1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Generic address resolution entity 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 8 * 9 * Fixes: 10 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 11 * Harald Welte Add neighbour cache statistics like rtstat 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/slab.h> 17 #include <linux/kmemleak.h> 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/arp.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 #include <linux/inetdevice.h> 40 #include <net/addrconf.h> 41 42 #include <trace/events/neigh.h> 43 44 #define NEIGH_DEBUG 1 45 #define neigh_dbg(level, fmt, ...) \ 46 do { \ 47 if (level <= NEIGH_DEBUG) \ 48 pr_debug(fmt, ##__VA_ARGS__); \ 49 } while (0) 50 51 #define PNEIGH_HASHMASK 0xF 52 53 static void neigh_timer_handler(struct timer_list *t); 54 static void __neigh_notify(struct neighbour *n, int type, int flags, 55 u32 pid); 56 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid); 57 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 58 struct net_device *dev); 59 60 #ifdef CONFIG_PROC_FS 61 static const struct seq_operations neigh_stat_seq_ops; 62 #endif 63 64 /* 65 Neighbour hash table buckets are protected with rwlock tbl->lock. 66 67 - All the scans/updates to hash buckets MUST be made under this lock. 68 - NOTHING clever should be made under this lock: no callbacks 69 to protocol backends, no attempts to send something to network. 70 It will result in deadlocks, if backend/driver wants to use neighbour 71 cache. 72 - If the entry requires some non-trivial actions, increase 73 its reference count and release table lock. 74 75 Neighbour entries are protected: 76 - with reference count. 77 - with rwlock neigh->lock 78 79 Reference count prevents destruction. 80 81 neigh->lock mainly serializes ll address data and its validity state. 82 However, the same lock is used to protect another entry fields: 83 - timer 84 - resolution queue 85 86 Again, nothing clever shall be made under neigh->lock, 87 the most complicated procedure, which we allow is dev->hard_header. 88 It is supposed, that dev->hard_header is simplistic and does 89 not make callbacks to neighbour tables. 90 */ 91 92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 93 { 94 kfree_skb(skb); 95 return -ENETDOWN; 96 } 97 98 static void neigh_cleanup_and_release(struct neighbour *neigh) 99 { 100 trace_neigh_cleanup_and_release(neigh, 0); 101 __neigh_notify(neigh, RTM_DELNEIGH, 0, 0); 102 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 103 neigh_release(neigh); 104 } 105 106 /* 107 * It is random distribution in the interval (1/2)*base...(3/2)*base. 108 * It corresponds to default IPv6 settings and is not overridable, 109 * because it is really reasonable choice. 110 */ 111 112 unsigned long neigh_rand_reach_time(unsigned long base) 113 { 114 return base ? get_random_u32_below(base) + (base >> 1) : 0; 115 } 116 EXPORT_SYMBOL(neigh_rand_reach_time); 117 118 static void neigh_mark_dead(struct neighbour *n) 119 { 120 n->dead = 1; 121 if (!list_empty(&n->gc_list)) { 122 list_del_init(&n->gc_list); 123 atomic_dec(&n->tbl->gc_entries); 124 } 125 if (!list_empty(&n->managed_list)) 126 list_del_init(&n->managed_list); 127 } 128 129 static void neigh_update_gc_list(struct neighbour *n) 130 { 131 bool on_gc_list, exempt_from_gc; 132 133 write_lock_bh(&n->tbl->lock); 134 write_lock(&n->lock); 135 if (n->dead) 136 goto out; 137 138 /* remove from the gc list if new state is permanent or if neighbor 139 * is externally learned; otherwise entry should be on the gc list 140 */ 141 exempt_from_gc = n->nud_state & NUD_PERMANENT || 142 n->flags & NTF_EXT_LEARNED; 143 on_gc_list = !list_empty(&n->gc_list); 144 145 if (exempt_from_gc && on_gc_list) { 146 list_del_init(&n->gc_list); 147 atomic_dec(&n->tbl->gc_entries); 148 } else if (!exempt_from_gc && !on_gc_list) { 149 /* add entries to the tail; cleaning removes from the front */ 150 list_add_tail(&n->gc_list, &n->tbl->gc_list); 151 atomic_inc(&n->tbl->gc_entries); 152 } 153 out: 154 write_unlock(&n->lock); 155 write_unlock_bh(&n->tbl->lock); 156 } 157 158 static void neigh_update_managed_list(struct neighbour *n) 159 { 160 bool on_managed_list, add_to_managed; 161 162 write_lock_bh(&n->tbl->lock); 163 write_lock(&n->lock); 164 if (n->dead) 165 goto out; 166 167 add_to_managed = n->flags & NTF_MANAGED; 168 on_managed_list = !list_empty(&n->managed_list); 169 170 if (!add_to_managed && on_managed_list) 171 list_del_init(&n->managed_list); 172 else if (add_to_managed && !on_managed_list) 173 list_add_tail(&n->managed_list, &n->tbl->managed_list); 174 out: 175 write_unlock(&n->lock); 176 write_unlock_bh(&n->tbl->lock); 177 } 178 179 static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify, 180 bool *gc_update, bool *managed_update) 181 { 182 u32 ndm_flags, old_flags = neigh->flags; 183 184 if (!(flags & NEIGH_UPDATE_F_ADMIN)) 185 return; 186 187 ndm_flags = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0; 188 ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0; 189 190 if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) { 191 if (ndm_flags & NTF_EXT_LEARNED) 192 neigh->flags |= NTF_EXT_LEARNED; 193 else 194 neigh->flags &= ~NTF_EXT_LEARNED; 195 *notify = 1; 196 *gc_update = true; 197 } 198 if ((old_flags ^ ndm_flags) & NTF_MANAGED) { 199 if (ndm_flags & NTF_MANAGED) 200 neigh->flags |= NTF_MANAGED; 201 else 202 neigh->flags &= ~NTF_MANAGED; 203 *notify = 1; 204 *managed_update = true; 205 } 206 } 207 208 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np, 209 struct neigh_table *tbl) 210 { 211 bool retval = false; 212 213 write_lock(&n->lock); 214 if (refcount_read(&n->refcnt) == 1) { 215 struct neighbour *neigh; 216 217 neigh = rcu_dereference_protected(n->next, 218 lockdep_is_held(&tbl->lock)); 219 rcu_assign_pointer(*np, neigh); 220 neigh_mark_dead(n); 221 retval = true; 222 } 223 write_unlock(&n->lock); 224 if (retval) 225 neigh_cleanup_and_release(n); 226 return retval; 227 } 228 229 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl) 230 { 231 struct neigh_hash_table *nht; 232 void *pkey = ndel->primary_key; 233 u32 hash_val; 234 struct neighbour *n; 235 struct neighbour __rcu **np; 236 237 nht = rcu_dereference_protected(tbl->nht, 238 lockdep_is_held(&tbl->lock)); 239 hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd); 240 hash_val = hash_val >> (32 - nht->hash_shift); 241 242 np = &nht->hash_buckets[hash_val]; 243 while ((n = rcu_dereference_protected(*np, 244 lockdep_is_held(&tbl->lock)))) { 245 if (n == ndel) 246 return neigh_del(n, np, tbl); 247 np = &n->next; 248 } 249 return false; 250 } 251 252 static int neigh_forced_gc(struct neigh_table *tbl) 253 { 254 int max_clean = atomic_read(&tbl->gc_entries) - 255 READ_ONCE(tbl->gc_thresh2); 256 u64 tmax = ktime_get_ns() + NSEC_PER_MSEC; 257 unsigned long tref = jiffies - 5 * HZ; 258 struct neighbour *n, *tmp; 259 int shrunk = 0; 260 int loop = 0; 261 262 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 263 264 write_lock_bh(&tbl->lock); 265 266 list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) { 267 if (refcount_read(&n->refcnt) == 1) { 268 bool remove = false; 269 270 write_lock(&n->lock); 271 if ((n->nud_state == NUD_FAILED) || 272 (n->nud_state == NUD_NOARP) || 273 (tbl->is_multicast && 274 tbl->is_multicast(n->primary_key)) || 275 !time_in_range(n->updated, tref, jiffies)) 276 remove = true; 277 write_unlock(&n->lock); 278 279 if (remove && neigh_remove_one(n, tbl)) 280 shrunk++; 281 if (shrunk >= max_clean) 282 break; 283 if (++loop == 16) { 284 if (ktime_get_ns() > tmax) 285 goto unlock; 286 loop = 0; 287 } 288 } 289 } 290 291 WRITE_ONCE(tbl->last_flush, jiffies); 292 unlock: 293 write_unlock_bh(&tbl->lock); 294 295 return shrunk; 296 } 297 298 static void neigh_add_timer(struct neighbour *n, unsigned long when) 299 { 300 /* Use safe distance from the jiffies - LONG_MAX point while timer 301 * is running in DELAY/PROBE state but still show to user space 302 * large times in the past. 303 */ 304 unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ); 305 306 neigh_hold(n); 307 if (!time_in_range(n->confirmed, mint, jiffies)) 308 n->confirmed = mint; 309 if (time_before(n->used, n->confirmed)) 310 n->used = n->confirmed; 311 if (unlikely(mod_timer(&n->timer, when))) { 312 printk("NEIGH: BUG, double timer add, state is %x\n", 313 n->nud_state); 314 dump_stack(); 315 } 316 } 317 318 static int neigh_del_timer(struct neighbour *n) 319 { 320 if ((n->nud_state & NUD_IN_TIMER) && 321 del_timer(&n->timer)) { 322 neigh_release(n); 323 return 1; 324 } 325 return 0; 326 } 327 328 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev, 329 int family) 330 { 331 switch (family) { 332 case AF_INET: 333 return __in_dev_arp_parms_get_rcu(dev); 334 case AF_INET6: 335 return __in6_dev_nd_parms_get_rcu(dev); 336 } 337 return NULL; 338 } 339 340 static void neigh_parms_qlen_dec(struct net_device *dev, int family) 341 { 342 struct neigh_parms *p; 343 344 rcu_read_lock(); 345 p = neigh_get_dev_parms_rcu(dev, family); 346 if (p) 347 p->qlen--; 348 rcu_read_unlock(); 349 } 350 351 static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net, 352 int family) 353 { 354 struct sk_buff_head tmp; 355 unsigned long flags; 356 struct sk_buff *skb; 357 358 skb_queue_head_init(&tmp); 359 spin_lock_irqsave(&list->lock, flags); 360 skb = skb_peek(list); 361 while (skb != NULL) { 362 struct sk_buff *skb_next = skb_peek_next(skb, list); 363 struct net_device *dev = skb->dev; 364 365 if (net == NULL || net_eq(dev_net(dev), net)) { 366 neigh_parms_qlen_dec(dev, family); 367 __skb_unlink(skb, list); 368 __skb_queue_tail(&tmp, skb); 369 } 370 skb = skb_next; 371 } 372 spin_unlock_irqrestore(&list->lock, flags); 373 374 while ((skb = __skb_dequeue(&tmp))) { 375 dev_put(skb->dev); 376 kfree_skb(skb); 377 } 378 } 379 380 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev, 381 bool skip_perm) 382 { 383 int i; 384 struct neigh_hash_table *nht; 385 386 nht = rcu_dereference_protected(tbl->nht, 387 lockdep_is_held(&tbl->lock)); 388 389 for (i = 0; i < (1 << nht->hash_shift); i++) { 390 struct neighbour *n; 391 struct neighbour __rcu **np = &nht->hash_buckets[i]; 392 393 while ((n = rcu_dereference_protected(*np, 394 lockdep_is_held(&tbl->lock))) != NULL) { 395 if (dev && n->dev != dev) { 396 np = &n->next; 397 continue; 398 } 399 if (skip_perm && n->nud_state & NUD_PERMANENT) { 400 np = &n->next; 401 continue; 402 } 403 rcu_assign_pointer(*np, 404 rcu_dereference_protected(n->next, 405 lockdep_is_held(&tbl->lock))); 406 write_lock(&n->lock); 407 neigh_del_timer(n); 408 neigh_mark_dead(n); 409 if (refcount_read(&n->refcnt) != 1) { 410 /* The most unpleasant situation. 411 We must destroy neighbour entry, 412 but someone still uses it. 413 414 The destroy will be delayed until 415 the last user releases us, but 416 we must kill timers etc. and move 417 it to safe state. 418 */ 419 __skb_queue_purge(&n->arp_queue); 420 n->arp_queue_len_bytes = 0; 421 WRITE_ONCE(n->output, neigh_blackhole); 422 if (n->nud_state & NUD_VALID) 423 n->nud_state = NUD_NOARP; 424 else 425 n->nud_state = NUD_NONE; 426 neigh_dbg(2, "neigh %p is stray\n", n); 427 } 428 write_unlock(&n->lock); 429 neigh_cleanup_and_release(n); 430 } 431 } 432 } 433 434 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 435 { 436 write_lock_bh(&tbl->lock); 437 neigh_flush_dev(tbl, dev, false); 438 write_unlock_bh(&tbl->lock); 439 } 440 EXPORT_SYMBOL(neigh_changeaddr); 441 442 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev, 443 bool skip_perm) 444 { 445 write_lock_bh(&tbl->lock); 446 neigh_flush_dev(tbl, dev, skip_perm); 447 pneigh_ifdown_and_unlock(tbl, dev); 448 pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL, 449 tbl->family); 450 if (skb_queue_empty_lockless(&tbl->proxy_queue)) 451 del_timer_sync(&tbl->proxy_timer); 452 return 0; 453 } 454 455 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev) 456 { 457 __neigh_ifdown(tbl, dev, true); 458 return 0; 459 } 460 EXPORT_SYMBOL(neigh_carrier_down); 461 462 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 463 { 464 __neigh_ifdown(tbl, dev, false); 465 return 0; 466 } 467 EXPORT_SYMBOL(neigh_ifdown); 468 469 static struct neighbour *neigh_alloc(struct neigh_table *tbl, 470 struct net_device *dev, 471 u32 flags, bool exempt_from_gc) 472 { 473 struct neighbour *n = NULL; 474 unsigned long now = jiffies; 475 int entries, gc_thresh3; 476 477 if (exempt_from_gc) 478 goto do_alloc; 479 480 entries = atomic_inc_return(&tbl->gc_entries) - 1; 481 gc_thresh3 = READ_ONCE(tbl->gc_thresh3); 482 if (entries >= gc_thresh3 || 483 (entries >= READ_ONCE(tbl->gc_thresh2) && 484 time_after(now, READ_ONCE(tbl->last_flush) + 5 * HZ))) { 485 if (!neigh_forced_gc(tbl) && entries >= gc_thresh3) { 486 net_info_ratelimited("%s: neighbor table overflow!