~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/core/skbuff.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *      Routines having to do with the 'struct sk_buff' memory handlers.
  4  *
  5  *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
  6  *                      Florian La Roche <rzsfl@rz.uni-sb.de>
  7  *
  8  *      Fixes:
  9  *              Alan Cox        :       Fixed the worst of the load
 10  *                                      balancer bugs.
 11  *              Dave Platt      :       Interrupt stacking fix.
 12  *      Richard Kooijman        :       Timestamp fixes.
 13  *              Alan Cox        :       Changed buffer format.
 14  *              Alan Cox        :       destructor hook for AF_UNIX etc.
 15  *              Linus Torvalds  :       Better skb_clone.
 16  *              Alan Cox        :       Added skb_copy.
 17  *              Alan Cox        :       Added all the changed routines Linus
 18  *                                      only put in the headers
 19  *              Ray VanTassle   :       Fixed --skb->lock in free
 20  *              Alan Cox        :       skb_copy copy arp field
 21  *              Andi Kleen      :       slabified it.
 22  *              Robert Olsson   :       Removed skb_head_pool
 23  *
 24  *      NOTE:
 25  *              The __skb_ routines should be called with interrupts
 26  *      disabled, or you better be *real* sure that the operation is atomic
 27  *      with respect to whatever list is being frobbed (e.g. via lock_sock()
 28  *      or via disabling bottom half handlers, etc).
 29  */
 30 
 31 /*
 32  *      The functions in this file will not compile correctly with gcc 2.4.x
 33  */
 34 
 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 36 
 37 #include <linux/module.h>
 38 #include <linux/types.h>
 39 #include <linux/kernel.h>
 40 #include <linux/mm.h>
 41 #include <linux/interrupt.h>
 42 #include <linux/in.h>
 43 #include <linux/inet.h>
 44 #include <linux/slab.h>
 45 #include <linux/tcp.h>
 46 #include <linux/udp.h>
 47 #include <linux/sctp.h>
 48 #include <linux/netdevice.h>
 49 #ifdef CONFIG_NET_CLS_ACT
 50 #include <net/pkt_sched.h>
 51 #endif
 52 #include <linux/string.h>
 53 #include <linux/skbuff.h>
 54 #include <linux/skbuff_ref.h>
 55 #include <linux/splice.h>
 56 #include <linux/cache.h>
 57 #include <linux/rtnetlink.h>
 58 #include <linux/init.h>
 59 #include <linux/scatterlist.h>
 60 #include <linux/errqueue.h>
 61 #include <linux/prefetch.h>
 62 #include <linux/bitfield.h>
 63 #include <linux/if_vlan.h>
 64 #include <linux/mpls.h>
 65 #include <linux/kcov.h>
 66 #include <linux/iov_iter.h>
 67 
 68 #include <net/protocol.h>
 69 #include <net/dst.h>
 70 #include <net/sock.h>
 71 #include <net/checksum.h>
 72 #include <net/gso.h>
 73 #include <net/hotdata.h>
 74 #include <net/ip6_checksum.h>
 75 #include <net/xfrm.h>
 76 #include <net/mpls.h>
 77 #include <net/mptcp.h>
 78 #include <net/mctp.h>
 79 #include <net/page_pool/helpers.h>
 80 #include <net/dropreason.h>
 81 
 82 #include <linux/uaccess.h>
 83 #include <trace/events/skb.h>
 84 #include <linux/highmem.h>
 85 #include <linux/capability.h>
 86 #include <linux/user_namespace.h>
 87 #include <linux/indirect_call_wrapper.h>
 88 #include <linux/textsearch.h>
 89 
 90 #include "dev.h"
 91 #include "sock_destructor.h"
 92 
 93 #ifdef CONFIG_SKB_EXTENSIONS
 94 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
 95 #endif
 96 
 97 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
 98 
 99 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
100  * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
101  * size, and we can differentiate heads from skb_small_head_cache
102  * vs system slabs by looking at their size (skb_end_offset()).
103  */
104 #define SKB_SMALL_HEAD_CACHE_SIZE                                       \
105         (is_power_of_2(SKB_SMALL_HEAD_SIZE) ?                   \
106                 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :        \
107                 SKB_SMALL_HEAD_SIZE)
108 
109 #define SKB_SMALL_HEAD_HEADROOM                                         \
110         SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
111 
112 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use
113  * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the
114  * netmem is a page.
115  */
116 static_assert(offsetof(struct bio_vec, bv_page) ==
117               offsetof(skb_frag_t, netmem));
118 static_assert(sizeof_field(struct bio_vec, bv_page) ==
119               sizeof_field(skb_frag_t, netmem));
120 
121 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len));
122 static_assert(sizeof_field(struct bio_vec, bv_len) ==
123               sizeof_field(skb_frag_t, len));
124 
125 static_assert(offsetof(struct bio_vec, bv_offset) ==
126               offsetof(skb_frag_t, offset));
127 static_assert(sizeof_field(struct bio_vec, bv_offset) ==
128               sizeof_field(skb_frag_t, offset));
129 
130 #undef FN
131 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
132 static const char * const drop_reasons[] = {
133         [SKB_CONSUMED] = "CONSUMED",
134         DEFINE_DROP_REASON(FN, FN)
135 };
136 
137 static const struct drop_reason_list drop_reasons_core = {
138         .reasons = drop_reasons,
139         .n_reasons = ARRAY_SIZE(drop_reasons),
140 };
141 
142 const struct drop_reason_list __rcu *
143 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
144         [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
145 };
146 EXPORT_SYMBOL(drop_reasons_by_subsys);
147 
148 /**
149  * drop_reasons_register_subsys - register another drop reason subsystem
150  * @subsys: the subsystem to register, must not be the core
151  * @list: the list of drop reasons within the subsystem, must point to
152  *      a statically initialized list
153  */
154 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
155                                   const struct drop_reason_list *list)
156 {
157         if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
158                  subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
159                  "invalid subsystem %d\n", subsys))
160                 return;
161 
162         /* must point to statically allocated memory, so INIT is OK */
163         RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
164 }
165 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
166 
167 /**
168  * drop_reasons_unregister_subsys - unregister a drop reason subsystem
169  * @subsys: the subsystem to remove, must not be the core
170  *
171  * Note: This will synchronize_rcu() to ensure no users when it returns.
172  */
173 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
174 {
175         if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
176                  subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
177                  "invalid subsystem %d\n", subsys))
178                 return;
179 
180         RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
181 
182         synchronize_rcu();
183 }
184 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
185 
186 /**
187  *      skb_panic - private function for out-of-line support
188  *      @skb:   buffer
189  *      @sz:    size
190  *      @addr:  address
191  *      @msg:   skb_over_panic or skb_under_panic
192  *
193  *      Out-of-line support for skb_put() and skb_push().
194  *      Called via the wrapper skb_over_panic() or skb_under_panic().
195  *      Keep out of line to prevent kernel bloat.
196  *      __builtin_return_address is not used because it is not always reliable.
197  */
198 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
199                       const char msg[])
200 {
201         pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
202                  msg, addr, skb->len, sz, skb->head, skb->data,
203                  (unsigned long)skb->tail, (unsigned long)skb->end,
204                  skb->dev ? skb->dev->name : "<NULL>");
205         BUG();
206 }
207 
208 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
209 {
210         skb_panic(skb, sz, addr, __func__);
211 }
212 
213 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
214 {
215         skb_panic(skb, sz, addr, __func__);
216 }
217 
218 #define NAPI_SKB_CACHE_SIZE     64
219 #define NAPI_SKB_CACHE_BULK     16
220 #define NAPI_SKB_CACHE_HALF     (NAPI_SKB_CACHE_SIZE / 2)
221 
222 #if PAGE_SIZE == SZ_4K
223 
224 #define NAPI_HAS_SMALL_PAGE_FRAG        1
225 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)  ((nc).pfmemalloc)
226 
227 /* specialized page frag allocator using a single order 0 page
228  * and slicing it into 1K sized fragment. Constrained to systems
229  * with a very limited amount of 1K fragments fitting a single
230  * page - to avoid excessive truesize underestimation
231  */
232 
233 struct page_frag_1k {
234         void *va;
235         u16 offset;
236         bool pfmemalloc;
237 };
238 
239 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
240 {
241         struct page *page;
242         int offset;
243 
244         offset = nc->offset - SZ_1K;
245         if (likely(offset >= 0))
246                 goto use_frag;
247 
248         page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
249         if (!page)
250                 return NULL;
251 
252         nc->va = page_address(page);
253         nc->pfmemalloc = page_is_pfmemalloc(page);
254         offset = PAGE_SIZE - SZ_1K;
255         page_ref_add(page, offset / SZ_1K);
256 
257 use_frag:
258         nc->offset = offset;
259         return nc->va + offset;
260 }
261 #else
262 
263 /* the small page is actually unused in this build; add dummy helpers
264  * to please the compiler and avoid later preprocessor's conditionals
265  */
266 #define NAPI_HAS_SMALL_PAGE_FRAG        0
267 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)  false
268 
269 struct page_frag_1k {
270 };
271 
272 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
273 {
274         return NULL;
275 }
276 
277 #endif
278 
279 struct napi_alloc_cache {
280         local_lock_t bh_lock;
281         struct page_frag_cache page;
282         struct page_frag_1k page_small;
283         unsigned int skb_count;
284         void *skb_cache[NAPI_SKB_CACHE_SIZE];
285 };
286 
287 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
288 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = {
289         .bh_lock = INIT_LOCAL_LOCK(bh_lock),
290 };
291 
292 /* Double check that napi_get_frags() allocates skbs with
293  * skb->head being backed by slab, not a page fragment.
294  * This is to make sure bug fixed in 3226b158e67c
295  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
296  * does not accidentally come back.
297  */
298 void napi_get_frags_check(struct napi_struct *napi)
299 {
300         struct sk_buff *skb;
301 
302         local_bh_disable();
303         skb = napi_get_frags(napi);
304         WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
305         napi_free_frags(napi);
306         local_bh_enable();
307 }
308 
309 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
310 {
311         struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
312         void *data;
313 
314         fragsz = SKB_DATA_ALIGN(fragsz);
315 
316         local_lock_nested_bh(&napi_alloc_cache.bh_lock);
317         data = __page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC,
318                                        align_mask);
319         local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
320         return data;
321 
322 }
323 EXPORT_SYMBOL(__napi_alloc_frag_align);
324 
325 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
326 {
327         void *data;
328 
329         if (in_hardirq() || irqs_disabled()) {
330                 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
331 
332                 fragsz = SKB_DATA_ALIGN(fragsz);
333                 data = __page_frag_alloc_align(nc, fragsz, GFP_ATOMIC,
334                                                align_mask);
335         } else {
336                 local_bh_disable();
337                 data = __napi_alloc_frag_align(fragsz, align_mask);
338                 local_bh_enable();
339         }
340         return data;
341 }
342 EXPORT_SYMBOL(__netdev_alloc_frag_align);
343 
344 static struct sk_buff *napi_skb_cache_get(void)
345 {
346         struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
347         struct sk_buff *skb;
348 
349         local_lock_nested_bh(&napi_alloc_cache.bh_lock);
350         if (unlikely(!nc->skb_count)) {
351                 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache,
352                                                       GFP_ATOMIC,
353                                                       NAPI_SKB_CACHE_BULK,
354                                                       nc->skb_cache);
355                 if (unlikely(!nc->skb_count)) {
356                         local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
357                         return NULL;
358                 }
359         }
360 
361         skb = nc->skb_cache[--nc->skb_count];
362         local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
363         kasan_mempool_unpoison_object(skb, kmem_cache_size(net_hotdata.skbuff_cache));
364 
365         return skb;
366 }
367 
368 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
369                                          unsigned int size)
370 {
371         struct skb_shared_info *shinfo;
372 
373         size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
374 
375         /* Assumes caller memset cleared SKB */
376         skb->truesize = SKB_TRUESIZE(size);
377         refcount_set(&skb->users, 1);
378         skb->head = data;
379         skb->data = data;
380         skb_reset_tail_pointer(skb);
381         skb_set_end_offset(skb, size);
382         skb->mac_header = (typeof(skb->mac_header))~0U;
383         skb->transport_header = (typeof(skb->transport_header))~0U;
384         skb->alloc_cpu = raw_smp_processor_id();
385         /* make sure we initialize shinfo sequentially */
386         shinfo = skb_shinfo(skb);
387         memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
388         atomic_set(&shinfo->dataref, 1);
389 
390         skb_set_kcov_handle(skb, kcov_common_handle());
391 }
392 
393 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
394                                      unsigned int *size)
395 {
396         void *resized;
397 
398         /* Must find the allocation size (and grow it to match). */
399         *size = ksize(data);
400         /* krealloc() will immediately return "data" when
401          * "ksize(data)" is requested: it is the existing upper
402          * bounds. As a result, GFP_ATOMIC will be ignored. Note
403          * that this "new" pointer needs to be passed back to the
404          * caller for use so the __alloc_size hinting will be
405          * tracked correctly.
406          */
407         resized = krealloc(data, *size, GFP_ATOMIC);
408         WARN_ON_ONCE(resized != data);
409         return resized;
410 }
411 
412 /* build_skb() variant which can operate on slab buffers.
413  * Note that this should be used sparingly as slab buffers
414  * cannot be combined efficiently by GRO!
415  */
416 struct sk_buff *slab_build_skb(void *data)
417 {
418         struct sk_buff *skb;
419         unsigned int size;
420 
421         skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
422         if (unlikely(!skb))
423                 return NULL;
424 
425         memset(skb, 0, offsetof(struct sk_buff, tail));
426         data = __slab_build_skb(skb, data, &size);
427         __finalize_skb_around(skb, data, size);
428 
429         return skb;
430 }
431 EXPORT_SYMBOL(slab_build_skb);
432 
433 /* Caller must provide SKB that is memset cleared */
434 static void __build_skb_around(struct sk_buff *skb, void *data,
435                                unsigned int frag_size)
436 {
437         unsigned int size = frag_size;
438 
439         /* frag_size == 0 is considered deprecated now. Callers
440          * using slab buffer should use slab_build_skb() instead.
441          */
442         if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
443                 data = __slab_build_skb(skb, data, &size);
444 
445         __finalize_skb_around(skb, data, size);
446 }
447 
448 /**
449  * __build_skb - build a network buffer
450  * @data: data buffer provided by caller
451  * @frag_size: size of data (must not be 0)
452  *
453  * Allocate a new &sk_buff. Caller provides space holding head and
454  * skb_shared_info. @data must have been allocated from the page
455  * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
456  * allocation is deprecated, and callers should use slab_build_skb()
457  * instead.)
458  * The return is the new skb buffer.
459  * On a failure the return is %NULL, and @data is not freed.
460  * Notes :
461  *  Before IO, driver allocates only data buffer where NIC put incoming frame
462  *  Driver should add room at head (NET_SKB_PAD) and
463  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
464  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
465  *  before giving packet to stack.
466  *  RX rings only contains data buffers, not full skbs.
467  */
468 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
469 {
470         struct sk_buff *skb;
471 
472         skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
473         if (unlikely(!skb))
474                 return NULL;
475 
476         memset(skb, 0, offsetof(struct sk_buff, tail));
477         __build_skb_around(skb, data, frag_size);
478 
479         return skb;
480 }
481 
482 /* build_skb() is wrapper over __build_skb(), that specifically
483  * takes care of skb->head and skb->pfmemalloc
484  */
485 struct sk_buff *build_skb(void *data, unsigned int frag_size)
486 {
487         struct sk_buff *skb = __build_skb(data, frag_size);
488 
489         if (likely(skb && frag_size)) {
490                 skb->head_frag = 1;
491                 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
492         }
493         return skb;
494 }
495 EXPORT_SYMBOL(build_skb);
496 
497 /**
498  * build_skb_around - build a network buffer around provided skb
499  * @skb: sk_buff provide by caller, must be memset cleared
500  * @data: data buffer provided by caller
501  * @frag_size: size of data
502  */
503 struct sk_buff *build_skb_around(struct sk_buff *skb,
504                                  void *data, unsigned int frag_size)
505 {
506         if (unlikely(!skb))
507                 return NULL;
508 
509         __build_skb_around(skb, data, frag_size);
510 
511         if (frag_size) {
512                 skb->head_frag = 1;
513                 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
514         }
515         return skb;
516 }
517 EXPORT_SYMBOL(build_skb_around);
518 
519 /**
520  * __napi_build_skb - build a network buffer
521  * @data: data buffer provided by caller
522  * @frag_size: size of data
523  *
524  * Version of __build_skb() that uses NAPI percpu caches to obtain
525  * skbuff_head instead of inplace allocation.
526  *
527  * Returns a new &sk_buff on success, %NULL on allocation failure.
528  */
529 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
530 {
531         struct sk_buff *skb;
532 
533         skb = napi_skb_cache_get();
534         if (unlikely(!skb))
535                 return NULL;
536 
537         memset(skb, 0, offsetof(struct sk_buff, tail));
538         __build_skb_around(skb, data, frag_size);
539 
540         return skb;
541 }
542 
543 /**
544  * napi_build_skb - build a network buffer
545  * @data: data buffer provided by caller
546  * @frag_size: size of data
547  *
548  * Version of __napi_build_skb() that takes care of skb->head_frag
549  * and skb->pfmemalloc when the data is a page or page fragment.
550  *
551  * Returns a new &sk_buff on success, %NULL on allocation failure.
552  */
553 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
554 {
555         struct sk_buff *skb = __napi_build_skb(data, frag_size);
556 
557         if (likely(skb) && frag_size) {
558                 skb->head_frag = 1;
559                 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
560         }
561 
562         return skb;
563 }
564 EXPORT_SYMBOL(napi_build_skb);
565 
566 /*
567  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
568  * the caller if emergency pfmemalloc reserves are being used. If it is and
569  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
570  * may be used. Otherwise, the packet data may be discarded until enough
571  * memory is free
572  */
573 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
574                              bool *pfmemalloc)
575 {
576         bool ret_pfmemalloc = false;
577         size_t obj_size;
578         void *obj;
579 
580         obj_size = SKB_HEAD_ALIGN(*size);
581         if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
582             !(flags & KMALLOC_NOT_NORMAL_BITS)) {
583                 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache,
584                                 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
585                                 node);
586                 *size = SKB_SMALL_HEAD_CACHE_SIZE;
587                 if (obj || !(gfp_pfmemalloc_allowed(flags)))
588                         goto out;
589                 /* Try again but now we are using pfmemalloc reserves */
590                 ret_pfmemalloc = true;
591                 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, flags, node);
592                 goto out;
593         }
594 
595         obj_size = kmalloc_size_roundup(obj_size);
596         /* The following cast might truncate high-order bits of obj_size, this
597          * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
598          */
599         *size = (unsigned int)obj_size;
600 
601         /*
602          * Try a regular allocation, when that fails and we're not entitled
603          * to the reserves, fail.
604          */
605         obj = kmalloc_node_track_caller(obj_size,
606                                         flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
607                                         node);
608         if (obj || !(gfp_pfmemalloc_allowed(flags)))
609                 goto out;
610 
611         /* Try again but now we are using pfmemalloc reserves */
612         ret_pfmemalloc = true;
613         obj = kmalloc_node_track_caller(obj_size, flags, node);
614 
615 out:
616         if (pfmemalloc)
617                 *pfmemalloc = ret_pfmemalloc;
618 
619         return obj;
620 }
621 
622 /*      Allocate a new skbuff. We do this ourselves so we can fill in a few
623  *      'private' fields and also do memory statistics to find all the
624  *      [BEEP] leaks.
625  *
626  */
627 
628 /**
629  *      __alloc_skb     -       allocate a network buffer
630  *      @size: size to allocate
631  *      @gfp_mask: allocation mask
632  *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
633  *              instead of head cache and allocate a cloned (child) skb.
634  *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
635  *              allocations in case the data is required for writeback
636  *      @node: numa node to allocate memory on
637  *
638  *      Allocate a new &sk_buff. The returned buffer has no headroom and a
639  *      tail room of at least size bytes. The object has a reference count
640  *      of one. The return is the buffer. On a failure the return is %NULL.
641  *
642  *      Buffers may only be allocated from interrupts using a @gfp_mask of
643  *      %GFP_ATOMIC.
644  */
645 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
646                             int flags, int node)
647 {
648         struct kmem_cache *cache;
649         struct sk_buff *skb;
650         bool pfmemalloc;
651         u8 *data;
652 
653         cache = (flags & SKB_ALLOC_FCLONE)
654                 ? net_hotdata.skbuff_fclone_cache : net_hotdata.skbuff_cache;
655 
656         if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
657                 gfp_mask |= __GFP_MEMALLOC;
658 
659         /* Get the HEAD */
660         if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
661             likely(node == NUMA_NO_NODE || node == numa_mem_id()))
662                 skb = napi_skb_cache_get();
663         else
664                 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
665         if (unlikely(!skb))
666                 return NULL;
667         prefetchw(skb);
668 
669         /* We do our best to align skb_shared_info on a separate cache
670          * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
671          * aligned memory blocks, unless SLUB/SLAB debug is enabled.
672          * Both skb->head and skb_shared_info are cache line aligned.
673          */
674         data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
675         if (unlikely(!data))
676                 goto nodata;
677         /* kmalloc_size_roundup() might give us more room than requested.
678          * Put skb_shared_info exactly at the end of allocated zone,
679          * to allow max possible filling before reallocation.
680          */
681         prefetchw(data + SKB_WITH_OVERHEAD(size));
682 
683         /*
684          * Only clear those fields we need to clear, not those that we will
685          * actually initialise below. Hence, don't put any more fields after
686          * the tail pointer in struct sk_buff!
687          */
688         memset(skb, 0, offsetof(struct sk_buff, tail));
689         __build_skb_around(skb, data, size);
690         skb->pfmemalloc = pfmemalloc;
691 
692         if (flags & SKB_ALLOC_FCLONE) {
693                 struct sk_buff_fclones *fclones;
694 
695                 fclones = container_of(skb, struct sk_buff_fclones, skb1);
696 
697                 skb->fclone = SKB_FCLONE_ORIG;
698                 refcount_set(&fclones->fclone_ref, 1);
699         }
700 
701         return skb;
702 
703 nodata:
704         kmem_cache_free(cache, skb);
705         return NULL;
706 }
707 EXPORT_SYMBOL(__alloc_skb);
708 
709 /**
710  *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
711  *      @dev: network device to receive on
712  *      @len: length to allocate
713  *      @gfp_mask: get_free_pages mask, passed to alloc_skb
714  *
715  *      Allocate a new &sk_buff and assign it a usage count of one. The
716  *      buffer has NET_SKB_PAD headroom built in. Users should allocate
717  *      the headroom they think they need without accounting for the
718  *      built in space. The built in space is used for optimisations.
719  *
720  *      %NULL is returned if there is no free memory.
721  */
722 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
723                                    gfp_t gfp_mask)
724 {
725         struct page_frag_cache *nc;
726         struct sk_buff *skb;
727         bool pfmemalloc;
728         void *data;
729 
730         len += NET_SKB_PAD;
731 
732         /* If requested length is either too small or too big,
733          * we use kmalloc() for skb->head allocation.
734          */
735         if (len <= SKB_WITH_OVERHEAD(1024) ||
736             len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
737             (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
738                 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
739                 if (!skb)
740                         goto skb_fail;
741                 goto skb_success;
742         }
743 
744         len = SKB_HEAD_ALIGN(len);
745 
746         if (sk_memalloc_socks())
747                 gfp_mask |= __GFP_MEMALLOC;
748 
749         if (in_hardirq() || irqs_disabled()) {
750                 nc = this_cpu_ptr(&netdev_alloc_cache);
751                 data = page_frag_alloc(nc, len, gfp_mask);
752                 pfmemalloc = nc->pfmemalloc;
753         } else {
754                 local_bh_disable();
755                 local_lock_nested_bh(&napi_alloc_cache.bh_lock);
756 
757                 nc = this_cpu_ptr(&napi_alloc_cache.page);
758                 data = page_frag_alloc(nc, len, gfp_mask);
759                 pfmemalloc = nc->pfmemalloc;
760 
761                 local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
762                 local_bh_enable();
763         }
764 
765         if (unlikely(!data))
766                 return NULL;
767 
768         skb = __build_skb(data, len);
769         if (unlikely(!skb)) {
770                 skb_free_frag(data);
771                 return NULL;
772         }
773 
774         if (pfmemalloc)
775                 skb->pfmemalloc = 1;
776         skb->head_frag = 1;
777 
778 skb_success:
779         skb_reserve(skb, NET_SKB_PAD);
780         skb->dev = dev;
781 
782 skb_fail:
783         return skb;
784 }
785 EXPORT_SYMBOL(__netdev_alloc_skb);
786 
787 /**
788  *      napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
789  *      @napi: napi instance this buffer was allocated for
790  *      @len: length to allocate
791  *
792  *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
793  *      attempt to allocate the head from a special reserved region used
794  *      only for NAPI Rx allocation.  By doing this we can save several
795  *      CPU cycles by avoiding having to disable and re-enable IRQs.
796  *
797  *      %NULL is returned if there is no free memory.
798  */
799 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len)
800 {
801         gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN;
802         struct napi_alloc_cache *nc;
803         struct sk_buff *skb;
804         bool pfmemalloc;
805         void *data;
806 
807         DEBUG_NET_WARN_ON_ONCE(!in_softirq());
808         len += NET_SKB_PAD + NET_IP_ALIGN;
809 
810         /* If requested length is either too small or too big,
811          * we use kmalloc() for skb->head allocation.
812          * When the small frag allocator is available, prefer it over kmalloc
813          * for small fragments
814          */
815         if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
816             len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
817             (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
818                 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
819                                   NUMA_NO_NODE);
820                 if (!skb)
821                         goto skb_fail;
822                 goto skb_success;
823         }
824 
825         if (sk_memalloc_socks())
826                 gfp_mask |= __GFP_MEMALLOC;
827 
828         local_lock_nested_bh(&napi_alloc_cache.bh_lock);
829         nc = this_cpu_ptr(&napi_alloc_cache);
830         if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
831                 /* we are artificially inflating the allocation size, but
832                  * that is not as bad as it may look like, as:
833                  * - 'len' less than GRO_MAX_HEAD makes little sense
834                  * - On most systems, larger 'len' values lead to fragment
835                  *   size above 512 bytes
836                  * - kmalloc would use the kmalloc-1k slab for such values
837                  * - Builds with smaller GRO_MAX_HEAD will very likely do
838                  *   little networking, as that implies no WiFi and no
839                  *   tunnels support, and 32 bits arches.
840                  */
841                 len = SZ_1K;
842 
843                 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
844                 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
845         } else {
846                 len = SKB_HEAD_ALIGN(len);
847 
848                 data = page_frag_alloc(&nc->page, len, gfp_mask);
849                 pfmemalloc = nc->page.pfmemalloc;
850         }
851         local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
852 
853         if (unlikely(!data))
854                 return NULL;
855 
856         skb = __napi_build_skb(data, len);
857         if (unlikely(!skb)) {
858                 skb_free_frag(data);
859                 return NULL;
860         }
861 
862         if (pfmemalloc)
863                 skb->pfmemalloc = 1;
864         skb->head_frag = 1;
865 
866 skb_success:
867         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
868         skb->dev = napi->dev;
869 
870 skb_fail:
871         return skb;
872 }
873 EXPORT_SYMBOL(napi_alloc_skb);
874 
875 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
876                             int off, int size, unsigned int truesize)
877 {
878         DEBUG_NET_WARN_ON_ONCE(size > truesize);
879 
880         skb_fill_netmem_desc(skb, i, netmem, off, size);
881         skb->len += size;
882         skb->data_len += size;
883         skb->truesize += truesize;
884 }
885 EXPORT_SYMBOL(skb_add_rx_frag_netmem);
886 
887 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
888                           unsigned int truesize)
889 {
890         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
891 
892         DEBUG_NET_WARN_ON_ONCE(size > truesize);
893 
894         skb_frag_size_add(frag, size);
895         skb->len += size;
896         skb->data_len += size;
897         skb->truesize += truesize;
898 }
899 EXPORT_SYMBOL(skb_coalesce_rx_frag);
900 
901 static void skb_drop_list(struct sk_buff **listp)
902 {
903         kfree_skb_list(*listp);
904         *listp = NULL;
905 }
906 
907 static inline void skb_drop_fraglist(struct sk_buff *skb)
908 {
909         skb_drop_list(&skb_shinfo(skb)->frag_list);
910 }
911 
912 static void skb_clone_fraglist(struct sk_buff *skb)
913 {
914         struct sk_buff *list;
915 
916         skb_walk_frags(skb, list)
917                 skb_get(list);
918 }
919 
920 static bool is_pp_page(struct page *page)
921 {
922         return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
923 }
924 
925 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
926                     unsigned int headroom)
927 {
928 #if IS_ENABLED(CONFIG_PAGE_POOL)
929         u32 size, truesize, len, max_head_size, off;
930         struct sk_buff *skb = *pskb, *nskb;
931         int err, i, head_off;
932         void *data;
933 
934         /* XDP does not support fraglist so we need to linearize
935          * the skb.
