~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/ipv4/arp.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /* linux/net/ipv4/arp.c
  3  *
  4  * Copyright (C) 1994 by Florian  La Roche
  5  *
  6  * This module implements the Address Resolution Protocol ARP (RFC 826),
  7  * which is used to convert IP addresses (or in the future maybe other
  8  * high-level addresses) into a low-level hardware address (like an Ethernet
  9  * address).
 10  *
 11  * Fixes:
 12  *              Alan Cox        :       Removed the Ethernet assumptions in
 13  *                                      Florian's code
 14  *              Alan Cox        :       Fixed some small errors in the ARP
 15  *                                      logic
 16  *              Alan Cox        :       Allow >4K in /proc
 17  *              Alan Cox        :       Make ARP add its own protocol entry
 18  *              Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
 19  *              Stephen Henson  :       Add AX25 support to arp_get_info()
 20  *              Alan Cox        :       Drop data when a device is downed.
 21  *              Alan Cox        :       Use init_timer().
 22  *              Alan Cox        :       Double lock fixes.
 23  *              Martin Seine    :       Move the arphdr structure
 24  *                                      to if_arp.h for compatibility.
 25  *                                      with BSD based programs.
 26  *              Andrew Tridgell :       Added ARP netmask code and
 27  *                                      re-arranged proxy handling.
 28  *              Alan Cox        :       Changed to use notifiers.
 29  *              Niibe Yutaka    :       Reply for this device or proxies only.
 30  *              Alan Cox        :       Don't proxy across hardware types!
 31  *              Jonathan Naylor :       Added support for NET/ROM.
 32  *              Mike Shaver     :       RFC1122 checks.
 33  *              Jonathan Naylor :       Only lookup the hardware address for
 34  *                                      the correct hardware type.
 35  *              Germano Caronni :       Assorted subtle races.
 36  *              Craig Schlenter :       Don't modify permanent entry
 37  *                                      during arp_rcv.
 38  *              Russ Nelson     :       Tidied up a few bits.
 39  *              Alexey Kuznetsov:       Major changes to caching and behaviour,
 40  *                                      eg intelligent arp probing and
 41  *                                      generation
 42  *                                      of host down events.
 43  *              Alan Cox        :       Missing unlock in device events.
 44  *              Eckes           :       ARP ioctl control errors.
 45  *              Alexey Kuznetsov:       Arp free fix.
 46  *              Manuel Rodriguez:       Gratuitous ARP.
 47  *              Jonathan Layes  :       Added arpd support through kerneld
 48  *                                      message queue (960314)
 49  *              Mike Shaver     :       /proc/sys/net/ipv4/arp_* support
 50  *              Mike McLagan    :       Routing by source
 51  *              Stuart Cheshire :       Metricom and grat arp fixes
 52  *                                      *** FOR 2.1 clean this up ***
 53  *              Lawrence V. Stefani: (08/12/96) Added FDDI support.
 54  *              Alan Cox        :       Took the AP1000 nasty FDDI hack and
 55  *                                      folded into the mainstream FDDI code.
 56  *                                      Ack spit, Linus how did you allow that
 57  *                                      one in...
 58  *              Jes Sorensen    :       Make FDDI work again in 2.1.x and
 59  *                                      clean up the APFDDI & gen. FDDI bits.
 60  *              Alexey Kuznetsov:       new arp state machine;
 61  *                                      now it is in net/core/neighbour.c.
 62  *              Krzysztof Halasa:       Added Frame Relay ARP support.
 63  *              Arnaldo C. Melo :       convert /proc/net/arp to seq_file
 64  *              Shmulik Hen:            Split arp_send to arp_create and
 65  *                                      arp_xmit so intermediate drivers like
 66  *                                      bonding can change the skb before
 67  *                                      sending (e.g. insert 8021q tag).
 68  *              Harald Welte    :       convert to make use of jenkins hash
 69  *              Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
 70  */
 71 
 72 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 73 
 74 #include <linux/module.h>
 75 #include <linux/types.h>
 76 #include <linux/string.h>
 77 #include <linux/kernel.h>
 78 #include <linux/capability.h>
 79 #include <linux/socket.h>
 80 #include <linux/sockios.h>
 81 #include <linux/errno.h>
 82 #include <linux/in.h>
 83 #include <linux/mm.h>
 84 #include <linux/inet.h>
 85 #include <linux/inetdevice.h>
 86 #include <linux/netdevice.h>
 87 #include <linux/etherdevice.h>
 88 #include <linux/fddidevice.h>
 89 #include <linux/if_arp.h>
 90 #include <linux/skbuff.h>
 91 #include <linux/proc_fs.h>
 92 #include <linux/seq_file.h>
 93 #include <linux/stat.h>
 94 #include <linux/init.h>
 95 #include <linux/net.h>
 96 #include <linux/rcupdate.h>
 97 #include <linux/slab.h>
 98 #ifdef CONFIG_SYSCTL
 99 #include <linux/sysctl.h>
100 #endif
101 
102 #include <net/net_namespace.h>
103 #include <net/ip.h>
104 #include <net/icmp.h>
105 #include <net/route.h>
106 #include <net/protocol.h>
107 #include <net/tcp.h>
108 #include <net/sock.h>
109 #include <net/arp.h>
110 #include <net/ax25.h>
111 #include <net/netrom.h>
112 #include <net/dst_metadata.h>
113 #include <net/ip_tunnels.h>
114 
115 #include <linux/uaccess.h>
116 
117 #include <linux/netfilter_arp.h>
118 
119 /*
120  *      Interface to generic neighbour cache.
