_type       = RET_INTEGER,
2114         .arg1_type      = ARG_PTR_TO_CTX,
2115         .arg2_type      = ARG_ANYTHING,
2116 };
2117 
2118 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2119 {
2120         return dev_forward_skb_nomtu(dev, skb);
2121 }
2122 
2123 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2124                                       struct sk_buff *skb)
2125 {
2126         int ret = ____dev_forward_skb(dev, skb, false);
2127 
2128         if (likely(!ret)) {
2129                 skb->dev = dev;
2130                 ret = netif_rx(skb);
2131         }
2132 
2133         return ret;
2134 }
2135 
2136 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2137 {
2138         int ret;
2139 
2140         if (dev_xmit_recursion()) {
2141                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2142                 kfree_skb(skb);
2143                 return -ENETDOWN;
2144         }
2145 
2146         skb->dev = dev;
2147         skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2148         skb_clear_tstamp(skb);
2149 
2150         dev_xmit_recursion_inc();
2151         ret = dev_queue_xmit(skb);
2152         dev_xmit_recursion_dec();
2153 
2154         return ret;
2155 }
2156 
2157 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2158                                  u32 flags)
2159 {
2160         unsigned int mlen = skb_network_offset(skb);
2161 
2162         if (unlikely(skb->len <= mlen)) {
2163                 kfree_skb(skb);
2164                 return -ERANGE;
2165         }
2166 
2167         if (mlen) {
2168                 __skb_pull(skb, mlen);
2169 
2170                 /* At ingress, the mac header has already been pulled once.
2171                  * At egress, skb_pospull_rcsum has to be done in case that
2172                  * the skb is originated from ingress (i.e. a forwarded skb)
2173                  * to ensure that rcsum starts at net header.
2174                  */
2175                 if (!skb_at_tc_ingress(skb))
2176                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2177         }
2178         skb_pop_mac_header(skb);
2179         skb_reset_mac_len(skb);
2180         return flags & BPF_F_INGRESS ?
2181                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2182 }
2183 
2184 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2185                                  u32 flags)
2186 {
2187         /* Verify that a link layer header is carried */
2188         if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2189                 kfree_skb(skb);
2190                 return -ERANGE;
2191         }
2192 
2193         bpf_push_mac_rcsum(skb);
2194         return flags & BPF_F_INGRESS ?
2195                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2196 }
2197 
2198 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2199                           u32 flags)
2200 {
2201         if (dev_is_mac_header_xmit(dev))
2202                 return __bpf_redirect_common(skb, dev, flags);
2203         else
2204                 return __bpf_redirect_no_mac(skb, dev, flags);
2205 }
2206 
2207 #if IS_ENABLED(CONFIG_IPV6)
2208 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2209                             struct net_device *dev, struct bpf_nh_params *nh)
2210 {
2211         u32 hh_len = LL_RESERVED_SPACE(dev);
2212         const struct in6_addr *nexthop;
2213         struct dst_entry *dst = NULL;
2214         struct neighbour *neigh;
2215 
2216         if (dev_xmit_recursion()) {
2217                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2218                 goto out_drop;
2219         }
2220 
2221         skb->dev = dev;
2222         skb_clear_tstamp(skb);
2223 
2224         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2225                 skb = skb_expand_head(skb, hh_len);
2226                 if (!skb)
2227                         return -ENOMEM;
2228         }
2229 
2230         rcu_read_lock();
2231         if (!nh) {
2232                 dst = skb_dst(skb);
2233                 nexthop = rt6_nexthop(dst_rt6_info(dst),
2234                                       &ipv6_hdr(skb)->daddr);
2235         } else {
2236                 nexthop = &nh->ipv6_nh;
2237         }
2238         neigh = ip_neigh_gw6(dev, nexthop);
2239         if (likely(!IS_ERR(neigh))) {
2240                 int ret;
2241 
2242                 sock_confirm_neigh(skb, neigh);
2243                 local_bh_disable();
2244                 dev_xmit_recursion_inc();
2245                 ret = neigh_output(neigh, skb, false);
2246                 dev_xmit_recursion_dec();
2247                 local_bh_enable();
2248                 rcu_read_unlock();
2249                 return ret;
2250         }
2251         rcu_read_unlock_bh();
2252         if (dst)
2253                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2254 out_drop:
2255         kfree_skb(skb);
2256         return -ENETDOWN;
2257 }
2258 
2259 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2260                                    struct bpf_nh_params *nh)
2261 {
2262         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2263         struct net *net = dev_net(dev);
2264         int err, ret = NET_XMIT_DROP;
2265 
2266         if (!nh) {
2267                 struct dst_entry *dst;
2268                 struct flowi6 fl6 = {
2269                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2270                         .flowi6_mark  = skb->mark,
2271                         .flowlabel    = ip6_flowinfo(ip6h),
2272                         .flowi6_oif   = dev->ifindex,
2273                         .flowi6_proto = ip6h->nexthdr,
2274                         .daddr        = ip6h->daddr,
2275                         .saddr        = ip6h->saddr,
2276                 };
2277 
2278                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2279                 if (IS_ERR(dst))
2280                         goto out_drop;
2281 
2282                 skb_dst_set(skb, dst);
2283         } else if (nh->nh_family != AF_INET6) {
2284                 goto out_drop;
2285         }
2286 
2287         err = bpf_out_neigh_v6(net, skb, dev, nh);
2288         if (unlikely(net_xmit_eval(err)))
2289                 DEV_STATS_INC(dev, tx_errors);
2290         else
2291                 ret = NET_XMIT_SUCCESS;
2292         goto out_xmit;
2293 out_drop:
2294         DEV_STATS_INC(dev, tx_errors);
2295         kfree_skb(skb);
2296 out_xmit:
2297         return ret;
2298 }
2299 #else
2300 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2301                                    struct bpf_nh_params *nh)
2302 {
2303         kfree_skb(skb);
2304         return NET_XMIT_DROP;
2305 }
2306 #endif /* CONFIG_IPV6 */
2307 
2308 #if IS_ENABLED(CONFIG_INET)
2309 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2310                             struct net_device *dev, struct bpf_nh_params *nh)
2311 {
2312         u32 hh_len = LL_RESERVED_SPACE(dev);
2313         struct neighbour *neigh;
2314         bool is_v6gw = false;
2315 
2316         if (dev_xmit_recursion()) {
2317                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2318                 goto out_drop;
2319         }
2320 
2321         skb->dev = dev;
2322         skb_clear_tstamp(skb);
2323 
2324         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2325                 skb = skb_expand_head(skb, hh_len);
2326                 if (!skb)
2327                         return -ENOMEM;
2328         }
2329 
2330         rcu_read_lock();
2331         if (!nh) {
2332                 struct rtable *rt = skb_rtable(skb);
2333 
2334                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2335         } else if (nh->nh_family == AF_INET6) {
2336                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2337                 is_v6gw = true;
2338         } else if (nh->nh_family == AF_INET) {
2339                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2340         } else {
2341                 rcu_read_unlock();
2342                 goto out_drop;
2343         }
2344 
2345         if (likely(!IS_ERR(neigh))) {
2346                 int ret;
2347 
2348                 sock_confirm_neigh(skb, neigh);
2349                 local_bh_disable();
2350                 dev_xmit_recursion_inc();
2351                 ret = neigh_output(neigh, skb, is_v6gw);
2352                 dev_xmit_recursion_dec();
2353                 local_bh_enable();
2354                 rcu_read_unlock();
2355                 return ret;
2356         }
2357         rcu_read_unlock();
2358 out_drop:
2359         kfree_skb(skb);
2360         return -ENETDOWN;
2361 }
2362 
2363 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2364                                    struct bpf_nh_params *nh)
2365 {
2366         const struct iphdr *ip4h = ip_hdr(skb);
2367         struct net *net = dev_net(dev);
2368         int err, ret = NET_XMIT_DROP;
2369 
2370         if (!nh) {
2371                 struct flowi4 fl4 = {
2372                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2373                         .flowi4_mark  = skb->mark,
2374                         .flowi4_tos   = RT_TOS(ip4h->tos),
2375                         .flowi4_oif   = dev->ifindex,
2376                         .flowi4_proto = ip4h->protocol,
2377                         .daddr        = ip4h->daddr,
2378                         .saddr        = ip4h->saddr,
2379                 };
2380                 struct rtable *rt;
2381 
2382                 rt = ip_route_output_flow(net, &fl4, NULL);
2383                 if (IS_ERR(rt))
2384                         goto out_drop;
2385                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2386                         ip_rt_put(rt);
2387                         goto out_drop;
2388                 }
2389 
2390                 skb_dst_set(skb, &rt->dst);
2391         }
2392 
2393         err = bpf_out_neigh_v4(net, skb, dev, nh);
2394         if (unlikely(net_xmit_eval(err)))
2395                 DEV_STATS_INC(dev, tx_errors);
2396         else
2397                 ret = NET_XMIT_SUCCESS;
2398         goto out_xmit;
2399 out_drop:
2400         DEV_STATS_INC(dev, tx_errors);
2401         kfree_skb(skb);
2402 out_xmit:
2403         return ret;
2404 }
2405 #else
2406 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2407                                    struct bpf_nh_params *nh)
2408 {
2409         kfree_skb(skb);
2410         return NET_XMIT_DROP;
2411 }
2412 #endif /* CONFIG_INET */
2413 
2414 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2415                                 struct bpf_nh_params *nh)
2416 {
2417         struct ethhdr *ethh = eth_hdr(skb);
2418 
2419         if (unlikely(skb->mac_header >= skb->network_header))
2420                 goto out;
2421         bpf_push_mac_rcsum(skb);
2422         if (is_multicast_ether_addr(ethh->h_dest))
2423                 goto out;
2424 
2425         skb_pull(skb, sizeof(*ethh));
2426         skb_unset_mac_header(skb);
2427         skb_reset_network_header(skb);
2428 
2429         if (skb->protocol == htons(ETH_P_IP))
2430                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2431         else if (skb->protocol == htons(ETH_P_IPV6))
2432                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2433 out:
2434         kfree_skb(skb);
2435         return -ENOTSUPP;
2436 }
2437 
2438 /* Internal, non-exposed redirect flags. */
2439 enum {
2440         BPF_F_NEIGH     = (1ULL << 1),
2441         BPF_F_PEER      = (1ULL << 2),
2442         BPF_F_NEXTHOP   = (1ULL << 3),
2443 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2444 };
2445 
2446 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2447 {
2448         struct net_device *dev;
2449         struct sk_buff *clone;
2450         int ret;
2451 
2452         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2453                 return -EINVAL;
2454 
2455         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2456         if (unlikely(!dev))
2457                 return -EINVAL;
2458 
2459         clone = skb_clone(skb, GFP_ATOMIC);
2460         if (unlikely(!clone))
2461                 return -ENOMEM;
2462 
2463         /* For direct write, we need to keep the invariant that the skbs
2464          * we're dealing with need to be uncloned. Should uncloning fail
2465          * here, we need to free the just generated clone to unclone once
2466          * again.
2467          */
2468         ret = bpf_try_make_head_writable(skb);
2469         if (unlikely(ret)) {
2470                 kfree_skb(clone);
2471                 return -ENOMEM;
2472         }
2473 
2474         return __bpf_redirect(clone, dev, flags);
2475 }
2476 
2477 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2478         .func           = bpf_clone_redirect,
2479         .gpl_only       = false,
2480         .ret_type       = RET_INTEGER,
2481         .arg1_type      = ARG_PTR_TO_CTX,
2482         .arg2_type      = ARG_ANYTHING,
2483         .arg3_type      = ARG_ANYTHING,
2484 };
2485 
2486 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2487 {
2488         const struct net_device_ops *ops = dev->netdev_ops;
2489 
2490         if (likely(ops->ndo_get_peer_dev))
2491                 return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2492                                        netkit_peer_dev, dev);
2493         return NULL;
2494 }
2495 
2496 int skb_do_redirect(struct sk_buff *skb)
2497 {
2498         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2499         struct net *net = dev_net(skb->dev);
2500         struct net_device *dev;
2501         u32 flags = ri->flags;
2502 
2503         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2504         ri->tgt_index = 0;
2505         ri->flags = 0;
2506         if (unlikely(!dev))
2507                 goto out_drop;
2508         if (flags & BPF_F_PEER) {
2509                 if (unlikely(!skb_at_tc_ingress(skb)))
2510                         goto out_drop;
2511                 dev = skb_get_peer_dev(dev);
2512                 if (unlikely(!dev ||
2513                              !(dev->flags & IFF_UP) ||
2514                              net_eq(net, dev_net(dev))))
2515                         goto out_drop;
2516                 skb->dev = dev;
2517                 dev_sw_netstats_rx_add(dev, skb->len);
2518                 return -EAGAIN;
2519         }
2520         return flags & BPF_F_NEIGH ?
2521                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2522                                     &ri->nh : NULL) :
2523                __bpf_redirect(skb, dev, flags);
2524 out_drop:
2525         kfree_skb(skb);
2526         return -EINVAL;
2527 }
2528 
2529 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2530 {
2531         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2532 
2533         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2534                 return TC_ACT_SHOT;
2535 
2536         ri->flags = flags;
2537         ri->tgt_index = ifindex;
2538 
2539         return TC_ACT_REDIRECT;
2540 }
2541 
2542 static const struct bpf_func_proto bpf_redirect_proto = {
2543         .func           = bpf_redirect,
2544         .gpl_only       = false,
2545         .ret_type       = RET_INTEGER,
2546         .arg1_type      = ARG_ANYTHING,
2547         .arg2_type      = ARG_ANYTHING,
2548 };
2549 
2550 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2551 {
2552         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2553 
2554         if (unlikely(flags))
2555                 return TC_ACT_SHOT;
2556 
2557         ri->flags = BPF_F_PEER;
2558         ri->tgt_index = ifindex;
2559 
2560         return TC_ACT_REDIRECT;
2561 }
2562 
2563 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2564         .func           = bpf_redirect_peer,
2565         .gpl_only       = false,
2566         .ret_type       = RET_INTEGER,
2567         .arg1_type      = ARG_ANYTHING,
2568         .arg2_type      = ARG_ANYTHING,
2569 };
2570 
2571 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2572            int, plen, u64, flags)
2573 {
2574         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
2575 
2576         if (unlikely((plen && plen < sizeof(*params)) || flags))
2577                 return TC_ACT_SHOT;
2578 
2579         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2580         ri->tgt_index = ifindex;
2581 
2582         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2583         if (plen)
2584                 memcpy(&ri->nh, params, sizeof(ri->nh));
2585 
2586         return TC_ACT_REDIRECT;
2587 }
2588 
2589 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2590         .func           = bpf_redirect_neigh,
2591         .gpl_only       = false,
2592         .ret_type       = RET_INTEGER,
2593         .arg1_type      = ARG_ANYTHING,
2594         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2595         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2596         .arg4_type      = ARG_ANYTHING,
2597 };
2598 
2599 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2600 {
2601         msg->apply_bytes = bytes;
2602         return 0;
2603 }
2604 
2605 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2606         .func           = bpf_msg_apply_bytes,
2607         .gpl_only       = false,
2608         .ret_type       = RET_INTEGER,
2609         .arg1_type      = ARG_PTR_TO_CTX,
2610         .arg2_type      = ARG_ANYTHING,
2611 };
2612 
2613 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2614 {
2615         msg->cork_bytes = bytes;
2616         return 0;
2617 }
2618 
2619 static void sk_msg_reset_curr(struct sk_msg *msg)
2620 {
2621         u32 i = msg->sg.start;
2622         u32 len = 0;
2623 
2624         do {
2625                 len += sk_msg_elem(msg, i)->length;
2626                 sk_msg_iter_var_next(i);
2627                 if (len >= msg->sg.size)
2628                         break;
2629         } while (i != msg->sg.end);
2630 
2631         msg->sg.curr = i;
2632         msg->sg.copybreak = 0;
2633 }
2634 
2635 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2636         .func           = bpf_msg_cork_bytes,
2637         .gpl_only       = false,
2638         .ret_type       = RET_INTEGER,
2639         .arg1_type      = ARG_PTR_TO_CTX,
2640         .arg2_type      = ARG_ANYTHING,
2641 };
2642 
2643 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2644            u32, end, u64, flags)
2645 {
2646         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2647         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2648         struct scatterlist *sge;
2649         u8 *raw, *to, *from;
2650         struct page *page;
2651 
2652         if (unlikely(flags || end <= start))
2653                 return -EINVAL;
2654 
2655         /* First find the starting scatterlist element */
2656         i = msg->sg.start;
2657         do {
2658                 offset += len;
2659                 len = sk_msg_elem(msg, i)->length;
2660                 if (start < offset + len)
2661                         break;
2662                 sk_msg_iter_var_next(i);
2663         } while (i != msg->sg.end);
2664 
2665         if (unlikely(start >= offset + len))
2666                 return -EINVAL;
2667 
2668         first_sge = i;
2669         /* The start may point into the sg element so we need to also
2670          * account for the headroom.
2671          */
2672         bytes_sg_total = start - offset + bytes;
2673         if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2674                 goto out;
2675 
2676         /* At this point we need to linearize multiple scatterlist
2677          * elements or a single shared page. Either way we need to
2678          * copy into a linear buffer exclusively owned by BPF. Then
2679          * place the buffer in the scatterlist and fixup the original
2680          * entries by removing the entries now in the linear buffer
2681          * and shifting the remaining entries. For now we do not try
2682          * to copy partial entries to avoid complexity of running out
2683          * of sg_entry slots. The downside is reading a single byte
2684          * will copy the entire sg entry.
2685          */
2686         do {
2687                 copy += sk_msg_elem(msg, i)->length;
2688                 sk_msg_iter_var_next(i);
2689                 if (bytes_sg_total <= copy)
2690                         break;
2691         } while (i != msg->sg.end);
2692         last_sge = i;
2693 
2694         if (unlikely(bytes_sg_total > copy))
2695                 return -EINVAL;
2696 
2697         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2698                            get_order(copy));
2699         if (unlikely(!page))
2700                 return -ENOMEM;
2701 
2702         raw = page_address(page);
2703         i = first_sge;
2704         do {
2705                 sge = sk_msg_elem(msg, i);
2706                 from = sg_virt(sge);
2707                 len = sge->length;
2708                 to = raw + poffset;
2709 
2710                 memcpy(to, from, len);
2711                 poffset += len;
2712                 sge->length = 0;
2713                 put_page(sg_page(sge));
2714 
2715                 sk_msg_iter_var_next(i);
2716         } while (i != last_sge);
2717 
2718         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2719 
2720         /* To repair sg ring we need to shift entries. If we only
2721          * had a single entry though we can just replace it and
2722          * be done. Otherwise walk the ring and shift the entries.
2723          */
2724         WARN_ON_ONCE(last_sge == first_sge);
2725         shift = last_sge > first_sge ?
2726                 last_sge - first_sge - 1 :
2727                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2728         if (!shift)
2729                 goto out;
2730 
2731         i = first_sge;
2732         sk_msg_iter_var_next(i);
2733         do {
2734                 u32 move_from;
2735 
2736                 if (i + shift >= NR_MSG_FRAG_IDS)
2737                         move_from = i + shift - NR_MSG_FRAG_IDS;
2738                 else
2739                         move_from = i + shift;
2740                 if (move_from == msg->sg.end)
2741                         break;
2742 
2743                 msg->sg.data[i] = msg->sg.data[move_from];
2744                 msg->sg.data[move_from].length = 0;
2745                 msg->sg.data[move_from].page_link = 0;
2746                 msg->sg.data[move_from].offset = 0;
2747                 sk_msg_iter_var_next(i);
2748         } while (1);
2749 
2750         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2751                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2752                       msg->sg.end - shift;
2753 out:
2754         sk_msg_reset_curr(msg);
2755         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2756         msg->data_end = msg->data + bytes;
2757         return 0;
2758 }
2759 
2760 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2761         .func           = bpf_msg_pull_data,
2762         .gpl_only       = false,
2763         .ret_type       = RET_INTEGER,
2764         .arg1_type      = ARG_PTR_TO_CTX,
2765         .arg2_type      = ARG_ANYTHING,
2766         .arg3_type      = ARG_ANYTHING,
2767         .arg4_type      = ARG_ANYTHING,
2768 };
2769 
2770 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2771            u32, len, u64, flags)
2772 {
2773         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2774         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2775         u8 *raw, *to, *from;
2776         struct page *page;
2777 
2778         if (unlikely(flags))
2779                 return -EINVAL;
2780 
2781         if (unlikely(len == 0))
2782                 return 0;
2783 
2784         /* First find the starting scatterlist element */
2785         i = msg->sg.start;
2786         do {
2787                 offset += l;
2788                 l = sk_msg_elem(msg, i)->length;
2789 
2790                 if (start < offset + l)
2791                         break;
2792                 sk_msg_iter_var_next(i);
2793         } while (i != msg->sg.end);
2794 
2795         if (start >= offset + l)
2796                 return -EINVAL;
2797 
2798         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2799 
2800         /* If no space available will fallback to copy, we need at
2801          * least one scatterlist elem available to push data into
2802          * when start aligns to the beginning of an element or two
2803          * when it falls inside an element. We handle the start equals
2804          * offset case because its the common case for inserting a
2805          * header.
2806          */
2807         if (!space || (space == 1 && start != offset))
2808                 copy = msg->sg.data[i].length;
2809 
2810         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2811                            get_order(copy + len));
2812         if (unlikely(!page))
2813                 return -ENOMEM;
2814 
2815         if (copy) {
2816                 int front, back;
2817 
2818                 raw = page_address(page);
2819 
2820                 psge = sk_msg_elem(msg, i);
2821                 front = start - offset;
2822                 back = psge->length - front;
2823                 from = sg_virt(psge);
2824 
2825                 if (front)
2826                         memcpy(raw, from, front);
2827 
2828                 if (back) {
2829                         from += front;
2830                         to = raw + front + len;
2831 
2832                         memcpy(to, from, back);
2833                 }
2834 
2835                 put_page(sg_page(psge));
2836         } else if (start - offset) {
2837                 psge = sk_msg_elem(msg, i);
2838                 rsge = sk_msg_elem_cpy(msg, i);
2839 
2840                 psge->length = start - offset;
2841                 rsge.length -= psge->length;
2842                 rsge.offset += start;
2843 
2844                 sk_msg_iter_var_next(i);
2845                 sg_unmark_end(psge);
2846                 sg_unmark_end(&rsge);
2847                 sk_msg_iter_next(msg, end);
2848         }
2849 
2850         /* Slot(s) to place newly allocated data */
2851         new = i;
2852 
2853         /* Shift one or two slots as needed */
2854         if (!copy) {
2855                 sge = sk_msg_elem_cpy(msg, i);
2856 
2857                 sk_msg_iter_var_next(i);
2858                 sg_unmark_end(&sge);
2859                 sk_msg_iter_next(msg, end);
2860 
2861                 nsge = sk_msg_elem_cpy(msg, i);
2862                 if (rsge.length) {
2863                         sk_msg_iter_var_next(i);
2864                         nnsge = sk_msg_elem_cpy(msg, i);
2865                 }
2866 
2867                 while (i != msg->sg.end) {
2868                         msg->sg.data[i] = sge;
2869                         sge = nsge;
2870                         sk_msg_iter_var_next(i);
2871                         if (rsge.length) {
2872                                 nsge = nnsge;
2873                                 nnsge = sk_msg_elem_cpy(msg, i);
2874                         } else {
2875                                 nsge = sk_msg_elem_cpy(msg, i);
2876                         }
2877                 }
2878         }
2879 
2880         /* Place newly allocated data buffer */
2881         sk_mem_charge(msg->sk, len);
2882         msg->sg.size += len;
2883         __clear_bit(new, msg->sg.copy);
2884         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2885         if (rsge.length) {
2886                 get_page(sg_page(&rsge));
2887                 sk_msg_iter_var_next(new);
2888                 msg->sg.data[new] = rsge;
2889         }
2890 
2891         sk_msg_reset_curr(msg);
2892         sk_msg_compute_data_pointers(msg);
2893         return 0;
2894 }
2895 
2896 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2897         .func           = bpf_msg_push_data,
2898         .gpl_only       = false,
2899         .ret_type       = RET_INTEGER,
2900         .arg1_type      = ARG_PTR_TO_CTX,
2901         .arg2_type      = ARG_ANYTHING,
2902         .arg3_type      = ARG_ANYTHING,
2903         .arg4_type      = ARG_ANYTHING,
2904 };
2905 
2906 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2907 {
2908         int prev;
2909 
2910         do {
2911                 prev = i;
2912                 sk_msg_iter_var_next(i);
2913                 msg->sg.data[prev] = msg->sg.data[i];
2914         } while (i != msg->sg.end);
2915 
2916         sk_msg_iter_prev(msg, end);
2917 }
2918 
2919 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2920 {
2921         struct scatterlist tmp, sge;
2922 
2923         sk_msg_iter_next(msg, end);
2924         sge = sk_msg_elem_cpy(msg, i);
2925         sk_msg_iter_var_next(i);
2926         tmp = sk_msg_elem_cpy(msg, i);
2927 
2928         while (i != msg->sg.end) {
2929                 msg->sg.data[i] = sge;
2930                 sk_msg_iter_var_next(i);
2931                 sge = tmp;
2932                 tmp = sk_msg_elem_cpy(msg, i);
2933         }
2934 }
2935 
2936 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2937            u32, len, u64, flags)
2938 {
2939         u32 i = 0, l = 0, space, offset = 0;
2940         u64 last = start + len;
2941         int pop;
2942 
2943         if (unlikely(flags))
2944                 return -EINVAL;
2945 
2946         /* First find the starting scatterlist element */
2947         i = msg->sg.start;
2948         do {
2949                 offset += l;
2950                 l = sk_msg_elem(msg, i)->length;
2951 
2952                 if (start < offset + l)
2953                         break;
2954                 sk_msg_iter_var_next(i);
2955         } while (i != msg->sg.end);
2956 
2957         /* Bounds checks: start and pop must be inside message */
2958         if (start >= offset + l || last >= msg->sg.size)
2959                 return -EINVAL;
2960 
2961         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2962 
2963         pop = len;
2964         /* --------------| offset
2965          * -| start      |-------- len -------|
2966          *
2967          *  |----- a ----|-------- pop -------|----- b ----|
2968          *  |______________________________________________| length
2969          *
2970          *
2971          * a:   region at front of scatter element to save
2972          * b:   region at back of scatter element to save when length > A + pop
2973          * pop: region to pop from element, same as input 'pop' here will be
2974          *      decremented below per iteration.
2975          *
2976          * Two top-level cases to handle when start != offset, first B is non
2977          * zero and second B is zero corresponding to when a pop includes more
2978          * than one element.
2979          *
2980          * Then if B is non-zero AND there is no space allocate space and
2981          * compact A, B regions into page. If there is space shift ring to
2982          * the right free'ing the next element in ring to place B, leaving
2983          * A untouched except to reduce length.
2984          */
2985         if (start != offset) {
2986                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2987                 int a = start;
2988                 int b = sge->length - pop - a;
2989 
2990                 sk_msg_iter_var_next(i);
2991 
2992                 if (pop < sge->length - a) {
2993                         if (space) {
2994                                 sge->length = a;
2995                                 sk_msg_shift_right(msg, i);
2996                                 nsge = sk_msg_elem(msg, i);
2997                                 get_page(sg_page(sge));
2998                                 sg_set_page(nsge,
2999                                             sg_page(sge),
3000                                             b, sge->offset + pop + a);
3001                         } else {
3002                                 struct page *page, *orig;
3003                                 u8 *to, *from;
3004 
3005                                 page = alloc_pages(__GFP_NOWARN |
3006                                                    __GFP_COMP   | GFP_ATOMIC,
3007                                                    get_order(a + b));
3008                                 if (unlikely(!page))
3009                                         return -ENOMEM;
3010 
3011                                 sge->length = a;
3012                                 orig = sg_page(sge);
3013                                 from = sg_virt(sge);
3014                                 to = page_address(page);
3015                                 memcpy(to, from, a);
3016                                 memcpy(to + a, from + a + pop, b);
3017                                 sg_set_page(sge, page, a + b, 0);
3018                                 put_page(orig);
3019                         }
3020                         pop = 0;
3021                 } else if (pop >= sge->length - a) {
3022                         pop -= (sge->length - a);
3023                         sge->length = a;
3024                 }
3025         }
3026 
3027         /* From above the current layout _must_ be as follows,
3028          *
3029          * -| offset
3030          * -| start
3031          *
3032          *  |---- pop ---|---------------- b ------------|
3033          *  |____________________________________________| length
3034          *
3035          * Offset and start of the current msg elem are equal because in the
3036          * previous case we handled offset != start and either consumed the
3037          * entire element and advanced to the next element OR pop == 0.
3038          *
3039          * Two cases to handle here are first pop is less than the length
3040          * leaving some remainder b above. Simply adjust the element's layout
3041          * in this case. Or pop >= length of the element so that b = 0. In this
3042          * case advance to next element decrementing pop.
3043          */
3044         while (pop) {
3045                 struct scatterlist *sge = sk_msg_elem(msg, i);
3046 
3047                 if (pop < sge->length) {
3048                         sge->length -= pop;
3049                         sge->offset += pop;
3050                         pop = 0;
3051                 } else {
3052                         pop -= sge->length;
3053                         sk_msg_shift_left(msg, i);
3054                 }
3055                 sk_msg_iter_var_next(i);
3056         }
3057 
3058         sk_mem_uncharge(msg->sk, len - pop);
3059         msg->sg.size -= (len - pop);
3060         sk_msg_reset_curr(msg);
3061         sk_msg_compute_data_pointers(msg);
3062         return 0;
3063 }
3064 
3065 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3066         .func           = bpf_msg_pop_data,
3067         .gpl_only       = false,
3068         .ret_type       = RET_INTEGER,
3069         .arg1_type      = ARG_PTR_TO_CTX,
3070         .arg2_type      = ARG_ANYTHING,
3071         .arg3_type      = ARG_ANYTHING,
3072         .arg4_type      = ARG_ANYTHING,
3073 };
3074 
3075 #ifdef CONFIG_CGROUP_NET_CLASSID
3076 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3077 {
3078         return __task_get_classid(current);
3079 }
3080 
3081 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3082         .func           = bpf_get_cgroup_classid_curr,
3083         .gpl_only       = false,
3084         .ret_type       = RET_INTEGER,
3085 };
3086 
3087 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3088 {
3089         struct sock *sk = skb_to_full_sk(skb);
3090 
3091         if (!sk || !sk_fullsock(sk))
3092                 return 0;
3093 
3094         return sock_cgroup_classid(&sk->sk_cgrp_data);
3095 }
3096 
3097 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3098         .func           = bpf_skb_cgroup_classid,
3099         .gpl_only       = false,
3100         .ret_type       = RET_INTEGER,
3101         .arg1_type      = ARG_PTR_TO_CTX,
3102 };
3103 #endif
3104 
3105 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3106 {
3107         return task_get_classid(skb);
3108 }
3109 
3110 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3111         .func           = bpf_get_cgroup_classid,
3112         .gpl_only       = false,
3113         .ret_type       = RET_INTEGER,
3114         .arg1_type      = ARG_PTR_TO_CTX,
3115 };
3116 
3117 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3118 {
3119         return dst_tclassid(skb);
3120 }
3121 
3122 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3123         .func           = bpf_get_route_realm,
3124         .gpl_only       = false,
3125         .ret_type       = RET_INTEGER,
3126         .arg1_type      = ARG_PTR_TO_CTX,
3127 };
3128 
3129 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3130 {
3131         /* If skb_clear_hash() was called due to mangling, we can
3132          * trigger SW recalculation here. Later access to hash
3133          * can then use the inline skb->hash via context directly
3134          * instead of calling this helper again.
3135          */
3136         return skb_get_hash(skb);
3137 }
3138 
3139 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3140         .func           = bpf_get_hash_recalc,
3141         .gpl_only       = false,
3142         .ret_type       = RET_INTEGER,
3143         .arg1_type      = ARG_PTR_TO_CTX,
3144 };
3145 
3146 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3147 {
3148         /* After all direct packet write, this can be used once for
3149          * triggering a lazy recalc on next skb_get_hash() invocation.
3150          */
3151         skb_clear_hash(skb);
3152         return 0;
3153 }
3154 
3155 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3156         .func           = bpf_set_hash_invalid,
3157         .gpl_only       = false,
3158         .ret_type       = RET_INTEGER,
3159         .arg1_type      = ARG_PTR_TO_CTX,
3160 };
3161 
3162 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3163 {
3164         /* Set user specified hash as L4(+), so that it gets returned
3165          * on skb_get_hash() call unless BPF prog later on triggers a
3166          * skb_clear_hash().
3167          */
3168         __skb_set_sw_hash(skb, hash, true);
3169         return 0;
3170 }
3171 
3172 static const struct bpf_func_proto bpf_set_hash_proto = {
3173         .func           = bpf_set_hash,
3174         .gpl_only       = false,
3175         .ret_type       = RET_INTEGER,
3176         .arg1_type      = ARG_PTR_TO_CTX,
3177         .arg2_type      = ARG_ANYTHING,
3178 };
3179 
3180 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3181            u16, vlan_tci)
3182 {
3183         int ret;
3184 
3185         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3186                      vlan_proto != htons(ETH_P_8021AD)))
3187                 vlan_proto = htons(ETH_P_8021Q);
3188 
3189         bpf_push_mac_rcsum(skb);
3190         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3191         bpf_pull_mac_rcsum(skb);
3192 
3193         bpf_compute_data_pointers(skb);
3194         return ret;
3195 }
3196 
3197 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3198         .func           = bpf_skb_vlan_push,
3199         .gpl_only       = false,
3200         .ret_type       = RET_INTEGER,
3201         .arg1_type      = ARG_PTR_TO_CTX,
3202         .arg2_type      = ARG_ANYTHING,
3203         .arg3_type      = ARG_ANYTHING,
3204 };
3205 
3206 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3207 {
3208         int ret;
3209 
3210         bpf_push_mac_rcsum(skb);
3211         ret = skb_vlan_pop(skb);
3212         bpf_pull_mac_rcsum(skb);
3213 
3214         bpf_compute_data_pointers(skb);
3215         return ret;
3216 }
3217 
3218 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3219         .func           = bpf_skb_vlan_pop,
3220         .gpl_only       = false,
3221         .ret_type       = RET_INTEGER,
3222         .arg1_type      = ARG_PTR_TO_CTX,
3223 };
3224 
3225 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3226 {
3227         /* Caller already did skb_cow() with len as headroom,
3228          * so no need to do it here.
3229          */
3230         skb_push(skb, len);
3231         memmove(skb->data, skb->data + len, off);
3232         memset(skb->data + off, 0, len);
3233 
3234         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3235          * needed here as it does not change the skb->csum
3236          * result for checksum complete when summing over
3237          * zeroed blocks.
3238          */
3239         return 0;
3240 }
3241 
3242 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3243 {
3244         void *old_data;
3245 
3246         /* skb_ensure_writable() is not needed here, as we're
3247          * already working on an uncloned skb.
3248          */
3249         if (unlikely(!pskb_may_pull(skb, off + len)))
3250                 return -ENOMEM;
3251 
3252         old_data = skb->data;
3253         __skb_pull(skb, len);
3254         skb_postpull_rcsum(skb, old_data + off, len);
3255         memmove(skb->data, old_data, off);
3256 
3257         return 0;
3258 }
3259 
3260 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3261 {
3262         bool trans_same = skb->transport_header == skb->network_header;
3263         int ret;
3264 
3265         /* There's no need for __skb_push()/__skb_pull() pair to
3266          * get to the start of the mac header as we're guaranteed
3267          * to always start from here under eBPF.
3268          */
3269         ret = bpf_skb_generic_push(skb, off, len);
3270         if (likely(!ret)) {
3271                 skb->mac_header -= len;
3272                 skb->network_header -= len;
3273                 if (trans_same)
3274                         skb->transport_header = skb->network_header;
3275         }
3276 
3277         return ret;
3278 }
3279 
3280 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3281 {
3282         bool trans_same = skb->transport_header == skb->network_header;
3283         int ret;
3284 
3285         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3286         ret = bpf_skb_generic_pop(skb, off, len);
3287         if (likely(!ret)) {
3288                 skb->mac_header += len;
3289                 skb->network_header += len;
3290                 if (trans_same)
3291                         skb->transport_header = skb->network_header;
3292         }
3293 
3294         return ret;
3295 }
3296 
3297 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3298 {
3299         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3300         u32 off = skb_mac_header_len(skb);
3301         int ret;
3302 
3303         ret = skb_cow(skb, len_diff);
3304         if (unlikely(ret < 0))
3305                 return ret;
3306 
3307         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3308         if (unlikely(ret < 0))
3309                 return ret;
3310 
3311         if (skb_is_gso(skb)) {
3312                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3313 
3314                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3315                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3316                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3317                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3318                 }
3319         }
3320 
3321         skb->protocol = htons(ETH_P_IPV6);
3322         skb_clear_hash(skb);
3323 
3324         return 0;
3325 }
3326 
3327 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3328 {
3329         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3330         u32 off = skb_mac_header_len(skb);
3331         int ret;
3332 
3333         ret = skb_unclone(skb, GFP_ATOMIC);
3334         if (unlikely(ret < 0))
3335                 return ret;
3336 
3337         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3338         if (unlikely(ret < 0))
3339                 return ret;
3340 
3341         if (skb_is_gso(skb)) {
3342                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3343 
3344                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3345                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3346                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3347                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3348                 }
3349         }
3350 
3351         skb->protocol = htons(ETH_P_IP);
3352         skb_clear_hash(skb);
3353 
3354         return 0;
3355 }
3356 
3357 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3358 {
3359         __be16 from_proto = skb->protocol;
3360 
3361         if (from_proto == htons(ETH_P_IP) &&
3362               to_proto == htons(ETH_P_IPV6))
3363                 return bpf_skb_proto_4_to_6(skb);
3364 
3365         if (from_proto == htons(ETH_P_IPV6) &&
3366               to_proto == htons(ETH_P_IP))
3367                 return bpf_skb_proto_6_to_4(skb);
3368 
3369         return -ENOTSUPP;
3370 }
3371 
3372 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3373            u64, flags)
3374 {
3375         int ret;
3376 
3377         if (unlikely(flags))
3378                 return -EINVAL;
3379 
3380         /* General idea is that this helper does the basic groundwork
3381          * needed for changing the protocol, and eBPF program fills the
3382          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3383          * and other helpers, rather than passing a raw buffer here.
3384          *
3385          * The rationale is to keep this minimal and without a need to
3386          * deal with raw packet data. F.e. even if we would pass buffers
3387          * here, the program still needs to call the bpf_lX_csum_replace()
3388          * helpers anyway. Plus, this way we keep also separation of
3389          * concerns, since f.e. bpf_skb_store_bytes() should only take
3390          * care of stores.
3391          *
3392          * Currently, additional options and extension header space are
3393          * not supported, but flags register is reserved so we can adapt
3394          * that. For offloads, we mark packet as dodgy, so that headers
3395          * need to be verified first.
