1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet 5 * & Swedish University of Agricultural Sciences. 6 * 7 * Jens Laas <jens.laas@data.slu.se> Swedish University of 8 * Agricultural Sciences. 9 * 10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet 11 * 12 * This work is based on the LPC-trie which is originally described in: 13 * 14 * An experimental study of compression methods for dynamic tries 15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. 16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/ 17 * 18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson 19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 20 * 21 * Code from fib_hash has been reused which includes the following header: 22 * 23 * INET An implementation of the TCP/IP protocol suite for the LINUX 24 * operating system. INET is implemented using the BSD Socket 25 * interface as the means of communication with the user level. 26 * 27 * IPv4 FIB: lookup engine and maintenance routines. 28 * 29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 30 * 31 * Substantial contributions to this work comes from: 32 * 33 * David S. Miller, <davem@davemloft.net> 34 * Stephen Hemminger <shemminger@osdl.org> 35 * Paul E. McKenney <paulmck@us.ibm.com> 36 * Patrick McHardy <kaber@trash.net> 37 */ 38 #include <linux/cache.h> 39 #include <linux/uaccess.h> 40 #include <linux/bitops.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/mm.h> 44 #include <linux/string.h> 45 #include <linux/socket.h> 46 #include <linux/sockios.h> 47 #include <linux/errno.h> 48 #include <linux/in.h> 49 #include <linux/inet.h> 50 #include <linux/inetdevice.h> 51 #include <linux/netdevice.h> 52 #include <linux/if_arp.h> 53 #include <linux/proc_fs.h> 54 #include <linux/rcupdate.h> 55 #include <linux/rcupdate_wait.h> 56 #include <linux/skbuff.h> 57 #include <linux/netlink.h> 58 #include <linux/init.h> 59 #include <linux/list.h> 60 #include <linux/slab.h> 61 #include <linux/export.h> 62 #include <linux/vmalloc.h> 63 #include <linux/notifier.h> 64 #include <net/net_namespace.h> 65 #include <net/inet_dscp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/tcp.h> 70 #include <net/sock.h> 71 #include <net/ip_fib.h> 72 #include <net/fib_notifier.h> 73 #include <trace/events/fib.h> 74 #include "fib_lookup.h" 75 76 static int call_fib_entry_notifier(struct notifier_block *nb, 77 enum fib_event_type event_type, u32 dst, 78 int dst_len, struct fib_alias *fa, 79 struct netlink_ext_ack *extack) 80 { 81 struct fib_entry_notifier_info info = { 82 .info.extack = extack, 83 .dst = dst, 84 .dst_len = dst_len, 85 .fi = fa->fa_info, 86 .dscp = fa->fa_dscp, 87 .type = fa->fa_type, 88 .tb_id = fa->tb_id, 89 }; 90 return call_fib4_notifier(nb, event_type, &info.info); 91 } 92 93 static int call_fib_entry_notifiers(struct net *net, 94 enum fib_event_type event_type, u32 dst, 95 int dst_len, struct fib_alias *fa, 96 struct netlink_ext_ack *extack) 97 { 98 struct fib_entry_notifier_info info = { 99 .info.extack = extack, 100 .dst = dst, 101 .dst_len = dst_len, 102 .fi = fa->fa_info, 103 .dscp = fa->fa_dscp, 104 .type = fa->fa_type, 105 .tb_id = fa->tb_id, 106 }; 107 return call_fib4_notifiers(net, event_type, &info.info); 108 } 109 110 #define MAX_STAT_DEPTH 32 111 112 #define KEYLENGTH (8*sizeof(t_key)) 113 #define KEY_MAX ((t_key)~0) 114 115 typedef unsigned int t_key; 116 117 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH) 118 #define IS_TNODE(n) ((n)->bits) 119 #define IS_LEAF(n) (!(n)->bits) 120 121 struct key_vector { 122 t_key key; 123 unsigned char pos; /* 2log(KEYLENGTH) bits needed */ 124 unsigned char bits; /* 2log(KEYLENGTH) bits needed */ 125 unsigned char slen; 126 union { 127 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */ 128 struct hlist_head leaf; 129 /* This array is valid if (pos | bits) > 0 (TNODE) */ 130 DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode); 131 }; 132 }; 133 134 struct tnode { 135 struct rcu_head rcu; 136 t_key empty_children; /* KEYLENGTH bits needed */ 137 t_key full_children; /* KEYLENGTH bits needed */ 138 struct key_vector __rcu *parent; 139 struct key_vector kv[1]; 140 #define tn_bits kv[0].bits 141 }; 142 143 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n]) 144 #define LEAF_SIZE TNODE_SIZE(1) 145 146 #ifdef CONFIG_IP_FIB_TRIE_STATS 147 struct trie_use_stats { 148 unsigned int gets; 149 unsigned int backtrack; 150 unsigned int semantic_match_passed; 151 unsigned int semantic_match_miss; 152 unsigned int null_node_hit; 153 unsigned int resize_node_skipped; 154 }; 155 #endif 156 157 struct trie_stat { 158 unsigned int totdepth; 159 unsigned int maxdepth; 160 unsigned int tnodes; 161 unsigned int leaves; 162 unsigned int nullpointers; 163 unsigned int prefixes; 164 unsigned int nodesizes[MAX_STAT_DEPTH]; 165 }; 166 167 struct trie { 168 struct key_vector kv[1]; 169 #ifdef CONFIG_IP_FIB_TRIE_STATS 170 struct trie_use_stats __percpu *stats; 171 #endif 172 }; 173 174 static struct key_vector *resize(struct trie *t, struct key_vector *tn); 175 static unsigned int tnode_free_size; 176 177 /* 178 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be 179 * especially useful before resizing the root node with PREEMPT_NONE configs; 180 * the value was obtained experimentally, aiming to avoid visible slowdown. 