936          */
937         if (skb_has_frag_list(skb))
938                 return -EOPNOTSUPP;
939 
940         max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom);
941         if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE)
942                 return -ENOMEM;
943 
944         size = min_t(u32, skb->len, max_head_size);
945         truesize = SKB_HEAD_ALIGN(size) + headroom;
946         data = page_pool_dev_alloc_va(pool, &truesize);
947         if (!data)
948                 return -ENOMEM;
949 
950         nskb = napi_build_skb(data, truesize);
951         if (!nskb) {
952                 page_pool_free_va(pool, data, true);
953                 return -ENOMEM;
954         }
955 
956         skb_reserve(nskb, headroom);
957         skb_copy_header(nskb, skb);
958         skb_mark_for_recycle(nskb);
959 
960         err = skb_copy_bits(skb, 0, nskb->data, size);
961         if (err) {
962                 consume_skb(nskb);
963                 return err;
964         }
965         skb_put(nskb, size);
966 
967         head_off = skb_headroom(nskb) - skb_headroom(skb);
968         skb_headers_offset_update(nskb, head_off);
969 
970         off = size;
971         len = skb->len - off;
972         for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
973                 struct page *page;
974                 u32 page_off;
975 
976                 size = min_t(u32, len, PAGE_SIZE);
977                 truesize = size;
978 
979                 page = page_pool_dev_alloc(pool, &page_off, &truesize);
980                 if (!page) {
981                         consume_skb(nskb);
982                         return -ENOMEM;
983                 }
984 
985                 skb_add_rx_frag(nskb, i, page, page_off, size, truesize);
986                 err = skb_copy_bits(skb, off, page_address(page) + page_off,
987                                     size);
988                 if (err) {
989                         consume_skb(nskb);
990                         return err;
991                 }
992 
993                 len -= size;
994                 off += size;
995         }
996 
997         consume_skb(skb);
998         *pskb = nskb;
999 
1000         return 0;
1001 #else
1002         return -EOPNOTSUPP;
1003 #endif
1004 }
1005 EXPORT_SYMBOL(skb_pp_cow_data);
1006 
1007 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
1008                          struct bpf_prog *prog)
1009 {
1010         if (!prog->aux->xdp_has_frags)
1011                 return -EINVAL;
1012 
1013         return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM);
1014 }
1015 EXPORT_SYMBOL(skb_cow_data_for_xdp);
1016 
1017 #if IS_ENABLED(CONFIG_PAGE_POOL)
1018 bool napi_pp_put_page(netmem_ref netmem)
1019 {
1020         struct page *page = netmem_to_page(netmem);
1021 
1022         page = compound_head(page);
1023 
1024         /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
1025          * in order to preserve any existing bits, such as bit 0 for the
1026          * head page of compound page and bit 1 for pfmemalloc page, so
1027          * mask those bits for freeing side when doing below checking,
1028          * and page_is_pfmemalloc() is checked in __page_pool_put_page()
1029          * to avoid recycling the pfmemalloc page.
1030          */
1031         if (unlikely(!is_pp_page(page)))
1032                 return false;
1033 
1034         page_pool_put_full_netmem(page->pp, page_to_netmem(page), false);
1035 
1036         return true;
1037 }
1038 EXPORT_SYMBOL(napi_pp_put_page);
1039 #endif
1040 
1041 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
1042 {
1043         if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
1044                 return false;
1045         return napi_pp_put_page(page_to_netmem(virt_to_page(data)));
1046 }
1047 
1048 /**
1049  * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
1050  * @skb:        page pool aware skb
1051  *
1052  * Increase the fragment reference count (pp_ref_count) of a skb. This is
1053  * intended to gain fragment references only for page pool aware skbs,
1054  * i.e. when skb->pp_recycle is true, and not for fragments in a
1055  * non-pp-recycling skb. It has a fallback to increase references on normal
1056  * pages, as page pool aware skbs may also have normal page fragments.
1057  */
1058 static int skb_pp_frag_ref(struct sk_buff *skb)
1059 {
1060         struct skb_shared_info *shinfo;
1061         struct page *head_page;
1062         int i;
1063 
1064         if (!skb->pp_recycle)
1065                 return -EINVAL;
1066 
1067         shinfo = skb_shinfo(skb);
1068 
1069         for (i = 0; i < shinfo->nr_frags; i++) {
1070                 head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
1071                 if (likely(is_pp_page(head_page)))
1072                         page_pool_ref_page(head_page);
1073                 else
1074                         page_ref_inc(head_page);
1075         }
1076         return 0;
1077 }
1078 
1079 static void skb_kfree_head(void *head, unsigned int end_offset)
1080 {
1081         if (end_offset == SKB_SMALL_HEAD_HEADROOM)
1082                 kmem_cache_free(net_hotdata.skb_small_head_cache, head);
1083         else
1084                 kfree(head);
1085 }
1086 
1087 static void skb_free_head(struct sk_buff *skb)
1088 {
1089         unsigned char *head = skb->head;
1090 
1091         if (skb->head_frag) {
1092                 if (skb_pp_recycle(skb, head))
1093                         return;
1094                 skb_free_frag(head);
1095         } else {
1096                 skb_kfree_head(head, skb_end_offset(skb));
1097         }
1098 }
1099 
1100 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
1101 {
1102         struct skb_shared_info *shinfo = skb_shinfo(skb);
1103         int i;
1104 
1105         if (!skb_data_unref(skb, shinfo))
1106                 goto exit;
1107 
1108         if (skb_zcopy(skb)) {
1109                 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1110 
1111                 skb_zcopy_clear(skb, true);
1112                 if (skip_unref)
1113                         goto free_head;
1114         }
1115 
1116         for (i = 0; i < shinfo->nr_frags; i++)
1117                 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
1118 
1119 free_head:
1120         if (shinfo->frag_list)
1121                 kfree_skb_list_reason(shinfo->frag_list, reason);
1122 
1123         skb_free_head(skb);
1124 exit:
1125         /* When we clone an SKB we copy the reycling bit. The pp_recycle
1126          * bit is only set on the head though, so in order to avoid races
1127          * while trying to recycle fragments on __skb_frag_unref() we need
1128          * to make one SKB responsible for triggering the recycle path.
1129          * So disable the recycling bit if an SKB is cloned and we have
1130          * additional references to the fragmented part of the SKB.
1131          * Eventually the last SKB will have the recycling bit set and it's
1132          * dataref set to 0, which will trigger the recycling
1133          */
1134         skb->pp_recycle = 0;
1135 }
1136 
1137 /*
1138  *      Free an skbuff by memory without cleaning the state.
1139  */
1140 static void kfree_skbmem(struct sk_buff *skb)
1141 {
1142         struct sk_buff_fclones *fclones;
1143 
1144         switch (skb->fclone) {
1145         case SKB_FCLONE_UNAVAILABLE:
1146                 kmem_cache_free(net_hotdata.skbuff_cache, skb);
1147                 return;
1148 
1149         case SKB_FCLONE_ORIG:
1150                 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1151 
1152                 /* We usually free the clone (TX completion) before original skb
1153                  * This test would have no chance to be true for the clone,
1154                  * while here, branch prediction will be good.
1155                  */
1156                 if (refcount_read(&fclones->fclone_ref) == 1)
1157                         goto fastpath;
1158                 break;
1159 
1160         default: /* SKB_FCLONE_CLONE */
1161                 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1162                 break;
1163         }
1164         if (!refcount_dec_and_test(&fclones->fclone_ref))
1165                 return;
1166 fastpath:
1167         kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones);
1168 }
1169 
1170 void skb_release_head_state(struct sk_buff *skb)
1171 {
1172         skb_dst_drop(skb);
1173         if (skb->destructor) {
1174                 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1175                 skb->destructor(skb);
1176         }
1177 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1178         nf_conntrack_put(skb_nfct(skb));
1179 #endif
1180         skb_ext_put(skb);
1181 }
1182 
1183 /* Free everything but the sk_buff shell. */
1184 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
1185 {
1186         skb_release_head_state(skb);
1187         if (likely(skb->head))
1188                 skb_release_data(skb, reason);
1189 }
1190 
1191 /**
1192  *      __kfree_skb - private function
1193  *      @skb: buffer
1194  *
1195  *      Free an sk_buff. Release anything attached to the buffer.
1196  *      Clean the state. This is an internal helper function. Users should
1197  *      always call kfree_skb
1198  */
1199 
1200 void __kfree_skb(struct sk_buff *skb)
1201 {
1202         skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1203         kfree_skbmem(skb);
1204 }
1205 EXPORT_SYMBOL(__kfree_skb);
1206 
1207 static __always_inline
1208 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1209                           enum skb_drop_reason reason)
1210 {
1211         if (unlikely(!skb_unref(skb)))
1212                 return false;
1213 
1214         DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1215                                u32_get_bits(reason,
1216                                             SKB_DROP_REASON_SUBSYS_MASK) >=
1217                                 SKB_DROP_REASON_SUBSYS_NUM);
1218 
1219         if (reason == SKB_CONSUMED)
1220                 trace_consume_skb(skb, __builtin_return_address(0));
1221         else
1222                 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk);
1223         return true;
1224 }
1225 
1226 /**
1227  *      sk_skb_reason_drop - free an sk_buff with special reason
1228  *      @sk: the socket to receive @skb, or NULL if not applicable
1229  *      @skb: buffer to free
1230  *      @reason: reason why this skb is dropped
1231  *
1232  *      Drop a reference to the buffer and free it if the usage count has hit
1233  *      zero. Meanwhile, pass the receiving socket and drop reason to
1234  *      'kfree_skb' tracepoint.
1235  */
1236 void __fix_address
1237 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
1238 {
1239         if (__sk_skb_reason_drop(sk, skb, reason))
1240                 __kfree_skb(skb);
1241 }
1242 EXPORT_SYMBOL(sk_skb_reason_drop);
1243 
1244 #define KFREE_SKB_BULK_SIZE     16
1245 
1246 struct skb_free_array {
1247         unsigned int skb_count;
1248         void *skb_array[KFREE_SKB_BULK_SIZE];
1249 };
1250 
1251 static void kfree_skb_add_bulk(struct sk_buff *skb,
1252                                struct skb_free_array *sa,
1253                                enum skb_drop_reason reason)
1254 {
1255         /* if SKB is a clone, don't handle this case */
1256         if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1257                 __kfree_skb(skb);
1258                 return;
1259         }
1260 
1261         skb_release_all(skb, reason);
1262         sa->skb_array[sa->skb_count++] = skb;
1263 
1264         if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1265                 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE,
1266                                      sa->skb_array);
1267                 sa->skb_count = 0;
1268         }
1269 }
1270 
1271 void __fix_address
1272 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1273 {
1274         struct skb_free_array sa;
1275 
1276         sa.skb_count = 0;
1277 
1278         while (segs) {
1279                 struct sk_buff *next = segs->next;
1280 
1281                 if (__sk_skb_reason_drop(NULL, segs, reason)) {
1282                         skb_poison_list(segs);
1283                         kfree_skb_add_bulk(segs, &sa, reason);
1284                 }
1285 
1286                 segs = next;
1287         }
1288 
1289         if (sa.skb_count)
1290                 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array);
1291 }
1292 EXPORT_SYMBOL(kfree_skb_list_reason);
1293 
1294 /* Dump skb information and contents.
1295  *
1296  * Must only be called from net_ratelimit()-ed paths.
1297  *
1298  * Dumps whole packets if full_pkt, only headers otherwise.
1299  */
1300 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1301 {
1302         struct skb_shared_info *sh = skb_shinfo(skb);
1303         struct net_device *dev = skb->dev;
1304         struct sock *sk = skb->sk;
1305         struct sk_buff *list_skb;
1306         bool has_mac, has_trans;
1307         int headroom, tailroom;
1308         int i, len, seg_len;
1309 
1310         if (full_pkt)
1311                 len = skb->len;
1312         else
1313                 len = min_t(int, skb->len, MAX_HEADER + 128);
1314 
1315         headroom = skb_headroom(skb);
1316         tailroom = skb_tailroom(skb);
1317 
1318         has_mac = skb_mac_header_was_set(skb);
1319         has_trans = skb_transport_header_was_set(skb);
1320 
1321         printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1322                "mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n"
1323                "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1324                "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1325                "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n"
1326                "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n"
1327                "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n",
1328                level, skb->len, headroom, skb_headlen(skb), tailroom,
1329                has_mac ? skb->mac_header : -1,
1330                has_mac ? skb_mac_header_len(skb) : -1,
1331                skb->mac_len,
1332                skb->network_header,
1333                has_trans ? skb_network_header_len(skb) : -1,
1334                has_trans ? skb->transport_header : -1,
1335                sh->tx_flags, sh->nr_frags,
1336                sh->gso_size, sh->gso_type, sh->gso_segs,
1337                skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed,
1338                skb->csum_complete_sw, skb->csum_valid, skb->csum_level,
1339                skb->hash, skb->sw_hash, skb->l4_hash,
1340                ntohs(skb->protocol), skb->pkt_type, skb->skb_iif,
1341                skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all,
1342                skb->encapsulation, skb->inner_protocol, skb->inner_mac_header,
1343                skb->inner_network_header, skb->inner_transport_header);
1344 
1345         if (dev)
1346                 printk("%sdev name=%s feat=%pNF\n",
1347                        level, dev->name, &dev->features);
1348         if (sk)
1349                 printk("%ssk family=%hu type=%u proto=%u\n",
1350                        level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1351 
1352         if (full_pkt && headroom)
1353                 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1354                                16, 1, skb->head, headroom, false);
1355 
1356         seg_len = min_t(int, skb_headlen(skb), len);
1357         if (seg_len)
1358                 print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1359                                16, 1, skb->data, seg_len, false);
1360         len -= seg_len;
1361 
1362         if (full_pkt && tailroom)
1363                 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1364                                16, 1, skb_tail_pointer(skb), tailroom, false);
1365 
1366         for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1367                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1368                 u32 p_off, p_len, copied;
1369                 struct page *p;
1370                 u8 *vaddr;
1371 
1372                 skb_frag_foreach_page(frag, skb_frag_off(frag),
1373                                       skb_frag_size(frag), p, p_off, p_len,
1374                                       copied) {
1375                         seg_len = min_t(int, p_len, len);
1376                         vaddr = kmap_atomic(p);
1377                         print_hex_dump(level, "skb frag:     ",
1378                                        DUMP_PREFIX_OFFSET,
1379                                        16, 1, vaddr + p_off, seg_len, false);
1380                         kunmap_atomic(vaddr);
1381                         len -= seg_len;
1382                         if (!len)
1383                                 break;
1384                 }
1385         }
1386 
1387         if (full_pkt && skb_has_frag_list(skb)) {
1388                 printk("skb fraglist:\n");
1389                 skb_walk_frags(skb, list_skb)
1390                         skb_dump(level, list_skb, true);
1391         }
1392 }
1393 EXPORT_SYMBOL(skb_dump);
1394 
1395 /**
1396  *      skb_tx_error - report an sk_buff xmit error
1397  *      @skb: buffer that triggered an error
1398  *
1399  *      Report xmit error if a device callback is tracking this skb.
1400  *      skb must be freed afterwards.
1401  */
1402 void skb_tx_error(struct sk_buff *skb)
1403 {
1404         if (skb) {
1405                 skb_zcopy_downgrade_managed(skb);
1406                 skb_zcopy_clear(skb, true);
1407         }
1408 }
1409 EXPORT_SYMBOL(skb_tx_error);
1410 
1411 #ifdef CONFIG_TRACEPOINTS
1412 /**
1413  *      consume_skb - free an skbuff
1414  *      @skb: buffer to free
1415  *
1416  *      Drop a ref to the buffer and free it if the usage count has hit zero
1417  *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
1418  *      is being dropped after a failure and notes that
1419  */
1420 void consume_skb(struct sk_buff *skb)
1421 {
1422         if (!skb_unref(skb))
1423                 return;
1424 
1425         trace_consume_skb(skb, __builtin_return_address(0));
1426         __kfree_skb(skb);
1427 }
1428 EXPORT_SYMBOL(consume_skb);
1429 #endif
1430 
1431 /**
1432  *      __consume_stateless_skb - free an skbuff, assuming it is stateless
1433  *      @skb: buffer to free
1434  *
1435  *      Alike consume_skb(), but this variant assumes that this is the last
1436  *      skb reference and all the head states have been already dropped
1437  */
1438 void __consume_stateless_skb(struct sk_buff *skb)
1439 {
1440         trace_consume_skb(skb, __builtin_return_address(0));
1441         skb_release_data(skb, SKB_CONSUMED);
1442         kfree_skbmem(skb);
1443 }
1444 
1445 static void napi_skb_cache_put(struct sk_buff *skb)
1446 {
1447         struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1448         u32 i;
1449 
1450         if (!kasan_mempool_poison_object(skb))
1451                 return;
1452 
1453         local_lock_nested_bh(&napi_alloc_cache.bh_lock);
1454         nc->skb_cache[nc->skb_count++] = skb;
1455 
1456         if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1457                 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1458                         kasan_mempool_unpoison_object(nc->skb_cache[i],
1459                                                 kmem_cache_size(net_hotdata.skbuff_cache));
1460 
1461                 kmem_cache_free_bulk(net_hotdata.skbuff_cache, NAPI_SKB_CACHE_HALF,
1462                                      nc->skb_cache + NAPI_SKB_CACHE_HALF);
1463                 nc->skb_count = NAPI_SKB_CACHE_HALF;
1464         }
1465         local_unlock_nested_bh(&napi_alloc_cache.bh_lock);
1466 }
1467 
1468 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1469 {
1470         skb_release_all(skb, reason);
1471         napi_skb_cache_put(skb);
1472 }
1473 
1474 void napi_skb_free_stolen_head(struct sk_buff *skb)
1475 {
1476         if (unlikely(skb->slow_gro)) {
1477                 nf_reset_ct(skb);
1478                 skb_dst_drop(skb);
1479                 skb_ext_put(skb);
1480                 skb_orphan(skb);
1481                 skb->slow_gro = 0;
1482         }
1483         napi_skb_cache_put(skb);
1484 }
1485 
1486 void napi_consume_skb(struct sk_buff *skb, int budget)
1487 {
1488         /* Zero budget indicate non-NAPI context called us, like netpoll */
1489         if (unlikely(!budget)) {
1490                 dev_consume_skb_any(skb);
1491                 return;
1492         }
1493 
1494         DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1495 
1496         if (!skb_unref(skb))
1497                 return;
1498 
1499         /* if reaching here SKB is ready to free */
1500         trace_consume_skb(skb, __builtin_return_address(0));
1501 
1502         /* if SKB is a clone, don't handle this case */
1503         if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1504                 __kfree_skb(skb);
1505                 return;
1506         }
1507 
1508         skb_release_all(skb, SKB_CONSUMED);
1509         napi_skb_cache_put(skb);
1510 }
1511 EXPORT_SYMBOL(napi_consume_skb);
1512 
1513 /* Make sure a field is contained by headers group */
1514 #define CHECK_SKB_FIELD(field) \
1515         BUILD_BUG_ON(offsetof(struct sk_buff, field) !=         \
1516                      offsetof(struct sk_buff, headers.field));  \
1517 
1518 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1519 {
1520         new->tstamp             = old->tstamp;
1521         /* We do not copy old->sk */
1522         new->dev                = old->dev;
1523         memcpy(new->cb, old->cb, sizeof(old->cb));
1524         skb_dst_copy(new, old);
1525         __skb_ext_copy(new, old);
1526         __nf_copy(new, old, false);
1527 
1528         /* Note : this field could be in the headers group.
1529          * It is not yet because we do not want to have a 16 bit hole
1530          */
1531         new->queue_mapping = old->queue_mapping;
1532 
1533         memcpy(&new->headers, &old->headers, sizeof(new->headers));
1534         CHECK_SKB_FIELD(protocol);
1535         CHECK_SKB_FIELD(csum);
1536         CHECK_SKB_FIELD(hash);
1537         CHECK_SKB_FIELD(priority);
1538         CHECK_SKB_FIELD(skb_iif);
1539         CHECK_SKB_FIELD(vlan_proto);
1540         CHECK_SKB_FIELD(vlan_tci);
1541         CHECK_SKB_FIELD(transport_header);
1542         CHECK_SKB_FIELD(network_header);
1543         CHECK_SKB_FIELD(mac_header);
1544         CHECK_SKB_FIELD(inner_protocol);
1545         CHECK_SKB_FIELD(inner_transport_header);
1546         CHECK_SKB_FIELD(inner_network_header);
1547         CHECK_SKB_FIELD(inner_mac_header);
1548         CHECK_SKB_FIELD(mark);
1549 #ifdef CONFIG_NETWORK_SECMARK
1550         CHECK_SKB_FIELD(secmark);
1551 #endif
1552 #ifdef CONFIG_NET_RX_BUSY_POLL
1553         CHECK_SKB_FIELD(napi_id);
1554 #endif
1555         CHECK_SKB_FIELD(alloc_cpu);
1556 #ifdef CONFIG_XPS
1557         CHECK_SKB_FIELD(sender_cpu);
1558 #endif
1559 #ifdef CONFIG_NET_SCHED
1560         CHECK_SKB_FIELD(tc_index);
1561 #endif
1562 
1563 }
1564 
1565 /*
1566  * You should not add any new code to this function.  Add it to
1567  * __copy_skb_header above instead.
1568  */
1569 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1570 {
1571 #define C(x) n->x = skb->x
1572 
1573         n->next = n->prev = NULL;
1574         n->sk = NULL;
1575         __copy_skb_header(n, skb);
1576 
1577         C(len);
1578         C(data_len);
1579         C(mac_len);
1580         n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1581         n->cloned = 1;
1582         n->nohdr = 0;
1583         n->peeked = 0;
1584         C(pfmemalloc);
1585         C(pp_recycle);
1586         n->destructor = NULL;
1587         C(tail);
1588         C(end);
1589         C(head);
1590         C(head_frag);
1591         C(data);
1592         C(truesize);
1593         refcount_set(&n->users, 1);
1594 
1595         atomic_inc(&(skb_shinfo(skb)->dataref));
1596         skb->cloned = 1;
1597 
1598         return n;
1599 #undef C
1600 }
1601 
1602 /**
1603  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1604  * @first: first sk_buff of the msg
1605  */
1606 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1607 {
1608         struct sk_buff *n;
1609 
1610         n = alloc_skb(0, GFP_ATOMIC);
1611         if (!n)
1612                 return NULL;
1613 
1614         n->len = first->len;
1615         n->data_len = first->len;
1616         n->truesize = first->truesize;
1617 
1618         skb_shinfo(n)->frag_list = first;
1619 
1620         __copy_skb_header(n, first);
1621         n->destructor = NULL;
1622 
1623         return n;
1624 }
1625 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1626 
1627 /**
1628  *      skb_morph       -       morph one skb into another
1629  *      @dst: the skb to receive the contents
1630  *      @src: the skb to supply the contents
1631  *
1632  *      This is identical to skb_clone except that the target skb is
1633  *      supplied by the user.
1634  *
1635  *      The target skb is returned upon exit.
1636  */
1637 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1638 {
1639         skb_release_all(dst, SKB_CONSUMED);
1640         return __skb_clone(dst, src);
1641 }
1642 EXPORT_SYMBOL_GPL(skb_morph);
1643 
1644 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1645 {
1646         unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1647         struct user_struct *user;
1648 
1649         if (capable(CAP_IPC_LOCK) || !size)
1650                 return 0;
1651 
1652         rlim = rlimit(RLIMIT_MEMLOCK);
1653         if (rlim == RLIM_INFINITY)
1654                 return 0;
1655 
1656         num_pg = (size >> PAGE_SHIFT) + 2;      /* worst case */
1657         max_pg = rlim >> PAGE_SHIFT;
1658         user = mmp->user ? : current_user();
1659 
1660         old_pg = atomic_long_read(&user->locked_vm);
1661         do {
1662                 new_pg = old_pg + num_pg;
1663                 if (new_pg > max_pg)
1664                         return -ENOBUFS;
1665         } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1666 
1667         if (!mmp->user) {
1668                 mmp->user = get_uid(user);
1669                 mmp->num_pg = num_pg;
1670         } else {
1671                 mmp->num_pg += num_pg;
1672         }
1673 
1674         return 0;
1675 }
1676 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1677 
1678 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1679 {
1680         if (mmp->user) {
1681                 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1682                 free_uid(mmp->user);
1683         }
1684 }
1685 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1686 
1687 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1688 {
1689         struct ubuf_info_msgzc *uarg;
1690         struct sk_buff *skb;
1691 
1692         WARN_ON_ONCE(!in_task());
1693 
1694         skb = sock_omalloc(sk, 0, GFP_KERNEL);
1695         if (!skb)
1696                 return NULL;
1697 
1698         BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1699         uarg = (void *)skb->cb;
1700         uarg->mmp.user = NULL;
1701 
1702         if (mm_account_pinned_pages(&uarg->mmp, size)) {
1703                 kfree_skb(skb);
1704                 return NULL;
1705         }
1706 
1707         uarg->ubuf.ops = &msg_zerocopy_ubuf_ops;
1708         uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1709         uarg->len = 1;
1710         uarg->bytelen = size;
1711         uarg->zerocopy = 1;
1712         uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1713         refcount_set(&uarg->ubuf.refcnt, 1);
1714         sock_hold(sk);
1715 
1716         return &uarg->ubuf;
1717 }
1718 
1719 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1720 {
1721         return container_of((void *)uarg, struct sk_buff, cb);
1722 }
1723 
1724 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1725                                        struct ubuf_info *uarg)
1726 {
1727         if (uarg) {
1728                 struct ubuf_info_msgzc *uarg_zc;
1729                 const u32 byte_limit = 1 << 19;         /* limit to a few TSO */
1730                 u32 bytelen, next;
1731 
1732                 /* there might be non MSG_ZEROCOPY users */
1733                 if (uarg->ops != &msg_zerocopy_ubuf_ops)
1734                         return NULL;
1735 
1736                 /* realloc only when socket is locked (TCP, UDP cork),
1737                  * so uarg->len and sk_zckey access is serialized
1738                  */
1739                 if (!sock_owned_by_user(sk)) {
1740                         WARN_ON_ONCE(1);
1741                         return NULL;
1742                 }
1743 
1744                 uarg_zc = uarg_to_msgzc(uarg);
1745                 bytelen = uarg_zc->bytelen + size;
1746                 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1747                         /* TCP can create new skb to attach new uarg */
1748                         if (sk->sk_type == SOCK_STREAM)
1749                                 goto new_alloc;
1750                         return NULL;
1751                 }
1752 
1753                 next = (u32)atomic_read(&sk->sk_zckey);
1754                 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1755                         if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1756                                 return NULL;
1757                         uarg_zc->len++;
1758                         uarg_zc->bytelen = bytelen;
1759                         atomic_set(&sk->sk_zckey, ++next);
1760 
1761                         /* no extra ref when appending to datagram (MSG_MORE) */
1762                         if (sk->sk_type == SOCK_STREAM)
1763                                 net_zcopy_get(uarg);
1764 
1765                         return uarg;
1766                 }
1767         }
1768 
1769 new_alloc:
1770         return msg_zerocopy_alloc(sk, size);
1771 }
1772 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1773 
1774 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1775 {
1776         struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1777         u32 old_lo, old_hi;
1778         u64 sum_len;
1779 
1780         old_lo = serr->ee.ee_info;
1781         old_hi = serr->ee.ee_data;
1782         sum_len = old_hi - old_lo + 1ULL + len;
1783 
1784         if (sum_len >= (1ULL << 32))
1785                 return false;
1786 
1787         if (lo != old_hi + 1)
1788                 return false;
1789 
1790         serr->ee.ee_data += len;
1791         return true;
1792 }
1793 
1794 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1795 {
1796         struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1797         struct sock_exterr_skb *serr;
1798         struct sock *sk = skb->sk;
1799         struct sk_buff_head *q;
1800         unsigned long flags;
1801         bool is_zerocopy;
1802         u32 lo, hi;
1803         u16 len;
1804 
1805         mm_unaccount_pinned_pages(&uarg->mmp);
1806 
1807         /* if !len, there was only 1 call, and it was aborted
1808          * so do not queue a completion notification
1809          */
1810         if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1811                 goto release;
1812 
1813         len = uarg->len;
1814         lo = uarg->id;
1815         hi = uarg->id + len - 1;
1816         is_zerocopy = uarg->zerocopy;
1817 
1818         serr = SKB_EXT_ERR(skb);
1819         memset(serr, 0, sizeof(*serr));
1820         serr->ee.ee_errno = 0;
1821         serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1822         serr->ee.ee_data = hi;
1823         serr->ee.ee_info = lo;
1824         if (!is_zerocopy)
1825                 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1826 
1827         q = &sk->sk_error_queue;
1828         spin_lock_irqsave(&q->lock, flags);
1829         tail = skb_peek_tail(q);
1830         if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1831             !skb_zerocopy_notify_extend(tail, lo, len)) {
1832                 __skb_queue_tail(q, skb);
1833                 skb = NULL;
1834         }
1835         spin_unlock_irqrestore(&q->lock, flags);
1836 
1837         sk_error_report(sk);
1838 
1839 release:
1840         consume_skb(skb);
1841         sock_put(sk);
1842 }
1843 
1844 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg,
1845                                   bool success)
1846 {
1847         struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1848 
1849         uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1850 
1851         if (refcount_dec_and_test(&uarg->refcnt))
1852                 __msg_zerocopy_callback(uarg_zc);
1853 }
1854 
1855 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1856 {
1857         struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1858 
1859         atomic_dec(&sk->sk_zckey);
1860         uarg_to_msgzc(uarg)->len--;
1861 
1862         if (have_uref)
1863                 msg_zerocopy_complete(NULL, uarg, true);
1864 }
1865 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1866 
1867 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = {
1868         .complete = msg_zerocopy_complete,
1869 };
1870 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops);
1871 
1872 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1873                              struct msghdr *msg, int len,
1874                              struct ubuf_info *uarg)
1875 {
1876         int err, orig_len = skb->len;
1877 
1878         if (uarg->ops->link_skb) {
1879                 err = uarg->ops->link_skb(skb, uarg);
1880                 if (err)
1881                         return err;
1882         } else {
1883                 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1884 
1885                 /* An skb can only point to one uarg. This edge case happens
1886                  * when TCP appends to an skb, but zerocopy_realloc triggered
1887                  * a new alloc.