\n", 487 tbl->id); 488 NEIGH_CACHE_STAT_INC(tbl, table_fulls); 489 goto out_entries; 490 } 491 } 492 493 do_alloc: 494 n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC); 495 if (!n) 496 goto out_entries; 497 498 __skb_queue_head_init(&n->arp_queue); 499 rwlock_init(&n->lock); 500 seqlock_init(&n->ha_lock); 501 n->updated = n->used = now; 502 n->nud_state = NUD_NONE; 503 n->output = neigh_blackhole; 504 n->flags = flags; 505 seqlock_init(&n->hh.hh_lock); 506 n->parms = neigh_parms_clone(&tbl->parms); 507 timer_setup(&n->timer, neigh_timer_handler, 0); 508 509 NEIGH_CACHE_STAT_INC(tbl, allocs); 510 n->tbl = tbl; 511 refcount_set(&n->refcnt, 1); 512 n->dead = 1; 513 INIT_LIST_HEAD(&n->gc_list); 514 INIT_LIST_HEAD(&n->managed_list); 515 516 atomic_inc(&tbl->entries); 517 out: 518 return n; 519 520 out_entries: 521 if (!exempt_from_gc) 522 atomic_dec(&tbl->gc_entries); 523 goto out; 524 } 525 526 static void neigh_get_hash_rnd(u32 *x) 527 { 528 *x = get_random_u32() | 1; 529 } 530 531 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 532 { 533 size_t size = (1 << shift) * sizeof(struct neighbour *); 534 struct neigh_hash_table *ret; 535 struct neighbour __rcu **buckets; 536 int i; 537 538 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 539 if (!ret) 540 return NULL; 541 if (size <= PAGE_SIZE) { 542 buckets = kzalloc(size, GFP_ATOMIC); 543 } else { 544 buckets = (struct neighbour __rcu **) 545 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 546 get_order(size)); 547 kmemleak_alloc(buckets, size, 1, GFP_ATOMIC); 548 } 549 if (!buckets) { 550 kfree(ret); 551 return NULL; 552 } 553 ret->hash_buckets = buckets; 554 ret->hash_shift = shift; 555 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 556 neigh_get_hash_rnd(&ret->hash_rnd[i]); 557 return ret; 558 } 559 560 static void neigh_hash_free_rcu(struct rcu_head *head) 561 { 562 struct neigh_hash_table *nht = container_of(head, 563 struct neigh_hash_table, 564 rcu); 565 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 566 struct neighbour __rcu **buckets = nht->hash_buckets; 567 568 if (size <= PAGE_SIZE) { 569 kfree(buckets); 570 } else { 571 kmemleak_free(buckets); 572 free_pages((unsigned long)buckets, get_order(size)); 573 } 574 kfree(nht); 575 } 576 577 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 578 unsigned long new_shift) 579 { 580 unsigned int i, hash; 581 struct neigh_hash_table *new_nht, *old_nht; 582 583 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 584 585 old_nht = rcu_dereference_protected(tbl->nht, 586 lockdep_is_held(&tbl->lock)); 587 new_nht = neigh_hash_alloc(new_shift); 588 if (!new_nht) 589 return old_nht; 590 591 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 592 struct neighbour *n, *next; 593 594 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 595 lockdep_is_held(&tbl->lock)); 596 n != NULL; 597 n = next) { 598 hash = tbl->hash(n->primary_key, n->dev, 599 new_nht->hash_rnd); 600 601 hash >>= (32 - new_nht->hash_shift); 602 next = rcu_dereference_protected(n->next, 603 lockdep_is_held(&tbl->lock)); 604 605 rcu_assign_pointer(n->next, 606 rcu_dereference_protected( 607 new_nht->hash_buckets[hash], 608 lockdep_is_held(&tbl->lock))); 609 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 610 } 611 } 612 613 rcu_assign_pointer(tbl->nht, new_nht); 614 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 615 return new_nht; 616 } 617 618 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 619 struct net_device *dev) 620 { 621 struct neighbour *n; 622 623 NEIGH_CACHE_STAT_INC(tbl, lookups); 624 625 rcu_read_lock(); 626 n = __neigh_lookup_noref(tbl, pkey, dev); 627 if (n) { 628 if (!refcount_inc_not_zero(&n->refcnt)) 629 n = NULL; 630 NEIGH_CACHE_STAT_INC(tbl, hits); 631 } 632 633 rcu_read_unlock(); 634 return n; 635 } 636 EXPORT_SYMBOL(neigh_lookup); 637 638 static struct neighbour * 639 ___neigh_create(struct neigh_table *tbl, const void *pkey, 640 struct net_device *dev, u32 flags, 641 bool exempt_from_gc, bool want_ref) 642 { 643 u32 hash_val, key_len = tbl->key_len; 644 struct neighbour *n1, *rc, *n; 645 struct neigh_hash_table *nht; 646 int error; 647 648 n = neigh_alloc(tbl, dev, flags, exempt_from_gc); 649 trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc); 650 if (!n) { 651 rc = ERR_PTR(-ENOBUFS); 652 goto out; 653 } 654 655 memcpy(n->primary_key, pkey, key_len); 656 n->dev = dev; 657 netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC); 658 659 /* Protocol specific setup. */ 660 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 661 rc = ERR_PTR(error); 662 goto out_neigh_release; 663 } 664 665 if (dev->netdev_ops->ndo_neigh_construct) { 666 error = dev->netdev_ops->ndo_neigh_construct(dev, n); 667 if (error < 0) { 668 rc = ERR_PTR(error); 669 goto out_neigh_release; 670 } 671 } 672 673 /* Device specific setup. */ 674 if (n->parms->neigh_setup && 675 (error = n->parms->neigh_setup(n)) < 0) { 676 rc = ERR_PTR(error); 677 goto out_neigh_release; 678 } 679 680 n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1); 681 682 write_lock_bh(&tbl->lock); 683 nht = rcu_dereference_protected(tbl->nht, 684 lockdep_is_held(&tbl->lock)); 685 686 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 687 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 688 689 hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 690 691 if (n->parms->dead) { 692 rc = ERR_PTR(-EINVAL); 693 goto out_tbl_unlock; 694 } 695 696 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 697 lockdep_is_held(&tbl->lock)); 698 n1 != NULL; 699 n1 = rcu_dereference_protected(n1->next, 700 lockdep_is_held(&tbl->lock))) { 701 if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) { 702 if (want_ref) 703 neigh_hold(n1); 704 rc = n1; 705 goto out_tbl_unlock; 706 } 707 } 708 709 n->dead = 0; 710 if (!exempt_from_gc) 711 list_add_tail(&n->gc_list, &n->tbl->gc_list); 712 if (n->flags & NTF_MANAGED) 713 list_add_tail(&n->managed_list, &n->tbl->managed_list); 714 if (want_ref) 715 neigh_hold(n); 716 rcu_assign_pointer(n->next, 717 rcu_dereference_protected(nht->hash_buckets[hash_val], 718 lockdep_is_held(&tbl->lock))); 719 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 720 write_unlock_bh(&tbl->lock); 721 neigh_dbg(2, "neigh %p is created\n", n); 722 rc = n; 723 out: 724 return rc; 725 out_tbl_unlock: 726 write_unlock_bh(&tbl->lock); 727 out_neigh_release: 728 if (!exempt_from_gc) 729 atomic_dec(&tbl->gc_entries); 730 neigh_release(n); 731 goto out; 732 } 733 734 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, 735 struct net_device *dev, bool want_ref) 736 { 737 bool exempt_from_gc = !!(dev->flags & IFF_LOOPBACK); 738 739 return ___neigh_create(tbl, pkey, dev, 0, exempt_from_gc, want_ref); 740 } 741 EXPORT_SYMBOL(__neigh_create); 742 743 static u32 pneigh_hash(const void *pkey, unsigned int key_len) 744 { 745 u32 hash_val = *(u32 *)(pkey + key_len - 4); 746 hash_val ^= (hash_val >> 16); 747 hash_val ^= hash_val >> 8; 748 hash_val ^= hash_val >> 4; 749 hash_val &= PNEIGH_HASHMASK; 750 return hash_val; 751 } 752 753 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 754 struct net *net, 755 const void *pkey, 756 unsigned int key_len, 757 struct net_device *dev) 758 { 759 while (n) { 760 if (!memcmp(n->key, pkey, key_len) && 761 net_eq(pneigh_net(n), net) && 762 (n->dev == dev || !n->dev)) 763 return n; 764 n = n->next; 765 } 766 return NULL; 767 } 768 769 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 770 struct net *net, const void *pkey, struct net_device *dev) 771 { 772 unsigned int key_len = tbl->key_len; 773 u32 hash_val = pneigh_hash(pkey, key_len); 774 775 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 776 net, pkey, key_len, dev); 777 } 778 EXPORT_SYMBOL_GPL(__pneigh_lookup); 779 780 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 781 struct net *net, const void *pkey, 782 struct net_device *dev, int creat) 783 { 784 struct pneigh_entry *n; 785 unsigned int key_len = tbl->key_len; 786 u32 hash_val = pneigh_hash(pkey, key_len); 787 788 read_lock_bh(&tbl->lock); 789 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 790 net, pkey, key_len, dev); 791 read_unlock_bh(&tbl->lock); 792 793 if (n || !creat) 794 goto out; 795 796 ASSERT_RTNL(); 797 798 n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL); 799 if (!n) 800 goto out; 801 802 write_pnet(&n->net, net); 803 memcpy(n->key, pkey, key_len); 804 n->dev = dev; 805 netdev_hold(dev, &n->dev_tracker, GFP_KERNEL); 806 807 if (tbl->pconstructor && tbl->pconstructor(n)) { 808 netdev_put(dev, &n->dev_tracker); 809 kfree(n); 810 n = NULL; 811 goto out; 812 } 813 814 write_lock_bh(&tbl->lock); 815 n->next = tbl->phash_buckets[hash_val]; 816 tbl->phash_buckets[hash_val] = n; 817 write_unlock_bh(&tbl->lock); 818 out: 819 return n; 820 } 821 EXPORT_SYMBOL(pneigh_lookup); 822 823 824 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 825 struct net_device *dev) 826 { 827 struct pneigh_entry *n, **np; 828 unsigned int key_len = tbl->key_len; 829 u32 hash_val = pneigh_hash(pkey, key_len); 830 831 write_lock_bh(&tbl->lock); 832 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 833 np = &n->next) { 834 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 835 net_eq(pneigh_net(n), net)) { 836 *np = n->next; 837 write_unlock_bh(&tbl->lock); 838 if (tbl->pdestructor) 839 tbl->pdestructor(n); 840 netdev_put(n->dev, &n->dev_tracker); 841 kfree(n); 842 return 0; 843 } 844 } 845 write_unlock_bh(&tbl->lock); 846 return -ENOENT; 847 } 848 849 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl, 850 struct net_device *dev) 851 { 852 struct pneigh_entry *n, **np, *freelist = NULL; 853 u32 h; 854 855 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 856 np = &tbl->phash_buckets[h]; 857 while ((n = *np) != NULL) { 858 if (!dev || n->dev == dev) { 859 *np = n->next; 860 n->next = freelist; 861 freelist = n; 862 continue; 863 } 864 np = &n->next; 865 } 866 } 867 write_unlock_bh(&tbl->lock); 868 while ((n = freelist)) { 869 freelist = n->next; 870 n->next = NULL; 871 if (tbl->pdestructor) 872 tbl->pdestructor(n); 873 netdev_put(n->dev, &n->dev_tracker); 874 kfree(n); 875 } 876 return -ENOENT; 877 } 878 879 static void neigh_parms_destroy(struct neigh_parms *parms); 880 881 static inline void neigh_parms_put(struct neigh_parms *parms) 882 { 883 if (refcount_dec_and_test(&parms->refcnt)) 884 neigh_parms_destroy(parms); 885 } 886 887 /* 888 * neighbour must already be out of the table; 889 * 890 */ 891 void neigh_destroy(struct neighbour *neigh) 892 { 893 struct net_device *dev = neigh->dev; 894 895 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 896 897 if (!neigh->dead) { 898 pr_warn("Destroying alive neighbour %p\n", neigh); 899 dump_stack(); 900 return; 901 } 902 903 if (neigh_del_timer(neigh)) 904 pr_warn("Impossible event\n"); 905 906 write_lock_bh(&neigh->lock); 907 __skb_queue_purge(&neigh->arp_queue); 908 write_unlock_bh(&neigh->lock); 909 neigh->arp_queue_len_bytes = 0; 910 911 if (dev->netdev_ops->ndo_neigh_destroy) 912 dev->netdev_ops->ndo_neigh_destroy(dev, neigh); 913 914 netdev_put(dev, &neigh->dev_tracker); 915 neigh_parms_put(neigh->parms); 916 917 neigh_dbg(2, "neigh %p is destroyed\n", neigh); 918 919 atomic_dec(&neigh->tbl->entries); 920 kfree_rcu(neigh, rcu); 921 } 922 EXPORT_SYMBOL(neigh_destroy); 923 924 /* Neighbour state is suspicious; 925 disable fast path. 926 927 Called with write_locked neigh. 928 */ 929 static void neigh_suspect(struct neighbour *neigh) 930 { 931 neigh_dbg(2, "neigh %p is suspected\n", neigh); 932 933 WRITE_ONCE(neigh->output, neigh->ops->output); 934 } 935 936 /* Neighbour state is OK; 937 enable fast path. 938 939 Called with write_locked neigh. 940 */ 941 static void neigh_connect(struct neighbour *neigh) 942 { 943 neigh_dbg(2, "neigh %p is connected\n", neigh); 944 945 WRITE_ONCE(neigh->output, neigh->ops->connected_output); 946 } 947 948 static void neigh_periodic_work(struct work_struct *work) 949 { 950 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 951 struct neighbour *n; 952 struct neighbour __rcu **np; 953 unsigned int i; 954 struct neigh_hash_table *nht; 955 956 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 957 958 write_lock_bh(&tbl->lock); 959 nht = rcu_dereference_protected(tbl->nht, 960 lockdep_is_held(&tbl->lock)); 961 962 /* 963 * periodically recompute ReachableTime from random function 964 */ 965 966 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 967 struct neigh_parms *p; 968 969 WRITE_ONCE(tbl->last_rand, jiffies); 970 list_for_each_entry(p, &tbl->parms_list, list) 971 p->reachable_time = 972 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 973 } 974 975 if (atomic_read(&tbl->entries) < READ_ONCE(tbl->gc_thresh1)) 976 goto out; 977 978 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 979 np = &nht->hash_buckets[i]; 980 981 while ((n = rcu_dereference_protected(*np, 982 lockdep_is_held(&tbl->lock))) != NULL) { 983 unsigned int state; 984 985 write_lock(&n->lock); 986 987 state = n->nud_state; 988 if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) || 989 (n->flags & NTF_EXT_LEARNED)) { 990 write_unlock(&n->lock); 991 goto next_elt; 992 } 993 994 if (time_before(n->used, n->confirmed) && 995 time_is_before_eq_jiffies(n->confirmed)) 996 n->used = n->confirmed; 997 998 if (refcount_read(&n->refcnt) == 1 && 999 (state == NUD_FAILED || 1000 !time_in_range_open(jiffies, n->used, 1001 n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) { 1002 rcu_assign_pointer(*np, 1003 rcu_dereference_protected(n->next, 1004 lockdep_is_held(&tbl->lock))); 1005 neigh_mark_dead(n); 1006 write_unlock(&n->lock); 1007 neigh_cleanup_and_release(n); 1008 continue; 1009 } 1010 write_unlock(&n->lock); 1011 1012 next_elt: 1013 np = &n->next; 1014 } 1015 /* 1016 * It's fine to release lock here, even if hash table 1017 * grows while we are preempted. 1018 */ 1019 write_unlock_bh(&tbl->lock); 1020 cond_resched(); 1021 write_lock_bh(&tbl->lock); 1022 nht = rcu_dereference_protected(tbl->nht, 1023 lockdep_is_held(&tbl->lock)); 1024 } 1025 out: 1026 /* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks. 1027 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2 1028 * BASE_REACHABLE_TIME. 1029 */ 1030 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1031 NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1); 1032 write_unlock_bh(&tbl->lock); 1033 } 1034 1035 static __inline__ int neigh_max_probes(struct neighbour *n) 1036 { 1037 struct neigh_parms *p = n->parms; 1038 return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) + 1039 (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) : 1040 NEIGH_VAR(p, MCAST_PROBES)); 1041 } 1042 1043 static void neigh_invalidate(struct neighbour *neigh) 1044 __releases(neigh->lock) 1045 __acquires(neigh->lock) 1046 { 1047 struct sk_buff *skb; 1048 1049 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 1050 neigh_dbg(2, "neigh %p is failed\n", neigh); 1051 neigh->updated = jiffies; 1052 1053 /* It is very thin place. report_unreachable is very complicated 1054 routine. Particularly, it can hit the same neighbour entry! 