181 */ 182 unsigned int sysctl_fib_sync_mem = 512 * 1024; 183 unsigned int sysctl_fib_sync_mem_min = 64 * 1024; 184 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024; 185 186 static struct kmem_cache *fn_alias_kmem __ro_after_init; 187 static struct kmem_cache *trie_leaf_kmem __ro_after_init; 188 189 static inline struct tnode *tn_info(struct key_vector *kv) 190 { 191 return container_of(kv, struct tnode, kv[0]); 192 } 193 194 /* caller must hold RTNL */ 195 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent) 196 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i]) 197 198 /* caller must hold RCU read lock or RTNL */ 199 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent) 200 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i]) 201 202 /* wrapper for rcu_assign_pointer */ 203 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp) 204 { 205 if (n) 206 rcu_assign_pointer(tn_info(n)->parent, tp); 207 } 208 209 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p) 210 211 /* This provides us with the number of children in this node, in the case of a 212 * leaf this will return 0 meaning none of the children are accessible. 213 */ 214 static inline unsigned long child_length(const struct key_vector *tn) 215 { 216 return (1ul << tn->bits) & ~(1ul); 217 } 218 219 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos) 220 221 static inline unsigned long get_index(t_key key, struct key_vector *kv) 222 { 223 unsigned long index = key ^ kv->key; 224 225 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos)) 226 return 0; 227 228 return index >> kv->pos; 229 } 230 231 /* To understand this stuff, an understanding of keys and all their bits is 232 * necessary. Every node in the trie has a key associated with it, but not 233 * all of the bits in that key are significant. 234 * 235 * Consider a node 'n' and its parent 'tp'. 236 * 237 * If n is a leaf, every bit in its key is significant. Its presence is 238 * necessitated by path compression, since during a tree traversal (when 239 * searching for a leaf - unless we are doing an insertion) we will completely 240 * ignore all skipped bits we encounter. Thus we need to verify, at the end of 241 * a potentially successful search, that we have indeed been walking the 242 * correct key path. 243 * 244 * Note that we can never "miss" the correct key in the tree if present by 245 * following the wrong path. Path compression ensures that segments of the key 246 * that are the same for all keys with a given prefix are skipped, but the 247 * skipped part *is* identical for each node in the subtrie below the skipped 248 * bit! trie_insert() in this implementation takes care of that. 249 * 250 * if n is an internal node - a 'tnode' here, the various parts of its key 251 * have many different meanings. 252 * 253 * Example: 254 * _________________________________________________________________ 255 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | 256 * ----------------------------------------------------------------- 257 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 258 * 259 * _________________________________________________________________ 260 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | 261 * ----------------------------------------------------------------- 262 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 263 * 264 * tp->pos = 22 265 * tp->bits = 3 266 * n->pos = 13 267 * n->bits = 4 268 * 269 * First, let's just ignore the bits that come before the parent tp, that is 270 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this 271 * point we do not use them for anything. 272 * 273 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the 274 * index into the parent's child array. That is, they will be used to find 275 * 'n' among tp's children. 276 * 277 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits 278 * for the node n. 279 * 280 * All the bits we have seen so far are significant to the node n. The rest 281 * of the bits are really not needed or indeed known in n->key. 282 * 283 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into 284 * n's child array, and will of course be different for each child. 285 * 286 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown 287 * at this point. 