121  */
122 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
123 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
124 static int arp_constructor(struct neighbour *neigh);
125 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
126 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
127 static void parp_redo(struct sk_buff *skb);
128 static int arp_is_multicast(const void *pkey);
129 
130 static const struct neigh_ops arp_generic_ops = {
131         .family =               AF_INET,
132         .solicit =              arp_solicit,
133         .error_report =         arp_error_report,
134         .output =               neigh_resolve_output,
135         .connected_output =     neigh_connected_output,
136 };
137 
138 static const struct neigh_ops arp_hh_ops = {
139         .family =               AF_INET,
140         .solicit =              arp_solicit,
141         .error_report =         arp_error_report,
142         .output =               neigh_resolve_output,
143         .connected_output =     neigh_resolve_output,
144 };
145 
146 static const struct neigh_ops arp_direct_ops = {
147         .family =               AF_INET,
148         .output =               neigh_direct_output,
149         .connected_output =     neigh_direct_output,
150 };
151 
152 struct neigh_table arp_tbl = {
153         .family         = AF_INET,
154         .key_len        = 4,
155         .protocol       = cpu_to_be16(ETH_P_IP),
156         .hash           = arp_hash,
157         .key_eq         = arp_key_eq,
158         .constructor    = arp_constructor,
159         .proxy_redo     = parp_redo,
160         .is_multicast   = arp_is_multicast,
161         .id             = "arp_cache",
162         .parms          = {
163                 .tbl                    = &arp_tbl,
164                 .reachable_time         = 30 * HZ,
165                 .data   = {
166                         [NEIGH_VAR_MCAST_PROBES] = 3,
167                         [NEIGH_VAR_UCAST_PROBES] = 3,
168                         [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169                         [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170                         [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171                         [NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
172                         [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
173                         [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
174                         [NEIGH_VAR_PROXY_QLEN] = 64,
175                         [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
176                         [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
177                         [NEIGH_VAR_LOCKTIME] = 1 * HZ,
178                 },
179         },
180         .gc_interval    = 30 * HZ,
181         .gc_thresh1     = 128,
182         .gc_thresh2     = 512,
183         .gc_thresh3     = 1024,
184 };
185 EXPORT_SYMBOL(arp_tbl);
186 
187 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
188 {
189         switch (dev->type) {
190         case ARPHRD_ETHER:
191         case ARPHRD_FDDI:
192         case ARPHRD_IEEE802:
193                 ip_eth_mc_map(addr, haddr);
194                 return 0;
195         case ARPHRD_INFINIBAND:
196                 ip_ib_mc_map(addr, dev->broadcast, haddr);
197                 return 0;
198         case ARPHRD_IPGRE:
199                 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
200                 return 0;
201         default:
202                 if (dir) {
203                         memcpy(haddr, dev->broadcast, dev->addr_len);
204                         return 0;
205                 }
206         }
207         return -EINVAL;
208 }
209 
210 
211 static u32 arp_hash(const void *pkey,
212                     const struct net_device *dev,
213                     __u32 *hash_rnd)
214 {
215         return arp_hashfn(pkey, dev, hash_rnd);
216 }
217 
218 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
219 {
220         return neigh_key_eq32(neigh, pkey);
221 }
222 
223 static int arp_constructor(struct neighbour *neigh)
224 {
225         __be32 addr;
226         struct net_device *dev = neigh->dev;
227         struct in_device *in_dev;
228         struct neigh_parms *parms;
229         u32 inaddr_any = INADDR_ANY;
230 
231         if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
232                 memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
233 
234         addr = *(__be32 *)neigh->primary_key;
235         rcu_read_lock();
236         in_dev = __in_dev_get_rcu(dev);
237         if (!in_dev) {
238                 rcu_read_unlock();
239                 return -EINVAL;
240         }
241 
242         neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
243 
244         parms = in_dev->arp_parms;
245         __neigh_parms_put(neigh->parms);
246         neigh->parms = neigh_parms_clone(parms);
247         rcu_read_unlock();
248 
249         if (!dev->header_ops) {
250                 neigh->nud_state = NUD_NOARP;
251                 neigh->ops = &arp_direct_ops;
252                 neigh->output = neigh_direct_output;
253         } else {
254                 /* Good devices (checked by reading texts, but only Ethernet is
255                    tested)
256 
257                    ARPHRD_ETHER: (ethernet, apfddi)
258                    ARPHRD_FDDI: (fddi)
259                    ARPHRD_IEEE802: (tr)
260                    ARPHRD_METRICOM: (strip)
261                    ARPHRD_ARCNET:
262                    etc. etc. etc.
263 
264                    ARPHRD_IPDDP will also work, if author repairs it.
265                    I did not it, because this driver does not work even
266                    in old paradigm.
267                  */
268 
269                 if (neigh->type == RTN_MULTICAST) {
270                         neigh->nud_state = NUD_NOARP;
271                         arp_mc_map(addr, neigh->ha, dev, 1);
272                 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
273                         neigh->nud_state = NUD_NOARP;
274                         memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
275                 } else if (neigh->type == RTN_BROADCAST ||
276                            (dev->flags & IFF_POINTOPOINT)) {
277                         neigh->nud_state = NUD_NOARP;
278                         memcpy(neigh->ha, dev->broadcast, dev->addr_len);
279                 }
280 
281                 if (dev->header_ops->cache)
282                         neigh->ops = &arp_hh_ops;
283                 else
284                         neigh->ops = &arp_generic_ops;
285 
286                 if (neigh->nud_state & NUD_VALID)
287                         neigh->output = neigh->ops->connected_output;
288                 else
289                         neigh->output = neigh->ops->output;
290         }
291         return 0;
292 }
293 
294 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
295 {
296         dst_link_failure(skb);
297         kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
298 }
299 
300 /* Create and send an arp packet. */
301 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
302                          struct net_device *dev, __be32 src_ip,
303                          const unsigned char *dest_hw,
304                          const unsigned char *src_hw,
305                          const unsigned char *target_hw,
306                          struct dst_entry *dst)
307 {
308         struct sk_buff *skb;
309 
310         /* arp on this interface. */
311         if (dev->flags & IFF_NOARP)
312                 return;
313 
314         skb = arp_create(type, ptype, dest_ip, dev, src_ip,
315                          dest_hw, src_hw, target_hw);
316         if (!skb)
317                 return;
318 
319         skb_dst_set(skb, dst_clone(dst));
320         arp_xmit(skb);
321 }
322 
323 void arp_send(int type, int ptype, __be32 dest_ip,
324               struct net_device *dev, __be32 src_ip,