1055 1056 So that, we try to be accurate and avoid dead loop. --ANK 1057 */ 1058 while (neigh->nud_state == NUD_FAILED && 1059 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1060 write_unlock(&neigh->lock); 1061 neigh->ops->error_report(neigh, skb); 1062 write_lock(&neigh->lock); 1063 } 1064 __skb_queue_purge(&neigh->arp_queue); 1065 neigh->arp_queue_len_bytes = 0; 1066 } 1067 1068 static void neigh_probe(struct neighbour *neigh) 1069 __releases(neigh->lock) 1070 { 1071 struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue); 1072 /* keep skb alive even if arp_queue overflows */ 1073 if (skb) 1074 skb = skb_clone(skb, GFP_ATOMIC); 1075 write_unlock(&neigh->lock); 1076 if (neigh->ops->solicit) 1077 neigh->ops->solicit(neigh, skb); 1078 atomic_inc(&neigh->probes); 1079 consume_skb(skb); 1080 } 1081 1082 /* Called when a timer expires for a neighbour entry. */ 1083 1084 static void neigh_timer_handler(struct timer_list *t) 1085 { 1086 unsigned long now, next; 1087 struct neighbour *neigh = from_timer(neigh, t, timer); 1088 unsigned int state; 1089 int notify = 0; 1090 1091 write_lock(&neigh->lock); 1092 1093 state = neigh->nud_state; 1094 now = jiffies; 1095 next = now + HZ; 1096 1097 if (!(state & NUD_IN_TIMER)) 1098 goto out; 1099 1100 if (state & NUD_REACHABLE) { 1101 if (time_before_eq(now, 1102 neigh->confirmed + neigh->parms->reachable_time)) { 1103 neigh_dbg(2, "neigh %p is still alive\n", neigh); 1104 next = neigh->confirmed + neigh->parms->reachable_time; 1105 } else if (time_before_eq(now, 1106 neigh->used + 1107 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1108 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1109 WRITE_ONCE(neigh->nud_state, NUD_DELAY); 1110 neigh->updated = jiffies; 1111 neigh_suspect(neigh); 1112 next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME); 1113 } else { 1114 neigh_dbg(2, "neigh %p is suspected\n", neigh); 1115 WRITE_ONCE(neigh->nud_state, NUD_STALE); 1116 neigh->updated = jiffies; 1117 neigh_suspect(neigh); 1118 notify = 1; 1119 } 1120 } else if (state & NUD_DELAY) { 1121 if (time_before_eq(now, 1122 neigh->confirmed + 1123 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) { 1124 neigh_dbg(2, "neigh %p is now reachable\n", neigh); 1125 WRITE_ONCE(neigh->nud_state, NUD_REACHABLE); 1126 neigh->updated = jiffies; 1127 neigh_connect(neigh); 1128 notify = 1; 1129 next = neigh->confirmed + neigh->parms->reachable_time; 1130 } else { 1131 neigh_dbg(2, "neigh %p is probed\n", neigh); 1132 WRITE_ONCE(neigh->nud_state, NUD_PROBE); 1133 neigh->updated = jiffies; 1134 atomic_set(&neigh->probes, 0); 1135 notify = 1; 1136 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1137 HZ/100); 1138 } 1139 } else { 1140 /* NUD_PROBE|NUD_INCOMPLETE */ 1141 next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100); 1142 } 1143 1144 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 1145 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 1146 WRITE_ONCE(neigh->nud_state, NUD_FAILED); 1147 notify = 1; 1148 neigh_invalidate(neigh); 1149 goto out; 1150 } 1151 1152 if (neigh->nud_state & NUD_IN_TIMER) { 1153 if (time_before(next, jiffies + HZ/100)) 1154 next = jiffies + HZ/100; 1155 if (!mod_timer(&neigh->timer, next)) 1156 neigh_hold(neigh); 1157 } 1158 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 1159 neigh_probe(neigh); 1160 } else { 1161 out: 1162 write_unlock(&neigh->lock); 1163 } 1164 1165 if (notify) 1166 neigh_update_notify(neigh, 0); 1167 1168 trace_neigh_timer_handler(neigh, 0); 1169 1170 neigh_release(neigh); 1171 } 1172 1173 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb, 1174 const bool immediate_ok) 1175 { 1176 int rc; 1177 bool immediate_probe = false; 1178 1179 write_lock_bh(&neigh->lock); 1180 1181 rc = 0; 1182 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 1183 goto out_unlock_bh; 1184 if (neigh->dead) 1185 goto out_dead; 1186 1187 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 1188 if (NEIGH_VAR(neigh->parms, MCAST_PROBES) + 1189 NEIGH_VAR(neigh->parms, APP_PROBES)) { 1190 unsigned long next, now = jiffies; 1191 1192 atomic_set(&neigh->probes, 1193 NEIGH_VAR(neigh->parms, UCAST_PROBES)); 1194 neigh_del_timer(neigh); 1195 WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE); 1196 neigh->updated = now; 1197 if (!immediate_ok) { 1198 next = now + 1; 1199 } else { 1200 immediate_probe = true; 1201 next = now + max(NEIGH_VAR(neigh->parms, 1202 RETRANS_TIME), 1203 HZ / 100); 1204 } 1205 neigh_add_timer(neigh, next); 1206 } else { 1207 WRITE_ONCE(neigh->nud_state, NUD_FAILED); 1208 neigh->updated = jiffies; 1209 write_unlock_bh(&neigh->lock); 1210 1211 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED); 1212 return 1; 1213 } 1214 } else if (neigh->nud_state & NUD_STALE) { 1215 neigh_dbg(2, "neigh %p is delayed\n", neigh); 1216 neigh_del_timer(neigh); 1217 WRITE_ONCE(neigh->nud_state, NUD_DELAY); 1218 neigh->updated = jiffies; 1219 neigh_add_timer(neigh, jiffies + 1220 NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME)); 1221 } 1222 1223 if (neigh->nud_state == NUD_INCOMPLETE) { 1224 if (skb) { 1225 while (neigh->arp_queue_len_bytes + skb->truesize > 1226 NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) { 1227 struct sk_buff *buff; 1228 1229 buff = __skb_dequeue(&neigh->arp_queue); 1230 if (!buff) 1231 break; 1232 neigh->arp_queue_len_bytes -= buff->truesize; 1233 kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL); 1234 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1235 } 1236 skb_dst_force(skb); 1237 __skb_queue_tail(&neigh->arp_queue, skb); 1238 neigh->arp_queue_len_bytes += skb->truesize; 1239 } 1240 rc = 1; 1241 } 1242 out_unlock_bh: 1243 if (immediate_probe) 1244 neigh_probe(neigh); 1245 else 1246 write_unlock(&neigh->lock); 1247 local_bh_enable(); 1248 trace_neigh_event_send_done(neigh, rc); 1249 return rc; 1250 1251 out_dead: 1252 if (neigh->nud_state & NUD_STALE) 1253 goto out_unlock_bh; 1254 write_unlock_bh(&neigh->lock); 1255 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD); 1256 trace_neigh_event_send_dead(neigh, 1); 1257 return 1; 1258 } 1259 EXPORT_SYMBOL(__neigh_event_send); 1260 1261 static void neigh_update_hhs(struct neighbour *neigh) 1262 { 1263 struct hh_cache *hh; 1264 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1265 = NULL; 1266 1267 if (neigh->dev->header_ops) 1268 update = neigh->dev->header_ops->cache_update; 1269 1270 if (update) { 1271 hh = &neigh->hh; 1272 if (READ_ONCE(hh->hh_len)) { 1273 write_seqlock_bh(&hh->hh_lock); 1274 update(hh, neigh->dev, neigh->ha); 1275 write_sequnlock_bh(&hh->hh_lock); 1276 } 1277 } 1278 } 1279 1280 /* Generic update routine. 1281 -- lladdr is new lladdr or NULL, if it is not supplied. 1282 -- new is new state. 1283 -- flags 1284 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1285 if it is different. 1286 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1287 lladdr instead of overriding it 1288 if it is different. 1289 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1290 NEIGH_UPDATE_F_USE means that the entry is user triggered. 1291 NEIGH_UPDATE_F_MANAGED means that the entry will be auto-refreshed. 1292 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1293 NTF_ROUTER flag. 1294 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1295 a router. 1296 1297 Caller MUST hold reference count on the entry. 1298 */ 1299 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr, 1300 u8 new, u32 flags, u32 nlmsg_pid, 1301 struct netlink_ext_ack *extack) 1302 { 1303 bool gc_update = false, managed_update = false; 1304 int update_isrouter = 0; 1305 struct net_device *dev; 1306 int err, notify = 0; 1307 u8 old; 1308 1309 trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid); 1310 1311 write_lock_bh(&neigh->lock); 1312 1313 dev = neigh->dev; 1314 old = neigh->nud_state; 1315 err = -EPERM; 1316 1317 if (neigh->dead) { 1318 NL_SET_ERR_MSG(extack, "Neighbor entry is now dead"); 1319 new = old; 1320 goto out; 1321 } 1322 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1323 (old & (NUD_NOARP | NUD_PERMANENT))) 1324 goto out; 1325 1326 neigh_update_flags(neigh, flags, ¬ify, &gc_update, &managed_update); 1327 if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) { 1328 new = old & ~NUD_PERMANENT; 1329 WRITE_ONCE(neigh->nud_state, new); 1330 err = 0; 1331 goto out; 1332 } 1333 1334 if (!(new & NUD_VALID)) { 1335 neigh_del_timer(neigh); 1336 if (old & NUD_CONNECTED) 1337 neigh_suspect(neigh); 1338 WRITE_ONCE(neigh->nud_state, new); 1339 err = 0; 1340 notify = old & NUD_VALID; 1341 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1342 (new & NUD_FAILED)) { 1343 neigh_invalidate(neigh); 1344 notify = 1; 1345 } 1346 goto out; 1347 } 1348 1349 /* Compare new lladdr with cached one */ 1350 if (!dev->addr_len) { 1351 /* First case: device needs no address. */ 1352 lladdr = neigh->ha; 1353 } else if (lladdr) { 1354 /* The second case: if something is already cached 1355 and a new address is proposed: 1356 - compare new & old 1357 - if they are different, check override flag 1358 */ 1359 if ((old & NUD_VALID) && 1360 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1361 lladdr = neigh->ha; 1362 } else { 1363 /* No address is supplied; if we know something, 1364 use it, otherwise discard the request. 1365 */ 1366 err = -EINVAL; 1367 if (!(old & NUD_VALID)) { 1368 NL_SET_ERR_MSG(extack, "No link layer address given"); 1369 goto out; 1370 } 1371 lladdr = neigh->ha; 1372 } 1373 1374 /* Update confirmed timestamp for neighbour entry after we 1375 * received ARP packet even if it doesn't change IP to MAC binding. 1376 */ 1377 if (new & NUD_CONNECTED) 1378 neigh->confirmed = jiffies; 1379 1380 /* If entry was valid and address is not changed, 1381 do not change entry state, if new one is STALE. 1382 */ 1383 err = 0; 1384 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1385 if (old & NUD_VALID) { 1386 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1387 update_isrouter = 0; 1388 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1389 (old & NUD_CONNECTED)) { 1390 lladdr = neigh->ha; 1391 new = NUD_STALE; 1392 } else 1393 goto out; 1394 } else { 1395 if (lladdr == neigh->ha && new == NUD_STALE && 1396 !(flags & NEIGH_UPDATE_F_ADMIN)) 1397 new = old; 1398 } 1399 } 1400 1401 /* Update timestamp only once we know we will make a change to the 1402 * neighbour entry. Otherwise we risk to move the locktime window with 1403 * noop updates and ignore relevant ARP updates. 1404 */ 1405 if (new != old || lladdr != neigh->ha) 1406 neigh->updated = jiffies; 1407 1408 if (new != old) { 1409 neigh_del_timer(neigh); 1410 if (new & NUD_PROBE) 1411 atomic_set(&neigh->probes, 0); 1412 if (new & NUD_IN_TIMER) 1413 neigh_add_timer(neigh, (jiffies + 1414 ((new & NUD_REACHABLE) ? 1415 neigh->parms->reachable_time : 1416 0))); 1417 WRITE_ONCE(neigh->nud_state, new); 1418 notify = 1; 1419 } 1420 1421 if (lladdr != neigh->ha) { 1422 write_seqlock(&neigh->ha_lock); 1423 memcpy(&neigh->ha, lladdr, dev->addr_len); 1424 write_sequnlock(&neigh->ha_lock); 1425 neigh_update_hhs(neigh); 1426 if (!(new & NUD_CONNECTED)) 1427 neigh->confirmed = jiffies - 1428 (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1); 1429 notify = 1; 1430 } 1431 if (new == old) 1432 goto out; 1433 if (new & NUD_CONNECTED) 1434 neigh_connect(neigh); 1435 else 1436 neigh_suspect(neigh); 1437 if (!(old & NUD_VALID)) { 1438 struct sk_buff *skb; 1439 1440 /* Again: avoid dead loop if something went wrong */ 1441 1442 while (neigh->nud_state & NUD_VALID && 1443 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1444 struct dst_entry *dst = skb_dst(skb); 1445 struct neighbour *n2, *n1 = neigh; 1446 write_unlock_bh(&neigh->lock); 1447 1448 rcu_read_lock(); 1449 1450 /* Why not just use 'neigh' as-is? The problem is that 1451 * things such as shaper, eql, and sch_teql can end up 1452 * using alternative, different, neigh objects to output 1453 * the packet in the output path. So what we need to do 1454 * here is re-lookup the top-level neigh in the path so 1455 * we can reinject the packet there. 1456 */ 1457 n2 = NULL; 1458 if (dst && dst->obsolete != DST_OBSOLETE_DEAD) { 1459 n2 = dst_neigh_lookup_skb(dst, skb); 1460 if (n2) 1461 n1 = n2; 1462 } 1463 READ_ONCE(n1->output)(n1, skb); 1464 if (n2) 1465 neigh_release(n2); 1466 rcu_read_unlock(); 1467 1468 write_lock_bh(&neigh->lock); 1469 } 1470 __skb_queue_purge(&neigh->arp_queue); 1471 neigh->arp_queue_len_bytes = 0; 1472 } 1473 out: 1474 if (update_isrouter) 1475 neigh_update_is_router(neigh, flags, ¬ify); 1476 write_unlock_bh(&neigh->lock); 1477 if (((new ^ old) & NUD_PERMANENT) || gc_update) 1478 neigh_update_gc_list(neigh); 1479 if (managed_update) 1480 neigh_update_managed_list(neigh); 1481 if (notify) 1482 neigh_update_notify(neigh, nlmsg_pid); 1483 trace_neigh_update_done(neigh, err); 1484 return err; 1485 } 1486 1487 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1488 u32 flags, u32 nlmsg_pid) 1489 { 1490 return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL); 1491 } 1492 EXPORT_SYMBOL(neigh_update); 1493 1494 /* Update the neigh to listen temporarily for probe responses, even if it is 1495 * in a NUD_FAILED state. The caller has to hold neigh->lock for writing. 