1888                  */
1889                 if (orig_uarg && uarg != orig_uarg)
1890                         return -EEXIST;
1891         }
1892 
1893         err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1894         if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1895                 struct sock *save_sk = skb->sk;
1896 
1897                 /* Streams do not free skb on error. Reset to prev state. */
1898                 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1899                 skb->sk = sk;
1900                 ___pskb_trim(skb, orig_len);
1901                 skb->sk = save_sk;
1902                 return err;
1903         }
1904 
1905         skb_zcopy_set(skb, uarg, NULL);
1906         return skb->len - orig_len;
1907 }
1908 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1909 
1910 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1911 {
1912         int i;
1913 
1914         skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1915         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1916                 skb_frag_ref(skb, i);
1917 }
1918 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1919 
1920 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1921                               gfp_t gfp_mask)
1922 {
1923         if (skb_zcopy(orig)) {
1924                 if (skb_zcopy(nskb)) {
1925                         /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1926                         if (!gfp_mask) {
1927                                 WARN_ON_ONCE(1);
1928                                 return -ENOMEM;
1929                         }
1930                         if (skb_uarg(nskb) == skb_uarg(orig))
1931                                 return 0;
1932                         if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1933                                 return -EIO;
1934                 }
1935                 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1936         }
1937         return 0;
1938 }
1939 
1940 /**
1941  *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
1942  *      @skb: the skb to modify
1943  *      @gfp_mask: allocation priority
1944  *
1945  *      This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1946  *      It will copy all frags into kernel and drop the reference
1947  *      to userspace pages.
1948  *
1949  *      If this function is called from an interrupt gfp_mask() must be
1950  *      %GFP_ATOMIC.
1951  *
1952  *      Returns 0 on success or a negative error code on failure
1953  *      to allocate kernel memory to copy to.
1954  */
1955 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1956 {
1957         int num_frags = skb_shinfo(skb)->nr_frags;
1958         struct page *page, *head = NULL;
1959         int i, order, psize, new_frags;
1960         u32 d_off;
1961 
1962         if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1963                 return -EINVAL;
1964 
1965         if (!num_frags)
1966                 goto release;
1967 
1968         /* We might have to allocate high order pages, so compute what minimum
1969          * page order is needed.
1970          */
1971         order = 0;
1972         while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1973                 order++;
1974         psize = (PAGE_SIZE << order);
1975 
1976         new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1977         for (i = 0; i < new_frags; i++) {
1978                 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1979                 if (!page) {
1980                         while (head) {
1981                                 struct page *next = (struct page *)page_private(head);
1982                                 put_page(head);
1983                                 head = next;
1984                         }
1985                         return -ENOMEM;
1986                 }
1987                 set_page_private(page, (unsigned long)head);
1988                 head = page;
1989         }
1990 
1991         page = head;
1992         d_off = 0;
1993         for (i = 0; i < num_frags; i++) {
1994                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1995                 u32 p_off, p_len, copied;
1996                 struct page *p;
1997                 u8 *vaddr;
1998 
1999                 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
2000                                       p, p_off, p_len, copied) {
2001                         u32 copy, done = 0;
2002                         vaddr = kmap_atomic(p);
2003 
2004                         while (done < p_len) {
2005                                 if (d_off == psize) {
2006                                         d_off = 0;
2007                                         page = (struct page *)page_private(page);
2008                                 }
2009                                 copy = min_t(u32, psize - d_off, p_len - done);
2010                                 memcpy(page_address(page) + d_off,
2011                                        vaddr + p_off + done, copy);
2012                                 done += copy;
2013                                 d_off += copy;
2014                         }
2015                         kunmap_atomic(vaddr);
2016                 }
2017         }
2018 
2019         /* skb frags release userspace buffers */
2020         for (i = 0; i < num_frags; i++)
2021                 skb_frag_unref(skb, i);
2022 
2023         /* skb frags point to kernel buffers */
2024         for (i = 0; i < new_frags - 1; i++) {
2025                 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize);
2026                 head = (struct page *)page_private(head);
2027         }
2028         __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0,
2029                                d_off);
2030         skb_shinfo(skb)->nr_frags = new_frags;
2031 
2032 release:
2033         skb_zcopy_clear(skb, false);
2034         return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
2037 
2038 /**
2039  *      skb_clone       -       duplicate an sk_buff
2040  *      @skb: buffer to clone
2041  *      @gfp_mask: allocation priority
2042  *
2043  *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
2044  *      copies share the same packet data but not structure. The new
2045  *      buffer has a reference count of 1. If the allocation fails the
2046  *      function returns %NULL otherwise the new buffer is returned.
2047  *
2048  *      If this function is called from an interrupt gfp_mask() must be
2049  *      %GFP_ATOMIC.
2050  */
2051 
2052 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
2053 {
2054         struct sk_buff_fclones *fclones = container_of(skb,
2055                                                        struct sk_buff_fclones,
2056                                                        skb1);
2057         struct sk_buff *n;
2058 
2059         if (skb_orphan_frags(skb, gfp_mask))
2060                 return NULL;
2061 
2062         if (skb->fclone == SKB_FCLONE_ORIG &&
2063             refcount_read(&fclones->fclone_ref) == 1) {
2064                 n = &fclones->skb2;
2065                 refcount_set(&fclones->fclone_ref, 2);
2066                 n->fclone = SKB_FCLONE_CLONE;
2067         } else {
2068                 if (skb_pfmemalloc(skb))
2069                         gfp_mask |= __GFP_MEMALLOC;
2070 
2071                 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask);
2072                 if (!n)
2073                         return NULL;
2074 
2075                 n->fclone = SKB_FCLONE_UNAVAILABLE;
2076         }
2077 
2078         return __skb_clone(n, skb);
2079 }
2080 EXPORT_SYMBOL(skb_clone);
2081 
2082 void skb_headers_offset_update(struct sk_buff *skb, int off)
2083 {
2084         /* Only adjust this if it actually is csum_start rather than csum */
2085         if (skb->ip_summed == CHECKSUM_PARTIAL)
2086                 skb->csum_start += off;
2087         /* {transport,network,mac}_header and tail are relative to skb->head */
2088         skb->transport_header += off;
2089         skb->network_header   += off;
2090         if (skb_mac_header_was_set(skb))
2091                 skb->mac_header += off;
2092         skb->inner_transport_header += off;
2093         skb->inner_network_header += off;
2094         skb->inner_mac_header += off;
2095 }
2096 EXPORT_SYMBOL(skb_headers_offset_update);
2097 
2098 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
2099 {
2100         __copy_skb_header(new, old);
2101 
2102         skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
2103         skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
2104         skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
2105 }
2106 EXPORT_SYMBOL(skb_copy_header);
2107 
2108 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
2109 {
2110         if (skb_pfmemalloc(skb))
2111                 return SKB_ALLOC_RX;
2112         return 0;
2113 }
2114 
2115 /**
2116  *      skb_copy        -       create private copy of an sk_buff
2117  *      @skb: buffer to copy
2118  *      @gfp_mask: allocation priority
2119  *
2120  *      Make a copy of both an &sk_buff and its data. This is used when the
2121  *      caller wishes to modify the data and needs a private copy of the
2122  *      data to alter. Returns %NULL on failure or the pointer to the buffer
2123  *      on success. The returned buffer has a reference count of 1.
2124  *
2125  *      As by-product this function converts non-linear &sk_buff to linear
2126  *      one, so that &sk_buff becomes completely private and caller is allowed
2127  *      to modify all the data of returned buffer. This means that this
2128  *      function is not recommended for use in circumstances when only
2129  *      header is going to be modified. Use pskb_copy() instead.
2130  */
2131 
2132 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2133 {
2134         struct sk_buff *n;
2135         unsigned int size;
2136         int headerlen;
2137 
2138         if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2139                 return NULL;
2140 
2141         headerlen = skb_headroom(skb);
2142         size = skb_end_offset(skb) + skb->data_len;
2143         n = __alloc_skb(size, gfp_mask,
2144                         skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2145         if (!n)
2146                 return NULL;
2147 
2148         /* Set the data pointer */
2149         skb_reserve(n, headerlen);
2150         /* Set the tail pointer and length */
2151         skb_put(n, skb->len);
2152 
2153         BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2154 
2155         skb_copy_header(n, skb);
2156         return n;
2157 }
2158 EXPORT_SYMBOL(skb_copy);
2159 
2160 /**
2161  *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
2162  *      @skb: buffer to copy
2163  *      @headroom: headroom of new skb
2164  *      @gfp_mask: allocation priority
2165  *      @fclone: if true allocate the copy of the skb from the fclone
2166  *      cache instead of the head cache; it is recommended to set this
2167  *      to true for the cases where the copy will likely be cloned
2168  *
2169  *      Make a copy of both an &sk_buff and part of its data, located
2170  *      in header. Fragmented data remain shared. This is used when
2171  *      the caller wishes to modify only header of &sk_buff and needs
2172  *      private copy of the header to alter. Returns %NULL on failure
2173  *      or the pointer to the buffer on success.
2174  *      The returned buffer has a reference count of 1.
2175  */
2176 
2177 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2178                                    gfp_t gfp_mask, bool fclone)
2179 {
2180         unsigned int size = skb_headlen(skb) + headroom;
2181         int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2182         struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2183 
2184         if (!n)
2185                 goto out;
2186 
2187         /* Set the data pointer */
2188         skb_reserve(n, headroom);
2189         /* Set the tail pointer and length */
2190         skb_put(n, skb_headlen(skb));
2191         /* Copy the bytes */
2192         skb_copy_from_linear_data(skb, n->data, n->len);
2193 
2194         n->truesize += skb->data_len;
2195         n->data_len  = skb->data_len;
2196         n->len       = skb->len;
2197 
2198         if (skb_shinfo(skb)->nr_frags) {
2199                 int i;
2200 
2201                 if (skb_orphan_frags(skb, gfp_mask) ||
2202                     skb_zerocopy_clone(n, skb, gfp_mask)) {
2203                         kfree_skb(n);
2204                         n = NULL;
2205                         goto out;
2206                 }
2207                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2208                         skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2209                         skb_frag_ref(skb, i);
2210                 }
2211                 skb_shinfo(n)->nr_frags = i;
2212         }
2213 
2214         if (skb_has_frag_list(skb)) {
2215                 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2216                 skb_clone_fraglist(n);
2217         }
2218 
2219         skb_copy_header(n, skb);
2220 out:
2221         return n;
2222 }
2223 EXPORT_SYMBOL(__pskb_copy_fclone);
2224 
2225 /**
2226  *      pskb_expand_head - reallocate header of &sk_buff
2227  *      @skb: buffer to reallocate
2228  *      @nhead: room to add at head
2229  *      @ntail: room to add at tail
2230  *      @gfp_mask: allocation priority
2231  *
2232  *      Expands (or creates identical copy, if @nhead and @ntail are zero)
2233  *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2234  *      reference count of 1. Returns zero in the case of success or error,
2235  *      if expansion failed. In the last case, &sk_buff is not changed.
2236  *
2237  *      All the pointers pointing into skb header may change and must be
2238  *      reloaded after call to this function.
2239  */
2240 
2241 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2242                      gfp_t gfp_mask)
2243 {
2244         unsigned int osize = skb_end_offset(skb);
2245         unsigned int size = osize + nhead + ntail;
2246         long off;
2247         u8 *data;
2248         int i;
2249 
2250         BUG_ON(nhead < 0);
2251 
2252         BUG_ON(skb_shared(skb));
2253 
2254         skb_zcopy_downgrade_managed(skb);
2255 
2256         if (skb_pfmemalloc(skb))
2257                 gfp_mask |= __GFP_MEMALLOC;
2258 
2259         data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2260         if (!data)
2261                 goto nodata;
2262         size = SKB_WITH_OVERHEAD(size);
2263 
2264         /* Copy only real data... and, alas, header. This should be
2265          * optimized for the cases when header is void.
2266          */
2267         memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2268 
2269         memcpy((struct skb_shared_info *)(data + size),
2270                skb_shinfo(skb),
2271                offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2272 
2273         /*
2274          * if shinfo is shared we must drop the old head gracefully, but if it
2275          * is not we can just drop the old head and let the existing refcount
2276          * be since all we did is relocate the values
2277          */
2278         if (skb_cloned(skb)) {
2279                 if (skb_orphan_frags(skb, gfp_mask))
2280                         goto nofrags;
2281                 if (skb_zcopy(skb))
2282                         refcount_inc(&skb_uarg(skb)->refcnt);
2283                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2284                         skb_frag_ref(skb, i);
2285 
2286                 if (skb_has_frag_list(skb))
2287                         skb_clone_fraglist(skb);
2288 
2289                 skb_release_data(skb, SKB_CONSUMED);
2290         } else {
2291                 skb_free_head(skb);
2292         }
2293         off = (data + nhead) - skb->head;
2294 
2295         skb->head     = data;
2296         skb->head_frag = 0;
2297         skb->data    += off;
2298 
2299         skb_set_end_offset(skb, size);
2300 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2301         off           = nhead;
2302 #endif
2303         skb->tail             += off;
2304         skb_headers_offset_update(skb, nhead);
2305         skb->cloned   = 0;
2306         skb->hdr_len  = 0;
2307         skb->nohdr    = 0;
2308         atomic_set(&skb_shinfo(skb)->dataref, 1);
2309 
2310         skb_metadata_clear(skb);
2311 
2312         /* It is not generally safe to change skb->truesize.
2313          * For the moment, we really care of rx path, or
2314          * when skb is orphaned (not attached to a socket).
2315          */
2316         if (!skb->sk || skb->destructor == sock_edemux)
2317                 skb->truesize += size - osize;
2318 
2319         return 0;
2320 
2321 nofrags:
2322         skb_kfree_head(data, size);
2323 nodata:
2324         return -ENOMEM;
2325 }
2326 EXPORT_SYMBOL(pskb_expand_head);
2327 
2328 /* Make private copy of skb with writable head and some headroom */
2329 
2330 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2331 {
2332         struct sk_buff *skb2;
2333         int delta = headroom - skb_headroom(skb);
2334 
2335         if (delta <= 0)
2336                 skb2 = pskb_copy(skb, GFP_ATOMIC);
2337         else {
2338                 skb2 = skb_clone(skb, GFP_ATOMIC);
2339                 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2340                                              GFP_ATOMIC)) {
2341                         kfree_skb(skb2);
2342                         skb2 = NULL;
2343                 }
2344         }
2345         return skb2;
2346 }
2347 EXPORT_SYMBOL(skb_realloc_headroom);
2348 
2349 /* Note: We plan to rework this in linux-6.4 */
2350 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2351 {
2352         unsigned int saved_end_offset, saved_truesize;
2353         struct skb_shared_info *shinfo;
2354         int res;
2355 
2356         saved_end_offset = skb_end_offset(skb);
2357         saved_truesize = skb->truesize;
2358 
2359         res = pskb_expand_head(skb, 0, 0, pri);
2360         if (res)
2361                 return res;
2362 
2363         skb->truesize = saved_truesize;
2364 
2365         if (likely(skb_end_offset(skb) == saved_end_offset))
2366                 return 0;
2367 
2368         /* We can not change skb->end if the original or new value
2369          * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2370          */
2371         if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2372             skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2373                 /* We think this path should not be taken.
2374                  * Add a temporary trace to warn us just in case.
2375                  */
2376                 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2377                             saved_end_offset, skb_end_offset(skb));
2378                 WARN_ON_ONCE(1);
2379                 return 0;
2380         }
2381 
2382         shinfo = skb_shinfo(skb);
2383 
2384         /* We are about to change back skb->end,
2385          * we need to move skb_shinfo() to its new location.
2386          */
2387         memmove(skb->head + saved_end_offset,
2388                 shinfo,
2389                 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2390 
2391         skb_set_end_offset(skb, saved_end_offset);
2392 
2393         return 0;
2394 }
2395 
2396 /**
2397  *      skb_expand_head - reallocate header of &sk_buff
2398  *      @skb: buffer to reallocate
2399  *      @headroom: needed headroom
2400  *
2401  *      Unlike skb_realloc_headroom, this one does not allocate a new skb
2402  *      if possible; copies skb->sk to new skb as needed
2403  *      and frees original skb in case of failures.
2404  *
2405  *      It expect increased headroom and generates warning otherwise.
2406  */
2407 
2408 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2409 {
2410         int delta = headroom - skb_headroom(skb);
2411         int osize = skb_end_offset(skb);
2412         struct sock *sk = skb->sk;
2413 
2414         if (WARN_ONCE(delta <= 0,
2415                       "%s is expecting an increase in the headroom", __func__))
2416                 return skb;
2417 
2418         delta = SKB_DATA_ALIGN(delta);
2419         /* pskb_expand_head() might crash, if skb is shared. */
2420         if (skb_shared(skb) || !is_skb_wmem(skb)) {
2421                 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2422 
2423                 if (unlikely(!nskb))
2424                         goto fail;
2425 
2426                 if (sk)
2427                         skb_set_owner_w(nskb, sk);
2428                 consume_skb(skb);
2429                 skb = nskb;
2430         }
2431         if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2432                 goto fail;
2433 
2434         if (sk && is_skb_wmem(skb)) {
2435                 delta = skb_end_offset(skb) - osize;
2436                 refcount_add(delta, &sk->sk_wmem_alloc);
2437                 skb->truesize += delta;
2438         }
2439         return skb;
2440 
2441 fail:
2442         kfree_skb(skb);
2443         return NULL;
2444 }
2445 EXPORT_SYMBOL(skb_expand_head);
2446 
2447 /**
2448  *      skb_copy_expand -       copy and expand sk_buff
2449  *      @skb: buffer to copy
2450  *      @newheadroom: new free bytes at head
2451  *      @newtailroom: new free bytes at tail
2452  *      @gfp_mask: allocation priority
2453  *
2454  *      Make a copy of both an &sk_buff and its data and while doing so
2455  *      allocate additional space.
2456  *
2457  *      This is used when the caller wishes to modify the data and needs a
2458  *      private copy of the data to alter as well as more space for new fields.
2459  *      Returns %NULL on failure or the pointer to the buffer
2460  *      on success. The returned buffer has a reference count of 1.
2461  *
2462  *      You must pass %GFP_ATOMIC as the allocation priority if this function
2463  *      is called from an interrupt.
2464  */
2465 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2466                                 int newheadroom, int newtailroom,
2467                                 gfp_t gfp_mask)
2468 {
2469         /*
2470          *      Allocate the copy buffer
2471          */
2472         int head_copy_len, head_copy_off;
2473         struct sk_buff *n;
2474         int oldheadroom;
2475 
2476         if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
2477                 return NULL;
2478 
2479         oldheadroom = skb_headroom(skb);
2480         n = __alloc_skb(newheadroom + skb->len + newtailroom,
2481                         gfp_mask, skb_alloc_rx_flag(skb),
2482                         NUMA_NO_NODE);
2483         if (!n)
2484                 return NULL;
2485 
2486         skb_reserve(n, newheadroom);
2487 
2488         /* Set the tail pointer and length */
2489         skb_put(n, skb->len);
2490 
2491         head_copy_len = oldheadroom;
2492         head_copy_off = 0;
2493         if (newheadroom <= head_copy_len)
2494                 head_copy_len = newheadroom;
2495         else
2496                 head_copy_off = newheadroom - head_copy_len;
2497 
2498         /* Copy the linear header and data. */
2499         BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2500                              skb->len + head_copy_len));
2501 
2502         skb_copy_header(n, skb);
2503 
2504         skb_headers_offset_update(n, newheadroom - oldheadroom);
2505 
2506         return n;
2507 }
2508 EXPORT_SYMBOL(skb_copy_expand);
2509 
2510 /**
2511  *      __skb_pad               -       zero pad the tail of an skb
2512  *      @skb: buffer to pad
2513  *      @pad: space to pad
2514  *      @free_on_error: free buffer on error
2515  *
2516  *      Ensure that a buffer is followed by a padding area that is zero
2517  *      filled. Used by network drivers which may DMA or transfer data
2518  *      beyond the buffer end onto the wire.
2519  *
2520  *      May return error in out of memory cases. The skb is freed on error
2521  *      if @free_on_error is true.
2522  */
2523 
2524 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2525 {
2526         int err;
2527         int ntail;
2528 
2529         /* If the skbuff is non linear tailroom is always zero.. */
2530         if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2531                 memset(skb->data+skb->len, 0, pad);
2532                 return 0;
2533         }
2534 
2535         ntail = skb->data_len + pad - (skb->end - skb->tail);
2536         if (likely(skb_cloned(skb) || ntail > 0)) {
2537                 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2538                 if (unlikely(err))
2539                         goto free_skb;
2540         }
2541 
2542         /* FIXME: The use of this function with non-linear skb's really needs
2543          * to be audited.
2544          */
2545         err = skb_linearize(skb);
2546         if (unlikely(err))
2547                 goto free_skb;
2548 
2549         memset(skb->data + skb->len, 0, pad);
2550         return 0;
2551 
2552 free_skb:
2553         if (free_on_error)
2554                 kfree_skb(skb);
2555         return err;
2556 }
2557 EXPORT_SYMBOL(__skb_pad);
2558 
2559 /**
2560  *      pskb_put - add data to the tail of a potentially fragmented buffer
2561  *      @skb: start of the buffer to use
2562  *      @tail: tail fragment of the buffer to use
2563  *      @len: amount of data to add
2564  *
2565  *      This function extends the used data area of the potentially
2566  *      fragmented buffer. @tail must be the last fragment of @skb -- or
2567  *      @skb itself. If this would exceed the total buffer size the kernel
2568  *      will panic. A pointer to the first byte of the extra data is
2569  *      returned.
2570  */
2571 
2572 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2573 {
2574         if (tail != skb) {
2575                 skb->data_len += len;
2576                 skb->len += len;
2577         }
2578         return skb_put(tail, len);
2579 }
2580 EXPORT_SYMBOL_GPL(pskb_put);
2581 
2582 /**
2583  *      skb_put - add data to a buffer
2584  *      @skb: buffer to use
2585  *      @len: amount of data to add
2586  *
2587  *      This function extends the used data area of the buffer. If this would
2588  *      exceed the total buffer size the kernel will panic. A pointer to the
2589  *      first byte of the extra data is returned.
2590  */
2591 void *skb_put(struct sk_buff *skb, unsigned int len)
2592 {
2593         void *tmp = skb_tail_pointer(skb);
2594         SKB_LINEAR_ASSERT(skb);
2595         skb->tail += len;
2596         skb->len  += len;
2597         if (unlikely(skb->tail > skb->end))
2598                 skb_over_panic(skb, len, __builtin_return_address(0));
2599         return tmp;
2600 }
2601 EXPORT_SYMBOL(skb_put);
2602 
2603 /**
2604  *      skb_push - add data to the start of a buffer
2605  *      @skb: buffer to use
2606  *      @len: amount of data to add
2607  *
2608  *      This function extends the used data area of the buffer at the buffer
2609  *      start. If this would exceed the total buffer headroom the kernel will
2610  *      panic. A pointer to the first byte of the extra data is returned.
2611  */
2612 void *skb_push(struct sk_buff *skb, unsigned int len)
2613 {
2614         skb->data -= len;
2615         skb->len  += len;
2616         if (unlikely(skb->data < skb->head))
2617                 skb_under_panic(skb, len, __builtin_return_address(0));
2618         return skb->data;
2619 }
2620 EXPORT_SYMBOL(skb_push);
2621 
2622 /**
2623  *      skb_pull - remove data from the start of a buffer
2624  *      @skb: buffer to use
2625  *      @len: amount of data to remove
2626  *
2627  *      This function removes data from the start of a buffer, returning
2628  *      the memory to the headroom. A pointer to the next data in the buffer
2629  *      is returned. Once the data has been pulled future pushes will overwrite
2630  *      the old data.
2631  */
2632 void *skb_pull(struct sk_buff *skb, unsigned int len)
2633 {
2634         return skb_pull_inline(skb, len);
2635 }
2636 EXPORT_SYMBOL(skb_pull);
2637 
2638 /**
2639  *      skb_pull_data - remove data from the start of a buffer returning its
2640  *      original position.
2641  *      @skb: buffer to use
2642  *      @len: amount of data to remove
2643  *
2644  *      This function removes data from the start of a buffer, returning
2645  *      the memory to the headroom. A pointer to the original data in the buffer
2646  *      is returned after checking if there is enough data to pull. Once the
2647  *      data has been pulled future pushes will overwrite the old data.