325               const unsigned char *dest_hw, const unsigned char *src_hw,
326               const unsigned char *target_hw)
327 {
328         arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
329                      target_hw, NULL);
330 }
331 EXPORT_SYMBOL(arp_send);
332 
333 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
334 {
335         __be32 saddr = 0;
336         u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
337         struct net_device *dev = neigh->dev;
338         __be32 target = *(__be32 *)neigh->primary_key;
339         int probes = atomic_read(&neigh->probes);
340         struct in_device *in_dev;
341         struct dst_entry *dst = NULL;
342 
343         rcu_read_lock();
344         in_dev = __in_dev_get_rcu(dev);
345         if (!in_dev) {
346                 rcu_read_unlock();
347                 return;
348         }
349         switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
350         default:
351         case 0:         /* By default announce any local IP */
352                 if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
353                                           ip_hdr(skb)->saddr) == RTN_LOCAL)
354                         saddr = ip_hdr(skb)->saddr;
355                 break;
356         case 1:         /* Restrict announcements of saddr in same subnet */
357                 if (!skb)
358                         break;
359                 saddr = ip_hdr(skb)->saddr;
360                 if (inet_addr_type_dev_table(dev_net(dev), dev,
361                                              saddr) == RTN_LOCAL) {
362                         /* saddr should be known to target */
363                         if (inet_addr_onlink(in_dev, target, saddr))
364                                 break;
365                 }
366                 saddr = 0;
367                 break;
368         case 2:         /* Avoid secondary IPs, get a primary/preferred one */
369                 break;
370         }
371         rcu_read_unlock();
372 
373         if (!saddr)
374                 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
375 
376         probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
377         if (probes < 0) {
378                 if (!(READ_ONCE(neigh->nud_state) & NUD_VALID))
379                         pr_debug("trying to ucast probe in NUD_INVALID\n");
380                 neigh_ha_snapshot(dst_ha, neigh, dev);
381                 dst_hw = dst_ha;
382         } else {
383                 probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
384                 if (probes < 0) {
385                         neigh_app_ns(neigh);
386                         return;
387                 }
388         }
389 
390         if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
391                 dst = skb_dst(skb);
392         arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
393                      dst_hw, dev->dev_addr, NULL, dst);
394 }
395 
396 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
397 {
398         struct net *net = dev_net(in_dev->dev);
399         int scope;
400 
401         switch (IN_DEV_ARP_IGNORE(in_dev)) {
402         case 0: /* Reply, the tip is already validated */
403                 return 0;
404         case 1: /* Reply only if tip is configured on the incoming interface */
405                 sip = 0;
406                 scope = RT_SCOPE_HOST;
407                 break;
408         case 2: /*
409                  * Reply only if tip is configured on the incoming interface
410                  * and is in same subnet as sip
411                  */
412                 scope = RT_SCOPE_HOST;
413                 break;
414         case 3: /* Do not reply for scope host addresses */
415                 sip = 0;
416                 scope = RT_SCOPE_LINK;
417                 in_dev = NULL;
418                 break;
419         case 4: /* Reserved */
420         case 5:
421         case 6:
422         case 7:
423                 return 0;
424         case 8: /* Do not reply */
425                 return 1;
426         default:
427                 return 0;
428         }
429         return !inet_confirm_addr(net, in_dev, sip, tip, scope);
430 }
431 
432 static int arp_accept(struct in_device *in_dev, __be32 sip)
433 {
434         struct net *net = dev_net(in_dev->dev);
435         int scope = RT_SCOPE_LINK;
436 
437         switch (IN_DEV_ARP_ACCEPT(in_dev)) {
438         case 0: /* Don't create new entries from garp */
439                 return 0;
440         case 1: /* Create new entries from garp */
441                 return 1;
442         case 2: /* Create a neighbor in the arp table only if sip
443                  * is in the same subnet as an address configured
444                  * on the interface that received the garp message
445                  */
446                 return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
447         default:
448                 return 0;
449         }
450 }
451 
452 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
453 {
454         struct rtable *rt;
455         int flag = 0;
456         /*unsigned long now; */
457         struct net *net = dev_net(dev);
458 
459         rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev),
460                              RT_SCOPE_UNIVERSE);
461         if (IS_ERR(rt))
462                 return 1;
463         if (rt->dst.dev != dev) {
464                 __NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
465                 flag = 1;
466         }
467         ip_rt_put(rt);
468         return flag;
469 }
470 
471 /*
472  * Check if we can use proxy ARP for this path
473  */
474 static inline int arp_fwd_proxy(struct in_device *in_dev,
475                                 struct net_device *dev, struct rtable *rt)
476 {
477         struct in_device *out_dev;
478         int imi, omi = -1;
479 
480         if (rt->dst.dev == dev)
481                 return 0;
482 
483         if (!IN_DEV_PROXY_ARP(in_dev))
484                 return 0;
485         imi = IN_DEV_MEDIUM_ID(in_dev);
486         if (imi == 0)
487                 return 1;
488         if (imi == -1)
489                 return 0;
490 
491         /* place to check for proxy_arp for routes */
492 
493         out_dev = __in_dev_get_rcu(rt->dst.dev);
494         if (out_dev)
495                 omi = IN_DEV_MEDIUM_ID(out_dev);
496 
497         return omi != imi && omi != -1;
498 }
499 
500 /*
501  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
502  *
503  * RFC3069 supports proxy arp replies back to the same interface.  This
504  * is done to support (ethernet) switch features, like RFC 3069, where
505  * the individual ports are not allowed to communicate with each
506  * other, BUT they are allowed to talk to the upstream router.  As
507  * described in RFC 3069, it is possible to allow these hosts to
508  * communicate through the upstream router, by proxy_arp'ing.
509  *
510  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
511  *
512  *  This technology is known by different names:
513  *    In RFC 3069 it is called VLAN Aggregation.
514  *    Cisco and Allied Telesyn call it Private VLAN.
515  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
516  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
517  *
518  */
519 static inline int arp_fwd_pvlan(struct in_device *in_dev,
520                                 struct net_device *dev, struct rtable *rt,
521                                 __be32 sip, __be32 tip)
522 {
523         /* Private VLAN is only concerned about the same ethernet segment */
524         if (rt->dst.dev != dev)
525                 return 0;
526 
527         /* Don't reply on self probes (often done by windowz boxes)*/
528         if (sip == tip)
529                 return 0;
530 
531         if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
532                 return 1;
533         else
534                 return 0;
535 }
536 
537 /*
538  *      Interface to link layer: send routine and receive handler.