1496 */ 1497 void __neigh_set_probe_once(struct neighbour *neigh) 1498 { 1499 if (neigh->dead) 1500 return; 1501 neigh->updated = jiffies; 1502 if (!(neigh->nud_state & NUD_FAILED)) 1503 return; 1504 WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE); 1505 atomic_set(&neigh->probes, neigh_max_probes(neigh)); 1506 neigh_add_timer(neigh, 1507 jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), 1508 HZ/100)); 1509 } 1510 EXPORT_SYMBOL(__neigh_set_probe_once); 1511 1512 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1513 u8 *lladdr, void *saddr, 1514 struct net_device *dev) 1515 { 1516 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1517 lladdr || !dev->addr_len); 1518 if (neigh) 1519 neigh_update(neigh, lladdr, NUD_STALE, 1520 NEIGH_UPDATE_F_OVERRIDE, 0); 1521 return neigh; 1522 } 1523 EXPORT_SYMBOL(neigh_event_ns); 1524 1525 /* called with read_lock_bh(&n->lock); */ 1526 static void neigh_hh_init(struct neighbour *n) 1527 { 1528 struct net_device *dev = n->dev; 1529 __be16 prot = n->tbl->protocol; 1530 struct hh_cache *hh = &n->hh; 1531 1532 write_lock_bh(&n->lock); 1533 1534 /* Only one thread can come in here and initialize the 1535 * hh_cache entry. 1536 */ 1537 if (!hh->hh_len) 1538 dev->header_ops->cache(n, hh, prot); 1539 1540 write_unlock_bh(&n->lock); 1541 } 1542 1543 /* Slow and careful. */ 1544 1545 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1546 { 1547 int rc = 0; 1548 1549 if (!neigh_event_send(neigh, skb)) { 1550 int err; 1551 struct net_device *dev = neigh->dev; 1552 unsigned int seq; 1553 1554 if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len)) 1555 neigh_hh_init(neigh); 1556 1557 do { 1558 __skb_pull(skb, skb_network_offset(skb)); 1559 seq = read_seqbegin(&neigh->ha_lock); 1560 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1561 neigh->ha, NULL, skb->len); 1562 } while (read_seqretry(&neigh->ha_lock, seq)); 1563 1564 if (err >= 0) 1565 rc = dev_queue_xmit(skb); 1566 else 1567 goto out_kfree_skb; 1568 } 1569 out: 1570 return rc; 1571 out_kfree_skb: 1572 rc = -EINVAL; 1573 kfree_skb(skb); 1574 goto out; 1575 } 1576 EXPORT_SYMBOL(neigh_resolve_output); 1577 1578 /* As fast as possible without hh cache */ 1579 1580 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1581 { 1582 struct net_device *dev = neigh->dev; 1583 unsigned int seq; 1584 int err; 1585 1586 do { 1587 __skb_pull(skb, skb_network_offset(skb)); 1588 seq = read_seqbegin(&neigh->ha_lock); 1589 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1590 neigh->ha, NULL, skb->len); 1591 } while (read_seqretry(&neigh->ha_lock, seq)); 1592 1593 if (err >= 0) 1594 err = dev_queue_xmit(skb); 1595 else { 1596 err = -EINVAL; 1597 kfree_skb(skb); 1598 } 1599 return err; 1600 } 1601 EXPORT_SYMBOL(neigh_connected_output); 1602 1603 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1604 { 1605 return dev_queue_xmit(skb); 1606 } 1607 EXPORT_SYMBOL(neigh_direct_output); 1608 1609 static void neigh_managed_work(struct work_struct *work) 1610 { 1611 struct neigh_table *tbl = container_of(work, struct neigh_table, 1612 managed_work.work); 1613 struct neighbour *neigh; 1614 1615 write_lock_bh(&tbl->lock); 1616 list_for_each_entry(neigh, &tbl->managed_list, managed_list) 1617 neigh_event_send_probe(neigh, NULL, false); 1618 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 1619 NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS)); 1620 write_unlock_bh(&tbl->lock); 1621 } 1622 1623 static void neigh_proxy_process(struct timer_list *t) 1624 { 1625 struct neigh_table *tbl = from_timer(tbl, t, proxy_timer); 1626 long sched_next = 0; 1627 unsigned long now = jiffies; 1628 struct sk_buff *skb, *n; 1629 1630 spin_lock(&tbl->proxy_queue.lock); 1631 1632 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1633 long tdif = NEIGH_CB(skb)->sched_next - now; 1634 1635 if (tdif <= 0) { 1636 struct net_device *dev = skb->dev; 1637 1638 neigh_parms_qlen_dec(dev, tbl->family); 1639 __skb_unlink(skb, &tbl->proxy_queue); 1640 1641 if (tbl->proxy_redo && netif_running(dev)) { 1642 rcu_read_lock(); 1643 tbl->proxy_redo(skb); 1644 rcu_read_unlock(); 1645 } else { 1646 kfree_skb(skb); 1647 } 1648 1649 dev_put(dev); 1650 } else if (!sched_next || tdif < sched_next) 1651 sched_next = tdif; 1652 } 1653 del_timer(&tbl->proxy_timer); 1654 if (sched_next) 1655 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1656 spin_unlock(&tbl->proxy_queue.lock); 1657 } 1658 1659 static unsigned long neigh_proxy_delay(struct neigh_parms *p) 1660 { 1661 /* If proxy_delay is zero, do not call get_random_u32_below() 1662 * as it is undefined behavior. 1663 */ 1664 unsigned long proxy_delay = NEIGH_VAR(p, PROXY_DELAY); 1665 1666 return proxy_delay ? 1667 jiffies + get_random_u32_below(proxy_delay) : jiffies; 1668 } 1669 1670 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1671 struct sk_buff *skb) 1672 { 1673 unsigned long sched_next = neigh_proxy_delay(p); 1674 1675 if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) { 1676 kfree_skb(skb); 1677 return; 1678 } 1679 1680 NEIGH_CB(skb)->sched_next = sched_next; 1681 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1682 1683 spin_lock(&tbl->proxy_queue.lock); 1684 if (del_timer(&tbl->proxy_timer)) { 1685 if (time_before(tbl->proxy_timer.expires, sched_next)) 1686 sched_next = tbl->proxy_timer.expires; 1687 } 1688 skb_dst_drop(skb); 1689 dev_hold(skb->dev); 1690 __skb_queue_tail(&tbl->proxy_queue, skb); 1691 p->qlen++; 1692 mod_timer(&tbl->proxy_timer, sched_next); 1693 spin_unlock(&tbl->proxy_queue.lock); 1694 } 1695 EXPORT_SYMBOL(pneigh_enqueue); 1696 1697 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1698 struct net *net, int ifindex) 1699 { 1700 struct neigh_parms *p; 1701 1702 list_for_each_entry(p, &tbl->parms_list, list) { 1703 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1704 (!p->dev && !ifindex && net_eq(net, &init_net))) 1705 return p; 1706 } 1707 1708 return NULL; 1709 } 1710 1711 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1712 struct neigh_table *tbl) 1713 { 1714 struct neigh_parms *p; 1715 struct net *net = dev_net(dev); 1716 const struct net_device_ops *ops = dev->netdev_ops; 1717 1718 p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1719 if (p) { 1720 p->tbl = tbl; 1721 refcount_set(&p->refcnt, 1); 1722 p->reachable_time = 1723 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 1724 p->qlen = 0; 1725 netdev_hold(dev, &p->dev_tracker, GFP_KERNEL); 1726 p->dev = dev; 1727 write_pnet(&p->net, net); 1728 p->sysctl_table = NULL; 1729 1730 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1731 netdev_put(dev, &p->dev_tracker); 1732 kfree(p); 1733 return NULL; 1734 } 1735 1736 write_lock_bh(&tbl->lock); 1737 list_add(&p->list, &tbl->parms.list); 1738 write_unlock_bh(&tbl->lock); 1739 1740 neigh_parms_data_state_cleanall(p); 1741 } 1742 return p; 1743 } 1744 EXPORT_SYMBOL(neigh_parms_alloc); 1745 1746 static void neigh_rcu_free_parms(struct rcu_head *head) 1747 { 1748 struct neigh_parms *parms = 1749 container_of(head, struct neigh_parms, rcu_head); 1750 1751 neigh_parms_put(parms); 1752 } 1753 1754 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1755 { 1756 if (!parms || parms == &tbl->parms) 1757 return; 1758 write_lock_bh(&tbl->lock); 1759 list_del(&parms->list); 1760 parms->dead = 1; 1761 write_unlock_bh(&tbl->lock); 1762 netdev_put(parms->dev, &parms->dev_tracker); 1763 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1764 } 1765 EXPORT_SYMBOL(neigh_parms_release); 1766 1767 static void neigh_parms_destroy(struct neigh_parms *parms) 1768 { 1769 kfree(parms); 1770 } 1771 1772 static struct lock_class_key neigh_table_proxy_queue_class; 1773 1774 static struct neigh_table __rcu *neigh_tables[NEIGH_NR_TABLES] __read_mostly; 1775 1776 void neigh_table_init(int index, struct neigh_table *tbl) 1777 { 1778 unsigned long now = jiffies; 1779 unsigned long phsize; 1780 1781 INIT_LIST_HEAD(&tbl->parms_list); 1782 INIT_LIST_HEAD(&tbl->gc_list); 1783 INIT_LIST_HEAD(&tbl->managed_list); 1784 1785 list_add(&tbl->parms.list, &tbl->parms_list); 1786 write_pnet(&tbl->parms.net, &init_net); 1787 refcount_set(&tbl->parms.refcnt, 1); 1788 tbl->parms.reachable_time = 1789 neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME)); 1790 tbl->parms.qlen = 0; 1791 1792 tbl->stats = alloc_percpu(struct neigh_statistics); 1793 if (!tbl->stats) 1794 panic("cannot create neighbour cache statistics"); 1795 1796 #ifdef CONFIG_PROC_FS 1797 if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat, 1798 &neigh_stat_seq_ops, tbl)) 1799 panic("cannot create neighbour proc dir entry"); 1800 #endif 1801 1802 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1803 1804 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1805 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1806 1807 if (!tbl->nht || !tbl->phash_buckets) 1808 panic("cannot allocate neighbour cache hashes"); 1809 1810 if (!tbl->entry_size) 1811 tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) + 1812 tbl->key_len, NEIGH_PRIV_ALIGN); 1813 else 1814 WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN); 1815 1816 rwlock_init(&tbl->lock); 1817 1818 INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work); 1819 queue_delayed_work(system_power_efficient_wq, &tbl->gc_work, 1820 tbl->parms.reachable_time); 1821 INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work); 1822 queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0); 1823 1824 timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0); 1825 skb_queue_head_init_class(&tbl->proxy_queue, 1826 &neigh_table_proxy_queue_class); 1827 1828 tbl->last_flush = now; 1829 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1830 1831 rcu_assign_pointer(neigh_tables[index], tbl); 1832 } 1833 EXPORT_SYMBOL(neigh_table_init); 1834 1835 /* 1836 * Only called from ndisc_cleanup(), which means this is dead code 1837 * because we no longer can unload IPv6 module. 1838 */ 1839 int neigh_table_clear(int index, struct neigh_table *tbl) 1840 { 1841 RCU_INIT_POINTER(neigh_tables[index], NULL); 1842 synchronize_rcu(); 1843 1844 /* It is not clean... Fix it to unload IPv6 module safely */ 1845 cancel_delayed_work_sync(&tbl->managed_work); 1846 cancel_delayed_work_sync(&tbl->gc_work); 1847 del_timer_sync(&tbl->proxy_timer); 1848 pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family); 1849 neigh_ifdown(tbl, NULL); 1850 if (atomic_read(&tbl->entries)) 1851 pr_crit("neighbour leakage\n"); 1852 1853 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1854 neigh_hash_free_rcu); 1855 tbl->nht = NULL; 1856 1857 kfree(tbl->phash_buckets); 1858 tbl->phash_buckets = NULL; 1859 1860 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1861 1862 free_percpu(tbl->stats); 1863 tbl->stats = NULL; 1864 1865 return 0; 1866 } 1867 EXPORT_SYMBOL(neigh_table_clear); 1868 1869 static struct neigh_table *neigh_find_table(int family) 1870 { 1871 struct neigh_table *tbl = NULL; 1872 1873 switch (family) { 1874 case AF_INET: 1875 tbl = rcu_dereference_rtnl(neigh_tables[NEIGH_ARP_TABLE]); 1876 break; 1877 case AF_INET6: 1878 tbl = rcu_dereference_rtnl(neigh_tables[NEIGH_ND_TABLE]); 1879 break; 1880 } 1881 1882 return tbl; 1883 } 1884 1885 const struct nla_policy nda_policy[NDA_MAX+1] = { 1886 [NDA_UNSPEC] = { .strict_start_type = NDA_NH_ID }, 1887 [NDA_DST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1888 [NDA_LLADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, 1889 [NDA_CACHEINFO] = { .len = sizeof(struct nda_cacheinfo) }, 1890 [NDA_PROBES] = { .type = NLA_U32 }, 1891 [NDA_VLAN] = { .type = NLA_U16 }, 1892 [NDA_PORT] = { .type = NLA_U16 }, 1893 [NDA_VNI] = { .type = NLA_U32 }, 1894 [NDA_IFINDEX] = { .type = NLA_U32 }, 1895 [NDA_MASTER] = { .type = NLA_U32 }, 1896 [NDA_PROTOCOL] = { .type = NLA_U8 }, 1897 [NDA_NH_ID] = { .type = NLA_U32 }, 1898 [NDA_FLAGS_EXT] = NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK), 1899 [NDA_FDB_EXT_ATTRS] = { .type = NLA_NESTED }, 1900 }; 1901 1902 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, 1903 struct netlink_ext_ack *extack) 1904 { 1905 struct net *net = sock_net(skb->sk); 1906 struct ndmsg *ndm; 1907 struct nlattr *dst_attr; 1908 struct neigh_table *tbl; 1909 struct neighbour *neigh; 1910 struct net_device *dev = NULL; 1911 int err = -EINVAL; 1912 1913 ASSERT_RTNL(); 1914 if (nlmsg_len(nlh) < sizeof(*ndm)) 1915 goto out; 1916 1917 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1918 if (!dst_attr) { 1919 NL_SET_ERR_MSG(extack, "Network address not specified"); 1920 goto out; 1921 } 1922 1923 ndm = nlmsg_data(nlh); 1924 if (ndm->ndm_ifindex) { 1925 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1926 if (dev == NULL) { 1927 err = -ENODEV; 1928 goto out; 1929 } 1930 } 1931 1932 tbl = neigh_find_table(ndm->ndm_family); 1933 if (tbl == NULL) 1934 return -EAFNOSUPPORT; 1935 1936 if (nla_len(dst_attr) < (int)tbl->key_len) { 1937 NL_SET_ERR_MSG(extack, "Invalid network address"); 1938 goto out; 1939 } 1940 1941 if (ndm->ndm_flags & NTF_PROXY) { 1942 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1943 goto out; 1944 } 1945 1946 if (dev == NULL) 1947 goto out; 1948 1949 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1950 if (neigh == NULL) { 1951 err = -ENOENT; 1952 goto out; 1953 } 1954 1955 err = __neigh_update(neigh, NULL, NUD_FAILED, 1956 NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN, 1957 NETLINK_CB(skb).portid, extack); 1958 write_lock_bh(&tbl->lock); 1959 neigh_release(neigh); 1960 neigh_remove_one(neigh, tbl); 1961 write_unlock_bh(&tbl->lock); 1962 1963 out: 1964 return err; 