2648  */
2649 void *skb_pull_data(struct sk_buff *skb, size_t len)
2650 {
2651         void *data = skb->data;
2652 
2653         if (skb->len < len)
2654                 return NULL;
2655 
2656         skb_pull(skb, len);
2657 
2658         return data;
2659 }
2660 EXPORT_SYMBOL(skb_pull_data);
2661 
2662 /**
2663  *      skb_trim - remove end from a buffer
2664  *      @skb: buffer to alter
2665  *      @len: new length
2666  *
2667  *      Cut the length of a buffer down by removing data from the tail. If
2668  *      the buffer is already under the length specified it is not modified.
2669  *      The skb must be linear.
2670  */
2671 void skb_trim(struct sk_buff *skb, unsigned int len)
2672 {
2673         if (skb->len > len)
2674                 __skb_trim(skb, len);
2675 }
2676 EXPORT_SYMBOL(skb_trim);
2677 
2678 /* Trims skb to length len. It can change skb pointers.
2679  */
2680 
2681 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2682 {
2683         struct sk_buff **fragp;
2684         struct sk_buff *frag;
2685         int offset = skb_headlen(skb);
2686         int nfrags = skb_shinfo(skb)->nr_frags;
2687         int i;
2688         int err;
2689 
2690         if (skb_cloned(skb) &&
2691             unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2692                 return err;
2693 
2694         i = 0;
2695         if (offset >= len)
2696                 goto drop_pages;
2697 
2698         for (; i < nfrags; i++) {
2699                 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2700 
2701                 if (end < len) {
2702                         offset = end;
2703                         continue;
2704                 }
2705 
2706                 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2707 
2708 drop_pages:
2709                 skb_shinfo(skb)->nr_frags = i;
2710 
2711                 for (; i < nfrags; i++)
2712                         skb_frag_unref(skb, i);
2713 
2714                 if (skb_has_frag_list(skb))
2715                         skb_drop_fraglist(skb);
2716                 goto done;
2717         }
2718 
2719         for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2720              fragp = &frag->next) {
2721                 int end = offset + frag->len;
2722 
2723                 if (skb_shared(frag)) {
2724                         struct sk_buff *nfrag;
2725 
2726                         nfrag = skb_clone(frag, GFP_ATOMIC);
2727                         if (unlikely(!nfrag))
2728                                 return -ENOMEM;
2729 
2730                         nfrag->next = frag->next;
2731                         consume_skb(frag);
2732                         frag = nfrag;
2733                         *fragp = frag;
2734                 }
2735 
2736                 if (end < len) {
2737                         offset = end;
2738                         continue;
2739                 }
2740 
2741                 if (end > len &&
2742                     unlikely((err = pskb_trim(frag, len - offset))))
2743                         return err;
2744 
2745                 if (frag->next)
2746                         skb_drop_list(&frag->next);
2747                 break;
2748         }
2749 
2750 done:
2751         if (len > skb_headlen(skb)) {
2752                 skb->data_len -= skb->len - len;
2753                 skb->len       = len;
2754         } else {
2755                 skb->len       = len;
2756                 skb->data_len  = 0;
2757                 skb_set_tail_pointer(skb, len);
2758         }
2759 
2760         if (!skb->sk || skb->destructor == sock_edemux)
2761                 skb_condense(skb);
2762         return 0;
2763 }
2764 EXPORT_SYMBOL(___pskb_trim);
2765 
2766 /* Note : use pskb_trim_rcsum() instead of calling this directly
2767  */
2768 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2769 {
2770         if (skb->ip_summed == CHECKSUM_COMPLETE) {
2771                 int delta = skb->len - len;
2772 
2773                 skb->csum = csum_block_sub(skb->csum,
2774                                            skb_checksum(skb, len, delta, 0),
2775                                            len);
2776         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2777                 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2778                 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2779 
2780                 if (offset + sizeof(__sum16) > hdlen)
2781                         return -EINVAL;
2782         }
2783         return __pskb_trim(skb, len);
2784 }
2785 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2786 
2787 /**
2788  *      __pskb_pull_tail - advance tail of skb header
2789  *      @skb: buffer to reallocate
2790  *      @delta: number of bytes to advance tail
2791  *
2792  *      The function makes a sense only on a fragmented &sk_buff,
2793  *      it expands header moving its tail forward and copying necessary
2794  *      data from fragmented part.
2795  *
2796  *      &sk_buff MUST have reference count of 1.
2797  *
2798  *      Returns %NULL (and &sk_buff does not change) if pull failed
2799  *      or value of new tail of skb in the case of success.
2800  *
2801  *      All the pointers pointing into skb header may change and must be
2802  *      reloaded after call to this function.
2803  */
2804 
2805 /* Moves tail of skb head forward, copying data from fragmented part,
2806  * when it is necessary.
2807  * 1. It may fail due to malloc failure.
2808  * 2. It may change skb pointers.
2809  *
2810  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2811  */
2812 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2813 {
2814         /* If skb has not enough free space at tail, get new one
2815          * plus 128 bytes for future expansions. If we have enough
2816          * room at tail, reallocate without expansion only if skb is cloned.
2817          */
2818         int i, k, eat = (skb->tail + delta) - skb->end;
2819 
2820         if (eat > 0 || skb_cloned(skb)) {
2821                 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2822                                      GFP_ATOMIC))
2823                         return NULL;
2824         }
2825 
2826         BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2827                              skb_tail_pointer(skb), delta));
2828 
2829         /* Optimization: no fragments, no reasons to preestimate
2830          * size of pulled pages. Superb.
2831          */
2832         if (!skb_has_frag_list(skb))
2833                 goto pull_pages;
2834 
2835         /* Estimate size of pulled pages. */
2836         eat = delta;
2837         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2838                 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2839 
2840                 if (size >= eat)
2841                         goto pull_pages;
2842                 eat -= size;
2843         }
2844 
2845         /* If we need update frag list, we are in troubles.
2846          * Certainly, it is possible to add an offset to skb data,
2847          * but taking into account that pulling is expected to
2848          * be very rare operation, it is worth to fight against
2849          * further bloating skb head and crucify ourselves here instead.
2850          * Pure masohism, indeed. 8)8)
2851          */
2852         if (eat) {
2853                 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2854                 struct sk_buff *clone = NULL;
2855                 struct sk_buff *insp = NULL;
2856 
2857                 do {
2858                         if (list->len <= eat) {
2859                                 /* Eaten as whole. */
2860                                 eat -= list->len;
2861                                 list = list->next;
2862                                 insp = list;
2863                         } else {
2864                                 /* Eaten partially. */
2865                                 if (skb_is_gso(skb) && !list->head_frag &&
2866                                     skb_headlen(list))
2867                                         skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2868 
2869                                 if (skb_shared(list)) {
2870                                         /* Sucks! We need to fork list. :-( */
2871                                         clone = skb_clone(list, GFP_ATOMIC);
2872                                         if (!clone)
2873                                                 return NULL;
2874                                         insp = list->next;
2875                                         list = clone;
2876                                 } else {
2877                                         /* This may be pulled without
2878                                          * problems. */
2879                                         insp = list;
2880                                 }
2881                                 if (!pskb_pull(list, eat)) {
2882                                         kfree_skb(clone);
2883                                         return NULL;
2884                                 }
2885                                 break;
2886                         }
2887                 } while (eat);
2888 
2889                 /* Free pulled out fragments. */
2890                 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2891                         skb_shinfo(skb)->frag_list = list->next;
2892                         consume_skb(list);
2893                 }
2894                 /* And insert new clone at head. */
2895                 if (clone) {
2896                         clone->next = list;
2897                         skb_shinfo(skb)->frag_list = clone;
2898                 }
2899         }
2900         /* Success! Now we may commit changes to skb data. */
2901 
2902 pull_pages:
2903         eat = delta;
2904         k = 0;
2905         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2906                 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2907 
2908                 if (size <= eat) {
2909                         skb_frag_unref(skb, i);
2910                         eat -= size;
2911                 } else {
2912                         skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2913 
2914                         *frag = skb_shinfo(skb)->frags[i];
2915                         if (eat) {
2916                                 skb_frag_off_add(frag, eat);
2917                                 skb_frag_size_sub(frag, eat);
2918                                 if (!i)
2919                                         goto end;
2920                                 eat = 0;
2921                         }
2922                         k++;
2923                 }
2924         }
2925         skb_shinfo(skb)->nr_frags = k;
2926 
2927 end:
2928         skb->tail     += delta;
2929         skb->data_len -= delta;
2930 
2931         if (!skb->data_len)
2932                 skb_zcopy_clear(skb, false);
2933 
2934         return skb_tail_pointer(skb);
2935 }
2936 EXPORT_SYMBOL(__pskb_pull_tail);
2937 
2938 /**
2939  *      skb_copy_bits - copy bits from skb to kernel buffer
2940  *      @skb: source skb
2941  *      @offset: offset in source
2942  *      @to: destination buffer
2943  *      @len: number of bytes to copy
2944  *
2945  *      Copy the specified number of bytes from the source skb to the
2946  *      destination buffer.
2947  *
2948  *      CAUTION ! :
2949  *              If its prototype is ever changed,
2950  *              check arch/{*}/net/{*}.S files,
2951  *              since it is called from BPF assembly code.
2952  */
2953 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2954 {
2955         int start = skb_headlen(skb);
2956         struct sk_buff *frag_iter;
2957         int i, copy;
2958 
2959         if (offset > (int)skb->len - len)
2960                 goto fault;
2961 
2962         /* Copy header. */
2963         if ((copy = start - offset) > 0) {
2964                 if (copy > len)
2965                         copy = len;
2966                 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2967                 if ((len -= copy) == 0)
2968                         return 0;
2969                 offset += copy;
2970                 to     += copy;
2971         }
2972 
2973         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2974                 int end;
2975                 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2976 
2977                 WARN_ON(start > offset + len);
2978 
2979                 end = start + skb_frag_size(f);
2980                 if ((copy = end - offset) > 0) {
2981                         u32 p_off, p_len, copied;
2982                         struct page *p;
2983                         u8 *vaddr;
2984 
2985                         if (copy > len)
2986                                 copy = len;
2987 
2988                         skb_frag_foreach_page(f,
2989                                               skb_frag_off(f) + offset - start,
2990                                               copy, p, p_off, p_len, copied) {
2991                                 vaddr = kmap_atomic(p);
2992                                 memcpy(to + copied, vaddr + p_off, p_len);
2993                                 kunmap_atomic(vaddr);
2994                         }
2995 
2996                         if ((len -= copy) == 0)
2997                                 return 0;
2998                         offset += copy;
2999                         to     += copy;
3000                 }
3001                 start = end;
3002         }
3003 
3004         skb_walk_frags(skb, frag_iter) {
3005                 int end;
3006 
3007                 WARN_ON(start > offset + len);
3008 
3009                 end = start + frag_iter->len;
3010                 if ((copy = end - offset) > 0) {
3011                         if (copy > len)
3012                                 copy = len;
3013                         if (skb_copy_bits(frag_iter, offset - start, to, copy))
3014                                 goto fault;
3015                         if ((len -= copy) == 0)
3016                                 return 0;
3017                         offset += copy;
3018                         to     += copy;
3019                 }
3020                 start = end;
3021         }
3022 
3023         if (!len)
3024                 return 0;
3025 
3026 fault:
3027         return -EFAULT;
3028 }
3029 EXPORT_SYMBOL(skb_copy_bits);
3030 
3031 /*
3032  * Callback from splice_to_pipe(), if we need to release some pages
3033  * at the end of the spd in case we error'ed out in filling the pipe.
3034  */
3035 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
3036 {
3037         put_page(spd->pages[i]);
3038 }
3039 
3040 static struct page *linear_to_page(struct page *page, unsigned int *len,
3041                                    unsigned int *offset,
3042                                    struct sock *sk)
3043 {
3044         struct page_frag *pfrag = sk_page_frag(sk);
3045 
3046         if (!sk_page_frag_refill(sk, pfrag))
3047                 return NULL;
3048 
3049         *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
3050 
3051         memcpy(page_address(pfrag->page) + pfrag->offset,
3052                page_address(page) + *offset, *len);
3053         *offset = pfrag->offset;
3054         pfrag->offset += *len;
3055 
3056         return pfrag->page;
3057 }
3058 
3059 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
3060                              struct page *page,
3061                              unsigned int offset)
3062 {
3063         return  spd->nr_pages &&
3064                 spd->pages[spd->nr_pages - 1] == page &&
3065                 (spd->partial[spd->nr_pages - 1].offset +
3066                  spd->partial[spd->nr_pages - 1].len == offset);
3067 }
3068 
3069 /*
3070  * Fill page/offset/length into spd, if it can hold more pages.
3071  */
3072 static bool spd_fill_page(struct splice_pipe_desc *spd,
3073                           struct pipe_inode_info *pipe, struct page *page,
3074                           unsigned int *len, unsigned int offset,
3075                           bool linear,
3076                           struct sock *sk)
3077 {
3078         if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
3079                 return true;
3080 
3081         if (linear) {
3082                 page = linear_to_page(page, len, &offset, sk);
3083                 if (!page)
3084                         return true;
3085         }
3086         if (spd_can_coalesce(spd, page, offset)) {
3087                 spd->partial[spd->nr_pages - 1].len += *len;
3088                 return false;
3089         }
3090         get_page(page);
3091         spd->pages[spd->nr_pages] = page;
3092         spd->partial[spd->nr_pages].len = *len;
3093         spd->partial[spd->nr_pages].offset = offset;
3094         spd->nr_pages++;
3095 
3096         return false;
3097 }
3098 
3099 static bool __splice_segment(struct page *page, unsigned int poff,
3100                              unsigned int plen, unsigned int *off,
3101                              unsigned int *len,
3102                              struct splice_pipe_desc *spd, bool linear,
3103                              struct sock *sk,
3104                              struct pipe_inode_info *pipe)
3105 {
3106         if (!*len)
3107                 return true;
3108 
3109         /* skip this segment if already processed */
3110         if (*off >= plen) {
3111                 *off -= plen;
3112                 return false;
3113         }
3114 
3115         /* ignore any bits we already processed */
3116         poff += *off;
3117         plen -= *off;
3118         *off = 0;
3119 
3120         do {
3121                 unsigned int flen = min(*len, plen);
3122 
3123                 if (spd_fill_page(spd, pipe, page, &flen, poff,
3124                                   linear, sk))
3125                         return true;
3126                 poff += flen;
3127                 plen -= flen;
3128                 *len -= flen;
3129         } while (*len && plen);
3130 
3131         return false;
3132 }
3133 
3134 /*
3135  * Map linear and fragment data from the skb to spd. It reports true if the
3136  * pipe is full or if we already spliced the requested length.
3137  */
3138 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3139                               unsigned int *offset, unsigned int *len,
3140                               struct splice_pipe_desc *spd, struct sock *sk)
3141 {
3142         int seg;
3143         struct sk_buff *iter;
3144 
3145         /* map the linear part :
3146          * If skb->head_frag is set, this 'linear' part is backed by a
3147          * fragment, and if the head is not shared with any clones then
3148          * we can avoid a copy since we own the head portion of this page.
3149          */
3150         if (__splice_segment(virt_to_page(skb->data),
3151                              (unsigned long) skb->data & (PAGE_SIZE - 1),
3152                              skb_headlen(skb),
3153                              offset, len, spd,
3154                              skb_head_is_locked(skb),
3155                              sk, pipe))
3156                 return true;
3157 
3158         /*
3159          * then map the fragments
3160          */
3161         for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3162                 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3163 
3164                 if (__splice_segment(skb_frag_page(f),
3165                                      skb_frag_off(f), skb_frag_size(f),
3166                                      offset, len, spd, false, sk, pipe))
3167                         return true;
3168         }
3169 
3170         skb_walk_frags(skb, iter) {
3171                 if (*offset >= iter->len) {
3172                         *offset -= iter->len;
3173                         continue;
3174                 }
3175                 /* __skb_splice_bits() only fails if the output has no room
3176                  * left, so no point in going over the frag_list for the error
3177                  * case.
3178                  */
3179                 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3180                         return true;
3181         }
3182 
3183         return false;
3184 }
3185 
3186 /*
3187  * Map data from the skb to a pipe. Should handle both the linear part,
3188  * the fragments, and the frag list.
3189  */
3190 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3191                     struct pipe_inode_info *pipe, unsigned int tlen,
3192                     unsigned int flags)
3193 {
3194         struct partial_page partial[MAX_SKB_FRAGS];
3195         struct page *pages[MAX_SKB_FRAGS];
3196         struct splice_pipe_desc spd = {
3197                 .pages = pages,
3198                 .partial = partial,
3199                 .nr_pages_max = MAX_SKB_FRAGS,
3200                 .ops = &nosteal_pipe_buf_ops,
3201                 .spd_release = sock_spd_release,
3202         };
3203         int ret = 0;
3204 
3205         __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3206 
3207         if (spd.nr_pages)
3208                 ret = splice_to_pipe(pipe, &spd);
3209 
3210         return ret;
3211 }
3212 EXPORT_SYMBOL_GPL(skb_splice_bits);
3213 
3214 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3215 {
3216         struct socket *sock = sk->sk_socket;
3217         size_t size = msg_data_left(msg);
3218 
3219         if (!sock)
3220                 return -EINVAL;
3221 
3222         if (!sock->ops->sendmsg_locked)
3223                 return sock_no_sendmsg_locked(sk, msg, size);
3224 
3225         return sock->ops->sendmsg_locked(sk, msg, size);
3226 }
3227 
3228 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3229 {
3230         struct socket *sock = sk->sk_socket;
3231 
3232         if (!sock)
3233                 return -EINVAL;
3234         return sock_sendmsg(sock, msg);
3235 }
3236 
3237 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3238 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3239                            int len, sendmsg_func sendmsg)
3240 {
3241         unsigned int orig_len = len;
3242         struct sk_buff *head = skb;
3243         unsigned short fragidx;
3244         int slen, ret;
3245 
3246 do_frag_list:
3247 
3248         /* Deal with head data */
3249         while (offset < skb_headlen(skb) && len) {
3250                 struct kvec kv;
3251                 struct msghdr msg;
3252 
3253                 slen = min_t(int, len, skb_headlen(skb) - offset);
3254                 kv.iov_base = skb->data + offset;
3255                 kv.iov_len = slen;
3256                 memset(&msg, 0, sizeof(msg));
3257                 msg.msg_flags = MSG_DONTWAIT;
3258 
3259                 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3260                 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3261                                       sendmsg_unlocked, sk, &msg);
3262                 if (ret <= 0)
3263                         goto error;
3264 
3265                 offset += ret;
3266                 len -= ret;
3267         }
3268 
3269         /* All the data was skb head? */
3270         if (!len)
3271                 goto out;
3272 
3273         /* Make offset relative to start of frags */
3274         offset -= skb_headlen(skb);
3275 
3276         /* Find where we are in frag list */
3277         for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3278                 skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3279 
3280                 if (offset < skb_frag_size(frag))
3281                         break;
3282 
3283                 offset -= skb_frag_size(frag);
3284         }
3285 
3286         for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3287                 skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3288 
3289                 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3290 
3291                 while (slen) {
3292                         struct bio_vec bvec;
3293                         struct msghdr msg = {
3294                                 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3295                         };
3296 
3297                         bvec_set_page(&bvec, skb_frag_page(frag), slen,
3298                                       skb_frag_off(frag) + offset);
3299                         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3300                                       slen);
3301 
3302                         ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3303                                               sendmsg_unlocked, sk, &msg);
3304                         if (ret <= 0)
3305                                 goto error;
3306 
3307                         len -= ret;
3308                         offset += ret;
3309                         slen -= ret;
3310                 }
3311 
3312                 offset = 0;
3313         }
3314 
3315         if (len) {
3316                 /* Process any frag lists */
3317 
3318                 if (skb == head) {
3319                         if (skb_has_frag_list(skb)) {
3320                                 skb = skb_shinfo(skb)->frag_list;
3321                                 goto do_frag_list;
3322                         }
3323                 } else if (skb->next) {
3324                         skb = skb->next;
3325                         goto do_frag_list;
3326                 }
3327         }
3328 
3329 out:
3330         return orig_len - len;
3331 
3332 error:
3333         return orig_len == len ? ret : orig_len - len;
3334 }
3335 
3336 /* Send skb data on a socket. Socket must be locked. */
3337 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3338                          int len)
3339 {
3340         return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3341 }
3342 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3343 
3344 /* Send skb data on a socket. Socket must be unlocked. */
3345 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3346 {
3347         return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3348 }
3349 
3350 /**
3351  *      skb_store_bits - store bits from kernel buffer to skb
3352  *      @skb: destination buffer
3353  *      @offset: offset in destination
3354  *      @from: source buffer
3355  *      @len: number of bytes to copy
3356  *
3357  *      Copy the specified number of bytes from the source buffer to the
3358  *      destination skb.  This function handles all the messy bits of
3359  *      traversing fragment lists and such.
3360  */
3361 
3362 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3363 {
3364         int start = skb_headlen(skb);
3365         struct sk_buff *frag_iter;
3366         int i, copy;
3367 
3368         if (offset > (int)skb->len - len)
3369                 goto fault;
3370 
3371         if ((copy = start - offset) > 0) {
3372                 if (copy > len)
3373                         copy = len;
3374                 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3375                 if ((len -= copy) == 0)
3376                         return 0;
3377                 offset += copy;
3378                 from += copy;
3379         }
3380 
3381         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3382                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3383                 int end;
3384 
3385                 WARN_ON(start > offset + len);
3386 
3387                 end = start + skb_frag_size(frag);
3388                 if ((copy = end - offset) > 0) {
3389                         u32 p_off, p_len, copied;
3390                         struct page *p;
3391                         u8 *vaddr;
3392 
3393                         if (copy > len)
3394                                 copy = len;
3395 
3396                         skb_frag_foreach_page(frag,
3397                                               skb_frag_off(frag) + offset - start,
3398                                               copy, p, p_off, p_len, copied) {
3399                                 vaddr = kmap_atomic(p);
3400                                 memcpy(vaddr + p_off, from + copied, p_len);
3401                                 kunmap_atomic(vaddr);
3402                         }
3403 
3404                         if ((len -= copy) == 0)
3405                                 return 0;
3406                         offset += copy;
3407                         from += copy;
3408                 }
3409                 start = end;
3410         }
3411 
3412         skb_walk_frags(skb, frag_iter) {
3413                 int end;
3414 
3415                 WARN_ON(start > offset + len);
3416 
3417                 end = start + frag_iter->len;
3418                 if ((copy = end - offset) > 0) {
3419                         if (copy > len)
3420                                 copy = len;
3421                         if (skb_store_bits(frag_iter, offset - start,
3422                                            from, copy))
3423                                 goto fault;
3424                         if ((len -= copy) == 0)
3425                                 return 0;
3426                         offset += copy;
3427                         from += copy;
3428                 }
3429                 start = end;
3430         }
3431         if (!len)
3432                 return 0;
3433 
3434 fault:
3435         return -EFAULT;
3436 }
3437 EXPORT_SYMBOL(skb_store_bits);
3438 
3439 /* Checksum skb data. */
3440 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3441                       __wsum csum, const struct skb_checksum_ops *ops)
3442 {
3443         int start = skb_headlen(skb);
3444         int i, copy = start - offset;
3445         struct sk_buff *frag_iter;
3446         int pos = 0;
3447 
3448         /* Checksum header. */
3449         if (copy > 0) {
3450                 if (copy > len)
3451                         copy = len;
3452                 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3453                                        skb->data + offset, copy, csum);
3454                 if ((len -= copy) == 0)
3455                         return csum;
3456                 offset += copy;
3457                 pos     = copy;
3458         }
3459 
3460         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3461                 int end;
3462                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3463 
3464                 WARN_ON(start > offset + len);
3465 
3466                 end = start + skb_frag_size(frag);
3467                 if ((copy = end - offset) > 0) {
3468                         u32 p_off, p_len, copied;
3469                         struct page *p;
3470                         __wsum csum2;
3471                         u8 *vaddr;
3472 
3473                         if (copy > len)
3474                                 copy = len;
3475 
3476                         skb_frag_foreach_page(frag,
3477                                               skb_frag_off(frag) + offset - start,
3478                                               copy, p, p_off, p_len, copied) {
3479                                 vaddr = kmap_atomic(p);
3480                                 csum2 = INDIRECT_CALL_1(ops->update,
3481                                                         csum_partial_ext,
3482                                                         vaddr + p_off, p_len, 0);
3483                                 kunmap_atomic(vaddr);
3484                                 csum = INDIRECT_CALL_1(ops->combine,
3485                                                        csum_block_add_ext, csum,
3486                                                        csum2, pos, p_len);
3487                                 pos += p_len;
3488                         }
3489 
3490                         if (!(len -= copy))
3491                                 return csum;
3492                         offset += copy;
3493                 }
3494                 start = end;
3495         }
3496 
3497         skb_walk_frags(skb, frag_iter) {
3498                 int end;
3499 
3500                 WARN_ON(start > offset + len);
3501 
3502                 end = start + frag_iter->len;
3503                 if ((copy = end - offset) > 0) {
3504                         __wsum csum2;
3505                         if (copy > len)
3506                                 copy = len;
3507                         csum2 = __skb_checksum(frag_iter, offset - start,
3508                                                copy, 0, ops);
3509                         csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3510                                                csum, csum2, pos, copy);
3511                         if ((len -= copy) == 0)
3512                                 return csum;
3513                         offset += copy;
3514                         pos    += copy;
3515                 }
3516                 start = end;
3517         }
3518         BUG_ON(len);
3519 
3520         return csum;
3521 }
3522 EXPORT_SYMBOL(__skb_checksum);
3523 
3524 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3525                     int len, __wsum csum)
3526 {
3527         const struct skb_checksum_ops ops = {
3528                 .update  = csum_partial_ext,
3529                 .combine = csum_block_add_ext,
3530         };
3531 
3532         return __skb_checksum(skb, offset, len, csum, &ops);
3533 }
3534 EXPORT_SYMBOL(skb_checksum);
3535 
3536 /* Both of above in one bottle. */
3537 
3538 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3539                                     u8 *to, int len)
3540 {
3541         int start = skb_headlen(skb);
3542         int i, copy = start - offset;
3543         struct sk_buff *frag_iter;
3544         int pos = 0;
3545         __wsum csum = 0;
3546 
3547         /* Copy header. */
3548         if (copy > 0) {
3549                 if (copy > len)
3550                         copy = len;
3551                 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3552                                                  copy);
3553                 if ((len -= copy) == 0)
3554                         return csum;
3555                 offset += copy;
3556                 to     += copy;
3557                 pos     = copy;
3558         }
3559 
3560         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3561                 int end;
3562 
3563                 WARN_ON(start > offset + len);
3564 
3565                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3566                 if ((copy = end - offset) > 0) {
3567                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3568                         u32 p_off, p_len, copied;
3569                         struct page *p;
3570                         __wsum csum2;
3571                         u8 *vaddr;
3572 
3573                         if (copy > len)
3574                                 copy = len;
3575 
3576                         skb_frag_foreach_page(frag,
3577                                               skb_frag_off(frag) + offset - start,
3578                                               copy, p, p_off, p_len, copied) {
3579                                 vaddr = kmap_atomic(p);
3580                                 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3581                                                                   to + copied,
3582                                                                   p_len);
3583                                 kunmap_atomic(vaddr);
3584                                 csum = csum_block_add(csum, csum2, pos);
3585                                 pos += p_len;
3586                         }
3587 
3588                         if (!(len -= copy))
3589                                 return csum;
3590                         offset += copy;
3591                         to     += copy;
3592                 }
3593                 start = end;
3594         }
3595 
3596         skb_walk_frags(skb, frag_iter) {
3597                 __wsum csum2;
3598                 int end;
3599 
3600                 WARN_ON(start > offset + len);
3601 
3602                 end = start + frag_iter->len;
3603                 if ((copy = end - offset) > 0) {
3604                         if (copy > len)
3605                                 copy = len;
3606                         csum2 = skb_copy_and_csum_bits(frag_iter,
3607                                                        offset - start,
3608                                                        to, copy);
3609                         csum = csum_block_add(csum, csum2, pos);
3610                         if ((len -= copy) == 0)
3611                                 return csum;
3612                         offset += copy;
3613                         to     += copy;
3614                         pos    += copy;
3615                 }
3616                 start = end;
3617         }
3618         BUG_ON(len);
3619         return csum;
3620 }
3621 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3622 
3623 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3624 {
3625         __sum16 sum;
3626 
3627         sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3628         /* See comments in __skb_checksum_complete(). */
3629         if (likely(!sum)) {
3630                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3631                     !skb->csum_complete_sw)
3632                         netdev_rx_csum_fault(skb->dev, skb);
3633         }
3634         if (!skb_shared(skb))
3635                 skb->csum_valid = !sum;
3636         return sum;
3637 }
3638 EXPORT_SYMBOL(__skb_checksum_complete_head);
3639 
3640 /* This function assumes skb->csum already holds pseudo header's checksum,
3641  * which has been changed from the hardware checksum, for example, by
3642  * __skb_checksum_validate_complete(). And, the original skb->csum must
3643  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3644  *
3645  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3646  * zero. The new checksum is stored back into skb->csum unless the skb is
3647  * shared.