539  */
540 
541 /*
542  *      Create an arp packet. If dest_hw is not set, we create a broadcast
543  *      message.
544  */
545 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
546                            struct net_device *dev, __be32 src_ip,
547                            const unsigned char *dest_hw,
548                            const unsigned char *src_hw,
549                            const unsigned char *target_hw)
550 {
551         struct sk_buff *skb;
552         struct arphdr *arp;
553         unsigned char *arp_ptr;
554         int hlen = LL_RESERVED_SPACE(dev);
555         int tlen = dev->needed_tailroom;
556 
557         /*
558          *      Allocate a buffer
559          */
560 
561         skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
562         if (!skb)
563                 return NULL;
564 
565         skb_reserve(skb, hlen);
566         skb_reset_network_header(skb);
567         arp = skb_put(skb, arp_hdr_len(dev));
568         skb->dev = dev;
569         skb->protocol = htons(ETH_P_ARP);
570         if (!src_hw)
571                 src_hw = dev->dev_addr;
572         if (!dest_hw)
573                 dest_hw = dev->broadcast;
574 
575         /*
576          *      Fill the device header for the ARP frame
577          */
578         if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
579                 goto out;
580 
581         /*
582          * Fill out the arp protocol part.
583          *
584          * The arp hardware type should match the device type, except for FDDI,
585          * which (according to RFC 1390) should always equal 1 (Ethernet).
586          */
587         /*
588          *      Exceptions everywhere. AX.25 uses the AX.25 PID value not the
589          *      DIX code for the protocol. Make these device structure fields.
590          */
591         switch (dev->type) {
592         default:
593                 arp->ar_hrd = htons(dev->type);
594                 arp->ar_pro = htons(ETH_P_IP);
595                 break;
596 
597 #if IS_ENABLED(CONFIG_AX25)
598         case ARPHRD_AX25:
599                 arp->ar_hrd = htons(ARPHRD_AX25);
600                 arp->ar_pro = htons(AX25_P_IP);
601                 break;
602 
603 #if IS_ENABLED(CONFIG_NETROM)
604         case ARPHRD_NETROM:
605                 arp->ar_hrd = htons(ARPHRD_NETROM);
606                 arp->ar_pro = htons(AX25_P_IP);
607                 break;
608 #endif
609 #endif
610 
611 #if IS_ENABLED(CONFIG_FDDI)
612         case ARPHRD_FDDI:
613                 arp->ar_hrd = htons(ARPHRD_ETHER);
614                 arp->ar_pro = htons(ETH_P_IP);
615                 break;
616 #endif
617         }
618 
619         arp->ar_hln = dev->addr_len;
620         arp->ar_pln = 4;
621         arp->ar_op = htons(type);
622 
623         arp_ptr = (unsigned char *)(arp + 1);
624 
625         memcpy(arp_ptr, src_hw, dev->addr_len);
626         arp_ptr += dev->addr_len;
627         memcpy(arp_ptr, &src_ip, 4);
628         arp_ptr += 4;
629 
630         switch (dev->type) {
631 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
632         case ARPHRD_IEEE1394:
633                 break;
634 #endif
635         default:
636                 if (target_hw)
637                         memcpy(arp_ptr, target_hw, dev->addr_len);
638                 else
639                         memset(arp_ptr, 0, dev->addr_len);
640                 arp_ptr += dev->addr_len;
641         }
642         memcpy(arp_ptr, &dest_ip, 4);
643 
644         return skb;
645 
646 out:
647         kfree_skb(skb);
648         return NULL;
649 }
650 EXPORT_SYMBOL(arp_create);
651 
652 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
653 {
654         return dev_queue_xmit(skb);
655 }
656 
657 /*
658  *      Send an arp packet.
659  */
660 void arp_xmit(struct sk_buff *skb)
661 {
662         /* Send it off, maybe filter it using firewalling first.  */
663         NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
664                 dev_net(skb->dev), NULL, skb, NULL, skb->dev,
665                 arp_xmit_finish);
666 }
667 EXPORT_SYMBOL(arp_xmit);
668 
669 static bool arp_is_garp(struct net *net, struct net_device *dev,
670                         int *addr_type, __be16 ar_op,
671                         __be32 sip, __be32 tip,
672                         unsigned char *sha, unsigned char *tha)
673 {
674         bool is_garp = tip == sip;
675 
676         /* Gratuitous ARP _replies_ also require target hwaddr to be
677          * the same as source.
678          */
679         if (is_garp && ar_op == htons(ARPOP_REPLY))
680                 is_garp =
681                         /* IPv4 over IEEE 1394 doesn't provide target
682                          * hardware address field in its ARP payload.
683                          */
684                         tha &&
685                         !memcmp(tha, sha, dev->addr_len);
686 
687         if (is_garp) {
688                 *addr_type = inet_addr_type_dev_table(net, dev, sip);
689                 if (*addr_type != RTN_UNICAST)
690                         is_garp = false;
691         }
692         return is_garp;
693 }
694 
695 /*
696  *      Process an arp request.
697  */
698 
699 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
700 {
701         struct net_device *dev = skb->dev;
702         struct in_device *in_dev = __in_dev_get_rcu(dev);
703         struct arphdr *arp;
704         unsigned char *arp_ptr;
705         struct rtable *rt;
706         unsigned char *sha;
707         unsigned char *tha = NULL;
708         __be32 sip, tip;
709         u16 dev_type = dev->type;
710         int addr_type;
711         struct neighbour *n;
712         struct dst_entry *reply_dst = NULL;
713         bool is_garp = false;
714 
715         /* arp_rcv below verifies the ARP header and verifies the device
716          * is ARP'able.
