~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/dccp/ccids/lib/packet_history.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *  Copyright (c) 2007   The University of Aberdeen, Scotland, UK
  4  *  Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
  5  *
  6  *  An implementation of the DCCP protocol
  7  *
  8  *  This code has been developed by the University of Waikato WAND
  9  *  research group. For further information please see https://www.wand.net.nz/
 10  *  or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
 11  *
 12  *  This code also uses code from Lulea University, rereleased as GPL by its
 13  *  authors:
 14  *  Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
 15  *
 16  *  Changes to meet Linux coding standards, to make it meet latest ccid3 draft
 17  *  and to make it work as a loadable module in the DCCP stack written by
 18  *  Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
 19  *
 20  *  Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
 21  */
 22 
 23 #include <linux/string.h>
 24 #include <linux/slab.h>
 25 #include "packet_history.h"
 26 #include "../../dccp.h"
 27 
 28 /*
 29  * Transmitter History Routines
 30  */
 31 static struct kmem_cache *tfrc_tx_hist_slab;
 32 
 33 int __init tfrc_tx_packet_history_init(void)
 34 {
 35         tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
 36                                               sizeof(struct tfrc_tx_hist_entry),
 37                                               0, SLAB_HWCACHE_ALIGN, NULL);
 38         return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
 39 }
 40 
 41 void tfrc_tx_packet_history_exit(void)
 42 {
 43         if (tfrc_tx_hist_slab != NULL) {
 44                 kmem_cache_destroy(tfrc_tx_hist_slab);
 45                 tfrc_tx_hist_slab = NULL;
 46         }
 47 }
 48 
 49 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
 50 {
 51         struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
 52 
 53         if (entry == NULL)
 54                 return -ENOBUFS;
 55         entry->seqno = seqno;
 56         entry->stamp = ktime_get_real();
 57         entry->next  = *headp;
 58         *headp       = entry;
 59         return 0;
 60 }
 61 
 62 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
 63 {
 64         struct tfrc_tx_hist_entry *head = *headp;
 65 
 66         while (head != NULL) {
 67                 struct tfrc_tx_hist_entry *next = head->next;
 68 
 69                 kmem_cache_free(tfrc_tx_hist_slab, head);
 70                 head = next;
 71         }
 72 
 73         *headp = NULL;
 74 }
 75 
 76 /*
 77  *      Receiver History Routines
 78  */
 79 static struct kmem_cache *tfrc_rx_hist_slab;
 80 
 81 int __init tfrc_rx_packet_history_init(void)
 82 {
 83         tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
 84                                               sizeof(struct tfrc_rx_hist_entry),
 85                                               0, SLAB_HWCACHE_ALIGN, NULL);
 86         return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
 87 }
 88 
 89 void tfrc_rx_packet_history_exit(void)
 90 {
 91         if (tfrc_rx_hist_slab != NULL) {
 92                 kmem_cache_destroy(tfrc_rx_hist_slab);
 93                 tfrc_rx_hist_slab = NULL;
 94         }
 95 }
 96 
 97 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
 98                                                const struct sk_buff *skb,
 99                                                const u64 ndp)
100 {
101         const struct dccp_hdr *dh = dccp_hdr(skb);
102 
103         entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
104         entry->tfrchrx_ccval = dh->dccph_ccval;
105         entry->tfrchrx_type  = dh->dccph_type;
106         entry->tfrchrx_ndp   = ndp;
107         entry->tfrchrx_tstamp = ktime_get_real();
108 }
109 
110 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
111                              const struct sk_buff *skb,
112                              const u64 ndp)
113 {
114         struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
115 
116         tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
117 }
118 
119 /* has the packet contained in skb been seen before? */
120 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
121 {
122         const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
123         int i;
124 
125         if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
126                 return 1;
127 
128         for (i = 1; i <= h->loss_count; i++)
129                 if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
130                         return 1;
131 
132         return 0;
133 }
134 
135 static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
136 {
137         const u8 idx_a = tfrc_rx_hist_index(h, a),
138                  idx_b = tfrc_rx_hist_index(h, b);
139 
140         swap(h->ring[idx_a], h->ring[idx_b]);
141 }
142 
143 /*
144  * Private helper functions for loss detection.
145  *
146  * In the descriptions, `Si' refers to the sequence number of entry number i,
147  * whose NDP count is `Ni' (lower case is used for variables).
148  * Note: All __xxx_loss functions expect that a test against duplicates has been
149  *       performed already: the seqno of the skb must not be less than the seqno
150  *       of loss_prev; and it must not equal that of any valid history entry.