288 */ 289 290 static const int halve_threshold = 25; 291 static const int inflate_threshold = 50; 292 static const int halve_threshold_root = 15; 293 static const int inflate_threshold_root = 30; 294 295 static void __alias_free_mem(struct rcu_head *head) 296 { 297 struct fib_alias *fa = container_of(head, struct fib_alias, rcu); 298 kmem_cache_free(fn_alias_kmem, fa); 299 } 300 301 static inline void alias_free_mem_rcu(struct fib_alias *fa) 302 { 303 call_rcu(&fa->rcu, __alias_free_mem); 304 } 305 306 #define TNODE_VMALLOC_MAX \ 307 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *)) 308 309 static void __node_free_rcu(struct rcu_head *head) 310 { 311 struct tnode *n = container_of(head, struct tnode, rcu); 312 313 if (!n->tn_bits) 314 kmem_cache_free(trie_leaf_kmem, n); 315 else 316 kvfree(n); 317 } 318 319 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu) 320 321 static struct tnode *tnode_alloc(int bits) 322 { 323 size_t size; 324 325 /* verify bits is within bounds */ 326 if (bits > TNODE_VMALLOC_MAX) 327 return NULL; 328 329 /* determine size and verify it is non-zero and didn't overflow */ 330 size = TNODE_SIZE(1ul << bits); 331 332 if (size <= PAGE_SIZE) 333 return kzalloc(size, GFP_KERNEL); 334 else 335 return vzalloc(size); 336 } 337 338 static inline void empty_child_inc(struct key_vector *n) 339 { 340 tn_info(n)->empty_children++; 341 342 if (!tn_info(n)->empty_children) 343 tn_info(n)->full_children++; 344 } 345 346 static inline void empty_child_dec(struct key_vector *n) 347 { 348 if (!tn_info(n)->empty_children) 349 tn_info(n)->full_children--; 350 351 tn_info(n)->empty_children--; 352 } 353 354 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa) 355 { 356 struct key_vector *l; 357 struct tnode *kv; 358 359 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); 360 if (!kv) 361 return NULL; 362 363 /* initialize key vector */ 364 l = kv->kv; 365 l->key = key; 366 l->pos = 0; 367 l->bits = 0; 368 l->slen = fa->fa_slen; 369 370 /* link leaf to fib alias */ 371 INIT_HLIST_HEAD(&l->leaf); 372 hlist_add_head(&fa->fa_list, &l->leaf); 373 374 return l; 375 } 376 377 static struct key_vector *tnode_new(t_key key, int pos, int bits) 378 { 379 unsigned int shift = pos + bits; 380 struct key_vector *tn; 381 struct tnode *tnode; 382 383 /* verify bits and pos their msb bits clear and values are valid */ 384 BUG_ON(!bits || (shift > KEYLENGTH)); 385 386 tnode = tnode_alloc(bits); 387 if (!tnode) 388 return NULL; 389 390 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0), 391 sizeof(struct key_vector *) << bits); 392 393 if (bits == KEYLENGTH) 394 tnode->full_children = 1; 395 else 396 tnode->empty_children = 1ul << bits; 397 398 tn = tnode->kv; 399 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0; 400 tn->pos = pos; 401 tn->bits = bits; 402 tn->slen = pos; 403 404 return tn; 405 } 406 407 /* Check whether a tnode 'n' is "full", i.e. it is an internal node 408 * and no bits are skipped. See discussion in dyntree paper p. 6 409 */ 410 static inline int tnode_full(struct key_vector *tn, struct key_vector *n) 411 { 412 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n); 413 } 414 415 /* Add a child at position i overwriting the old value. 416 * Update the value of full_children and empty_children. 417 */ 418 static void put_child(struct key_vector *tn, unsigned long i, 419 struct key_vector *n) 420 { 421 struct key_vector *chi = get_child(tn, i); 422 int isfull, wasfull; 423 424 BUG_ON(i >= child_length(tn)); 425 426 /* update emptyChildren, overflow into fullChildren */ 427 if (!n && chi) 428 empty_child_inc(tn); 429 if (n && !chi) 430 empty_child_dec(tn); 431 432 /* update fullChildren */ 433 wasfull = tnode_full(tn, chi); 434 isfull = tnode_full(tn, n); 435 436 if (wasfull && !isfull) 437 tn_info(tn)->full_children--; 438 else if (!wasfull && isfull) 439 tn_info(tn)->full_children++; 440 441 if (n && (tn->slen < n->slen)) 442 tn->slen = n->slen; 443 444 rcu_assign_pointer(tn->tnode[i], n); 445 } 446 447 static void update_children(struct key_vector *tn) 448 { 449 unsigned long i; 450 451 /* update all of the child parent pointers */ 452 for (i = child_length(tn); i;) { 453 struct key_vector *inode = get_child(tn, --i); 454 455 if (!inode) 456 continue; 457 458 /* Either update the children of a tnode that 459 * already belongs to us or update the child 460 * to point to ourselves. 