717          */
718 
719         if (!in_dev)
720                 goto out_free_skb;
721 
722         arp = arp_hdr(skb);
723 
724         switch (dev_type) {
725         default:
726                 if (arp->ar_pro != htons(ETH_P_IP) ||
727                     htons(dev_type) != arp->ar_hrd)
728                         goto out_free_skb;
729                 break;
730         case ARPHRD_ETHER:
731         case ARPHRD_FDDI:
732         case ARPHRD_IEEE802:
733                 /*
734                  * ETHERNET, and Fibre Channel (which are IEEE 802
735                  * devices, according to RFC 2625) devices will accept ARP
736                  * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
737                  * This is the case also of FDDI, where the RFC 1390 says that
738                  * FDDI devices should accept ARP hardware of (1) Ethernet,
739                  * however, to be more robust, we'll accept both 1 (Ethernet)
740                  * or 6 (IEEE 802.2)
741                  */
742                 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
743                      arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
744                     arp->ar_pro != htons(ETH_P_IP))
745                         goto out_free_skb;
746                 break;
747         case ARPHRD_AX25:
748                 if (arp->ar_pro != htons(AX25_P_IP) ||
749                     arp->ar_hrd != htons(ARPHRD_AX25))
750                         goto out_free_skb;
751                 break;
752         case ARPHRD_NETROM:
753                 if (arp->ar_pro != htons(AX25_P_IP) ||
754                     arp->ar_hrd != htons(ARPHRD_NETROM))
755                         goto out_free_skb;
756                 break;
757         }
758 
759         /* Understand only these message types */
760 
761         if (arp->ar_op != htons(ARPOP_REPLY) &&
762             arp->ar_op != htons(ARPOP_REQUEST))
763                 goto out_free_skb;
764 
765 /*
766  *      Extract fields
767  */
768         arp_ptr = (unsigned char *)(arp + 1);
769         sha     = arp_ptr;
770         arp_ptr += dev->addr_len;
771         memcpy(&sip, arp_ptr, 4);
772         arp_ptr += 4;
773         switch (dev_type) {
774 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
775         case ARPHRD_IEEE1394:
776                 break;
777 #endif
778         default:
779                 tha = arp_ptr;
780                 arp_ptr += dev->addr_len;
781         }
782         memcpy(&tip, arp_ptr, 4);
783 /*
784  *      Check for bad requests for 127.x.x.x and requests for multicast
785  *      addresses.  If this is one such, delete it.
786  */
787         if (ipv4_is_multicast(tip) ||
788             (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
789                 goto out_free_skb;
790 
791  /*
792   *     For some 802.11 wireless deployments (and possibly other networks),
793   *     there will be an ARP proxy and gratuitous ARP frames are attacks
794   *     and thus should not be accepted.
795   */
796         if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
797                 goto out_free_skb;
798 
799 /*
800  *     Special case: We must set Frame Relay source Q.922 address
801  */
802         if (dev_type == ARPHRD_DLCI)
803                 sha = dev->broadcast;
804 
805 /*
806  *  Process entry.  The idea here is we want to send a reply if it is a
807  *  request for us or if it is a request for someone else that we hold
808  *  a proxy for.  We want to add an entry to our cache if it is a reply
809  *  to us or if it is a request for our address.
810  *  (The assumption for this last is that if someone is requesting our
811  *  address, they are probably intending to talk to us, so it saves time
812  *  if we cache their address.  Their address is also probably not in
813  *  our cache, since ours is not in their cache.)
814  *
815  *  Putting this another way, we only care about replies if they are to
816  *  us, in which case we add them to the cache.  For requests, we care
817  *  about those for us and those for our proxies.  We reply to both,
818  *  and in the case of requests for us we add the requester to the arp
819  *  cache.
820  */
821 
822         if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
823                 reply_dst = (struct dst_entry *)
824                             iptunnel_metadata_reply(skb_metadata_dst(skb),
825                                                     GFP_ATOMIC);
826 
827         /* Special case: IPv4 duplicate address detection packet (RFC2131) */
828         if (sip == 0) {
829                 if (arp->ar_op == htons(ARPOP_REQUEST) &&
830                     inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
831                     !arp_ignore(in_dev, sip, tip))
832                         arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
833                                      sha, dev->dev_addr, sha, reply_dst);
834                 goto out_consume_skb;
835         }
836 
837         if (arp->ar_op == htons(ARPOP_REQUEST) &&
838             ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
839 
840                 rt = skb_rtable(skb);
841                 addr_type = rt->rt_type;
842 
843                 if (addr_type == RTN_LOCAL) {
844                         int dont_send;
845 
846                         dont_send = arp_ignore(in_dev, sip, tip);
847                         if (!dont_send && IN_DEV_ARPFILTER(in_dev))
848                                 dont_send = arp_filter(sip, tip, dev);
849                         if (!dont_send) {
850                                 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
851                                 if (n) {
852                                         arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
853                                                      sip, dev, tip, sha,
854                                                      dev->dev_addr, sha,
855                                                      reply_dst);
856                                         neigh_release(n);
857                                 }
858                         }
859                         goto out_consume_skb;
860                 } else if (IN_DEV_FORWARD(in_dev)) {
861                         if (addr_type == RTN_UNICAST  &&
862                             (arp_fwd_proxy(in_dev, dev, rt) ||
863                              arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
864                              (rt->dst.dev != dev &&
865                               pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
866                                 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
867                                 if (n)
868                                         neigh_release(n);
869 
870                                 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
871                                     skb->pkt_type == PACKET_HOST ||
872                                     NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
873                                         arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
874                                                      sip, dev, tip, sha,
875                                                      dev->dev_addr, sha,
876                                                      reply_dst);
877                                 } else {
878                                         pneigh_enqueue(&arp_tbl,
879                                                        in_dev->arp_parms, skb);
880                                         goto out_free_dst;
881                                 }
882                                 goto out_consume_skb;
883                         }
884                 }
885         }
886 
887         /* Update our ARP tables */
888 
889         n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
890 
891         addr_type = -1;
892         if (n || arp_accept(in_dev, sip)) {
893                 is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
894                                       sip, tip, sha, tha);
895         }
896 
897         if (arp_accept(in_dev, sip)) {
898                 /* Unsolicited ARP is not accepted by default.
899                    It is possible, that this option should be enabled for some
900                    devices (strip is candidate)
901                  */
902                 if (!n &&
903                     (is_garp ||
904                      (arp->ar_op == htons(ARPOP_REPLY) &&
905                       (addr_type == RTN_UNICAST ||
906                        (addr_type < 0 &&
907                         /* postpone calculation to as late as possible */
908                         inet_addr_type_dev_table(net, dev, sip) ==
909                                 RTN_UNICAST)))))
910                         n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
911         }
912 
913         if (n) {
914                 int state = NUD_REACHABLE;
915                 int override;
916 
917                 /* If several different ARP replies follows back-to-back,
918                    use the FIRST one. It is possible, if several proxy
919                    agents are active. Taking the first reply prevents
920                    arp trashing and chooses the fastest router.