3396          */
3397         ret = bpf_skb_proto_xlat(skb, proto);
3398         bpf_compute_data_pointers(skb);
3399         return ret;
3400 }
3401 
3402 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3403         .func           = bpf_skb_change_proto,
3404         .gpl_only       = false,
3405         .ret_type       = RET_INTEGER,
3406         .arg1_type      = ARG_PTR_TO_CTX,
3407         .arg2_type      = ARG_ANYTHING,
3408         .arg3_type      = ARG_ANYTHING,
3409 };
3410 
3411 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3412 {
3413         /* We only allow a restricted subset to be changed for now. */
3414         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3415                      !skb_pkt_type_ok(pkt_type)))
3416                 return -EINVAL;
3417 
3418         skb->pkt_type = pkt_type;
3419         return 0;
3420 }
3421 
3422 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3423         .func           = bpf_skb_change_type,
3424         .gpl_only       = false,
3425         .ret_type       = RET_INTEGER,
3426         .arg1_type      = ARG_PTR_TO_CTX,
3427         .arg2_type      = ARG_ANYTHING,
3428 };
3429 
3430 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3431 {
3432         switch (skb->protocol) {
3433         case htons(ETH_P_IP):
3434                 return sizeof(struct iphdr);
3435         case htons(ETH_P_IPV6):
3436                 return sizeof(struct ipv6hdr);
3437         default:
3438                 return ~0U;
3439         }
3440 }
3441 
3442 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3443                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3444 
3445 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK    (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3446                                          BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3447 
3448 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3449                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3450                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3451                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3452                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3453                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3454                                           BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3455                                          BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3456 
3457 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3458                             u64 flags)
3459 {
3460         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3461         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3462         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3463         unsigned int gso_type = SKB_GSO_DODGY;
3464         int ret;
3465 
3466         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3467                 /* udp gso_size delineates datagrams, only allow if fixed */
3468                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3469                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3470                         return -ENOTSUPP;
3471         }
3472 
3473         ret = skb_cow_head(skb, len_diff);
3474         if (unlikely(ret < 0))
3475                 return ret;
3476 
3477         if (encap) {
3478                 if (skb->protocol != htons(ETH_P_IP) &&
3479                     skb->protocol != htons(ETH_P_IPV6))
3480                         return -ENOTSUPP;
3481 
3482                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3483                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3484                         return -EINVAL;
3485 
3486                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3487                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3488                         return -EINVAL;
3489 
3490                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3491                     inner_mac_len < ETH_HLEN)
3492                         return -EINVAL;
3493 
3494                 if (skb->encapsulation)
3495                         return -EALREADY;
3496 
3497                 mac_len = skb->network_header - skb->mac_header;
3498                 inner_net = skb->network_header;
3499                 if (inner_mac_len > len_diff)
3500                         return -EINVAL;
3501                 inner_trans = skb->transport_header;
3502         }
3503 
3504         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3505         if (unlikely(ret < 0))
3506                 return ret;
3507 
3508         if (encap) {
3509                 skb->inner_mac_header = inner_net - inner_mac_len;
3510                 skb->inner_network_header = inner_net;
3511                 skb->inner_transport_header = inner_trans;
3512 
3513                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3514                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3515                 else
3516                         skb_set_inner_protocol(skb, skb->protocol);
3517 
3518                 skb->encapsulation = 1;
3519                 skb_set_network_header(skb, mac_len);
3520 
3521                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3522                         gso_type |= SKB_GSO_UDP_TUNNEL;
3523                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3524                         gso_type |= SKB_GSO_GRE;
3525                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3526                         gso_type |= SKB_GSO_IPXIP6;
3527                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3528                         gso_type |= SKB_GSO_IPXIP4;
3529 
3530                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3531                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3532                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3533                                         sizeof(struct ipv6hdr) :
3534                                         sizeof(struct iphdr);
3535 
3536                         skb_set_transport_header(skb, mac_len + nh_len);
3537                 }
3538 
3539                 /* Match skb->protocol to new outer l3 protocol */
3540                 if (skb->protocol == htons(ETH_P_IP) &&
3541                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3542                         skb->protocol = htons(ETH_P_IPV6);
3543                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3544                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3545                         skb->protocol = htons(ETH_P_IP);
3546         }
3547 
3548         if (skb_is_gso(skb)) {
3549                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3550 
3551                 /* Header must be checked, and gso_segs recomputed. */
3552                 shinfo->gso_type |= gso_type;
3553                 shinfo->gso_segs = 0;
3554 
3555                 /* Due to header growth, MSS needs to be downgraded.
3556                  * There is a BUG_ON() when segmenting the frag_list with
3557                  * head_frag true, so linearize the skb after downgrading
3558                  * the MSS.
3559                  */
3560                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3561                         skb_decrease_gso_size(shinfo, len_diff);
3562                         if (shinfo->frag_list)
3563                                 return skb_linearize(skb);
3564                 }
3565         }
3566 
3567         return 0;
3568 }
3569 
3570 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3571                               u64 flags)
3572 {
3573         int ret;
3574 
3575         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3576                                BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3577                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3578                 return -EINVAL;
3579 
3580         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3581                 /* udp gso_size delineates datagrams, only allow if fixed */
3582                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3583                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3584                         return -ENOTSUPP;
3585         }
3586 
3587         ret = skb_unclone(skb, GFP_ATOMIC);
3588         if (unlikely(ret < 0))
3589                 return ret;
3590 
3591         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3592         if (unlikely(ret < 0))
3593                 return ret;
3594 
3595         /* Match skb->protocol to new outer l3 protocol */
3596         if (skb->protocol == htons(ETH_P_IP) &&
3597             flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3598                 skb->protocol = htons(ETH_P_IPV6);
3599         else if (skb->protocol == htons(ETH_P_IPV6) &&
3600                  flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3601                 skb->protocol = htons(ETH_P_IP);
3602 
3603         if (skb_is_gso(skb)) {
3604                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3605 
3606                 /* Due to header shrink, MSS can be upgraded. */
3607                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3608                         skb_increase_gso_size(shinfo, len_diff);
3609 
3610                 /* Header must be checked, and gso_segs recomputed. */
3611                 shinfo->gso_type |= SKB_GSO_DODGY;
3612                 shinfo->gso_segs = 0;
3613         }
3614 
3615         return 0;
3616 }
3617 
3618 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3619 
3620 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3621            u32, mode, u64, flags)
3622 {
3623         u32 len_diff_abs = abs(len_diff);
3624         bool shrink = len_diff < 0;
3625         int ret = 0;
3626 
3627         if (unlikely(flags || mode))
3628                 return -EINVAL;
3629         if (unlikely(len_diff_abs > 0xfffU))
3630                 return -EFAULT;
3631 
3632         if (!shrink) {
3633                 ret = skb_cow(skb, len_diff);
3634                 if (unlikely(ret < 0))
3635                         return ret;
3636                 __skb_push(skb, len_diff_abs);
3637                 memset(skb->data, 0, len_diff_abs);
3638         } else {
3639                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3640                         return -ENOMEM;
3641                 __skb_pull(skb, len_diff_abs);
3642         }
3643         if (tls_sw_has_ctx_rx(skb->sk)) {
3644                 struct strp_msg *rxm = strp_msg(skb);
3645 
3646                 rxm->full_len += len_diff;
3647         }
3648         return ret;
3649 }
3650 
3651 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3652         .func           = sk_skb_adjust_room,
3653         .gpl_only       = false,
3654         .ret_type       = RET_INTEGER,
3655         .arg1_type      = ARG_PTR_TO_CTX,
3656         .arg2_type      = ARG_ANYTHING,
3657         .arg3_type      = ARG_ANYTHING,
3658         .arg4_type      = ARG_ANYTHING,
3659 };
3660 
3661 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3662            u32, mode, u64, flags)
3663 {
3664         u32 len_cur, len_diff_abs = abs(len_diff);
3665         u32 len_min = bpf_skb_net_base_len(skb);
3666         u32 len_max = BPF_SKB_MAX_LEN;
3667         __be16 proto = skb->protocol;
3668         bool shrink = len_diff < 0;
3669         u32 off;
3670         int ret;
3671 
3672         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3673                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3674                 return -EINVAL;
3675         if (unlikely(len_diff_abs > 0xfffU))
3676                 return -EFAULT;
3677         if (unlikely(proto != htons(ETH_P_IP) &&
3678                      proto != htons(ETH_P_IPV6)))
3679                 return -ENOTSUPP;
3680 
3681         off = skb_mac_header_len(skb);
3682         switch (mode) {
3683         case BPF_ADJ_ROOM_NET:
3684                 off += bpf_skb_net_base_len(skb);
3685                 break;
3686         case BPF_ADJ_ROOM_MAC:
3687                 break;
3688         default:
3689                 return -ENOTSUPP;
3690         }
3691 
3692         if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3693                 if (!shrink)
3694                         return -EINVAL;
3695 
3696                 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3697                 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3698                         len_min = sizeof(struct iphdr);
3699                         break;
3700                 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3701                         len_min = sizeof(struct ipv6hdr);
3702                         break;
3703                 default:
3704                         return -EINVAL;
3705                 }
3706         }
3707 
3708         len_cur = skb->len - skb_network_offset(skb);
3709         if ((shrink && (len_diff_abs >= len_cur ||
3710                         len_cur - len_diff_abs < len_min)) ||
3711             (!shrink && (skb->len + len_diff_abs > len_max &&
3712                          !skb_is_gso(skb))))
3713                 return -ENOTSUPP;
3714 
3715         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3716                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3717         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3718                 __skb_reset_checksum_unnecessary(skb);
3719 
3720         bpf_compute_data_pointers(skb);
3721         return ret;
3722 }
3723 
3724 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3725         .func           = bpf_skb_adjust_room,
3726         .gpl_only       = false,
3727         .ret_type       = RET_INTEGER,
3728         .arg1_type      = ARG_PTR_TO_CTX,
3729         .arg2_type      = ARG_ANYTHING,
3730         .arg3_type      = ARG_ANYTHING,
3731         .arg4_type      = ARG_ANYTHING,
3732 };
3733 
3734 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3735 {
3736         u32 min_len = skb_network_offset(skb);
3737 
3738         if (skb_transport_header_was_set(skb))
3739                 min_len = skb_transport_offset(skb);
3740         if (skb->ip_summed == CHECKSUM_PARTIAL)
3741                 min_len = skb_checksum_start_offset(skb) +
3742                           skb->csum_offset + sizeof(__sum16);
3743         return min_len;
3744 }
3745 
3746 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3747 {
3748         unsigned int old_len = skb->len;
3749         int ret;
3750 
3751         ret = __skb_grow_rcsum(skb, new_len);
3752         if (!ret)
3753                 memset(skb->data + old_len, 0, new_len - old_len);
3754         return ret;
3755 }
3756 
3757 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3758 {
3759         return __skb_trim_rcsum(skb, new_len);
3760 }
3761 
3762 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3763                                         u64 flags)
3764 {
3765         u32 max_len = BPF_SKB_MAX_LEN;
3766         u32 min_len = __bpf_skb_min_len(skb);
3767         int ret;
3768 
3769         if (unlikely(flags || new_len > max_len || new_len < min_len))
3770                 return -EINVAL;
3771         if (skb->encapsulation)
3772                 return -ENOTSUPP;
3773 
3774         /* The basic idea of this helper is that it's performing the
3775          * needed work to either grow or trim an skb, and eBPF program
3776          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3777          * bpf_lX_csum_replace() and others rather than passing a raw
3778          * buffer here. This one is a slow path helper and intended
3779          * for replies with control messages.
3780          *
3781          * Like in bpf_skb_change_proto(), we want to keep this rather
3782          * minimal and without protocol specifics so that we are able
3783          * to separate concerns as in bpf_skb_store_bytes() should only
3784          * be the one responsible for writing buffers.
3785          *
3786          * It's really expected to be a slow path operation here for
3787          * control message replies, so we're implicitly linearizing,
3788          * uncloning and drop offloads from the skb by this.
3789          */
3790         ret = __bpf_try_make_writable(skb, skb->len);
3791         if (!ret) {
3792                 if (new_len > skb->len)
3793                         ret = bpf_skb_grow_rcsum(skb, new_len);
3794                 else if (new_len < skb->len)
3795                         ret = bpf_skb_trim_rcsum(skb, new_len);
3796                 if (!ret && skb_is_gso(skb))
3797                         skb_gso_reset(skb);
3798         }
3799         return ret;
3800 }
3801 
3802 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3803            u64, flags)
3804 {
3805         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3806 
3807         bpf_compute_data_pointers(skb);
3808         return ret;
3809 }
3810 
3811 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3812         .func           = bpf_skb_change_tail,
3813         .gpl_only       = false,
3814         .ret_type       = RET_INTEGER,
3815         .arg1_type      = ARG_PTR_TO_CTX,
3816         .arg2_type      = ARG_ANYTHING,
3817         .arg3_type      = ARG_ANYTHING,
3818 };
3819 
3820 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3821            u64, flags)
3822 {
3823         return __bpf_skb_change_tail(skb, new_len, flags);
3824 }
3825 
3826 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3827         .func           = sk_skb_change_tail,
3828         .gpl_only       = false,
3829         .ret_type       = RET_INTEGER,
3830         .arg1_type      = ARG_PTR_TO_CTX,
3831         .arg2_type      = ARG_ANYTHING,
3832         .arg3_type      = ARG_ANYTHING,
3833 };
3834 
3835 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3836                                         u64 flags)
3837 {
3838         u32 max_len = BPF_SKB_MAX_LEN;
3839         u32 new_len = skb->len + head_room;
3840         int ret;
3841 
3842         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3843                      new_len < skb->len))
3844                 return -EINVAL;
3845 
3846         ret = skb_cow(skb, head_room);
3847         if (likely(!ret)) {
3848                 /* Idea for this helper is that we currently only
3849                  * allow to expand on mac header. This means that
3850                  * skb->protocol network header, etc, stay as is.
3851                  * Compared to bpf_skb_change_tail(), we're more
3852                  * flexible due to not needing to linearize or
3853                  * reset GSO. Intention for this helper is to be
3854                  * used by an L3 skb that needs to push mac header
3855                  * for redirection into L2 device.
3856                  */
3857                 __skb_push(skb, head_room);
3858                 memset(skb->data, 0, head_room);
3859                 skb_reset_mac_header(skb);
3860                 skb_reset_mac_len(skb);
3861         }
3862 
3863         return ret;
3864 }
3865 
3866 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3867            u64, flags)
3868 {
3869         int ret = __bpf_skb_change_head(skb, head_room, flags);
3870 
3871         bpf_compute_data_pointers(skb);
3872         return ret;
3873 }
3874 
3875 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3876         .func           = bpf_skb_change_head,
3877         .gpl_only       = false,
3878         .ret_type       = RET_INTEGER,
3879         .arg1_type      = ARG_PTR_TO_CTX,
3880         .arg2_type      = ARG_ANYTHING,
3881         .arg3_type      = ARG_ANYTHING,
3882 };
3883 
3884 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3885            u64, flags)
3886 {
3887         return __bpf_skb_change_head(skb, head_room, flags);
3888 }
3889 
3890 static const struct bpf_func_proto sk_skb_change_head_proto = {
3891         .func           = sk_skb_change_head,
3892         .gpl_only       = false,
3893         .ret_type       = RET_INTEGER,
3894         .arg1_type      = ARG_PTR_TO_CTX,
3895         .arg2_type      = ARG_ANYTHING,
3896         .arg3_type      = ARG_ANYTHING,
3897 };
3898 
3899 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3900 {
3901         return xdp_get_buff_len(xdp);
3902 }
3903 
3904 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3905         .func           = bpf_xdp_get_buff_len,
3906         .gpl_only       = false,
3907         .ret_type       = RET_INTEGER,
3908         .arg1_type      = ARG_PTR_TO_CTX,
3909 };
3910 
3911 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3912 
3913 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3914         .func           = bpf_xdp_get_buff_len,
3915         .gpl_only       = false,
3916         .arg1_type      = ARG_PTR_TO_BTF_ID,
3917         .arg1_btf_id    = &bpf_xdp_get_buff_len_bpf_ids[0],
3918 };
3919 
3920 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3921 {
3922         return xdp_data_meta_unsupported(xdp) ? 0 :
3923                xdp->data - xdp->data_meta;
3924 }
3925 
3926 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3927 {
3928         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3929         unsigned long metalen = xdp_get_metalen(xdp);
3930         void *data_start = xdp_frame_end + metalen;
3931         void *data = xdp->data + offset;
3932 
3933         if (unlikely(data < data_start ||
3934                      data > xdp->data_end - ETH_HLEN))
3935                 return -EINVAL;
3936 
3937         if (metalen)
3938                 memmove(xdp->data_meta + offset,
3939                         xdp->data_meta, metalen);
3940         xdp->data_meta += offset;
3941         xdp->data = data;
3942 
3943         return 0;
3944 }
3945 
3946 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3947         .func           = bpf_xdp_adjust_head,
3948         .gpl_only       = false,
3949         .ret_type       = RET_INTEGER,
3950         .arg1_type      = ARG_PTR_TO_CTX,
3951         .arg2_type      = ARG_ANYTHING,
3952 };
3953 
3954 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3955                       void *buf, unsigned long len, bool flush)
3956 {
3957         unsigned long ptr_len, ptr_off = 0;
3958         skb_frag_t *next_frag, *end_frag;
3959         struct skb_shared_info *sinfo;
3960         void *src, *dst;
3961         u8 *ptr_buf;
3962 
3963         if (likely(xdp->data_end - xdp->data >= off + len)) {
3964                 src = flush ? buf : xdp->data + off;
3965                 dst = flush ? xdp->data + off : buf;
3966                 memcpy(dst, src, len);
3967                 return;
3968         }
3969 
3970         sinfo = xdp_get_shared_info_from_buff(xdp);
3971         end_frag = &sinfo->frags[sinfo->nr_frags];
3972         next_frag = &sinfo->frags[0];
3973 
3974         ptr_len = xdp->data_end - xdp->data;
3975         ptr_buf = xdp->data;
3976 
3977         while (true) {
3978                 if (off < ptr_off + ptr_len) {
3979                         unsigned long copy_off = off - ptr_off;
3980                         unsigned long copy_len = min(len, ptr_len - copy_off);
3981 
3982                         src = flush ? buf : ptr_buf + copy_off;
3983                         dst = flush ? ptr_buf + copy_off : buf;
3984                         memcpy(dst, src, copy_len);
3985 
3986                         off += copy_len;
3987                         len -= copy_len;
3988                         buf += copy_len;
3989                 }
3990 
3991                 if (!len || next_frag == end_frag)
3992                         break;
3993 
3994                 ptr_off += ptr_len;
3995                 ptr_buf = skb_frag_address(next_frag);
3996                 ptr_len = skb_frag_size(next_frag);
3997                 next_frag++;
3998         }
3999 }
4000 
4001 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4002 {
4003         u32 size = xdp->data_end - xdp->data;
4004         struct skb_shared_info *sinfo;
4005         void *addr = xdp->data;
4006         int i;
4007 
4008         if (unlikely(offset > 0xffff || len > 0xffff))
4009                 return ERR_PTR(-EFAULT);
4010 
4011         if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4012                 return ERR_PTR(-EINVAL);
4013 
4014         if (likely(offset < size)) /* linear area */
4015                 goto out;
4016 
4017         sinfo = xdp_get_shared_info_from_buff(xdp);
4018         offset -= size;
4019         for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4020                 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4021 
4022                 if  (offset < frag_size) {
4023                         addr = skb_frag_address(&sinfo->frags[i]);
4024                         size = frag_size;
4025                         break;
4026                 }
4027                 offset -= frag_size;
4028         }
4029 out:
4030         return offset + len <= size ? addr + offset : NULL;
4031 }
4032 
4033 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4034            void *, buf, u32, len)
4035 {
4036         void *ptr;
4037 
4038         ptr = bpf_xdp_pointer(xdp, offset, len);
4039         if (IS_ERR(ptr))
4040                 return PTR_ERR(ptr);
4041 
4042         if (!ptr)
4043                 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4044         else
4045                 memcpy(buf, ptr, len);
4046 
4047         return 0;
4048 }
4049 
4050 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4051         .func           = bpf_xdp_load_bytes,
4052         .gpl_only       = false,
4053         .ret_type       = RET_INTEGER,
4054         .arg1_type      = ARG_PTR_TO_CTX,
4055         .arg2_type      = ARG_ANYTHING,
4056         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4057         .arg4_type      = ARG_CONST_SIZE,
4058 };
4059 
4060 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4061 {
4062         return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4063 }
4064 
4065 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4066            void *, buf, u32, len)
4067 {
4068         void *ptr;
4069 
4070         ptr = bpf_xdp_pointer(xdp, offset, len);
4071         if (IS_ERR(ptr))
4072                 return PTR_ERR(ptr);
4073 
4074         if (!ptr)
4075                 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4076         else
4077                 memcpy(ptr, buf, len);
4078 
4079         return 0;
4080 }
4081 
4082 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4083         .func           = bpf_xdp_store_bytes,
4084         .gpl_only       = false,
4085         .ret_type       = RET_INTEGER,
4086         .arg1_type      = ARG_PTR_TO_CTX,
4087         .arg2_type      = ARG_ANYTHING,
4088         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4089         .arg4_type      = ARG_CONST_SIZE,
4090 };
4091 
4092 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4093 {
4094         return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4095 }
4096 
4097 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4098 {
4099         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4100         skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4101         struct xdp_rxq_info *rxq = xdp->rxq;
4102         unsigned int tailroom;
4103 
4104         if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4105                 return -EOPNOTSUPP;
4106 
4107         tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4108         if (unlikely(offset > tailroom))
4109                 return -EINVAL;
4110 
4111         memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4112         skb_frag_size_add(frag, offset);
4113         sinfo->xdp_frags_size += offset;
4114         if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4115                 xsk_buff_get_tail(xdp)->data_end += offset;
4116 
4117         return 0;
4118 }
4119 
4120 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4121                                    struct xdp_mem_info *mem_info, bool release)
4122 {
4123         struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4124 
4125         if (release) {
4126                 xsk_buff_del_tail(zc_frag);
4127                 __xdp_return(NULL, mem_info, false, zc_frag);
4128         } else {
4129                 zc_frag->data_end -= shrink;
4130         }
4131 }
4132 
4133 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4134                                 int shrink)
4135 {
4136         struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4137         bool release = skb_frag_size(frag) == shrink;
4138 
4139         if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4140                 bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4141                 goto out;
4142         }
4143 
4144         if (release) {
4145                 struct page *page = skb_frag_page(frag);
4146 
4147                 __xdp_return(page_address(page), mem_info, false, NULL);
4148         }
4149 
4150 out:
4151         return release;
4152 }
4153 
4154 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4155 {
4156         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4157         int i, n_frags_free = 0, len_free = 0;
4158 
4159         if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4160                 return -EINVAL;
4161 
4162         for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4163                 skb_frag_t *frag = &sinfo->frags[i];
4164                 int shrink = min_t(int, offset, skb_frag_size(frag));
4165 
4166                 len_free += shrink;
4167                 offset -= shrink;
4168                 if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4169                         n_frags_free++;
4170                 } else {
4171                         skb_frag_size_sub(frag, shrink);
4172                         break;
4173                 }
4174         }
4175         sinfo->nr_frags -= n_frags_free;
4176         sinfo->xdp_frags_size -= len_free;
4177 
4178         if (unlikely(!sinfo->nr_frags)) {
4179                 xdp_buff_clear_frags_flag(xdp);
4180                 xdp->data_end -= offset;
4181         }
4182 
4183         return 0;
4184 }
4185 
4186 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4187 {
4188         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4189         void *data_end = xdp->data_end + offset;
4190 
4191         if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4192                 if (offset < 0)
4193                         return bpf_xdp_frags_shrink_tail(xdp, -offset);
4194 
4195                 return bpf_xdp_frags_increase_tail(xdp, offset);
4196         }
4197 
4198         /* Notice that xdp_data_hard_end have reserved some tailroom */
4199         if (unlikely(data_end > data_hard_end))
4200                 return -EINVAL;
4201 
4202         if (unlikely(data_end < xdp->data + ETH_HLEN))
4203                 return -EINVAL;
4204 
4205         /* Clear memory area on grow, can contain uninit kernel memory */
4206         if (offset > 0)
4207                 memset(xdp->data_end, 0, offset);
4208 
4209         xdp->data_end = data_end;
4210 
4211         return 0;
4212 }
4213 
4214 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4215         .func           = bpf_xdp_adjust_tail,
4216         .gpl_only       = false,
4217         .ret_type       = RET_INTEGER,
4218         .arg1_type      = ARG_PTR_TO_CTX,
4219         .arg2_type      = ARG_ANYTHING,
4220 };
4221 
4222 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4223 {
4224         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4225         void *meta = xdp->data_meta + offset;
4226         unsigned long metalen = xdp->data - meta;
4227 
4228         if (xdp_data_meta_unsupported(xdp))
4229                 return -ENOTSUPP;
4230         if (unlikely(meta < xdp_frame_end ||
4231                      meta > xdp->data))
4232                 return -EINVAL;
4233         if (unlikely(xdp_metalen_invalid(metalen)))
4234                 return -EACCES;
4235 
4236         xdp->data_meta = meta;
4237 
4238         return 0;
4239 }
4240 
4241 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4242         .func           = bpf_xdp_adjust_meta,
4243         .gpl_only       = false,
4244         .ret_type       = RET_INTEGER,
4245         .arg1_type      = ARG_PTR_TO_CTX,
4246         .arg2_type      = ARG_ANYTHING,
4247 };
4248 
4249 /**
4250  * DOC: xdp redirect
4251  *
4252  * XDP_REDIRECT works by a three-step process, implemented in the functions
4253  * below:
4254  *
4255  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4256  *    of the redirect and store it (along with some other metadata) in a per-CPU
4257  *    struct bpf_redirect_info.
4258  *
4259  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4260  *    call xdp_do_redirect() which will use the information in struct
4261  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4262  *    bulk queue structure.
4263  *
4264  * 3. Before exiting its NAPI poll loop, the driver will call
4265  *    xdp_do_flush(), which will flush all the different bulk queues,
4266  *    thus completing the redirect. Note that xdp_do_flush() must be
4267  *    called before napi_complete_done() in the driver, as the
4268  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4269  *    through to the xdp_do_flush() call for RCU protection of all
4270  *    in-kernel data structures.
4271  */
4272 /*
4273  * Pointers to the map entries will be kept around for this whole sequence of
4274  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4275  * the core code; instead, the RCU protection relies on everything happening
4276  * inside a single NAPI poll sequence, which means it's between a pair of calls
4277  * to local_bh_disable()/local_bh_enable().
4278  *
4279  * The map entries are marked as __rcu and the map code makes sure to
4280  * dereference those pointers with rcu_dereference_check() in a way that works
4281  * for both sections that to hold an rcu_read_lock() and sections that are
4282  * called from NAPI without a separate rcu_read_lock(). The code below does not
4283  * use RCU annotations, but relies on those in the map code.
4284  */
4285 void xdp_do_flush(void)
4286 {
4287         struct list_head *lh_map, *lh_dev, *lh_xsk;
4288 
4289         bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4290         if (lh_dev)
4291                 __dev_flush(lh_dev);
4292         if (lh_map)
4293                 __cpu_map_flush(lh_map);
4294         if (lh_xsk)
4295                 __xsk_map_flush(lh_xsk);
4296 }
4297 EXPORT_SYMBOL_GPL(xdp_do_flush);
4298 
4299 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
4300 void xdp_do_check_flushed(struct napi_struct *napi)
4301 {
4302         struct list_head *lh_map, *lh_dev, *lh_xsk;
4303         bool missed = false;
4304 
4305         bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk);
4306         if (lh_dev) {
4307                 __dev_flush(lh_dev);
4308                 missed = true;
4309         }
4310         if (lh_map) {
4311                 __cpu_map_flush(lh_map);
4312                 missed = true;
4313         }
4314         if (lh_xsk) {
4315                 __xsk_map_flush(lh_xsk);
4316                 missed = true;
4317         }
4318 
4319         WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4320                   napi->poll);
4321 }
4322 #endif
4323 
4324 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4325 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4326 
4327 u32 xdp_master_redirect(struct xdp_buff *xdp)
4328 {
4329         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4330         struct net_device *master, *slave;
4331 
4332         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4333         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4334         if (slave && slave != xdp->rxq->dev) {
4335                 /* The target device is different from the receiving device, so
4336                  * redirect it to the new device.
4337                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4338                  * drivers to unmap the packet from their rx ring.
4339                  */
4340                 ri->tgt_index = slave->ifindex;
4341                 ri->map_id = INT_MAX;
4342                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4343                 return XDP_REDIRECT;
4344         }
4345         return XDP_TX;
4346 }
4347 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4348 
4349 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4350                                         struct net_device *dev,
4351                                         struct xdp_buff *xdp,
4352                                         struct bpf_prog *xdp_prog)
4353 {
4354         enum bpf_map_type map_type = ri->map_type;
4355         void *fwd = ri->tgt_value;
4356         u32 map_id = ri->map_id;
4357         int err;
4358 
4359         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4360         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4361 
4362         err = __xsk_map_redirect(fwd, xdp);
4363         if (unlikely(err))
4364                 goto err;
4365 
4366         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4367         return 0;
4368 err:
4369         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4370         return err;
4371 }
4372 
4373 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4374                                                    struct net_device *dev,
4375                                                    struct xdp_frame *xdpf,
4376                                                    struct bpf_prog *xdp_prog)
4377 {
4378         enum bpf_map_type map_type = ri->map_type;
4379         void *fwd = ri->tgt_value;
4380         u32 map_id = ri->map_id;
4381         u32 flags = ri->flags;
4382         struct bpf_map *map;
4383         int err;
4384 
4385         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4386         ri->flags = 0;
4387         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4388 
4389         if (unlikely(!xdpf)) {
4390                 err = -EOVERFLOW;
4391                 goto err;
4392         }
4393 
4394         switch (map_type) {
4395         case BPF_MAP_TYPE_DEVMAP:
4396                 fallthrough;
4397         case BPF_MAP_TYPE_DEVMAP_HASH:
4398                 if (unlikely(flags & BPF_F_BROADCAST)) {
4399                         map = READ_ONCE(ri->map);
4400 
4401                         /* The map pointer is cleared when the map is being torn
4402                          * down by dev_map_free()
4403                          */
4404                         if (unlikely(!map)) {
4405                                 err = -ENOENT;
4406                                 break;
4407                         }
4408 
4409                         WRITE_ONCE(ri->map, NULL);
4410                         err = dev_map_enqueue_multi(xdpf, dev, map,
4411                                                     flags & BPF_F_EXCLUDE_INGRESS);
4412                 } else {
4413                         err = dev_map_enqueue(fwd, xdpf, dev);
4414                 }
4415                 break;
4416         case BPF_MAP_TYPE_CPUMAP:
4417                 err = cpu_map_enqueue(fwd, xdpf, dev);
4418                 break;
4419         case BPF_MAP_TYPE_UNSPEC:
4420                 if (map_id == INT_MAX) {
4421                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4422                         if (unlikely(!fwd)) {
4423                                 err = -EINVAL;
4424                                 break;
4425                         }
4426                         err = dev_xdp_enqueue(fwd, xdpf, dev);
4427                         break;
4428                 }
4429                 fallthrough;
4430         default:
4431                 err = -EBADRQC;
4432         }
4433 
4434         if (unlikely(err))
4435                 goto err;
4436 
4437         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4438         return 0;
4439 err:
4440         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4441         return err;
4442 }
4443 
4444 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4445                     struct bpf_prog *xdp_prog)
4446 {
4447         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4448         enum bpf_map_type map_type = ri->map_type;
4449 
4450         if (map_type == BPF_MAP_TYPE_XSKMAP)
4451                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4452 
4453         return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4454                                        xdp_prog);
4455 }
4456 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4457 
4458 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4459                           struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4460 {
4461         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4462         enum bpf_map_type map_type = ri->map_type;
4463 
4464         if (map_type == BPF_MAP_TYPE_XSKMAP)
4465                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4466 
4467         return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4468 }
4469 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4470 
4471 static int xdp_do_generic_redirect_map(struct net_device *dev,
4472                                        struct sk_buff *skb,
4473                                        struct xdp_buff *xdp,
4474                                        struct bpf_prog *xdp_prog, void *fwd,
4475                                        enum bpf_map_type map_type, u32 map_id,
4476                                        u32 flags)
4477 {
4478         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4479         struct bpf_map *map;
4480         int err;
4481 
4482         switch (map_type) {
4483         case BPF_MAP_TYPE_DEVMAP:
4484                 fallthrough;
4485         case BPF_MAP_TYPE_DEVMAP_HASH:
4486                 if (unlikely(flags & BPF_F_BROADCAST)) {
4487                         map = READ_ONCE(ri->map);
4488 
4489                         /* The map pointer is cleared when the map is being torn
4490                          * down by dev_map_free()
4491                          */
4492                         if (unlikely(!map)) {
4493                                 err = -ENOENT;
4494                                 break;
4495                         }
4496 
4497                         WRITE_ONCE(ri->map, NULL);
4498                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4499                                                      flags & BPF_F_EXCLUDE_INGRESS);
4500                 } else {
4501                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4502                 }
4503                 if (unlikely(err))
4504                         goto err;
4505                 break;
4506         case BPF_MAP_TYPE_XSKMAP:
4507                 err = xsk_generic_rcv(fwd, xdp);
4508                 if (err)
4509                         goto err;
4510                 consume_skb(skb);
4511                 break;
4512         case BPF_MAP_TYPE_CPUMAP:
4513                 err = cpu_map_generic_redirect(fwd, skb);
4514                 if (unlikely(err))
4515                         goto err;
4516                 break;
4517         default:
4518                 err = -EBADRQC;
4519                 goto err;
4520         }
4521 
4522         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4523         return 0;
4524 err:
4525         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4526         return err;
4527 }
4528 
4529 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4530                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4531 {
4532         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4533         enum bpf_map_type map_type = ri->map_type;
4534         void *fwd = ri->tgt_value;
4535         u32 map_id = ri->map_id;
4536         u32 flags = ri->flags;
4537         int err;
4538 
4539         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4540         ri->flags = 0;
4541         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4542 
4543         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4544                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4545                 if (unlikely(!fwd)) {
4546                         err = -EINVAL;
4547                         goto err;
4548                 }
4549 
4550                 err = xdp_ok_fwd_dev(fwd, skb->len);
4551                 if (unlikely(err))
4552                         goto err;
4553 
4554                 skb->dev = fwd;
4555                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4556                 generic_xdp_tx(skb, xdp_prog);
4557                 return 0;
4558         }
4559 
4560         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4561 err:
4562         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4563         return err;
4564 }
4565 
4566 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4567 {
4568         struct bpf_redirect_info *ri = bpf_net_ctx_get_ri();
4569 
4570         if (unlikely(flags))
4571                 return XDP_ABORTED;
4572 
4573         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4574          * by map_idr) is used for ifindex based XDP redirect.
4575          */
4576         ri->tgt_index = ifindex;
4577         ri->map_id = INT_MAX;
4578         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4579 
4580         return XDP_REDIRECT;
4581 }
4582 
4583 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4584         .func           = bpf_xdp_redirect,
4585         .gpl_only       = false,
4586         .ret_type       = RET_INTEGER,
4587         .arg1_type      = ARG_ANYTHING,
4588         .arg2_type      = ARG_ANYTHING,
4589 };
4590 
4591 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4592            u64, flags)
4593 {
4594         return map->ops->map_redirect(map, key, flags);
4595 }
4596 
4597 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4598         .func           = bpf_xdp_redirect_map,
4599         .gpl_only       = false,
4600         .ret_type       = RET_INTEGER,
4601         .arg1_type      = ARG_CONST_MAP_PTR,
4602         .arg2_type      = ARG_ANYTHING,
4603         .arg3_type      = ARG_ANYTHING,
4604 };
4605 
4606 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4607                                   unsigned long off, unsigned long len)
4608 {
4609         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4610 
4611         if (unlikely(!ptr))
4612                 return len;
4613         if (ptr != dst_buff)
4614                 memcpy(dst_buff, ptr, len);
4615 
4616         return 0;
4617 }
4618 
4619 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4620            u64, flags, void *, meta, u64, meta_size)
4621 {
4622         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4623 
4624         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4625                 return -EINVAL;
4626         if (unlikely(!skb || skb_size > skb->len))
4627                 return -EFAULT;
4628 
4629         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4630                                 bpf_skb_copy);
4631 }
4632 
4633 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4634         .func           = bpf_skb_event_output,
4635         .gpl_only       = true,
4636         .ret_type       = RET_INTEGER,
4637         .arg1_type      = ARG_PTR_TO_CTX,
4638         .arg2_type      = ARG_CONST_MAP_PTR,
4639         .arg3_type      = ARG_ANYTHING,
4640         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4641         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4642 };
4643 
4644 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4645 
4646 const struct bpf_func_proto bpf_skb_output_proto = {
4647         .func           = bpf_skb_event_output,
4648         .gpl_only       = true,
4649         .ret_type       = RET_INTEGER,
4650         .arg1_type      = ARG_PTR_TO_BTF_ID,
4651         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4652         .arg2_type      = ARG_CONST_MAP_PTR,
4653         .arg3_type      = ARG_ANYTHING,
4654         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4655         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4656 };
4657 
4658 static unsigned short bpf_tunnel_key_af(u64 flags)
4659 {
4660         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4661 }
4662 
4663 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4664            u32, size, u64, flags)
4665 {
4666         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4667         u8 compat[sizeof(struct bpf_tunnel_key)];
4668         void *to_orig = to;
4669         int err;
4670 
4671         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4672                                          BPF_F_TUNINFO_FLAGS)))) {
4673                 err = -EINVAL;
4674                 goto err_clear;
4675         }
4676         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4677                 err = -EPROTO;
4678                 goto err_clear;
4679         }
4680         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4681                 err = -EINVAL;
4682                 switch (size) {
4683                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4684                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4685                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4686                         goto set_compat;
4687                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4688                         /* Fixup deprecated structure layouts here, so we have
4689                          * a common path later on.
4690                          */
4691                         if (ip_tunnel_info_af(info) != AF_INET)
4692                                 goto err_clear;
4693 set_compat:
4694                         to = (struct bpf_tunnel_key *)compat;
4695                         break;
4696                 default:
4697                         goto err_clear;
4698                 }
4699         }
4700 
4701         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4702         to->tunnel_tos = info->key.tos;
4703         to->tunnel_ttl = info->key.ttl;
4704         if (flags & BPF_F_TUNINFO_FLAGS)
4705                 to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags);
4706         else
4707                 to->tunnel_ext = 0;
4708 
4709         if (flags & BPF_F_TUNINFO_IPV6) {
4710                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4711                        sizeof(to->remote_ipv6));
4712                 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4713                        sizeof(to->local_ipv6));
4714                 to->tunnel_label = be32_to_cpu(info->key.label);
4715         } else {
4716                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4717                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4718                 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4719                 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4720                 to->tunnel_label = 0;
4721         }
4722 
4723         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4724                 memcpy(to_orig, to, size);
4725 
4726         return 0;
4727 err_clear:
4728         memset(to_orig, 0, size);
4729         return err;
4730 }
4731 
4732 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4733         .func           = bpf_skb_get_tunnel_key,
4734         .gpl_only       = false,
4735         .ret_type       = RET_INTEGER,
4736         .arg1_type      = ARG_PTR_TO_CTX,
4737         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4738         .arg3_type      = ARG_CONST_SIZE,
4739         .arg4_type      = ARG_ANYTHING,
4740 };
4741 
4742 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4743 {
4744         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4745         int err;
4746 
4747         if (unlikely(!info ||
4748                      !ip_tunnel_is_options_present(info->key.tun_flags))) {
4749                 err = -ENOENT;
4750                 goto err_clear;
4751         }
4752         if (unlikely(size < info->options_len)) {
4753                 err = -ENOMEM;
4754                 goto err_clear;
4755         }
4756 
4757         ip_tunnel_info_opts_get(to, info);
4758         if (size > info->options_len)
4759                 memset(to + info->options_len, 0, size - info->options_len);
4760 
4761         return info->options_len;
4762 err_clear:
4763         memset(to, 0, size);
4764         return err;
4765 }
4766 
4767 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4768         .func           = bpf_skb_get_tunnel_opt,
4769         .gpl_only       = false,
4770         .ret_type       = RET_INTEGER,
4771         .arg1_type      = ARG_PTR_TO_CTX,
4772         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4773         .arg3_type      = ARG_CONST_SIZE,
4774 };
4775 
4776 static struct metadata_dst __percpu *md_dst;
4777 
4778 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4779            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4780 {
4781         struct metadata_dst *md = this_cpu_ptr(md_dst);
4782         u8 compat[sizeof(struct bpf_tunnel_key)];
4783         struct ip_tunnel_info *info;
4784 
4785         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4786                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4787                                BPF_F_NO_TUNNEL_KEY)))
4788                 return -EINVAL;
4789         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4790                 switch (size) {
4791                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4792                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4793                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4794                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4795                         /* Fixup deprecated structure layouts here, so we have
4796                          * a common path later on.