461 */ 462 if (node_parent(inode) == tn) 463 update_children(inode); 464 else 465 node_set_parent(inode, tn); 466 } 467 } 468 469 static inline void put_child_root(struct key_vector *tp, t_key key, 470 struct key_vector *n) 471 { 472 if (IS_TRIE(tp)) 473 rcu_assign_pointer(tp->tnode[0], n); 474 else 475 put_child(tp, get_index(key, tp), n); 476 } 477 478 static inline void tnode_free_init(struct key_vector *tn) 479 { 480 tn_info(tn)->rcu.next = NULL; 481 } 482 483 static inline void tnode_free_append(struct key_vector *tn, 484 struct key_vector *n) 485 { 486 tn_info(n)->rcu.next = tn_info(tn)->rcu.next; 487 tn_info(tn)->rcu.next = &tn_info(n)->rcu; 488 } 489 490 static void tnode_free(struct key_vector *tn) 491 { 492 struct callback_head *head = &tn_info(tn)->rcu; 493 494 while (head) { 495 head = head->next; 496 tnode_free_size += TNODE_SIZE(1ul << tn->bits); 497 node_free(tn); 498 499 tn = container_of(head, struct tnode, rcu)->kv; 500 } 501 502 if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) { 503 tnode_free_size = 0; 504 synchronize_net(); 505 } 506 } 507 508 static struct key_vector *replace(struct trie *t, 509 struct key_vector *oldtnode, 510 struct key_vector *tn) 511 { 512 struct key_vector *tp = node_parent(oldtnode); 513 unsigned long i; 514 515 /* setup the parent pointer out of and back into this node */ 516 NODE_INIT_PARENT(tn, tp); 517 put_child_root(tp, tn->key, tn); 518 519 /* update all of the child parent pointers */ 520 update_children(tn); 521 522 /* all pointers should be clean so we are done */ 523 tnode_free(oldtnode); 524 525 /* resize children now that oldtnode is freed */ 526 for (i = child_length(tn); i;) { 527 struct key_vector *inode = get_child(tn, --i); 528 529 /* resize child node */ 530 if (tnode_full(tn, inode)) 531 tn = resize(t, inode); 532 } 533 534 return tp; 535 } 536 537 static struct key_vector *inflate(struct trie *t, 538 struct key_vector *oldtnode) 539 { 540 struct key_vector *tn; 541 unsigned long i; 542 t_key m; 543 544 pr_debug("In inflate\n"); 545 546 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1); 547 if (!tn) 548 goto notnode; 549 550 /* prepare oldtnode to be freed */ 551 tnode_free_init(oldtnode); 552 553 /* Assemble all of the pointers in our cluster, in this case that 554 * represents all of the pointers out of our allocated nodes that 555 * point to existing tnodes and the links between our allocated 556 * nodes. 557 */ 558 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) { 559 struct key_vector *inode = get_child(oldtnode, --i); 560 struct key_vector *node0, *node1; 561 unsigned long j, k; 562 563 /* An empty child */ 564 if (!inode) 565 continue; 566 567 /* A leaf or an internal node with skipped bits */ 568 if (!tnode_full(oldtnode, inode)) { 569 put_child(tn, get_index(inode->key, tn), inode); 570 continue; 571 } 572 573 /* drop the node in the old tnode free list */ 574 tnode_free_append(oldtnode, inode); 575 576 /* An internal node with two children */ 577 if (inode->bits == 1) { 578 put_child(tn, 2 * i + 1, get_child(inode, 1)); 579 put_child(tn, 2 * i, get_child(inode, 0)); 580 continue; 581 } 582 583 /* We will replace this node 'inode' with two new 584 * ones, 'node0' and 'node1', each with half of the 585 * original children. The two new nodes will have 586 * a position one bit further down the key and this 587 * means that the "significant" part of their keys 588 * (see the discussion near the top of this file) 589 * will differ by one bit, which will be "" in 590 * node0's key and "1" in node1's key. Since we are 591 * moving the key position by one step, the bit that 592 * we are moving away from - the bit at position 593 * (tn->pos) - is the one that will differ between 594 * node0 and node1. So... we synthesize that bit in the 595 * two new keys. 596 */ 597 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1); 598 if (!node1) 599 goto nomem; 600 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1); 601 602 tnode_free_append(tn, node1); 603 if (!node0) 604 goto nomem; 605 tnode_free_append(tn, node0); 606 607 /* populate child pointers in new nodes */ 608 for (k = child_length(inode), j = k / 2; j;) { 609 put_child(node1, --j, get_child(inode, --k)); 610 put_child(node0, j, get_child(inode, j)); 611 put_child(node1, --j, get_child(inode, --k)); 612 put_child(node0, j, get_child(inode, j)); 613 } 614 615 /* link new nodes to parent */ 616 NODE_INIT_PARENT(node1, tn); 617 NODE_INIT_PARENT(node0, tn); 618 619 /* link parent to nodes */ 620 put_child(tn, 2 * i + 1, node1); 621 put_child(tn, 2 * i, node0); 622 } 623 624 /* setup the parent pointers into and out of this node */ 625 return replace(t, oldtnode, tn); 626 nomem: 627 /* all pointers should be clean so we are done */ 628 tnode_free(tn); 629 notnode: 630 return NULL; 631 } 632 633 static struct key_vector *halve(struct trie *t, 634 struct key_vector *oldtnode) 635 { 636 struct key_vector *tn; 637 unsigned long i; 638 639 pr_debug("In halve\n"); 640 641 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1); 642 if (!tn) 643 goto notnode; 644 645 /* prepare oldtnode to be freed */ 646 tnode_free_init(oldtnode); 647 648 /* Assemble all of the pointers in our cluster, in this case that 649 * represents all of the pointers out of our allocated nodes that 650 * point to existing tnodes and the links between our allocated 651 * nodes. 