921                  */
922                 override = time_after(jiffies,
923                                       n->updated +
924                                       NEIGH_VAR(n->parms, LOCKTIME)) ||
925                            is_garp;
926 
927                 /* Broadcast replies and request packets
928                    do not assert neighbour reachability.
929                  */
930                 if (arp->ar_op != htons(ARPOP_REPLY) ||
931                     skb->pkt_type != PACKET_HOST)
932                         state = NUD_STALE;
933                 neigh_update(n, sha, state,
934                              override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
935                 neigh_release(n);
936         }
937 
938 out_consume_skb:
939         consume_skb(skb);
940 
941 out_free_dst:
942         dst_release(reply_dst);
943         return NET_RX_SUCCESS;
944 
945 out_free_skb:
946         kfree_skb(skb);
947         return NET_RX_DROP;
948 }
949 
950 static void parp_redo(struct sk_buff *skb)
951 {
952         arp_process(dev_net(skb->dev), NULL, skb);
953 }
954 
955 static int arp_is_multicast(const void *pkey)
956 {
957         return ipv4_is_multicast(*((__be32 *)pkey));
958 }
959 
960 /*
961  *      Receive an arp request from the device layer.
962  */
963 
964 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
965                    struct packet_type *pt, struct net_device *orig_dev)
966 {
967         const struct arphdr *arp;
968 
969         /* do not tweak dropwatch on an ARP we will ignore */
970         if (dev->flags & IFF_NOARP ||
971             skb->pkt_type == PACKET_OTHERHOST ||
972             skb->pkt_type == PACKET_LOOPBACK)
973                 goto consumeskb;
974 
975         skb = skb_share_check(skb, GFP_ATOMIC);
976         if (!skb)
977                 goto out_of_mem;
978 
979         /* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
980         if (!pskb_may_pull(skb, arp_hdr_len(dev)))
981                 goto freeskb;
982 
983         arp = arp_hdr(skb);
984         if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
985                 goto freeskb;
986 
987         memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
988 
989         return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
990                        dev_net(dev), NULL, skb, dev, NULL,
991                        arp_process);
992 
993 consumeskb:
994         consume_skb(skb);
995         return NET_RX_SUCCESS;
996 freeskb:
997         kfree_skb(skb);
998 out_of_mem:
999         return NET_RX_DROP;
1000 }
1001 
1002 /*
1003  *      User level interface (ioctl)
1004  */
1005 
1006 static struct net_device *arp_req_dev_by_name(struct net *net, struct arpreq *r,
1007                                               bool getarp)
1008 {
1009         struct net_device *dev;
1010 
1011         if (getarp)
1012                 dev = dev_get_by_name_rcu(net, r->arp_dev);
1013         else
1014                 dev = __dev_get_by_name(net, r->arp_dev);
1015         if (!dev)
1016                 return ERR_PTR(-ENODEV);
1017 
1018         /* Mmmm... It is wrong... ARPHRD_NETROM == 0 */
1019         if (!r->arp_ha.sa_family)
1020                 r->arp_ha.sa_family = dev->type;
1021 
1022         if ((r->arp_flags & ATF_COM) && r->arp_ha.sa_family != dev->type)
1023                 return ERR_PTR(-EINVAL);
1024 
1025         return dev;
1026 }
1027 
1028 static struct net_device *arp_req_dev(struct net *net, struct arpreq *r)
1029 {
1030         struct net_device *dev;
1031         struct rtable *rt;
1032         __be32 ip;
1033 
1034         if (r->arp_dev[0])
1035                 return arp_req_dev_by_name(net, r, false);
1036 
1037         if (r->arp_flags & ATF_PUBL)
1038                 return NULL;
1039 
1040         ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1041 
1042         rt = ip_route_output(net, ip, 0, 0, 0, RT_SCOPE_LINK);
1043         if (IS_ERR(rt))
1044                 return ERR_CAST(rt);
1045 
1046         dev = rt->dst.dev;
1047         ip_rt_put(rt);
1048 
1049         if (!dev)
1050                 return ERR_PTR(-EINVAL);
1051 
1052         return dev;
1053 }
1054 
1055 /*
1056  *      Set (create) an ARP cache entry.
1057  */
1058 
1059 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1060 {
1061         if (!dev) {
1062                 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1063                 return 0;
1064         }
1065         if (__in_dev_get_rtnl(dev)) {
1066                 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1067                 return 0;
1068         }
1069         return -ENXIO;
1070 }
1071 
1072 static int arp_req_set_public(struct net *net, struct arpreq *r,
1073                 struct net_device *dev)
1074 {
1075         __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1076 
1077         if (!dev && (r->arp_flags & ATF_COM)) {
1078                 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1079                                       r->arp_ha.sa_data);
1080                 if (!dev)
1081                         return -ENODEV;
1082         }
1083         if (mask) {
1084                 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1085 
1086                 if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1087                         return -ENOBUFS;
1088                 return 0;
1089         }
1090 
1091         return arp_req_set_proxy(net, dev, 1);
1092 }
1093 
1094 static int arp_req_set(struct net *net, struct arpreq *r)
1095 {
1096         struct neighbour *neigh;
1097         struct net_device *dev;
1098         __be32 ip;
1099         int err;
1100 
1101         dev = arp_req_dev(net, r);
1102         if (IS_ERR(dev))
1103                 return PTR_ERR(dev);
1104 
1105         if (r->arp_flags & ATF_PUBL)
1106                 return arp_req_set_public(net, r, dev);
1107 
1108         switch (dev->type) {
1109 #if IS_ENABLED(CONFIG_FDDI)
1110         case ARPHRD_FDDI:
1111                 /*
1112                  * According to RFC 1390, FDDI devices should accept ARP
1113                  * hardware types of 1 (Ethernet).  However, to be more
1114                  * robust, we'll accept hardware types of either 1 (Ethernet)
1115                  * or 6 (IEEE 802.2).