4797                          */
4798                         memcpy(compat, from, size);
4799                         memset(compat + size, 0, sizeof(compat) - size);
4800                         from = (const struct bpf_tunnel_key *) compat;
4801                         break;
4802                 default:
4803                         return -EINVAL;
4804                 }
4805         }
4806         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4807                      from->tunnel_ext))
4808                 return -EINVAL;
4809 
4810         skb_dst_drop(skb);
4811         dst_hold((struct dst_entry *) md);
4812         skb_dst_set(skb, (struct dst_entry *) md);
4813 
4814         info = &md->u.tun_info;
4815         memset(info, 0, sizeof(*info));
4816         info->mode = IP_TUNNEL_INFO_TX;
4817 
4818         __set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags);
4819         __assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags,
4820                      flags & BPF_F_DONT_FRAGMENT);
4821         __assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags,
4822                      !(flags & BPF_F_ZERO_CSUM_TX));
4823         __assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags,
4824                      flags & BPF_F_SEQ_NUMBER);
4825         __assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags,
4826                      !(flags & BPF_F_NO_TUNNEL_KEY));
4827 
4828         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4829         info->key.tos = from->tunnel_tos;
4830         info->key.ttl = from->tunnel_ttl;
4831 
4832         if (flags & BPF_F_TUNINFO_IPV6) {
4833                 info->mode |= IP_TUNNEL_INFO_IPV6;
4834                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4835                        sizeof(from->remote_ipv6));
4836                 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4837                        sizeof(from->local_ipv6));
4838                 info->key.label = cpu_to_be32(from->tunnel_label) &
4839                                   IPV6_FLOWLABEL_MASK;
4840         } else {
4841                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4842                 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4843                 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4844         }
4845 
4846         return 0;
4847 }
4848 
4849 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4850         .func           = bpf_skb_set_tunnel_key,
4851         .gpl_only       = false,
4852         .ret_type       = RET_INTEGER,
4853         .arg1_type      = ARG_PTR_TO_CTX,
4854         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4855         .arg3_type      = ARG_CONST_SIZE,
4856         .arg4_type      = ARG_ANYTHING,
4857 };
4858 
4859 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4860            const u8 *, from, u32, size)
4861 {
4862         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4863         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4864         IP_TUNNEL_DECLARE_FLAGS(present) = { };
4865 
4866         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4867                 return -EINVAL;
4868         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4869                 return -ENOMEM;
4870 
4871         ip_tunnel_set_options_present(present);
4872         ip_tunnel_info_opts_set(info, from, size, present);
4873 
4874         return 0;
4875 }
4876 
4877 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4878         .func           = bpf_skb_set_tunnel_opt,
4879         .gpl_only       = false,
4880         .ret_type       = RET_INTEGER,
4881         .arg1_type      = ARG_PTR_TO_CTX,
4882         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4883         .arg3_type      = ARG_CONST_SIZE,
4884 };
4885 
4886 static const struct bpf_func_proto *
4887 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4888 {
4889         if (!md_dst) {
4890                 struct metadata_dst __percpu *tmp;
4891 
4892                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4893                                                 METADATA_IP_TUNNEL,
4894                                                 GFP_KERNEL);
4895                 if (!tmp)
4896                         return NULL;
4897                 if (cmpxchg(&md_dst, NULL, tmp))
4898                         metadata_dst_free_percpu(tmp);
4899         }
4900 
4901         switch (which) {
4902         case BPF_FUNC_skb_set_tunnel_key:
4903                 return &bpf_skb_set_tunnel_key_proto;
4904         case BPF_FUNC_skb_set_tunnel_opt:
4905                 return &bpf_skb_set_tunnel_opt_proto;
4906         default:
4907                 return NULL;
4908         }
4909 }
4910 
4911 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4912            u32, idx)
4913 {
4914         struct bpf_array *array = container_of(map, struct bpf_array, map);
4915         struct cgroup *cgrp;
4916         struct sock *sk;
4917 
4918         sk = skb_to_full_sk(skb);
4919         if (!sk || !sk_fullsock(sk))
4920                 return -ENOENT;
4921         if (unlikely(idx >= array->map.max_entries))
4922                 return -E2BIG;
4923 
4924         cgrp = READ_ONCE(array->ptrs[idx]);
4925         if (unlikely(!cgrp))
4926                 return -EAGAIN;
4927 
4928         return sk_under_cgroup_hierarchy(sk, cgrp);
4929 }
4930 
4931 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4932         .func           = bpf_skb_under_cgroup,
4933         .gpl_only       = false,
4934         .ret_type       = RET_INTEGER,
4935         .arg1_type      = ARG_PTR_TO_CTX,
4936         .arg2_type      = ARG_CONST_MAP_PTR,
4937         .arg3_type      = ARG_ANYTHING,
4938 };
4939 
4940 #ifdef CONFIG_SOCK_CGROUP_DATA
4941 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4942 {
4943         struct cgroup *cgrp;
4944 
4945         sk = sk_to_full_sk(sk);
4946         if (!sk || !sk_fullsock(sk))
4947                 return 0;
4948 
4949         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4950         return cgroup_id(cgrp);
4951 }
4952 
4953 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4954 {
4955         return __bpf_sk_cgroup_id(skb->sk);
4956 }
4957 
4958 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4959         .func           = bpf_skb_cgroup_id,
4960         .gpl_only       = false,
4961         .ret_type       = RET_INTEGER,
4962         .arg1_type      = ARG_PTR_TO_CTX,
4963 };
4964 
4965 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4966                                               int ancestor_level)
4967 {
4968         struct cgroup *ancestor;
4969         struct cgroup *cgrp;
4970 
4971         sk = sk_to_full_sk(sk);
4972         if (!sk || !sk_fullsock(sk))
4973                 return 0;
4974 
4975         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4976         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4977         if (!ancestor)
4978                 return 0;
4979 
4980         return cgroup_id(ancestor);
4981 }
4982 
4983 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4984            ancestor_level)
4985 {
4986         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4987 }
4988 
4989 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4990         .func           = bpf_skb_ancestor_cgroup_id,
4991         .gpl_only       = false,
4992         .ret_type       = RET_INTEGER,
4993         .arg1_type      = ARG_PTR_TO_CTX,
4994         .arg2_type      = ARG_ANYTHING,
4995 };
4996 
4997 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4998 {
4999         return __bpf_sk_cgroup_id(sk);
5000 }
5001 
5002 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
5003         .func           = bpf_sk_cgroup_id,
5004         .gpl_only       = false,
5005         .ret_type       = RET_INTEGER,
5006         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5007 };
5008 
5009 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
5010 {
5011         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
5012 }
5013 
5014 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
5015         .func           = bpf_sk_ancestor_cgroup_id,
5016         .gpl_only       = false,
5017         .ret_type       = RET_INTEGER,
5018         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5019         .arg2_type      = ARG_ANYTHING,
5020 };
5021 #endif
5022 
5023 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5024                                   unsigned long off, unsigned long len)
5025 {
5026         struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5027 
5028         bpf_xdp_copy_buf(xdp, off, dst, len, false);
5029         return 0;
5030 }
5031 
5032 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5033            u64, flags, void *, meta, u64, meta_size)
5034 {
5035         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5036 
5037         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5038                 return -EINVAL;
5039 
5040         if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5041                 return -EFAULT;
5042 
5043         return bpf_event_output(map, flags, meta, meta_size, xdp,
5044                                 xdp_size, bpf_xdp_copy);
5045 }
5046 
5047 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5048         .func           = bpf_xdp_event_output,
5049         .gpl_only       = true,
5050         .ret_type       = RET_INTEGER,
5051         .arg1_type      = ARG_PTR_TO_CTX,
5052         .arg2_type      = ARG_CONST_MAP_PTR,
5053         .arg3_type      = ARG_ANYTHING,
5054         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5055         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
5056 };
5057 
5058 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5059 
5060 const struct bpf_func_proto bpf_xdp_output_proto = {
5061         .func           = bpf_xdp_event_output,
5062         .gpl_only       = true,
5063         .ret_type       = RET_INTEGER,
5064         .arg1_type      = ARG_PTR_TO_BTF_ID,
5065         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
5066         .arg2_type      = ARG_CONST_MAP_PTR,
5067         .arg3_type      = ARG_ANYTHING,
5068         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5069         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
5070 };
5071 
5072 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5073 {
5074         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5075 }
5076 
5077 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5078         .func           = bpf_get_socket_cookie,
5079         .gpl_only       = false,
5080         .ret_type       = RET_INTEGER,
5081         .arg1_type      = ARG_PTR_TO_CTX,
5082 };
5083 
5084 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5085 {
5086         return __sock_gen_cookie(ctx->sk);
5087 }
5088 
5089 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5090         .func           = bpf_get_socket_cookie_sock_addr,
5091         .gpl_only       = false,
5092         .ret_type       = RET_INTEGER,
5093         .arg1_type      = ARG_PTR_TO_CTX,
5094 };
5095 
5096 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5097 {
5098         return __sock_gen_cookie(ctx);
5099 }
5100 
5101 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5102         .func           = bpf_get_socket_cookie_sock,
5103         .gpl_only       = false,
5104         .ret_type       = RET_INTEGER,
5105         .arg1_type      = ARG_PTR_TO_CTX,
5106 };
5107 
5108 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5109 {
5110         return sk ? sock_gen_cookie(sk) : 0;
5111 }
5112 
5113 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5114         .func           = bpf_get_socket_ptr_cookie,
5115         .gpl_only       = false,
5116         .ret_type       = RET_INTEGER,
5117         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5118 };
5119 
5120 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5121 {
5122         return __sock_gen_cookie(ctx->sk);
5123 }
5124 
5125 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5126         .func           = bpf_get_socket_cookie_sock_ops,
5127         .gpl_only       = false,
5128         .ret_type       = RET_INTEGER,
5129         .arg1_type      = ARG_PTR_TO_CTX,
5130 };
5131 
5132 static u64 __bpf_get_netns_cookie(struct sock *sk)
5133 {
5134         const struct net *net = sk ? sock_net(sk) : &init_net;
5135 
5136         return net->net_cookie;
5137 }
5138 
5139 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5140 {
5141         return __bpf_get_netns_cookie(ctx);
5142 }
5143 
5144 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5145         .func           = bpf_get_netns_cookie_sock,
5146         .gpl_only       = false,
5147         .ret_type       = RET_INTEGER,
5148         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5149 };
5150 
5151 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5152 {
5153         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5154 }
5155 
5156 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5157         .func           = bpf_get_netns_cookie_sock_addr,
5158         .gpl_only       = false,
5159         .ret_type       = RET_INTEGER,
5160         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5161 };
5162 
5163 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5164 {
5165         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5166 }
5167 
5168 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5169         .func           = bpf_get_netns_cookie_sock_ops,
5170         .gpl_only       = false,
5171         .ret_type       = RET_INTEGER,
5172         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5173 };
5174 
5175 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5176 {
5177         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5178 }
5179 
5180 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5181         .func           = bpf_get_netns_cookie_sk_msg,
5182         .gpl_only       = false,
5183         .ret_type       = RET_INTEGER,
5184         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5185 };
5186 
5187 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5188 {
5189         struct sock *sk = sk_to_full_sk(skb->sk);
5190         kuid_t kuid;
5191 
5192         if (!sk || !sk_fullsock(sk))
5193                 return overflowuid;
5194         kuid = sock_net_uid(sock_net(sk), sk);
5195         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5196 }
5197 
5198 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5199         .func           = bpf_get_socket_uid,
5200         .gpl_only       = false,
5201         .ret_type       = RET_INTEGER,
5202         .arg1_type      = ARG_PTR_TO_CTX,
5203 };
5204 
5205 static int sol_socket_sockopt(struct sock *sk, int optname,
5206                               char *optval, int *optlen,
5207                               bool getopt)
5208 {
5209         switch (optname) {
5210         case SO_REUSEADDR:
5211         case SO_SNDBUF:
5212         case SO_RCVBUF:
5213         case SO_KEEPALIVE:
5214         case SO_PRIORITY:
5215         case SO_REUSEPORT:
5216         case SO_RCVLOWAT:
5217         case SO_MARK:
5218         case SO_MAX_PACING_RATE:
5219         case SO_BINDTOIFINDEX:
5220         case SO_TXREHASH:
5221                 if (*optlen != sizeof(int))
5222                         return -EINVAL;
5223                 break;
5224         case SO_BINDTODEVICE:
5225                 break;
5226         default:
5227                 return -EINVAL;
5228         }
5229 
5230         if (getopt) {
5231                 if (optname == SO_BINDTODEVICE)
5232                         return -EINVAL;
5233                 return sk_getsockopt(sk, SOL_SOCKET, optname,
5234                                      KERNEL_SOCKPTR(optval),
5235                                      KERNEL_SOCKPTR(optlen));
5236         }
5237 
5238         return sk_setsockopt(sk, SOL_SOCKET, optname,
5239                              KERNEL_SOCKPTR(optval), *optlen);
5240 }
5241 
5242 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5243                                   char *optval, int optlen)
5244 {
5245         struct tcp_sock *tp = tcp_sk(sk);
5246         unsigned long timeout;
5247         int val;
5248 
5249         if (optlen != sizeof(int))
5250                 return -EINVAL;
5251 
5252         val = *(int *)optval;
5253 
5254         /* Only some options are supported */
5255         switch (optname) {
5256         case TCP_BPF_IW:
5257                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5258                         return -EINVAL;
5259                 tcp_snd_cwnd_set(tp, val);
5260                 break;
5261         case TCP_BPF_SNDCWND_CLAMP:
5262                 if (val <= 0)
5263                         return -EINVAL;
5264                 tp->snd_cwnd_clamp = val;
5265                 tp->snd_ssthresh = val;
5266                 break;
5267         case TCP_BPF_DELACK_MAX:
5268                 timeout = usecs_to_jiffies(val);
5269                 if (timeout > TCP_DELACK_MAX ||
5270                     timeout < TCP_TIMEOUT_MIN)
5271                         return -EINVAL;
5272                 inet_csk(sk)->icsk_delack_max = timeout;
5273                 break;
5274         case TCP_BPF_RTO_MIN:
5275                 timeout = usecs_to_jiffies(val);
5276                 if (timeout > TCP_RTO_MIN ||
5277                     timeout < TCP_TIMEOUT_MIN)
5278                         return -EINVAL;
5279                 inet_csk(sk)->icsk_rto_min = timeout;
5280                 break;
5281         default:
5282                 return -EINVAL;
5283         }
5284 
5285         return 0;
5286 }
5287 
5288 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5289                                       int *optlen, bool getopt)
5290 {
5291         struct tcp_sock *tp;
5292         int ret;
5293 
5294         if (*optlen < 2)
5295                 return -EINVAL;
5296 
5297         if (getopt) {
5298                 if (!inet_csk(sk)->icsk_ca_ops)
5299                         return -EINVAL;
5300                 /* BPF expects NULL-terminated tcp-cc string */
5301                 optval[--(*optlen)] = '\0';
5302                 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5303                                          KERNEL_SOCKPTR(optval),
5304                                          KERNEL_SOCKPTR(optlen));
5305         }
5306 
5307         /* "cdg" is the only cc that alloc a ptr
5308          * in inet_csk_ca area.  The bpf-tcp-cc may
5309          * overwrite this ptr after switching to cdg.
5310          */
5311         if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5312                 return -ENOTSUPP;
5313 
5314         /* It stops this looping
5315          *
5316          * .init => bpf_setsockopt(tcp_cc) => .init =>
5317          * bpf_setsockopt(tcp_cc)" => .init => ....
5318          *
5319          * The second bpf_setsockopt(tcp_cc) is not allowed
5320          * in order to break the loop when both .init
5321          * are the same bpf prog.
5322          *
5323          * This applies even the second bpf_setsockopt(tcp_cc)
5324          * does not cause a loop.  This limits only the first
5325          * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5326          * pick a fallback cc (eg. peer does not support ECN)
5327          * and the second '.init' cannot fallback to
5328          * another.
5329          */
5330         tp = tcp_sk(sk);
5331         if (tp->bpf_chg_cc_inprogress)
5332                 return -EBUSY;
5333 
5334         tp->bpf_chg_cc_inprogress = 1;
5335         ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5336                                 KERNEL_SOCKPTR(optval), *optlen);
5337         tp->bpf_chg_cc_inprogress = 0;
5338         return ret;
5339 }
5340 
5341 static int sol_tcp_sockopt(struct sock *sk, int optname,
5342                            char *optval, int *optlen,
5343                            bool getopt)
5344 {
5345         if (sk->sk_protocol != IPPROTO_TCP)
5346                 return -EINVAL;
5347 
5348         switch (optname) {
5349         case TCP_NODELAY:
5350         case TCP_MAXSEG:
5351         case TCP_KEEPIDLE:
5352         case TCP_KEEPINTVL:
5353         case TCP_KEEPCNT:
5354         case TCP_SYNCNT:
5355         case TCP_WINDOW_CLAMP:
5356         case TCP_THIN_LINEAR_TIMEOUTS:
5357         case TCP_USER_TIMEOUT:
5358         case TCP_NOTSENT_LOWAT:
5359         case TCP_SAVE_SYN:
5360                 if (*optlen != sizeof(int))
5361                         return -EINVAL;
5362                 break;
5363         case TCP_CONGESTION:
5364                 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5365         case TCP_SAVED_SYN:
5366                 if (*optlen < 1)
5367                         return -EINVAL;
5368                 break;
5369         default:
5370                 if (getopt)
5371                         return -EINVAL;
5372                 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5373         }
5374 
5375         if (getopt) {
5376                 if (optname == TCP_SAVED_SYN) {
5377                         struct tcp_sock *tp = tcp_sk(sk);
5378 
5379                         if (!tp->saved_syn ||
5380                             *optlen > tcp_saved_syn_len(tp->saved_syn))
5381                                 return -EINVAL;
5382                         memcpy(optval, tp->saved_syn->data, *optlen);
5383                         /* It cannot free tp->saved_syn here because it
5384                          * does not know if the user space still needs it.
5385                          */
5386                         return 0;
5387                 }
5388 
5389                 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5390                                          KERNEL_SOCKPTR(optval),
5391                                          KERNEL_SOCKPTR(optlen));
5392         }
5393 
5394         return do_tcp_setsockopt(sk, SOL_TCP, optname,
5395                                  KERNEL_SOCKPTR(optval), *optlen);
5396 }
5397 
5398 static int sol_ip_sockopt(struct sock *sk, int optname,
5399                           char *optval, int *optlen,
5400                           bool getopt)
5401 {
5402         if (sk->sk_family != AF_INET)
5403                 return -EINVAL;
5404 
5405         switch (optname) {
5406         case IP_TOS:
5407                 if (*optlen != sizeof(int))
5408                         return -EINVAL;
5409                 break;
5410         default:
5411                 return -EINVAL;
5412         }
5413 
5414         if (getopt)
5415                 return do_ip_getsockopt(sk, SOL_IP, optname,
5416                                         KERNEL_SOCKPTR(optval),
5417                                         KERNEL_SOCKPTR(optlen));
5418 
5419         return do_ip_setsockopt(sk, SOL_IP, optname,
5420                                 KERNEL_SOCKPTR(optval), *optlen);
5421 }
5422 
5423 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5424                             char *optval, int *optlen,
5425                             bool getopt)
5426 {
5427         if (sk->sk_family != AF_INET6)
5428                 return -EINVAL;
5429 
5430         switch (optname) {
5431         case IPV6_TCLASS:
5432         case IPV6_AUTOFLOWLABEL:
5433                 if (*optlen != sizeof(int))
5434                         return -EINVAL;
5435                 break;
5436         default:
5437                 return -EINVAL;
5438         }
5439 
5440         if (getopt)
5441                 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5442                                                       KERNEL_SOCKPTR(optval),
5443                                                       KERNEL_SOCKPTR(optlen));
5444 
5445         return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5446                                               KERNEL_SOCKPTR(optval), *optlen);
5447 }
5448 
5449 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5450                             char *optval, int optlen)
5451 {
5452         if (!sk_fullsock(sk))
5453                 return -EINVAL;
5454 
5455         if (level == SOL_SOCKET)
5456                 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5457         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5458                 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5459         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5460                 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5461         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5462                 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5463 
5464         return -EINVAL;
5465 }
5466 
5467 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5468                            char *optval, int optlen)
5469 {
5470         if (sk_fullsock(sk))
5471                 sock_owned_by_me(sk);
5472         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5473 }
5474 
5475 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5476                             char *optval, int optlen)
5477 {
5478         int err, saved_optlen = optlen;
5479 
5480         if (!sk_fullsock(sk)) {
5481                 err = -EINVAL;
5482                 goto done;
5483         }
5484 
5485         if (level == SOL_SOCKET)
5486                 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5487         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5488                 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5489         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5490                 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5491         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5492                 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5493         else
5494                 err = -EINVAL;
5495 
5496 done:
5497         if (err)
5498                 optlen = 0;
5499         if (optlen < saved_optlen)
5500                 memset(optval + optlen, 0, saved_optlen - optlen);
5501         return err;
5502 }
5503 
5504 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5505                            char *optval, int optlen)
5506 {
5507         if (sk_fullsock(sk))
5508                 sock_owned_by_me(sk);
5509         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5510 }
5511 
5512 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5513            int, optname, char *, optval, int, optlen)
5514 {
5515         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5516 }
5517 
5518 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5519         .func           = bpf_sk_setsockopt,
5520         .gpl_only       = false,
5521         .ret_type       = RET_INTEGER,
5522         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5523         .arg2_type      = ARG_ANYTHING,
5524         .arg3_type      = ARG_ANYTHING,
5525         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5526         .arg5_type      = ARG_CONST_SIZE,
5527 };
5528 
5529 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5530            int, optname, char *, optval, int, optlen)
5531 {
5532         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5533 }
5534 
5535 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5536         .func           = bpf_sk_getsockopt,
5537         .gpl_only       = false,
5538         .ret_type       = RET_INTEGER,
5539         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5540         .arg2_type      = ARG_ANYTHING,
5541         .arg3_type      = ARG_ANYTHING,
5542         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5543         .arg5_type      = ARG_CONST_SIZE,
5544 };
5545 
5546 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5547            int, optname, char *, optval, int, optlen)
5548 {
5549         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5550 }
5551 
5552 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5553         .func           = bpf_unlocked_sk_setsockopt,
5554         .gpl_only       = false,
5555         .ret_type       = RET_INTEGER,
5556         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5557         .arg2_type      = ARG_ANYTHING,
5558         .arg3_type      = ARG_ANYTHING,
5559         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5560         .arg5_type      = ARG_CONST_SIZE,
5561 };
5562 
5563 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5564            int, optname, char *, optval, int, optlen)
5565 {
5566         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5567 }
5568 
5569 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5570         .func           = bpf_unlocked_sk_getsockopt,
5571         .gpl_only       = false,
5572         .ret_type       = RET_INTEGER,
5573         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5574         .arg2_type      = ARG_ANYTHING,
5575         .arg3_type      = ARG_ANYTHING,
5576         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5577         .arg5_type      = ARG_CONST_SIZE,
5578 };
5579 
5580 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5581            int, level, int, optname, char *, optval, int, optlen)
5582 {
5583         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5584 }
5585 
5586 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5587         .func           = bpf_sock_addr_setsockopt,
5588         .gpl_only       = false,
5589         .ret_type       = RET_INTEGER,
5590         .arg1_type      = ARG_PTR_TO_CTX,
5591         .arg2_type      = ARG_ANYTHING,
5592         .arg3_type      = ARG_ANYTHING,
5593         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5594         .arg5_type      = ARG_CONST_SIZE,
5595 };
5596 
5597 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5598            int, level, int, optname, char *, optval, int, optlen)
5599 {
5600         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5601 }
5602 
5603 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5604         .func           = bpf_sock_addr_getsockopt,
5605         .gpl_only       = false,
5606         .ret_type       = RET_INTEGER,
5607         .arg1_type      = ARG_PTR_TO_CTX,
5608         .arg2_type      = ARG_ANYTHING,
5609         .arg3_type      = ARG_ANYTHING,
5610         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5611         .arg5_type      = ARG_CONST_SIZE,
5612 };
5613 
5614 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5615            int, level, int, optname, char *, optval, int, optlen)
5616 {
5617         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5618 }
5619 
5620 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5621         .func           = bpf_sock_ops_setsockopt,
5622         .gpl_only       = false,
5623         .ret_type       = RET_INTEGER,
5624         .arg1_type      = ARG_PTR_TO_CTX,
5625         .arg2_type      = ARG_ANYTHING,
5626         .arg3_type      = ARG_ANYTHING,
5627         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5628         .arg5_type      = ARG_CONST_SIZE,
5629 };
5630 
5631 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5632                                 int optname, const u8 **start)
5633 {
5634         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5635         const u8 *hdr_start;
5636         int ret;
5637 
5638         if (syn_skb) {
5639                 /* sk is a request_sock here */
5640 
5641                 if (optname == TCP_BPF_SYN) {
5642                         hdr_start = syn_skb->data;
5643                         ret = tcp_hdrlen(syn_skb);
5644                 } else if (optname == TCP_BPF_SYN_IP) {
5645                         hdr_start = skb_network_header(syn_skb);
5646                         ret = skb_network_header_len(syn_skb) +
5647                                 tcp_hdrlen(syn_skb);
5648                 } else {
5649                         /* optname == TCP_BPF_SYN_MAC */
5650                         hdr_start = skb_mac_header(syn_skb);
5651                         ret = skb_mac_header_len(syn_skb) +
5652                                 skb_network_header_len(syn_skb) +
5653                                 tcp_hdrlen(syn_skb);
5654                 }
5655         } else {
5656                 struct sock *sk = bpf_sock->sk;
5657                 struct saved_syn *saved_syn;
5658 
5659                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5660                         /* synack retransmit. bpf_sock->syn_skb will
5661                          * not be available.  It has to resort to
5662                          * saved_syn (if it is saved).
5663                          */
5664                         saved_syn = inet_reqsk(sk)->saved_syn;
5665                 else
5666                         saved_syn = tcp_sk(sk)->saved_syn;
5667 
5668                 if (!saved_syn)
5669                         return -ENOENT;
5670 
5671                 if (optname == TCP_BPF_SYN) {
5672                         hdr_start = saved_syn->data +
5673                                 saved_syn->mac_hdrlen +
5674                                 saved_syn->network_hdrlen;
5675                         ret = saved_syn->tcp_hdrlen;
5676                 } else if (optname == TCP_BPF_SYN_IP) {
5677                         hdr_start = saved_syn->data +
5678                                 saved_syn->mac_hdrlen;
5679                         ret = saved_syn->network_hdrlen +
5680                                 saved_syn->tcp_hdrlen;
5681                 } else {
5682                         /* optname == TCP_BPF_SYN_MAC */
5683 
5684                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5685                         if (!saved_syn->mac_hdrlen)
5686                                 return -ENOENT;
5687 
5688                         hdr_start = saved_syn->data;
5689                         ret = saved_syn->mac_hdrlen +
5690                                 saved_syn->network_hdrlen +
5691                                 saved_syn->tcp_hdrlen;
5692                 }
5693         }
5694 
5695         *start = hdr_start;
5696         return ret;
5697 }
5698 
5699 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5700            int, level, int, optname, char *, optval, int, optlen)
5701 {
5702         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5703             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5704                 int ret, copy_len = 0;
5705                 const u8 *start;
5706 
5707                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5708                 if (ret > 0) {
5709                         copy_len = ret;
5710                         if (optlen < copy_len) {
5711                                 copy_len = optlen;
5712                                 ret = -ENOSPC;
5713                         }
5714 
5715                         memcpy(optval, start, copy_len);
5716                 }
5717 
5718                 /* Zero out unused buffer at the end */
5719                 memset(optval + copy_len, 0, optlen - copy_len);
5720 
5721                 return ret;
5722         }
5723 
5724         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5725 }
5726 
5727 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5728         .func           = bpf_sock_ops_getsockopt,
5729         .gpl_only       = false,
5730         .ret_type       = RET_INTEGER,
5731         .arg1_type      = ARG_PTR_TO_CTX,
5732         .arg2_type      = ARG_ANYTHING,
5733         .arg3_type      = ARG_ANYTHING,
5734         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5735         .arg5_type      = ARG_CONST_SIZE,
5736 };
5737 
5738 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5739            int, argval)
5740 {
5741         struct sock *sk = bpf_sock->sk;
5742         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5743 
5744         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5745                 return -EINVAL;
5746 
5747         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5748 
5749         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5750 }
5751 
5752 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5753         .func           = bpf_sock_ops_cb_flags_set,
5754         .gpl_only       = false,
5755         .ret_type       = RET_INTEGER,
5756         .arg1_type      = ARG_PTR_TO_CTX,
5757         .arg2_type      = ARG_ANYTHING,
5758 };
5759 
5760 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5761 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5762 
5763 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5764            int, addr_len)
5765 {
5766 #ifdef CONFIG_INET
5767         struct sock *sk = ctx->sk;
5768         u32 flags = BIND_FROM_BPF;
5769         int err;
5770 
5771         err = -EINVAL;
5772         if (addr_len < offsetofend(struct sockaddr, sa_family))
5773                 return err;
5774         if (addr->sa_family == AF_INET) {
5775                 if (addr_len < sizeof(struct sockaddr_in))
5776                         return err;
5777                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5778                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5779                 return __inet_bind(sk, addr, addr_len, flags);
5780 #if IS_ENABLED(CONFIG_IPV6)
5781         } else if (addr->sa_family == AF_INET6) {
5782                 if (addr_len < SIN6_LEN_RFC2133)
5783                         return err;
5784                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5785                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5786                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5787                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5788                  */
5789                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5790 #endif /* CONFIG_IPV6 */
5791         }
5792 #endif /* CONFIG_INET */
5793 
5794         return -EAFNOSUPPORT;
5795 }
5796 
5797 static const struct bpf_func_proto bpf_bind_proto = {
5798         .func           = bpf_bind,
5799         .gpl_only       = false,
5800         .ret_type       = RET_INTEGER,
5801         .arg1_type      = ARG_PTR_TO_CTX,
5802         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5803         .arg3_type      = ARG_CONST_SIZE,
5804 };
5805 
5806 #ifdef CONFIG_XFRM
5807 
5808 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5809     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5810 
5811 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5812 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5813 
5814 #endif
5815 
5816 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5817            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5818 {
5819         const struct sec_path *sp = skb_sec_path(skb);
5820         const struct xfrm_state *x;
5821 
5822         if (!sp || unlikely(index >= sp->len || flags))
5823                 goto err_clear;
5824 
5825         x = sp->xvec[index];
5826 
5827         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5828                 goto err_clear;
5829 
5830         to->reqid = x->props.reqid;
5831         to->spi = x->id.spi;
5832         to->family = x->props.family;
5833         to->ext = 0;
5834 
5835         if (to->family == AF_INET6) {
5836                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5837                        sizeof(to->remote_ipv6));
5838         } else {
5839                 to->remote_ipv4 = x->props.saddr.a4;
5840                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5841         }
5842 
5843         return 0;
5844 err_clear:
5845         memset(to, 0, size);
5846         return -EINVAL;
5847 }
5848 
5849 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5850         .func           = bpf_skb_get_xfrm_state,
5851         .gpl_only       = false,
5852         .ret_type       = RET_INTEGER,
5853         .arg1_type      = ARG_PTR_TO_CTX,
5854         .arg2_type      = ARG_ANYTHING,
5855         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5856         .arg4_type      = ARG_CONST_SIZE,
5857         .arg5_type      = ARG_ANYTHING,
5858 };
5859 #endif
5860 
5861 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5862 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5863 {
5864         params->h_vlan_TCI = 0;
5865         params->h_vlan_proto = 0;
5866         if (mtu)
5867                 params->mtu_result = mtu; /* union with tot_len */
5868 
5869         return 0;
5870 }
5871 #endif
5872 
5873 #if IS_ENABLED(CONFIG_INET)
5874 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5875                                u32 flags, bool check_mtu)
5876 {
5877         struct fib_nh_common *nhc;
5878         struct in_device *in_dev;
5879         struct neighbour *neigh;
5880         struct net_device *dev;
5881         struct fib_result res;
5882         struct flowi4 fl4;
5883         u32 mtu = 0;
5884         int err;
5885 
5886         dev = dev_get_by_index_rcu(net, params->ifindex);
5887         if (unlikely(!dev))
5888                 return -ENODEV;
5889 
5890         /* verify forwarding is enabled on this interface */
5891         in_dev = __in_dev_get_rcu(dev);
5892         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5893                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5894 
5895         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5896                 fl4.flowi4_iif = 1;
5897                 fl4.flowi4_oif = params->ifindex;
5898         } else {
5899                 fl4.flowi4_iif = params->ifindex;
5900                 fl4.flowi4_oif = 0;
5901         }
5902         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5903         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5904         fl4.flowi4_flags = 0;
5905 
5906         fl4.flowi4_proto = params->l4_protocol;
5907         fl4.daddr = params->ipv4_dst;
5908         fl4.saddr = params->ipv4_src;
5909         fl4.fl4_sport = params->sport;
5910         fl4.fl4_dport = params->dport;
5911         fl4.flowi4_multipath_hash = 0;
5912 
5913         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5914                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5915                 struct fib_table *tb;
5916 
5917                 if (flags & BPF_FIB_LOOKUP_TBID) {
5918                         tbid = params->tbid;
5919                         /* zero out for vlan output */
5920                         params->tbid = 0;
5921                 }
5922 
5923                 tb = fib_get_table(net, tbid);
5924                 if (unlikely(!tb))
5925                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5926 
5927                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5928         } else {
5929                 if (flags & BPF_FIB_LOOKUP_MARK)
5930                         fl4.flowi4_mark = params->mark;
5931                 else
5932                         fl4.flowi4_mark = 0;
5933                 fl4.flowi4_secid = 0;
5934                 fl4.flowi4_tun_key.tun_id = 0;
5935                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5936 
5937                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5938         }
5939 
5940         if (err) {
5941                 /* map fib lookup errors to RTN_ type */
5942                 if (err == -EINVAL)
5943                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5944                 if (err == -EHOSTUNREACH)
5945                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5946                 if (err == -EACCES)
5947                         return BPF_FIB_LKUP_RET_PROHIBIT;
5948 
5949                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5950         }
5951 
5952         if (res.type != RTN_UNICAST)
5953                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5954 
5955         if (fib_info_num_path(res.fi) > 1)
5956                 fib_select_path(net, &res, &fl4, NULL);
5957 
5958         if (check_mtu) {
5959                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5960                 if (params->tot_len > mtu) {
5961                         params->mtu_result = mtu; /* union with tot_len */
5962                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5963                 }
5964         }
5965 
5966         nhc = res.nhc;
5967 
5968         /* do not handle lwt encaps right now */
5969         if (nhc->nhc_lwtstate)
5970                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5971 
5972         dev = nhc->nhc_dev;
5973 
5974         params->rt_metric = res.fi->fib_priority;
5975         params->ifindex = dev->ifindex;
5976 
5977         if (flags & BPF_FIB_LOOKUP_SRC)
5978                 params->ipv4_src = fib_result_prefsrc(net, &res);
5979 
5980         /* xdp and cls_bpf programs are run in RCU-bh so
5981          * rcu_read_lock_bh is not needed here
5982          */
5983         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5984                 if (nhc->nhc_gw_family)
5985                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5986         } else {
5987                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5988 
5989                 params->family = AF_INET6;
5990                 *dst = nhc->nhc_gw.ipv6;
5991         }
5992 
5993         if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5994                 goto set_fwd_params;
5995 
5996         if (likely(nhc->nhc_gw_family != AF_INET6))
5997                 neigh = __ipv4_neigh_lookup_noref(dev,
5998                                                   (__force u32)params->ipv4_dst);
5999         else
6000                 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
6001 
6002         if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6003                 return BPF_FIB_LKUP_RET_NO_NEIGH;
6004         memcpy(params->dmac, neigh->ha, ETH_ALEN);
6005         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6006 
6007 set_fwd_params:
6008         return bpf_fib_set_fwd_params(params, mtu);
6009 }
6010 #endif
6011 
6012 #if IS_ENABLED(CONFIG_IPV6)
6013 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
6014                                u32 flags, bool check_mtu)
6015 {
6016         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
6017         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
6018         struct fib6_result res = {};
6019         struct neighbour *neigh;
6020         struct net_device *dev;
6021         struct inet6_dev *idev;
6022         struct flowi6 fl6;
6023         int strict = 0;
6024         int oif, err;
6025         u32 mtu = 0;
6026 
6027         /* link local addresses are never forwarded */
6028         if (rt6_need_strict(dst) || rt6_need_strict(src))
6029                 return BPF_FIB_LKUP_RET_NOT_FWDED;
6030 
6031         dev = dev_get_by_index_rcu(net, params->ifindex);
6032         if (unlikely(!dev))
6033                 return -ENODEV;
6034 
6035         idev = __in6_dev_get_safely(dev);
6036         if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding)))
6037                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
6038 
6039         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6040                 fl6.flowi6_iif = 1;
6041                 oif = fl6.flowi6_oif = params->ifindex;
6042         } else {
6043                 oif = fl6.flowi6_iif = params->ifindex;
6044                 fl6.flowi6_oif = 0;
6045                 strict = RT6_LOOKUP_F_HAS_SADDR;
6046         }
6047         fl6.flowlabel = params->flowinfo;
6048         fl6.flowi6_scope = 0;
6049         fl6.flowi6_flags = 0;
6050         fl6.mp_hash = 0;
6051 
6052         fl6.flowi6_proto = params->l4_protocol;
6053         fl6.daddr = *dst;
6054         fl6.saddr = *src;
6055         fl6.fl6_sport = params->sport;
6056         fl6.fl6_dport = params->dport;
6057 
6058         if (flags & BPF_FIB_LOOKUP_DIRECT) {
6059                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6060                 struct fib6_table *tb;
6061 
6062                 if (flags & BPF_FIB_LOOKUP_TBID) {
6063                         tbid = params->tbid;
6064                         /* zero out for vlan output */
6065                         params->tbid = 0;
6066                 }
6067 
6068                 tb = ipv6_stub->fib6_get_table(net, tbid);
6069                 if (unlikely(!tb))
6070                         return BPF_FIB_LKUP_RET_NOT_FWDED;
6071 
6072                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6073                                                    strict);
6074         } else {
6075                 if (flags & BPF_FIB_LOOKUP_MARK)
6076                         fl6.flowi6_mark = params->mark;
6077                 else
6078                         fl6.flowi6_mark = 0;
6079                 fl6.flowi6_secid = 0;
6080                 fl6.flowi6_tun_key.tun_id = 0;
6081                 fl6.flowi6_uid = sock_net_uid(net, NULL);
6082 
6083                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6084         }
6085 
6086         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6087                      res.f6i == net->ipv6.fib6_null_entry))
6088                 return BPF_FIB_LKUP_RET_NOT_FWDED;
6089 
6090         switch (res.fib6_type) {
6091         /* only unicast is forwarded */
6092         case RTN_UNICAST:
6093                 break;
6094         case RTN_BLACKHOLE:
6095                 return BPF_FIB_LKUP_RET_BLACKHOLE;
6096         case RTN_UNREACHABLE:
6097                 return BPF_FIB_LKUP_RET_UNREACHABLE;
6098         case RTN_PROHIBIT:
6099                 return BPF_FIB_LKUP_RET_PROHIBIT;
6100         default:
6101                 return BPF_FIB_LKUP_RET_NOT_FWDED;
6102         }
6103 
6104         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6105                                     fl6.flowi6_oif != 0, NULL, strict);
6106 
6107         if (check_mtu) {
6108                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6109                 if (params->tot_len > mtu) {
6110                         params->mtu_result = mtu; /* union with tot_len */
6111                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6112                 }
6113         }
6114 
6115         if (res.nh->fib_nh_lws)
6116                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6117 
6118         if (res.nh->fib_nh_gw_family)
6119                 *dst = res.nh->fib_nh_gw6;
6120 
6121         dev = res.nh->fib_nh_dev;
6122         params->rt_metric = res.f6i->fib6_metric;
6123         params->ifindex = dev->ifindex;
6124 
6125         if (flags & BPF_FIB_LOOKUP_SRC) {
6126                 if (res.f6i->fib6_prefsrc.plen) {
6127                         *src = res.f6i->fib6_prefsrc.addr;
6128                 } else {
6129                         err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6130                                                                 &fl6.daddr, 0,
6131                                                                 src);
6132                         if (err)
6133                                 return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6134                 }
6135         }
6136 
6137         if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6138                 goto set_fwd_params;
6139 
6140         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6141          * not needed here.