1965 } 1966 1967 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, 1968 struct netlink_ext_ack *extack) 1969 { 1970 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE | 1971 NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1972 struct net *net = sock_net(skb->sk); 1973 struct ndmsg *ndm; 1974 struct nlattr *tb[NDA_MAX+1]; 1975 struct neigh_table *tbl; 1976 struct net_device *dev = NULL; 1977 struct neighbour *neigh; 1978 void *dst, *lladdr; 1979 u8 protocol = 0; 1980 u32 ndm_flags; 1981 int err; 1982 1983 ASSERT_RTNL(); 1984 err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX, 1985 nda_policy, extack); 1986 if (err < 0) 1987 goto out; 1988 1989 err = -EINVAL; 1990 if (!tb[NDA_DST]) { 1991 NL_SET_ERR_MSG(extack, "Network address not specified"); 1992 goto out; 1993 } 1994 1995 ndm = nlmsg_data(nlh); 1996 ndm_flags = ndm->ndm_flags; 1997 if (tb[NDA_FLAGS_EXT]) { 1998 u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]); 1999 2000 BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE < 2001 (sizeof(ndm->ndm_flags) * BITS_PER_BYTE + 2002 hweight32(NTF_EXT_MASK))); 2003 ndm_flags |= (ext << NTF_EXT_SHIFT); 2004 } 2005 if (ndm->ndm_ifindex) { 2006 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 2007 if (dev == NULL) { 2008 err = -ENODEV; 2009 goto out; 2010 } 2011 2012 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) { 2013 NL_SET_ERR_MSG(extack, "Invalid link address"); 2014 goto out; 2015 } 2016 } 2017 2018 tbl = neigh_find_table(ndm->ndm_family); 2019 if (tbl == NULL) 2020 return -EAFNOSUPPORT; 2021 2022 if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) { 2023 NL_SET_ERR_MSG(extack, "Invalid network address"); 2024 goto out; 2025 } 2026 2027 dst = nla_data(tb[NDA_DST]); 2028 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 2029 2030 if (tb[NDA_PROTOCOL]) 2031 protocol = nla_get_u8(tb[NDA_PROTOCOL]); 2032 if (ndm_flags & NTF_PROXY) { 2033 struct pneigh_entry *pn; 2034 2035 if (ndm_flags & NTF_MANAGED) { 2036 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination"); 2037 goto out; 2038 } 2039 2040 err = -ENOBUFS; 2041 pn = pneigh_lookup(tbl, net, dst, dev, 1); 2042 if (pn) { 2043 pn->flags = ndm_flags; 2044 if (protocol) 2045 pn->protocol = protocol; 2046 err = 0; 2047 } 2048 goto out; 2049 } 2050 2051 if (!dev) { 2052 NL_SET_ERR_MSG(extack, "Device not specified"); 2053 goto out; 2054 } 2055 2056 if (tbl->allow_add && !tbl->allow_add(dev, extack)) { 2057 err = -EINVAL; 2058 goto out; 2059 } 2060 2061 neigh = neigh_lookup(tbl, dst, dev); 2062 if (neigh == NULL) { 2063 bool ndm_permanent = ndm->ndm_state & NUD_PERMANENT; 2064 bool exempt_from_gc = ndm_permanent || 2065 ndm_flags & NTF_EXT_LEARNED; 2066 2067 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 2068 err = -ENOENT; 2069 goto out; 2070 } 2071 if (ndm_permanent && (ndm_flags & NTF_MANAGED)) { 2072 NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry"); 2073 err = -EINVAL; 2074 goto out; 2075 } 2076 2077 neigh = ___neigh_create(tbl, dst, dev, 2078 ndm_flags & 2079 (NTF_EXT_LEARNED | NTF_MANAGED), 2080 exempt_from_gc, true); 2081 if (IS_ERR(neigh)) { 2082 err = PTR_ERR(neigh); 2083 goto out; 2084 } 2085 } else { 2086 if (nlh->nlmsg_flags & NLM_F_EXCL) { 2087 err = -EEXIST; 2088 neigh_release(neigh); 2089 goto out; 2090 } 2091 2092 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 2093 flags &= ~(NEIGH_UPDATE_F_OVERRIDE | 2094 NEIGH_UPDATE_F_OVERRIDE_ISROUTER); 2095 } 2096 2097 if (protocol) 2098 neigh->protocol = protocol; 2099 if (ndm_flags & NTF_EXT_LEARNED) 2100 flags |= NEIGH_UPDATE_F_EXT_LEARNED; 2101 if (ndm_flags & NTF_ROUTER) 2102 flags |= NEIGH_UPDATE_F_ISROUTER; 2103 if (ndm_flags & NTF_MANAGED) 2104 flags |= NEIGH_UPDATE_F_MANAGED; 2105 if (ndm_flags & NTF_USE) 2106 flags |= NEIGH_UPDATE_F_USE; 2107 2108 err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags, 2109 NETLINK_CB(skb).portid, extack); 2110 if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) { 2111 neigh_event_send(neigh, NULL); 2112 err = 0; 2113 } 2114 neigh_release(neigh); 2115 out: 2116 return err; 2117 } 2118 2119 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 2120 { 2121 struct nlattr *nest; 2122 2123 nest = nla_nest_start_noflag(skb, NDTA_PARMS); 2124 if (nest == NULL) 2125 return -ENOBUFS; 2126 2127 if ((parms->dev && 2128 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 2129 nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) || 2130 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, 2131 NEIGH_VAR(parms, QUEUE_LEN_BYTES)) || 2132 /* approximative value for deprecated QUEUE_LEN (in packets) */ 2133 nla_put_u32(skb, NDTPA_QUEUE_LEN, 2134 NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) || 2135 nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) || 2136 nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) || 2137 nla_put_u32(skb, NDTPA_UCAST_PROBES, 2138 NEIGH_VAR(parms, UCAST_PROBES)) || 2139 nla_put_u32(skb, NDTPA_MCAST_PROBES, 2140 NEIGH_VAR(parms, MCAST_PROBES)) || 2141 nla_put_u32(skb, NDTPA_MCAST_REPROBES, 2142 NEIGH_VAR(parms, MCAST_REPROBES)) || 2143 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time, 2144 NDTPA_PAD) || 2145 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 2146 NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) || 2147 nla_put_msecs(skb, NDTPA_GC_STALETIME, 2148 NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) || 2149 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 2150 NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) || 2151 nla_put_msecs(skb, NDTPA_RETRANS_TIME, 2152 NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) || 2153 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, 2154 NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) || 2155 nla_put_msecs(skb, NDTPA_PROXY_DELAY, 2156 NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) || 2157 nla_put_msecs(skb, NDTPA_LOCKTIME, 2158 NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) || 2159 nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS, 2160 NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD)) 2161 goto nla_put_failure; 2162 return nla_nest_end(skb, nest); 2163 2164 nla_put_failure: 2165 nla_nest_cancel(skb, nest); 2166 return -EMSGSIZE; 2167 } 2168 2169 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 2170 u32 pid, u32 seq, int type, int flags) 2171 { 2172 struct nlmsghdr *nlh; 2173 struct ndtmsg *ndtmsg; 2174 2175 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2176 if (nlh == NULL) 2177 return -EMSGSIZE; 2178 2179 ndtmsg = nlmsg_data(nlh); 2180 2181 read_lock_bh(&tbl->lock); 2182 ndtmsg->ndtm_family = tbl->family; 2183 ndtmsg->ndtm_pad1 = 0; 2184 ndtmsg->ndtm_pad2 = 0; 2185 2186 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 2187 nla_put_msecs(skb, NDTA_GC_INTERVAL, READ_ONCE(tbl->gc_interval), 2188 NDTA_PAD) || 2189 nla_put_u32(skb, NDTA_THRESH1, READ_ONCE(tbl->gc_thresh1)) || 2190 nla_put_u32(skb, NDTA_THRESH2, READ_ONCE(tbl->gc_thresh2)) || 2191 nla_put_u32(skb, NDTA_THRESH3, READ_ONCE(tbl->gc_thresh3))) 2192 goto nla_put_failure; 2193 { 2194 unsigned long now = jiffies; 2195 long flush_delta = now - READ_ONCE(tbl->last_flush); 2196 long rand_delta = now - READ_ONCE(tbl->last_rand); 2197 struct neigh_hash_table *nht; 2198 struct ndt_config ndc = { 2199 .ndtc_key_len = tbl->key_len, 2200 .ndtc_entry_size = tbl->entry_size, 2201 .ndtc_entries = atomic_read(&tbl->entries), 2202 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 2203 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 2204 .ndtc_proxy_qlen = READ_ONCE(tbl->proxy_queue.qlen), 2205 }; 2206 2207 rcu_read_lock(); 2208 nht = rcu_dereference(tbl->nht); 2209 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 2210 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 2211 rcu_read_unlock(); 2212 2213 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 2214 goto nla_put_failure; 2215 } 2216 2217 { 2218 int cpu; 2219 struct ndt_stats ndst; 2220 2221 memset(&ndst, 0, sizeof(ndst)); 2222 2223 for_each_possible_cpu(cpu) { 2224 struct neigh_statistics *st; 2225 2226 st = per_cpu_ptr(tbl->stats, cpu); 2227 ndst.ndts_allocs += READ_ONCE(st->allocs); 2228 ndst.ndts_destroys += READ_ONCE(st->destroys); 2229 ndst.ndts_hash_grows += READ_ONCE(st->hash_grows); 2230 ndst.ndts_res_failed += READ_ONCE(st->res_failed); 2231 ndst.ndts_lookups += READ_ONCE(st->lookups); 2232 ndst.ndts_hits += READ_ONCE(st->hits); 2233 ndst.ndts_rcv_probes_mcast += READ_ONCE(st->rcv_probes_mcast); 2234 ndst.ndts_rcv_probes_ucast += READ_ONCE(st->rcv_probes_ucast); 2235 ndst.ndts_periodic_gc_runs += READ_ONCE(st->periodic_gc_runs); 2236 ndst.ndts_forced_gc_runs += READ_ONCE(st->forced_gc_runs); 2237 ndst.ndts_table_fulls += READ_ONCE(st->table_fulls); 2238 } 2239 2240 if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst, 2241 NDTA_PAD)) 2242 goto nla_put_failure; 2243 } 2244 2245 BUG_ON(tbl->parms.dev); 2246 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 2247 goto nla_put_failure; 2248 2249 read_unlock_bh(&tbl->lock); 2250 nlmsg_end(skb, nlh); 2251 return 0; 2252 2253 nla_put_failure: 2254 read_unlock_bh(&tbl->lock); 2255 nlmsg_cancel(skb, nlh); 2256 return -EMSGSIZE; 2257 } 2258 2259 static int neightbl_fill_param_info(struct sk_buff *skb, 2260 struct neigh_table *tbl, 2261 struct neigh_parms *parms, 2262 u32 pid, u32 seq, int type, 2263 unsigned int flags) 2264 { 2265 struct ndtmsg *ndtmsg; 2266 struct nlmsghdr *nlh; 2267 2268 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 2269 if (nlh == NULL) 2270 return -EMSGSIZE; 2271 2272 ndtmsg = nlmsg_data(nlh); 2273 2274 read_lock_bh(&tbl->lock); 2275 ndtmsg->ndtm_family = tbl->family; 2276 ndtmsg->ndtm_pad1 = 0; 2277 ndtmsg->ndtm_pad2 = 0; 2278 2279 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 2280 neightbl_fill_parms(skb, parms) < 0) 2281 goto errout; 2282 2283 read_unlock_bh(&tbl->lock); 2284 nlmsg_end(skb, nlh); 2285 return 0; 2286 errout: 2287 read_unlock_bh(&tbl->lock); 2288 nlmsg_cancel(skb, nlh); 2289 return -EMSGSIZE; 2290 } 2291 2292 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 2293 [NDTA_NAME] = { .type = NLA_STRING }, 2294 [NDTA_THRESH1] = { .type = NLA_U32 }, 2295 [NDTA_THRESH2] = { .type = NLA_U32 }, 2296 [NDTA_THRESH3] = { .type = NLA_U32 }, 2297 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 2298 [NDTA_PARMS] = { .type = NLA_NESTED }, 2299 }; 2300 2301 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 2302 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 2303 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 2304 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 2305 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 2306 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 2307 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 2308 [NDTPA_MCAST_REPROBES] = { .type = NLA_U32 }, 2309 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 2310 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 2311 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 2312 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 2313 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 2314 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 2315 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 2316 [NDTPA_INTERVAL_PROBE_TIME_MS] = { .type = NLA_U64, .min = 1 }, 2317 }; 2318 2319 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, 2320 struct netlink_ext_ack *extack) 2321 { 2322 struct net *net = sock_net(skb->sk); 2323 struct neigh_table *tbl; 2324 struct ndtmsg *ndtmsg; 2325 struct nlattr *tb[NDTA_MAX+1]; 2326 bool found = false; 2327 int err, tidx; 2328 2329 err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 2330 nl_neightbl_policy, extack); 2331 if (err < 0) 2332 goto errout; 2333 2334 if (tb[NDTA_NAME] == NULL) { 2335 err = -EINVAL; 2336 goto errout; 2337 } 2338 2339 ndtmsg = nlmsg_data(nlh); 2340 2341 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2342 tbl = rcu_dereference_rtnl(neigh_tables[tidx]); 2343 if (!tbl) 2344 continue; 2345 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 2346 continue; 2347 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) { 2348 found = true; 2349 break; 2350 } 2351 } 2352 2353 if (!found) 2354 return -ENOENT; 2355 2356 /* 2357 * We acquire tbl->lock to be nice to the periodic timers and 2358 * make sure they always see a consistent set of values. 