1116                  */
1117                 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1118                     r->arp_ha.sa_family != ARPHRD_ETHER &&
1119                     r->arp_ha.sa_family != ARPHRD_IEEE802)
1120                         return -EINVAL;
1121                 break;
1122 #endif
1123         default:
1124                 if (r->arp_ha.sa_family != dev->type)
1125                         return -EINVAL;
1126                 break;
1127         }
1128 
1129         ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1130 
1131         neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1132         err = PTR_ERR(neigh);
1133         if (!IS_ERR(neigh)) {
1134                 unsigned int state = NUD_STALE;
1135 
1136                 if (r->arp_flags & ATF_PERM) {
1137                         r->arp_flags |= ATF_COM;
1138                         state = NUD_PERMANENT;
1139                 }
1140 
1141                 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1142                                    r->arp_ha.sa_data : NULL, state,
1143                                    NEIGH_UPDATE_F_OVERRIDE |
1144                                    NEIGH_UPDATE_F_ADMIN, 0);
1145                 neigh_release(neigh);
1146         }
1147         return err;
1148 }
1149 
1150 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1151 {
1152         if (neigh->nud_state&NUD_PERMANENT)
1153                 return ATF_PERM | ATF_COM;
1154         else if (neigh->nud_state&NUD_VALID)
1155                 return ATF_COM;
1156         else
1157                 return 0;
1158 }
1159 
1160 /*
1161  *      Get an ARP cache entry.
1162  */
1163 
1164 static int arp_req_get(struct net *net, struct arpreq *r)
1165 {
1166         __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1167         struct neighbour *neigh;
1168         struct net_device *dev;
1169 
1170         if (!r->arp_dev[0])
1171                 return -ENODEV;
1172 
1173         dev = arp_req_dev_by_name(net, r, true);
1174         if (IS_ERR(dev))
1175                 return PTR_ERR(dev);
1176 
1177         neigh = neigh_lookup(&arp_tbl, &ip, dev);
1178         if (!neigh)
1179                 return -ENXIO;
1180 
1181         if (READ_ONCE(neigh->nud_state) & NUD_NOARP) {
1182                 neigh_release(neigh);
1183                 return -ENXIO;
1184         }
1185 
1186         read_lock_bh(&neigh->lock);
1187         memcpy(r->arp_ha.sa_data, neigh->ha,
1188                min(dev->addr_len, sizeof(r->arp_ha.sa_data_min)));
1189         r->arp_flags = arp_state_to_flags(neigh);
1190         read_unlock_bh(&neigh->lock);
1191 
1192         neigh_release(neigh);
1193 
1194         r->arp_ha.sa_family = dev->type;
1195         netdev_copy_name(dev, r->arp_dev);
1196 
1197         return 0;
1198 }
1199 
1200 int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1201 {
1202         struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1203         int err = -ENXIO;
1204         struct neigh_table *tbl = &arp_tbl;
1205 
1206         if (neigh) {
1207                 if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) {
1208                         neigh_release(neigh);
1209                         return 0;
1210                 }
1211 
1212                 if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP)
1213                         err = neigh_update(neigh, NULL, NUD_FAILED,
1214                                            NEIGH_UPDATE_F_OVERRIDE|
1215                                            NEIGH_UPDATE_F_ADMIN, 0);
1216                 write_lock_bh(&tbl->lock);
1217                 neigh_release(neigh);
1218                 neigh_remove_one(neigh, tbl);
1219                 write_unlock_bh(&tbl->lock);
1220         }
1221 
1222         return err;
1223 }
1224 
1225 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1226                 struct net_device *dev)
1227 {
1228         __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1229 
1230         if (mask) {
1231                 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1232 
1233                 return pneigh_delete(&arp_tbl, net, &ip, dev);
1234         }
1235 
1236         return arp_req_set_proxy(net, dev, 0);
1237 }
1238 
1239 static int arp_req_delete(struct net *net, struct arpreq *r)
1240 {
1241         struct net_device *dev;
1242         __be32 ip;
1243 
1244         dev = arp_req_dev(net, r);
1245         if (IS_ERR(dev))
1246                 return PTR_ERR(dev);
1247 
1248         if (r->arp_flags & ATF_PUBL)
1249                 return arp_req_delete_public(net, r, dev);
1250 
1251         ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1252 
1253         return arp_invalidate(dev, ip, true);
1254 }
1255 
1256 /*
1257  *      Handle an ARP layer I/O control request.
1258  */
1259 
1260 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1261 {
1262         struct arpreq r;
1263         __be32 *netmask;
1264         int err;
1265 
1266         switch (cmd) {
1267         case SIOCDARP:
1268         case SIOCSARP:
1269                 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1270                         return -EPERM;
1271                 fallthrough;
1272         case SIOCGARP:
1273                 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1274                 if (err)
1275                         return -EFAULT;
1276                 break;
1277         default:
1278                 return -EINVAL;
1279         }
1280 
1281         if (r.arp_pa.sa_family != AF_INET)
1282                 return -EPFNOSUPPORT;
1283 
1284         if (!(r.arp_flags & ATF_PUBL) &&
1285             (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1286                 return -EINVAL;
1287 
1288         netmask = &((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr;
1289         if (!(r.arp_flags & ATF_NETMASK))
1290                 *netmask = htonl(0xFFFFFFFFUL);
1291         else if (*netmask && *netmask != htonl(0xFFFFFFFFUL))
1292                 return -EINVAL;
1293 
1294         switch (cmd) {
1295         case SIOCDARP:
1296                 rtnl_lock();
1297                 err = arp_req_delete(net, &r);
1298                 rtnl_unlock();
1299                 break;
1300         case SIOCSARP:
1301                 rtnl_lock();
1302                 err = arp_req_set(net, &r);
1303                 rtnl_unlock();
1304                 break;
1305         case SIOCGARP:
1306                 rcu_read_lock();
1307                 err = arp_req_get(net, &r);
1308                 rcu_read_unlock();
1309 
1310                 if (!err && copy_to_user(arg, &r, sizeof(r)))
1311                         err = -EFAULT;
1312                 break;
1313         }
1314 
1315         return err;
1316 }
1317 
1318 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1319                             void *ptr)
1320 {
1321         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1322         struct netdev_notifier_change_info *change_info;
1323         struct in_device *in_dev;
1324         bool evict_nocarrier;
1325 
1326         switch (event) {
1327         case NETDEV_CHANGEADDR:
1328                 neigh_changeaddr(&arp_tbl, dev);
1329                 rt_cache_flush(dev_net(dev));
1330                 break;
1331         case NETDEV_CHANGE:
1332                 change_info = ptr;
1333                 if (change_info->flags_changed & IFF_NOARP)
1334                         neigh_changeaddr(&arp_tbl, dev);
1335 
1336                 in_dev = __in_dev_get_rtnl(dev);
1337                 if (!in_dev)
1338                         evict_nocarrier = true;
1339                 else
1340                         evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1341 
1342                 if (evict_nocarrier && !netif_carrier_ok(dev))
1343                         neigh_carrier_down(&arp_tbl, dev);
1344                 break;
1345         default:
1346                 break;
1347         }
1348 
1349         return NOTIFY_DONE;
1350 }
1351 
1352 static struct notifier_block arp_netdev_notifier = {
1353         .notifier_call = arp_netdev_event,
1354 };
1355 
1356 /* Note, that it is not on notifier chain.