6142          */
6143         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6144         if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6145                 return BPF_FIB_LKUP_RET_NO_NEIGH;
6146         memcpy(params->dmac, neigh->ha, ETH_ALEN);
6147         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6148 
6149 set_fwd_params:
6150         return bpf_fib_set_fwd_params(params, mtu);
6151 }
6152 #endif
6153 
6154 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6155                              BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6156                              BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK)
6157 
6158 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6159            struct bpf_fib_lookup *, params, int, plen, u32, flags)
6160 {
6161         if (plen < sizeof(*params))
6162                 return -EINVAL;
6163 
6164         if (flags & ~BPF_FIB_LOOKUP_MASK)
6165                 return -EINVAL;
6166 
6167         switch (params->family) {
6168 #if IS_ENABLED(CONFIG_INET)
6169         case AF_INET:
6170                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6171                                            flags, true);
6172 #endif
6173 #if IS_ENABLED(CONFIG_IPV6)
6174         case AF_INET6:
6175                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6176                                            flags, true);
6177 #endif
6178         }
6179         return -EAFNOSUPPORT;
6180 }
6181 
6182 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6183         .func           = bpf_xdp_fib_lookup,
6184         .gpl_only       = true,
6185         .ret_type       = RET_INTEGER,
6186         .arg1_type      = ARG_PTR_TO_CTX,
6187         .arg2_type      = ARG_PTR_TO_MEM,
6188         .arg3_type      = ARG_CONST_SIZE,
6189         .arg4_type      = ARG_ANYTHING,
6190 };
6191 
6192 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6193            struct bpf_fib_lookup *, params, int, plen, u32, flags)
6194 {
6195         struct net *net = dev_net(skb->dev);
6196         int rc = -EAFNOSUPPORT;
6197         bool check_mtu = false;
6198 
6199         if (plen < sizeof(*params))
6200                 return -EINVAL;
6201 
6202         if (flags & ~BPF_FIB_LOOKUP_MASK)
6203                 return -EINVAL;
6204 
6205         if (params->tot_len)
6206                 check_mtu = true;
6207 
6208         switch (params->family) {
6209 #if IS_ENABLED(CONFIG_INET)
6210         case AF_INET:
6211                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6212                 break;
6213 #endif
6214 #if IS_ENABLED(CONFIG_IPV6)
6215         case AF_INET6:
6216                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6217                 break;
6218 #endif
6219         }
6220 
6221         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6222                 struct net_device *dev;
6223 
6224                 /* When tot_len isn't provided by user, check skb
6225                  * against MTU of FIB lookup resulting net_device
6226                  */
6227                 dev = dev_get_by_index_rcu(net, params->ifindex);
6228                 if (!is_skb_forwardable(dev, skb))
6229                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6230 
6231                 params->mtu_result = dev->mtu; /* union with tot_len */
6232         }
6233 
6234         return rc;
6235 }
6236 
6237 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6238         .func           = bpf_skb_fib_lookup,
6239         .gpl_only       = true,
6240         .ret_type       = RET_INTEGER,
6241         .arg1_type      = ARG_PTR_TO_CTX,
6242         .arg2_type      = ARG_PTR_TO_MEM,
6243         .arg3_type      = ARG_CONST_SIZE,
6244         .arg4_type      = ARG_ANYTHING,
6245 };
6246 
6247 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6248                                             u32 ifindex)
6249 {
6250         struct net *netns = dev_net(dev_curr);
6251 
6252         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6253         if (ifindex == 0)
6254                 return dev_curr;
6255 
6256         return dev_get_by_index_rcu(netns, ifindex);
6257 }
6258 
6259 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6260            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6261 {
6262         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6263         struct net_device *dev = skb->dev;
6264         int skb_len, dev_len;
6265         int mtu;
6266 
6267         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6268                 return -EINVAL;
6269 
6270         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6271                 return -EINVAL;
6272 
6273         dev = __dev_via_ifindex(dev, ifindex);
6274         if (unlikely(!dev))
6275                 return -ENODEV;
6276 
6277         mtu = READ_ONCE(dev->mtu);
6278 
6279         dev_len = mtu + dev->hard_header_len;
6280 
6281         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6282         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6283 
6284         skb_len += len_diff; /* minus result pass check */
6285         if (skb_len <= dev_len) {
6286                 ret = BPF_MTU_CHK_RET_SUCCESS;
6287                 goto out;
6288         }
6289         /* At this point, skb->len exceed MTU, but as it include length of all
6290          * segments, it can still be below MTU.  The SKB can possibly get
6291          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6292          * must choose if segs are to be MTU checked.
6293          */
6294         if (skb_is_gso(skb)) {
6295                 ret = BPF_MTU_CHK_RET_SUCCESS;
6296 
6297                 if (flags & BPF_MTU_CHK_SEGS &&
6298                     !skb_gso_validate_network_len(skb, mtu))
6299                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6300         }
6301 out:
6302         /* BPF verifier guarantees valid pointer */
6303         *mtu_len = mtu;
6304 
6305         return ret;
6306 }
6307 
6308 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6309            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6310 {
6311         struct net_device *dev = xdp->rxq->dev;
6312         int xdp_len = xdp->data_end - xdp->data;
6313         int ret = BPF_MTU_CHK_RET_SUCCESS;
6314         int mtu, dev_len;
6315 
6316         /* XDP variant doesn't support multi-buffer segment check (yet) */
6317         if (unlikely(flags))
6318                 return -EINVAL;
6319 
6320         dev = __dev_via_ifindex(dev, ifindex);
6321         if (unlikely(!dev))
6322                 return -ENODEV;
6323 
6324         mtu = READ_ONCE(dev->mtu);
6325 
6326         /* Add L2-header as dev MTU is L3 size */
6327         dev_len = mtu + dev->hard_header_len;
6328 
6329         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6330         if (*mtu_len)
6331                 xdp_len = *mtu_len + dev->hard_header_len;
6332 
6333         xdp_len += len_diff; /* minus result pass check */
6334         if (xdp_len > dev_len)
6335                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6336 
6337         /* BPF verifier guarantees valid pointer */
6338         *mtu_len = mtu;
6339 
6340         return ret;
6341 }
6342 
6343 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6344         .func           = bpf_skb_check_mtu,
6345         .gpl_only       = true,
6346         .ret_type       = RET_INTEGER,
6347         .arg1_type      = ARG_PTR_TO_CTX,
6348         .arg2_type      = ARG_ANYTHING,
6349         .arg3_type      = ARG_PTR_TO_INT,
6350         .arg4_type      = ARG_ANYTHING,
6351         .arg5_type      = ARG_ANYTHING,
6352 };
6353 
6354 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6355         .func           = bpf_xdp_check_mtu,
6356         .gpl_only       = true,
6357         .ret_type       = RET_INTEGER,
6358         .arg1_type      = ARG_PTR_TO_CTX,
6359         .arg2_type      = ARG_ANYTHING,
6360         .arg3_type      = ARG_PTR_TO_INT,
6361         .arg4_type      = ARG_ANYTHING,
6362         .arg5_type      = ARG_ANYTHING,
6363 };
6364 
6365 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6366 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6367 {
6368         int err;
6369         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6370 
6371         if (!seg6_validate_srh(srh, len, false))
6372                 return -EINVAL;
6373 
6374         switch (type) {
6375         case BPF_LWT_ENCAP_SEG6_INLINE:
6376                 if (skb->protocol != htons(ETH_P_IPV6))
6377                         return -EBADMSG;
6378 
6379                 err = seg6_do_srh_inline(skb, srh);
6380                 break;
6381         case BPF_LWT_ENCAP_SEG6:
6382                 skb_reset_inner_headers(skb);
6383                 skb->encapsulation = 1;
6384                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6385                 break;
6386         default:
6387                 return -EINVAL;
6388         }
6389 
6390         bpf_compute_data_pointers(skb);
6391         if (err)
6392                 return err;
6393 
6394         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6395 
6396         return seg6_lookup_nexthop(skb, NULL, 0);
6397 }
6398 #endif /* CONFIG_IPV6_SEG6_BPF */
6399 
6400 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6401 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6402                              bool ingress)
6403 {
6404         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6405 }
6406 #endif
6407 
6408 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6409            u32, len)
6410 {
6411         switch (type) {
6412 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6413         case BPF_LWT_ENCAP_SEG6:
6414         case BPF_LWT_ENCAP_SEG6_INLINE:
6415                 return bpf_push_seg6_encap(skb, type, hdr, len);
6416 #endif
6417 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6418         case BPF_LWT_ENCAP_IP:
6419                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6420 #endif
6421         default:
6422                 return -EINVAL;
6423         }
6424 }
6425 
6426 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6427            void *, hdr, u32, len)
6428 {
6429         switch (type) {
6430 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6431         case BPF_LWT_ENCAP_IP:
6432                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6433 #endif
6434         default:
6435                 return -EINVAL;
6436         }
6437 }
6438 
6439 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6440         .func           = bpf_lwt_in_push_encap,
6441         .gpl_only       = false,
6442         .ret_type       = RET_INTEGER,
6443         .arg1_type      = ARG_PTR_TO_CTX,
6444         .arg2_type      = ARG_ANYTHING,
6445         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6446         .arg4_type      = ARG_CONST_SIZE
6447 };
6448 
6449 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6450         .func           = bpf_lwt_xmit_push_encap,
6451         .gpl_only       = false,
6452         .ret_type       = RET_INTEGER,
6453         .arg1_type      = ARG_PTR_TO_CTX,
6454         .arg2_type      = ARG_ANYTHING,
6455         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6456         .arg4_type      = ARG_CONST_SIZE
6457 };
6458 
6459 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6460 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6461            const void *, from, u32, len)
6462 {
6463         struct seg6_bpf_srh_state *srh_state =
6464                 this_cpu_ptr(&seg6_bpf_srh_states);
6465         struct ipv6_sr_hdr *srh = srh_state->srh;
6466         void *srh_tlvs, *srh_end, *ptr;
6467         int srhoff = 0;
6468 
6469         lockdep_assert_held(&srh_state->bh_lock);
6470         if (srh == NULL)
6471                 return -EINVAL;
6472 
6473         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6474         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6475 
6476         ptr = skb->data + offset;
6477         if (ptr >= srh_tlvs && ptr + len <= srh_end)
6478                 srh_state->valid = false;
6479         else if (ptr < (void *)&srh->flags ||
6480                  ptr + len > (void *)&srh->segments)
6481                 return -EFAULT;
6482 
6483         if (unlikely(bpf_try_make_writable(skb, offset + len)))
6484                 return -EFAULT;
6485         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6486                 return -EINVAL;
6487         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6488 
6489         memcpy(skb->data + offset, from, len);
6490         return 0;
6491 }
6492 
6493 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6494         .func           = bpf_lwt_seg6_store_bytes,
6495         .gpl_only       = false,
6496         .ret_type       = RET_INTEGER,
6497         .arg1_type      = ARG_PTR_TO_CTX,
6498         .arg2_type      = ARG_ANYTHING,
6499         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6500         .arg4_type      = ARG_CONST_SIZE
6501 };
6502 
6503 static void bpf_update_srh_state(struct sk_buff *skb)
6504 {
6505         struct seg6_bpf_srh_state *srh_state =
6506                 this_cpu_ptr(&seg6_bpf_srh_states);
6507         int srhoff = 0;
6508 
6509         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6510                 srh_state->srh = NULL;
6511         } else {
6512                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6513                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6514                 srh_state->valid = true;
6515         }
6516 }
6517 
6518 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6519            u32, action, void *, param, u32, param_len)
6520 {
6521         struct seg6_bpf_srh_state *srh_state =
6522                 this_cpu_ptr(&seg6_bpf_srh_states);
6523         int hdroff = 0;
6524         int err;
6525 
6526         lockdep_assert_held(&srh_state->bh_lock);
6527         switch (action) {
6528         case SEG6_LOCAL_ACTION_END_X:
6529                 if (!seg6_bpf_has_valid_srh(skb))
6530                         return -EBADMSG;
6531                 if (param_len != sizeof(struct in6_addr))
6532                         return -EINVAL;
6533                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6534         case SEG6_LOCAL_ACTION_END_T:
6535                 if (!seg6_bpf_has_valid_srh(skb))
6536                         return -EBADMSG;
6537                 if (param_len != sizeof(int))
6538                         return -EINVAL;
6539                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6540         case SEG6_LOCAL_ACTION_END_DT6:
6541                 if (!seg6_bpf_has_valid_srh(skb))
6542                         return -EBADMSG;
6543                 if (param_len != sizeof(int))
6544                         return -EINVAL;
6545 
6546                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6547                         return -EBADMSG;
6548                 if (!pskb_pull(skb, hdroff))
6549                         return -EBADMSG;
6550 
6551                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6552                 skb_reset_network_header(skb);
6553                 skb_reset_transport_header(skb);
6554                 skb->encapsulation = 0;
6555 
6556                 bpf_compute_data_pointers(skb);
6557                 bpf_update_srh_state(skb);
6558                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6559         case SEG6_LOCAL_ACTION_END_B6:
6560                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6561                         return -EBADMSG;
6562                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6563                                           param, param_len);
6564                 if (!err)
6565                         bpf_update_srh_state(skb);
6566 
6567                 return err;
6568         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6569                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6570                         return -EBADMSG;
6571                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6572                                           param, param_len);
6573                 if (!err)
6574                         bpf_update_srh_state(skb);
6575 
6576                 return err;
6577         default:
6578                 return -EINVAL;
6579         }
6580 }
6581 
6582 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6583         .func           = bpf_lwt_seg6_action,
6584         .gpl_only       = false,
6585         .ret_type       = RET_INTEGER,
6586         .arg1_type      = ARG_PTR_TO_CTX,
6587         .arg2_type      = ARG_ANYTHING,
6588         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6589         .arg4_type      = ARG_CONST_SIZE
6590 };
6591 
6592 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6593            s32, len)
6594 {
6595         struct seg6_bpf_srh_state *srh_state =
6596                 this_cpu_ptr(&seg6_bpf_srh_states);
6597         struct ipv6_sr_hdr *srh = srh_state->srh;
6598         void *srh_end, *srh_tlvs, *ptr;
6599         struct ipv6hdr *hdr;
6600         int srhoff = 0;
6601         int ret;
6602 
6603         lockdep_assert_held(&srh_state->bh_lock);
6604         if (unlikely(srh == NULL))
6605                 return -EINVAL;
6606 
6607         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6608                         ((srh->first_segment + 1) << 4));
6609         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6610                         srh_state->hdrlen);
6611         ptr = skb->data + offset;
6612 
6613         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6614                 return -EFAULT;
6615         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6616                 return -EFAULT;
6617 
6618         if (len > 0) {
6619                 ret = skb_cow_head(skb, len);
6620                 if (unlikely(ret < 0))
6621                         return ret;
6622 
6623                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6624         } else {
6625                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6626         }
6627 
6628         bpf_compute_data_pointers(skb);
6629         if (unlikely(ret < 0))
6630                 return ret;
6631 
6632         hdr = (struct ipv6hdr *)skb->data;
6633         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6634 
6635         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6636                 return -EINVAL;
6637         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6638         srh_state->hdrlen += len;
6639         srh_state->valid = false;
6640         return 0;
6641 }
6642 
6643 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6644         .func           = bpf_lwt_seg6_adjust_srh,
6645         .gpl_only       = false,
6646         .ret_type       = RET_INTEGER,
6647         .arg1_type      = ARG_PTR_TO_CTX,
6648         .arg2_type      = ARG_ANYTHING,
6649         .arg3_type      = ARG_ANYTHING,
6650 };
6651 #endif /* CONFIG_IPV6_SEG6_BPF */
6652 
6653 #ifdef CONFIG_INET
6654 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6655                               int dif, int sdif, u8 family, u8 proto)
6656 {
6657         struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6658         bool refcounted = false;
6659         struct sock *sk = NULL;
6660 
6661         if (family == AF_INET) {
6662                 __be32 src4 = tuple->ipv4.saddr;
6663                 __be32 dst4 = tuple->ipv4.daddr;
6664 
6665                 if (proto == IPPROTO_TCP)
6666                         sk = __inet_lookup(net, hinfo, NULL, 0,
6667                                            src4, tuple->ipv4.sport,
6668                                            dst4, tuple->ipv4.dport,
6669                                            dif, sdif, &refcounted);
6670                 else
6671                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6672                                                dst4, tuple->ipv4.dport,
6673                                                dif, sdif, net->ipv4.udp_table, NULL);
6674 #if IS_ENABLED(CONFIG_IPV6)
6675         } else {
6676                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6677                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6678 
6679                 if (proto == IPPROTO_TCP)
6680                         sk = __inet6_lookup(net, hinfo, NULL, 0,
6681                                             src6, tuple->ipv6.sport,
6682                                             dst6, ntohs(tuple->ipv6.dport),
6683                                             dif, sdif, &refcounted);
6684                 else if (likely(ipv6_bpf_stub))
6685                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6686                                                             src6, tuple->ipv6.sport,
6687                                                             dst6, tuple->ipv6.dport,
6688                                                             dif, sdif,
6689                                                             net->ipv4.udp_table, NULL);
6690 #endif
6691         }
6692 
6693         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6694                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6695                 sk = NULL;
6696         }
6697         return sk;
6698 }
6699 
6700 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6701  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6702  */
6703 static struct sock *
6704 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6705                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6706                  u64 flags, int sdif)
6707 {
6708         struct sock *sk = NULL;
6709         struct net *net;
6710         u8 family;
6711 
6712         if (len == sizeof(tuple->ipv4))
6713                 family = AF_INET;
6714         else if (len == sizeof(tuple->ipv6))
6715                 family = AF_INET6;
6716         else
6717                 return NULL;
6718 
6719         if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6720                 goto out;
6721 
6722         if (sdif < 0) {
6723                 if (family == AF_INET)
6724                         sdif = inet_sdif(skb);
6725                 else
6726                         sdif = inet6_sdif(skb);
6727         }
6728 
6729         if ((s32)netns_id < 0) {
6730                 net = caller_net;
6731                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6732         } else {
6733                 net = get_net_ns_by_id(caller_net, netns_id);
6734                 if (unlikely(!net))
6735                         goto out;
6736                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6737                 put_net(net);
6738         }
6739 
6740 out:
6741         return sk;
6742 }
6743 
6744 static struct sock *
6745 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6746                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6747                 u64 flags, int sdif)
6748 {
6749         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6750                                            ifindex, proto, netns_id, flags,
6751                                            sdif);
6752 
6753         if (sk) {
6754                 struct sock *sk2 = sk_to_full_sk(sk);
6755 
6756                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6757                  * sock refcnt is decremented to prevent a request_sock leak.
6758                  */
6759                 if (!sk_fullsock(sk2))
6760                         sk2 = NULL;
6761                 if (sk2 != sk) {
6762                         sock_gen_put(sk);
6763                         /* Ensure there is no need to bump sk2 refcnt */
6764                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6765                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6766                                 return NULL;
6767                         }
6768                         sk = sk2;
6769                 }
6770         }
6771 
6772         return sk;
6773 }
6774 
6775 static struct sock *
6776 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6777                u8 proto, u64 netns_id, u64 flags)
6778 {
6779         struct net *caller_net;
6780         int ifindex;
6781 
6782         if (skb->dev) {
6783                 caller_net = dev_net(skb->dev);
6784                 ifindex = skb->dev->ifindex;
6785         } else {
6786                 caller_net = sock_net(skb->sk);
6787                 ifindex = 0;
6788         }
6789 
6790         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6791                                 netns_id, flags, -1);
6792 }
6793 
6794 static struct sock *
6795 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6796               u8 proto, u64 netns_id, u64 flags)
6797 {
6798         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6799                                          flags);
6800 
6801         if (sk) {
6802                 struct sock *sk2 = sk_to_full_sk(sk);
6803 
6804                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6805                  * sock refcnt is decremented to prevent a request_sock leak.
6806                  */
6807                 if (!sk_fullsock(sk2))
6808                         sk2 = NULL;
6809                 if (sk2 != sk) {
6810                         sock_gen_put(sk);
6811                         /* Ensure there is no need to bump sk2 refcnt */
6812                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6813                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6814                                 return NULL;
6815                         }
6816                         sk = sk2;
6817                 }
6818         }
6819 
6820         return sk;
6821 }
6822 
6823 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6824            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6825 {
6826         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6827                                              netns_id, flags);
6828 }
6829 
6830 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6831         .func           = bpf_skc_lookup_tcp,
6832         .gpl_only       = false,
6833         .pkt_access     = true,
6834         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6835         .arg1_type      = ARG_PTR_TO_CTX,
6836         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6837         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
6838         .arg4_type      = ARG_ANYTHING,
6839         .arg5_type      = ARG_ANYTHING,
6840 };
6841 
6842 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6843            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6844 {
6845         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6846                                             netns_id, flags);
6847 }
6848 
6849 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6850         .func           = bpf_sk_lookup_tcp,
6851         .gpl_only       = false,
6852         .pkt_access     = true,
6853         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6854         .arg1_type      = ARG_PTR_TO_CTX,
6855         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6856         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
6857         .arg4_type      = ARG_ANYTHING,
6858         .arg5_type      = ARG_ANYTHING,
6859 };
6860 
6861 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6862            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6863 {
6864         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6865                                             netns_id, flags);
6866 }
6867 
6868 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6869         .func           = bpf_sk_lookup_udp,
6870         .gpl_only       = false,
6871         .pkt_access     = true,
6872         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6873         .arg1_type      = ARG_PTR_TO_CTX,
6874         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6875         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
6876         .arg4_type      = ARG_ANYTHING,
6877         .arg5_type      = ARG_ANYTHING,
6878 };
6879 
6880 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6881            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6882 {
6883         struct net_device *dev = skb->dev;
6884         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6885         struct net *caller_net = dev_net(dev);
6886 
6887         return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6888                                                ifindex, IPPROTO_TCP, netns_id,
6889                                                flags, sdif);
6890 }
6891 
6892 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6893         .func           = bpf_tc_skc_lookup_tcp,
6894         .gpl_only       = false,
6895         .pkt_access     = true,
6896         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6897         .arg1_type      = ARG_PTR_TO_CTX,
6898         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6899         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
6900         .arg4_type      = ARG_ANYTHING,
6901         .arg5_type      = ARG_ANYTHING,
6902 };
6903 
6904 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6905            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6906 {
6907         struct net_device *dev = skb->dev;
6908         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6909         struct net *caller_net = dev_net(dev);
6910 
6911         return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6912                                               ifindex, IPPROTO_TCP, netns_id,
6913                                               flags, sdif);
6914 }
6915 
6916 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6917         .func           = bpf_tc_sk_lookup_tcp,
6918         .gpl_only       = false,
6919         .pkt_access     = true,
6920         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6921         .arg1_type      = ARG_PTR_TO_CTX,
6922         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6923         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
6924         .arg4_type      = ARG_ANYTHING,
6925         .arg5_type      = ARG_ANYTHING,
6926 };
6927 
6928 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6929            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6930 {
6931         struct net_device *dev = skb->dev;
6932         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6933         struct net *caller_net = dev_net(dev);
6934 
6935         return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6936                                               ifindex, IPPROTO_UDP, netns_id,
6937                                               flags, sdif);
6938 }
6939 
6940 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6941         .func           = bpf_tc_sk_lookup_udp,
6942         .gpl_only       = false,
6943         .pkt_access     = true,
6944         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6945         .arg1_type      = ARG_PTR_TO_CTX,
6946         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6947         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
6948         .arg4_type      = ARG_ANYTHING,
6949         .arg5_type      = ARG_ANYTHING,
6950 };
6951 
6952 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6953 {
6954         if (sk && sk_is_refcounted(sk))
6955                 sock_gen_put(sk);
6956         return 0;
6957 }
6958 
6959 static const struct bpf_func_proto bpf_sk_release_proto = {
6960         .func           = bpf_sk_release,
6961         .gpl_only       = false,
6962         .ret_type       = RET_INTEGER,
6963         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6964 };
6965 
6966 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6967            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6968 {
6969         struct net_device *dev = ctx->rxq->dev;
6970         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6971         struct net *caller_net = dev_net(dev);
6972 
6973         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6974                                               ifindex, IPPROTO_UDP, netns_id,
6975                                               flags, sdif);
6976 }
6977 
6978 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6979         .func           = bpf_xdp_sk_lookup_udp,
6980         .gpl_only       = false,
6981         .pkt_access     = true,
6982         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6983         .arg1_type      = ARG_PTR_TO_CTX,
6984         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6985         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
6986         .arg4_type      = ARG_ANYTHING,
6987         .arg5_type      = ARG_ANYTHING,
6988 };
6989 
6990 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6991            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6992 {
6993         struct net_device *dev = ctx->rxq->dev;
6994         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6995         struct net *caller_net = dev_net(dev);
6996 
6997         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6998                                                ifindex, IPPROTO_TCP, netns_id,
6999                                                flags, sdif);
7000 }
7001 
7002 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
7003         .func           = bpf_xdp_skc_lookup_tcp,
7004         .gpl_only       = false,
7005         .pkt_access     = true,
7006         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7007         .arg1_type      = ARG_PTR_TO_CTX,
7008         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7009         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7010         .arg4_type      = ARG_ANYTHING,
7011         .arg5_type      = ARG_ANYTHING,
7012 };
7013 
7014 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
7015            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
7016 {
7017         struct net_device *dev = ctx->rxq->dev;
7018         int ifindex = dev->ifindex, sdif = dev_sdif(dev);
7019         struct net *caller_net = dev_net(dev);
7020 
7021         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
7022                                               ifindex, IPPROTO_TCP, netns_id,
7023                                               flags, sdif);
7024 }
7025 
7026 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
7027         .func           = bpf_xdp_sk_lookup_tcp,
7028         .gpl_only       = false,
7029         .pkt_access     = true,
7030         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7031         .arg1_type      = ARG_PTR_TO_CTX,
7032         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7033         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7034         .arg4_type      = ARG_ANYTHING,
7035         .arg5_type      = ARG_ANYTHING,
7036 };
7037 
7038 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7039            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7040 {
7041         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7042                                                sock_net(ctx->sk), 0,
7043                                                IPPROTO_TCP, netns_id, flags,
7044                                                -1);
7045 }
7046 
7047 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7048         .func           = bpf_sock_addr_skc_lookup_tcp,
7049         .gpl_only       = false,
7050         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
7051         .arg1_type      = ARG_PTR_TO_CTX,
7052         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7053         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7054         .arg4_type      = ARG_ANYTHING,
7055         .arg5_type      = ARG_ANYTHING,
7056 };
7057 
7058 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7059            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7060 {
7061         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7062                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
7063                                               netns_id, flags, -1);
7064 }
7065 
7066 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7067         .func           = bpf_sock_addr_sk_lookup_tcp,
7068         .gpl_only       = false,
7069         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7070         .arg1_type      = ARG_PTR_TO_CTX,
7071         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7072         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7073         .arg4_type      = ARG_ANYTHING,
7074         .arg5_type      = ARG_ANYTHING,
7075 };
7076 
7077 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7078            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7079 {
7080         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7081                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
7082                                               netns_id, flags, -1);
7083 }
7084 
7085 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7086         .func           = bpf_sock_addr_sk_lookup_udp,
7087         .gpl_only       = false,
7088         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7089         .arg1_type      = ARG_PTR_TO_CTX,
7090         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7091         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7092         .arg4_type      = ARG_ANYTHING,
7093         .arg5_type      = ARG_ANYTHING,
7094 };
7095 
7096 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7097                                   struct bpf_insn_access_aux *info)
7098 {
7099         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7100                                           icsk_retransmits))
7101                 return false;
7102 
7103         if (off % size != 0)
7104                 return false;
7105 
7106         switch (off) {
7107         case offsetof(struct bpf_tcp_sock, bytes_received):
7108         case offsetof(struct bpf_tcp_sock, bytes_acked):
7109                 return size == sizeof(__u64);
7110         default:
7111                 return size == sizeof(__u32);
7112         }
7113 }
7114 
7115 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7116                                     const struct bpf_insn *si,
7117                                     struct bpf_insn *insn_buf,
7118                                     struct bpf_prog *prog, u32 *target_size)
7119 {
7120         struct bpf_insn *insn = insn_buf;
7121 
7122 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
7123         do {                                                            \
7124                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
7125                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
7126                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7127                                       si->dst_reg, si->src_reg,         \
7128                                       offsetof(struct tcp_sock, FIELD)); \
7129         } while (0)
7130 
7131 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
7132         do {                                                            \
7133                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
7134                                           FIELD) >                      \
7135                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
7136                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
7137                                         struct inet_connection_sock,    \
7138                                         FIELD),                         \
7139                                       si->dst_reg, si->src_reg,         \
7140                                       offsetof(                         \
7141                                         struct inet_connection_sock,    \
7142                                         FIELD));                        \
7143         } while (0)
7144 
7145         BTF_TYPE_EMIT(struct bpf_tcp_sock);
7146 
7147         switch (si->off) {
7148         case offsetof(struct bpf_tcp_sock, rtt_min):
7149                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7150                              sizeof(struct minmax));
7151                 BUILD_BUG_ON(sizeof(struct minmax) <
7152                              sizeof(struct minmax_sample));
7153 
7154                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7155                                       offsetof(struct tcp_sock, rtt_min) +
7156                                       offsetof(struct minmax_sample, v));
7157                 break;
7158         case offsetof(struct bpf_tcp_sock, snd_cwnd):
7159                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7160                 break;
7161         case offsetof(struct bpf_tcp_sock, srtt_us):
7162                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7163                 break;
7164         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7165                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7166                 break;
7167         case offsetof(struct bpf_tcp_sock, rcv_nxt):
7168                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7169                 break;
7170         case offsetof(struct bpf_tcp_sock, snd_nxt):
7171                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7172                 break;
7173         case offsetof(struct bpf_tcp_sock, snd_una):
7174                 BPF_TCP_SOCK_GET_COMMON(snd_una);
7175                 break;
7176         case offsetof(struct bpf_tcp_sock, mss_cache):
7177                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7178                 break;
7179         case offsetof(struct bpf_tcp_sock, ecn_flags):
7180                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7181                 break;
7182         case offsetof(struct bpf_tcp_sock, rate_delivered):
7183                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7184                 break;
7185         case offsetof(struct bpf_tcp_sock, rate_interval_us):
7186                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7187                 break;
7188         case offsetof(struct bpf_tcp_sock, packets_out):
7189                 BPF_TCP_SOCK_GET_COMMON(packets_out);
7190                 break;
7191         case offsetof(struct bpf_tcp_sock, retrans_out):
7192                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7193                 break;
7194         case offsetof(struct bpf_tcp_sock, total_retrans):
7195                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7196                 break;
7197         case offsetof(struct bpf_tcp_sock, segs_in):
7198                 BPF_TCP_SOCK_GET_COMMON(segs_in);
7199                 break;
7200         case offsetof(struct bpf_tcp_sock, data_segs_in):
7201                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7202                 break;
7203         case offsetof(struct bpf_tcp_sock, segs_out):
7204                 BPF_TCP_SOCK_GET_COMMON(segs_out);
7205                 break;
7206         case offsetof(struct bpf_tcp_sock, data_segs_out):
7207                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7208                 break;
7209         case offsetof(struct bpf_tcp_sock, lost_out):
7210                 BPF_TCP_SOCK_GET_COMMON(lost_out);
7211                 break;
7212         case offsetof(struct bpf_tcp_sock, sacked_out):
7213                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7214                 break;
7215         case offsetof(struct bpf_tcp_sock, bytes_received):
7216                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7217                 break;
7218         case offsetof(struct bpf_tcp_sock, bytes_acked):
7219                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7220                 break;
7221         case offsetof(struct bpf_tcp_sock, dsack_dups):
7222                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7223                 break;
7224         case offsetof(struct bpf_tcp_sock, delivered):
7225                 BPF_TCP_SOCK_GET_COMMON(delivered);
7226                 break;
7227         case offsetof(struct bpf_tcp_sock, delivered_ce):
7228                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7229                 break;
7230         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7231                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7232                 break;
7233         }
7234 
7235         return insn - insn_buf;
7236 }
7237 
7238 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7239 {
7240         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7241                 return (unsigned long)sk;
7242 
7243         return (unsigned long)NULL;
7244 }
7245 
7246 const struct bpf_func_proto bpf_tcp_sock_proto = {
7247         .func           = bpf_tcp_sock,
7248         .gpl_only       = false,
7249         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
7250         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
7251 };
7252 
7253 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7254 {
7255         sk = sk_to_full_sk(sk);
7256 
7257         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7258                 return (unsigned long)sk;
7259 
7260         return (unsigned long)NULL;
7261 }
7262 
7263 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7264         .func           = bpf_get_listener_sock,
7265         .gpl_only       = false,
7266         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
7267         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
7268 };
7269 
7270 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7271 {
7272         unsigned int iphdr_len;
7273 
7274         switch (skb_protocol(skb, true)) {
7275         case cpu_to_be16(ETH_P_IP):
7276                 iphdr_len = sizeof(struct iphdr);
7277                 break;
7278         case cpu_to_be16(ETH_P_IPV6):
7279                 iphdr_len = sizeof(struct ipv6hdr);
7280                 break;
7281         default:
7282                 return 0;
7283         }
7284 
7285         if (skb_headlen(skb) < iphdr_len)
7286                 return 0;
7287 
7288         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7289                 return 0;
7290 
7291         return INET_ECN_set_ce(skb);
7292 }
7293 
7294 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7295                                   struct bpf_insn_access_aux *info)
7296 {
7297         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7298                 return false;
7299 
7300         if (off % size != 0)
7301                 return false;
7302 
7303         switch (off) {
7304         default:
7305                 return size == sizeof(__u32);
7306         }
7307 }
7308 
7309 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7310                                     const struct bpf_insn *si,
7311                                     struct bpf_insn *insn_buf,
7312                                     struct bpf_prog *prog, u32 *target_size)
7313 {
7314         struct bpf_insn *insn = insn_buf;
7315 
7316 #define BPF_XDP_SOCK_GET(FIELD)                                         \
7317         do {                                                            \
7318                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
7319                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
7320                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7321                                       si->dst_reg, si->src_reg,         \
7322                                       offsetof(struct xdp_sock, FIELD)); \
7323         } while (0)
7324 
7325         switch (si->off) {
7326         case offsetof(struct bpf_xdp_sock, queue_id):
7327                 BPF_XDP_SOCK_GET(queue_id);
7328                 break;
7329         }
7330 
7331         return insn - insn_buf;
7332 }
7333 
7334 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7335         .func           = bpf_skb_ecn_set_ce,
7336         .gpl_only       = false,
7337         .ret_type       = RET_INTEGER,
7338         .arg1_type      = ARG_PTR_TO_CTX,
7339 };
7340 
7341 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7342            struct tcphdr *, th, u32, th_len)
7343 {
7344 #ifdef CONFIG_SYN_COOKIES
7345         int ret;
7346 
7347         if (unlikely(!sk || th_len < sizeof(*th)))
7348                 return -EINVAL;
7349 
7350         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7351         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7352                 return -EINVAL;
7353 
7354         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7355                 return -EINVAL;
7356 
7357         if (!th->ack || th->rst || th->syn)
7358                 return -ENOENT;
7359 
7360         if (unlikely(iph_len < sizeof(struct iphdr)))
7361                 return -EINVAL;
7362 
7363         if (tcp_synq_no_recent_overflow(sk))
7364                 return -ENOENT;
7365 
7366         /* Both struct iphdr and struct ipv6hdr have the version field at the
7367          * same offset so we can cast to the shorter header (struct iphdr).
7368          */
7369         switch (((struct iphdr *)iph)->version) {
7370         case 4:
7371                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7372                         return -EINVAL;
7373 
7374                 ret = __cookie_v4_check((struct iphdr *)iph, th);
7375                 break;
7376 
7377 #if IS_BUILTIN(CONFIG_IPV6)
7378         case 6:
7379                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7380                         return -EINVAL;
7381 
7382                 if (sk->sk_family != AF_INET6)
7383                         return -EINVAL;
7384 
7385                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7386                 break;
7387 #endif /* CONFIG_IPV6 */
7388 
7389         default:
7390                 return -EPROTONOSUPPORT;
7391         }
7392 
7393         if (ret > 0)
7394                 return 0;
7395 
7396         return -ENOENT;
7397 #else
7398         return -ENOTSUPP;
7399 #endif
7400 }
7401 
7402 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7403         .func           = bpf_tcp_check_syncookie,
7404         .gpl_only       = true,
7405         .pkt_access     = true,
7406         .ret_type       = RET_INTEGER,
7407         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7408         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7409         .arg3_type      = ARG_CONST_SIZE,
7410         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7411         .arg5_type      = ARG_CONST_SIZE,
7412 };
7413 
7414 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7415            struct tcphdr *, th, u32, th_len)
7416 {
7417 #ifdef CONFIG_SYN_COOKIES
7418         u32 cookie;
7419         u16 mss;
7420 
7421         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7422                 return -EINVAL;
7423 
7424         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7425                 return -EINVAL;
7426 
7427         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7428                 return -ENOENT;
7429 
7430         if (!th->syn || th->ack || th->fin || th->rst)
7431                 return -EINVAL;
7432 
7433         if (unlikely(iph_len < sizeof(struct iphdr)))
7434                 return -EINVAL;
7435 
7436         /* Both struct iphdr and struct ipv6hdr have the version field at the
7437          * same offset so we can cast to the shorter header (struct iphdr).