652 */ 653 for (i = child_length(oldtnode); i;) { 654 struct key_vector *node1 = get_child(oldtnode, --i); 655 struct key_vector *node0 = get_child(oldtnode, --i); 656 struct key_vector *inode; 657 658 /* At least one of the children is empty */ 659 if (!node1 || !node0) { 660 put_child(tn, i / 2, node1 ? : node0); 661 continue; 662 } 663 664 /* Two nonempty children */ 665 inode = tnode_new(node0->key, oldtnode->pos, 1); 666 if (!inode) 667 goto nomem; 668 tnode_free_append(tn, inode); 669 670 /* initialize pointers out of node */ 671 put_child(inode, 1, node1); 672 put_child(inode, 0, node0); 673 NODE_INIT_PARENT(inode, tn); 674 675 /* link parent to node */ 676 put_child(tn, i / 2, inode); 677 } 678 679 /* setup the parent pointers into and out of this node */ 680 return replace(t, oldtnode, tn); 681 nomem: 682 /* all pointers should be clean so we are done */ 683 tnode_free(tn); 684 notnode: 685 return NULL; 686 } 687 688 static struct key_vector *collapse(struct trie *t, 689 struct key_vector *oldtnode) 690 { 691 struct key_vector *n, *tp; 692 unsigned long i; 693 694 /* scan the tnode looking for that one child that might still exist */ 695 for (n = NULL, i = child_length(oldtnode); !n && i;) 696 n = get_child(oldtnode, --i); 697 698 /* compress one level */ 699 tp = node_parent(oldtnode); 700 put_child_root(tp, oldtnode->key, n); 701 node_set_parent(n, tp); 702 703 /* drop dead node */ 704 node_free(oldtnode); 705 706 return tp; 707 } 708 709 static unsigned char update_suffix(struct key_vector *tn) 710 { 711 unsigned char slen = tn->pos; 712 unsigned long stride, i; 713 unsigned char slen_max; 714 715 /* only vector 0 can have a suffix length greater than or equal to 716 * tn->pos + tn->bits, the second highest node will have a suffix 717 * length at most of tn->pos + tn->bits - 1 718 */ 719 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen); 720 721 /* search though the list of children looking for nodes that might 722 * have a suffix greater than the one we currently have. This is 723 * why we start with a stride of 2 since a stride of 1 would 724 * represent the nodes with suffix length equal to tn->pos 725 */ 726 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) { 727 struct key_vector *n = get_child(tn, i); 728 729 if (!n || (n->slen <= slen)) 730 continue; 731 732 /* update stride and slen based on new value */ 733 stride <<= (n->slen - slen); 734 slen = n->slen; 735 i &= ~(stride - 1); 736 737 /* stop searching if we have hit the maximum possible value */ 738 if (slen >= slen_max) 739 break; 740 } 741 742 tn->slen = slen; 743 744 return slen; 745 } 746 747 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of 748 * the Helsinki University of Technology and Matti Tikkanen of Nokia 749 * Telecommunications, page 6: 750 * "A node is doubled if the ratio of non-empty children to all 751 * children in the *doubled* node is at least 'high'." 752 * 753 * 'high' in this instance is the variable 'inflate_threshold'. It 754 * is expressed as a percentage, so we multiply it with 755 * child_length() and instead of multiplying by 2 (since the 756 * child array will be doubled by inflate()) and multiplying 757 * the left-hand side by 100 (to handle the percentage thing) we 758 * multiply the left-hand side by 50. 759 * 760 * The left-hand side may look a bit weird: child_length(tn) 761 * - tn->empty_children is of course the number of non-null children 762 * in the current node. tn->full_children is the number of "full" 763 * children, that is non-null tnodes with a skip value of 0. 764 * All of those will be doubled in the resulting inflated tnode, so 765 * we just count them one extra time here. 766 * 767 * A clearer way to write this would be: 768 * 769 * to_be_doubled = tn->full_children; 770 * not_to_be_doubled = child_length(tn) - tn->empty_children - 771 * tn->full_children; 772 * 773 * new_child_length = child_length(tn) * 2; 774 * 775 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / 776 * new_child_length; 777 * if (new_fill_factor >= inflate_threshold) 778 * 779 * ...and so on, tho it would mess up the while () loop. 780 * 781 * anyway, 782 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= 783 * inflate_threshold 784 * 785 * avoid a division: 786 * 100 * (not_to_be_doubled + 2*to_be_doubled) >= 787 * inflate_threshold * new_child_length 788 * 789 * expand not_to_be_doubled and to_be_doubled, and shorten: 790 * 100 * (child_length(tn) - tn->empty_children + 791 * tn->full_children) >= inflate_threshold * new_child_length 792 * 793 * expand new_child_length: 794 * 100 * (child_length(tn) - tn->empty_children + 795 * tn->full_children) >= 796 * inflate_threshold * child_length(tn) * 2 797 * 798 * shorten again: 799 * 50 * (tn->full_children + child_length(tn) - 800 * tn->empty_children) >= inflate_threshold * 801 * child_length(tn) 802 * 803 */ 804 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn) 805 { 806 unsigned long used = child_length(tn); 807 unsigned long threshold = used; 808 809 /* Keep root node larger */ 810 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold; 