151  */
152 static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
153 {
154         u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
155             s1 = DCCP_SKB_CB(skb)->dccpd_seq;
156 
157         if (!dccp_loss_free(s0, s1, n1)) {      /* gap between S0 and S1 */
158                 h->loss_count = 1;
159                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
160         }
161 }
162 
163 static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
164 {
165         u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
166             s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
167             s2 = DCCP_SKB_CB(skb)->dccpd_seq;
168 
169         if (likely(dccp_delta_seqno(s1, s2) > 0)) {     /* S1  <  S2 */
170                 h->loss_count = 2;
171                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
172                 return;
173         }
174 
175         /* S0  <  S2  <  S1 */
176 
177         if (dccp_loss_free(s0, s2, n2)) {
178                 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
179 
180                 if (dccp_loss_free(s2, s1, n1)) {
181                         /* hole is filled: S0, S2, and S1 are consecutive */
182                         h->loss_count = 0;
183                         h->loss_start = tfrc_rx_hist_index(h, 1);
184                 } else
185                         /* gap between S2 and S1: just update loss_prev */
186                         tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
187 
188         } else {        /* gap between S0 and S2 */
189                 /*
190                  * Reorder history to insert S2 between S0 and S1
191                  */
192                 tfrc_rx_hist_swap(h, 0, 3);
193                 h->loss_start = tfrc_rx_hist_index(h, 3);
194                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
195                 h->loss_count = 2;
196         }
197 }
198 
199 /* return 1 if a new loss event has been identified */
200 static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
201 {
202         u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
203             s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
204             s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
205             s3 = DCCP_SKB_CB(skb)->dccpd_seq;
206 
207         if (likely(dccp_delta_seqno(s2, s3) > 0)) {     /* S2  <  S3 */
208                 h->loss_count = 3;
209                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
210                 return 1;
211         }
212 
213         /* S3  <  S2 */
214 
215         if (dccp_delta_seqno(s1, s3) > 0) {             /* S1  <  S3  <  S2 */
216                 /*
217                  * Reorder history to insert S3 between S1 and S2
218                  */
219                 tfrc_rx_hist_swap(h, 2, 3);
220                 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
221                 h->loss_count = 3;
222                 return 1;
223         }
224 
225         /* S0  <  S3  <  S1 */
226 
227         if (dccp_loss_free(s0, s3, n3)) {
228                 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
229 
230                 if (dccp_loss_free(s3, s1, n1)) {
231                         /* hole between S0 and S1 filled by S3 */
232                         u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
233 
234                         if (dccp_loss_free(s1, s2, n2)) {
235                                 /* entire hole filled by S0, S3, S1, S2 */
236                                 h->loss_start = tfrc_rx_hist_index(h, 2);
237                                 h->loss_count = 0;
238                         } else {
239                                 /* gap remains between S1 and S2 */
240                                 h->loss_start = tfrc_rx_hist_index(h, 1);
241                                 h->loss_count = 1;
242                         }
243 
244                 } else /* gap exists between S3 and S1, loss_count stays at 2 */
245                         tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
246 
247                 return 0;
248         }
249 
250         /*
251          * The remaining case:  S0  <  S3  <  S1  <  S2;  gap between S0 and S3
252          * Reorder history to insert S3 between S0 and S1.
253          */
254         tfrc_rx_hist_swap(h, 0, 3);
255         h->loss_start = tfrc_rx_hist_index(h, 3);
256         tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
257         h->loss_count = 3;
258 
259         return 1;
260 }
261 
262 /* recycle RX history records to continue loss detection if necessary */
263 static void __three_after_loss(struct tfrc_rx_hist *h)
264 {
265         /*
266          * At this stage we know already that there is a gap between S0 and S1
267          * (since S0 was the highest sequence number received before detecting
268          * the loss). To recycle the loss record, it is thus only necessary to
269          * check for other possible gaps between S1/S2 and between S2/S3.
270          */
271         u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
272             s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
273             s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
274         u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
275             n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
276 
277         if (dccp_loss_free(s1, s2, n2)) {
278 
279                 if (dccp_loss_free(s2, s3, n3)) {
280                         /* no gap between S2 and S3: entire hole is filled */
281                         h->loss_start = tfrc_rx_hist_index(h, 3);
282                         h->loss_count = 0;
283                 } else {
284                         /* gap between S2 and S3 */
285                         h->loss_start = tfrc_rx_hist_index(h, 2);
286                         h->loss_count = 1;
287                 }
288 
289         } else {        /* gap between S1 and S2 */
290                 h->loss_start = tfrc_rx_hist_index(h, 1);
291                 h->loss_count = 2;
292         }
293 }
294 
295 /**
296  *  tfrc_rx_handle_loss  -  Loss detection and further processing
297  *  @h:             The non-empty RX history object
298  *  @lh:            Loss Intervals database to update
299  *  @skb:           Currently received packet
300  *  @ndp:           The NDP count belonging to @skb
301  *  @calc_first_li: Caller-dependent computation of first loss interval in @lh
302  *  @sk:            Used by @calc_first_li (see tfrc_lh_interval_add)
303  *
304  *  Chooses action according to pending loss, updates LI database when a new
305  *  loss was detected, and does required post-processing. Returns 1 when caller
306  *  should send feedback, 0 otherwise.