7438          */
7439         switch (((struct iphdr *)iph)->version) {
7440         case 4:
7441                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7442                         return -EINVAL;
7443 
7444                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7445                 break;
7446 
7447 #if IS_BUILTIN(CONFIG_IPV6)
7448         case 6:
7449                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7450                         return -EINVAL;
7451 
7452                 if (sk->sk_family != AF_INET6)
7453                         return -EINVAL;
7454 
7455                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7456                 break;
7457 #endif /* CONFIG_IPV6 */
7458 
7459         default:
7460                 return -EPROTONOSUPPORT;
7461         }
7462         if (mss == 0)
7463                 return -ENOENT;
7464 
7465         return cookie | ((u64)mss << 32);
7466 #else
7467         return -EOPNOTSUPP;
7468 #endif /* CONFIG_SYN_COOKIES */
7469 }
7470 
7471 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7472         .func           = bpf_tcp_gen_syncookie,
7473         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
7474         .pkt_access     = true,
7475         .ret_type       = RET_INTEGER,
7476         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7477         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7478         .arg3_type      = ARG_CONST_SIZE,
7479         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7480         .arg5_type      = ARG_CONST_SIZE,
7481 };
7482 
7483 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7484 {
7485         if (!sk || flags != 0)
7486                 return -EINVAL;
7487         if (!skb_at_tc_ingress(skb))
7488                 return -EOPNOTSUPP;
7489         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7490                 return -ENETUNREACH;
7491         if (sk_unhashed(sk))
7492                 return -EOPNOTSUPP;
7493         if (sk_is_refcounted(sk) &&
7494             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7495                 return -ENOENT;
7496 
7497         skb_orphan(skb);
7498         skb->sk = sk;
7499         skb->destructor = sock_pfree;
7500 
7501         return 0;
7502 }
7503 
7504 static const struct bpf_func_proto bpf_sk_assign_proto = {
7505         .func           = bpf_sk_assign,
7506         .gpl_only       = false,
7507         .ret_type       = RET_INTEGER,
7508         .arg1_type      = ARG_PTR_TO_CTX,
7509         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7510         .arg3_type      = ARG_ANYTHING,
7511 };
7512 
7513 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7514                                     u8 search_kind, const u8 *magic,
7515                                     u8 magic_len, bool *eol)
7516 {
7517         u8 kind, kind_len;
7518 
7519         *eol = false;
7520 
7521         while (op < opend) {
7522                 kind = op[0];
7523 
7524                 if (kind == TCPOPT_EOL) {
7525                         *eol = true;
7526                         return ERR_PTR(-ENOMSG);
7527                 } else if (kind == TCPOPT_NOP) {
7528                         op++;
7529                         continue;
7530                 }
7531 
7532                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7533                         /* Something is wrong in the received header.
7534                          * Follow the TCP stack's tcp_parse_options()
7535                          * and just bail here.
7536                          */
7537                         return ERR_PTR(-EFAULT);
7538 
7539                 kind_len = op[1];
7540                 if (search_kind == kind) {
7541                         if (!magic_len)
7542                                 return op;
7543 
7544                         if (magic_len > kind_len - 2)
7545                                 return ERR_PTR(-ENOMSG);
7546 
7547                         if (!memcmp(&op[2], magic, magic_len))
7548                                 return op;
7549                 }
7550 
7551                 op += kind_len;
7552         }
7553 
7554         return ERR_PTR(-ENOMSG);
7555 }
7556 
7557 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7558            void *, search_res, u32, len, u64, flags)
7559 {
7560         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7561         const u8 *op, *opend, *magic, *search = search_res;
7562         u8 search_kind, search_len, copy_len, magic_len;
7563         int ret;
7564 
7565         /* 2 byte is the minimal option len except TCPOPT_NOP and
7566          * TCPOPT_EOL which are useless for the bpf prog to learn
7567          * and this helper disallow loading them also.
7568          */
7569         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7570                 return -EINVAL;
7571 
7572         search_kind = search[0];
7573         search_len = search[1];
7574 
7575         if (search_len > len || search_kind == TCPOPT_NOP ||
7576             search_kind == TCPOPT_EOL)
7577                 return -EINVAL;
7578 
7579         if (search_kind == TCPOPT_EXP || search_kind == 253) {
7580                 /* 16 or 32 bit magic.  +2 for kind and kind length */
7581                 if (search_len != 4 && search_len != 6)
7582                         return -EINVAL;
7583                 magic = &search[2];
7584                 magic_len = search_len - 2;
7585         } else {
7586                 if (search_len)
7587                         return -EINVAL;
7588                 magic = NULL;
7589                 magic_len = 0;
7590         }
7591 
7592         if (load_syn) {
7593                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7594                 if (ret < 0)
7595                         return ret;
7596 
7597                 opend = op + ret;
7598                 op += sizeof(struct tcphdr);
7599         } else {
7600                 if (!bpf_sock->skb ||
7601                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7602                         /* This bpf_sock->op cannot call this helper */
7603                         return -EPERM;
7604 
7605                 opend = bpf_sock->skb_data_end;
7606                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7607         }
7608 
7609         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7610                                 &eol);
7611         if (IS_ERR(op))
7612                 return PTR_ERR(op);
7613 
7614         copy_len = op[1];
7615         ret = copy_len;
7616         if (copy_len > len) {
7617                 ret = -ENOSPC;
7618                 copy_len = len;
7619         }
7620 
7621         memcpy(search_res, op, copy_len);
7622         return ret;
7623 }
7624 
7625 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7626         .func           = bpf_sock_ops_load_hdr_opt,
7627         .gpl_only       = false,
7628         .ret_type       = RET_INTEGER,
7629         .arg1_type      = ARG_PTR_TO_CTX,
7630         .arg2_type      = ARG_PTR_TO_MEM,
7631         .arg3_type      = ARG_CONST_SIZE,
7632         .arg4_type      = ARG_ANYTHING,
7633 };
7634 
7635 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7636            const void *, from, u32, len, u64, flags)
7637 {
7638         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7639         const u8 *op, *new_op, *magic = NULL;
7640         struct sk_buff *skb;
7641         bool eol;
7642 
7643         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7644                 return -EPERM;
7645 
7646         if (len < 2 || flags)
7647                 return -EINVAL;
7648 
7649         new_op = from;
7650         new_kind = new_op[0];
7651         new_kind_len = new_op[1];
7652 
7653         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7654             new_kind == TCPOPT_EOL)
7655                 return -EINVAL;
7656 
7657         if (new_kind_len > bpf_sock->remaining_opt_len)
7658                 return -ENOSPC;
7659 
7660         /* 253 is another experimental kind */
7661         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7662                 if (new_kind_len < 4)
7663                         return -EINVAL;
7664                 /* Match for the 2 byte magic also.
7665                  * RFC 6994: the magic could be 2 or 4 bytes.
7666                  * Hence, matching by 2 byte only is on the
7667                  * conservative side but it is the right
7668                  * thing to do for the 'search-for-duplication'
7669                  * purpose.
7670                  */
7671                 magic = &new_op[2];
7672                 magic_len = 2;
7673         }
7674 
7675         /* Check for duplication */
7676         skb = bpf_sock->skb;
7677         op = skb->data + sizeof(struct tcphdr);
7678         opend = bpf_sock->skb_data_end;
7679 
7680         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7681                                 &eol);
7682         if (!IS_ERR(op))
7683                 return -EEXIST;
7684 
7685         if (PTR_ERR(op) != -ENOMSG)
7686                 return PTR_ERR(op);
7687 
7688         if (eol)
7689                 /* The option has been ended.  Treat it as no more
7690                  * header option can be written.
7691                  */
7692                 return -ENOSPC;
7693 
7694         /* No duplication found.  Store the header option. */
7695         memcpy(opend, from, new_kind_len);
7696 
7697         bpf_sock->remaining_opt_len -= new_kind_len;
7698         bpf_sock->skb_data_end += new_kind_len;
7699 
7700         return 0;
7701 }
7702 
7703 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7704         .func           = bpf_sock_ops_store_hdr_opt,
7705         .gpl_only       = false,
7706         .ret_type       = RET_INTEGER,
7707         .arg1_type      = ARG_PTR_TO_CTX,
7708         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7709         .arg3_type      = ARG_CONST_SIZE,
7710         .arg4_type      = ARG_ANYTHING,
7711 };
7712 
7713 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7714            u32, len, u64, flags)
7715 {
7716         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7717                 return -EPERM;
7718 
7719         if (flags || len < 2)
7720                 return -EINVAL;
7721 
7722         if (len > bpf_sock->remaining_opt_len)
7723                 return -ENOSPC;
7724 
7725         bpf_sock->remaining_opt_len -= len;
7726 
7727         return 0;
7728 }
7729 
7730 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7731         .func           = bpf_sock_ops_reserve_hdr_opt,
7732         .gpl_only       = false,
7733         .ret_type       = RET_INTEGER,
7734         .arg1_type      = ARG_PTR_TO_CTX,
7735         .arg2_type      = ARG_ANYTHING,
7736         .arg3_type      = ARG_ANYTHING,
7737 };
7738 
7739 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7740            u64, tstamp, u32, tstamp_type)
7741 {
7742         /* skb_clear_delivery_time() is done for inet protocol */
7743         if (skb->protocol != htons(ETH_P_IP) &&
7744             skb->protocol != htons(ETH_P_IPV6))
7745                 return -EOPNOTSUPP;
7746 
7747         switch (tstamp_type) {
7748         case BPF_SKB_CLOCK_REALTIME:
7749                 skb->tstamp = tstamp;
7750                 skb->tstamp_type = SKB_CLOCK_REALTIME;
7751                 break;
7752         case BPF_SKB_CLOCK_MONOTONIC:
7753                 if (!tstamp)
7754                         return -EINVAL;
7755                 skb->tstamp = tstamp;
7756                 skb->tstamp_type = SKB_CLOCK_MONOTONIC;
7757                 break;
7758         case BPF_SKB_CLOCK_TAI:
7759                 if (!tstamp)
7760                         return -EINVAL;
7761                 skb->tstamp = tstamp;
7762                 skb->tstamp_type = SKB_CLOCK_TAI;
7763                 break;
7764         default:
7765                 return -EINVAL;
7766         }
7767 
7768         return 0;
7769 }
7770 
7771 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7772         .func           = bpf_skb_set_tstamp,
7773         .gpl_only       = false,
7774         .ret_type       = RET_INTEGER,
7775         .arg1_type      = ARG_PTR_TO_CTX,
7776         .arg2_type      = ARG_ANYTHING,
7777         .arg3_type      = ARG_ANYTHING,
7778 };
7779 
7780 #ifdef CONFIG_SYN_COOKIES
7781 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7782            struct tcphdr *, th, u32, th_len)
7783 {
7784         u32 cookie;
7785         u16 mss;
7786 
7787         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7788                 return -EINVAL;
7789 
7790         mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7791         cookie = __cookie_v4_init_sequence(iph, th, &mss);
7792 
7793         return cookie | ((u64)mss << 32);
7794 }
7795 
7796 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7797         .func           = bpf_tcp_raw_gen_syncookie_ipv4,
7798         .gpl_only       = true, /* __cookie_v4_init_sequence() is GPL */
7799         .pkt_access     = true,
7800         .ret_type       = RET_INTEGER,
7801         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7802         .arg1_size      = sizeof(struct iphdr),
7803         .arg2_type      = ARG_PTR_TO_MEM,
7804         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7805 };
7806 
7807 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7808            struct tcphdr *, th, u32, th_len)
7809 {
7810 #if IS_BUILTIN(CONFIG_IPV6)
7811         const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7812                 sizeof(struct ipv6hdr);
7813         u32 cookie;
7814         u16 mss;
7815 
7816         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7817                 return -EINVAL;
7818 
7819         mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7820         cookie = __cookie_v6_init_sequence(iph, th, &mss);
7821 
7822         return cookie | ((u64)mss << 32);
7823 #else
7824         return -EPROTONOSUPPORT;
7825 #endif
7826 }
7827 
7828 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7829         .func           = bpf_tcp_raw_gen_syncookie_ipv6,
7830         .gpl_only       = true, /* __cookie_v6_init_sequence() is GPL */
7831         .pkt_access     = true,
7832         .ret_type       = RET_INTEGER,
7833         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7834         .arg1_size      = sizeof(struct ipv6hdr),
7835         .arg2_type      = ARG_PTR_TO_MEM,
7836         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
7837 };
7838 
7839 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7840            struct tcphdr *, th)
7841 {
7842         if (__cookie_v4_check(iph, th) > 0)
7843                 return 0;
7844 
7845         return -EACCES;
7846 }
7847 
7848 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7849         .func           = bpf_tcp_raw_check_syncookie_ipv4,
7850         .gpl_only       = true, /* __cookie_v4_check is GPL */
7851         .pkt_access     = true,
7852         .ret_type       = RET_INTEGER,
7853         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7854         .arg1_size      = sizeof(struct iphdr),
7855         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7856         .arg2_size      = sizeof(struct tcphdr),
7857 };
7858 
7859 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7860            struct tcphdr *, th)
7861 {
7862 #if IS_BUILTIN(CONFIG_IPV6)
7863         if (__cookie_v6_check(iph, th) > 0)
7864                 return 0;
7865 
7866         return -EACCES;
7867 #else
7868         return -EPROTONOSUPPORT;
7869 #endif
7870 }
7871 
7872 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7873         .func           = bpf_tcp_raw_check_syncookie_ipv6,
7874         .gpl_only       = true, /* __cookie_v6_check is GPL */
7875         .pkt_access     = true,
7876         .ret_type       = RET_INTEGER,
7877         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7878         .arg1_size      = sizeof(struct ipv6hdr),
7879         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7880         .arg2_size      = sizeof(struct tcphdr),
7881 };
7882 #endif /* CONFIG_SYN_COOKIES */
7883 
7884 #endif /* CONFIG_INET */
7885 
7886 bool bpf_helper_changes_pkt_data(void *func)
7887 {
7888         if (func == bpf_skb_vlan_push ||
7889             func == bpf_skb_vlan_pop ||
7890             func == bpf_skb_store_bytes ||
7891             func == bpf_skb_change_proto ||
7892             func == bpf_skb_change_head ||
7893             func == sk_skb_change_head ||
7894             func == bpf_skb_change_tail ||
7895             func == sk_skb_change_tail ||
7896             func == bpf_skb_adjust_room ||
7897             func == sk_skb_adjust_room ||
7898             func == bpf_skb_pull_data ||
7899             func == sk_skb_pull_data ||
7900             func == bpf_clone_redirect ||
7901             func == bpf_l3_csum_replace ||
7902             func == bpf_l4_csum_replace ||
7903             func == bpf_xdp_adjust_head ||
7904             func == bpf_xdp_adjust_meta ||
7905             func == bpf_msg_pull_data ||
7906             func == bpf_msg_push_data ||
7907             func == bpf_msg_pop_data ||
7908             func == bpf_xdp_adjust_tail ||
7909 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7910             func == bpf_lwt_seg6_store_bytes ||
7911             func == bpf_lwt_seg6_adjust_srh ||
7912             func == bpf_lwt_seg6_action ||
7913 #endif
7914 #ifdef CONFIG_INET
7915             func == bpf_sock_ops_store_hdr_opt ||
7916 #endif
7917             func == bpf_lwt_in_push_encap ||
7918             func == bpf_lwt_xmit_push_encap)
7919                 return true;
7920 
7921         return false;
7922 }
7923 
7924 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7925 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7926 
7927 static const struct bpf_func_proto *
7928 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7929 {
7930         const struct bpf_func_proto *func_proto;
7931 
7932         func_proto = cgroup_common_func_proto(func_id, prog);
7933         if (func_proto)
7934                 return func_proto;
7935 
7936         func_proto = cgroup_current_func_proto(func_id, prog);
7937         if (func_proto)
7938                 return func_proto;
7939 
7940         switch (func_id) {
7941         case BPF_FUNC_get_socket_cookie:
7942                 return &bpf_get_socket_cookie_sock_proto;
7943         case BPF_FUNC_get_netns_cookie:
7944                 return &bpf_get_netns_cookie_sock_proto;
7945         case BPF_FUNC_perf_event_output:
7946                 return &bpf_event_output_data_proto;
7947         case BPF_FUNC_sk_storage_get:
7948                 return &bpf_sk_storage_get_cg_sock_proto;
7949         case BPF_FUNC_ktime_get_coarse_ns:
7950                 return &bpf_ktime_get_coarse_ns_proto;
7951         default:
7952                 return bpf_base_func_proto(func_id, prog);
7953         }
7954 }
7955 
7956 static const struct bpf_func_proto *
7957 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7958 {
7959         const struct bpf_func_proto *func_proto;
7960 
7961         func_proto = cgroup_common_func_proto(func_id, prog);
7962         if (func_proto)
7963                 return func_proto;
7964 
7965         func_proto = cgroup_current_func_proto(func_id, prog);
7966         if (func_proto)
7967                 return func_proto;
7968 
7969         switch (func_id) {
7970         case BPF_FUNC_bind:
7971                 switch (prog->expected_attach_type) {
7972                 case BPF_CGROUP_INET4_CONNECT:
7973                 case BPF_CGROUP_INET6_CONNECT:
7974                         return &bpf_bind_proto;
7975                 default:
7976                         return NULL;
7977                 }
7978         case BPF_FUNC_get_socket_cookie:
7979                 return &bpf_get_socket_cookie_sock_addr_proto;
7980         case BPF_FUNC_get_netns_cookie:
7981                 return &bpf_get_netns_cookie_sock_addr_proto;
7982         case BPF_FUNC_perf_event_output:
7983                 return &bpf_event_output_data_proto;
7984 #ifdef CONFIG_INET
7985         case BPF_FUNC_sk_lookup_tcp:
7986                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7987         case BPF_FUNC_sk_lookup_udp:
7988                 return &bpf_sock_addr_sk_lookup_udp_proto;
7989         case BPF_FUNC_sk_release:
7990                 return &bpf_sk_release_proto;
7991         case BPF_FUNC_skc_lookup_tcp:
7992                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7993 #endif /* CONFIG_INET */
7994         case BPF_FUNC_sk_storage_get:
7995                 return &bpf_sk_storage_get_proto;
7996         case BPF_FUNC_sk_storage_delete:
7997                 return &bpf_sk_storage_delete_proto;
7998         case BPF_FUNC_setsockopt:
7999                 switch (prog->expected_attach_type) {
8000                 case BPF_CGROUP_INET4_BIND:
8001                 case BPF_CGROUP_INET6_BIND:
8002                 case BPF_CGROUP_INET4_CONNECT:
8003                 case BPF_CGROUP_INET6_CONNECT:
8004                 case BPF_CGROUP_UNIX_CONNECT:
8005                 case BPF_CGROUP_UDP4_RECVMSG:
8006                 case BPF_CGROUP_UDP6_RECVMSG:
8007                 case BPF_CGROUP_UNIX_RECVMSG:
8008                 case BPF_CGROUP_UDP4_SENDMSG:
8009                 case BPF_CGROUP_UDP6_SENDMSG:
8010                 case BPF_CGROUP_UNIX_SENDMSG:
8011                 case BPF_CGROUP_INET4_GETPEERNAME:
8012                 case BPF_CGROUP_INET6_GETPEERNAME:
8013                 case BPF_CGROUP_UNIX_GETPEERNAME:
8014                 case BPF_CGROUP_INET4_GETSOCKNAME:
8015                 case BPF_CGROUP_INET6_GETSOCKNAME:
8016                 case BPF_CGROUP_UNIX_GETSOCKNAME:
8017                         return &bpf_sock_addr_setsockopt_proto;
8018                 default:
8019                         return NULL;
8020                 }
8021         case BPF_FUNC_getsockopt:
8022                 switch (prog->expected_attach_type) {
8023                 case BPF_CGROUP_INET4_BIND:
8024                 case BPF_CGROUP_INET6_BIND:
8025                 case BPF_CGROUP_INET4_CONNECT:
8026                 case BPF_CGROUP_INET6_CONNECT:
8027                 case BPF_CGROUP_UNIX_CONNECT:
8028                 case BPF_CGROUP_UDP4_RECVMSG:
8029                 case BPF_CGROUP_UDP6_RECVMSG:
8030                 case BPF_CGROUP_UNIX_RECVMSG:
8031                 case BPF_CGROUP_UDP4_SENDMSG:
8032                 case BPF_CGROUP_UDP6_SENDMSG:
8033                 case BPF_CGROUP_UNIX_SENDMSG:
8034                 case BPF_CGROUP_INET4_GETPEERNAME:
8035                 case BPF_CGROUP_INET6_GETPEERNAME:
8036                 case BPF_CGROUP_UNIX_GETPEERNAME:
8037                 case BPF_CGROUP_INET4_GETSOCKNAME:
8038                 case BPF_CGROUP_INET6_GETSOCKNAME:
8039                 case BPF_CGROUP_UNIX_GETSOCKNAME:
8040                         return &bpf_sock_addr_getsockopt_proto;
8041                 default:
8042                         return NULL;
8043                 }
8044         default:
8045                 return bpf_sk_base_func_proto(func_id, prog);
8046         }
8047 }
8048 
8049 static const struct bpf_func_proto *
8050 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8051 {
8052         switch (func_id) {
8053         case BPF_FUNC_skb_load_bytes:
8054                 return &bpf_skb_load_bytes_proto;
8055         case BPF_FUNC_skb_load_bytes_relative:
8056                 return &bpf_skb_load_bytes_relative_proto;
8057         case BPF_FUNC_get_socket_cookie:
8058                 return &bpf_get_socket_cookie_proto;
8059         case BPF_FUNC_get_socket_uid:
8060                 return &bpf_get_socket_uid_proto;
8061         case BPF_FUNC_perf_event_output:
8062                 return &bpf_skb_event_output_proto;
8063         default:
8064                 return bpf_sk_base_func_proto(func_id, prog);
8065         }
8066 }
8067 
8068 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8069 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8070 
8071 static const struct bpf_func_proto *
8072 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8073 {
8074         const struct bpf_func_proto *func_proto;
8075 
8076         func_proto = cgroup_common_func_proto(func_id, prog);
8077         if (func_proto)
8078                 return func_proto;
8079 
8080         switch (func_id) {
8081         case BPF_FUNC_sk_fullsock:
8082                 return &bpf_sk_fullsock_proto;
8083         case BPF_FUNC_sk_storage_get:
8084                 return &bpf_sk_storage_get_proto;
8085         case BPF_FUNC_sk_storage_delete:
8086                 return &bpf_sk_storage_delete_proto;
8087         case BPF_FUNC_perf_event_output:
8088                 return &bpf_skb_event_output_proto;
8089 #ifdef CONFIG_SOCK_CGROUP_DATA
8090         case BPF_FUNC_skb_cgroup_id:
8091                 return &bpf_skb_cgroup_id_proto;
8092         case BPF_FUNC_skb_ancestor_cgroup_id:
8093                 return &bpf_skb_ancestor_cgroup_id_proto;
8094         case BPF_FUNC_sk_cgroup_id:
8095                 return &bpf_sk_cgroup_id_proto;
8096         case BPF_FUNC_sk_ancestor_cgroup_id:
8097                 return &bpf_sk_ancestor_cgroup_id_proto;
8098 #endif
8099 #ifdef CONFIG_INET
8100         case BPF_FUNC_sk_lookup_tcp:
8101                 return &bpf_sk_lookup_tcp_proto;
8102         case BPF_FUNC_sk_lookup_udp:
8103                 return &bpf_sk_lookup_udp_proto;
8104         case BPF_FUNC_sk_release:
8105                 return &bpf_sk_release_proto;
8106         case BPF_FUNC_skc_lookup_tcp:
8107                 return &bpf_skc_lookup_tcp_proto;
8108         case BPF_FUNC_tcp_sock:
8109                 return &bpf_tcp_sock_proto;
8110         case BPF_FUNC_get_listener_sock:
8111                 return &bpf_get_listener_sock_proto;
8112         case BPF_FUNC_skb_ecn_set_ce:
8113                 return &bpf_skb_ecn_set_ce_proto;
8114 #endif
8115         default:
8116                 return sk_filter_func_proto(func_id, prog);
8117         }
8118 }
8119 
8120 static const struct bpf_func_proto *
8121 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8122 {
8123         switch (func_id) {
8124         case BPF_FUNC_skb_store_bytes:
8125                 return &bpf_skb_store_bytes_proto;
8126         case BPF_FUNC_skb_load_bytes:
8127                 return &bpf_skb_load_bytes_proto;
8128         case BPF_FUNC_skb_load_bytes_relative:
8129                 return &bpf_skb_load_bytes_relative_proto;
8130         case BPF_FUNC_skb_pull_data:
8131                 return &bpf_skb_pull_data_proto;
8132         case BPF_FUNC_csum_diff:
8133                 return &bpf_csum_diff_proto;
8134         case BPF_FUNC_csum_update:
8135                 return &bpf_csum_update_proto;
8136         case BPF_FUNC_csum_level:
8137                 return &bpf_csum_level_proto;
8138         case BPF_FUNC_l3_csum_replace:
8139                 return &bpf_l3_csum_replace_proto;
8140         case BPF_FUNC_l4_csum_replace:
8141                 return &bpf_l4_csum_replace_proto;
8142         case BPF_FUNC_clone_redirect:
8143                 return &bpf_clone_redirect_proto;
8144         case BPF_FUNC_get_cgroup_classid:
8145                 return &bpf_get_cgroup_classid_proto;
8146         case BPF_FUNC_skb_vlan_push:
8147                 return &bpf_skb_vlan_push_proto;
8148         case BPF_FUNC_skb_vlan_pop:
8149                 return &bpf_skb_vlan_pop_proto;
8150         case BPF_FUNC_skb_change_proto:
8151                 return &bpf_skb_change_proto_proto;
8152         case BPF_FUNC_skb_change_type:
8153                 return &bpf_skb_change_type_proto;
8154         case BPF_FUNC_skb_adjust_room:
8155                 return &bpf_skb_adjust_room_proto;
8156         case BPF_FUNC_skb_change_tail:
8157                 return &bpf_skb_change_tail_proto;
8158         case BPF_FUNC_skb_change_head:
8159                 return &bpf_skb_change_head_proto;
8160         case BPF_FUNC_skb_get_tunnel_key:
8161                 return &bpf_skb_get_tunnel_key_proto;
8162         case BPF_FUNC_skb_set_tunnel_key:
8163                 return bpf_get_skb_set_tunnel_proto(func_id);
8164         case BPF_FUNC_skb_get_tunnel_opt:
8165                 return &bpf_skb_get_tunnel_opt_proto;
8166         case BPF_FUNC_skb_set_tunnel_opt:
8167                 return bpf_get_skb_set_tunnel_proto(func_id);
8168         case BPF_FUNC_redirect:
8169                 return &bpf_redirect_proto;
8170         case BPF_FUNC_redirect_neigh:
8171                 return &bpf_redirect_neigh_proto;
8172         case BPF_FUNC_redirect_peer:
8173                 return &bpf_redirect_peer_proto;
8174         case BPF_FUNC_get_route_realm:
8175                 return &bpf_get_route_realm_proto;
8176         case BPF_FUNC_get_hash_recalc:
8177                 return &bpf_get_hash_recalc_proto;
8178         case BPF_FUNC_set_hash_invalid:
8179                 return &bpf_set_hash_invalid_proto;
8180         case BPF_FUNC_set_hash:
8181                 return &bpf_set_hash_proto;
8182         case BPF_FUNC_perf_event_output:
8183                 return &bpf_skb_event_output_proto;
8184         case BPF_FUNC_get_smp_processor_id:
8185                 return &bpf_get_smp_processor_id_proto;
8186         case BPF_FUNC_skb_under_cgroup:
8187                 return &bpf_skb_under_cgroup_proto;
8188         case BPF_FUNC_get_socket_cookie:
8189                 return &bpf_get_socket_cookie_proto;
8190         case BPF_FUNC_get_socket_uid:
8191                 return &bpf_get_socket_uid_proto;
8192         case BPF_FUNC_fib_lookup:
8193                 return &bpf_skb_fib_lookup_proto;
8194         case BPF_FUNC_check_mtu:
8195                 return &bpf_skb_check_mtu_proto;
8196         case BPF_FUNC_sk_fullsock:
8197                 return &bpf_sk_fullsock_proto;
8198         case BPF_FUNC_sk_storage_get:
8199                 return &bpf_sk_storage_get_proto;
8200         case BPF_FUNC_sk_storage_delete:
8201                 return &bpf_sk_storage_delete_proto;
8202 #ifdef CONFIG_XFRM
8203         case BPF_FUNC_skb_get_xfrm_state:
8204                 return &bpf_skb_get_xfrm_state_proto;
8205 #endif
8206 #ifdef CONFIG_CGROUP_NET_CLASSID
8207         case BPF_FUNC_skb_cgroup_classid:
8208                 return &bpf_skb_cgroup_classid_proto;
8209 #endif
8210 #ifdef CONFIG_SOCK_CGROUP_DATA
8211         case BPF_FUNC_skb_cgroup_id:
8212                 return &bpf_skb_cgroup_id_proto;
8213         case BPF_FUNC_skb_ancestor_cgroup_id:
8214                 return &bpf_skb_ancestor_cgroup_id_proto;
8215 #endif
8216 #ifdef CONFIG_INET
8217         case BPF_FUNC_sk_lookup_tcp:
8218                 return &bpf_tc_sk_lookup_tcp_proto;
8219         case BPF_FUNC_sk_lookup_udp:
8220                 return &bpf_tc_sk_lookup_udp_proto;
8221         case BPF_FUNC_sk_release:
8222                 return &bpf_sk_release_proto;
8223         case BPF_FUNC_tcp_sock:
8224                 return &bpf_tcp_sock_proto;
8225         case BPF_FUNC_get_listener_sock:
8226                 return &bpf_get_listener_sock_proto;
8227         case BPF_FUNC_skc_lookup_tcp:
8228                 return &bpf_tc_skc_lookup_tcp_proto;
8229         case BPF_FUNC_tcp_check_syncookie:
8230                 return &bpf_tcp_check_syncookie_proto;
8231         case BPF_FUNC_skb_ecn_set_ce:
8232                 return &bpf_skb_ecn_set_ce_proto;
8233         case BPF_FUNC_tcp_gen_syncookie:
8234                 return &bpf_tcp_gen_syncookie_proto;
8235         case BPF_FUNC_sk_assign:
8236                 return &bpf_sk_assign_proto;
8237         case BPF_FUNC_skb_set_tstamp:
8238                 return &bpf_skb_set_tstamp_proto;
8239 #ifdef CONFIG_SYN_COOKIES
8240         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8241                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8242         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8243                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8244         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8245                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8246         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8247                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8248 #endif
8249 #endif
8250         default:
8251                 return bpf_sk_base_func_proto(func_id, prog);
8252         }
8253 }
8254 
8255 static const struct bpf_func_proto *
8256 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8257 {
8258         switch (func_id) {
8259         case BPF_FUNC_perf_event_output:
8260                 return &bpf_xdp_event_output_proto;
8261         case BPF_FUNC_get_smp_processor_id:
8262                 return &bpf_get_smp_processor_id_proto;
8263         case BPF_FUNC_csum_diff:
8264                 return &bpf_csum_diff_proto;
8265         case BPF_FUNC_xdp_adjust_head:
8266                 return &bpf_xdp_adjust_head_proto;
8267         case BPF_FUNC_xdp_adjust_meta:
8268                 return &bpf_xdp_adjust_meta_proto;
8269         case BPF_FUNC_redirect:
8270                 return &bpf_xdp_redirect_proto;
8271         case BPF_FUNC_redirect_map:
8272                 return &bpf_xdp_redirect_map_proto;
8273         case BPF_FUNC_xdp_adjust_tail:
8274                 return &bpf_xdp_adjust_tail_proto;
8275         case BPF_FUNC_xdp_get_buff_len:
8276                 return &bpf_xdp_get_buff_len_proto;
8277         case BPF_FUNC_xdp_load_bytes:
8278                 return &bpf_xdp_load_bytes_proto;
8279         case BPF_FUNC_xdp_store_bytes:
8280                 return &bpf_xdp_store_bytes_proto;
8281         case BPF_FUNC_fib_lookup:
8282                 return &bpf_xdp_fib_lookup_proto;
8283         case BPF_FUNC_check_mtu:
8284                 return &bpf_xdp_check_mtu_proto;
8285 #ifdef CONFIG_INET
8286         case BPF_FUNC_sk_lookup_udp:
8287                 return &bpf_xdp_sk_lookup_udp_proto;
8288         case BPF_FUNC_sk_lookup_tcp:
8289                 return &bpf_xdp_sk_lookup_tcp_proto;
8290         case BPF_FUNC_sk_release:
8291                 return &bpf_sk_release_proto;
8292         case BPF_FUNC_skc_lookup_tcp:
8293                 return &bpf_xdp_skc_lookup_tcp_proto;
8294         case BPF_FUNC_tcp_check_syncookie:
8295                 return &bpf_tcp_check_syncookie_proto;
8296         case BPF_FUNC_tcp_gen_syncookie:
8297                 return &bpf_tcp_gen_syncookie_proto;
8298 #ifdef CONFIG_SYN_COOKIES
8299         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8300                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8301         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8302                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8303         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8304                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8305         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8306                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8307 #endif
8308 #endif
8309         default:
8310                 return bpf_sk_base_func_proto(func_id, prog);
8311         }
8312 
8313 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8314         /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8315          * kfuncs are defined in two different modules, and we want to be able
8316          * to use them interchangeably with the same BTF type ID. Because modules
8317          * can't de-duplicate BTF IDs between each other, we need the type to be
8318          * referenced in the vmlinux BTF or the verifier will get confused about
8319          * the different types. So we add this dummy type reference which will
8320          * be included in vmlinux BTF, allowing both modules to refer to the
8321          * same type ID.