3648  */
3649 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3650 {
3651         __wsum csum;
3652         __sum16 sum;
3653 
3654         csum = skb_checksum(skb, 0, skb->len, 0);
3655 
3656         sum = csum_fold(csum_add(skb->csum, csum));
3657         /* This check is inverted, because we already knew the hardware
3658          * checksum is invalid before calling this function. So, if the
3659          * re-computed checksum is valid instead, then we have a mismatch
3660          * between the original skb->csum and skb_checksum(). This means either
3661          * the original hardware checksum is incorrect or we screw up skb->csum
3662          * when moving skb->data around.
3663          */
3664         if (likely(!sum)) {
3665                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3666                     !skb->csum_complete_sw)
3667                         netdev_rx_csum_fault(skb->dev, skb);
3668         }
3669 
3670         if (!skb_shared(skb)) {
3671                 /* Save full packet checksum */
3672                 skb->csum = csum;
3673                 skb->ip_summed = CHECKSUM_COMPLETE;
3674                 skb->csum_complete_sw = 1;
3675                 skb->csum_valid = !sum;
3676         }
3677 
3678         return sum;
3679 }
3680 EXPORT_SYMBOL(__skb_checksum_complete);
3681 
3682 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3683 {
3684         net_warn_ratelimited(
3685                 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3686                 __func__);
3687         return 0;
3688 }
3689 
3690 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3691                                        int offset, int len)
3692 {
3693         net_warn_ratelimited(
3694                 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3695                 __func__);
3696         return 0;
3697 }
3698 
3699 static const struct skb_checksum_ops default_crc32c_ops = {
3700         .update  = warn_crc32c_csum_update,
3701         .combine = warn_crc32c_csum_combine,
3702 };
3703 
3704 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3705         &default_crc32c_ops;
3706 EXPORT_SYMBOL(crc32c_csum_stub);
3707 
3708  /**
3709  *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3710  *      @from: source buffer
3711  *
3712  *      Calculates the amount of linear headroom needed in the 'to' skb passed
3713  *      into skb_zerocopy().
3714  */
3715 unsigned int
3716 skb_zerocopy_headlen(const struct sk_buff *from)
3717 {
3718         unsigned int hlen = 0;
3719 
3720         if (!from->head_frag ||
3721             skb_headlen(from) < L1_CACHE_BYTES ||
3722             skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3723                 hlen = skb_headlen(from);
3724                 if (!hlen)
3725                         hlen = from->len;
3726         }
3727 
3728         if (skb_has_frag_list(from))
3729                 hlen = from->len;
3730 
3731         return hlen;
3732 }
3733 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3734 
3735 /**
3736  *      skb_zerocopy - Zero copy skb to skb
3737  *      @to: destination buffer
3738  *      @from: source buffer
3739  *      @len: number of bytes to copy from source buffer
3740  *      @hlen: size of linear headroom in destination buffer
3741  *
3742  *      Copies up to `len` bytes from `from` to `to` by creating references
3743  *      to the frags in the source buffer.
3744  *
3745  *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3746  *      headroom in the `to` buffer.
3747  *
3748  *      Return value:
3749  *      0: everything is OK
3750  *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
3751  *      -EFAULT: skb_copy_bits() found some problem with skb geometry
3752  */
3753 int
3754 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3755 {
3756         int i, j = 0;
3757         int plen = 0; /* length of skb->head fragment */
3758         int ret;
3759         struct page *page;
3760         unsigned int offset;
3761 
3762         BUG_ON(!from->head_frag && !hlen);
3763 
3764         /* dont bother with small payloads */
3765         if (len <= skb_tailroom(to))
3766                 return skb_copy_bits(from, 0, skb_put(to, len), len);
3767 
3768         if (hlen) {
3769                 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3770                 if (unlikely(ret))
3771                         return ret;
3772                 len -= hlen;
3773         } else {
3774                 plen = min_t(int, skb_headlen(from), len);
3775                 if (plen) {
3776                         page = virt_to_head_page(from->head);
3777                         offset = from->data - (unsigned char *)page_address(page);
3778                         __skb_fill_netmem_desc(to, 0, page_to_netmem(page),
3779                                                offset, plen);
3780                         get_page(page);
3781                         j = 1;
3782                         len -= plen;
3783                 }
3784         }
3785 
3786         skb_len_add(to, len + plen);
3787 
3788         if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3789                 skb_tx_error(from);
3790                 return -ENOMEM;
3791         }
3792         skb_zerocopy_clone(to, from, GFP_ATOMIC);
3793 
3794         for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3795                 int size;
3796 
3797                 if (!len)
3798                         break;
3799                 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3800                 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3801                                         len);
3802                 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3803                 len -= size;
3804                 skb_frag_ref(to, j);
3805                 j++;
3806         }
3807         skb_shinfo(to)->nr_frags = j;
3808 
3809         return 0;
3810 }
3811 EXPORT_SYMBOL_GPL(skb_zerocopy);
3812 
3813 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3814 {
3815         __wsum csum;
3816         long csstart;
3817 
3818         if (skb->ip_summed == CHECKSUM_PARTIAL)
3819                 csstart = skb_checksum_start_offset(skb);
3820         else
3821                 csstart = skb_headlen(skb);
3822 
3823         BUG_ON(csstart > skb_headlen(skb));
3824 
3825         skb_copy_from_linear_data(skb, to, csstart);
3826 
3827         csum = 0;
3828         if (csstart != skb->len)
3829                 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3830                                               skb->len - csstart);
3831 
3832         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3833                 long csstuff = csstart + skb->csum_offset;
3834 
3835                 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3836         }
3837 }
3838 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3839 
3840 /**
3841  *      skb_dequeue - remove from the head of the queue
3842  *      @list: list to dequeue from
3843  *
3844  *      Remove the head of the list. The list lock is taken so the function
3845  *      may be used safely with other locking list functions. The head item is
3846  *      returned or %NULL if the list is empty.
3847  */
3848 
3849 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3850 {
3851         unsigned long flags;
3852         struct sk_buff *result;
3853 
3854         spin_lock_irqsave(&list->lock, flags);
3855         result = __skb_dequeue(list);
3856         spin_unlock_irqrestore(&list->lock, flags);
3857         return result;
3858 }
3859 EXPORT_SYMBOL(skb_dequeue);
3860 
3861 /**
3862  *      skb_dequeue_tail - remove from the tail of the queue
3863  *      @list: list to dequeue from
3864  *
3865  *      Remove the tail of the list. The list lock is taken so the function
3866  *      may be used safely with other locking list functions. The tail item is
3867  *      returned or %NULL if the list is empty.
3868  */
3869 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3870 {
3871         unsigned long flags;
3872         struct sk_buff *result;
3873 
3874         spin_lock_irqsave(&list->lock, flags);
3875         result = __skb_dequeue_tail(list);
3876         spin_unlock_irqrestore(&list->lock, flags);
3877         return result;
3878 }
3879 EXPORT_SYMBOL(skb_dequeue_tail);
3880 
3881 /**
3882  *      skb_queue_purge_reason - empty a list
3883  *      @list: list to empty
3884  *      @reason: drop reason
3885  *
3886  *      Delete all buffers on an &sk_buff list. Each buffer is removed from
3887  *      the list and one reference dropped. This function takes the list
3888  *      lock and is atomic with respect to other list locking functions.
3889  */
3890 void skb_queue_purge_reason(struct sk_buff_head *list,
3891                             enum skb_drop_reason reason)
3892 {
3893         struct sk_buff_head tmp;
3894         unsigned long flags;
3895 
3896         if (skb_queue_empty_lockless(list))
3897                 return;
3898 
3899         __skb_queue_head_init(&tmp);
3900 
3901         spin_lock_irqsave(&list->lock, flags);
3902         skb_queue_splice_init(list, &tmp);
3903         spin_unlock_irqrestore(&list->lock, flags);
3904 
3905         __skb_queue_purge_reason(&tmp, reason);
3906 }
3907 EXPORT_SYMBOL(skb_queue_purge_reason);
3908 
3909 /**
3910  *      skb_rbtree_purge - empty a skb rbtree
3911  *      @root: root of the rbtree to empty
3912  *      Return value: the sum of truesizes of all purged skbs.
3913  *
3914  *      Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3915  *      the list and one reference dropped. This function does not take
3916  *      any lock. Synchronization should be handled by the caller (e.g., TCP
3917  *      out-of-order queue is protected by the socket lock).
3918  */
3919 unsigned int skb_rbtree_purge(struct rb_root *root)
3920 {
3921         struct rb_node *p = rb_first(root);
3922         unsigned int sum = 0;
3923 
3924         while (p) {
3925                 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3926 
3927                 p = rb_next(p);
3928                 rb_erase(&skb->rbnode, root);
3929                 sum += skb->truesize;
3930                 kfree_skb(skb);
3931         }
3932         return sum;
3933 }
3934 
3935 void skb_errqueue_purge(struct sk_buff_head *list)
3936 {
3937         struct sk_buff *skb, *next;
3938         struct sk_buff_head kill;
3939         unsigned long flags;
3940 
3941         __skb_queue_head_init(&kill);
3942 
3943         spin_lock_irqsave(&list->lock, flags);
3944         skb_queue_walk_safe(list, skb, next) {
3945                 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3946                     SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3947                         continue;
3948                 __skb_unlink(skb, list);
3949                 __skb_queue_tail(&kill, skb);
3950         }
3951         spin_unlock_irqrestore(&list->lock, flags);
3952         __skb_queue_purge(&kill);
3953 }
3954 EXPORT_SYMBOL(skb_errqueue_purge);
3955 
3956 /**
3957  *      skb_queue_head - queue a buffer at the list head
3958  *      @list: list to use
3959  *      @newsk: buffer to queue
3960  *
3961  *      Queue a buffer at the start of the list. This function takes the
3962  *      list lock and can be used safely with other locking &sk_buff functions
3963  *      safely.
3964  *
3965  *      A buffer cannot be placed on two lists at the same time.
3966  */
3967 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3968 {
3969         unsigned long flags;
3970 
3971         spin_lock_irqsave(&list->lock, flags);
3972         __skb_queue_head(list, newsk);
3973         spin_unlock_irqrestore(&list->lock, flags);
3974 }
3975 EXPORT_SYMBOL(skb_queue_head);
3976 
3977 /**
3978  *      skb_queue_tail - queue a buffer at the list tail
3979  *      @list: list to use
3980  *      @newsk: buffer to queue
3981  *
3982  *      Queue a buffer at the tail of the list. This function takes the
3983  *      list lock and can be used safely with other locking &sk_buff functions
3984  *      safely.
3985  *
3986  *      A buffer cannot be placed on two lists at the same time.
3987  */
3988 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3989 {
3990         unsigned long flags;
3991 
3992         spin_lock_irqsave(&list->lock, flags);
3993         __skb_queue_tail(list, newsk);
3994         spin_unlock_irqrestore(&list->lock, flags);
3995 }
3996 EXPORT_SYMBOL(skb_queue_tail);
3997 
3998 /**
3999  *      skb_unlink      -       remove a buffer from a list
4000  *      @skb: buffer to remove
4001  *      @list: list to use
4002  *
4003  *      Remove a packet from a list. The list locks are taken and this
4004  *      function is atomic with respect to other list locked calls
4005  *
4006  *      You must know what list the SKB is on.
4007  */
4008 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
4009 {
4010         unsigned long flags;
4011 
4012         spin_lock_irqsave(&list->lock, flags);
4013         __skb_unlink(skb, list);
4014         spin_unlock_irqrestore(&list->lock, flags);
4015 }
4016 EXPORT_SYMBOL(skb_unlink);
4017 
4018 /**
4019  *      skb_append      -       append a buffer
4020  *      @old: buffer to insert after
4021  *      @newsk: buffer to insert
4022  *      @list: list to use
4023  *
4024  *      Place a packet after a given packet in a list. The list locks are taken
4025  *      and this function is atomic with respect to other list locked calls.
4026  *      A buffer cannot be placed on two lists at the same time.
4027  */
4028 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
4029 {
4030         unsigned long flags;
4031 
4032         spin_lock_irqsave(&list->lock, flags);
4033         __skb_queue_after(list, old, newsk);
4034         spin_unlock_irqrestore(&list->lock, flags);
4035 }
4036 EXPORT_SYMBOL(skb_append);
4037 
4038 static inline void skb_split_inside_header(struct sk_buff *skb,
4039                                            struct sk_buff* skb1,
4040                                            const u32 len, const int pos)
4041 {
4042         int i;
4043 
4044         skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
4045                                          pos - len);
4046         /* And move data appendix as is. */
4047         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4048                 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
4049 
4050         skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
4051         skb_shinfo(skb)->nr_frags  = 0;
4052         skb1->data_len             = skb->data_len;
4053         skb1->len                  += skb1->data_len;
4054         skb->data_len              = 0;
4055         skb->len                   = len;
4056         skb_set_tail_pointer(skb, len);
4057 }
4058 
4059 static inline void skb_split_no_header(struct sk_buff *skb,
4060                                        struct sk_buff* skb1,
4061                                        const u32 len, int pos)
4062 {
4063         int i, k = 0;
4064         const int nfrags = skb_shinfo(skb)->nr_frags;
4065 
4066         skb_shinfo(skb)->nr_frags = 0;
4067         skb1->len                 = skb1->data_len = skb->len - len;
4068         skb->len                  = len;
4069         skb->data_len             = len - pos;
4070 
4071         for (i = 0; i < nfrags; i++) {
4072                 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4073 
4074                 if (pos + size > len) {
4075                         skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
4076 
4077                         if (pos < len) {
4078                                 /* Split frag.
4079                                  * We have two variants in this case:
4080                                  * 1. Move all the frag to the second
4081                                  *    part, if it is possible. F.e.
4082                                  *    this approach is mandatory for TUX,
4083                                  *    where splitting is expensive.
4084                                  * 2. Split is accurately. We make this.
4085                                  */
4086                                 skb_frag_ref(skb, i);
4087                                 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
4088                                 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
4089                                 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
4090                                 skb_shinfo(skb)->nr_frags++;
4091                         }
4092                         k++;
4093                 } else
4094                         skb_shinfo(skb)->nr_frags++;
4095                 pos += size;
4096         }
4097         skb_shinfo(skb1)->nr_frags = k;
4098 }
4099 
4100 /**
4101  * skb_split - Split fragmented skb to two parts at length len.
4102  * @skb: the buffer to split
4103  * @skb1: the buffer to receive the second part
4104  * @len: new length for skb
4105  */
4106 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
4107 {
4108         int pos = skb_headlen(skb);
4109         const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
4110 
4111         skb_zcopy_downgrade_managed(skb);
4112 
4113         skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
4114         skb_zerocopy_clone(skb1, skb, 0);
4115         if (len < pos)  /* Split line is inside header. */
4116                 skb_split_inside_header(skb, skb1, len, pos);
4117         else            /* Second chunk has no header, nothing to copy. */
4118                 skb_split_no_header(skb, skb1, len, pos);
4119 }
4120 EXPORT_SYMBOL(skb_split);
4121 
4122 /* Shifting from/to a cloned skb is a no-go.
4123  *
4124  * Caller cannot keep skb_shinfo related pointers past calling here!
4125  */
4126 static int skb_prepare_for_shift(struct sk_buff *skb)
4127 {
4128         return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4129 }
4130 
4131 /**
4132  * skb_shift - Shifts paged data partially from skb to another
4133  * @tgt: buffer into which tail data gets added
4134  * @skb: buffer from which the paged data comes from
4135  * @shiftlen: shift up to this many bytes
4136  *
4137  * Attempts to shift up to shiftlen worth of bytes, which may be less than
4138  * the length of the skb, from skb to tgt. Returns number bytes shifted.
4139  * It's up to caller to free skb if everything was shifted.
4140  *
4141  * If @tgt runs out of frags, the whole operation is aborted.
4142  *
4143  * Skb cannot include anything else but paged data while tgt is allowed
4144  * to have non-paged data as well.
4145  *
4146  * TODO: full sized shift could be optimized but that would need
4147  * specialized skb free'er to handle frags without up-to-date nr_frags.
4148  */
4149 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4150 {
4151         int from, to, merge, todo;
4152         skb_frag_t *fragfrom, *fragto;
4153 
4154         BUG_ON(shiftlen > skb->len);
4155 
4156         if (skb_headlen(skb))
4157                 return 0;
4158         if (skb_zcopy(tgt) || skb_zcopy(skb))
4159                 return 0;
4160 
4161         DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle);
4162         DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb));
4163 
4164         todo = shiftlen;
4165         from = 0;
4166         to = skb_shinfo(tgt)->nr_frags;
4167         fragfrom = &skb_shinfo(skb)->frags[from];
4168 
4169         /* Actual merge is delayed until the point when we know we can
4170          * commit all, so that we don't have to undo partial changes
4171          */
4172         if (!to ||
4173             !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4174                               skb_frag_off(fragfrom))) {
4175                 merge = -1;
4176         } else {
4177                 merge = to - 1;
4178 
4179                 todo -= skb_frag_size(fragfrom);
4180                 if (todo < 0) {
4181                         if (skb_prepare_for_shift(skb) ||
4182                             skb_prepare_for_shift(tgt))
4183                                 return 0;
4184 
4185                         /* All previous frag pointers might be stale! */
4186                         fragfrom = &skb_shinfo(skb)->frags[from];
4187                         fragto = &skb_shinfo(tgt)->frags[merge];
4188 
4189                         skb_frag_size_add(fragto, shiftlen);
4190                         skb_frag_size_sub(fragfrom, shiftlen);
4191                         skb_frag_off_add(fragfrom, shiftlen);
4192 
4193                         goto onlymerged;
4194                 }
4195 
4196                 from++;
4197         }
4198 
4199         /* Skip full, not-fitting skb to avoid expensive operations */
4200         if ((shiftlen == skb->len) &&
4201             (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4202                 return 0;
4203 
4204         if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4205                 return 0;
4206 
4207         while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4208                 if (to == MAX_SKB_FRAGS)
4209                         return 0;
4210 
4211                 fragfrom = &skb_shinfo(skb)->frags[from];
4212                 fragto = &skb_shinfo(tgt)->frags[to];
4213 
4214                 if (todo >= skb_frag_size(fragfrom)) {
4215                         *fragto = *fragfrom;
4216                         todo -= skb_frag_size(fragfrom);
4217                         from++;
4218                         to++;
4219 
4220                 } else {
4221                         __skb_frag_ref(fragfrom);
4222                         skb_frag_page_copy(fragto, fragfrom);
4223                         skb_frag_off_copy(fragto, fragfrom);
4224                         skb_frag_size_set(fragto, todo);
4225 
4226                         skb_frag_off_add(fragfrom, todo);
4227                         skb_frag_size_sub(fragfrom, todo);
4228                         todo = 0;
4229 
4230                         to++;
4231                         break;
4232                 }
4233         }
4234 
4235         /* Ready to "commit" this state change to tgt */
4236         skb_shinfo(tgt)->nr_frags = to;
4237 
4238         if (merge >= 0) {
4239                 fragfrom = &skb_shinfo(skb)->frags[0];
4240                 fragto = &skb_shinfo(tgt)->frags[merge];
4241 
4242                 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4243                 __skb_frag_unref(fragfrom, skb->pp_recycle);
4244         }
4245 
4246         /* Reposition in the original skb */
4247         to = 0;
4248         while (from < skb_shinfo(skb)->nr_frags)
4249                 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4250         skb_shinfo(skb)->nr_frags = to;
4251 
4252         BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4253 
4254 onlymerged:
4255         /* Most likely the tgt won't ever need its checksum anymore, skb on
4256          * the other hand might need it if it needs to be resent
4257          */
4258         tgt->ip_summed = CHECKSUM_PARTIAL;
4259         skb->ip_summed = CHECKSUM_PARTIAL;
4260 
4261         skb_len_add(skb, -shiftlen);
4262         skb_len_add(tgt, shiftlen);
4263 
4264         return shiftlen;
4265 }
4266 
4267 /**
4268  * skb_prepare_seq_read - Prepare a sequential read of skb data
4269  * @skb: the buffer to read
4270  * @from: lower offset of data to be read
4271  * @to: upper offset of data to be read
4272  * @st: state variable
4273  *
4274  * Initializes the specified state variable. Must be called before
4275  * invoking skb_seq_read() for the first time.
4276  */
4277 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4278                           unsigned int to, struct skb_seq_state *st)
4279 {
4280         st->lower_offset = from;
4281         st->upper_offset = to;
4282         st->root_skb = st->cur_skb = skb;
4283         st->frag_idx = st->stepped_offset = 0;
4284         st->frag_data = NULL;
4285         st->frag_off = 0;
4286 }
4287 EXPORT_SYMBOL(skb_prepare_seq_read);
4288 
4289 /**
4290  * skb_seq_read - Sequentially read skb data
4291  * @consumed: number of bytes consumed by the caller so far
4292  * @data: destination pointer for data to be returned
4293  * @st: state variable
4294  *
4295  * Reads a block of skb data at @consumed relative to the
4296  * lower offset specified to skb_prepare_seq_read(). Assigns
4297  * the head of the data block to @data and returns the length
4298  * of the block or 0 if the end of the skb data or the upper
4299  * offset has been reached.
4300  *
4301  * The caller is not required to consume all of the data
4302  * returned, i.e. @consumed is typically set to the number
4303  * of bytes already consumed and the next call to
4304  * skb_seq_read() will return the remaining part of the block.
4305  *
4306  * Note 1: The size of each block of data returned can be arbitrary,
4307  *       this limitation is the cost for zerocopy sequential
4308  *       reads of potentially non linear data.
4309  *
4310  * Note 2: Fragment lists within fragments are not implemented
4311  *       at the moment, state->root_skb could be replaced with
4312  *       a stack for this purpose.
4313  */
4314 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4315                           struct skb_seq_state *st)
4316 {
4317         unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4318         skb_frag_t *frag;
4319 
4320         if (unlikely(abs_offset >= st->upper_offset)) {
4321                 if (st->frag_data) {
4322                         kunmap_atomic(st->frag_data);
4323                         st->frag_data = NULL;
4324                 }
4325                 return 0;
4326         }
4327 
4328 next_skb:
4329         block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4330 
4331         if (abs_offset < block_limit && !st->frag_data) {
4332                 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4333                 return block_limit - abs_offset;
4334         }
4335 
4336         if (st->frag_idx == 0 && !st->frag_data)
4337                 st->stepped_offset += skb_headlen(st->cur_skb);
4338 
4339         while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4340                 unsigned int pg_idx, pg_off, pg_sz;
4341 
4342                 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4343 
4344                 pg_idx = 0;
4345                 pg_off = skb_frag_off(frag);
4346                 pg_sz = skb_frag_size(frag);
4347 
4348                 if (skb_frag_must_loop(skb_frag_page(frag))) {
4349                         pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4350                         pg_off = offset_in_page(pg_off + st->frag_off);
4351                         pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4352                                                     PAGE_SIZE - pg_off);
4353                 }
4354 
4355                 block_limit = pg_sz + st->stepped_offset;
4356                 if (abs_offset < block_limit) {
4357                         if (!st->frag_data)
4358                                 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4359 
4360                         *data = (u8 *)st->frag_data + pg_off +
4361                                 (abs_offset - st->stepped_offset);
4362 
4363                         return block_limit - abs_offset;
4364                 }
4365 
4366                 if (st->frag_data) {
4367                         kunmap_atomic(st->frag_data);
4368                         st->frag_data = NULL;
4369                 }
4370 
4371                 st->stepped_offset += pg_sz;
4372                 st->frag_off += pg_sz;
4373                 if (st->frag_off == skb_frag_size(frag)) {
4374                         st->frag_off = 0;
4375                         st->frag_idx++;
4376                 }
4377         }
4378 
4379         if (st->frag_data) {
4380                 kunmap_atomic(st->frag_data);
4381                 st->frag_data = NULL;
4382         }
4383 
4384         if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4385                 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4386                 st->frag_idx = 0;
4387                 goto next_skb;
4388         } else if (st->cur_skb->next) {
4389                 st->cur_skb = st->cur_skb->next;
4390                 st->frag_idx = 0;
4391                 goto next_skb;
4392         }
4393 
4394         return 0;
4395 }
4396 EXPORT_SYMBOL(skb_seq_read);
4397 
4398 /**
4399  * skb_abort_seq_read - Abort a sequential read of skb data
4400  * @st: state variable
4401  *
4402  * Must be called if skb_seq_read() was not called until it
4403  * returned 0.
4404  */
4405 void skb_abort_seq_read(struct skb_seq_state *st)
4406 {
4407         if (st->frag_data)
4408                 kunmap_atomic(st->frag_data);
4409 }
4410 EXPORT_SYMBOL(skb_abort_seq_read);
4411 
4412 #define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
4413 
4414 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4415                                           struct ts_config *conf,
4416                                           struct ts_state *state)
4417 {
4418         return skb_seq_read(offset, text, TS_SKB_CB(state));
4419 }
4420 
4421 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4422 {
4423         skb_abort_seq_read(TS_SKB_CB(state));
4424 }
4425 
4426 /**
4427  * skb_find_text - Find a text pattern in skb data
4428  * @skb: the buffer to look in
4429  * @from: search offset
4430  * @to: search limit
4431  * @config: textsearch configuration
4432  *
4433  * Finds a pattern in the skb data according to the specified
4434  * textsearch configuration. Use textsearch_next() to retrieve
4435  * subsequent occurrences of the pattern. Returns the offset
4436  * to the first occurrence or UINT_MAX if no match was found.
4437  */
4438 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4439                            unsigned int to, struct ts_config *config)
4440 {
4441         unsigned int patlen = config->ops->get_pattern_len(config);
4442         struct ts_state state;
4443         unsigned int ret;
4444 
4445         BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4446 
4447         config->get_next_block = skb_ts_get_next_block;
4448         config->finish = skb_ts_finish;
4449 
4450         skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4451 
4452         ret = textsearch_find(config, &state);
4453         return (ret + patlen <= to - from ? ret : UINT_MAX);
4454 }
4455 EXPORT_SYMBOL(skb_find_text);
4456 
4457 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4458                          int offset, size_t size, size_t max_frags)
4459 {
4460         int i = skb_shinfo(skb)->nr_frags;
4461 
4462         if (skb_can_coalesce(skb, i, page, offset)) {
4463                 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4464         } else if (i < max_frags) {
4465                 skb_zcopy_downgrade_managed(skb);
4466                 get_page(page);
4467                 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4468         } else {
4469                 return -EMSGSIZE;
4470         }
4471 
4472         return 0;
4473 }
4474 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4475 
4476 /**
4477  *      skb_pull_rcsum - pull skb and update receive checksum
4478  *      @skb: buffer to update
4479  *      @len: length of data pulled
4480  *
4481  *      This function performs an skb_pull on the packet and updates
4482  *      the CHECKSUM_COMPLETE checksum.  It should be used on
4483  *      receive path processing instead of skb_pull unless you know
4484  *      that the checksum difference is zero (e.g., a valid IP header)
4485  *      or you are setting ip_summed to CHECKSUM_NONE.