1357    It is necessary, that this routine was called after route cache will be
1358    flushed.
1359  */
1360 void arp_ifdown(struct net_device *dev)
1361 {
1362         neigh_ifdown(&arp_tbl, dev);
1363 }
1364 
1365 
1366 /*
1367  *      Called once on startup.
1368  */
1369 
1370 static struct packet_type arp_packet_type __read_mostly = {
1371         .type = cpu_to_be16(ETH_P_ARP),
1372         .func = arp_rcv,
1373 };
1374 
1375 #ifdef CONFIG_PROC_FS
1376 #if IS_ENABLED(CONFIG_AX25)
1377 
1378 /*
1379  *      ax25 -> ASCII conversion
1380  */
1381 static void ax2asc2(ax25_address *a, char *buf)
1382 {
1383         char c, *s;
1384         int n;
1385 
1386         for (n = 0, s = buf; n < 6; n++) {
1387                 c = (a->ax25_call[n] >> 1) & 0x7F;
1388 
1389                 if (c != ' ')
1390                         *s++ = c;
1391         }
1392 
1393         *s++ = '-';
1394         n = (a->ax25_call[6] >> 1) & 0x0F;
1395         if (n > 9) {
1396                 *s++ = '1';
1397                 n -= 10;
1398         }
1399 
1400         *s++ = n + '';
1401         *s++ = '\0';
1402 
1403         if (*buf == '\0' || *buf == '-') {
1404                 buf[0] = '*';
1405                 buf[1] = '\0';
1406         }
1407 }
1408 #endif /* CONFIG_AX25 */
1409 
1410 #define HBUFFERLEN 30
1411 
1412 static void arp_format_neigh_entry(struct seq_file *seq,
1413                                    struct neighbour *n)
1414 {
1415         char hbuffer[HBUFFERLEN];
1416         int k, j;
1417         char tbuf[16];
1418         struct net_device *dev = n->dev;
1419         int hatype = dev->type;
1420 
1421         read_lock(&n->lock);
1422         /* Convert hardware address to XX:XX:XX:XX ... form. */
1423 #if IS_ENABLED(CONFIG_AX25)
1424         if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1425                 ax2asc2((ax25_address *)n->ha, hbuffer);
1426         else {
1427 #endif
1428         for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1429                 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1430                 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1431                 hbuffer[k++] = ':';
1432         }
1433         if (k != 0)
1434                 --k;
1435         hbuffer[k] = 0;
1436 #if IS_ENABLED(CONFIG_AX25)
1437         }
1438 #endif
1439         sprintf(tbuf, "%pI4", n->primary_key);
1440         seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1441                    tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1442         read_unlock(&n->lock);
1443 }
1444 
1445 static void arp_format_pneigh_entry(struct seq_file *seq,
1446                                     struct pneigh_entry *n)
1447 {
1448         struct net_device *dev = n->dev;
1449         int hatype = dev ? dev->type : 0;
1450         char tbuf[16];
1451 
1452         sprintf(tbuf, "%pI4", n->key);
1453         seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1454                    tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1455                    dev ? dev->name : "*");
1456 }
1457 
1458 static int arp_seq_show(struct seq_file *seq, void *v)
1459 {
1460         if (v == SEQ_START_TOKEN) {
1461                 seq_puts(seq, "IP address       HW type     Flags       "
1462                               "HW address            Mask     Device\n");
1463         } else {
1464                 struct neigh_seq_state *state = seq->private;
1465 
1466                 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1467                         arp_format_pneigh_entry(seq, v);
1468                 else
1469                         arp_format_neigh_entry(seq, v);
1470         }
1471 
1472         return 0;
1473 }
1474 
1475 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1476 {
1477         /* Don't want to confuse "arp -a" w/ magic entries,
1478          * so we tell the generic iterator to skip NUD_NOARP.
1479          */
1480         return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1481 }
1482 
1483 static const struct seq_operations arp_seq_ops = {
1484         .start  = arp_seq_start,
1485         .next   = neigh_seq_next,
1486         .stop   = neigh_seq_stop,
1487         .show   = arp_seq_show,
1488 };
1489 #endif /* CONFIG_PROC_FS */
1490 
1491 static int __net_init arp_net_init(struct net *net)
1492 {
1493         if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1494                         sizeof(struct neigh_seq_state)))
1495                 return -ENOMEM;
1496         return 0;
1497 }
1498 
1499 static void __net_exit arp_net_exit(struct net *net)
1500 {
1501         remove_proc_entry("arp", net->proc_net);
1502 }
1503 
1504 static struct pernet_operations arp_net_ops = {
1505         .init = arp_net_init,
1506         .exit = arp_net_exit,
1507 };
1508 
1509 void __init arp_init(void)
1510 {
1511         neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1512 
1513         dev_add_pack(&arp_packet_type);
1514         register_pernet_subsys(&arp_net_ops);
1515 #ifdef CONFIG_SYSCTL
1516         neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1517 #endif
1518         register_netdevice_notifier(&arp_netdev_notifier);
1519 }
1520 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php