8322          */
8323         BTF_TYPE_EMIT(struct nf_conn___init);
8324 #endif
8325 }
8326 
8327 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8328 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8329 
8330 static const struct bpf_func_proto *
8331 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8332 {
8333         const struct bpf_func_proto *func_proto;
8334 
8335         func_proto = cgroup_common_func_proto(func_id, prog);
8336         if (func_proto)
8337                 return func_proto;
8338 
8339         switch (func_id) {
8340         case BPF_FUNC_setsockopt:
8341                 return &bpf_sock_ops_setsockopt_proto;
8342         case BPF_FUNC_getsockopt:
8343                 return &bpf_sock_ops_getsockopt_proto;
8344         case BPF_FUNC_sock_ops_cb_flags_set:
8345                 return &bpf_sock_ops_cb_flags_set_proto;
8346         case BPF_FUNC_sock_map_update:
8347                 return &bpf_sock_map_update_proto;
8348         case BPF_FUNC_sock_hash_update:
8349                 return &bpf_sock_hash_update_proto;
8350         case BPF_FUNC_get_socket_cookie:
8351                 return &bpf_get_socket_cookie_sock_ops_proto;
8352         case BPF_FUNC_perf_event_output:
8353                 return &bpf_event_output_data_proto;
8354         case BPF_FUNC_sk_storage_get:
8355                 return &bpf_sk_storage_get_proto;
8356         case BPF_FUNC_sk_storage_delete:
8357                 return &bpf_sk_storage_delete_proto;
8358         case BPF_FUNC_get_netns_cookie:
8359                 return &bpf_get_netns_cookie_sock_ops_proto;
8360 #ifdef CONFIG_INET
8361         case BPF_FUNC_load_hdr_opt:
8362                 return &bpf_sock_ops_load_hdr_opt_proto;
8363         case BPF_FUNC_store_hdr_opt:
8364                 return &bpf_sock_ops_store_hdr_opt_proto;
8365         case BPF_FUNC_reserve_hdr_opt:
8366                 return &bpf_sock_ops_reserve_hdr_opt_proto;
8367         case BPF_FUNC_tcp_sock:
8368                 return &bpf_tcp_sock_proto;
8369 #endif /* CONFIG_INET */
8370         default:
8371                 return bpf_sk_base_func_proto(func_id, prog);
8372         }
8373 }
8374 
8375 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8376 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8377 
8378 static const struct bpf_func_proto *
8379 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8380 {
8381         switch (func_id) {
8382         case BPF_FUNC_msg_redirect_map:
8383                 return &bpf_msg_redirect_map_proto;
8384         case BPF_FUNC_msg_redirect_hash:
8385                 return &bpf_msg_redirect_hash_proto;
8386         case BPF_FUNC_msg_apply_bytes:
8387                 return &bpf_msg_apply_bytes_proto;
8388         case BPF_FUNC_msg_cork_bytes:
8389                 return &bpf_msg_cork_bytes_proto;
8390         case BPF_FUNC_msg_pull_data:
8391                 return &bpf_msg_pull_data_proto;
8392         case BPF_FUNC_msg_push_data:
8393                 return &bpf_msg_push_data_proto;
8394         case BPF_FUNC_msg_pop_data:
8395                 return &bpf_msg_pop_data_proto;
8396         case BPF_FUNC_perf_event_output:
8397                 return &bpf_event_output_data_proto;
8398         case BPF_FUNC_get_current_uid_gid:
8399                 return &bpf_get_current_uid_gid_proto;
8400         case BPF_FUNC_sk_storage_get:
8401                 return &bpf_sk_storage_get_proto;
8402         case BPF_FUNC_sk_storage_delete:
8403                 return &bpf_sk_storage_delete_proto;
8404         case BPF_FUNC_get_netns_cookie:
8405                 return &bpf_get_netns_cookie_sk_msg_proto;
8406 #ifdef CONFIG_CGROUP_NET_CLASSID
8407         case BPF_FUNC_get_cgroup_classid:
8408                 return &bpf_get_cgroup_classid_curr_proto;
8409 #endif
8410         default:
8411                 return bpf_sk_base_func_proto(func_id, prog);
8412         }
8413 }
8414 
8415 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8416 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8417 
8418 static const struct bpf_func_proto *
8419 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8420 {
8421         switch (func_id) {
8422         case BPF_FUNC_skb_store_bytes:
8423                 return &bpf_skb_store_bytes_proto;
8424         case BPF_FUNC_skb_load_bytes:
8425                 return &bpf_skb_load_bytes_proto;
8426         case BPF_FUNC_skb_pull_data:
8427                 return &sk_skb_pull_data_proto;
8428         case BPF_FUNC_skb_change_tail:
8429                 return &sk_skb_change_tail_proto;
8430         case BPF_FUNC_skb_change_head:
8431                 return &sk_skb_change_head_proto;
8432         case BPF_FUNC_skb_adjust_room:
8433                 return &sk_skb_adjust_room_proto;
8434         case BPF_FUNC_get_socket_cookie:
8435                 return &bpf_get_socket_cookie_proto;
8436         case BPF_FUNC_get_socket_uid:
8437                 return &bpf_get_socket_uid_proto;
8438         case BPF_FUNC_sk_redirect_map:
8439                 return &bpf_sk_redirect_map_proto;
8440         case BPF_FUNC_sk_redirect_hash:
8441                 return &bpf_sk_redirect_hash_proto;
8442         case BPF_FUNC_perf_event_output:
8443                 return &bpf_skb_event_output_proto;
8444 #ifdef CONFIG_INET
8445         case BPF_FUNC_sk_lookup_tcp:
8446                 return &bpf_sk_lookup_tcp_proto;
8447         case BPF_FUNC_sk_lookup_udp:
8448                 return &bpf_sk_lookup_udp_proto;
8449         case BPF_FUNC_sk_release:
8450                 return &bpf_sk_release_proto;
8451         case BPF_FUNC_skc_lookup_tcp:
8452                 return &bpf_skc_lookup_tcp_proto;
8453 #endif
8454         default:
8455                 return bpf_sk_base_func_proto(func_id, prog);
8456         }
8457 }
8458 
8459 static const struct bpf_func_proto *
8460 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8461 {
8462         switch (func_id) {
8463         case BPF_FUNC_skb_load_bytes:
8464                 return &bpf_flow_dissector_load_bytes_proto;
8465         default:
8466                 return bpf_sk_base_func_proto(func_id, prog);
8467         }
8468 }
8469 
8470 static const struct bpf_func_proto *
8471 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8472 {
8473         switch (func_id) {
8474         case BPF_FUNC_skb_load_bytes:
8475                 return &bpf_skb_load_bytes_proto;
8476         case BPF_FUNC_skb_pull_data:
8477                 return &bpf_skb_pull_data_proto;
8478         case BPF_FUNC_csum_diff:
8479                 return &bpf_csum_diff_proto;
8480         case BPF_FUNC_get_cgroup_classid:
8481                 return &bpf_get_cgroup_classid_proto;
8482         case BPF_FUNC_get_route_realm:
8483                 return &bpf_get_route_realm_proto;
8484         case BPF_FUNC_get_hash_recalc:
8485                 return &bpf_get_hash_recalc_proto;
8486         case BPF_FUNC_perf_event_output:
8487                 return &bpf_skb_event_output_proto;
8488         case BPF_FUNC_get_smp_processor_id:
8489                 return &bpf_get_smp_processor_id_proto;
8490         case BPF_FUNC_skb_under_cgroup:
8491                 return &bpf_skb_under_cgroup_proto;
8492         default:
8493                 return bpf_sk_base_func_proto(func_id, prog);
8494         }
8495 }
8496 
8497 static const struct bpf_func_proto *
8498 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8499 {
8500         switch (func_id) {
8501         case BPF_FUNC_lwt_push_encap:
8502                 return &bpf_lwt_in_push_encap_proto;
8503         default:
8504                 return lwt_out_func_proto(func_id, prog);
8505         }
8506 }
8507 
8508 static const struct bpf_func_proto *
8509 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8510 {
8511         switch (func_id) {
8512         case BPF_FUNC_skb_get_tunnel_key:
8513                 return &bpf_skb_get_tunnel_key_proto;
8514         case BPF_FUNC_skb_set_tunnel_key:
8515                 return bpf_get_skb_set_tunnel_proto(func_id);
8516         case BPF_FUNC_skb_get_tunnel_opt:
8517                 return &bpf_skb_get_tunnel_opt_proto;
8518         case BPF_FUNC_skb_set_tunnel_opt:
8519                 return bpf_get_skb_set_tunnel_proto(func_id);
8520         case BPF_FUNC_redirect:
8521                 return &bpf_redirect_proto;
8522         case BPF_FUNC_clone_redirect:
8523                 return &bpf_clone_redirect_proto;
8524         case BPF_FUNC_skb_change_tail:
8525                 return &bpf_skb_change_tail_proto;
8526         case BPF_FUNC_skb_change_head:
8527                 return &bpf_skb_change_head_proto;
8528         case BPF_FUNC_skb_store_bytes:
8529                 return &bpf_skb_store_bytes_proto;
8530         case BPF_FUNC_csum_update:
8531                 return &bpf_csum_update_proto;
8532         case BPF_FUNC_csum_level:
8533                 return &bpf_csum_level_proto;
8534         case BPF_FUNC_l3_csum_replace:
8535                 return &bpf_l3_csum_replace_proto;
8536         case BPF_FUNC_l4_csum_replace:
8537                 return &bpf_l4_csum_replace_proto;
8538         case BPF_FUNC_set_hash_invalid:
8539                 return &bpf_set_hash_invalid_proto;
8540         case BPF_FUNC_lwt_push_encap:
8541                 return &bpf_lwt_xmit_push_encap_proto;
8542         default:
8543                 return lwt_out_func_proto(func_id, prog);
8544         }
8545 }
8546 
8547 static const struct bpf_func_proto *
8548 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8549 {
8550         switch (func_id) {
8551 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8552         case BPF_FUNC_lwt_seg6_store_bytes:
8553                 return &bpf_lwt_seg6_store_bytes_proto;
8554         case BPF_FUNC_lwt_seg6_action:
8555                 return &bpf_lwt_seg6_action_proto;
8556         case BPF_FUNC_lwt_seg6_adjust_srh:
8557                 return &bpf_lwt_seg6_adjust_srh_proto;
8558 #endif
8559         default:
8560                 return lwt_out_func_proto(func_id, prog);
8561         }
8562 }
8563 
8564 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8565                                     const struct bpf_prog *prog,
8566                                     struct bpf_insn_access_aux *info)
8567 {
8568         const int size_default = sizeof(__u32);
8569 
8570         if (off < 0 || off >= sizeof(struct __sk_buff))
8571                 return false;
8572 
8573         /* The verifier guarantees that size > 0. */
8574         if (off % size != 0)
8575                 return false;
8576 
8577         switch (off) {
8578         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8579                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8580                         return false;
8581                 break;
8582         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8583         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8584         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8585         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8586         case bpf_ctx_range(struct __sk_buff, data):
8587         case bpf_ctx_range(struct __sk_buff, data_meta):
8588         case bpf_ctx_range(struct __sk_buff, data_end):
8589                 if (size != size_default)
8590                         return false;
8591                 break;
8592         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8593                 return false;
8594         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8595                 if (type == BPF_WRITE || size != sizeof(__u64))
8596                         return false;
8597                 break;
8598         case bpf_ctx_range(struct __sk_buff, tstamp):
8599                 if (size != sizeof(__u64))
8600                         return false;
8601                 break;
8602         case offsetof(struct __sk_buff, sk):
8603                 if (type == BPF_WRITE || size != sizeof(__u64))
8604                         return false;
8605                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8606                 break;
8607         case offsetof(struct __sk_buff, tstamp_type):
8608                 return false;
8609         case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8610                 /* Explicitly prohibit access to padding in __sk_buff. */
8611                 return false;
8612         default:
8613                 /* Only narrow read access allowed for now. */
8614                 if (type == BPF_WRITE) {
8615                         if (size != size_default)
8616                                 return false;
8617                 } else {
8618                         bpf_ctx_record_field_size(info, size_default);
8619                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8620                                 return false;
8621                 }
8622         }
8623 
8624         return true;
8625 }
8626 
8627 static bool sk_filter_is_valid_access(int off, int size,
8628                                       enum bpf_access_type type,
8629                                       const struct bpf_prog *prog,
8630                                       struct bpf_insn_access_aux *info)
8631 {
8632         switch (off) {
8633         case bpf_ctx_range(struct __sk_buff, tc_classid):
8634         case bpf_ctx_range(struct __sk_buff, data):
8635         case bpf_ctx_range(struct __sk_buff, data_meta):
8636         case bpf_ctx_range(struct __sk_buff, data_end):
8637         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8638         case bpf_ctx_range(struct __sk_buff, tstamp):
8639         case bpf_ctx_range(struct __sk_buff, wire_len):
8640         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8641                 return false;
8642         }
8643 
8644         if (type == BPF_WRITE) {
8645                 switch (off) {
8646                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8647                         break;
8648                 default:
8649                         return false;
8650                 }
8651         }
8652 
8653         return bpf_skb_is_valid_access(off, size, type, prog, info);
8654 }
8655 
8656 static bool cg_skb_is_valid_access(int off, int size,
8657                                    enum bpf_access_type type,
8658                                    const struct bpf_prog *prog,
8659                                    struct bpf_insn_access_aux *info)
8660 {
8661         switch (off) {
8662         case bpf_ctx_range(struct __sk_buff, tc_classid):
8663         case bpf_ctx_range(struct __sk_buff, data_meta):
8664         case bpf_ctx_range(struct __sk_buff, wire_len):
8665                 return false;
8666         case bpf_ctx_range(struct __sk_buff, data):
8667         case bpf_ctx_range(struct __sk_buff, data_end):
8668                 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8669                         return false;
8670                 break;
8671         }
8672 
8673         if (type == BPF_WRITE) {
8674                 switch (off) {
8675                 case bpf_ctx_range(struct __sk_buff, mark):
8676                 case bpf_ctx_range(struct __sk_buff, priority):
8677                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8678                         break;
8679                 case bpf_ctx_range(struct __sk_buff, tstamp):
8680                         if (!bpf_token_capable(prog->aux->token, CAP_BPF))
8681                                 return false;
8682                         break;
8683                 default:
8684                         return false;
8685                 }
8686         }
8687 
8688         switch (off) {
8689         case bpf_ctx_range(struct __sk_buff, data):
8690                 info->reg_type = PTR_TO_PACKET;
8691                 break;
8692         case bpf_ctx_range(struct __sk_buff, data_end):
8693                 info->reg_type = PTR_TO_PACKET_END;
8694                 break;
8695         }
8696 
8697         return bpf_skb_is_valid_access(off, size, type, prog, info);
8698 }
8699 
8700 static bool lwt_is_valid_access(int off, int size,
8701                                 enum bpf_access_type type,
8702                                 const struct bpf_prog *prog,
8703                                 struct bpf_insn_access_aux *info)
8704 {
8705         switch (off) {
8706         case bpf_ctx_range(struct __sk_buff, tc_classid):
8707         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8708         case bpf_ctx_range(struct __sk_buff, data_meta):
8709         case bpf_ctx_range(struct __sk_buff, tstamp):
8710         case bpf_ctx_range(struct __sk_buff, wire_len):
8711         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8712                 return false;
8713         }
8714 
8715         if (type == BPF_WRITE) {
8716                 switch (off) {
8717                 case bpf_ctx_range(struct __sk_buff, mark):
8718                 case bpf_ctx_range(struct __sk_buff, priority):
8719                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8720                         break;
8721                 default:
8722                         return false;
8723                 }
8724         }
8725 
8726         switch (off) {
8727         case bpf_ctx_range(struct __sk_buff, data):
8728                 info->reg_type = PTR_TO_PACKET;
8729                 break;
8730         case bpf_ctx_range(struct __sk_buff, data_end):
8731                 info->reg_type = PTR_TO_PACKET_END;
8732                 break;
8733         }
8734 
8735         return bpf_skb_is_valid_access(off, size, type, prog, info);
8736 }
8737 
8738 /* Attach type specific accesses */
8739 static bool __sock_filter_check_attach_type(int off,
8740                                             enum bpf_access_type access_type,
8741                                             enum bpf_attach_type attach_type)
8742 {
8743         switch (off) {
8744         case offsetof(struct bpf_sock, bound_dev_if):
8745         case offsetof(struct bpf_sock, mark):
8746         case offsetof(struct bpf_sock, priority):
8747                 switch (attach_type) {
8748                 case BPF_CGROUP_INET_SOCK_CREATE:
8749                 case BPF_CGROUP_INET_SOCK_RELEASE:
8750                         goto full_access;
8751                 default:
8752                         return false;
8753                 }
8754         case bpf_ctx_range(struct bpf_sock, src_ip4):
8755                 switch (attach_type) {
8756                 case BPF_CGROUP_INET4_POST_BIND:
8757                         goto read_only;
8758                 default:
8759                         return false;
8760                 }
8761         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8762                 switch (attach_type) {
8763                 case BPF_CGROUP_INET6_POST_BIND:
8764                         goto read_only;
8765                 default:
8766                         return false;
8767                 }
8768         case bpf_ctx_range(struct bpf_sock, src_port):
8769                 switch (attach_type) {
8770                 case BPF_CGROUP_INET4_POST_BIND:
8771                 case BPF_CGROUP_INET6_POST_BIND:
8772                         goto read_only;
8773                 default:
8774                         return false;
8775                 }
8776         }
8777 read_only:
8778         return access_type == BPF_READ;
8779 full_access:
8780         return true;
8781 }
8782 
8783 bool bpf_sock_common_is_valid_access(int off, int size,
8784                                      enum bpf_access_type type,
8785                                      struct bpf_insn_access_aux *info)
8786 {
8787         switch (off) {
8788         case bpf_ctx_range_till(struct bpf_sock, type, priority):
8789                 return false;
8790         default:
8791                 return bpf_sock_is_valid_access(off, size, type, info);
8792         }
8793 }
8794 
8795 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8796                               struct bpf_insn_access_aux *info)
8797 {
8798         const int size_default = sizeof(__u32);
8799         int field_size;
8800 
8801         if (off < 0 || off >= sizeof(struct bpf_sock))
8802                 return false;
8803         if (off % size != 0)
8804                 return false;
8805 
8806         switch (off) {
8807         case offsetof(struct bpf_sock, state):
8808         case offsetof(struct bpf_sock, family):
8809         case offsetof(struct bpf_sock, type):
8810         case offsetof(struct bpf_sock, protocol):
8811         case offsetof(struct bpf_sock, src_port):
8812         case offsetof(struct bpf_sock, rx_queue_mapping):
8813         case bpf_ctx_range(struct bpf_sock, src_ip4):
8814         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8815         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8816         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8817                 bpf_ctx_record_field_size(info, size_default);
8818                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8819         case bpf_ctx_range(struct bpf_sock, dst_port):
8820                 field_size = size == size_default ?
8821                         size_default : sizeof_field(struct bpf_sock, dst_port);
8822                 bpf_ctx_record_field_size(info, field_size);
8823                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8824         case offsetofend(struct bpf_sock, dst_port) ...
8825              offsetof(struct bpf_sock, dst_ip4) - 1:
8826                 return false;
8827         }
8828 
8829         return size == size_default;
8830 }
8831 
8832 static bool sock_filter_is_valid_access(int off, int size,
8833                                         enum bpf_access_type type,
8834                                         const struct bpf_prog *prog,
8835                                         struct bpf_insn_access_aux *info)
8836 {
8837         if (!bpf_sock_is_valid_access(off, size, type, info))
8838                 return false;
8839         return __sock_filter_check_attach_type(off, type,
8840                                                prog->expected_attach_type);
8841 }
8842 
8843 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8844                              const struct bpf_prog *prog)
8845 {
8846         /* Neither direct read nor direct write requires any preliminary
8847          * action.
8848          */
8849         return 0;
8850 }
8851 
8852 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8853                                 const struct bpf_prog *prog, int drop_verdict)
8854 {
8855         struct bpf_insn *insn = insn_buf;
8856 
8857         if (!direct_write)
8858                 return 0;
8859 
8860         /* if (!skb->cloned)
8861          *       goto start;
8862          *
8863          * (Fast-path, otherwise approximation that we might be
8864          *  a clone, do the rest in helper.)
8865          */
8866         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8867         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8868         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8869 
8870         /* ret = bpf_skb_pull_data(skb, 0); */
8871         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8872         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8873         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8874                                BPF_FUNC_skb_pull_data);
8875         /* if (!ret)
8876          *      goto restore;
8877          * return TC_ACT_SHOT;
8878          */
8879         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8880         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8881         *insn++ = BPF_EXIT_INSN();
8882 
8883         /* restore: */
8884         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8885         /* start: */
8886         *insn++ = prog->insnsi[0];
8887 
8888         return insn - insn_buf;
8889 }
8890 
8891 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8892                           struct bpf_insn *insn_buf)
8893 {
8894         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8895         struct bpf_insn *insn = insn_buf;
8896 
8897         if (!indirect) {
8898                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8899         } else {
8900                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8901                 if (orig->imm)
8902                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8903         }
8904         /* We're guaranteed here that CTX is in R6. */
8905         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8906 
8907         switch (BPF_SIZE(orig->code)) {
8908         case BPF_B:
8909                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8910                 break;
8911         case BPF_H:
8912                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8913                 break;
8914         case BPF_W:
8915                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8916                 break;
8917         }
8918 
8919         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8920         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8921         *insn++ = BPF_EXIT_INSN();
8922 
8923         return insn - insn_buf;
8924 }
8925 
8926 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8927                                const struct bpf_prog *prog)
8928 {
8929         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8930 }
8931 
8932 static bool tc_cls_act_is_valid_access(int off, int size,
8933                                        enum bpf_access_type type,
8934                                        const struct bpf_prog *prog,
8935                                        struct bpf_insn_access_aux *info)
8936 {
8937         if (type == BPF_WRITE) {
8938                 switch (off) {
8939                 case bpf_ctx_range(struct __sk_buff, mark):
8940                 case bpf_ctx_range(struct __sk_buff, tc_index):
8941                 case bpf_ctx_range(struct __sk_buff, priority):
8942                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8943                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8944                 case bpf_ctx_range(struct __sk_buff, tstamp):
8945                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8946                         break;
8947                 default:
8948                         return false;
8949                 }
8950         }
8951 
8952         switch (off) {
8953         case bpf_ctx_range(struct __sk_buff, data):
8954                 info->reg_type = PTR_TO_PACKET;
8955                 break;
8956         case bpf_ctx_range(struct __sk_buff, data_meta):
8957                 info->reg_type = PTR_TO_PACKET_META;
8958                 break;
8959         case bpf_ctx_range(struct __sk_buff, data_end):
8960                 info->reg_type = PTR_TO_PACKET_END;
8961                 break;
8962         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8963                 return false;
8964         case offsetof(struct __sk_buff, tstamp_type):
8965                 /* The convert_ctx_access() on reading and writing
8966                  * __sk_buff->tstamp depends on whether the bpf prog
8967                  * has used __sk_buff->tstamp_type or not.
8968                  * Thus, we need to set prog->tstamp_type_access
8969                  * earlier during is_valid_access() here.
8970                  */
8971                 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8972                 return size == sizeof(__u8);
8973         }
8974 
8975         return bpf_skb_is_valid_access(off, size, type, prog, info);
8976 }
8977 
8978 DEFINE_MUTEX(nf_conn_btf_access_lock);
8979 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8980 
8981 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8982                               const struct bpf_reg_state *reg,
8983                               int off, int size);
8984 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8985 
8986 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8987                                         const struct bpf_reg_state *reg,
8988                                         int off, int size)
8989 {
8990         int ret = -EACCES;
8991 
8992         mutex_lock(&nf_conn_btf_access_lock);
8993         if (nfct_btf_struct_access)
8994                 ret = nfct_btf_struct_access(log, reg, off, size);
8995         mutex_unlock(&nf_conn_btf_access_lock);
8996 
8997         return ret;
8998 }
8999 
9000 static bool __is_valid_xdp_access(int off, int size)
9001 {
9002         if (off < 0 || off >= sizeof(struct xdp_md))
9003                 return false;
9004         if (off % size != 0)
9005                 return false;
9006         if (size != sizeof(__u32))
9007                 return false;
9008 
9009         return true;
9010 }
9011 
9012 static bool xdp_is_valid_access(int off, int size,
9013                                 enum bpf_access_type type,
9014                                 const struct bpf_prog *prog,
9015                                 struct bpf_insn_access_aux *info)
9016 {
9017         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
9018                 switch (off) {
9019                 case offsetof(struct xdp_md, egress_ifindex):
9020                         return false;
9021                 }
9022         }
9023 
9024         if (type == BPF_WRITE) {
9025                 if (bpf_prog_is_offloaded(prog->aux)) {
9026                         switch (off) {
9027                         case offsetof(struct xdp_md, rx_queue_index):
9028                                 return __is_valid_xdp_access(off, size);
9029                         }
9030                 }
9031                 return false;
9032         }
9033 
9034         switch (off) {
9035         case offsetof(struct xdp_md, data):
9036                 info->reg_type = PTR_TO_PACKET;
9037                 break;
9038         case offsetof(struct xdp_md, data_meta):
9039                 info->reg_type = PTR_TO_PACKET_META;
9040                 break;
9041         case offsetof(struct xdp_md, data_end):
9042                 info->reg_type = PTR_TO_PACKET_END;
9043                 break;
9044         }
9045 
9046         return __is_valid_xdp_access(off, size);
9047 }
9048 
9049 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
9050 {
9051         const u32 act_max = XDP_REDIRECT;
9052 
9053         pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9054                      act > act_max ? "Illegal" : "Driver unsupported",
9055                      act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9056 }
9057 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9058 
9059 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9060                                  const struct bpf_reg_state *reg,
9061                                  int off, int size)
9062 {
9063         int ret = -EACCES;
9064 
9065         mutex_lock(&nf_conn_btf_access_lock);
9066         if (nfct_btf_struct_access)
9067                 ret = nfct_btf_struct_access(log, reg, off, size);
9068         mutex_unlock(&nf_conn_btf_access_lock);
9069 
9070         return ret;
9071 }
9072 
9073 static bool sock_addr_is_valid_access(int off, int size,
9074                                       enum bpf_access_type type,
9075                                       const struct bpf_prog *prog,
9076                                       struct bpf_insn_access_aux *info)
9077 {
9078         const int size_default = sizeof(__u32);
9079 
9080         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9081                 return false;
9082         if (off % size != 0)
9083                 return false;
9084 
9085         /* Disallow access to fields not belonging to the attach type's address
9086          * family.
9087          */
9088         switch (off) {
9089         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9090                 switch (prog->expected_attach_type) {
9091                 case BPF_CGROUP_INET4_BIND:
9092                 case BPF_CGROUP_INET4_CONNECT:
9093                 case BPF_CGROUP_INET4_GETPEERNAME:
9094                 case BPF_CGROUP_INET4_GETSOCKNAME:
9095                 case BPF_CGROUP_UDP4_SENDMSG:
9096                 case BPF_CGROUP_UDP4_RECVMSG:
9097                         break;
9098                 default:
9099                         return false;
9100                 }
9101                 break;
9102         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9103                 switch (prog->expected_attach_type) {
9104                 case BPF_CGROUP_INET6_BIND:
9105                 case BPF_CGROUP_INET6_CONNECT:
9106                 case BPF_CGROUP_INET6_GETPEERNAME:
9107                 case BPF_CGROUP_INET6_GETSOCKNAME:
9108                 case BPF_CGROUP_UDP6_SENDMSG:
9109                 case BPF_CGROUP_UDP6_RECVMSG:
9110                         break;
9111                 default:
9112                         return false;
9113                 }
9114                 break;
9115         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9116                 switch (prog->expected_attach_type) {
9117                 case BPF_CGROUP_UDP4_SENDMSG:
9118                         break;
9119                 default:
9120                         return false;
9121                 }
9122                 break;
9123         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9124                                 msg_src_ip6[3]):
9125                 switch (prog->expected_attach_type) {
9126                 case BPF_CGROUP_UDP6_SENDMSG:
9127                         break;
9128                 default:
9129                         return false;
9130                 }
9131                 break;
9132         }
9133 
9134         switch (off) {
9135         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9136         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9137         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9138         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9139                                 msg_src_ip6[3]):
9140         case bpf_ctx_range(struct bpf_sock_addr, user_port):
9141                 if (type == BPF_READ) {
9142                         bpf_ctx_record_field_size(info, size_default);
9143 
9144                         if (bpf_ctx_wide_access_ok(off, size,
9145                                                    struct bpf_sock_addr,
9146                                                    user_ip6))
9147                                 return true;
9148 
9149                         if (bpf_ctx_wide_access_ok(off, size,
9150                                                    struct bpf_sock_addr,
9151                                                    msg_src_ip6))
9152                                 return true;
9153 
9154                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9155                                 return false;
9156                 } else {
9157                         if (bpf_ctx_wide_access_ok(off, size,
9158                                                    struct bpf_sock_addr,
9159                                                    user_ip6))
9160                                 return true;
9161 
9162                         if (bpf_ctx_wide_access_ok(off, size,
9163                                                    struct bpf_sock_addr,
9164                                                    msg_src_ip6))
9165                                 return true;
9166 
9167                         if (size != size_default)
9168                                 return false;
9169                 }
9170                 break;
9171         case offsetof(struct bpf_sock_addr, sk):
9172                 if (type != BPF_READ)
9173                         return false;
9174                 if (size != sizeof(__u64))
9175                         return false;
9176                 info->reg_type = PTR_TO_SOCKET;
9177                 break;
9178         default:
9179                 if (type == BPF_READ) {
9180                         if (size != size_default)
9181                                 return false;
9182                 } else {
9183                         return false;
9184                 }
9185         }
9186 
9187         return true;
9188 }
9189 
9190 static bool sock_ops_is_valid_access(int off, int size,
9191                                      enum bpf_access_type type,
9192                                      const struct bpf_prog *prog,
9193                                      struct bpf_insn_access_aux *info)
9194 {
9195         const int size_default = sizeof(__u32);
9196 
9197         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9198                 return false;
9199 
9200         /* The verifier guarantees that size > 0. */
9201         if (off % size != 0)
9202                 return false;
9203 
9204         if (type == BPF_WRITE) {
9205                 switch (off) {
9206                 case offsetof(struct bpf_sock_ops, reply):
9207                 case offsetof(struct bpf_sock_ops, sk_txhash):
9208                         if (size != size_default)
9209                                 return false;
9210                         break;
9211                 default:
9212                         return false;
9213                 }
9214         } else {
9215                 switch (off) {
9216                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9217                                         bytes_acked):
9218                         if (size != sizeof(__u64))
9219                                 return false;
9220                         break;
9221                 case offsetof(struct bpf_sock_ops, sk):
9222                         if (size != sizeof(__u64))
9223                                 return false;
9224                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
9225                         break;
9226                 case offsetof(struct bpf_sock_ops, skb_data):
9227                         if (size != sizeof(__u64))
9228                                 return false;
9229                         info->reg_type = PTR_TO_PACKET;
9230                         break;
9231                 case offsetof(struct bpf_sock_ops, skb_data_end):
9232                         if (size != sizeof(__u64))
9233                                 return false;
9234                         info->reg_type = PTR_TO_PACKET_END;
9235                         break;
9236                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9237                         bpf_ctx_record_field_size(info, size_default);
9238                         return bpf_ctx_narrow_access_ok(off, size,
9239                                                         size_default);
9240                 case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9241                         if (size != sizeof(__u64))
9242                                 return false;
9243                         break;
9244                 default:
9245                         if (size != size_default)
9246                                 return false;
9247                         break;
9248                 }
9249         }
9250 
9251         return true;
9252 }
9253 
9254 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9255                            const struct bpf_prog *prog)
9256 {
9257         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9258 }
9259 
9260 static bool sk_skb_is_valid_access(int off, int size,
9261                                    enum bpf_access_type type,
9262                                    const struct bpf_prog *prog,
9263                                    struct bpf_insn_access_aux *info)
9264 {
9265         switch (off) {
9266         case bpf_ctx_range(struct __sk_buff, tc_classid):
9267         case bpf_ctx_range(struct __sk_buff, data_meta):
9268         case bpf_ctx_range(struct __sk_buff, tstamp):
9269         case bpf_ctx_range(struct __sk_buff, wire_len):
9270         case bpf_ctx_range(struct __sk_buff, hwtstamp):
9271                 return false;
9272         }
9273 
9274         if (type == BPF_WRITE) {
9275                 switch (off) {
9276                 case bpf_ctx_range(struct __sk_buff, tc_index):
9277                 case bpf_ctx_range(struct __sk_buff, priority):
9278                         break;
9279                 default:
9280                         return false;
9281                 }
9282         }
9283 
9284         switch (off) {
9285         case bpf_ctx_range(struct __sk_buff, mark):
9286                 return false;
9287         case bpf_ctx_range(struct __sk_buff, data):
9288                 info->reg_type = PTR_TO_PACKET;
9289                 break;
9290         case bpf_ctx_range(struct __sk_buff, data_end):
9291                 info->reg_type = PTR_TO_PACKET_END;
9292                 break;
9293         }
9294 
9295         return bpf_skb_is_valid_access(off, size, type, prog, info);
9296 }
9297 
9298 static bool sk_msg_is_valid_access(int off, int size,
9299                                    enum bpf_access_type type,
9300                                    const struct bpf_prog *prog,
9301                                    struct bpf_insn_access_aux *info)
9302 {
9303         if (type == BPF_WRITE)
9304                 return false;
9305 
9306         if (off % size != 0)
9307                 return false;
9308 
9309         switch (off) {
9310         case offsetof(struct sk_msg_md, data):
9311                 info->reg_type = PTR_TO_PACKET;
9312                 if (size != sizeof(__u64))
9313                         return false;
9314                 break;
9315         case offsetof(struct sk_msg_md, data_end):
9316                 info->reg_type = PTR_TO_PACKET_END;
9317                 if (size != sizeof(__u64))
9318                         return false;
9319                 break;
9320         case offsetof(struct sk_msg_md, sk):
9321                 if (size != sizeof(__u64))
9322                         return false;
9323                 info->reg_type = PTR_TO_SOCKET;
9324                 break;
9325         case bpf_ctx_range(struct sk_msg_md, family):
9326         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9327         case bpf_ctx_range(struct sk_msg_md, local_ip4):
9328         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9329         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9330         case bpf_ctx_range(struct sk_msg_md, remote_port):
9331         case bpf_ctx_range(struct sk_msg_md, local_port):
9332         case bpf_ctx_range(struct sk_msg_md, size):
9333                 if (size != sizeof(__u32))
9334                         return false;
9335                 break;
9336         default:
9337                 return false;
9338         }
9339         return true;
9340 }
9341 
9342 static bool flow_dissector_is_valid_access(int off, int size,
9343                                            enum bpf_access_type type,
9344                                            const struct bpf_prog *prog,
9345                                            struct bpf_insn_access_aux *info)
9346 {
9347         const int size_default = sizeof(__u32);
9348 
9349         if (off < 0 || off >= sizeof(struct __sk_buff))
9350                 return false;
9351 
9352         if (type == BPF_WRITE)
9353                 return false;
9354 
9355         switch (off) {
9356         case bpf_ctx_range(struct __sk_buff, data):
9357                 if (size != size_default)
9358                         return false;
9359                 info->reg_type = PTR_TO_PACKET;
9360                 return true;
9361         case bpf_ctx_range(struct __sk_buff, data_end):
9362                 if (size != size_default)
9363                         return false;
9364                 info->reg_type = PTR_TO_PACKET_END;
9365                 return true;
9366         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9367                 if (size != sizeof(__u64))
9368                         return false;
9369                 info->reg_type = PTR_TO_FLOW_KEYS;
9370                 return true;
9371         default:
9372                 return false;
9373         }
9374 }
9375 
9376 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9377                                              const struct bpf_insn *si,
9378                                              struct bpf_insn *insn_buf,
9379                                              struct bpf_prog *prog,
9380                                              u32 *target_size)
9381 
9382 {
9383         struct bpf_insn *insn = insn_buf;
9384 
9385         switch (si->off) {
9386         case offsetof(struct __sk_buff, data):
9387                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9388                                       si->dst_reg, si->src_reg,
9389                                       offsetof(struct bpf_flow_dissector, data));
9390                 break;
9391 
9392         case offsetof(struct __sk_buff, data_end):
9393                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9394                                       si->dst_reg, si->src_reg,
9395                                       offsetof(struct bpf_flow_dissector, data_end));
9396                 break;
9397 
9398         case offsetof(struct __sk_buff, flow_keys):
9399                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9400                                       si->dst_reg, si->src_reg,
9401                                       offsetof(struct bpf_flow_dissector, flow_keys));
9402                 break;
9403         }
9404 
9405         return insn - insn_buf;
9406 }
9407 
9408 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9409                                                      struct bpf_insn *insn)
9410 {
9411         __u8 value_reg = si->dst_reg;
9412         __u8 skb_reg = si->src_reg;
9413         BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI);
9414         BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME);
9415         BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC);
9416         BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI);
9417         *insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9418         *insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK);
9419 #ifdef __BIG_ENDIAN_BITFIELD
9420         *insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT);
9421 #else
9422         BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1));
9423 #endif
9424 
9425         return insn;
9426 }
9427 
9428 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9429                                                   struct bpf_insn *insn)
9430 {
9431         /* si->dst_reg = skb_shinfo(SKB); */
9432 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9433         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9434                               BPF_REG_AX, skb_reg,
9435                               offsetof(struct sk_buff, end));
9436         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9437                               dst_reg, skb_reg,
9438                               offsetof(struct sk_buff, head));
9439         *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9440 #else
9441         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9442                               dst_reg, skb_reg,
9443                               offsetof(struct sk_buff, end));
9444 #endif
9445 
9446         return insn;
9447 }
9448 
9449 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9450                                                 const struct bpf_insn *si,
9451                                                 struct bpf_insn *insn)
9452 {
9453         __u8 value_reg = si->dst_reg;
9454         __u8 skb_reg = si->src_reg;
9455 
9456 #ifdef CONFIG_NET_XGRESS
9457         /* If the tstamp_type is read,
9458          * the bpf prog is aware the tstamp could have delivery time.
9459          * Thus, read skb->tstamp as is if tstamp_type_access is true.
9460          */
9461         if (!prog->tstamp_type_access) {
9462                 /* AX is needed because src_reg and dst_reg could be the same */
9463                 __u8 tmp_reg = BPF_REG_AX;
9464 
9465                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9466                 /* check if ingress mask bits is set */
9467                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9468                 *insn++ = BPF_JMP_A(4);
9469                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1);
9470                 *insn++ = BPF_JMP_A(2);
9471                 /* skb->tc_at_ingress && skb->tstamp_type,
9472                  * read 0 as the (rcv) timestamp.
9473                  */
9474                 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9475                 *insn++ = BPF_JMP_A(1);
9476         }
9477 #endif
9478 
9479         *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9480                               offsetof(struct sk_buff, tstamp));
9481         return insn;
9482 }
9483 
9484 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9485                                                  const struct bpf_insn *si,
9486                                                  struct bpf_insn *insn)
9487 {
9488         __u8 value_reg = si->src_reg;
9489         __u8 skb_reg = si->dst_reg;
9490 
9491 #ifdef CONFIG_NET_XGRESS
9492         /* If the tstamp_type is read,
9493          * the bpf prog is aware the tstamp could have delivery time.
9494          * Thus, write skb->tstamp as is if tstamp_type_access is true.
9495          * Otherwise, writing at ingress will have to clear the
9496          * skb->tstamp_type bit also.
9497          */
9498         if (!prog->tstamp_type_access) {
9499                 __u8 tmp_reg = BPF_REG_AX;
9500 
9501                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9502                 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9503                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9504                 /* goto <store> */
9505                 *insn++ = BPF_JMP_A(2);
9506                 /* <clear>: skb->tstamp_type */
9507                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK);
9508                 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9509         }
9510 #endif
9511 
9512         /* <store>: skb->tstamp = tstamp */
9513         *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9514                                skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9515         return insn;
9516 }
9517 
9518 #define BPF_EMIT_STORE(size, si, off)                                   \
9519         BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,          \
9520                      (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9521 
9522 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9523                                   const struct bpf_insn *si,
9524                                   struct bpf_insn *insn_buf,
9525                                   struct bpf_prog *prog, u32 *target_size)
9526 {
9527         struct bpf_insn *insn = insn_buf;
9528         int off;
9529 
9530         switch (si->off) {
9531         case offsetof(struct __sk_buff, len):
9532                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9533                                       bpf_target_off(struct sk_buff, len, 4,
9534                                                      target_size));
9535                 break;
9536 
9537         case offsetof(struct __sk_buff, protocol):
9538                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9539                                       bpf_target_off(struct sk_buff, protocol, 2,
9540                                                      target_size));
9541                 break;
9542 
9543         case offsetof(struct __sk_buff, vlan_proto):
9544                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9545                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
9546                                                      target_size));
9547                 break;
9548 
9549         case offsetof(struct __sk_buff, priority):
9550                 if (type == BPF_WRITE)
9551                         *insn++ = BPF_EMIT_STORE(BPF_W, si,
9552                                                  bpf_target_off(struct sk_buff, priority, 4,
9553                                                                 target_size));
9554                 else
9555                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9556                                               bpf_target_off(struct sk_buff, priority, 4,
9557                                                              target_size));
9558                 break;
9559 
9560         case offsetof(struct __sk_buff, ingress_ifindex):
9561                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9562                                       bpf_target_off(struct sk_buff, skb_iif, 4,
9563                                                      target_size));
9564                 break;
9565 
9566         case offsetof(struct __sk_buff, ifindex):
9567                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9568                                       si->dst_reg, si->src_reg,
9569                                       offsetof(struct sk_buff, dev));
9570                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9571                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9572                                       bpf_target_off(struct net_device, ifindex, 4,
9573                                                      target_size));
9574                 break;
9575 
9576         case offsetof(struct __sk_buff, hash):
9577                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9578                                       bpf_target_off(struct sk_buff, hash, 4,
9579                                                      target_size));
9580                 break;
9581 
9582         case offsetof(struct __sk_buff, mark):
9583                 if (type == BPF_WRITE)
9584                         *insn++ = BPF_EMIT_STORE(BPF_W, si,
9585                                                  bpf_target_off(struct sk_buff, mark, 4,
9586                                                                 target_size));
9587                 else
9588                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9589                                               bpf_target_off(struct sk_buff, mark, 4,
9590                                                              target_size));
9591                 break;
9592 
9593         case offsetof(struct __sk_buff, pkt_type):
9594                 *target_size = 1;
9595                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9596                                       PKT_TYPE_OFFSET);
9597                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9598 #ifdef __BIG_ENDIAN_BITFIELD
9599                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9600 #endif
9601                 break;
9602 
9603         case offsetof(struct __sk_buff, queue_mapping):
9604                 if (type == BPF_WRITE) {
9605                         u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9606 
9607                         if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9608                                 *insn++ = BPF_JMP_A(0); /* noop */
9609                                 break;
9610                         }
9611 
9612                         if (BPF_CLASS(si->code) == BPF_STX)
9613                                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9614                         *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9615                 } else {
9616                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9617                                               bpf_target_off(struct sk_buff,
9618                                                              queue_mapping,
9619                                                              2, target_size));
9620                 }
9621                 break;
9622 
9623         case offsetof(struct __sk_buff, vlan_present):
9624                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9625                                       bpf_target_off(struct sk_buff,
9626                                                      vlan_all, 4, target_size));
9627                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9628                 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9629                 break;
9630 
9631         case offsetof(struct __sk_buff, vlan_tci):
9632                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9633                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
9634                                                      target_size));
9635                 break;
9636 
9637         case offsetof(struct __sk_buff, cb[0]) ...