811 used -= tn_info(tn)->empty_children; 812 used += tn_info(tn)->full_children; 813 814 /* if bits == KEYLENGTH then pos = 0, and will fail below */ 815 816 return (used > 1) && tn->pos && ((50 * used) >= threshold); 817 } 818 819 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn) 820 { 821 unsigned long used = child_length(tn); 822 unsigned long threshold = used; 823 824 /* Keep root node larger */ 825 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold; 826 used -= tn_info(tn)->empty_children; 827 828 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */ 829 830 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold); 831 } 832 833 static inline bool should_collapse(struct key_vector *tn) 834 { 835 unsigned long used = child_length(tn); 836 837 used -= tn_info(tn)->empty_children; 838 839 /* account for bits == KEYLENGTH case */ 840 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children) 841 used -= KEY_MAX; 842 843 /* One child or none, time to drop us from the trie */ 844 return used < 2; 845 } 846 847 #define MAX_WORK 10 848 static struct key_vector *resize(struct trie *t, struct key_vector *tn) 849 { 850 #ifdef CONFIG_IP_FIB_TRIE_STATS 851 struct trie_use_stats __percpu *stats = t->stats; 852 #endif 853 struct key_vector *tp = node_parent(tn); 854 unsigned long cindex = get_index(tn->key, tp); 855 int max_work = MAX_WORK; 856 857 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", 858 tn, inflate_threshold, halve_threshold); 859 860 /* track the tnode via the pointer from the parent instead of 861 * doing it ourselves. This way we can let RCU fully do its 862 * thing without us interfering 863 */ 864 BUG_ON(tn != get_child(tp, cindex)); 865 866 /* Double as long as the resulting node has a number of 867 * nonempty nodes that are above the threshold. 868 */ 869 while (should_inflate(tp, tn) && max_work) { 870 tp = inflate(t, tn); 871 if (!tp) { 872 #ifdef CONFIG_IP_FIB_TRIE_STATS 873 this_cpu_inc(stats->resize_node_skipped); 874 #endif 875 break; 876 } 877 878 max_work--; 879 tn = get_child(tp, cindex); 880 } 881 882 /* update parent in case inflate failed */ 883 tp = node_parent(tn); 884 885 /* Return if at least one inflate is run */ 886 if (max_work != MAX_WORK) 887 return tp; 888 889 /* Halve as long as the number of empty children in this 890 * node is above threshold. 891 */ 892 while (should_halve(tp, tn) && max_work) { 893 tp = halve(t, tn); 894 if (!tp) { 895 #ifdef CONFIG_IP_FIB_TRIE_STATS 896 this_cpu_inc(stats->resize_node_skipped); 897 #endif 898 break; 899 } 900 901 max_work--; 902 tn = get_child(tp, cindex); 903 } 904 905 /* Only one child remains */ 906 if (should_collapse(tn)) 907 return collapse(t, tn); 908 909 /* update parent in case halve failed */ 910 return node_parent(tn); 911 } 912 913 static void node_pull_suffix(struct key_vector *tn, unsigned char slen) 914 { 915 unsigned char node_slen = tn->slen; 916 917 while ((node_slen > tn->pos) && (node_slen > slen)) { 918 slen = update_suffix(tn); 919 if (node_slen == slen) 920 break; 921 922 tn = node_parent(tn); 923 node_slen = tn->slen; 924 } 925 } 926 927 static void node_push_suffix(struct key_vector *tn, unsigned char slen) 928 { 929 while (tn->slen < slen) { 930 tn->slen = slen; 931 tn = node_parent(tn); 932 } 933 } 934 935 /* rcu_read_lock needs to be hold by caller from readside */ 936 static struct key_vector *fib_find_node(struct trie *t, 937 struct key_vector **tp, u32 key) 938 { 939 struct key_vector *pn, *n = t->kv; 940 unsigned long index = 0; 941 942 do { 943 pn = n; 944 n = get_child_rcu(n, index); 945 946 if (!n) 947 break; 948 949 index = get_cindex(key, n); 950 951 /* This bit of code is a bit tricky but it combines multiple 952 * checks into a single check. The prefix consists of the 953 * prefix plus zeros for the bits in the cindex. The index 954 * is the difference between the key and this value. From 955 * this we can actually derive several pieces of data. 956 * if (index >= (1ul << bits)) 957 * we have a mismatch in skip bits and failed 958 * else 959 * we know the value is cindex 960 * 961 * This check is safe even if bits == KEYLENGTH due to the 962 * fact that we can only allocate a node with 32 bits if a 963 * long is greater than 32 bits. 964 */ 965 if (index >= (1ul << n->bits)) { 966 n = NULL; 967 break; 968 } 969 970 /* keep searching until we find a perfect match leaf or NULL */ 971 } while (IS_TNODE(n)); 972 973 *tp = pn; 974 975 return n; 976 } 977 978 /* Return the first fib alias matching DSCP with 979 * priority less than or equal to PRIO. 980 * If 'find_first' is set, return the first matching 981 * fib alias, regardless of DSCP and priority. 