4486  */
4487 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4488 {
4489         unsigned char *data = skb->data;
4490 
4491         BUG_ON(len > skb->len);
4492         __skb_pull(skb, len);
4493         skb_postpull_rcsum(skb, data, len);
4494         return skb->data;
4495 }
4496 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4497 
4498 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4499 {
4500         skb_frag_t head_frag;
4501         struct page *page;
4502 
4503         page = virt_to_head_page(frag_skb->head);
4504         skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4505                                 (unsigned char *)page_address(page),
4506                                 skb_headlen(frag_skb));
4507         return head_frag;
4508 }
4509 
4510 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4511                                  netdev_features_t features,
4512                                  unsigned int offset)
4513 {
4514         struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4515         unsigned int tnl_hlen = skb_tnl_header_len(skb);
4516         unsigned int delta_truesize = 0;
4517         unsigned int delta_len = 0;
4518         struct sk_buff *tail = NULL;
4519         struct sk_buff *nskb, *tmp;
4520         int len_diff, err;
4521 
4522         skb_push(skb, -skb_network_offset(skb) + offset);
4523 
4524         /* Ensure the head is writeable before touching the shared info */
4525         err = skb_unclone(skb, GFP_ATOMIC);
4526         if (err)
4527                 goto err_linearize;
4528 
4529         skb_shinfo(skb)->frag_list = NULL;
4530 
4531         while (list_skb) {
4532                 nskb = list_skb;
4533                 list_skb = list_skb->next;
4534 
4535                 err = 0;
4536                 delta_truesize += nskb->truesize;
4537                 if (skb_shared(nskb)) {
4538                         tmp = skb_clone(nskb, GFP_ATOMIC);
4539                         if (tmp) {
4540                                 consume_skb(nskb);
4541                                 nskb = tmp;
4542                                 err = skb_unclone(nskb, GFP_ATOMIC);
4543                         } else {
4544                                 err = -ENOMEM;
4545                         }
4546                 }
4547 
4548                 if (!tail)
4549                         skb->next = nskb;
4550                 else
4551                         tail->next = nskb;
4552 
4553                 if (unlikely(err)) {
4554                         nskb->next = list_skb;
4555                         goto err_linearize;
4556                 }
4557 
4558                 tail = nskb;
4559 
4560                 delta_len += nskb->len;
4561 
4562                 skb_push(nskb, -skb_network_offset(nskb) + offset);
4563 
4564                 skb_release_head_state(nskb);
4565                 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4566                 __copy_skb_header(nskb, skb);
4567 
4568                 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4569                 nskb->transport_header += len_diff;
4570                 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4571                                                  nskb->data - tnl_hlen,
4572                                                  offset + tnl_hlen);
4573 
4574                 if (skb_needs_linearize(nskb, features) &&
4575                     __skb_linearize(nskb))
4576                         goto err_linearize;
4577         }
4578 
4579         skb->truesize = skb->truesize - delta_truesize;
4580         skb->data_len = skb->data_len - delta_len;
4581         skb->len = skb->len - delta_len;
4582 
4583         skb_gso_reset(skb);
4584 
4585         skb->prev = tail;
4586 
4587         if (skb_needs_linearize(skb, features) &&
4588             __skb_linearize(skb))
4589                 goto err_linearize;
4590 
4591         skb_get(skb);
4592 
4593         return skb;
4594 
4595 err_linearize:
4596         kfree_skb_list(skb->next);
4597         skb->next = NULL;
4598         return ERR_PTR(-ENOMEM);
4599 }
4600 EXPORT_SYMBOL_GPL(skb_segment_list);
4601 
4602 /**
4603  *      skb_segment - Perform protocol segmentation on skb.
4604  *      @head_skb: buffer to segment
4605  *      @features: features for the output path (see dev->features)
4606  *
4607  *      This function performs segmentation on the given skb.  It returns
4608  *      a pointer to the first in a list of new skbs for the segments.
4609  *      In case of error it returns ERR_PTR(err).
4610  */
4611 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4612                             netdev_features_t features)
4613 {
4614         struct sk_buff *segs = NULL;
4615         struct sk_buff *tail = NULL;
4616         struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4617         unsigned int mss = skb_shinfo(head_skb)->gso_size;
4618         unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4619         unsigned int offset = doffset;
4620         unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4621         unsigned int partial_segs = 0;
4622         unsigned int headroom;
4623         unsigned int len = head_skb->len;
4624         struct sk_buff *frag_skb;
4625         skb_frag_t *frag;
4626         __be16 proto;
4627         bool csum, sg;
4628         int err = -ENOMEM;
4629         int i = 0;
4630         int nfrags, pos;
4631 
4632         if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4633             mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4634                 struct sk_buff *check_skb;
4635 
4636                 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4637                         if (skb_headlen(check_skb) && !check_skb->head_frag) {
4638                                 /* gso_size is untrusted, and we have a frag_list with
4639                                  * a linear non head_frag item.
4640                                  *
4641                                  * If head_skb's headlen does not fit requested gso_size,
4642                                  * it means that the frag_list members do NOT terminate
4643                                  * on exact gso_size boundaries. Hence we cannot perform
4644                                  * skb_frag_t page sharing. Therefore we must fallback to
4645                                  * copying the frag_list skbs; we do so by disabling SG.
4646                                  */
4647                                 features &= ~NETIF_F_SG;
4648                                 break;
4649                         }
4650                 }
4651         }
4652 
4653         __skb_push(head_skb, doffset);
4654         proto = skb_network_protocol(head_skb, NULL);
4655         if (unlikely(!proto))
4656                 return ERR_PTR(-EINVAL);
4657 
4658         sg = !!(features & NETIF_F_SG);
4659         csum = !!can_checksum_protocol(features, proto);
4660 
4661         if (sg && csum && (mss != GSO_BY_FRAGS))  {
4662                 if (!(features & NETIF_F_GSO_PARTIAL)) {
4663                         struct sk_buff *iter;
4664                         unsigned int frag_len;
4665 
4666                         if (!list_skb ||
4667                             !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4668                                 goto normal;
4669 
4670                         /* If we get here then all the required
4671                          * GSO features except frag_list are supported.
4672                          * Try to split the SKB to multiple GSO SKBs
4673                          * with no frag_list.
4674                          * Currently we can do that only when the buffers don't
4675                          * have a linear part and all the buffers except
4676                          * the last are of the same length.
4677                          */
4678                         frag_len = list_skb->len;
4679                         skb_walk_frags(head_skb, iter) {
4680                                 if (frag_len != iter->len && iter->next)
4681                                         goto normal;
4682                                 if (skb_headlen(iter) && !iter->head_frag)
4683                                         goto normal;
4684 
4685                                 len -= iter->len;
4686                         }
4687 
4688                         if (len != frag_len)
4689                                 goto normal;
4690                 }
4691 
4692                 /* GSO partial only requires that we trim off any excess that
4693                  * doesn't fit into an MSS sized block, so take care of that
4694                  * now.
4695                  * Cap len to not accidentally hit GSO_BY_FRAGS.
4696                  */
4697                 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4698                 if (partial_segs > 1)
4699                         mss *= partial_segs;
4700                 else
4701                         partial_segs = 0;
4702         }
4703 
4704 normal:
4705         headroom = skb_headroom(head_skb);
4706         pos = skb_headlen(head_skb);
4707 
4708         if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4709                 return ERR_PTR(-ENOMEM);
4710 
4711         nfrags = skb_shinfo(head_skb)->nr_frags;
4712         frag = skb_shinfo(head_skb)->frags;
4713         frag_skb = head_skb;
4714 
4715         do {
4716                 struct sk_buff *nskb;
4717                 skb_frag_t *nskb_frag;
4718                 int hsize;
4719                 int size;
4720 
4721                 if (unlikely(mss == GSO_BY_FRAGS)) {
4722                         len = list_skb->len;
4723                 } else {
4724                         len = head_skb->len - offset;
4725                         if (len > mss)
4726                                 len = mss;
4727                 }
4728 
4729                 hsize = skb_headlen(head_skb) - offset;
4730 
4731                 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4732                     (skb_headlen(list_skb) == len || sg)) {
4733                         BUG_ON(skb_headlen(list_skb) > len);
4734 
4735                         nskb = skb_clone(list_skb, GFP_ATOMIC);
4736                         if (unlikely(!nskb))
4737                                 goto err;
4738 
4739                         i = 0;
4740                         nfrags = skb_shinfo(list_skb)->nr_frags;
4741                         frag = skb_shinfo(list_skb)->frags;
4742                         frag_skb = list_skb;
4743                         pos += skb_headlen(list_skb);
4744 
4745                         while (pos < offset + len) {
4746                                 BUG_ON(i >= nfrags);
4747 
4748                                 size = skb_frag_size(frag);
4749                                 if (pos + size > offset + len)
4750                                         break;
4751 
4752                                 i++;
4753                                 pos += size;
4754                                 frag++;
4755                         }
4756 
4757                         list_skb = list_skb->next;
4758 
4759                         if (unlikely(pskb_trim(nskb, len))) {
4760                                 kfree_skb(nskb);
4761                                 goto err;
4762                         }
4763 
4764                         hsize = skb_end_offset(nskb);
4765                         if (skb_cow_head(nskb, doffset + headroom)) {
4766                                 kfree_skb(nskb);
4767                                 goto err;
4768                         }
4769 
4770                         nskb->truesize += skb_end_offset(nskb) - hsize;
4771                         skb_release_head_state(nskb);
4772                         __skb_push(nskb, doffset);
4773                 } else {
4774                         if (hsize < 0)
4775                                 hsize = 0;
4776                         if (hsize > len || !sg)
4777                                 hsize = len;
4778 
4779                         nskb = __alloc_skb(hsize + doffset + headroom,
4780                                            GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4781                                            NUMA_NO_NODE);
4782 
4783                         if (unlikely(!nskb))
4784                                 goto err;
4785 
4786                         skb_reserve(nskb, headroom);
4787                         __skb_put(nskb, doffset);
4788                 }
4789 
4790                 if (segs)
4791                         tail->next = nskb;
4792                 else
4793                         segs = nskb;
4794                 tail = nskb;
4795 
4796                 __copy_skb_header(nskb, head_skb);
4797 
4798                 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4799                 skb_reset_mac_len(nskb);
4800 
4801                 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4802                                                  nskb->data - tnl_hlen,
4803                                                  doffset + tnl_hlen);
4804 
4805                 if (nskb->len == len + doffset)
4806                         goto perform_csum_check;
4807 
4808                 if (!sg) {
4809                         if (!csum) {
4810                                 if (!nskb->remcsum_offload)
4811                                         nskb->ip_summed = CHECKSUM_NONE;
4812                                 SKB_GSO_CB(nskb)->csum =
4813                                         skb_copy_and_csum_bits(head_skb, offset,
4814                                                                skb_put(nskb,
4815                                                                        len),
4816                                                                len);
4817                                 SKB_GSO_CB(nskb)->csum_start =
4818                                         skb_headroom(nskb) + doffset;
4819                         } else {
4820                                 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4821                                         goto err;
4822                         }
4823                         continue;
4824                 }
4825 
4826                 nskb_frag = skb_shinfo(nskb)->frags;
4827 
4828                 skb_copy_from_linear_data_offset(head_skb, offset,
4829                                                  skb_put(nskb, hsize), hsize);
4830 
4831                 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4832                                            SKBFL_SHARED_FRAG;
4833 
4834                 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4835                         goto err;
4836 
4837                 while (pos < offset + len) {
4838                         if (i >= nfrags) {
4839                                 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4840                                     skb_zerocopy_clone(nskb, list_skb,
4841                                                        GFP_ATOMIC))
4842                                         goto err;
4843 
4844                                 i = 0;
4845                                 nfrags = skb_shinfo(list_skb)->nr_frags;
4846                                 frag = skb_shinfo(list_skb)->frags;
4847                                 frag_skb = list_skb;
4848                                 if (!skb_headlen(list_skb)) {
4849                                         BUG_ON(!nfrags);
4850                                 } else {
4851                                         BUG_ON(!list_skb->head_frag);
4852 
4853                                         /* to make room for head_frag. */
4854                                         i--;
4855                                         frag--;
4856                                 }
4857 
4858                                 list_skb = list_skb->next;
4859                         }
4860 
4861                         if (unlikely(skb_shinfo(nskb)->nr_frags >=
4862                                      MAX_SKB_FRAGS)) {
4863                                 net_warn_ratelimited(
4864                                         "skb_segment: too many frags: %u %u\n",
4865                                         pos, mss);
4866                                 err = -EINVAL;
4867                                 goto err;
4868                         }
4869 
4870                         *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4871                         __skb_frag_ref(nskb_frag);
4872                         size = skb_frag_size(nskb_frag);
4873 
4874                         if (pos < offset) {
4875                                 skb_frag_off_add(nskb_frag, offset - pos);
4876                                 skb_frag_size_sub(nskb_frag, offset - pos);
4877                         }
4878 
4879                         skb_shinfo(nskb)->nr_frags++;
4880 
4881                         if (pos + size <= offset + len) {
4882                                 i++;
4883                                 frag++;
4884                                 pos += size;
4885                         } else {
4886                                 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4887                                 goto skip_fraglist;
4888                         }
4889 
4890                         nskb_frag++;
4891                 }
4892 
4893 skip_fraglist:
4894                 nskb->data_len = len - hsize;
4895                 nskb->len += nskb->data_len;
4896                 nskb->truesize += nskb->data_len;
4897 
4898 perform_csum_check:
4899                 if (!csum) {
4900                         if (skb_has_shared_frag(nskb) &&
4901                             __skb_linearize(nskb))
4902                                 goto err;
4903 
4904                         if (!nskb->remcsum_offload)
4905                                 nskb->ip_summed = CHECKSUM_NONE;
4906                         SKB_GSO_CB(nskb)->csum =
4907                                 skb_checksum(nskb, doffset,
4908                                              nskb->len - doffset, 0);
4909                         SKB_GSO_CB(nskb)->csum_start =
4910                                 skb_headroom(nskb) + doffset;
4911                 }
4912         } while ((offset += len) < head_skb->len);
4913 
4914         /* Some callers want to get the end of the list.
4915          * Put it in segs->prev to avoid walking the list.
4916          * (see validate_xmit_skb_list() for example)
4917          */
4918         segs->prev = tail;
4919 
4920         if (partial_segs) {
4921                 struct sk_buff *iter;
4922                 int type = skb_shinfo(head_skb)->gso_type;
4923                 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4924 
4925                 /* Update type to add partial and then remove dodgy if set */
4926                 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4927                 type &= ~SKB_GSO_DODGY;
4928 
4929                 /* Update GSO info and prepare to start updating headers on
4930                  * our way back down the stack of protocols.
4931                  */
4932                 for (iter = segs; iter; iter = iter->next) {
4933                         skb_shinfo(iter)->gso_size = gso_size;
4934                         skb_shinfo(iter)->gso_segs = partial_segs;
4935                         skb_shinfo(iter)->gso_type = type;
4936                         SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4937                 }
4938 
4939                 if (tail->len - doffset <= gso_size)
4940                         skb_shinfo(tail)->gso_size = 0;
4941                 else if (tail != segs)
4942                         skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4943         }
4944 
4945         /* Following permits correct backpressure, for protocols
4946          * using skb_set_owner_w().
4947          * Idea is to tranfert ownership from head_skb to last segment.
4948          */
4949         if (head_skb->destructor == sock_wfree) {
4950                 swap(tail->truesize, head_skb->truesize);
4951                 swap(tail->destructor, head_skb->destructor);
4952                 swap(tail->sk, head_skb->sk);
4953         }
4954         return segs;
4955 
4956 err:
4957         kfree_skb_list(segs);
4958         return ERR_PTR(err);
4959 }
4960 EXPORT_SYMBOL_GPL(skb_segment);
4961 
4962 #ifdef CONFIG_SKB_EXTENSIONS
4963 #define SKB_EXT_ALIGN_VALUE     8
4964 #define SKB_EXT_CHUNKSIZEOF(x)  (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4965 
4966 static const u8 skb_ext_type_len[] = {
4967 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4968         [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4969 #endif
4970 #ifdef CONFIG_XFRM
4971         [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4972 #endif
4973 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4974         [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4975 #endif
4976 #if IS_ENABLED(CONFIG_MPTCP)
4977         [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4978 #endif
4979 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4980         [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4981 #endif
4982 };
4983 
4984 static __always_inline unsigned int skb_ext_total_length(void)
4985 {
4986         unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4987         int i;
4988 
4989         for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4990                 l += skb_ext_type_len[i];
4991 
4992         return l;
4993 }
4994 
4995 static void skb_extensions_init(void)
4996 {
4997         BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4998 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4999         BUILD_BUG_ON(skb_ext_total_length() > 255);
5000 #endif
5001 
5002         skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
5003                                              SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
5004                                              0,
5005                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5006                                              NULL);
5007 }
5008 #else
5009 static void skb_extensions_init(void) {}
5010 #endif
5011 
5012 /* The SKB kmem_cache slab is critical for network performance.  Never
5013  * merge/alias the slab with similar sized objects.  This avoids fragmentation
5014  * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
5015  */
5016 #ifndef CONFIG_SLUB_TINY
5017 #define FLAG_SKB_NO_MERGE       SLAB_NO_MERGE
5018 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
5019 #define FLAG_SKB_NO_MERGE       0
5020 #endif
5021 
5022 void __init skb_init(void)
5023 {
5024         net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
5025                                               sizeof(struct sk_buff),
5026                                               0,
5027                                               SLAB_HWCACHE_ALIGN|SLAB_PANIC|
5028                                                 FLAG_SKB_NO_MERGE,
5029                                               offsetof(struct sk_buff, cb),
5030                                               sizeof_field(struct sk_buff, cb),
5031                                               NULL);
5032         net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
5033                                                 sizeof(struct sk_buff_fclones),
5034                                                 0,
5035                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
5036                                                 NULL);
5037         /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
5038          * struct skb_shared_info is located at the end of skb->head,
5039          * and should not be copied to/from user.
5040          */
5041         net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
5042                                                 SKB_SMALL_HEAD_CACHE_SIZE,
5043                                                 0,
5044                                                 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
5045                                                 0,
5046                                                 SKB_SMALL_HEAD_HEADROOM,
5047                                                 NULL);
5048         skb_extensions_init();
5049 }
5050 
5051 static int
5052 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
5053                unsigned int recursion_level)
5054 {
5055         int start = skb_headlen(skb);
5056         int i, copy = start - offset;
5057         struct sk_buff *frag_iter;
5058         int elt = 0;
5059 
5060         if (unlikely(recursion_level >= 24))
5061                 return -EMSGSIZE;
5062 
5063         if (copy > 0) {
5064                 if (copy > len)
5065                         copy = len;
5066                 sg_set_buf(sg, skb->data + offset, copy);
5067                 elt++;
5068                 if ((len -= copy) == 0)
5069                         return elt;
5070                 offset += copy;
5071         }
5072 
5073         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5074                 int end;
5075 
5076                 WARN_ON(start > offset + len);
5077 
5078                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
5079                 if ((copy = end - offset) > 0) {
5080                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5081                         if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5082                                 return -EMSGSIZE;
5083 
5084                         if (copy > len)
5085                                 copy = len;
5086                         sg_set_page(&sg[elt], skb_frag_page(frag), copy,
5087                                     skb_frag_off(frag) + offset - start);
5088                         elt++;
5089                         if (!(len -= copy))
5090                                 return elt;
5091                         offset += copy;
5092                 }
5093                 start = end;
5094         }
5095 
5096         skb_walk_frags(skb, frag_iter) {
5097                 int end, ret;
5098 
5099                 WARN_ON(start > offset + len);
5100 
5101                 end = start + frag_iter->len;
5102                 if ((copy = end - offset) > 0) {
5103                         if (unlikely(elt && sg_is_last(&sg[elt - 1])))
5104                                 return -EMSGSIZE;
5105 
5106                         if (copy > len)
5107                                 copy = len;
5108                         ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
5109                                               copy, recursion_level + 1);
5110                         if (unlikely(ret < 0))
5111                                 return ret;
5112                         elt += ret;
5113                         if ((len -= copy) == 0)
5114                                 return elt;
5115                         offset += copy;
5116                 }
5117                 start = end;
5118         }
5119         BUG_ON(len);
5120         return elt;
5121 }
5122 
5123 /**
5124  *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
5125  *      @skb: Socket buffer containing the buffers to be mapped
5126  *      @sg: The scatter-gather list to map into
5127  *      @offset: The offset into the buffer's contents to start mapping
5128  *      @len: Length of buffer space to be mapped
5129  *
5130  *      Fill the specified scatter-gather list with mappings/pointers into a
5131  *      region of the buffer space attached to a socket buffer. Returns either
5132  *      the number of scatterlist items used, or -EMSGSIZE if the contents
5133  *      could not fit.
5134  */
5135 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5136 {
5137         int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5138 
5139         if (nsg <= 0)
5140                 return nsg;
5141 
5142         sg_mark_end(&sg[nsg - 1]);
5143 
5144         return nsg;
5145 }
5146 EXPORT_SYMBOL_GPL(skb_to_sgvec);
5147 
5148 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5149  * sglist without mark the sg which contain last skb data as the end.
5150  * So the caller can mannipulate sg list as will when padding new data after
5151  * the first call without calling sg_unmark_end to expend sg list.
5152  *
5153  * Scenario to use skb_to_sgvec_nomark:
5154  * 1. sg_init_table
5155  * 2. skb_to_sgvec_nomark(payload1)
5156  * 3. skb_to_sgvec_nomark(payload2)
5157  *
5158  * This is equivalent to:
5159  * 1. sg_init_table
5160  * 2. skb_to_sgvec(payload1)
5161  * 3. sg_unmark_end
5162  * 4. skb_to_sgvec(payload2)
5163  *
5164  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5165  * is more preferable.
5166  */
5167 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5168                         int offset, int len)
5169 {
5170         return __skb_to_sgvec(skb, sg, offset, len, 0);
5171 }
5172 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5173 
5174 
5175 
5176 /**
5177  *      skb_cow_data - Check that a socket buffer's data buffers are writable
5178  *      @skb: The socket buffer to check.
5179  *      @tailbits: Amount of trailing space to be added
5180  *      @trailer: Returned pointer to the skb where the @tailbits space begins
5181  *
5182  *      Make sure that the data buffers attached to a socket buffer are
5183  *      writable. If they are not, private copies are made of the data buffers
5184  *      and the socket buffer is set to use these instead.
5185  *
5186  *      If @tailbits is given, make sure that there is space to write @tailbits
5187  *      bytes of data beyond current end of socket buffer.  @trailer will be
5188  *      set to point to the skb in which this space begins.
5189  *
5190  *      The number of scatterlist elements required to completely map the
5191  *      COW'd and extended socket buffer will be returned.
5192  */
5193 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5194 {
5195         int copyflag;
5196         int elt;
5197         struct sk_buff *skb1, **skb_p;
5198 
5199         /* If skb is cloned or its head is paged, reallocate
5200          * head pulling out all the pages (pages are considered not writable
5201          * at the moment even if they are anonymous).
5202          */
5203         if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5204             !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5205                 return -ENOMEM;
5206 
5207         /* Easy case. Most of packets will go this way. */
5208         if (!skb_has_frag_list(skb)) {
5209                 /* A little of trouble, not enough of space for trailer.
5210                  * This should not happen, when stack is tuned to generate
5211                  * good frames. OK, on miss we reallocate and reserve even more
5212                  * space, 128 bytes is fair. */
5213 
5214                 if (skb_tailroom(skb) < tailbits &&
5215                     pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5216                         return -ENOMEM;
5217 
5218                 /* Voila! */
5219                 *trailer = skb;
5220                 return 1;
5221         }
5222 
5223         /* Misery. We are in troubles, going to mincer fragments... */
5224 
5225         elt = 1;
5226         skb_p = &skb_shinfo(skb)->frag_list;
5227         copyflag = 0;
5228 
5229         while ((skb1 = *skb_p) != NULL) {
5230                 int ntail = 0;
5231 
5232                 /* The fragment is partially pulled by someone,
5233                  * this can happen on input. Copy it and everything
5234                  * after it. */
5235 
5236                 if (skb_shared(skb1))
5237                         copyflag = 1;
5238 
5239                 /* If the skb is the last, worry about trailer. */
5240 
5241                 if (skb1->next == NULL && tailbits) {
5242                         if (skb_shinfo(skb1)->nr_frags ||
5243                             skb_has_frag_list(skb1) ||
5244                             skb_tailroom(skb1) < tailbits)
5245                                 ntail = tailbits + 128;
5246                 }
5247 
5248                 if (copyflag ||
5249                     skb_cloned(skb1) ||
5250                     ntail ||
5251                     skb_shinfo(skb1)->nr_frags ||
5252                     skb_has_frag_list(skb1)) {
5253                         struct sk_buff *skb2;
5254 
5255                         /* Fuck, we are miserable poor guys... */
5256                         if (ntail == 0)
5257                                 skb2 = skb_copy(skb1, GFP_ATOMIC);
5258                         else
5259                                 skb2 = skb_copy_expand(skb1,
5260                                                        skb_headroom(skb1),
5261                                                        ntail,
5262                                                        GFP_ATOMIC);
5263                         if (unlikely(skb2 == NULL))
5264                                 return -ENOMEM;
5265 
5266                         if (skb1->sk)
5267                                 skb_set_owner_w(skb2, skb1->sk);
5268 
5269                         /* Looking around. Are we still alive?
5270                          * OK, link new skb, drop old one */
5271 
5272                         skb2->next = skb1->next;
5273                         *skb_p = skb2;
5274                         kfree_skb(skb1);
5275                         skb1 = skb2;
5276                 }
5277                 elt++;
5278                 *trailer = skb1;
5279                 skb_p = &skb1->next;
5280         }
5281 
5282         return elt;
5283 }
5284 EXPORT_SYMBOL_GPL(skb_cow_data);
5285 
5286 static void sock_rmem_free(struct sk_buff *skb)
5287 {
5288         struct sock *sk = skb->sk;
5289 
5290         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5291 }
5292 
5293 static void skb_set_err_queue(struct sk_buff *skb)
5294 {
5295         /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5296          * So, it is safe to (mis)use it to mark skbs on the error queue.
5297          */
5298         skb->pkt_type = PACKET_OUTGOING;
5299         BUILD_BUG_ON(PACKET_OUTGOING == 0);
5300 }
5301 
5302 /*
5303  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5304  */
5305 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5306 {
5307         if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5308             (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5309                 return -ENOMEM;
5310 
5311         skb_orphan(skb);
5312         skb->sk = sk;
5313         skb->destructor = sock_rmem_free;
5314         atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5315         skb_set_err_queue(skb);
5316 
5317         /* before exiting rcu section, make sure dst is refcounted */
5318         skb_dst_force(skb);
5319 
5320         skb_queue_tail(&sk->sk_error_queue, skb);
5321         if (!sock_flag(sk, SOCK_DEAD))
5322                 sk_error_report(sk);
5323         return 0;
5324 }
5325 EXPORT_SYMBOL(sock_queue_err_skb);
5326 
5327 static bool is_icmp_err_skb(const struct sk_buff *skb)
5328 {
5329         return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5330                        SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5331 }
5332 
5333 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5334 {
5335         struct sk_buff_head *q = &sk->sk_error_queue;
5336         struct sk_buff *skb, *skb_next = NULL;
5337         bool icmp_next = false;
5338         unsigned long flags;
5339 
5340         if (skb_queue_empty_lockless(q))
5341                 return NULL;
5342 
5343         spin_lock_irqsave(&q->lock, flags);
5344         skb = __skb_dequeue(q);
5345         if (skb && (skb_next = skb_peek(q))) {
5346                 icmp_next = is_icmp_err_skb(skb_next);
5347                 if (icmp_next)
5348                         sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5349         }
5350         spin_unlock_irqrestore(&q->lock, flags);
5351 
5352         if (is_icmp_err_skb(skb) && !icmp_next)
5353                 sk->sk_err = 0;
5354 
5355         if (skb_next)
5356                 sk_error_report(sk);
5357 
5358         return skb;
5359 }
5360 EXPORT_SYMBOL(sock_dequeue_err_skb);
5361 
5362 /**
5363  * skb_clone_sk - create clone of skb, and take reference to socket
5364  * @skb: the skb to clone
5365  *
5366  * This function creates a clone of a buffer that holds a reference on
5367  * sk_refcnt.  Buffers created via this function are meant to be
5368  * returned using sock_queue_err_skb, or free via kfree_skb.