9638              offsetofend(struct __sk_buff, cb[4]) - 1:
9639                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9640                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9641                               offsetof(struct qdisc_skb_cb, data)) %
9642                              sizeof(__u64));
9643 
9644                 prog->cb_access = 1;
9645                 off  = si->off;
9646                 off -= offsetof(struct __sk_buff, cb[0]);
9647                 off += offsetof(struct sk_buff, cb);
9648                 off += offsetof(struct qdisc_skb_cb, data);
9649                 if (type == BPF_WRITE)
9650                         *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9651                 else
9652                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9653                                               si->src_reg, off);
9654                 break;
9655 
9656         case offsetof(struct __sk_buff, tc_classid):
9657                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9658 
9659                 off  = si->off;
9660                 off -= offsetof(struct __sk_buff, tc_classid);
9661                 off += offsetof(struct sk_buff, cb);
9662                 off += offsetof(struct qdisc_skb_cb, tc_classid);
9663                 *target_size = 2;
9664                 if (type == BPF_WRITE)
9665                         *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9666                 else
9667                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9668                                               si->src_reg, off);
9669                 break;
9670 
9671         case offsetof(struct __sk_buff, data):
9672                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9673                                       si->dst_reg, si->src_reg,
9674                                       offsetof(struct sk_buff, data));
9675                 break;
9676 
9677         case offsetof(struct __sk_buff, data_meta):
9678                 off  = si->off;
9679                 off -= offsetof(struct __sk_buff, data_meta);
9680                 off += offsetof(struct sk_buff, cb);
9681                 off += offsetof(struct bpf_skb_data_end, data_meta);
9682                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9683                                       si->src_reg, off);
9684                 break;
9685 
9686         case offsetof(struct __sk_buff, data_end):
9687                 off  = si->off;
9688                 off -= offsetof(struct __sk_buff, data_end);
9689                 off += offsetof(struct sk_buff, cb);
9690                 off += offsetof(struct bpf_skb_data_end, data_end);
9691                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9692                                       si->src_reg, off);
9693                 break;
9694 
9695         case offsetof(struct __sk_buff, tc_index):
9696 #ifdef CONFIG_NET_SCHED
9697                 if (type == BPF_WRITE)
9698                         *insn++ = BPF_EMIT_STORE(BPF_H, si,
9699                                                  bpf_target_off(struct sk_buff, tc_index, 2,
9700                                                                 target_size));
9701                 else
9702                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9703                                               bpf_target_off(struct sk_buff, tc_index, 2,
9704                                                              target_size));
9705 #else
9706                 *target_size = 2;
9707                 if (type == BPF_WRITE)
9708                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9709                 else
9710                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9711 #endif
9712                 break;
9713 
9714         case offsetof(struct __sk_buff, napi_id):
9715 #if defined(CONFIG_NET_RX_BUSY_POLL)
9716                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9717                                       bpf_target_off(struct sk_buff, napi_id, 4,
9718                                                      target_size));
9719                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9720                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9721 #else
9722                 *target_size = 4;
9723                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9724 #endif
9725                 break;
9726         case offsetof(struct __sk_buff, family):
9727                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9728 
9729                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9730                                       si->dst_reg, si->src_reg,
9731                                       offsetof(struct sk_buff, sk));
9732                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9733                                       bpf_target_off(struct sock_common,
9734                                                      skc_family,
9735                                                      2, target_size));
9736                 break;
9737         case offsetof(struct __sk_buff, remote_ip4):
9738                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9739 
9740                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9741                                       si->dst_reg, si->src_reg,
9742                                       offsetof(struct sk_buff, sk));
9743                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9744                                       bpf_target_off(struct sock_common,
9745                                                      skc_daddr,
9746                                                      4, target_size));
9747                 break;
9748         case offsetof(struct __sk_buff, local_ip4):
9749                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9750                                           skc_rcv_saddr) != 4);
9751 
9752                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9753                                       si->dst_reg, si->src_reg,
9754                                       offsetof(struct sk_buff, sk));
9755                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9756                                       bpf_target_off(struct sock_common,
9757                                                      skc_rcv_saddr,
9758                                                      4, target_size));
9759                 break;
9760         case offsetof(struct __sk_buff, remote_ip6[0]) ...
9761              offsetof(struct __sk_buff, remote_ip6[3]):
9762 #if IS_ENABLED(CONFIG_IPV6)
9763                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9764                                           skc_v6_daddr.s6_addr32[0]) != 4);
9765 
9766                 off = si->off;
9767                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9768 
9769                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9770                                       si->dst_reg, si->src_reg,
9771                                       offsetof(struct sk_buff, sk));
9772                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9773                                       offsetof(struct sock_common,
9774                                                skc_v6_daddr.s6_addr32[0]) +
9775                                       off);
9776 #else
9777                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9778 #endif
9779                 break;
9780         case offsetof(struct __sk_buff, local_ip6[0]) ...
9781              offsetof(struct __sk_buff, local_ip6[3]):
9782 #if IS_ENABLED(CONFIG_IPV6)
9783                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9784                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9785 
9786                 off = si->off;
9787                 off -= offsetof(struct __sk_buff, local_ip6[0]);
9788 
9789                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9790                                       si->dst_reg, si->src_reg,
9791                                       offsetof(struct sk_buff, sk));
9792                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9793                                       offsetof(struct sock_common,
9794                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9795                                       off);
9796 #else
9797                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9798 #endif
9799                 break;
9800 
9801         case offsetof(struct __sk_buff, remote_port):
9802                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9803 
9804                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9805                                       si->dst_reg, si->src_reg,
9806                                       offsetof(struct sk_buff, sk));
9807                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9808                                       bpf_target_off(struct sock_common,
9809                                                      skc_dport,
9810                                                      2, target_size));
9811 #ifndef __BIG_ENDIAN_BITFIELD
9812                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9813 #endif
9814                 break;
9815 
9816         case offsetof(struct __sk_buff, local_port):
9817                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9818 
9819                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9820                                       si->dst_reg, si->src_reg,
9821                                       offsetof(struct sk_buff, sk));
9822                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9823                                       bpf_target_off(struct sock_common,
9824                                                      skc_num, 2, target_size));
9825                 break;
9826 
9827         case offsetof(struct __sk_buff, tstamp):
9828                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9829 
9830                 if (type == BPF_WRITE)
9831                         insn = bpf_convert_tstamp_write(prog, si, insn);
9832                 else
9833                         insn = bpf_convert_tstamp_read(prog, si, insn);
9834                 break;
9835 
9836         case offsetof(struct __sk_buff, tstamp_type):
9837                 insn = bpf_convert_tstamp_type_read(si, insn);
9838                 break;
9839 
9840         case offsetof(struct __sk_buff, gso_segs):
9841                 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9842                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9843                                       si->dst_reg, si->dst_reg,
9844                                       bpf_target_off(struct skb_shared_info,
9845                                                      gso_segs, 2,
9846                                                      target_size));
9847                 break;
9848         case offsetof(struct __sk_buff, gso_size):
9849                 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9850                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9851                                       si->dst_reg, si->dst_reg,
9852                                       bpf_target_off(struct skb_shared_info,
9853                                                      gso_size, 2,
9854                                                      target_size));
9855                 break;
9856         case offsetof(struct __sk_buff, wire_len):
9857                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9858 
9859                 off = si->off;
9860                 off -= offsetof(struct __sk_buff, wire_len);
9861                 off += offsetof(struct sk_buff, cb);
9862                 off += offsetof(struct qdisc_skb_cb, pkt_len);
9863                 *target_size = 4;
9864                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9865                 break;
9866 
9867         case offsetof(struct __sk_buff, sk):
9868                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9869                                       si->dst_reg, si->src_reg,
9870                                       offsetof(struct sk_buff, sk));
9871                 break;
9872         case offsetof(struct __sk_buff, hwtstamp):
9873                 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9874                 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9875 
9876                 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9877                 *insn++ = BPF_LDX_MEM(BPF_DW,
9878                                       si->dst_reg, si->dst_reg,
9879                                       bpf_target_off(struct skb_shared_info,
9880                                                      hwtstamps, 8,
9881                                                      target_size));
9882                 break;
9883         }
9884 
9885         return insn - insn_buf;
9886 }
9887 
9888 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9889                                 const struct bpf_insn *si,
9890                                 struct bpf_insn *insn_buf,
9891                                 struct bpf_prog *prog, u32 *target_size)
9892 {
9893         struct bpf_insn *insn = insn_buf;
9894         int off;
9895 
9896         switch (si->off) {
9897         case offsetof(struct bpf_sock, bound_dev_if):
9898                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9899 
9900                 if (type == BPF_WRITE)
9901                         *insn++ = BPF_EMIT_STORE(BPF_W, si,
9902                                                  offsetof(struct sock, sk_bound_dev_if));
9903                 else
9904                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9905                                       offsetof(struct sock, sk_bound_dev_if));
9906                 break;
9907 
9908         case offsetof(struct bpf_sock, mark):
9909                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9910 
9911                 if (type == BPF_WRITE)
9912                         *insn++ = BPF_EMIT_STORE(BPF_W, si,
9913                                                  offsetof(struct sock, sk_mark));
9914                 else
9915                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9916                                       offsetof(struct sock, sk_mark));
9917                 break;
9918 
9919         case offsetof(struct bpf_sock, priority):
9920                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9921 
9922                 if (type == BPF_WRITE)
9923                         *insn++ = BPF_EMIT_STORE(BPF_W, si,
9924                                                  offsetof(struct sock, sk_priority));
9925                 else
9926                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9927                                       offsetof(struct sock, sk_priority));
9928                 break;
9929 
9930         case offsetof(struct bpf_sock, family):
9931                 *insn++ = BPF_LDX_MEM(
9932                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9933                         si->dst_reg, si->src_reg,
9934                         bpf_target_off(struct sock_common,
9935                                        skc_family,
9936                                        sizeof_field(struct sock_common,
9937                                                     skc_family),
9938                                        target_size));
9939                 break;
9940 
9941         case offsetof(struct bpf_sock, type):
9942                 *insn++ = BPF_LDX_MEM(
9943                         BPF_FIELD_SIZEOF(struct sock, sk_type),
9944                         si->dst_reg, si->src_reg,
9945                         bpf_target_off(struct sock, sk_type,
9946                                        sizeof_field(struct sock, sk_type),
9947                                        target_size));
9948                 break;
9949 
9950         case offsetof(struct bpf_sock, protocol):
9951                 *insn++ = BPF_LDX_MEM(
9952                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9953                         si->dst_reg, si->src_reg,
9954                         bpf_target_off(struct sock, sk_protocol,
9955                                        sizeof_field(struct sock, sk_protocol),
9956                                        target_size));
9957                 break;
9958 
9959         case offsetof(struct bpf_sock, src_ip4):
9960                 *insn++ = BPF_LDX_MEM(
9961                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9962                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9963                                        sizeof_field(struct sock_common,
9964                                                     skc_rcv_saddr),
9965                                        target_size));
9966                 break;
9967 
9968         case offsetof(struct bpf_sock, dst_ip4):
9969                 *insn++ = BPF_LDX_MEM(
9970                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9971                         bpf_target_off(struct sock_common, skc_daddr,
9972                                        sizeof_field(struct sock_common,
9973                                                     skc_daddr),
9974                                        target_size));
9975                 break;
9976 
9977         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9978 #if IS_ENABLED(CONFIG_IPV6)
9979                 off = si->off;
9980                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9981                 *insn++ = BPF_LDX_MEM(
9982                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9983                         bpf_target_off(
9984                                 struct sock_common,
9985                                 skc_v6_rcv_saddr.s6_addr32[0],
9986                                 sizeof_field(struct sock_common,
9987                                              skc_v6_rcv_saddr.s6_addr32[0]),
9988                                 target_size) + off);
9989 #else
9990                 (void)off;
9991                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9992 #endif
9993                 break;
9994 
9995         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9996 #if IS_ENABLED(CONFIG_IPV6)
9997                 off = si->off;
9998                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9999                 *insn++ = BPF_LDX_MEM(
10000                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
10001                         bpf_target_off(struct sock_common,
10002                                        skc_v6_daddr.s6_addr32[0],
10003                                        sizeof_field(struct sock_common,
10004                                                     skc_v6_daddr.s6_addr32[0]),
10005                                        target_size) + off);
10006 #else
10007                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10008                 *target_size = 4;
10009 #endif
10010                 break;
10011 
10012         case offsetof(struct bpf_sock, src_port):
10013                 *insn++ = BPF_LDX_MEM(
10014                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
10015                         si->dst_reg, si->src_reg,
10016                         bpf_target_off(struct sock_common, skc_num,
10017                                        sizeof_field(struct sock_common,
10018                                                     skc_num),
10019                                        target_size));
10020                 break;
10021 
10022         case offsetof(struct bpf_sock, dst_port):
10023                 *insn++ = BPF_LDX_MEM(
10024                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
10025                         si->dst_reg, si->src_reg,
10026                         bpf_target_off(struct sock_common, skc_dport,
10027                                        sizeof_field(struct sock_common,
10028                                                     skc_dport),
10029                                        target_size));
10030                 break;
10031 
10032         case offsetof(struct bpf_sock, state):
10033                 *insn++ = BPF_LDX_MEM(
10034                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
10035                         si->dst_reg, si->src_reg,
10036                         bpf_target_off(struct sock_common, skc_state,
10037                                        sizeof_field(struct sock_common,
10038                                                     skc_state),
10039                                        target_size));
10040                 break;
10041         case offsetof(struct bpf_sock, rx_queue_mapping):
10042 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10043                 *insn++ = BPF_LDX_MEM(
10044                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10045                         si->dst_reg, si->src_reg,
10046                         bpf_target_off(struct sock, sk_rx_queue_mapping,
10047                                        sizeof_field(struct sock,
10048                                                     sk_rx_queue_mapping),
10049                                        target_size));
10050                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10051                                       1);
10052                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10053 #else
10054                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10055                 *target_size = 2;
10056 #endif
10057                 break;
10058         }
10059 
10060         return insn - insn_buf;
10061 }
10062 
10063 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10064                                          const struct bpf_insn *si,
10065                                          struct bpf_insn *insn_buf,
10066                                          struct bpf_prog *prog, u32 *target_size)
10067 {
10068         struct bpf_insn *insn = insn_buf;
10069 
10070         switch (si->off) {
10071         case offsetof(struct __sk_buff, ifindex):
10072                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10073                                       si->dst_reg, si->src_reg,
10074                                       offsetof(struct sk_buff, dev));
10075                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10076                                       bpf_target_off(struct net_device, ifindex, 4,
10077                                                      target_size));
10078                 break;
10079         default:
10080                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10081                                               target_size);
10082         }
10083 
10084         return insn - insn_buf;
10085 }
10086 
10087 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10088                                   const struct bpf_insn *si,
10089                                   struct bpf_insn *insn_buf,
10090                                   struct bpf_prog *prog, u32 *target_size)
10091 {
10092         struct bpf_insn *insn = insn_buf;
10093 
10094         switch (si->off) {
10095         case offsetof(struct xdp_md, data):
10096                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10097                                       si->dst_reg, si->src_reg,
10098                                       offsetof(struct xdp_buff, data));
10099                 break;
10100         case offsetof(struct xdp_md, data_meta):
10101                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10102                                       si->dst_reg, si->src_reg,
10103                                       offsetof(struct xdp_buff, data_meta));
10104                 break;
10105         case offsetof(struct xdp_md, data_end):
10106                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10107                                       si->dst_reg, si->src_reg,
10108                                       offsetof(struct xdp_buff, data_end));
10109                 break;
10110         case offsetof(struct xdp_md, ingress_ifindex):
10111                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10112                                       si->dst_reg, si->src_reg,
10113                                       offsetof(struct xdp_buff, rxq));
10114                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10115                                       si->dst_reg, si->dst_reg,
10116                                       offsetof(struct xdp_rxq_info, dev));
10117                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10118                                       offsetof(struct net_device, ifindex));
10119                 break;
10120         case offsetof(struct xdp_md, rx_queue_index):
10121                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10122                                       si->dst_reg, si->src_reg,
10123                                       offsetof(struct xdp_buff, rxq));
10124                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10125                                       offsetof(struct xdp_rxq_info,
10126                                                queue_index));
10127                 break;
10128         case offsetof(struct xdp_md, egress_ifindex):
10129                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10130                                       si->dst_reg, si->src_reg,
10131                                       offsetof(struct xdp_buff, txq));
10132                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10133                                       si->dst_reg, si->dst_reg,
10134                                       offsetof(struct xdp_txq_info, dev));
10135                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10136                                       offsetof(struct net_device, ifindex));
10137                 break;
10138         }
10139 
10140         return insn - insn_buf;
10141 }
10142 
10143 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10144  * context Structure, F is Field in context structure that contains a pointer
10145  * to Nested Structure of type NS that has the field NF.
10146  *
10147  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10148  * sure that SIZE is not greater than actual size of S.F.NF.
10149  *
10150  * If offset OFF is provided, the load happens from that offset relative to
10151  * offset of NF.
10152  */
10153 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
10154         do {                                                                   \
10155                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10156                                       si->src_reg, offsetof(S, F));            \
10157                 *insn++ = BPF_LDX_MEM(                                         \
10158                         SIZE, si->dst_reg, si->dst_reg,                        \
10159                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
10160                                        target_size)                            \
10161                                 + OFF);                                        \
10162         } while (0)
10163 
10164 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
10165         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
10166                                              BPF_FIELD_SIZEOF(NS, NF), 0)
10167 
10168 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10169  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10170  *
10171  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10172  * "register" since two registers available in convert_ctx_access are not
10173  * enough: we can't override neither SRC, since it contains value to store, nor
10174  * DST since it contains pointer to context that may be used by later
10175  * instructions. But we need a temporary place to save pointer to nested
10176  * structure whose field we want to store to.
10177  */
10178 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
10179         do {                                                                   \
10180                 int tmp_reg = BPF_REG_9;                                       \
10181                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
10182                         --tmp_reg;                                             \
10183                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
10184                         --tmp_reg;                                             \
10185                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
10186                                       offsetof(S, TF));                        \
10187                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
10188                                       si->dst_reg, offsetof(S, F));            \
10189                 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10190                                        tmp_reg, si->src_reg,                   \
10191                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
10192                                        target_size)                            \
10193                                        + OFF,                                  \
10194                                        si->imm);                               \
10195                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
10196                                       offsetof(S, TF));                        \
10197         } while (0)
10198 
10199 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10200                                                       TF)                      \
10201         do {                                                                   \
10202                 if (type == BPF_WRITE) {                                       \
10203                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10204                                                          OFF, TF);             \
10205                 } else {                                                       \
10206                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
10207                                 S, NS, F, NF, SIZE, OFF);  \
10208                 }                                                              \
10209         } while (0)
10210 
10211 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
10212         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
10213                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10214 
10215 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10216                                         const struct bpf_insn *si,
10217                                         struct bpf_insn *insn_buf,
10218                                         struct bpf_prog *prog, u32 *target_size)
10219 {
10220         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10221         struct bpf_insn *insn = insn_buf;
10222 
10223         switch (si->off) {
10224         case offsetof(struct bpf_sock_addr, user_family):
10225                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10226                                             struct sockaddr, uaddr, sa_family);
10227                 break;
10228 
10229         case offsetof(struct bpf_sock_addr, user_ip4):
10230                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10231                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10232                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10233                 break;
10234 
10235         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10236                 off = si->off;
10237                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10238                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10239                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10240                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10241                         tmp_reg);
10242                 break;
10243 
10244         case offsetof(struct bpf_sock_addr, user_port):
10245                 /* To get port we need to know sa_family first and then treat
10246                  * sockaddr as either sockaddr_in or sockaddr_in6.
10247                  * Though we can simplify since port field has same offset and
10248                  * size in both structures.
10249                  * Here we check this invariant and use just one of the
10250                  * structures if it's true.
10251                  */
10252                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10253                              offsetof(struct sockaddr_in6, sin6_port));
10254                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10255                              sizeof_field(struct sockaddr_in6, sin6_port));
10256                 /* Account for sin6_port being smaller than user_port. */
10257                 port_size = min(port_size, BPF_LDST_BYTES(si));
10258                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10259                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10260                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10261                 break;
10262 
10263         case offsetof(struct bpf_sock_addr, family):
10264                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10265                                             struct sock, sk, sk_family);
10266                 break;
10267 
10268         case offsetof(struct bpf_sock_addr, type):
10269                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10270                                             struct sock, sk, sk_type);
10271                 break;
10272 
10273         case offsetof(struct bpf_sock_addr, protocol):
10274                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10275                                             struct sock, sk, sk_protocol);
10276                 break;
10277 
10278         case offsetof(struct bpf_sock_addr, msg_src_ip4):
10279                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10280                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10281                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10282                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10283                 break;
10284 
10285         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10286                                 msg_src_ip6[3]):
10287                 off = si->off;
10288                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10289                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10290                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10291                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10292                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10293                 break;
10294         case offsetof(struct bpf_sock_addr, sk):
10295                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10296                                       si->dst_reg, si->src_reg,
10297                                       offsetof(struct bpf_sock_addr_kern, sk));
10298                 break;
10299         }
10300 
10301         return insn - insn_buf;
10302 }
10303 
10304 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10305                                        const struct bpf_insn *si,
10306                                        struct bpf_insn *insn_buf,
10307                                        struct bpf_prog *prog,
10308                                        u32 *target_size)
10309 {
10310         struct bpf_insn *insn = insn_buf;
10311         int off;
10312 
10313 /* Helper macro for adding read access to tcp_sock or sock fields. */
10314 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10315         do {                                                                  \
10316                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10317                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10318                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10319                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10320                         reg--;                                                \
10321                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10322                         reg--;                                                \
10323                 if (si->dst_reg == si->src_reg) {                             \
10324                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10325                                           offsetof(struct bpf_sock_ops_kern,  \
10326                                           temp));                             \
10327                         fullsock_reg = reg;                                   \
10328                         jmp += 2;                                             \
10329                 }                                                             \
10330                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10331                                                 struct bpf_sock_ops_kern,     \
10332                                                 is_fullsock),                 \
10333                                       fullsock_reg, si->src_reg,              \
10334                                       offsetof(struct bpf_sock_ops_kern,      \
10335                                                is_fullsock));                 \
10336                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10337                 if (si->dst_reg == si->src_reg)                               \
10338                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10339                                       offsetof(struct bpf_sock_ops_kern,      \
10340                                       temp));                                 \
10341                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10342                                                 struct bpf_sock_ops_kern, sk),\
10343                                       si->dst_reg, si->src_reg,               \
10344                                       offsetof(struct bpf_sock_ops_kern, sk));\
10345                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
10346                                                        OBJ_FIELD),            \
10347                                       si->dst_reg, si->dst_reg,               \
10348                                       offsetof(OBJ, OBJ_FIELD));              \
10349                 if (si->dst_reg == si->src_reg) {                             \
10350                         *insn++ = BPF_JMP_A(1);                               \
10351                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10352                                       offsetof(struct bpf_sock_ops_kern,      \
10353                                       temp));                                 \
10354                 }                                                             \
10355         } while (0)
10356 
10357 #define SOCK_OPS_GET_SK()                                                             \
10358         do {                                                                  \
10359                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10360                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10361                         reg--;                                                \
10362                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10363                         reg--;                                                \
10364                 if (si->dst_reg == si->src_reg) {                             \
10365                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10366                                           offsetof(struct bpf_sock_ops_kern,  \
10367                                           temp));                             \
10368                         fullsock_reg = reg;                                   \
10369                         jmp += 2;                                             \
10370                 }                                                             \
10371                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10372                                                 struct bpf_sock_ops_kern,     \
10373                                                 is_fullsock),                 \
10374                                       fullsock_reg, si->src_reg,              \
10375                                       offsetof(struct bpf_sock_ops_kern,      \
10376                                                is_fullsock));                 \
10377                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10378                 if (si->dst_reg == si->src_reg)                               \
10379                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10380                                       offsetof(struct bpf_sock_ops_kern,      \
10381                                       temp));                                 \
10382                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10383                                                 struct bpf_sock_ops_kern, sk),\
10384                                       si->dst_reg, si->src_reg,               \
10385                                       offsetof(struct bpf_sock_ops_kern, sk));\
10386                 if (si->dst_reg == si->src_reg) {                             \
10387                         *insn++ = BPF_JMP_A(1);                               \
10388                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10389                                       offsetof(struct bpf_sock_ops_kern,      \
10390                                       temp));                                 \
10391                 }                                                             \
10392         } while (0)
10393 
10394 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10395                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10396 
10397 /* Helper macro for adding write access to tcp_sock or sock fields.
10398  * The macro is called with two registers, dst_reg which contains a pointer
10399  * to ctx (context) and src_reg which contains the value that should be
10400  * stored. However, we need an additional register since we cannot overwrite
10401  * dst_reg because it may be used later in the program.
10402  * Instead we "borrow" one of the other register. We first save its value
10403  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10404  * it at the end of the macro.
10405  */
10406 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10407         do {                                                                  \
10408                 int reg = BPF_REG_9;                                          \
10409                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10410                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10411                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10412                         reg--;                                                \
10413                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10414                         reg--;                                                \
10415                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
10416                                       offsetof(struct bpf_sock_ops_kern,      \
10417                                                temp));                        \
10418                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10419                                                 struct bpf_sock_ops_kern,     \
10420                                                 is_fullsock),                 \
10421                                       reg, si->dst_reg,                       \
10422                                       offsetof(struct bpf_sock_ops_kern,      \
10423                                                is_fullsock));                 \
10424                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
10425                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10426                                                 struct bpf_sock_ops_kern, sk),\
10427                                       reg, si->dst_reg,                       \
10428                                       offsetof(struct bpf_sock_ops_kern, sk));\
10429                 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10430                                        BPF_MEM | BPF_CLASS(si->code),         \
10431                                        reg, si->src_reg,                      \
10432                                        offsetof(OBJ, OBJ_FIELD),              \
10433                                        si->imm);                              \
10434                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
10435                                       offsetof(struct bpf_sock_ops_kern,      \
10436                                                temp));                        \
10437         } while (0)
10438 
10439 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
10440         do {                                                                  \
10441                 if (TYPE == BPF_WRITE)                                        \
10442                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10443                 else                                                          \
10444                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10445         } while (0)
10446 
10447         switch (si->off) {
10448         case offsetof(struct bpf_sock_ops, op):
10449                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10450                                                        op),
10451                                       si->dst_reg, si->src_reg,
10452                                       offsetof(struct bpf_sock_ops_kern, op));
10453                 break;
10454 
10455         case offsetof(struct bpf_sock_ops, replylong[0]) ...
10456              offsetof(struct bpf_sock_ops, replylong[3]):
10457                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10458                              sizeof_field(struct bpf_sock_ops_kern, reply));
10459                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10460                              sizeof_field(struct bpf_sock_ops_kern, replylong));
10461                 off = si->off;
10462                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10463                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10464                 if (type == BPF_WRITE)
10465                         *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10466                 else
10467                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10468                                               off);
10469                 break;
10470 
10471         case offsetof(struct bpf_sock_ops, family):
10472                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10473 
10474                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10475                                               struct bpf_sock_ops_kern, sk),
10476                                       si->dst_reg, si->src_reg,
10477                                       offsetof(struct bpf_sock_ops_kern, sk));
10478                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10479                                       offsetof(struct sock_common, skc_family));
10480                 break;
10481 
10482         case offsetof(struct bpf_sock_ops, remote_ip4):
10483                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10484 
10485                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10486                                                 struct bpf_sock_ops_kern, sk),
10487                                       si->dst_reg, si->src_reg,
10488                                       offsetof(struct bpf_sock_ops_kern, sk));
10489                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10490                                       offsetof(struct sock_common, skc_daddr));
10491                 break;
10492 
10493         case offsetof(struct bpf_sock_ops, local_ip4):
10494                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10495                                           skc_rcv_saddr) != 4);
10496 
10497                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10498                                               struct bpf_sock_ops_kern, sk),
10499                                       si->dst_reg, si->src_reg,
10500                                       offsetof(struct bpf_sock_ops_kern, sk));
10501                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10502                                       offsetof(struct sock_common,
10503                                                skc_rcv_saddr));
10504                 break;
10505 
10506         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10507              offsetof(struct bpf_sock_ops, remote_ip6[3]):
10508 #if IS_ENABLED(CONFIG_IPV6)
10509                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10510                                           skc_v6_daddr.s6_addr32[0]) != 4);
10511 
10512                 off = si->off;
10513                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10514                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10515                                                 struct bpf_sock_ops_kern, sk),
10516                                       si->dst_reg, si->src_reg,
10517                                       offsetof(struct bpf_sock_ops_kern, sk));
10518                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10519                                       offsetof(struct sock_common,
10520                                                skc_v6_daddr.s6_addr32[0]) +
10521                                       off);
10522 #else
10523                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10524 #endif
10525                 break;
10526 
10527         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10528              offsetof(struct bpf_sock_ops, local_ip6[3]):
10529 #if IS_ENABLED(CONFIG_IPV6)
10530                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10531                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10532 
10533                 off = si->off;
10534                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10535                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10536                                                 struct bpf_sock_ops_kern, sk),
10537                                       si->dst_reg, si->src_reg,
10538                                       offsetof(struct bpf_sock_ops_kern, sk));
10539                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10540                                       offsetof(struct sock_common,
10541                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10542                                       off);
10543 #else
10544                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10545 #endif
10546                 break;
10547 
10548         case offsetof(struct bpf_sock_ops, remote_port):
10549                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10550 
10551                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10552                                                 struct bpf_sock_ops_kern, sk),
10553                                       si->dst_reg, si->src_reg,
10554                                       offsetof(struct bpf_sock_ops_kern, sk));
10555                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10556                                       offsetof(struct sock_common, skc_dport));
10557 #ifndef __BIG_ENDIAN_BITFIELD
10558                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10559 #endif
10560                 break;
10561 
10562         case offsetof(struct bpf_sock_ops, local_port):
10563                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10564 
10565                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10566                                                 struct bpf_sock_ops_kern, sk),
10567                                       si->dst_reg, si->src_reg,
10568                                       offsetof(struct bpf_sock_ops_kern, sk));
10569                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10570                                       offsetof(struct sock_common, skc_num));
10571                 break;
10572 
10573         case offsetof(struct bpf_sock_ops, is_fullsock):
10574                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10575                                                 struct bpf_sock_ops_kern,
10576                                                 is_fullsock),
10577                                       si->dst_reg, si->src_reg,
10578                                       offsetof(struct bpf_sock_ops_kern,
10579                                                is_fullsock));
10580                 break;
10581 
10582         case offsetof(struct bpf_sock_ops, state):
10583                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10584 
10585                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10586                                                 struct bpf_sock_ops_kern, sk),
10587                                       si->dst_reg, si->src_reg,
10588                                       offsetof(struct bpf_sock_ops_kern, sk));
10589                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10590                                       offsetof(struct sock_common, skc_state));
10591                 break;
10592 
10593         case offsetof(struct bpf_sock_ops, rtt_min):
10594                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10595                              sizeof(struct minmax));
10596                 BUILD_BUG_ON(sizeof(struct minmax) <
10597                              sizeof(struct minmax_sample));
10598 
10599                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10600                                                 struct bpf_sock_ops_kern, sk),
10601                                       si->dst_reg, si->src_reg,
10602                                       offsetof(struct bpf_sock_ops_kern, sk));
10603                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10604                                       offsetof(struct tcp_sock, rtt_min) +
10605                                       sizeof_field(struct minmax_sample, t));
10606                 break;
10607 
10608         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10609                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10610                                    struct tcp_sock);
10611                 break;
10612 
10613         case offsetof(struct bpf_sock_ops, sk_txhash):
10614                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10615                                           struct sock, type);
10616                 break;
10617         case offsetof(struct bpf_sock_ops, snd_cwnd):
10618                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10619                 break;
10620         case offsetof(struct bpf_sock_ops, srtt_us):
10621                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10622                 break;
10623         case offsetof(struct bpf_sock_ops, snd_ssthresh):
10624                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10625                 break;
10626         case offsetof(struct bpf_sock_ops, rcv_nxt):
10627                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10628                 break;
10629         case offsetof(struct bpf_sock_ops, snd_nxt):
10630                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10631                 break;
10632         case offsetof(struct bpf_sock_ops, snd_una):
10633                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10634                 break;
10635         case offsetof(struct bpf_sock_ops, mss_cache):
10636                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10637                 break;
10638         case offsetof(struct bpf_sock_ops, ecn_flags):
10639                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10640                 break;
10641         case offsetof(struct bpf_sock_ops, rate_delivered):
10642                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10643                 break;
10644         case offsetof(struct bpf_sock_ops, rate_interval_us):
10645                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10646                 break;
10647         case offsetof(struct bpf_sock_ops, packets_out):
10648                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10649                 break;
10650         case offsetof(struct bpf_sock_ops, retrans_out):
10651                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10652                 break;
10653         case offsetof(struct bpf_sock_ops, total_retrans):
10654                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10655                 break;
10656         case offsetof(struct bpf_sock_ops, segs_in):
10657                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10658                 break;
10659         case offsetof(struct bpf_sock_ops, data_segs_in):
10660                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10661                 break;
10662         case offsetof(struct bpf_sock_ops, segs_out):
10663                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10664                 break;
10665         case offsetof(struct bpf_sock_ops, data_segs_out):
10666                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10667                 break;
10668         case offsetof(struct bpf_sock_ops, lost_out):
10669                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10670                 break;
10671         case offsetof(struct bpf_sock_ops, sacked_out):
10672                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10673                 break;
10674         case offsetof(struct bpf_sock_ops, bytes_received):
10675                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10676                 break;
10677         case offsetof(struct bpf_sock_ops, bytes_acked):
10678                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10679                 break;
10680         case offsetof(struct bpf_sock_ops, sk):
10681                 SOCK_OPS_GET_SK();
10682                 break;
10683         case offsetof(struct bpf_sock_ops, skb_data_end):
10684                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10685                                                        skb_data_end),
10686                                       si->dst_reg, si->src_reg,
10687                                       offsetof(struct bpf_sock_ops_kern,
10688                                                skb_data_end));
10689                 break;
10690         case offsetof(struct bpf_sock_ops, skb_data):
10691                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10692                                                        skb),
10693                                       si->dst_reg, si->src_reg,
10694                                       offsetof(struct bpf_sock_ops_kern,
10695                                                skb));
10696                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10697                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10698                                       si->dst_reg, si->dst_reg,
10699                                       offsetof(struct sk_buff, data));
10700                 break;
10701         case offsetof(struct bpf_sock_ops, skb_len):
10702                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10703                                                        skb),
10704                                       si->dst_reg, si->src_reg,
10705                                       offsetof(struct bpf_sock_ops_kern,
10706                                                skb));
10707                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10708                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10709                                       si->dst_reg, si->dst_reg,
10710                                       offsetof(struct sk_buff, len));
10711                 break;
10712         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10713                 off = offsetof(struct sk_buff, cb);
10714                 off += offsetof(struct tcp_skb_cb, tcp_flags);
10715                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10716                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10717                                                        skb),
10718                                       si->dst_reg, si->src_reg,
10719                                       offsetof(struct bpf_sock_ops_kern,
10720                                                skb));
10721                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10722                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10723                                                        tcp_flags),
10724                                       si->dst_reg, si->dst_reg, off);
10725                 break;
10726         case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10727                 struct bpf_insn *jmp_on_null_skb;
10728 
10729                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10730                                                        skb),
10731                                       si->dst_reg, si->src_reg,
10732                                       offsetof(struct bpf_sock_ops_kern,
10733                                                skb));
10734                 /* Reserve one insn to test skb == NULL */
10735                 jmp_on_null_skb = insn++;
10736                 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10737                 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10738                                       bpf_target_off(struct skb_shared_info,
10739                                                      hwtstamps, 8,
10740                                                      target_size));
10741                 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10742                                                insn - jmp_on_null_skb - 1);
10743                 break;
10744         }
10745         }
10746         return insn - insn_buf;
10747 }
10748 
10749 /* data_end = skb->data + skb_headlen() */
10750 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10751                                                     struct bpf_insn *insn)
10752 {
10753         int reg;
10754         int temp_reg_off = offsetof(struct sk_buff, cb) +
10755                            offsetof(struct sk_skb_cb, temp_reg);
10756 
10757         if (si->src_reg == si->dst_reg) {
10758                 /* We need an extra register, choose and save a register. */
10759                 reg = BPF_REG_9;
10760                 if (si->src_reg == reg || si->dst_reg == reg)
10761                         reg--;
10762                 if (si->src_reg == reg || si->dst_reg == reg)
10763                         reg--;
10764                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10765         } else {
10766                 reg = si->dst_reg;
10767         }
10768 
10769         /* reg = skb->data */
10770         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10771                               reg, si->src_reg,
10772                               offsetof(struct sk_buff, data));
10773         /* AX = skb->len */
10774         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10775                               BPF_REG_AX, si->src_reg,
10776                               offsetof(struct sk_buff, len));
10777         /* reg = skb->data + skb->len */
10778         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10779         /* AX = skb->data_len */
10780         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10781                               BPF_REG_AX, si->src_reg,
10782                               offsetof(struct sk_buff, data_len));
10783 
10784         /* reg = skb->data + skb->len - skb->data_len */
10785         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10786 
10787         if (si->src_reg == si->dst_reg) {
10788                 /* Restore the saved register */
10789                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10790                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10791                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10792         }
10793 
10794         return insn;
10795 }
10796 
10797 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10798                                      const struct bpf_insn *si,
10799                                      struct bpf_insn *insn_buf,
10800                                      struct bpf_prog *prog, u32 *target_size)
10801 {
10802         struct bpf_insn *insn = insn_buf;
10803         int off;
10804 
10805         switch (si->off) {
10806         case offsetof(struct __sk_buff, data_end):
10807                 insn = bpf_convert_data_end_access(si, insn);
10808                 break;
10809         case offsetof(struct __sk_buff, cb[0]) ...
10810              offsetofend(struct __sk_buff, cb[4]) - 1:
10811                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10812                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10813                               offsetof(struct sk_skb_cb, data)) %
10814                              sizeof(__u64));
10815 
10816                 prog->cb_access = 1;
10817                 off  = si->off;
10818                 off -= offsetof(struct __sk_buff, cb[0]);
10819                 off += offsetof(struct sk_buff, cb);
10820                 off += offsetof(struct sk_skb_cb, data);
10821                 if (type == BPF_WRITE)
10822                         *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10823                 else
10824                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10825                                               si->src_reg, off);
10826                 break;
10827 
10828 
10829         default:
10830                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10831                                               target_size);
10832         }
10833 
10834         return insn - insn_buf;
10835 }
10836 
10837 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10838                                      const struct bpf_insn *si,
10839                                      struct bpf_insn *insn_buf,
10840                                      struct bpf_prog *prog, u32 *target_size)
10841 {
10842         struct bpf_insn *insn = insn_buf;
10843 #if IS_ENABLED(CONFIG_IPV6)
10844         int off;
10845 #endif
10846 
10847         /* convert ctx uses the fact sg element is first in struct */
10848         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10849 
10850         switch (si->off) {
10851         case offsetof(struct sk_msg_md, data):
10852                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10853                                       si->dst_reg, si->src_reg,
10854                                       offsetof(struct sk_msg, data));
10855                 break;
10856         case offsetof(struct sk_msg_md, data_end):
10857                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10858                                       si->dst_reg, si->src_reg,
10859                                       offsetof(struct sk_msg, data_end));
10860                 break;
10861         case offsetof(struct sk_msg_md, family):
10862                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10863 
10864                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10865                                               struct sk_msg, sk),
10866                                       si->dst_reg, si->src_reg,
10867                                       offsetof(struct sk_msg, sk));
10868                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10869                                       offsetof(struct sock_common, skc_family));
10870                 break;
10871 
10872         case offsetof(struct sk_msg_md, remote_ip4):
10873                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10874 
10875                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10876                                                 struct sk_msg, sk),
10877                                       si->dst_reg, si->src_reg,
10878                                       offsetof(struct sk_msg, sk));
10879                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10880                                       offsetof(struct sock_common, skc_daddr));
10881                 break;
10882 
10883         case offsetof(struct sk_msg_md, local_ip4):
10884                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10885                                           skc_rcv_saddr) != 4);
10886 
10887                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10888                                               struct sk_msg, sk),
10889                                       si->dst_reg, si->src_reg,
10890                                       offsetof(struct sk_msg, sk));
10891                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10892                                       offsetof(struct sock_common,
10893                                                skc_rcv_saddr));
10894                 break;
10895 
10896         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10897              offsetof(struct sk_msg_md, remote_ip6[3]):
10898 #if IS_ENABLED(CONFIG_IPV6)
10899                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10900                                           skc_v6_daddr.s6_addr32[0]) != 4);
10901 
10902                 off = si->off;
10903                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10904                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10905                                                 struct sk_msg, sk),
10906                                       si->dst_reg, si->src_reg,
10907                                       offsetof(struct sk_msg, sk));
10908                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10909                                       offsetof(struct sock_common,
10910                                                skc_v6_daddr.s6_addr32[0]) +
10911                                       off);
10912 #else
10913                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10914 #endif
10915                 break;
10916 
10917         case offsetof(struct sk_msg_md, local_ip6[0]) ...