2359 */ 2360 write_lock_bh(&tbl->lock); 2361 2362 if (tb[NDTA_PARMS]) { 2363 struct nlattr *tbp[NDTPA_MAX+1]; 2364 struct neigh_parms *p; 2365 int i, ifindex = 0; 2366 2367 err = nla_parse_nested_deprecated(tbp, NDTPA_MAX, 2368 tb[NDTA_PARMS], 2369 nl_ntbl_parm_policy, extack); 2370 if (err < 0) 2371 goto errout_tbl_lock; 2372 2373 if (tbp[NDTPA_IFINDEX]) 2374 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 2375 2376 p = lookup_neigh_parms(tbl, net, ifindex); 2377 if (p == NULL) { 2378 err = -ENOENT; 2379 goto errout_tbl_lock; 2380 } 2381 2382 for (i = 1; i <= NDTPA_MAX; i++) { 2383 if (tbp[i] == NULL) 2384 continue; 2385 2386 switch (i) { 2387 case NDTPA_QUEUE_LEN: 2388 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2389 nla_get_u32(tbp[i]) * 2390 SKB_TRUESIZE(ETH_FRAME_LEN)); 2391 break; 2392 case NDTPA_QUEUE_LENBYTES: 2393 NEIGH_VAR_SET(p, QUEUE_LEN_BYTES, 2394 nla_get_u32(tbp[i])); 2395 break; 2396 case NDTPA_PROXY_QLEN: 2397 NEIGH_VAR_SET(p, PROXY_QLEN, 2398 nla_get_u32(tbp[i])); 2399 break; 2400 case NDTPA_APP_PROBES: 2401 NEIGH_VAR_SET(p, APP_PROBES, 2402 nla_get_u32(tbp[i])); 2403 break; 2404 case NDTPA_UCAST_PROBES: 2405 NEIGH_VAR_SET(p, UCAST_PROBES, 2406 nla_get_u32(tbp[i])); 2407 break; 2408 case NDTPA_MCAST_PROBES: 2409 NEIGH_VAR_SET(p, MCAST_PROBES, 2410 nla_get_u32(tbp[i])); 2411 break; 2412 case NDTPA_MCAST_REPROBES: 2413 NEIGH_VAR_SET(p, MCAST_REPROBES, 2414 nla_get_u32(tbp[i])); 2415 break; 2416 case NDTPA_BASE_REACHABLE_TIME: 2417 NEIGH_VAR_SET(p, BASE_REACHABLE_TIME, 2418 nla_get_msecs(tbp[i])); 2419 /* update reachable_time as well, otherwise, the change will 2420 * only be effective after the next time neigh_periodic_work 2421 * decides to recompute it (can be multiple minutes) 2422 */ 2423 p->reachable_time = 2424 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 2425 break; 2426 case NDTPA_GC_STALETIME: 2427 NEIGH_VAR_SET(p, GC_STALETIME, 2428 nla_get_msecs(tbp[i])); 2429 break; 2430 case NDTPA_DELAY_PROBE_TIME: 2431 NEIGH_VAR_SET(p, DELAY_PROBE_TIME, 2432 nla_get_msecs(tbp[i])); 2433 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 2434 break; 2435 case NDTPA_INTERVAL_PROBE_TIME_MS: 2436 NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS, 2437 nla_get_msecs(tbp[i])); 2438 break; 2439 case NDTPA_RETRANS_TIME: 2440 NEIGH_VAR_SET(p, RETRANS_TIME, 2441 nla_get_msecs(tbp[i])); 2442 break; 2443 case NDTPA_ANYCAST_DELAY: 2444 NEIGH_VAR_SET(p, ANYCAST_DELAY, 2445 nla_get_msecs(tbp[i])); 2446 break; 2447 case NDTPA_PROXY_DELAY: 2448 NEIGH_VAR_SET(p, PROXY_DELAY, 2449 nla_get_msecs(tbp[i])); 2450 break; 2451 case NDTPA_LOCKTIME: 2452 NEIGH_VAR_SET(p, LOCKTIME, 2453 nla_get_msecs(tbp[i])); 2454 break; 2455 } 2456 } 2457 } 2458 2459 err = -ENOENT; 2460 if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] || 2461 tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) && 2462 !net_eq(net, &init_net)) 2463 goto errout_tbl_lock; 2464 2465 if (tb[NDTA_THRESH1]) 2466 WRITE_ONCE(tbl->gc_thresh1, nla_get_u32(tb[NDTA_THRESH1])); 2467 2468 if (tb[NDTA_THRESH2]) 2469 WRITE_ONCE(tbl->gc_thresh2, nla_get_u32(tb[NDTA_THRESH2])); 2470 2471 if (tb[NDTA_THRESH3]) 2472 WRITE_ONCE(tbl->gc_thresh3, nla_get_u32(tb[NDTA_THRESH3])); 2473 2474 if (tb[NDTA_GC_INTERVAL]) 2475 WRITE_ONCE(tbl->gc_interval, nla_get_msecs(tb[NDTA_GC_INTERVAL])); 2476 2477 err = 0; 2478 2479 errout_tbl_lock: 2480 write_unlock_bh(&tbl->lock); 2481 errout: 2482 return err; 2483 } 2484 2485 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh, 2486 struct netlink_ext_ack *extack) 2487 { 2488 struct ndtmsg *ndtm; 2489 2490 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) { 2491 NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request"); 2492 return -EINVAL; 2493 } 2494 2495 ndtm = nlmsg_data(nlh); 2496 if (ndtm->ndtm_pad1 || ndtm->ndtm_pad2) { 2497 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request"); 2498 return -EINVAL; 2499 } 2500 2501 if (nlmsg_attrlen(nlh, sizeof(*ndtm))) { 2502 NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request"); 2503 return -EINVAL; 2504 } 2505 2506 return 0; 2507 } 2508 2509 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2510 { 2511 const struct nlmsghdr *nlh = cb->nlh; 2512 struct net *net = sock_net(skb->sk); 2513 int family, tidx, nidx = 0; 2514 int tbl_skip = cb->args[0]; 2515 int neigh_skip = cb->args[1]; 2516 struct neigh_table *tbl; 2517 2518 if (cb->strict_check) { 2519 int err = neightbl_valid_dump_info(nlh, cb->extack); 2520 2521 if (err < 0) 2522 return err; 2523 } 2524 2525 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2526 2527 for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) { 2528 struct neigh_parms *p; 2529 2530 tbl = rcu_dereference_rtnl(neigh_tables[tidx]); 2531 if (!tbl) 2532 continue; 2533 2534 if (tidx < tbl_skip || (family && tbl->family != family)) 2535 continue; 2536 2537 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid, 2538 nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2539 NLM_F_MULTI) < 0) 2540 break; 2541 2542 nidx = 0; 2543 p = list_next_entry(&tbl->parms, list); 2544 list_for_each_entry_from(p, &tbl->parms_list, list) { 2545 if (!net_eq(neigh_parms_net(p), net)) 2546 continue; 2547 2548 if (nidx < neigh_skip) 2549 goto next; 2550 2551 if (neightbl_fill_param_info(skb, tbl, p, 2552 NETLINK_CB(cb->skb).portid, 2553 nlh->nlmsg_seq, 2554 RTM_NEWNEIGHTBL, 2555 NLM_F_MULTI) < 0) 2556 goto out; 2557 next: 2558 nidx++; 2559 } 2560 2561 neigh_skip = 0; 2562 } 2563 out: 2564 cb->args[0] = tidx; 2565 cb->args[1] = nidx; 2566 2567 return skb->len; 2568 } 2569 2570 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2571 u32 pid, u32 seq, int type, unsigned int flags) 2572 { 2573 u32 neigh_flags, neigh_flags_ext; 2574 unsigned long now = jiffies; 2575 struct nda_cacheinfo ci; 2576 struct nlmsghdr *nlh; 2577 struct ndmsg *ndm; 2578 2579 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2580 if (nlh == NULL) 2581 return -EMSGSIZE; 2582 2583 neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT; 2584 neigh_flags = neigh->flags & NTF_OLD_MASK; 2585 2586 ndm = nlmsg_data(nlh); 2587 ndm->ndm_family = neigh->ops->family; 2588 ndm->ndm_pad1 = 0; 2589 ndm->ndm_pad2 = 0; 2590 ndm->ndm_flags = neigh_flags; 2591 ndm->ndm_type = neigh->type; 2592 ndm->ndm_ifindex = neigh->dev->ifindex; 2593 2594 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2595 goto nla_put_failure; 2596 2597 read_lock_bh(&neigh->lock); 2598 ndm->ndm_state = neigh->nud_state; 2599 if (neigh->nud_state & NUD_VALID) { 2600 char haddr[MAX_ADDR_LEN]; 2601 2602 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2603 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2604 read_unlock_bh(&neigh->lock); 2605 goto nla_put_failure; 2606 } 2607 } 2608 2609 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2610 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2611 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2612 ci.ndm_refcnt = refcount_read(&neigh->refcnt) - 1; 2613 read_unlock_bh(&neigh->lock); 2614 2615 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2616 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2617 goto nla_put_failure; 2618 2619 if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol)) 2620 goto nla_put_failure; 2621 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext)) 2622 goto nla_put_failure; 2623 2624 nlmsg_end(skb, nlh); 2625 return 0; 2626 2627 nla_put_failure: 2628 nlmsg_cancel(skb, nlh); 2629 return -EMSGSIZE; 2630 } 2631 2632 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2633 u32 pid, u32 seq, int type, unsigned int flags, 2634 struct neigh_table *tbl) 2635 { 2636 u32 neigh_flags, neigh_flags_ext; 2637 struct nlmsghdr *nlh; 2638 struct ndmsg *ndm; 2639 2640 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2641 if (nlh == NULL) 2642 return -EMSGSIZE; 2643 2644 neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT; 2645 neigh_flags = pn->flags & NTF_OLD_MASK; 2646 2647 ndm = nlmsg_data(nlh); 2648 ndm->ndm_family = tbl->family; 2649 ndm->ndm_pad1 = 0; 2650 ndm->ndm_pad2 = 0; 2651 ndm->ndm_flags = neigh_flags | NTF_PROXY; 2652 ndm->ndm_type = RTN_UNICAST; 2653 ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0; 2654 ndm->ndm_state = NUD_NONE; 2655 2656 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2657 goto nla_put_failure; 2658 2659 if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol)) 2660 goto nla_put_failure; 2661 if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext)) 2662 goto nla_put_failure; 2663 2664 nlmsg_end(skb, nlh); 2665 return 0; 2666 2667 nla_put_failure: 2668 nlmsg_cancel(skb, nlh); 2669 return -EMSGSIZE; 2670 } 2671 2672 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid) 2673 { 2674 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2675 __neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid); 2676 } 2677 2678 static bool neigh_master_filtered(struct net_device *dev, int master_idx) 2679 { 2680 struct net_device *master; 2681 2682 if (!master_idx) 2683 return false; 2684 2685 master = dev ? netdev_master_upper_dev_get_rcu(dev) : NULL; 2686 2687 /* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another 2688 * invalid value for ifindex to denote "no master". 2689 */ 2690 if (master_idx == -1) 2691 return !!master; 2692 2693 if (!master || master->ifindex != master_idx) 2694 return true; 2695 2696 return false; 2697 } 2698 2699 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx) 2700 { 2701 if (filter_idx && (!dev || dev->ifindex != filter_idx)) 2702 return true; 2703 2704 return false; 2705 } 2706 2707 struct neigh_dump_filter { 2708 int master_idx; 2709 int dev_idx; 2710 }; 2711 2712 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2713 struct netlink_callback *cb, 2714 struct neigh_dump_filter *filter) 2715 { 2716 struct net *net = sock_net(skb->sk); 2717 struct neighbour *n; 2718 int err = 0, h, s_h = cb->args[1]; 2719 int idx, s_idx = idx = cb->args[2]; 2720 struct neigh_hash_table *nht; 2721 unsigned int flags = NLM_F_MULTI; 2722 2723 if (filter->dev_idx || filter->master_idx) 2724 flags |= NLM_F_DUMP_FILTERED; 2725 2726 nht = rcu_dereference(tbl->nht); 2727 2728 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2729 if (h > s_h) 2730 s_idx = 0; 2731 for (n = rcu_dereference(nht->hash_buckets[h]), idx = 0; 2732 n != NULL; 2733 n = rcu_dereference(n->next)) { 2734 if (idx < s_idx || !net_eq(dev_net(n->dev), net)) 2735 goto next; 2736 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2737 neigh_master_filtered(n->dev, filter->master_idx)) 2738 goto next; 2739 err = neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2740 cb->nlh->nlmsg_seq, 2741 RTM_NEWNEIGH, flags); 2742 if (err < 0) 2743 goto out; 2744 next: 2745 idx++; 2746 } 2747 } 2748 out: 2749 cb->args[1] = h; 2750 cb->args[2] = idx; 2751 return err; 2752 } 2753 2754 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2755 struct netlink_callback *cb, 2756 struct neigh_dump_filter *filter) 2757 { 2758 struct pneigh_entry *n; 2759 struct net *net = sock_net(skb->sk); 2760 int err = 0, h, s_h = cb->args[3]; 2761 int idx, s_idx = idx = cb->args[4]; 2762 unsigned int flags = NLM_F_MULTI; 2763 2764 if (filter->dev_idx || filter->master_idx) 2765 flags |= NLM_F_DUMP_FILTERED; 2766 2767 read_lock_bh(&tbl->lock); 2768 2769 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2770 if (h > s_h) 2771 s_idx = 0; 2772 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2773 if (idx < s_idx || pneigh_net(n) != net) 2774 goto next; 2775 if (neigh_ifindex_filtered(n->dev, filter->dev_idx) || 2776 neigh_master_filtered(n->dev, filter->master_idx)) 2777 goto next; 2778 err = pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid, 2779 cb->nlh->nlmsg_seq, 2780 RTM_NEWNEIGH, flags, tbl); 2781 if (err < 0) { 2782 read_unlock_bh(&tbl->lock); 2783 goto out; 2784 } 2785 next: 2786 idx++; 2787 } 2788 } 2789 2790 read_unlock_bh(&tbl->lock); 2791 out: 2792 cb->args[3] = h; 2793 cb->args[4] = idx; 2794 return err; 2795 } 2796 2797 static int neigh_valid_dump_req(const struct nlmsghdr *nlh, 2798 bool strict_check, 2799 struct neigh_dump_filter *filter, 2800 struct netlink_ext_ack *extack) 2801 { 2802 struct nlattr *tb[NDA_MAX + 1]; 2803 int err, i; 2804 2805 if (strict_check) { 2806 struct ndmsg *ndm; 2807 2808 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2809 NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request"); 2810 return -EINVAL; 2811 } 2812 2813 ndm = nlmsg_data(nlh); 2814 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_ifindex || 2815 ndm->ndm_state || ndm->ndm_type) { 2816 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request"); 2817 return -EINVAL; 2818 } 2819 2820 if (ndm->ndm_flags & ~NTF_PROXY) { 2821 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request"); 2822 return -EINVAL; 2823 } 2824 2825 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), 2826 tb, NDA_MAX, nda_policy, 2827 extack); 2828 } else { 2829 err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb, 2830 NDA_MAX, nda_policy, extack); 2831 } 2832 if (err < 0) 2833 return err; 2834 2835 for (i = 0; i <= NDA_MAX; ++i) { 2836 if (!tb[i]) 2837 continue; 2838 2839 /* all new attributes should require strict_check */ 2840 switch (i) { 2841 case NDA_IFINDEX: 2842 filter->dev_idx = nla_get_u32(tb[i]); 2843 break; 2844 case NDA_MASTER: 2845 filter->master_idx = nla_get_u32(tb[i]); 2846 break; 2847 default: 2848 if (strict_check) { 2849 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request"); 2850 return -EINVAL; 2851 } 2852 } 2853 } 2854 2855 return 0; 2856 } 2857 2858 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2859 { 2860 const struct nlmsghdr *nlh = cb->nlh; 2861 struct neigh_dump_filter filter = {}; 2862 struct neigh_table *tbl; 2863 int t, family, s_t; 2864 int proxy = 0; 2865 int err; 2866 2867 family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family; 2868 2869 /* check for full ndmsg structure presence, family member is 2870 * the same for both structures 2871 */ 2872 if (nlmsg_len(nlh) >= sizeof(struct ndmsg) && 2873 ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY) 2874 proxy = 1; 2875 2876 err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack); 2877 if (err < 0 && cb->strict_check) 2878 return err; 2879 2880 s_t = cb->args[0]; 2881 2882 rcu_read_lock(); 2883 for (t = 0; t < NEIGH_NR_TABLES; t++) { 2884 tbl = rcu_dereference(neigh_tables[t]); 2885 2886 if (!tbl) 2887 continue; 2888 if (t < s_t || (family && tbl->family != family)) 2889 continue; 2890 if (t > s_t) 2891 memset(&cb->args[1], 0, sizeof(cb->args) - 2892 sizeof(cb->args[0])); 2893 if (proxy) 2894 err = pneigh_dump_table(tbl, skb, cb, &filter); 2895 else 2896 err = neigh_dump_table(tbl, skb, cb, &filter); 2897 if (err < 0) 2898 break; 2899 } 2900 rcu_read_unlock(); 2901 2902 cb->args[0] = t; 2903 return err; 2904 } 2905 2906 static int neigh_valid_get_req(const struct nlmsghdr *nlh, 2907 struct neigh_table **tbl, 2908 void **dst, int *dev_idx, u8 *ndm_flags, 2909 