982 */ 983 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen, 984 dscp_t dscp, u32 prio, u32 tb_id, 985 bool find_first) 986 { 987 struct fib_alias *fa; 988 989 if (!fah) 990 return NULL; 991 992 hlist_for_each_entry(fa, fah, fa_list) { 993 /* Avoid Sparse warning when using dscp_t in inequalities */ 994 u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp); 995 u8 __dscp = inet_dscp_to_dsfield(dscp); 996 997 if (fa->fa_slen < slen) 998 continue; 999 if (fa->fa_slen != slen) 1000 break; 1001 if (fa->tb_id > tb_id) 1002 continue; 1003 if (fa->tb_id != tb_id) 1004 break; 1005 if (find_first) 1006 return fa; 1007 if (__fa_dscp > __dscp) 1008 continue; 1009 if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp) 1010 return fa; 1011 } 1012 1013 return NULL; 1014 } 1015 1016 static struct fib_alias * 1017 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri) 1018 { 1019 u8 slen = KEYLENGTH - fri->dst_len; 1020 struct key_vector *l, *tp; 1021 struct fib_table *tb; 1022 struct fib_alias *fa; 1023 struct trie *t; 1024 1025 tb = fib_get_table(net, fri->tb_id); 1026 if (!tb) 1027 return NULL; 1028 1029 t = (struct trie *)tb->tb_data; 1030 l = fib_find_node(t, &tp, be32_to_cpu(fri->dst)); 1031 if (!l) 1032 return NULL; 1033 1034 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 1035 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id && 1036 fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi && 1037 fa->fa_type == fri->type) 1038 return fa; 1039 } 1040 1041 return NULL; 1042 } 1043 1044 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri) 1045 { 1046 u8 fib_notify_on_flag_change; 1047 struct fib_alias *fa_match; 1048 struct sk_buff *skb; 1049 int err; 1050 1051 rcu_read_lock(); 1052 1053 fa_match = fib_find_matching_alias(net, fri); 1054 if (!fa_match) 1055 goto out; 1056 1057 /* These are paired with the WRITE_ONCE() happening in this function. 1058 * The reason is that we are only protected by RCU at this point. 1059 */ 1060 if (READ_ONCE(fa_match->offload) == fri->offload && 1061 READ_ONCE(fa_match->trap) == fri->trap && 1062 READ_ONCE(fa_match->offload_failed) == fri->offload_failed) 1063 goto out; 1064 1065 WRITE_ONCE(fa_match->offload, fri->offload); 1066 WRITE_ONCE(fa_match->trap, fri->trap); 1067 1068 fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change); 1069 1070 /* 2 means send notifications only if offload_failed was changed. */ 1071 if (fib_notify_on_flag_change == 2 && 1072 READ_ONCE(fa_match->offload_failed) == fri->offload_failed) 1073 goto out; 1074 1075 WRITE_ONCE(fa_match->offload_failed, fri->offload_failed); 1076 1077 if (!fib_notify_on_flag_change) 1078 goto out; 1079 1080 skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC); 1081 if (!skb) { 1082 err = -ENOBUFS; 1083 goto errout; 1084 } 1085 1086 err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0); 1087 if (err < 0) { 1088 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */ 1089 WARN_ON(err == -EMSGSIZE); 1090 kfree_skb(skb); 1091 goto errout; 1092 } 1093 1094 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC); 1095 goto out; 1096 1097 errout: 1098 rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err); 1099 out: 1100 rcu_read_unlock(); 1101 } 1102 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set); 1103 1104 static void trie_rebalance(struct trie *t, struct key_vector *tn) 1105 { 1106 while (!IS_TRIE(tn)) 1107 tn = resize(t, tn); 1108 } 1109 1110 static int fib_insert_node(struct trie *t, struct key_vector *tp, 1111 struct fib_alias *new, t_key key) 1112 { 1113 struct key_vector *n, *l; 1114 1115 l = leaf_new(key, new); 1116 if (!l) 1117 goto noleaf; 1118 1119 /* retrieve child from parent node */ 1120 n = get_child(tp, get_index(key, tp)); 1121 1122 /* Case 2: n is a LEAF or a TNODE and the key doesn't match. 1123 * 1124 * Add a new tnode here 1125 * first tnode need some special handling 1126 * leaves us in position for handling as case 3 1127 */ 1128 if (n) { 1129 struct key_vector *tn; 1130 1131 tn = tnode_new(key, __fls(key ^ n->key), 1); 1132 if (!tn) 1133 goto notnode; 1134 1135 /* initialize routes out of node */ 1136 NODE_INIT_PARENT(tn, tp); 1137 put_child(tn, get_index(key, tn) ^ 1, n); 1138 1139 /* start adding routes into the node */ 1140 put_child_root(tp, key, tn); 1141 node_set_parent(n, tn); 1142 1143 /* parent now has a NULL spot where the leaf can go */ 1144 tp = tn; 1145 } 1146 1147 /* Case 3: n is NULL, and will just insert a new leaf */ 1148 node_push_suffix(tp, new->fa_slen); 1149 NODE_INIT_PARENT(l, tp); 1150 put_child_root(tp, key, l); 1151 trie_rebalance(t, tp); 1152 1153 return 0; 1154 notnode: 1155 node_free(l); 1156 noleaf: 1157 return -ENOMEM; 1158 } 1159 1160 static int fib_insert_alias(struct trie *t, struct key_vector *tp, 1161 struct key_vector *l, struct fib_alias *new, 1162 struct fib_alias *fa, t_key key) 1163 { 1164 if (!l) 1165 return fib_insert_node(t, tp, new, key); 1166 1167 if (fa) { 1168 hlist_add_before_rcu(&new->fa_list, &fa->fa_list); 1169 } else { 1170 struct fib_alias *last; 1171 1172 hlist_for_each_entry(last, &l->leaf, fa_list) { 