5369  *
5370  * When passing buffers allocated with this function to sock_queue_err_skb
5371  * it is necessary to wrap the call with sock_hold/sock_put in order to
5372  * prevent the socket from being released prior to being enqueued on
5373  * the sk_error_queue.
5374  */
5375 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5376 {
5377         struct sock *sk = skb->sk;
5378         struct sk_buff *clone;
5379 
5380         if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5381                 return NULL;
5382 
5383         clone = skb_clone(skb, GFP_ATOMIC);
5384         if (!clone) {
5385                 sock_put(sk);
5386                 return NULL;
5387         }
5388 
5389         clone->sk = sk;
5390         clone->destructor = sock_efree;
5391 
5392         return clone;
5393 }
5394 EXPORT_SYMBOL(skb_clone_sk);
5395 
5396 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5397                                         struct sock *sk,
5398                                         int tstype,
5399                                         bool opt_stats)
5400 {
5401         struct sock_exterr_skb *serr;
5402         int err;
5403 
5404         BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5405 
5406         serr = SKB_EXT_ERR(skb);
5407         memset(serr, 0, sizeof(*serr));
5408         serr->ee.ee_errno = ENOMSG;
5409         serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5410         serr->ee.ee_info = tstype;
5411         serr->opt_stats = opt_stats;
5412         serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5413         if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5414                 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5415                 if (sk_is_tcp(sk))
5416                         serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5417         }
5418 
5419         err = sock_queue_err_skb(sk, skb);
5420 
5421         if (err)
5422                 kfree_skb(skb);
5423 }
5424 
5425 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5426 {
5427         bool ret;
5428 
5429         if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5430                 return true;
5431 
5432         read_lock_bh(&sk->sk_callback_lock);
5433         ret = sk->sk_socket && sk->sk_socket->file &&
5434               file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5435         read_unlock_bh(&sk->sk_callback_lock);
5436         return ret;
5437 }
5438 
5439 void skb_complete_tx_timestamp(struct sk_buff *skb,
5440                                struct skb_shared_hwtstamps *hwtstamps)
5441 {
5442         struct sock *sk = skb->sk;
5443 
5444         if (!skb_may_tx_timestamp(sk, false))
5445                 goto err;
5446 
5447         /* Take a reference to prevent skb_orphan() from freeing the socket,
5448          * but only if the socket refcount is not zero.
5449          */
5450         if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5451                 *skb_hwtstamps(skb) = *hwtstamps;
5452                 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5453                 sock_put(sk);
5454                 return;
5455         }
5456 
5457 err:
5458         kfree_skb(skb);
5459 }
5460 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5461 
5462 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5463                      const struct sk_buff *ack_skb,
5464                      struct skb_shared_hwtstamps *hwtstamps,
5465                      struct sock *sk, int tstype)
5466 {
5467         struct sk_buff *skb;
5468         bool tsonly, opt_stats = false;
5469         u32 tsflags;
5470 
5471         if (!sk)
5472                 return;
5473 
5474         tsflags = READ_ONCE(sk->sk_tsflags);
5475         if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5476             skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5477                 return;
5478 
5479         tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5480         if (!skb_may_tx_timestamp(sk, tsonly))
5481                 return;
5482 
5483         if (tsonly) {
5484 #ifdef CONFIG_INET
5485                 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5486                     sk_is_tcp(sk)) {
5487                         skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5488                                                              ack_skb);
5489                         opt_stats = true;
5490                 } else
5491 #endif
5492                         skb = alloc_skb(0, GFP_ATOMIC);
5493         } else {
5494                 skb = skb_clone(orig_skb, GFP_ATOMIC);
5495 
5496                 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5497                         kfree_skb(skb);
5498                         return;
5499                 }
5500         }
5501         if (!skb)
5502                 return;
5503 
5504         if (tsonly) {
5505                 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5506                                              SKBTX_ANY_TSTAMP;
5507                 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5508         }
5509 
5510         if (hwtstamps)
5511                 *skb_hwtstamps(skb) = *hwtstamps;
5512         else
5513                 __net_timestamp(skb);
5514 
5515         __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5516 }
5517 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5518 
5519 void skb_tstamp_tx(struct sk_buff *orig_skb,
5520                    struct skb_shared_hwtstamps *hwtstamps)
5521 {
5522         return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5523                                SCM_TSTAMP_SND);
5524 }
5525 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5526 
5527 #ifdef CONFIG_WIRELESS
5528 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5529 {
5530         struct sock *sk = skb->sk;
5531         struct sock_exterr_skb *serr;
5532         int err = 1;
5533 
5534         skb->wifi_acked_valid = 1;
5535         skb->wifi_acked = acked;
5536 
5537         serr = SKB_EXT_ERR(skb);
5538         memset(serr, 0, sizeof(*serr));
5539         serr->ee.ee_errno = ENOMSG;
5540         serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5541 
5542         /* Take a reference to prevent skb_orphan() from freeing the socket,
5543          * but only if the socket refcount is not zero.
5544          */
5545         if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5546                 err = sock_queue_err_skb(sk, skb);
5547                 sock_put(sk);
5548         }
5549         if (err)
5550                 kfree_skb(skb);
5551 }
5552 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5553 #endif /* CONFIG_WIRELESS */
5554 
5555 /**
5556  * skb_partial_csum_set - set up and verify partial csum values for packet
5557  * @skb: the skb to set
5558  * @start: the number of bytes after skb->data to start checksumming.
5559  * @off: the offset from start to place the checksum.
5560  *
5561  * For untrusted partially-checksummed packets, we need to make sure the values
5562  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5563  *
5564  * This function checks and sets those values and skb->ip_summed: if this
5565  * returns false you should drop the packet.
5566  */
5567 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5568 {
5569         u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5570         u32 csum_start = skb_headroom(skb) + (u32)start;
5571 
5572         if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5573                 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5574                                      start, off, skb_headroom(skb), skb_headlen(skb));
5575                 return false;
5576         }
5577         skb->ip_summed = CHECKSUM_PARTIAL;
5578         skb->csum_start = csum_start;
5579         skb->csum_offset = off;
5580         skb->transport_header = csum_start;
5581         return true;
5582 }
5583 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5584 
5585 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5586                                unsigned int max)
5587 {
5588         if (skb_headlen(skb) >= len)
5589                 return 0;
5590 
5591         /* If we need to pullup then pullup to the max, so we
5592          * won't need to do it again.
5593          */
5594         if (max > skb->len)
5595                 max = skb->len;
5596 
5597         if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5598                 return -ENOMEM;
5599 
5600         if (skb_headlen(skb) < len)
5601                 return -EPROTO;
5602 
5603         return 0;
5604 }
5605 
5606 #define MAX_TCP_HDR_LEN (15 * 4)
5607 
5608 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5609                                       typeof(IPPROTO_IP) proto,
5610                                       unsigned int off)
5611 {
5612         int err;
5613 
5614         switch (proto) {
5615         case IPPROTO_TCP:
5616                 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5617                                           off + MAX_TCP_HDR_LEN);
5618                 if (!err && !skb_partial_csum_set(skb, off,
5619                                                   offsetof(struct tcphdr,
5620                                                            check)))
5621                         err = -EPROTO;
5622                 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5623 
5624         case IPPROTO_UDP:
5625                 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5626                                           off + sizeof(struct udphdr));
5627                 if (!err && !skb_partial_csum_set(skb, off,
5628                                                   offsetof(struct udphdr,
5629                                                            check)))
5630                         err = -EPROTO;
5631                 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5632         }
5633 
5634         return ERR_PTR(-EPROTO);
5635 }
5636 
5637 /* This value should be large enough to cover a tagged ethernet header plus
5638  * maximally sized IP and TCP or UDP headers.
5639  */
5640 #define MAX_IP_HDR_LEN 128
5641 
5642 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5643 {
5644         unsigned int off;
5645         bool fragment;
5646         __sum16 *csum;
5647         int err;
5648 
5649         fragment = false;
5650 
5651         err = skb_maybe_pull_tail(skb,
5652                                   sizeof(struct iphdr),
5653                                   MAX_IP_HDR_LEN);
5654         if (err < 0)
5655                 goto out;
5656 
5657         if (ip_is_fragment(ip_hdr(skb)))
5658                 fragment = true;
5659 
5660         off = ip_hdrlen(skb);
5661 
5662         err = -EPROTO;
5663 
5664         if (fragment)
5665                 goto out;
5666 
5667         csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5668         if (IS_ERR(csum))
5669                 return PTR_ERR(csum);
5670 
5671         if (recalculate)
5672                 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5673                                            ip_hdr(skb)->daddr,
5674                                            skb->len - off,
5675                                            ip_hdr(skb)->protocol, 0);
5676         err = 0;
5677 
5678 out:
5679         return err;
5680 }
5681 
5682 /* This value should be large enough to cover a tagged ethernet header plus
5683  * an IPv6 header, all options, and a maximal TCP or UDP header.
5684  */
5685 #define MAX_IPV6_HDR_LEN 256
5686 
5687 #define OPT_HDR(type, skb, off) \
5688         (type *)(skb_network_header(skb) + (off))
5689 
5690 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5691 {
5692         int err;
5693         u8 nexthdr;
5694         unsigned int off;
5695         unsigned int len;
5696         bool fragment;
5697         bool done;
5698         __sum16 *csum;
5699 
5700         fragment = false;
5701         done = false;
5702 
5703         off = sizeof(struct ipv6hdr);
5704 
5705         err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5706         if (err < 0)
5707                 goto out;
5708 
5709         nexthdr = ipv6_hdr(skb)->nexthdr;
5710 
5711         len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5712         while (off <= len && !done) {
5713                 switch (nexthdr) {
5714                 case IPPROTO_DSTOPTS:
5715                 case IPPROTO_HOPOPTS:
5716                 case IPPROTO_ROUTING: {
5717                         struct ipv6_opt_hdr *hp;
5718 
5719                         err = skb_maybe_pull_tail(skb,
5720                                                   off +
5721                                                   sizeof(struct ipv6_opt_hdr),
5722                                                   MAX_IPV6_HDR_LEN);
5723                         if (err < 0)
5724                                 goto out;
5725 
5726                         hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5727                         nexthdr = hp->nexthdr;
5728                         off += ipv6_optlen(hp);
5729                         break;
5730                 }
5731                 case IPPROTO_AH: {
5732                         struct ip_auth_hdr *hp;
5733 
5734                         err = skb_maybe_pull_tail(skb,
5735                                                   off +
5736                                                   sizeof(struct ip_auth_hdr),
5737                                                   MAX_IPV6_HDR_LEN);
5738                         if (err < 0)
5739                                 goto out;
5740 
5741                         hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5742                         nexthdr = hp->nexthdr;
5743                         off += ipv6_authlen(hp);
5744                         break;
5745                 }
5746                 case IPPROTO_FRAGMENT: {
5747                         struct frag_hdr *hp;
5748 
5749                         err = skb_maybe_pull_tail(skb,
5750                                                   off +
5751                                                   sizeof(struct frag_hdr),
5752                                                   MAX_IPV6_HDR_LEN);
5753                         if (err < 0)
5754                                 goto out;
5755 
5756                         hp = OPT_HDR(struct frag_hdr, skb, off);
5757 
5758                         if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5759                                 fragment = true;
5760 
5761                         nexthdr = hp->nexthdr;
5762                         off += sizeof(struct frag_hdr);
5763                         break;
5764                 }
5765                 default:
5766                         done = true;
5767                         break;
5768                 }
5769         }
5770 
5771         err = -EPROTO;
5772 
5773         if (!done || fragment)
5774                 goto out;
5775 
5776         csum = skb_checksum_setup_ip(skb, nexthdr, off);
5777         if (IS_ERR(csum))
5778                 return PTR_ERR(csum);
5779 
5780         if (recalculate)
5781                 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5782                                          &ipv6_hdr(skb)->daddr,
5783                                          skb->len - off, nexthdr, 0);
5784         err = 0;
5785 
5786 out:
5787         return err;
5788 }
5789 
5790 /**
5791  * skb_checksum_setup - set up partial checksum offset
5792  * @skb: the skb to set up
5793  * @recalculate: if true the pseudo-header checksum will be recalculated
5794  */
5795 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5796 {
5797         int err;
5798 
5799         switch (skb->protocol) {
5800         case htons(ETH_P_IP):
5801                 err = skb_checksum_setup_ipv4(skb, recalculate);
5802                 break;
5803 
5804         case htons(ETH_P_IPV6):
5805                 err = skb_checksum_setup_ipv6(skb, recalculate);
5806                 break;
5807 
5808         default:
5809                 err = -EPROTO;
5810                 break;
5811         }
5812 
5813         return err;
5814 }
5815 EXPORT_SYMBOL(skb_checksum_setup);
5816 
5817 /**
5818  * skb_checksum_maybe_trim - maybe trims the given skb
5819  * @skb: the skb to check
5820  * @transport_len: the data length beyond the network header
5821  *
5822  * Checks whether the given skb has data beyond the given transport length.
5823  * If so, returns a cloned skb trimmed to this transport length.
5824  * Otherwise returns the provided skb. Returns NULL in error cases
5825  * (e.g. transport_len exceeds skb length or out-of-memory).
5826  *
5827  * Caller needs to set the skb transport header and free any returned skb if it
5828  * differs from the provided skb.
5829  */
5830 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5831                                                unsigned int transport_len)
5832 {
5833         struct sk_buff *skb_chk;
5834         unsigned int len = skb_transport_offset(skb) + transport_len;
5835         int ret;
5836 
5837         if (skb->len < len)
5838                 return NULL;
5839         else if (skb->len == len)
5840                 return skb;
5841 
5842         skb_chk = skb_clone(skb, GFP_ATOMIC);
5843         if (!skb_chk)
5844                 return NULL;
5845 
5846         ret = pskb_trim_rcsum(skb_chk, len);
5847         if (ret) {
5848                 kfree_skb(skb_chk);
5849                 return NULL;
5850         }
5851 
5852         return skb_chk;
5853 }
5854 
5855 /**
5856  * skb_checksum_trimmed - validate checksum of an skb
5857  * @skb: the skb to check
5858  * @transport_len: the data length beyond the network header
5859  * @skb_chkf: checksum function to use
5860  *
5861  * Applies the given checksum function skb_chkf to the provided skb.
5862  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5863  *
5864  * If the skb has data beyond the given transport length, then a
5865  * trimmed & cloned skb is checked and returned.
5866  *
5867  * Caller needs to set the skb transport header and free any returned skb if it
5868  * differs from the provided skb.
5869  */
5870 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5871                                      unsigned int transport_len,
5872                                      __sum16(*skb_chkf)(struct sk_buff *skb))
5873 {
5874         struct sk_buff *skb_chk;
5875         unsigned int offset = skb_transport_offset(skb);
5876         __sum16 ret;
5877 
5878         skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5879         if (!skb_chk)
5880                 goto err;
5881 
5882         if (!pskb_may_pull(skb_chk, offset))
5883                 goto err;
5884 
5885         skb_pull_rcsum(skb_chk, offset);
5886         ret = skb_chkf(skb_chk);
5887         skb_push_rcsum(skb_chk, offset);
5888 
5889         if (ret)
5890                 goto err;
5891 
5892         return skb_chk;
5893 
5894 err:
5895         if (skb_chk && skb_chk != skb)
5896                 kfree_skb(skb_chk);
5897 
5898         return NULL;
5899 
5900 }
5901 EXPORT_SYMBOL(skb_checksum_trimmed);
5902 
5903 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5904 {
5905         net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5906                              skb->dev->name);
5907 }
5908 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5909 
5910 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5911 {
5912         if (head_stolen) {
5913                 skb_release_head_state(skb);
5914                 kmem_cache_free(net_hotdata.skbuff_cache, skb);
5915         } else {
5916                 __kfree_skb(skb);
5917         }
5918 }
5919 EXPORT_SYMBOL(kfree_skb_partial);
5920 
5921 /**
5922  * skb_try_coalesce - try to merge skb to prior one
5923  * @to: prior buffer
5924  * @from: buffer to add
5925  * @fragstolen: pointer to boolean
5926  * @delta_truesize: how much more was allocated than was requested
5927  */
5928 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5929                       bool *fragstolen, int *delta_truesize)
5930 {
5931         struct skb_shared_info *to_shinfo, *from_shinfo;
5932         int i, delta, len = from->len;
5933 
5934         *fragstolen = false;
5935 
5936         if (skb_cloned(to))
5937                 return false;
5938 
5939         /* In general, avoid mixing page_pool and non-page_pool allocated
5940          * pages within the same SKB. In theory we could take full
5941          * references if @from is cloned and !@to->pp_recycle but its
5942          * tricky (due to potential race with the clone disappearing) and
5943          * rare, so not worth dealing with.
5944          */
5945         if (to->pp_recycle != from->pp_recycle)
5946                 return false;
5947 
5948         if (len <= skb_tailroom(to)) {
5949                 if (len)
5950                         BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5951                 *delta_truesize = 0;
5952                 return true;
5953         }
5954 
5955         to_shinfo = skb_shinfo(to);
5956         from_shinfo = skb_shinfo(from);
5957         if (to_shinfo->frag_list || from_shinfo->frag_list)
5958                 return false;
5959         if (skb_zcopy(to) || skb_zcopy(from))
5960                 return false;
5961 
5962         if (skb_headlen(from) != 0) {
5963                 struct page *page;
5964                 unsigned int offset;
5965 
5966                 if (to_shinfo->nr_frags +
5967                     from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5968                         return false;
5969 
5970                 if (skb_head_is_locked(from))
5971                         return false;
5972 
5973                 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5974 
5975                 page = virt_to_head_page(from->head);
5976                 offset = from->data - (unsigned char *)page_address(page);
5977 
5978                 skb_fill_page_desc(to, to_shinfo->nr_frags,
5979                                    page, offset, skb_headlen(from));
5980                 *fragstolen = true;
5981         } else {
5982                 if (to_shinfo->nr_frags +
5983                     from_shinfo->nr_frags > MAX_SKB_FRAGS)
5984                         return false;
5985 
5986                 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5987         }
5988 
5989         WARN_ON_ONCE(delta < len);
5990 
5991         memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5992                from_shinfo->frags,
5993                from_shinfo->nr_frags * sizeof(skb_frag_t));
5994         to_shinfo->nr_frags += from_shinfo->nr_frags;
5995 
5996         if (!skb_cloned(from))
5997                 from_shinfo->nr_frags = 0;
5998 
5999         /* if the skb is not cloned this does nothing
6000          * since we set nr_frags to 0.
6001          */
6002         if (skb_pp_frag_ref(from)) {
6003                 for (i = 0; i < from_shinfo->nr_frags; i++)
6004                         __skb_frag_ref(&from_shinfo->frags[i]);
6005         }
6006 
6007         to->truesize += delta;
6008         to->len += len;
6009         to->data_len += len;
6010 
6011         *delta_truesize = delta;
6012         return true;
6013 }
6014 EXPORT_SYMBOL(skb_try_coalesce);
6015 
6016 /**
6017  * skb_scrub_packet - scrub an skb
6018  *
6019  * @skb: buffer to clean
6020  * @xnet: packet is crossing netns
6021  *
6022  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
6023  * into/from a tunnel. Some information have to be cleared during these
6024  * operations.
6025  * skb_scrub_packet can also be used to clean a skb before injecting it in
6026  * another namespace (@xnet == true). We have to clear all information in the
6027  * skb that could impact namespace isolation.
6028  */
6029 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
6030 {
6031         skb->pkt_type = PACKET_HOST;
6032         skb->skb_iif = 0;
6033         skb->ignore_df = 0;
6034         skb_dst_drop(skb);
6035         skb_ext_reset(skb);
6036         nf_reset_ct(skb);
6037         nf_reset_trace(skb);
6038 
6039 #ifdef CONFIG_NET_SWITCHDEV
6040         skb->offload_fwd_mark = 0;
6041         skb->offload_l3_fwd_mark = 0;
6042 #endif
6043 
6044         if (!xnet)
6045                 return;
6046 
6047         ipvs_reset(skb);
6048         skb->mark = 0;
6049         skb_clear_tstamp(skb);
6050 }
6051 EXPORT_SYMBOL_GPL(skb_scrub_packet);
6052 
6053 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
6054 {
6055         int mac_len, meta_len;
6056         void *meta;
6057 
6058         if (skb_cow(skb, skb_headroom(skb)) < 0) {
6059                 kfree_skb(skb);
6060                 return NULL;
6061         }
6062 
6063         mac_len = skb->data - skb_mac_header(skb);
6064         if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
6065                 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
6066                         mac_len - VLAN_HLEN - ETH_TLEN);
6067         }
6068 
6069         meta_len = skb_metadata_len(skb);
6070         if (meta_len) {
6071                 meta = skb_metadata_end(skb) - meta_len;
6072                 memmove(meta + VLAN_HLEN, meta, meta_len);
6073         }
6074 
6075         skb->mac_header += VLAN_HLEN;
6076         return skb;
6077 }
6078 
6079 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
6080 {
6081         struct vlan_hdr *vhdr;
6082         u16 vlan_tci;
6083 
6084         if (unlikely(skb_vlan_tag_present(skb))) {
6085                 /* vlan_tci is already set-up so leave this for another time */
6086                 return skb;
6087         }
6088 
6089         skb = skb_share_check(skb, GFP_ATOMIC);
6090         if (unlikely(!skb))
6091                 goto err_free;
6092         /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
6093         if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
6094                 goto err_free;
6095 
6096         vhdr = (struct vlan_hdr *)skb->data;
6097         vlan_tci = ntohs(vhdr->h_vlan_TCI);
6098         __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
6099 
6100         skb_pull_rcsum(skb, VLAN_HLEN);
6101         vlan_set_encap_proto(skb, vhdr);
6102 
6103         skb = skb_reorder_vlan_header(skb);
6104         if (unlikely(!skb))
6105                 goto err_free;
6106 
6107         skb_reset_network_header(skb);
6108         if (!skb_transport_header_was_set(skb))
6109                 skb_reset_transport_header(skb);
6110         skb_reset_mac_len(skb);
6111 
6112         return skb;
6113 
6114 err_free:
6115         kfree_skb(skb);
6116         return NULL;
6117 }
6118 EXPORT_SYMBOL(skb_vlan_untag);
6119 
6120 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
6121 {
6122         if (!pskb_may_pull(skb, write_len))
6123                 return -ENOMEM;
6124 
6125         if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
6126                 return 0;
6127 
6128         return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
6129 }
6130 EXPORT_SYMBOL(skb_ensure_writable);
6131 
6132 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6133 {
6134         int needed_headroom = dev->needed_headroom;
6135         int needed_tailroom = dev->needed_tailroom;
6136 
6137         /* For tail taggers, we need to pad short frames ourselves, to ensure
6138          * that the tail tag does not fail at its role of being at the end of
6139          * the packet, once the conduit interface pads the frame. Account for
6140          * that pad length here, and pad later.
6141          */
6142         if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6143                 needed_tailroom += ETH_ZLEN - skb->len;
6144         /* skb_headroom() returns unsigned int... */
6145         needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6146         needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6147 
6148         if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6149                 /* No reallocation needed, yay! */
6150                 return 0;
6151 
6152         return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6153                                 GFP_ATOMIC);
6154 }
6155 EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6156 
6157 /* remove VLAN header from packet and update csum accordingly.
6158  * expects a non skb_vlan_tag_present skb with a vlan tag payload
6159  */
6160 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6161 {
6162         int offset = skb->data - skb_mac_header(skb);
6163         int err;
6164 
6165         if (WARN_ONCE(offset,
6166                       "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6167                       offset)) {
6168                 return -EINVAL;
6169         }
6170 
6171         err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6172         if (unlikely(err))
6173                 return err;
6174 
6175         skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6176 
6177         vlan_remove_tag(skb, vlan_tci);
6178 
6179         skb->mac_header += VLAN_HLEN;
6180 
6181         if (skb_network_offset(skb) < ETH_HLEN)
6182                 skb_set_network_header(skb, ETH_HLEN);
6183 
6184         skb_reset_mac_len(skb);
6185 
6186         return err;
6187 }
6188 EXPORT_SYMBOL(__skb_vlan_pop);
6189 
6190 /* Pop a vlan tag either from hwaccel or from payload.
6191  * Expects skb->data at mac header.
6192  */
6193 int skb_vlan_pop(struct sk_buff *skb)
6194 {
6195         u16 vlan_tci;
6196         __be16 vlan_proto;
6197         int err;
6198 
6199         if (likely(skb_vlan_tag_present(skb))) {
6200                 __vlan_hwaccel_clear_tag(skb);
6201         } else {
6202                 if (unlikely(!eth_type_vlan(skb->protocol)))
6203                         return 0;
6204 
6205                 err = __skb_vlan_pop(skb, &vlan_tci);
6206                 if (err)
6207                         return err;
6208         }
6209         /* move next vlan tag to hw accel tag */
6210         if (likely(!eth_type_vlan(skb->protocol)))
6211                 return 0;
6212 
6213         vlan_proto = skb->protocol;
6214         err = __skb_vlan_pop(skb, &vlan_tci);
6215         if (unlikely(err))
6216                 return err;
6217 
6218         __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6219         return 0;
6220 }
6221 EXPORT_SYMBOL(skb_vlan_pop);
6222 
6223 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6224  * Expects skb->data at mac header.
6225  */
6226 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6227 {
6228         if (skb_vlan_tag_present(skb)) {
6229                 int offset = skb->data - skb_mac_header(skb);
6230                 int err;
6231 
6232                 if (WARN_ONCE(offset,
6233                               "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6234                               offset)) {
6235                         return -EINVAL;
6236                 }
6237 
6238                 err = __vlan_insert_tag(skb, skb->vlan_proto,
6239                                         skb_vlan_tag_get(skb));
6240                 if (err)
6241                         return err;
6242 
6243                 skb->protocol = skb->vlan_proto;
6244                 skb->mac_len += VLAN_HLEN;
6245 
6246                 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6247         }
6248         __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6249         return 0;
6250 }
6251 EXPORT_SYMBOL(skb_vlan_push);
6252 
6253 /**
6254  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6255  *
6256  * @skb: Socket buffer to modify
6257  *
6258  * Drop the Ethernet header of @skb.
6259  *
6260  * Expects that skb->data points to the mac header and that no VLAN tags are
6261  * present.
6262  *
6263  * Returns 0 on success, -errno otherwise.
6264  */
6265 int skb_eth_pop(struct sk_buff *skb)
6266 {
6267         if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6268             skb_network_offset(skb) < ETH_HLEN)
6269                 return -EPROTO;
6270 
6271         skb_pull_rcsum(skb, ETH_HLEN);
6272         skb_reset_mac_header(skb);
6273         skb_reset_mac_len(skb);
6274 
6275         return 0;
6276 }
6277 EXPORT_SYMBOL(skb_eth_pop);
6278 
6279 /**
6280  * skb_eth_push() - Add a new Ethernet header at the head of a packet
6281  *
6282  * @skb: Socket buffer to modify
6283  * @dst: Destination MAC address of the new header
6284  * @src: Source MAC address of the new header
6285  *
6286  * Prepend @skb with a new Ethernet header.
6287  *
6288  * Expects that skb->data points to the mac header, which must be empty.
6289  *
6290  * Returns 0 on success, -errno otherwise.