struct netlink_ext_ack *extack) 2910 { 2911 struct nlattr *tb[NDA_MAX + 1]; 2912 struct ndmsg *ndm; 2913 int err, i; 2914 2915 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) { 2916 NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request"); 2917 return -EINVAL; 2918 } 2919 2920 ndm = nlmsg_data(nlh); 2921 if (ndm->ndm_pad1 || ndm->ndm_pad2 || ndm->ndm_state || 2922 ndm->ndm_type) { 2923 NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request"); 2924 return -EINVAL; 2925 } 2926 2927 if (ndm->ndm_flags & ~NTF_PROXY) { 2928 NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request"); 2929 return -EINVAL; 2930 } 2931 2932 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb, 2933 NDA_MAX, nda_policy, extack); 2934 if (err < 0) 2935 return err; 2936 2937 *ndm_flags = ndm->ndm_flags; 2938 *dev_idx = ndm->ndm_ifindex; 2939 *tbl = neigh_find_table(ndm->ndm_family); 2940 if (*tbl == NULL) { 2941 NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request"); 2942 return -EAFNOSUPPORT; 2943 } 2944 2945 for (i = 0; i <= NDA_MAX; ++i) { 2946 if (!tb[i]) 2947 continue; 2948 2949 switch (i) { 2950 case NDA_DST: 2951 if (nla_len(tb[i]) != (int)(*tbl)->key_len) { 2952 NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request"); 2953 return -EINVAL; 2954 } 2955 *dst = nla_data(tb[i]); 2956 break; 2957 default: 2958 NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request"); 2959 return -EINVAL; 2960 } 2961 } 2962 2963 return 0; 2964 } 2965 2966 static inline size_t neigh_nlmsg_size(void) 2967 { 2968 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2969 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2970 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2971 + nla_total_size(sizeof(struct nda_cacheinfo)) 2972 + nla_total_size(4) /* NDA_PROBES */ 2973 + nla_total_size(4) /* NDA_FLAGS_EXT */ 2974 + nla_total_size(1); /* NDA_PROTOCOL */ 2975 } 2976 2977 static int neigh_get_reply(struct net *net, struct neighbour *neigh, 2978 u32 pid, u32 seq) 2979 { 2980 struct sk_buff *skb; 2981 int err = 0; 2982 2983 skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL); 2984 if (!skb) 2985 return -ENOBUFS; 2986 2987 err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0); 2988 if (err) { 2989 kfree_skb(skb); 2990 goto errout; 2991 } 2992 2993 err = rtnl_unicast(skb, net, pid); 2994 errout: 2995 return err; 2996 } 2997 2998 static inline size_t pneigh_nlmsg_size(void) 2999 { 3000 return NLMSG_ALIGN(sizeof(struct ndmsg)) 3001 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 3002 + nla_total_size(4) /* NDA_FLAGS_EXT */ 3003 + nla_total_size(1); /* NDA_PROTOCOL */ 3004 } 3005 3006 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh, 3007 u32 pid, u32 seq, struct neigh_table *tbl) 3008 { 3009 struct sk_buff *skb; 3010 int err = 0; 3011 3012 skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL); 3013 if (!skb) 3014 return -ENOBUFS; 3015 3016 err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl); 3017 if (err) { 3018 kfree_skb(skb); 3019 goto errout; 3020 } 3021 3022 err = rtnl_unicast(skb, net, pid); 3023 errout: 3024 return err; 3025 } 3026 3027 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh, 3028 struct netlink_ext_ack *extack) 3029 { 3030 struct net *net = sock_net(in_skb->sk); 3031 struct net_device *dev = NULL; 3032 struct neigh_table *tbl = NULL; 3033 struct neighbour *neigh; 3034 void *dst = NULL; 3035 u8 ndm_flags = 0; 3036 int dev_idx = 0; 3037 int err; 3038 3039 err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags, 3040 extack); 3041 if (err < 0) 3042 return err; 3043 3044 if (dev_idx) { 3045 dev = __dev_get_by_index(net, dev_idx); 3046 if (!dev) { 3047 NL_SET_ERR_MSG(extack, "Unknown device ifindex"); 3048 return -ENODEV; 3049 } 3050 } 3051 3052 if (!dst) { 3053 NL_SET_ERR_MSG(extack, "Network address not specified"); 3054 return -EINVAL; 3055 } 3056 3057 if (ndm_flags & NTF_PROXY) { 3058 struct pneigh_entry *pn; 3059 3060 pn = pneigh_lookup(tbl, net, dst, dev, 0); 3061 if (!pn) { 3062 NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found"); 3063 return -ENOENT; 3064 } 3065 return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid, 3066 nlh->nlmsg_seq, tbl); 3067 } 3068 3069 if (!dev) { 3070 NL_SET_ERR_MSG(extack, "No device specified"); 3071 return -EINVAL; 3072 } 3073 3074 neigh = neigh_lookup(tbl, dst, dev); 3075 if (!neigh) { 3076 NL_SET_ERR_MSG(extack, "Neighbour entry not found"); 3077 return -ENOENT; 3078 } 3079 3080 err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid, 3081 nlh->nlmsg_seq); 3082 3083 neigh_release(neigh); 3084 3085 return err; 3086 } 3087 3088 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 3089 { 3090 int chain; 3091 struct neigh_hash_table *nht; 3092 3093 rcu_read_lock(); 3094 nht = rcu_dereference(tbl->nht); 3095 3096 read_lock_bh(&tbl->lock); /* avoid resizes */ 3097 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 3098 struct neighbour *n; 3099 3100 for (n = rcu_dereference(nht->hash_buckets[chain]); 3101 n != NULL; 3102 n = rcu_dereference(n->next)) 3103 cb(n, cookie); 3104 } 3105 read_unlock_bh(&tbl->lock); 3106 rcu_read_unlock(); 3107 } 3108 EXPORT_SYMBOL(neigh_for_each); 3109 3110 /* The tbl->lock must be held as a writer and BH disabled. */ 3111 void __neigh_for_each_release(struct neigh_table *tbl, 3112 int (*cb)(struct neighbour *)) 3113 { 3114 int chain; 3115 struct neigh_hash_table *nht; 3116 3117 nht = rcu_dereference_protected(tbl->nht, 3118 lockdep_is_held(&tbl->lock)); 3119 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 3120 struct neighbour *n; 3121 struct neighbour __rcu **np; 3122 3123 np = &nht->hash_buckets[chain]; 3124 while ((n = rcu_dereference_protected(*np, 3125 lockdep_is_held(&tbl->lock))) != NULL) { 3126 int release; 3127 3128 write_lock(&n->lock); 3129 release = cb(n); 3130 if (release) { 3131 rcu_assign_pointer(*np, 3132 rcu_dereference_protected(n->next, 3133 lockdep_is_held(&tbl->lock))); 3134 neigh_mark_dead(n); 3135 } else 3136 np = &n->next; 3137 write_unlock(&n->lock); 3138 if (release) 3139 neigh_cleanup_and_release(n); 3140 } 3141 } 3142 } 3143 EXPORT_SYMBOL(__neigh_for_each_release); 3144 3145 int neigh_xmit(int index, struct net_device *dev, 3146 const void *addr, struct sk_buff *skb) 3147 { 3148 int err = -EAFNOSUPPORT; 3149 3150 if (likely(index < NEIGH_NR_TABLES)) { 3151 struct neigh_table *tbl; 3152 struct neighbour *neigh; 3153 3154 rcu_read_lock(); 3155 tbl = rcu_dereference(neigh_tables[index]); 3156 if (!tbl) 3157 goto out_unlock; 3158 if (index == NEIGH_ARP_TABLE) { 3159 u32 key = *((u32 *)addr); 3160 3161 neigh = __ipv4_neigh_lookup_noref(dev, key); 3162 } else { 3163 neigh = __neigh_lookup_noref(tbl, addr, dev); 3164 } 3165 if (!neigh) 3166 neigh = __neigh_create(tbl, addr, dev, false); 3167 err = PTR_ERR(neigh); 3168 if (IS_ERR(neigh)) { 3169 rcu_read_unlock(); 3170 goto out_kfree_skb; 3171 } 3172 err = READ_ONCE(neigh->output)(neigh, skb); 3173 out_unlock: 3174 rcu_read_unlock(); 3175 } 3176 else if (index == NEIGH_LINK_TABLE) { 3177 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 3178 addr, NULL, skb->len); 3179 if (err < 0) 3180 goto out_kfree_skb; 3181 err = dev_queue_xmit(skb); 3182 } 3183 out: 3184 return err; 3185 out_kfree_skb: 3186 kfree_skb(skb); 3187 goto out; 3188 } 3189 EXPORT_SYMBOL(neigh_xmit); 3190 3191 #ifdef CONFIG_PROC_FS 3192 3193 static struct neighbour *neigh_get_first(struct seq_file *seq) 3194 { 3195 struct neigh_seq_state *state = seq->private; 3196 struct net *net = seq_file_net(seq); 3197 struct neigh_hash_table *nht = state->nht; 3198 struct neighbour *n = NULL; 3199 int bucket; 3200 3201 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 3202 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 3203 n = rcu_dereference(nht->hash_buckets[bucket]); 3204 3205 while (n) { 3206 if (!net_eq(dev_net(n->dev), net)) 3207 goto next; 3208 if (state->neigh_sub_iter) { 3209 loff_t fakep = 0; 3210 void *v; 3211 3212 v = state->neigh_sub_iter(state, n, &fakep); 3213 if (!v) 3214 goto next; 3215 } 3216 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3217 break; 3218 if (READ_ONCE(n->nud_state) & ~NUD_NOARP) 3219 break; 3220 next: 3221 n = rcu_dereference(n->next); 3222 } 3223 3224 if (n) 3225 break; 3226 } 3227 state->bucket = bucket; 3228 3229 return n; 3230 } 3231 3232 static struct neighbour *neigh_get_next(struct seq_file *seq, 3233 struct neighbour *n, 3234 loff_t *pos) 3235 { 3236 struct neigh_seq_state *state = seq->private; 3237 struct net *net = seq_file_net(seq); 3238 struct neigh_hash_table *nht = state->nht; 3239 3240 if (state->neigh_sub_iter) { 3241 void *v = state->neigh_sub_iter(state, n, pos); 3242 if (v) 3243 return n; 3244 } 3245 n = rcu_dereference(n->next); 3246 3247 while (1) { 3248 while (n) { 3249 if (!net_eq(dev_net(n->dev), net)) 3250 goto next; 3251 if (state->neigh_sub_iter) { 3252 void *v = state->neigh_sub_iter(state, n, pos); 3253 if (v) 3254 return n; 3255 goto next; 3256 } 3257 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 3258 break; 3259 3260 if (READ_ONCE(n->nud_state) & ~NUD_NOARP) 3261 break; 3262 next: 3263 n = rcu_dereference(n->next); 3264 } 3265 3266 if (n) 3267 break; 3268 3269 if (++state->bucket >= (1 << nht->hash_shift)) 3270 break; 3271 3272 n = rcu_dereference(nht->hash_buckets[state->bucket]); 3273 } 3274 3275 if (n && pos) 3276 --(*pos); 3277 return n; 3278 } 3279 3280 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 3281 { 3282 struct neighbour *n = neigh_get_first(seq); 3283 3284 if (n) { 3285 --(*pos); 3286 while (*pos) { 3287 n = neigh_get_next(seq, n, pos); 3288 if (!n) 3289 break; 3290 } 3291 } 3292 return *pos ? NULL : n; 3293 } 3294 3295 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 3296 { 3297 struct neigh_seq_state *state = seq->private; 3298 struct net *net = seq_file_net(seq); 3299 struct neigh_table *tbl = state->tbl; 3300 struct pneigh_entry *pn = NULL; 3301 int bucket; 3302 3303 state->flags |= NEIGH_SEQ_IS_PNEIGH; 3304 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 3305 pn = tbl->phash_buckets[bucket]; 3306 while (pn && !net_eq(pneigh_net(pn), net)) 3307 pn = pn->next; 3308 if (pn) 3309 break; 3310 } 3311 state->bucket = bucket; 3312 3313 return pn; 3314 } 3315 3316 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 3317 struct pneigh_entry *pn, 3318 loff_t *pos) 3319 { 3320 struct neigh_seq_state *state = seq->private; 3321 struct net *net = seq_file_net(seq); 3322 struct neigh_table *tbl = state->tbl; 3323 3324 do { 3325 pn = pn->next; 3326 } while (pn && !net_eq(pneigh_net(pn), net)); 3327 3328 while (!pn) { 3329 if (++state->bucket > PNEIGH_HASHMASK) 3330 break; 3331 pn = tbl->phash_buckets[state->bucket]; 3332 while (pn && !net_eq(pneigh_net(pn), net)) 3333 pn = pn->next; 3334 if (pn) 3335 break; 3336 } 3337 3338 if (pn && pos) 3339 --(*pos); 3340 3341 return pn; 3342 } 3343 3344 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 3345 { 3346 struct pneigh_entry *pn = pneigh_get_first(seq); 3347 3348 if (pn) { 3349 --(*pos); 3350 while (*pos) { 3351 pn = pneigh_get_next(seq, pn, pos); 3352 if (!pn) 3353 break; 3354 } 3355 } 3356 return *pos ? NULL : pn; 3357 } 3358 3359 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 3360 { 3361 struct neigh_seq_state *state = seq->private; 3362 void *rc; 3363 loff_t idxpos = *pos; 3364 3365 rc = neigh_get_idx(seq, &idxpos); 3366 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3367 rc = pneigh_get_idx(seq, &idxpos); 3368 3369 return rc; 3370 } 3371 3372 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 3373 __acquires(tbl->lock) 3374 __acquires(rcu) 3375 { 3376 struct neigh_seq_state *state = seq->private; 3377 3378 state->tbl = tbl; 3379 state->bucket = 0; 3380 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 3381 3382 rcu_read_lock(); 3383 state->nht = rcu_dereference(tbl->nht); 3384 read_lock_bh(&tbl->lock); 3385 3386 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 3387 } 3388 EXPORT_SYMBOL(neigh_seq_start); 3389 3390 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3391 { 3392 struct neigh_seq_state *state; 3393 void *rc; 3394 3395 if (v == SEQ_START_TOKEN) { 3396 rc = neigh_get_first(seq); 3397 goto out; 3398 } 3399 3400 state = seq->private; 3401 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 3402 rc = neigh_get_next(seq, v, NULL); 3403 if (rc) 3404 goto out; 3405 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 3406 rc = pneigh_get_first(seq); 3407 } else { 3408 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 3409 rc = pneigh_get_next(seq, v, NULL); 3410 } 3411 out: 3412 ++(*pos); 3413 return rc; 3414 } 3415 EXPORT_SYMBOL(neigh_seq_next); 3416 3417 void neigh_seq_stop(struct seq_file *seq, void *v) 3418 __releases(tbl->lock) 3419 __releases(rcu) 3420 { 3421 struct neigh_seq_state *state = seq->private; 3422 struct neigh_table *tbl = state->tbl; 3423 3424 read_unlock_bh(&tbl->lock); 3425 rcu_read_unlock(); 3426 } 3427 EXPORT_SYMBOL(neigh_seq_stop); 3428 3429 /* statistics via seq_file */ 3430 3431 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 3432 { 3433 struct neigh_table *tbl = pde_data(file_inode(seq->file)); 3434 int cpu; 3435 3436 if (*pos == 0) 3437 return SEQ_START_TOKEN; 3438 3439 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 3440 if (!cpu_possible(cpu)) 3441 continue; 3442 *pos = cpu+1; 3443 return per_cpu_ptr(tbl->stats, cpu); 3444 } 3445 return NULL; 3446 } 3447 3448 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3449 { 3450 struct neigh_table *tbl = pde_data(file_inode(seq->file)); 3451 int cpu; 3452 3453 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 3454 if (!cpu_possible(cpu)) 3455 continue; 3456 *pos = cpu+1; 