10918              offsetof(struct sk_msg_md, local_ip6[3]):
10919 #if IS_ENABLED(CONFIG_IPV6)
10920                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10921                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10922 
10923                 off = si->off;
10924                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10925                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10926                                                 struct sk_msg, sk),
10927                                       si->dst_reg, si->src_reg,
10928                                       offsetof(struct sk_msg, sk));
10929                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10930                                       offsetof(struct sock_common,
10931                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10932                                       off);
10933 #else
10934                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10935 #endif
10936                 break;
10937 
10938         case offsetof(struct sk_msg_md, remote_port):
10939                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10940 
10941                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10942                                                 struct sk_msg, sk),
10943                                       si->dst_reg, si->src_reg,
10944                                       offsetof(struct sk_msg, sk));
10945                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10946                                       offsetof(struct sock_common, skc_dport));
10947 #ifndef __BIG_ENDIAN_BITFIELD
10948                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10949 #endif
10950                 break;
10951 
10952         case offsetof(struct sk_msg_md, local_port):
10953                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10954 
10955                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10956                                                 struct sk_msg, sk),
10957                                       si->dst_reg, si->src_reg,
10958                                       offsetof(struct sk_msg, sk));
10959                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10960                                       offsetof(struct sock_common, skc_num));
10961                 break;
10962 
10963         case offsetof(struct sk_msg_md, size):
10964                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10965                                       si->dst_reg, si->src_reg,
10966                                       offsetof(struct sk_msg_sg, size));
10967                 break;
10968 
10969         case offsetof(struct sk_msg_md, sk):
10970                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10971                                       si->dst_reg, si->src_reg,
10972                                       offsetof(struct sk_msg, sk));
10973                 break;
10974         }
10975 
10976         return insn - insn_buf;
10977 }
10978 
10979 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10980         .get_func_proto         = sk_filter_func_proto,
10981         .is_valid_access        = sk_filter_is_valid_access,
10982         .convert_ctx_access     = bpf_convert_ctx_access,
10983         .gen_ld_abs             = bpf_gen_ld_abs,
10984 };
10985 
10986 const struct bpf_prog_ops sk_filter_prog_ops = {
10987         .test_run               = bpf_prog_test_run_skb,
10988 };
10989 
10990 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10991         .get_func_proto         = tc_cls_act_func_proto,
10992         .is_valid_access        = tc_cls_act_is_valid_access,
10993         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10994         .gen_prologue           = tc_cls_act_prologue,
10995         .gen_ld_abs             = bpf_gen_ld_abs,
10996         .btf_struct_access      = tc_cls_act_btf_struct_access,
10997 };
10998 
10999 const struct bpf_prog_ops tc_cls_act_prog_ops = {
11000         .test_run               = bpf_prog_test_run_skb,
11001 };
11002 
11003 const struct bpf_verifier_ops xdp_verifier_ops = {
11004         .get_func_proto         = xdp_func_proto,
11005         .is_valid_access        = xdp_is_valid_access,
11006         .convert_ctx_access     = xdp_convert_ctx_access,
11007         .gen_prologue           = bpf_noop_prologue,
11008         .btf_struct_access      = xdp_btf_struct_access,
11009 };
11010 
11011 const struct bpf_prog_ops xdp_prog_ops = {
11012         .test_run               = bpf_prog_test_run_xdp,
11013 };
11014 
11015 const struct bpf_verifier_ops cg_skb_verifier_ops = {
11016         .get_func_proto         = cg_skb_func_proto,
11017         .is_valid_access        = cg_skb_is_valid_access,
11018         .convert_ctx_access     = bpf_convert_ctx_access,
11019 };
11020 
11021 const struct bpf_prog_ops cg_skb_prog_ops = {
11022         .test_run               = bpf_prog_test_run_skb,
11023 };
11024 
11025 const struct bpf_verifier_ops lwt_in_verifier_ops = {
11026         .get_func_proto         = lwt_in_func_proto,
11027         .is_valid_access        = lwt_is_valid_access,
11028         .convert_ctx_access     = bpf_convert_ctx_access,
11029 };
11030 
11031 const struct bpf_prog_ops lwt_in_prog_ops = {
11032         .test_run               = bpf_prog_test_run_skb,
11033 };
11034 
11035 const struct bpf_verifier_ops lwt_out_verifier_ops = {
11036         .get_func_proto         = lwt_out_func_proto,
11037         .is_valid_access        = lwt_is_valid_access,
11038         .convert_ctx_access     = bpf_convert_ctx_access,
11039 };
11040 
11041 const struct bpf_prog_ops lwt_out_prog_ops = {
11042         .test_run               = bpf_prog_test_run_skb,
11043 };
11044 
11045 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11046         .get_func_proto         = lwt_xmit_func_proto,
11047         .is_valid_access        = lwt_is_valid_access,
11048         .convert_ctx_access     = bpf_convert_ctx_access,
11049         .gen_prologue           = tc_cls_act_prologue,
11050 };
11051 
11052 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11053         .test_run               = bpf_prog_test_run_skb,
11054 };
11055 
11056 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11057         .get_func_proto         = lwt_seg6local_func_proto,
11058         .is_valid_access        = lwt_is_valid_access,
11059         .convert_ctx_access     = bpf_convert_ctx_access,
11060 };
11061 
11062 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11063 };
11064 
11065 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11066         .get_func_proto         = sock_filter_func_proto,
11067         .is_valid_access        = sock_filter_is_valid_access,
11068         .convert_ctx_access     = bpf_sock_convert_ctx_access,
11069 };
11070 
11071 const struct bpf_prog_ops cg_sock_prog_ops = {
11072 };
11073 
11074 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11075         .get_func_proto         = sock_addr_func_proto,
11076         .is_valid_access        = sock_addr_is_valid_access,
11077         .convert_ctx_access     = sock_addr_convert_ctx_access,
11078 };
11079 
11080 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11081 };
11082 
11083 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11084         .get_func_proto         = sock_ops_func_proto,
11085         .is_valid_access        = sock_ops_is_valid_access,
11086         .convert_ctx_access     = sock_ops_convert_ctx_access,
11087 };
11088 
11089 const struct bpf_prog_ops sock_ops_prog_ops = {
11090 };
11091 
11092 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11093         .get_func_proto         = sk_skb_func_proto,
11094         .is_valid_access        = sk_skb_is_valid_access,
11095         .convert_ctx_access     = sk_skb_convert_ctx_access,
11096         .gen_prologue           = sk_skb_prologue,
11097 };
11098 
11099 const struct bpf_prog_ops sk_skb_prog_ops = {
11100 };
11101 
11102 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11103         .get_func_proto         = sk_msg_func_proto,
11104         .is_valid_access        = sk_msg_is_valid_access,
11105         .convert_ctx_access     = sk_msg_convert_ctx_access,
11106         .gen_prologue           = bpf_noop_prologue,
11107 };
11108 
11109 const struct bpf_prog_ops sk_msg_prog_ops = {
11110 };
11111 
11112 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11113         .get_func_proto         = flow_dissector_func_proto,
11114         .is_valid_access        = flow_dissector_is_valid_access,
11115         .convert_ctx_access     = flow_dissector_convert_ctx_access,
11116 };
11117 
11118 const struct bpf_prog_ops flow_dissector_prog_ops = {
11119         .test_run               = bpf_prog_test_run_flow_dissector,
11120 };
11121 
11122 int sk_detach_filter(struct sock *sk)
11123 {
11124         int ret = -ENOENT;
11125         struct sk_filter *filter;
11126 
11127         if (sock_flag(sk, SOCK_FILTER_LOCKED))
11128                 return -EPERM;
11129 
11130         filter = rcu_dereference_protected(sk->sk_filter,
11131                                            lockdep_sock_is_held(sk));
11132         if (filter) {
11133                 RCU_INIT_POINTER(sk->sk_filter, NULL);
11134                 sk_filter_uncharge(sk, filter);
11135                 ret = 0;
11136         }
11137 
11138         return ret;
11139 }
11140 EXPORT_SYMBOL_GPL(sk_detach_filter);
11141 
11142 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11143 {
11144         struct sock_fprog_kern *fprog;
11145         struct sk_filter *filter;
11146         int ret = 0;
11147 
11148         sockopt_lock_sock(sk);
11149         filter = rcu_dereference_protected(sk->sk_filter,
11150                                            lockdep_sock_is_held(sk));
11151         if (!filter)
11152                 goto out;
11153 
11154         /* We're copying the filter that has been originally attached,
11155          * so no conversion/decode needed anymore. eBPF programs that
11156          * have no original program cannot be dumped through this.
11157          */
11158         ret = -EACCES;
11159         fprog = filter->prog->orig_prog;
11160         if (!fprog)
11161                 goto out;
11162 
11163         ret = fprog->len;
11164         if (!len)
11165                 /* User space only enquires number of filter blocks. */
11166                 goto out;
11167 
11168         ret = -EINVAL;
11169         if (len < fprog->len)
11170                 goto out;
11171 
11172         ret = -EFAULT;
11173         if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11174                 goto out;
11175 
11176         /* Instead of bytes, the API requests to return the number
11177          * of filter blocks.
11178          */
11179         ret = fprog->len;
11180 out:
11181         sockopt_release_sock(sk);
11182         return ret;
11183 }
11184 
11185 #ifdef CONFIG_INET
11186 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11187                                     struct sock_reuseport *reuse,
11188                                     struct sock *sk, struct sk_buff *skb,
11189                                     struct sock *migrating_sk,
11190                                     u32 hash)
11191 {
11192         reuse_kern->skb = skb;
11193         reuse_kern->sk = sk;
11194         reuse_kern->selected_sk = NULL;
11195         reuse_kern->migrating_sk = migrating_sk;
11196         reuse_kern->data_end = skb->data + skb_headlen(skb);
11197         reuse_kern->hash = hash;
11198         reuse_kern->reuseport_id = reuse->reuseport_id;
11199         reuse_kern->bind_inany = reuse->bind_inany;
11200 }
11201 
11202 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11203                                   struct bpf_prog *prog, struct sk_buff *skb,
11204                                   struct sock *migrating_sk,
11205                                   u32 hash)
11206 {
11207         struct sk_reuseport_kern reuse_kern;
11208         enum sk_action action;
11209 
11210         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11211         action = bpf_prog_run(prog, &reuse_kern);
11212 
11213         if (action == SK_PASS)
11214                 return reuse_kern.selected_sk;
11215         else
11216                 return ERR_PTR(-ECONNREFUSED);
11217 }
11218 
11219 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11220            struct bpf_map *, map, void *, key, u32, flags)
11221 {
11222         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11223         struct sock_reuseport *reuse;
11224         struct sock *selected_sk;
11225 
11226         selected_sk = map->ops->map_lookup_elem(map, key);
11227         if (!selected_sk)
11228                 return -ENOENT;
11229 
11230         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11231         if (!reuse) {
11232                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11233                 if (sk_is_refcounted(selected_sk))
11234                         sock_put(selected_sk);
11235 
11236                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11237                  * The only (!reuse) case here is - the sk has already been
11238                  * unhashed (e.g. by close()), so treat it as -ENOENT.
11239                  *
11240                  * Other maps (e.g. sock_map) do not provide this guarantee and
11241                  * the sk may never be in the reuseport group to begin with.
11242                  */
11243                 return is_sockarray ? -ENOENT : -EINVAL;
11244         }
11245 
11246         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11247                 struct sock *sk = reuse_kern->sk;
11248 
11249                 if (sk->sk_protocol != selected_sk->sk_protocol)
11250                         return -EPROTOTYPE;
11251                 else if (sk->sk_family != selected_sk->sk_family)
11252                         return -EAFNOSUPPORT;
11253 
11254                 /* Catch all. Likely bound to a different sockaddr. */
11255                 return -EBADFD;
11256         }
11257 
11258         reuse_kern->selected_sk = selected_sk;
11259 
11260         return 0;
11261 }
11262 
11263 static const struct bpf_func_proto sk_select_reuseport_proto = {
11264         .func           = sk_select_reuseport,
11265         .gpl_only       = false,
11266         .ret_type       = RET_INTEGER,
11267         .arg1_type      = ARG_PTR_TO_CTX,
11268         .arg2_type      = ARG_CONST_MAP_PTR,
11269         .arg3_type      = ARG_PTR_TO_MAP_KEY,
11270         .arg4_type      = ARG_ANYTHING,
11271 };
11272 
11273 BPF_CALL_4(sk_reuseport_load_bytes,
11274            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11275            void *, to, u32, len)
11276 {
11277         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11278 }
11279 
11280 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11281         .func           = sk_reuseport_load_bytes,
11282         .gpl_only       = false,
11283         .ret_type       = RET_INTEGER,
11284         .arg1_type      = ARG_PTR_TO_CTX,
11285         .arg2_type      = ARG_ANYTHING,
11286         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
11287         .arg4_type      = ARG_CONST_SIZE,
11288 };
11289 
11290 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11291            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11292            void *, to, u32, len, u32, start_header)
11293 {
11294         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11295                                                len, start_header);
11296 }
11297 
11298 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11299         .func           = sk_reuseport_load_bytes_relative,
11300         .gpl_only       = false,
11301         .ret_type       = RET_INTEGER,
11302         .arg1_type      = ARG_PTR_TO_CTX,
11303         .arg2_type      = ARG_ANYTHING,
11304         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
11305         .arg4_type      = ARG_CONST_SIZE,
11306         .arg5_type      = ARG_ANYTHING,
11307 };
11308 
11309 static const struct bpf_func_proto *
11310 sk_reuseport_func_proto(enum bpf_func_id func_id,
11311                         const struct bpf_prog *prog)
11312 {
11313         switch (func_id) {
11314         case BPF_FUNC_sk_select_reuseport:
11315                 return &sk_select_reuseport_proto;
11316         case BPF_FUNC_skb_load_bytes:
11317                 return &sk_reuseport_load_bytes_proto;
11318         case BPF_FUNC_skb_load_bytes_relative:
11319                 return &sk_reuseport_load_bytes_relative_proto;
11320         case BPF_FUNC_get_socket_cookie:
11321                 return &bpf_get_socket_ptr_cookie_proto;
11322         case BPF_FUNC_ktime_get_coarse_ns:
11323                 return &bpf_ktime_get_coarse_ns_proto;
11324         default:
11325                 return bpf_base_func_proto(func_id, prog);
11326         }
11327 }
11328 
11329 static bool
11330 sk_reuseport_is_valid_access(int off, int size,
11331                              enum bpf_access_type type,
11332                              const struct bpf_prog *prog,
11333                              struct bpf_insn_access_aux *info)
11334 {
11335         const u32 size_default = sizeof(__u32);
11336 
11337         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11338             off % size || type != BPF_READ)
11339                 return false;
11340 
11341         switch (off) {
11342         case offsetof(struct sk_reuseport_md, data):
11343                 info->reg_type = PTR_TO_PACKET;
11344                 return size == sizeof(__u64);
11345 
11346         case offsetof(struct sk_reuseport_md, data_end):
11347                 info->reg_type = PTR_TO_PACKET_END;
11348                 return size == sizeof(__u64);
11349 
11350         case offsetof(struct sk_reuseport_md, hash):
11351                 return size == size_default;
11352 
11353         case offsetof(struct sk_reuseport_md, sk):
11354                 info->reg_type = PTR_TO_SOCKET;
11355                 return size == sizeof(__u64);
11356 
11357         case offsetof(struct sk_reuseport_md, migrating_sk):
11358                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11359                 return size == sizeof(__u64);
11360 
11361         /* Fields that allow narrowing */
11362         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11363                 if (size < sizeof_field(struct sk_buff, protocol))
11364                         return false;
11365                 fallthrough;
11366         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11367         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11368         case bpf_ctx_range(struct sk_reuseport_md, len):
11369                 bpf_ctx_record_field_size(info, size_default);
11370                 return bpf_ctx_narrow_access_ok(off, size, size_default);
11371 
11372         default:
11373                 return false;
11374         }
11375 }
11376 
11377 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
11378         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11379                               si->dst_reg, si->src_reg,                 \
11380                               bpf_target_off(struct sk_reuseport_kern, F, \
11381                                              sizeof_field(struct sk_reuseport_kern, F), \
11382                                              target_size));             \
11383         })
11384 
11385 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
11386         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11387                                     struct sk_buff,                     \
11388                                     skb,                                \
11389                                     SKB_FIELD)
11390 
11391 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
11392         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11393                                     struct sock,                        \
11394                                     sk,                                 \
11395                                     SK_FIELD)
11396 
11397 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11398                                            const struct bpf_insn *si,
11399                                            struct bpf_insn *insn_buf,
11400                                            struct bpf_prog *prog,
11401                                            u32 *target_size)
11402 {
11403         struct bpf_insn *insn = insn_buf;
11404 
11405         switch (si->off) {
11406         case offsetof(struct sk_reuseport_md, data):
11407                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11408                 break;
11409 
11410         case offsetof(struct sk_reuseport_md, len):
11411                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11412                 break;
11413 
11414         case offsetof(struct sk_reuseport_md, eth_protocol):
11415                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11416                 break;
11417 
11418         case offsetof(struct sk_reuseport_md, ip_protocol):
11419                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11420                 break;
11421 
11422         case offsetof(struct sk_reuseport_md, data_end):
11423                 SK_REUSEPORT_LOAD_FIELD(data_end);
11424                 break;
11425 
11426         case offsetof(struct sk_reuseport_md, hash):
11427                 SK_REUSEPORT_LOAD_FIELD(hash);
11428                 break;
11429 
11430         case offsetof(struct sk_reuseport_md, bind_inany):
11431                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11432                 break;
11433 
11434         case offsetof(struct sk_reuseport_md, sk):
11435                 SK_REUSEPORT_LOAD_FIELD(sk);
11436                 break;
11437 
11438         case offsetof(struct sk_reuseport_md, migrating_sk):
11439                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11440                 break;
11441         }
11442 
11443         return insn - insn_buf;
11444 }
11445 
11446 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11447         .get_func_proto         = sk_reuseport_func_proto,
11448         .is_valid_access        = sk_reuseport_is_valid_access,
11449         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
11450 };
11451 
11452 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11453 };
11454 
11455 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11456 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11457 
11458 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11459            struct sock *, sk, u64, flags)
11460 {
11461         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11462                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11463                 return -EINVAL;
11464         if (unlikely(sk && sk_is_refcounted(sk)))
11465                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11466         if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11467                 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11468         if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11469                 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11470 
11471         /* Check if socket is suitable for packet L3/L4 protocol */
11472         if (sk && sk->sk_protocol != ctx->protocol)
11473                 return -EPROTOTYPE;
11474         if (sk && sk->sk_family != ctx->family &&
11475             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11476                 return -EAFNOSUPPORT;
11477 
11478         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11479                 return -EEXIST;
11480 
11481         /* Select socket as lookup result */
11482         ctx->selected_sk = sk;
11483         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11484         return 0;
11485 }
11486 
11487 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11488         .func           = bpf_sk_lookup_assign,
11489         .gpl_only       = false,
11490         .ret_type       = RET_INTEGER,
11491         .arg1_type      = ARG_PTR_TO_CTX,
11492         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
11493         .arg3_type      = ARG_ANYTHING,
11494 };
11495 
11496 static const struct bpf_func_proto *
11497 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11498 {
11499         switch (func_id) {
11500         case BPF_FUNC_perf_event_output:
11501                 return &bpf_event_output_data_proto;
11502         case BPF_FUNC_sk_assign:
11503                 return &bpf_sk_lookup_assign_proto;
11504         case BPF_FUNC_sk_release:
11505                 return &bpf_sk_release_proto;
11506         default:
11507                 return bpf_sk_base_func_proto(func_id, prog);
11508         }
11509 }
11510 
11511 static bool sk_lookup_is_valid_access(int off, int size,
11512                                       enum bpf_access_type type,
11513                                       const struct bpf_prog *prog,
11514                                       struct bpf_insn_access_aux *info)
11515 {
11516         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11517                 return false;
11518         if (off % size != 0)
11519                 return false;
11520         if (type != BPF_READ)
11521                 return false;
11522 
11523         switch (off) {
11524         case offsetof(struct bpf_sk_lookup, sk):
11525                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11526                 return size == sizeof(__u64);
11527 
11528         case bpf_ctx_range(struct bpf_sk_lookup, family):
11529         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11530         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11531         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11532         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11533         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11534         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11535         case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11536                 bpf_ctx_record_field_size(info, sizeof(__u32));
11537                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11538 
11539         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11540                 /* Allow 4-byte access to 2-byte field for backward compatibility */
11541                 if (size == sizeof(__u32))
11542                         return true;
11543                 bpf_ctx_record_field_size(info, sizeof(__be16));
11544                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11545 
11546         case offsetofend(struct bpf_sk_lookup, remote_port) ...
11547              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11548                 /* Allow access to zero padding for backward compatibility */
11549                 bpf_ctx_record_field_size(info, sizeof(__u16));
11550                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11551 
11552         default:
11553                 return false;
11554         }
11555 }
11556 
11557 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11558                                         const struct bpf_insn *si,
11559                                         struct bpf_insn *insn_buf,
11560                                         struct bpf_prog *prog,
11561                                         u32 *target_size)
11562 {
11563         struct bpf_insn *insn = insn_buf;
11564 
11565         switch (si->off) {
11566         case offsetof(struct bpf_sk_lookup, sk):
11567                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11568                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
11569                 break;
11570 
11571         case offsetof(struct bpf_sk_lookup, family):
11572                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11573                                       bpf_target_off(struct bpf_sk_lookup_kern,
11574                                                      family, 2, target_size));
11575                 break;
11576 
11577         case offsetof(struct bpf_sk_lookup, protocol):
11578                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11579                                       bpf_target_off(struct bpf_sk_lookup_kern,
11580                                                      protocol, 2, target_size));
11581                 break;
11582 
11583         case offsetof(struct bpf_sk_lookup, remote_ip4):
11584                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11585                                       bpf_target_off(struct bpf_sk_lookup_kern,
11586                                                      v4.saddr, 4, target_size));
11587                 break;
11588 
11589         case offsetof(struct bpf_sk_lookup, local_ip4):
11590                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11591                                       bpf_target_off(struct bpf_sk_lookup_kern,
11592                                                      v4.daddr, 4, target_size));
11593                 break;
11594 
11595         case bpf_ctx_range_till(struct bpf_sk_lookup,
11596                                 remote_ip6[0], remote_ip6[3]): {
11597 #if IS_ENABLED(CONFIG_IPV6)
11598                 int off = si->off;
11599 
11600                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11601                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11602                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11603                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11604                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11605                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11606 #else
11607                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11608 #endif
11609                 break;
11610         }
11611         case bpf_ctx_range_till(struct bpf_sk_lookup,
11612                                 local_ip6[0], local_ip6[3]): {
11613 #if IS_ENABLED(CONFIG_IPV6)
11614                 int off = si->off;
11615 
11616                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11617                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11618                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11619                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11620                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11621                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11622 #else
11623                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11624 #endif
11625                 break;
11626         }
11627         case offsetof(struct bpf_sk_lookup, remote_port):
11628                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11629                                       bpf_target_off(struct bpf_sk_lookup_kern,
11630                                                      sport, 2, target_size));
11631                 break;
11632 
11633         case offsetofend(struct bpf_sk_lookup, remote_port):
11634                 *target_size = 2;
11635                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11636                 break;
11637 
11638         case offsetof(struct bpf_sk_lookup, local_port):
11639                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11640                                       bpf_target_off(struct bpf_sk_lookup_kern,
11641                                                      dport, 2, target_size));
11642                 break;
11643 
11644         case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11645                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11646                                       bpf_target_off(struct bpf_sk_lookup_kern,
11647                                                      ingress_ifindex, 4, target_size));
11648                 break;
11649         }
11650 
11651         return insn - insn_buf;
11652 }
11653 
11654 const struct bpf_prog_ops sk_lookup_prog_ops = {
11655         .test_run = bpf_prog_test_run_sk_lookup,
11656 };
11657 
11658 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11659         .get_func_proto         = sk_lookup_func_proto,
11660         .is_valid_access        = sk_lookup_is_valid_access,
11661         .convert_ctx_access     = sk_lookup_convert_ctx_access,
11662 };
11663 
11664 #endif /* CONFIG_INET */
11665 
11666 DEFINE_BPF_DISPATCHER(xdp)
11667 
11668 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11669 {
11670         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11671 }
11672 
11673 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11674 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11675 BTF_SOCK_TYPE_xxx
11676 #undef BTF_SOCK_TYPE
11677 
11678 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11679 {
11680         /* tcp6_sock type is not generated in dwarf and hence btf,
11681          * trigger an explicit type generation here.
11682          */
11683         BTF_TYPE_EMIT(struct tcp6_sock);
11684         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11685             sk->sk_family == AF_INET6)
11686                 return (unsigned long)sk;
11687 
11688         return (unsigned long)NULL;
11689 }
11690 
11691 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11692         .func                   = bpf_skc_to_tcp6_sock,
11693         .gpl_only               = false,
11694         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11695         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11696         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11697 };
11698 
11699 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11700 {
11701         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11702                 return (unsigned long)sk;
11703 
11704         return (unsigned long)NULL;
11705 }
11706 
11707 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11708         .func                   = bpf_skc_to_tcp_sock,
11709         .gpl_only               = false,
11710         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11711         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11712         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11713 };
11714 
11715 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11716 {
11717         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11718          * generated if CONFIG_INET=n. Trigger an explicit generation here.
11719          */
11720         BTF_TYPE_EMIT(struct inet_timewait_sock);
11721         BTF_TYPE_EMIT(struct tcp_timewait_sock);
11722 
11723 #ifdef CONFIG_INET
11724         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11725                 return (unsigned long)sk;
11726 #endif
11727 
11728 #if IS_BUILTIN(CONFIG_IPV6)
11729         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11730                 return (unsigned long)sk;
11731 #endif
11732 
11733         return (unsigned long)NULL;
11734 }
11735 
11736 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11737         .func                   = bpf_skc_to_tcp_timewait_sock,
11738         .gpl_only               = false,
11739         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11740         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11741         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11742 };
11743 
11744 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11745 {
11746 #ifdef CONFIG_INET
11747         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11748                 return (unsigned long)sk;
11749 #endif
11750 
11751 #if IS_BUILTIN(CONFIG_IPV6)
11752         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11753                 return (unsigned long)sk;
11754 #endif
11755 
11756         return (unsigned long)NULL;
11757 }
11758 
11759 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11760         .func                   = bpf_skc_to_tcp_request_sock,
11761         .gpl_only               = false,
11762         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11763         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11764         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11765 };
11766 
11767 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11768 {
11769         /* udp6_sock type is not generated in dwarf and hence btf,
11770          * trigger an explicit type generation here.
11771          */
11772         BTF_TYPE_EMIT(struct udp6_sock);
11773         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11774             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11775                 return (unsigned long)sk;
11776 
11777         return (unsigned long)NULL;
11778 }
11779 
11780 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11781         .func                   = bpf_skc_to_udp6_sock,
11782         .gpl_only               = false,
11783         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11784         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11785         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11786 };
11787 
11788 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11789 {
11790         /* unix_sock type is not generated in dwarf and hence btf,
11791          * trigger an explicit type generation here.
11792          */
11793         BTF_TYPE_EMIT(struct unix_sock);
11794         if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11795                 return (unsigned long)sk;
11796 
11797         return (unsigned long)NULL;
11798 }
11799 
11800 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11801         .func                   = bpf_skc_to_unix_sock,
11802         .gpl_only               = false,
11803         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11804         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11805         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11806 };
11807 
11808 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11809 {
11810         BTF_TYPE_EMIT(struct mptcp_sock);
11811         return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11812 }
11813 
11814 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11815         .func           = bpf_skc_to_mptcp_sock,
11816         .gpl_only       = false,
11817         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11818         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
11819         .ret_btf_id     = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11820 };
11821 
11822 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11823 {
11824         return (unsigned long)sock_from_file(file);
11825 }
11826 
11827 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11828 BTF_ID(struct, socket)
11829 BTF_ID(struct, file)
11830 
11831 const struct bpf_func_proto bpf_sock_from_file_proto = {
11832         .func           = bpf_sock_from_file,
11833         .gpl_only       = false,
11834         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11835         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
11836         .arg1_type      = ARG_PTR_TO_BTF_ID,
11837         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
11838 };
11839 
11840 static const struct bpf_func_proto *
11841 bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11842 {
11843         const struct bpf_func_proto *func;
11844 
11845         switch (func_id) {
11846         case BPF_FUNC_skc_to_tcp6_sock:
11847                 func = &bpf_skc_to_tcp6_sock_proto;
11848                 break;
11849         case BPF_FUNC_skc_to_tcp_sock:
11850                 func = &bpf_skc_to_tcp_sock_proto;
11851                 break;
11852         case BPF_FUNC_skc_to_tcp_timewait_sock:
11853                 func = &bpf_skc_to_tcp_timewait_sock_proto;
11854                 break;
11855         case BPF_FUNC_skc_to_tcp_request_sock:
11856                 func = &bpf_skc_to_tcp_request_sock_proto;
11857                 break;
11858         case BPF_FUNC_skc_to_udp6_sock:
11859                 func = &bpf_skc_to_udp6_sock_proto;
11860                 break;
11861         case BPF_FUNC_skc_to_unix_sock:
11862                 func = &bpf_skc_to_unix_sock_proto;
11863                 break;
11864         case BPF_FUNC_skc_to_mptcp_sock:
11865                 func = &bpf_skc_to_mptcp_sock_proto;
11866                 break;
11867         case BPF_FUNC_ktime_get_coarse_ns:
11868                 return &bpf_ktime_get_coarse_ns_proto;
11869         default:
11870                 return bpf_base_func_proto(func_id, prog);
11871         }
11872 
11873         if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
11874                 return NULL;
11875 
11876         return func;
11877 }
11878 
11879 __bpf_kfunc_start_defs();
11880 __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
11881                                     struct bpf_dynptr *ptr__uninit)
11882 {
11883         struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11884         struct sk_buff *skb = (struct sk_buff *)s;
11885 
11886         if (flags) {
11887                 bpf_dynptr_set_null(ptr);
11888                 return -EINVAL;
11889         }
11890 
11891         bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11892 
11893         return 0;
11894 }
11895 
11896 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags,
11897                                     struct bpf_dynptr *ptr__uninit)
11898 {
11899         struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
11900         struct xdp_buff *xdp = (struct xdp_buff *)x;
11901 
11902         if (flags) {
11903                 bpf_dynptr_set_null(ptr);
11904                 return -EINVAL;
11905         }
11906 
11907         bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11908 
11909         return 0;
11910 }
11911 
11912 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11913                                            const u8 *sun_path, u32 sun_path__sz)
11914 {
11915         struct sockaddr_un *un;
11916 
11917         if (sa_kern->sk->sk_family != AF_UNIX)
11918                 return -EINVAL;
11919 
11920         /* We do not allow changing the address to unnamed or larger than the
11921          * maximum allowed address size for a unix sockaddr.
11922          */
11923         if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11924                 return -EINVAL;
11925 
11926         un = (struct sockaddr_un *)sa_kern->uaddr;
11927         memcpy(un->sun_path, sun_path, sun_path__sz);
11928         sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11929 
11930         return 0;
11931 }
11932 
11933 __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk,
11934                                         struct bpf_tcp_req_attrs *attrs, int attrs__sz)
11935 {
11936 #if IS_ENABLED(CONFIG_SYN_COOKIES)
11937         struct sk_buff *skb = (struct sk_buff *)s;
11938         const struct request_sock_ops *ops;
11939         struct inet_request_sock *ireq;
11940         struct tcp_request_sock *treq;
11941         struct request_sock *req;
11942         struct net *net;
11943         __u16 min_mss;
11944         u32 tsoff = 0;
11945 
11946         if (attrs__sz != sizeof(*attrs) ||
11947             attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2])
11948                 return -EINVAL;
11949 
11950         if (!skb_at_tc_ingress(skb))
11951                 return -EINVAL;
11952 
11953         net = dev_net(skb->dev);
11954         if (net != sock_net(sk))
11955                 return -ENETUNREACH;
11956 
11957         switch (skb->protocol) {
11958         case htons(ETH_P_IP):
11959                 ops = &tcp_request_sock_ops;
11960                 min_mss = 536;
11961                 break;
11962 #if IS_BUILTIN(CONFIG_IPV6)
11963         case htons(ETH_P_IPV6):
11964                 ops = &tcp6_request_sock_ops;
11965                 min_mss = IPV6_MIN_MTU - 60;
11966                 break;
11967 #endif
11968         default:
11969                 return -EINVAL;
11970         }
11971 
11972         if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN ||
11973             sk_is_mptcp(sk))
11974                 return -EINVAL;
11975 
11976         if (attrs->mss < min_mss)
11977                 return -EINVAL;
11978 
11979         if (attrs->wscale_ok) {
11980                 if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling))
11981                         return -EINVAL;
11982 
11983                 if (attrs->snd_wscale > TCP_MAX_WSCALE ||
11984                     attrs->rcv_wscale > TCP_MAX_WSCALE)
11985                         return -EINVAL;
11986         }
11987 
11988         if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
11989                 return -EINVAL;
11990 
11991         if (attrs->tstamp_ok) {
11992                 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
11993                         return -EINVAL;
11994 
11995                 tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns());
11996         }
11997 
11998         req = inet_reqsk_alloc(ops, sk, false);
11999         if (!req)
12000                 return -ENOMEM;
12001 
12002         ireq = inet_rsk(req);
12003         treq = tcp_rsk(req);
12004 
12005         req->rsk_listener = sk;
12006         req->syncookie = 1;
12007         req->mss = attrs->mss;
12008         req->ts_recent = attrs->rcv_tsval;
12009 
12010         ireq->snd_wscale = attrs->snd_wscale;
12011         ireq->rcv_wscale = attrs->rcv_wscale;
12012         ireq->tstamp_ok = !!attrs->tstamp_ok;
12013         ireq->sack_ok = !!attrs->sack_ok;
12014         ireq->wscale_ok = !!attrs->wscale_ok;
12015         ireq->ecn_ok = !!attrs->ecn_ok;
12016 
12017         treq->req_usec_ts = !!attrs->usec_ts_ok;
12018         treq->ts_off = tsoff;
12019 
12020         skb_orphan(skb);
12021         skb->sk = req_to_sk(req);
12022         skb->destructor = sock_pfree;
12023 
12024         return 0;
12025 #else
12026         return -EOPNOTSUPP;
12027 #endif
12028 }
12029 
12030 __bpf_kfunc_end_defs();
12031 
12032 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
12033                                struct bpf_dynptr *ptr__uninit)
12034 {
12035         struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit;
12036         int err;
12037 
12038         err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
12039         if (err)
12040                 return err;
12041 
12042         bpf_dynptr_set_rdonly(ptr);
12043 
12044         return 0;
12045 }
12046 
12047 BTF_KFUNCS_START(bpf_kfunc_check_set_skb)
12048 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
12049 BTF_KFUNCS_END(bpf_kfunc_check_set_skb)
12050 
12051 BTF_KFUNCS_START(bpf_kfunc_check_set_xdp)
12052 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
12053 BTF_KFUNCS_END(bpf_kfunc_check_set_xdp)
12054 
12055 BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr)
12056 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
12057 BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr)
12058 
12059 BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk)
12060 BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS)
12061 BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk)
12062 
12063 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
12064         .owner = THIS_MODULE,
12065         .set = &bpf_kfunc_check_set_skb,
12066 };
12067 
12068 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
12069         .owner = THIS_MODULE,
12070         .set = &bpf_kfunc_check_set_xdp,
12071 };
12072 
12073 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
12074         .owner = THIS_MODULE,
12075         .set = &bpf_kfunc_check_set_sock_addr,
12076 };
12077 
12078 static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = {
12079         .owner = THIS_MODULE,
12080         .set = &bpf_kfunc_check_set_tcp_reqsk,
12081 };
12082 
12083 static int __init bpf_kfunc_init(void)
12084 {
12085         int ret;
12086 
12087         ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
12088         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
12089         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
12090         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
12091         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
12092         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
12093         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
12094         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
12095         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
12096         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
12097         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
12098         ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
12099                                                &bpf_kfunc_set_sock_addr);
12100         return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk);
12101 }
12102 late_initcall(bpf_kfunc_init);
12103 
12104 __bpf_kfunc_start_defs();
12105 
12106 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
12107  *
12108  * The function expects a non-NULL pointer to a socket, and invokes the
12109  * protocol specific socket destroy handlers.
12110  *
12111  * The helper can only be called from BPF contexts that have acquired the socket
12112  * locks.
12113  *
12114  * Parameters:
12115  * @sock: Pointer to socket to be destroyed
12116  *
12117  * Return:
12118  * On error, may return EPROTONOSUPPORT, EINVAL.
12119  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
12120  * 0 otherwise
12121  */
12122 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
12123 {
12124         struct sock *sk = (struct sock *)sock;
12125 
12126         /* The locking semantics that allow for synchronous execution of the
12127          * destroy handlers are only supported for TCP and UDP.
12128          * Supporting protocols will need to acquire sock lock in the BPF context
12129          * prior to invoking this kfunc.
12130          */
12131         if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
12132                                            sk->sk_protocol != IPPROTO_UDP))
12133                 return -EOPNOTSUPP;
12134 
12135         return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
12136 }
12137 
12138 __bpf_kfunc_end_defs();
12139 
12140 BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids)
12141 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
12142 BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids)
12143 
12144 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
12145 {
12146         if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
12147             prog->expected_attach_type != BPF_TRACE_ITER)
12148                 return -EACCES;
12149         return 0;
12150 }
12151 
12152 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12153         .owner = THIS_MODULE,
12154         .set   = &bpf_sk_iter_kfunc_ids,
12155         .filter = tracing_iter_filter,
12156 };
12157 
12158 static int init_subsystem(void)
12159 {
12160         return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12161 }
12162 late_initcall(init_subsystem);
12163 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php