307  *  Since it also takes care of reordering during loss detection and updates the
308  *  records accordingly, the caller should not perform any more RX history
309  *  operations when loss_count is greater than 0 after calling this function.
310  */
311 int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
312                         struct tfrc_loss_hist *lh,
313                         struct sk_buff *skb, const u64 ndp,
314                         u32 (*calc_first_li)(struct sock *), struct sock *sk)
315 {
316         int is_new_loss = 0;
317 
318         if (h->loss_count == 0) {
319                 __do_track_loss(h, skb, ndp);
320         } else if (h->loss_count == 1) {
321                 __one_after_loss(h, skb, ndp);
322         } else if (h->loss_count != 2) {
323                 DCCP_BUG("invalid loss_count %d", h->loss_count);
324         } else if (__two_after_loss(h, skb, ndp)) {
325                 /*
326                  * Update Loss Interval database and recycle RX records
327                  */
328                 is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
329                 __three_after_loss(h);
330         }
331         return is_new_loss;
332 }
333 
334 int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
335 {
336         int i;
337 
338         for (i = 0; i <= TFRC_NDUPACK; i++) {
339                 h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
340                 if (h->ring[i] == NULL)
341                         goto out_free;
342         }
343 
344         h->loss_count = h->loss_start = 0;
345         return 0;
346 
347 out_free:
348         while (i-- != 0) {
349                 kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
350                 h->ring[i] = NULL;
351         }
352         return -ENOBUFS;
353 }
354 
355 void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
356 {
357         int i;
358 
359         for (i = 0; i <= TFRC_NDUPACK; ++i)
360                 if (h->ring[i] != NULL) {
361                         kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
362                         h->ring[i] = NULL;
363                 }
364 }
365 
366 /**
367  * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
368  * @h:  The non-empty RX history object
369  */
370 static inline struct tfrc_rx_hist_entry *
371                         tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
372 {
373         return h->ring[0];
374 }
375 
376 /**
377  * tfrc_rx_hist_rtt_prev_s - previously suitable (wrt rtt_last_s) RTT-sampling entry
378  * @h:  The non-empty RX history object
379  */
380 static inline struct tfrc_rx_hist_entry *
381                         tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
382 {
383         return h->ring[h->rtt_sample_prev];
384 }
385 
386 /**
387  * tfrc_rx_hist_sample_rtt  -  Sample RTT from timestamp / CCVal
388  * @h: receive histogram
389  * @skb: packet containing timestamp.
390  *
391  * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
392  * to compute a sample with given data - calling function should check this.
393  */
394 u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
395 {
396         u32 sample = 0,
397             delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
398                             tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
399 
400         if (delta_v < 1 || delta_v > 4) {       /* unsuitable CCVal delta */
401                 if (h->rtt_sample_prev == 2) {  /* previous candidate stored */
402                         sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
403                                        tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
404                         if (sample)
405                                 sample = 4 / sample *
406                                          ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
407                                                         tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
408                         else    /*
409                                  * FIXME: This condition is in principle not
410                                  * possible but occurs when CCID is used for
411                                  * two-way data traffic. I have tried to trace
412                                  * it, but the cause does not seem to be here.
413                                  */
414                                 DCCP_BUG("please report to dccp@vger.kernel.org"
415                                          " => prev = %u, last = %u",
416                                          tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
417                                          tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
418                 } else if (delta_v < 1) {
419                         h->rtt_sample_prev = 1;
420                         goto keep_ref_for_next_time;
421                 }
422 
423         } else if (delta_v == 4) /* optimal match */
424                 sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
425         else {                   /* suboptimal match */
426                 h->rtt_sample_prev = 2;
427                 goto keep_ref_for_next_time;
428         }
429 
430         if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
431                 DCCP_WARN("RTT sample %u too large, using max\n", sample);
432                 sample = DCCP_SANE_RTT_MAX;
433         }
434 
435         h->rtt_sample_prev = 0;        /* use current entry as next reference */
436 keep_ref_for_next_time:
437 
438         return sample;
439 }
440 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php