3457 return per_cpu_ptr(tbl->stats, cpu); 3458 } 3459 (*pos)++; 3460 return NULL; 3461 } 3462 3463 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 3464 { 3465 3466 } 3467 3468 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 3469 { 3470 struct neigh_table *tbl = pde_data(file_inode(seq->file)); 3471 struct neigh_statistics *st = v; 3472 3473 if (v == SEQ_START_TOKEN) { 3474 seq_puts(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n"); 3475 return 0; 3476 } 3477 3478 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 3479 "%08lx %08lx %08lx " 3480 "%08lx %08lx %08lx\n", 3481 atomic_read(&tbl->entries), 3482 3483 st->allocs, 3484 st->destroys, 3485 st->hash_grows, 3486 3487 st->lookups, 3488 st->hits, 3489 3490 st->res_failed, 3491 3492 st->rcv_probes_mcast, 3493 st->rcv_probes_ucast, 3494 3495 st->periodic_gc_runs, 3496 st->forced_gc_runs, 3497 st->unres_discards, 3498 st->table_fulls 3499 ); 3500 3501 return 0; 3502 } 3503 3504 static const struct seq_operations neigh_stat_seq_ops = { 3505 .start = neigh_stat_seq_start, 3506 .next = neigh_stat_seq_next, 3507 .stop = neigh_stat_seq_stop, 3508 .show = neigh_stat_seq_show, 3509 }; 3510 #endif /* CONFIG_PROC_FS */ 3511 3512 static void __neigh_notify(struct neighbour *n, int type, int flags, 3513 u32 pid) 3514 { 3515 struct net *net = dev_net(n->dev); 3516 struct sk_buff *skb; 3517 int err = -ENOBUFS; 3518 3519 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 3520 if (skb == NULL) 3521 goto errout; 3522 3523 err = neigh_fill_info(skb, n, pid, 0, type, flags); 3524 if (err < 0) { 3525 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 3526 WARN_ON(err == -EMSGSIZE); 3527 kfree_skb(skb); 3528 goto errout; 3529 } 3530 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 3531 return; 3532 errout: 3533 if (err < 0) 3534 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 3535 } 3536 3537 void neigh_app_ns(struct neighbour *n) 3538 { 3539 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0); 3540 } 3541 EXPORT_SYMBOL(neigh_app_ns); 3542 3543 #ifdef CONFIG_SYSCTL 3544 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN); 3545 3546 static int proc_unres_qlen(const struct ctl_table *ctl, int write, 3547 void *buffer, size_t *lenp, loff_t *ppos) 3548 { 3549 int size, ret; 3550 struct ctl_table tmp = *ctl; 3551 3552 tmp.extra1 = SYSCTL_ZERO; 3553 tmp.extra2 = &unres_qlen_max; 3554 tmp.data = &size; 3555 3556 size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN); 3557 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3558 3559 if (write && !ret) 3560 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 3561 return ret; 3562 } 3563 3564 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p, 3565 int index) 3566 { 3567 struct net_device *dev; 3568 int family = neigh_parms_family(p); 3569 3570 rcu_read_lock(); 3571 for_each_netdev_rcu(net, dev) { 3572 struct neigh_parms *dst_p = 3573 neigh_get_dev_parms_rcu(dev, family); 3574 3575 if (dst_p && !test_bit(index, dst_p->data_state)) 3576 dst_p->data[index] = p->data[index]; 3577 } 3578 rcu_read_unlock(); 3579 } 3580 3581 static void neigh_proc_update(const struct ctl_table *ctl, int write) 3582 { 3583 struct net_device *dev = ctl->extra1; 3584 struct neigh_parms *p = ctl->extra2; 3585 struct net *net = neigh_parms_net(p); 3586 int index = (int *) ctl->data - p->data; 3587 3588 if (!write) 3589 return; 3590 3591 set_bit(index, p->data_state); 3592 if (index == NEIGH_VAR_DELAY_PROBE_TIME) 3593 call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p); 3594 if (!dev) /* NULL dev means this is default value */ 3595 neigh_copy_dflt_parms(net, p, index); 3596 } 3597 3598 static int neigh_proc_dointvec_zero_intmax(const struct ctl_table *ctl, int write, 3599 void *buffer, size_t *lenp, 3600 loff_t *ppos) 3601 { 3602 struct ctl_table tmp = *ctl; 3603 int ret; 3604 3605 tmp.extra1 = SYSCTL_ZERO; 3606 tmp.extra2 = SYSCTL_INT_MAX; 3607 3608 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 3609 neigh_proc_update(ctl, write); 3610 return ret; 3611 } 3612 3613 static int neigh_proc_dointvec_ms_jiffies_positive(const struct ctl_table *ctl, int write, 3614 void *buffer, size_t *lenp, loff_t *ppos) 3615 { 3616 struct ctl_table tmp = *ctl; 3617 int ret; 3618 3619 int min = msecs_to_jiffies(1); 3620 3621 tmp.extra1 = &min; 3622 tmp.extra2 = NULL; 3623 3624 ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos); 3625 neigh_proc_update(ctl, write); 3626 return ret; 3627 } 3628 3629 int neigh_proc_dointvec(const struct ctl_table *ctl, int write, void *buffer, 3630 size_t *lenp, loff_t *ppos) 3631 { 3632 int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 3633 3634 neigh_proc_update(ctl, write); 3635 return ret; 3636 } 3637 EXPORT_SYMBOL(neigh_proc_dointvec); 3638 3639 int neigh_proc_dointvec_jiffies(const struct ctl_table *ctl, int write, void *buffer, 3640 size_t *lenp, loff_t *ppos) 3641 { 3642 int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3643 3644 neigh_proc_update(ctl, write); 3645 return ret; 3646 } 3647 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies); 3648 3649 static int neigh_proc_dointvec_userhz_jiffies(const struct ctl_table *ctl, int write, 3650 void *buffer, size_t *lenp, 3651 loff_t *ppos) 3652 { 3653 int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos); 3654 3655 neigh_proc_update(ctl, write); 3656 return ret; 3657 } 3658 3659 int neigh_proc_dointvec_ms_jiffies(const struct ctl_table *ctl, int write, 3660 void *buffer, size_t *lenp, loff_t *ppos) 3661 { 3662 int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3663 3664 neigh_proc_update(ctl, write); 3665 return ret; 3666 } 3667 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies); 3668 3669 static int neigh_proc_dointvec_unres_qlen(const struct ctl_table *ctl, int write, 3670 void *buffer, size_t *lenp, 3671 loff_t *ppos) 3672 { 3673 int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos); 3674 3675 neigh_proc_update(ctl, write); 3676 return ret; 3677 } 3678 3679 static int neigh_proc_base_reachable_time(const struct ctl_table *ctl, int write, 3680 void *buffer, size_t *lenp, 3681 loff_t *ppos) 3682 { 3683 struct neigh_parms *p = ctl->extra2; 3684 int ret; 3685 3686 if (strcmp(ctl->procname, "base_reachable_time") == 0) 3687 ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos); 3688 else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0) 3689 ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos); 3690 else 3691 ret = -1; 3692 3693 if (write && ret == 0) { 3694 /* update reachable_time as well, otherwise, the change will 3695 * only be effective after the next time neigh_periodic_work 3696 * decides to recompute it 3697 */ 3698 p->reachable_time = 3699 neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME)); 3700 } 3701 return ret; 3702 } 3703 3704 #define NEIGH_PARMS_DATA_OFFSET(index) \ 3705 (&((struct neigh_parms *) 0)->data[index]) 3706 3707 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \ 3708 [NEIGH_VAR_ ## attr] = { \ 3709 .procname = name, \ 3710 .data = NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \ 3711 .maxlen = sizeof(int), \ 3712 .mode = mval, \ 3713 .proc_handler = proc, \ 3714 } 3715 3716 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \ 3717 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax) 3718 3719 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \ 3720 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies) 3721 3722 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \ 3723 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies) 3724 3725 #define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \ 3726 NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive) 3727 3728 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \ 3729 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies) 3730 3731 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \ 3732 NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen) 3733 3734 static struct neigh_sysctl_table { 3735 struct ctl_table_header *sysctl_header; 3736 struct ctl_table neigh_vars[NEIGH_VAR_MAX]; 3737 } neigh_sysctl_template __read_mostly = { 3738 .neigh_vars = { 3739 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"), 3740 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"), 3741 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"), 3742 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"), 3743 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"), 3744 NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"), 3745 NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"), 3746 NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS, 3747 "interval_probe_time_ms"), 3748 NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"), 3749 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"), 3750 NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"), 3751 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"), 3752 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"), 3753 NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"), 3754 NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"), 3755 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"), 3756 NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"), 3757 [NEIGH_VAR_GC_INTERVAL] = { 3758 .procname = "gc_interval", 3759 .maxlen = sizeof(int), 3760 .mode = 0644, 3761 .proc_handler = proc_dointvec_jiffies, 3762 }, 3763 [NEIGH_VAR_GC_THRESH1] = { 3764 .procname = "gc_thresh1", 3765 .maxlen = sizeof(int), 3766 .mode = 0644, 3767 .extra1 = SYSCTL_ZERO, 3768 .extra2 = SYSCTL_INT_MAX, 3769 .proc_handler = proc_dointvec_minmax, 3770 }, 3771 [NEIGH_VAR_GC_THRESH2] = { 3772 .procname = "gc_thresh2", 3773 .maxlen = sizeof(int), 3774 .mode = 0644, 3775 .extra1 = SYSCTL_ZERO, 3776 .extra2 = SYSCTL_INT_MAX, 3777 .proc_handler = proc_dointvec_minmax, 3778 }, 3779 [NEIGH_VAR_GC_THRESH3] = { 3780 .procname = "gc_thresh3", 3781 .maxlen = sizeof(int), 3782 .mode = 0644, 3783 .extra1 = SYSCTL_ZERO, 3784 .extra2 = SYSCTL_INT_MAX, 3785 .proc_handler = proc_dointvec_minmax, 3786 }, 3787 }, 3788 }; 3789 3790 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 3791 proc_handler *handler) 3792 { 3793 int i; 3794 struct neigh_sysctl_table *t; 3795 const char *dev_name_source; 3796 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 3797 char *p_name; 3798 size_t neigh_vars_size; 3799 3800 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT); 3801 if (!t) 3802 goto err; 3803 3804 for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) { 3805 t->neigh_vars[i].data += (long) p; 3806 t->neigh_vars[i].extra1 = dev; 3807 t->neigh_vars[i].extra2 = p; 3808 } 3809 3810 neigh_vars_size = ARRAY_SIZE(t->neigh_vars); 3811 if (dev) { 3812 dev_name_source = dev->name; 3813 /* Terminate the table early */ 3814 neigh_vars_size = NEIGH_VAR_BASE_REACHABLE_TIME_MS + 1; 3815 } else { 3816 struct neigh_table *tbl = p->tbl; 3817 dev_name_source = "default"; 3818 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval; 3819 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1; 3820 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2; 3821 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3; 3822 } 3823 3824 if (handler) { 3825 /* RetransTime */ 3826 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 3827 /* ReachableTime */ 3828 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 3829 /* RetransTime (in milliseconds)*/ 3830 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 3831 /* ReachableTime (in milliseconds) */ 3832 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 3833 } else { 3834 /* Those handlers will update p->reachable_time after 3835 * base_reachable_time(_ms) is set to ensure the new timer starts being 3836 * applied after the next neighbour update instead of waiting for 3837 * neigh_periodic_work to update its value (can be multiple minutes) 3838 * So any handler that replaces them should do this as well 3839 */ 3840 /* ReachableTime */ 3841 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = 3842 neigh_proc_base_reachable_time; 3843 /* ReachableTime (in milliseconds) */ 3844 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = 3845 neigh_proc_base_reachable_time; 3846 } 3847 3848 switch (neigh_parms_family(p)) { 3849 case AF_INET: 3850 p_name = "ipv4"; 3851 break; 3852 case AF_INET6: 3853 p_name = "ipv6"; 3854 break; 3855 default: 3856 BUG(); 3857 } 3858 3859 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 3860 p_name, dev_name_source); 3861 t->sysctl_header = register_net_sysctl_sz(neigh_parms_net(p), 3862 neigh_path, t->neigh_vars, 3863 neigh_vars_size); 3864 if (!t->sysctl_header) 3865 goto free; 3866 3867 p->sysctl_table = t; 3868 return 0; 3869 3870 free: 3871 kfree(t); 3872 err: 3873 return -ENOBUFS; 3874 } 3875 EXPORT_SYMBOL(neigh_sysctl_register); 3876 3877 void neigh_sysctl_unregister(struct neigh_parms *p) 3878 { 3879 if (p->sysctl_table) { 3880 struct neigh_sysctl_table *t = p->sysctl_table; 3881 p->sysctl_table = NULL; 3882 unregister_net_sysctl_table(t->sysctl_header); 3883 kfree(t); 3884 } 3885 } 3886 EXPORT_SYMBOL(neigh_sysctl_unregister); 3887 3888 #endif /* CONFIG_SYSCTL */ 3889 3890 static int __init neigh_init(void) 3891 { 3892 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0); 3893 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0); 3894 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 3895 RTNL_FLAG_DUMP_UNLOCKED); 3896 3897 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3898 0); 3899 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0); 3900 3901 return 0; 3902 } 3903 3904 subsys_initcall(neigh_init); 3905
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.