6291  */
6292 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6293                  const unsigned char *src)
6294 {
6295         struct ethhdr *eth;
6296         int err;
6297 
6298         if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6299                 return -EPROTO;
6300 
6301         err = skb_cow_head(skb, sizeof(*eth));
6302         if (err < 0)
6303                 return err;
6304 
6305         skb_push(skb, sizeof(*eth));
6306         skb_reset_mac_header(skb);
6307         skb_reset_mac_len(skb);
6308 
6309         eth = eth_hdr(skb);
6310         ether_addr_copy(eth->h_dest, dst);
6311         ether_addr_copy(eth->h_source, src);
6312         eth->h_proto = skb->protocol;
6313 
6314         skb_postpush_rcsum(skb, eth, sizeof(*eth));
6315 
6316         return 0;
6317 }
6318 EXPORT_SYMBOL(skb_eth_push);
6319 
6320 /* Update the ethertype of hdr and the skb csum value if required. */
6321 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6322                              __be16 ethertype)
6323 {
6324         if (skb->ip_summed == CHECKSUM_COMPLETE) {
6325                 __be16 diff[] = { ~hdr->h_proto, ethertype };
6326 
6327                 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6328         }
6329 
6330         hdr->h_proto = ethertype;
6331 }
6332 
6333 /**
6334  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6335  *                   the packet
6336  *
6337  * @skb: buffer
6338  * @mpls_lse: MPLS label stack entry to push
6339  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6340  * @mac_len: length of the MAC header
6341  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6342  *            ethernet
6343  *
6344  * Expects skb->data at mac header.
6345  *
6346  * Returns 0 on success, -errno otherwise.
6347  */
6348 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6349                   int mac_len, bool ethernet)
6350 {
6351         struct mpls_shim_hdr *lse;
6352         int err;
6353 
6354         if (unlikely(!eth_p_mpls(mpls_proto)))
6355                 return -EINVAL;
6356 
6357         /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6358         if (skb->encapsulation)
6359                 return -EINVAL;
6360 
6361         err = skb_cow_head(skb, MPLS_HLEN);
6362         if (unlikely(err))
6363                 return err;
6364 
6365         if (!skb->inner_protocol) {
6366                 skb_set_inner_network_header(skb, skb_network_offset(skb));
6367                 skb_set_inner_protocol(skb, skb->protocol);
6368         }
6369 
6370         skb_push(skb, MPLS_HLEN);
6371         memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6372                 mac_len);
6373         skb_reset_mac_header(skb);
6374         skb_set_network_header(skb, mac_len);
6375         skb_reset_mac_len(skb);
6376 
6377         lse = mpls_hdr(skb);
6378         lse->label_stack_entry = mpls_lse;
6379         skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6380 
6381         if (ethernet && mac_len >= ETH_HLEN)
6382                 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6383         skb->protocol = mpls_proto;
6384 
6385         return 0;
6386 }
6387 EXPORT_SYMBOL_GPL(skb_mpls_push);
6388 
6389 /**
6390  * skb_mpls_pop() - pop the outermost MPLS header
6391  *
6392  * @skb: buffer
6393  * @next_proto: ethertype of header after popped MPLS header
6394  * @mac_len: length of the MAC header
6395  * @ethernet: flag to indicate if the packet is ethernet
6396  *
6397  * Expects skb->data at mac header.
6398  *
6399  * Returns 0 on success, -errno otherwise.
6400  */
6401 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6402                  bool ethernet)
6403 {
6404         int err;
6405 
6406         if (unlikely(!eth_p_mpls(skb->protocol)))
6407                 return 0;
6408 
6409         err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6410         if (unlikely(err))
6411                 return err;
6412 
6413         skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6414         memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6415                 mac_len);
6416 
6417         __skb_pull(skb, MPLS_HLEN);
6418         skb_reset_mac_header(skb);
6419         skb_set_network_header(skb, mac_len);
6420 
6421         if (ethernet && mac_len >= ETH_HLEN) {
6422                 struct ethhdr *hdr;
6423 
6424                 /* use mpls_hdr() to get ethertype to account for VLANs. */
6425                 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6426                 skb_mod_eth_type(skb, hdr, next_proto);
6427         }
6428         skb->protocol = next_proto;
6429 
6430         return 0;
6431 }
6432 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6433 
6434 /**
6435  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6436  *
6437  * @skb: buffer
6438  * @mpls_lse: new MPLS label stack entry to update to
6439  *
6440  * Expects skb->data at mac header.
6441  *
6442  * Returns 0 on success, -errno otherwise.
6443  */
6444 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6445 {
6446         int err;
6447 
6448         if (unlikely(!eth_p_mpls(skb->protocol)))
6449                 return -EINVAL;
6450 
6451         err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6452         if (unlikely(err))
6453                 return err;
6454 
6455         if (skb->ip_summed == CHECKSUM_COMPLETE) {
6456                 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6457 
6458                 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6459         }
6460 
6461         mpls_hdr(skb)->label_stack_entry = mpls_lse;
6462 
6463         return 0;
6464 }
6465 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6466 
6467 /**
6468  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6469  *
6470  * @skb: buffer
6471  *
6472  * Expects skb->data at mac header.
6473  *
6474  * Returns 0 on success, -errno otherwise.
6475  */
6476 int skb_mpls_dec_ttl(struct sk_buff *skb)
6477 {
6478         u32 lse;
6479         u8 ttl;
6480 
6481         if (unlikely(!eth_p_mpls(skb->protocol)))
6482                 return -EINVAL;
6483 
6484         if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6485                 return -ENOMEM;
6486 
6487         lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6488         ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6489         if (!--ttl)
6490                 return -EINVAL;
6491 
6492         lse &= ~MPLS_LS_TTL_MASK;
6493         lse |= ttl << MPLS_LS_TTL_SHIFT;
6494 
6495         return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6496 }
6497 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6498 
6499 /**
6500  * alloc_skb_with_frags - allocate skb with page frags
6501  *
6502  * @header_len: size of linear part
6503  * @data_len: needed length in frags
6504  * @order: max page order desired.
6505  * @errcode: pointer to error code if any
6506  * @gfp_mask: allocation mask
6507  *
6508  * This can be used to allocate a paged skb, given a maximal order for frags.
6509  */
6510 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6511                                      unsigned long data_len,
6512                                      int order,
6513                                      int *errcode,
6514                                      gfp_t gfp_mask)
6515 {
6516         unsigned long chunk;
6517         struct sk_buff *skb;
6518         struct page *page;
6519         int nr_frags = 0;
6520 
6521         *errcode = -EMSGSIZE;
6522         if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6523                 return NULL;
6524 
6525         *errcode = -ENOBUFS;
6526         skb = alloc_skb(header_len, gfp_mask);
6527         if (!skb)
6528                 return NULL;
6529 
6530         while (data_len) {
6531                 if (nr_frags == MAX_SKB_FRAGS - 1)
6532                         goto failure;
6533                 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6534                         order--;
6535 
6536                 if (order) {
6537                         page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6538                                            __GFP_COMP |
6539                                            __GFP_NOWARN,
6540                                            order);
6541                         if (!page) {
6542                                 order--;
6543                                 continue;
6544                         }
6545                 } else {
6546                         page = alloc_page(gfp_mask);
6547                         if (!page)
6548                                 goto failure;
6549                 }
6550                 chunk = min_t(unsigned long, data_len,
6551                               PAGE_SIZE << order);
6552                 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6553                 nr_frags++;
6554                 skb->truesize += (PAGE_SIZE << order);
6555                 data_len -= chunk;
6556         }
6557         return skb;
6558 
6559 failure:
6560         kfree_skb(skb);
6561         return NULL;
6562 }
6563 EXPORT_SYMBOL(alloc_skb_with_frags);
6564 
6565 /* carve out the first off bytes from skb when off < headlen */
6566 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6567                                     const int headlen, gfp_t gfp_mask)
6568 {
6569         int i;
6570         unsigned int size = skb_end_offset(skb);
6571         int new_hlen = headlen - off;
6572         u8 *data;
6573 
6574         if (skb_pfmemalloc(skb))
6575                 gfp_mask |= __GFP_MEMALLOC;
6576 
6577         data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6578         if (!data)
6579                 return -ENOMEM;
6580         size = SKB_WITH_OVERHEAD(size);
6581 
6582         /* Copy real data, and all frags */
6583         skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6584         skb->len -= off;
6585 
6586         memcpy((struct skb_shared_info *)(data + size),
6587                skb_shinfo(skb),
6588                offsetof(struct skb_shared_info,
6589                         frags[skb_shinfo(skb)->nr_frags]));
6590         if (skb_cloned(skb)) {
6591                 /* drop the old head gracefully */
6592                 if (skb_orphan_frags(skb, gfp_mask)) {
6593                         skb_kfree_head(data, size);
6594                         return -ENOMEM;
6595                 }
6596                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6597                         skb_frag_ref(skb, i);
6598                 if (skb_has_frag_list(skb))
6599                         skb_clone_fraglist(skb);
6600                 skb_release_data(skb, SKB_CONSUMED);
6601         } else {
6602                 /* we can reuse existing recount- all we did was
6603                  * relocate values
6604                  */
6605                 skb_free_head(skb);
6606         }
6607 
6608         skb->head = data;
6609         skb->data = data;
6610         skb->head_frag = 0;
6611         skb_set_end_offset(skb, size);
6612         skb_set_tail_pointer(skb, skb_headlen(skb));
6613         skb_headers_offset_update(skb, 0);
6614         skb->cloned = 0;
6615         skb->hdr_len = 0;
6616         skb->nohdr = 0;
6617         atomic_set(&skb_shinfo(skb)->dataref, 1);
6618 
6619         return 0;
6620 }
6621 
6622 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6623 
6624 /* carve out the first eat bytes from skb's frag_list. May recurse into
6625  * pskb_carve()
6626  */
6627 static int pskb_carve_frag_list(struct sk_buff *skb,
6628                                 struct skb_shared_info *shinfo, int eat,
6629                                 gfp_t gfp_mask)
6630 {
6631         struct sk_buff *list = shinfo->frag_list;
6632         struct sk_buff *clone = NULL;
6633         struct sk_buff *insp = NULL;
6634 
6635         do {
6636                 if (!list) {
6637                         pr_err("Not enough bytes to eat. Want %d\n", eat);
6638                         return -EFAULT;
6639                 }
6640                 if (list->len <= eat) {
6641                         /* Eaten as whole. */
6642                         eat -= list->len;
6643                         list = list->next;
6644                         insp = list;
6645                 } else {
6646                         /* Eaten partially. */
6647                         if (skb_shared(list)) {
6648                                 clone = skb_clone(list, gfp_mask);
6649                                 if (!clone)
6650                                         return -ENOMEM;
6651                                 insp = list->next;
6652                                 list = clone;
6653                         } else {
6654                                 /* This may be pulled without problems. */
6655                                 insp = list;
6656                         }
6657                         if (pskb_carve(list, eat, gfp_mask) < 0) {
6658                                 kfree_skb(clone);
6659                                 return -ENOMEM;
6660                         }
6661                         break;
6662                 }
6663         } while (eat);
6664 
6665         /* Free pulled out fragments. */
6666         while ((list = shinfo->frag_list) != insp) {
6667                 shinfo->frag_list = list->next;
6668                 consume_skb(list);
6669         }
6670         /* And insert new clone at head. */
6671         if (clone) {
6672                 clone->next = list;
6673                 shinfo->frag_list = clone;
6674         }
6675         return 0;
6676 }
6677 
6678 /* carve off first len bytes from skb. Split line (off) is in the
6679  * non-linear part of skb
6680  */
6681 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6682                                        int pos, gfp_t gfp_mask)
6683 {
6684         int i, k = 0;
6685         unsigned int size = skb_end_offset(skb);
6686         u8 *data;
6687         const int nfrags = skb_shinfo(skb)->nr_frags;
6688         struct skb_shared_info *shinfo;
6689 
6690         if (skb_pfmemalloc(skb))
6691                 gfp_mask |= __GFP_MEMALLOC;
6692 
6693         data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6694         if (!data)
6695                 return -ENOMEM;
6696         size = SKB_WITH_OVERHEAD(size);
6697 
6698         memcpy((struct skb_shared_info *)(data + size),
6699                skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6700         if (skb_orphan_frags(skb, gfp_mask)) {
6701                 skb_kfree_head(data, size);
6702                 return -ENOMEM;
6703         }
6704         shinfo = (struct skb_shared_info *)(data + size);
6705         for (i = 0; i < nfrags; i++) {
6706                 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6707 
6708                 if (pos + fsize > off) {
6709                         shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6710 
6711                         if (pos < off) {
6712                                 /* Split frag.
6713                                  * We have two variants in this case:
6714                                  * 1. Move all the frag to the second
6715                                  *    part, if it is possible. F.e.
6716                                  *    this approach is mandatory for TUX,
6717                                  *    where splitting is expensive.
6718                                  * 2. Split is accurately. We make this.
6719                                  */
6720                                 skb_frag_off_add(&shinfo->frags[0], off - pos);
6721                                 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6722                         }
6723                         skb_frag_ref(skb, i);
6724                         k++;
6725                 }
6726                 pos += fsize;
6727         }
6728         shinfo->nr_frags = k;
6729         if (skb_has_frag_list(skb))
6730                 skb_clone_fraglist(skb);
6731 
6732         /* split line is in frag list */
6733         if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6734                 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6735                 if (skb_has_frag_list(skb))
6736                         kfree_skb_list(skb_shinfo(skb)->frag_list);
6737                 skb_kfree_head(data, size);
6738                 return -ENOMEM;
6739         }
6740         skb_release_data(skb, SKB_CONSUMED);
6741 
6742         skb->head = data;
6743         skb->head_frag = 0;
6744         skb->data = data;
6745         skb_set_end_offset(skb, size);
6746         skb_reset_tail_pointer(skb);
6747         skb_headers_offset_update(skb, 0);
6748         skb->cloned   = 0;
6749         skb->hdr_len  = 0;
6750         skb->nohdr    = 0;
6751         skb->len -= off;
6752         skb->data_len = skb->len;
6753         atomic_set(&skb_shinfo(skb)->dataref, 1);
6754         return 0;
6755 }
6756 
6757 /* remove len bytes from the beginning of the skb */
6758 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6759 {
6760         int headlen = skb_headlen(skb);
6761 
6762         if (len < headlen)
6763                 return pskb_carve_inside_header(skb, len, headlen, gfp);
6764         else
6765                 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6766 }
6767 
6768 /* Extract to_copy bytes starting at off from skb, and return this in
6769  * a new skb
6770  */
6771 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6772                              int to_copy, gfp_t gfp)
6773 {
6774         struct sk_buff  *clone = skb_clone(skb, gfp);
6775 
6776         if (!clone)
6777                 return NULL;
6778 
6779         if (pskb_carve(clone, off, gfp) < 0 ||
6780             pskb_trim(clone, to_copy)) {
6781                 kfree_skb(clone);
6782                 return NULL;
6783         }
6784         return clone;
6785 }
6786 EXPORT_SYMBOL(pskb_extract);
6787 
6788 /**
6789  * skb_condense - try to get rid of fragments/frag_list if possible
6790  * @skb: buffer
6791  *
6792  * Can be used to save memory before skb is added to a busy queue.
6793  * If packet has bytes in frags and enough tail room in skb->head,
6794  * pull all of them, so that we can free the frags right now and adjust
6795  * truesize.
6796  * Notes:
6797  *      We do not reallocate skb->head thus can not fail.
6798  *      Caller must re-evaluate skb->truesize if needed.
6799  */
6800 void skb_condense(struct sk_buff *skb)
6801 {
6802         if (skb->data_len) {
6803                 if (skb->data_len > skb->end - skb->tail ||
6804                     skb_cloned(skb))
6805                         return;
6806 
6807                 /* Nice, we can free page frag(s) right now */
6808                 __pskb_pull_tail(skb, skb->data_len);
6809         }
6810         /* At this point, skb->truesize might be over estimated,
6811          * because skb had a fragment, and fragments do not tell
6812          * their truesize.
6813          * When we pulled its content into skb->head, fragment
6814          * was freed, but __pskb_pull_tail() could not possibly
6815          * adjust skb->truesize, not knowing the frag truesize.
6816          */
6817         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6818 }
6819 EXPORT_SYMBOL(skb_condense);
6820 
6821 #ifdef CONFIG_SKB_EXTENSIONS
6822 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6823 {
6824         return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6825 }
6826 
6827 /**
6828  * __skb_ext_alloc - allocate a new skb extensions storage
6829  *
6830  * @flags: See kmalloc().
6831  *
6832  * Returns the newly allocated pointer. The pointer can later attached to a
6833  * skb via __skb_ext_set().
6834  * Note: caller must handle the skb_ext as an opaque data.
6835  */
6836 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6837 {
6838         struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6839 
6840         if (new) {
6841                 memset(new->offset, 0, sizeof(new->offset));
6842                 refcount_set(&new->refcnt, 1);
6843         }
6844 
6845         return new;
6846 }
6847 
6848 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6849                                          unsigned int old_active)
6850 {
6851         struct skb_ext *new;
6852 
6853         if (refcount_read(&old->refcnt) == 1)
6854                 return old;
6855 
6856         new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6857         if (!new)
6858                 return NULL;
6859 
6860         memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6861         refcount_set(&new->refcnt, 1);
6862 
6863 #ifdef CONFIG_XFRM
6864         if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6865                 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6866                 unsigned int i;
6867 
6868                 for (i = 0; i < sp->len; i++)
6869                         xfrm_state_hold(sp->xvec[i]);
6870         }
6871 #endif
6872 #ifdef CONFIG_MCTP_FLOWS
6873         if (old_active & (1 << SKB_EXT_MCTP)) {
6874                 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6875 
6876                 if (flow->key)
6877                         refcount_inc(&flow->key->refs);
6878         }
6879 #endif
6880         __skb_ext_put(old);
6881         return new;
6882 }
6883 
6884 /**
6885  * __skb_ext_set - attach the specified extension storage to this skb
6886  * @skb: buffer
6887  * @id: extension id
6888  * @ext: extension storage previously allocated via __skb_ext_alloc()
6889  *
6890  * Existing extensions, if any, are cleared.
6891  *
6892  * Returns the pointer to the extension.
6893  */
6894 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6895                     struct skb_ext *ext)
6896 {
6897         unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6898 
6899         skb_ext_put(skb);
6900         newlen = newoff + skb_ext_type_len[id];
6901         ext->chunks = newlen;
6902         ext->offset[id] = newoff;
6903         skb->extensions = ext;
6904         skb->active_extensions = 1 << id;
6905         return skb_ext_get_ptr(ext, id);
6906 }
6907 
6908 /**
6909  * skb_ext_add - allocate space for given extension, COW if needed
6910  * @skb: buffer
6911  * @id: extension to allocate space for
6912  *
6913  * Allocates enough space for the given extension.
6914  * If the extension is already present, a pointer to that extension
6915  * is returned.
6916  *
6917  * If the skb was cloned, COW applies and the returned memory can be
6918  * modified without changing the extension space of clones buffers.
6919  *
6920  * Returns pointer to the extension or NULL on allocation failure.
6921  */
6922 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6923 {
6924         struct skb_ext *new, *old = NULL;
6925         unsigned int newlen, newoff;
6926 
6927         if (skb->active_extensions) {
6928                 old = skb->extensions;
6929 
6930                 new = skb_ext_maybe_cow(old, skb->active_extensions);
6931                 if (!new)
6932                         return NULL;
6933 
6934                 if (__skb_ext_exist(new, id))
6935                         goto set_active;
6936 
6937                 newoff = new->chunks;
6938         } else {
6939                 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6940 
6941                 new = __skb_ext_alloc(GFP_ATOMIC);
6942                 if (!new)
6943                         return NULL;
6944         }
6945 
6946         newlen = newoff + skb_ext_type_len[id];
6947         new->chunks = newlen;
6948         new->offset[id] = newoff;
6949 set_active:
6950         skb->slow_gro = 1;
6951         skb->extensions = new;
6952         skb->active_extensions |= 1 << id;
6953         return skb_ext_get_ptr(new, id);
6954 }
6955 EXPORT_SYMBOL(skb_ext_add);
6956 
6957 #ifdef CONFIG_XFRM
6958 static void skb_ext_put_sp(struct sec_path *sp)
6959 {
6960         unsigned int i;
6961 
6962         for (i = 0; i < sp->len; i++)
6963                 xfrm_state_put(sp->xvec[i]);
6964 }
6965 #endif
6966 
6967 #ifdef CONFIG_MCTP_FLOWS
6968 static void skb_ext_put_mctp(struct mctp_flow *flow)
6969 {
6970         if (flow->key)
6971                 mctp_key_unref(flow->key);
6972 }
6973 #endif
6974 
6975 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6976 {
6977         struct skb_ext *ext = skb->extensions;
6978 
6979         skb->active_extensions &= ~(1 << id);
6980         if (skb->active_extensions == 0) {
6981                 skb->extensions = NULL;
6982                 __skb_ext_put(ext);
6983 #ifdef CONFIG_XFRM
6984         } else if (id == SKB_EXT_SEC_PATH &&
6985                    refcount_read(&ext->refcnt) == 1) {
6986                 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6987 
6988                 skb_ext_put_sp(sp);
6989                 sp->len = 0;
6990 #endif
6991         }
6992 }
6993 EXPORT_SYMBOL(__skb_ext_del);
6994 
6995 void __skb_ext_put(struct skb_ext *ext)
6996 {
6997         /* If this is last clone, nothing can increment
6998          * it after check passes.  Avoids one atomic op.
6999          */
7000         if (refcount_read(&ext->refcnt) == 1)
7001                 goto free_now;
7002 
7003         if (!refcount_dec_and_test(&ext->refcnt))
7004                 return;
7005 free_now:
7006 #ifdef CONFIG_XFRM
7007         if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
7008                 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
7009 #endif
7010 #ifdef CONFIG_MCTP_FLOWS
7011         if (__skb_ext_exist(ext, SKB_EXT_MCTP))
7012                 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
7013 #endif
7014 
7015         kmem_cache_free(skbuff_ext_cache, ext);
7016 }
7017 EXPORT_SYMBOL(__skb_ext_put);
7018 #endif /* CONFIG_SKB_EXTENSIONS */
7019 
7020 static void kfree_skb_napi_cache(struct sk_buff *skb)
7021 {
7022         /* if SKB is a clone, don't handle this case */
7023         if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
7024                 __kfree_skb(skb);
7025                 return;
7026         }
7027 
7028         local_bh_disable();
7029         __napi_kfree_skb(skb, SKB_CONSUMED);
7030         local_bh_enable();
7031 }
7032 
7033 /**
7034  * skb_attempt_defer_free - queue skb for remote freeing
7035  * @skb: buffer
7036  *
7037  * Put @skb in a per-cpu list, using the cpu which
7038  * allocated the skb/pages to reduce false sharing
7039  * and memory zone spinlock contention.
7040  */
7041 void skb_attempt_defer_free(struct sk_buff *skb)
7042 {
7043         int cpu = skb->alloc_cpu;
7044         struct softnet_data *sd;
7045         unsigned int defer_max;
7046         bool kick;
7047 
7048         if (cpu == raw_smp_processor_id() ||
7049             WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
7050             !cpu_online(cpu)) {
7051 nodefer:        kfree_skb_napi_cache(skb);
7052                 return;
7053         }
7054 
7055         DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
7056         DEBUG_NET_WARN_ON_ONCE(skb->destructor);
7057 
7058         sd = &per_cpu(softnet_data, cpu);
7059         defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max);
7060         if (READ_ONCE(sd->defer_count) >= defer_max)
7061                 goto nodefer;
7062 
7063         spin_lock_bh(&sd->defer_lock);
7064         /* Send an IPI every time queue reaches half capacity. */
7065         kick = sd->defer_count == (defer_max >> 1);
7066         /* Paired with the READ_ONCE() few lines above */
7067         WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
7068 
7069         skb->next = sd->defer_list;
7070         /* Paired with READ_ONCE() in skb_defer_free_flush() */
7071         WRITE_ONCE(sd->defer_list, skb);
7072         spin_unlock_bh(&sd->defer_lock);
7073 
7074         /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
7075          * if we are unlucky enough (this seems very unlikely).
7076          */
7077         if (unlikely(kick))
7078                 kick_defer_list_purge(sd, cpu);
7079 }
7080 
7081 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
7082                                  size_t offset, size_t len)
7083 {
7084         const char *kaddr;
7085         __wsum csum;
7086 
7087         kaddr = kmap_local_page(page);
7088         csum = csum_partial(kaddr + offset, len, 0);
7089         kunmap_local(kaddr);
7090         skb->csum = csum_block_add(skb->csum, csum, skb->len);
7091 }
7092 
7093 /**
7094  * skb_splice_from_iter - Splice (or copy) pages to skbuff
7095  * @skb: The buffer to add pages to
7096  * @iter: Iterator representing the pages to be added
7097  * @maxsize: Maximum amount of pages to be added
7098  * @gfp: Allocation flags
7099  *
7100  * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
7101  * extracts pages from an iterator and adds them to the socket buffer if
7102  * possible, copying them to fragments if not possible (such as if they're slab
7103  * pages).
7104  *
7105  * Returns the amount of data spliced/copied or -EMSGSIZE if there's
7106  * insufficient space in the buffer to transfer anything.
7107  */
7108 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
7109                              ssize_t maxsize, gfp_t gfp)
7110 {
7111         size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags);
7112         struct page *pages[8], **ppages = pages;
7113         ssize_t spliced = 0, ret = 0;
7114         unsigned int i;
7115 
7116         while (iter->count > 0) {
7117                 ssize_t space, nr, len;
7118                 size_t off;
7119 
7120                 ret = -EMSGSIZE;
7121                 space = frag_limit - skb_shinfo(skb)->nr_frags;
7122                 if (space < 0)
7123                         break;
7124 
7125                 /* We might be able to coalesce without increasing nr_frags */
7126                 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
7127 
7128                 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
7129                 if (len <= 0) {
7130                         ret = len ?: -EIO;
7131                         break;
7132                 }
7133 
7134                 i = 0;
7135                 do {
7136                         struct page *page = pages[i++];
7137                         size_t part = min_t(size_t, PAGE_SIZE - off, len);
7138 
7139                         ret = -EIO;
7140                         if (WARN_ON_ONCE(!sendpage_ok(page)))
7141                                 goto out;
7142 
7143                         ret = skb_append_pagefrags(skb, page, off, part,
7144                                                    frag_limit);
7145                         if (ret < 0) {
7146                                 iov_iter_revert(iter, len);
7147                                 goto out;
7148                         }
7149 
7150                         if (skb->ip_summed == CHECKSUM_NONE)
7151                                 skb_splice_csum_page(skb, page, off, part);
7152 
7153                         off = 0;
7154                         spliced += part;
7155                         maxsize -= part;
7156                         len -= part;
7157                 } while (len > 0);
7158 
7159                 if (maxsize <= 0)
7160                         break;
7161         }
7162 
7163 out:
7164         skb_len_add(skb, spliced);
7165         return spliced ?: ret;
7166 }
7167 EXPORT_SYMBOL(skb_splice_from_iter);
7168 
7169 static __always_inline
7170 size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7171                              size_t len, void *to, void *priv2)
7172 {
7173         __wsum *csum = priv2;
7174         __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7175 
7176         *csum = csum_block_add(*csum, next, progress);
7177         return 0;
7178 }
7179 
7180 static __always_inline
7181 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7182                                 size_t len, void *to, void *priv2)
7183 {
7184         __wsum next, *csum = priv2;
7185 
7186         next = csum_and_copy_from_user(iter_from, to + progress, len);
7187         *csum = csum_block_add(*csum, next, progress);
7188         return next ? 0 : len;
7189 }
7190 
7191 bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7192                                   __wsum *csum, struct iov_iter *i)
7193 {
7194         size_t copied;
7195 
7196         if (WARN_ON_ONCE(!i->data_source))
7197                 return false;
7198         copied = iterate_and_advance2(i, bytes, addr, csum,
7199                                       copy_from_user_iter_csum,
7200                                       memcpy_from_iter_csum);
7201         if (likely(copied == bytes))
7202                 return true;
7203         iov_iter_revert(i, copied);
7204         return false;
7205 }
7206 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
7207 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php