1173 if (new->fa_slen < last->fa_slen) 1174 break; 1175 if ((new->fa_slen == last->fa_slen) && 1176 (new->tb_id > last->tb_id)) 1177 break; 1178 fa = last; 1179 } 1180 1181 if (fa) 1182 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list); 1183 else 1184 hlist_add_head_rcu(&new->fa_list, &l->leaf); 1185 } 1186 1187 /* if we added to the tail node then we need to update slen */ 1188 if (l->slen < new->fa_slen) { 1189 l->slen = new->fa_slen; 1190 node_push_suffix(tp, new->fa_slen); 1191 } 1192 1193 return 0; 1194 } 1195 1196 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack) 1197 { 1198 if (plen > KEYLENGTH) { 1199 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 1200 return false; 1201 } 1202 1203 if ((plen < KEYLENGTH) && (key << plen)) { 1204 NL_SET_ERR_MSG(extack, 1205 "Invalid prefix for given prefix length"); 1206 return false; 1207 } 1208 1209 return true; 1210 } 1211 1212 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1213 struct key_vector *l, struct fib_alias *old); 1214 1215 /* Caller must hold RTNL. */ 1216 int fib_table_insert(struct net *net, struct fib_table *tb, 1217 struct fib_config *cfg, struct netlink_ext_ack *extack) 1218 { 1219 struct trie *t = (struct trie *)tb->tb_data; 1220 struct fib_alias *fa, *new_fa; 1221 struct key_vector *l, *tp; 1222 u16 nlflags = NLM_F_EXCL; 1223 struct fib_info *fi; 1224 u8 plen = cfg->fc_dst_len; 1225 u8 slen = KEYLENGTH - plen; 1226 dscp_t dscp; 1227 u32 key; 1228 int err; 1229 1230 key = ntohl(cfg->fc_dst); 1231 1232 if (!fib_valid_key_len(key, plen, extack)) 1233 return -EINVAL; 1234 1235 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); 1236 1237 fi = fib_create_info(cfg, extack); 1238 if (IS_ERR(fi)) { 1239 err = PTR_ERR(fi); 1240 goto err; 1241 } 1242 1243 dscp = cfg->fc_dscp; 1244 l = fib_find_node(t, &tp, key); 1245 fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority, 1246 tb->tb_id, false) : NULL; 1247 1248 /* Now fa, if non-NULL, points to the first fib alias 1249 * with the same keys [prefix,dscp,priority], if such key already 1250 * exists or to the node before which we will insert new one. 1251 * 1252 * If fa is NULL, we will need to allocate a new one and 1253 * insert to the tail of the section matching the suffix length 1254 * of the new alias. 1255 */ 1256 1257 if (fa && fa->fa_dscp == dscp && 1258 fa->fa_info->fib_priority == fi->fib_priority) { 1259 struct fib_alias *fa_first, *fa_match; 1260 1261 err = -EEXIST; 1262 if (cfg->fc_nlflags & NLM_F_EXCL) 1263 goto out; 1264 1265 nlflags &= ~NLM_F_EXCL; 1266 1267 /* We have 2 goals: 1268 * 1. Find exact match for type, scope, fib_info to avoid 1269 * duplicate routes 1270 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it 1271 */ 1272 fa_match = NULL; 1273 fa_first = fa; 1274 hlist_for_each_entry_from(fa, fa_list) { 1275 if ((fa->fa_slen != slen) || 1276 (fa->tb_id != tb->tb_id) || 1277 (fa->fa_dscp != dscp)) 1278 break; 1279 if (fa->fa_info->fib_priority != fi->fib_priority) 1280 break; 1281 if (fa->fa_type == cfg->fc_type && 1282 fa->fa_info == fi) { 1283 fa_match = fa; 1284 break; 1285 } 1286 } 1287 1288 if (cfg->fc_nlflags & NLM_F_REPLACE) { 1289 struct fib_info *fi_drop; 1290 u8 state; 1291 1292 nlflags |= NLM_F_REPLACE; 1293 fa = fa_first; 1294 if (fa_match) { 1295 if (fa == fa_match) 1296 err = 0; 1297 goto out; 1298 } 1299 err = -ENOBUFS; 1300 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1301 if (!new_fa) 1302 goto out; 1303 1304 fi_drop = fa->fa_info; 1305 new_fa->fa_dscp = fa->fa_dscp; 1306 new_fa->fa_info = fi; 1307 new_fa->fa_type = cfg->fc_type; 1308 state = fa->fa_state; 1309 new_fa->fa_state = state & ~FA_S_ACCESSED; 1310 new_fa->fa_slen = fa->fa_slen; 1311 new_fa->tb_id = tb->tb_id; 1312 new_fa->fa_default = -1; 1313 new_fa->offload = 0; 1314 new_fa->trap = 0; 1315 new_fa->offload_failed = 0; 1316 1317 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list); 1318 1319 if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0, 1320 tb->tb_id, true) == new_fa) { 1321 enum fib_event_type fib_event; 1322 1323 fib_event = FIB_EVENT_ENTRY_REPLACE; 1324 err = call_fib_entry_notifiers(net, fib_event, 1325 key, plen, 1326 new_fa, extack); 1327 if (err) { 1328 hlist_replace_rcu(&new_fa->fa_list, 1329 &fa->fa_list); 1330 goto out_free_new_fa; 1331 } 1332 } 1333 1334 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, 1335 tb->tb_id, &cfg->fc_nlinfo, nlflags); 1336 1337 alias_free_mem_rcu(fa); 1338 1339 fib_release_info(fi_drop); 1340 if (state & FA_S_ACCESSED) 1341 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1342 1343 goto succeeded; 1344 } 1345 /* Error if we find a perfect match which 1346 * uses the same scope, type, and nexthop 1347 * information. 1348 */ 1349 if (fa_match) 1350 goto out; 1351 1352 if (cfg->fc_nlflags & NLM_F_APPEND) 1353 nlflags |= NLM_F_APPEND; 1354 else 1355 fa = fa_first; 1356 } 1357 err = -ENOENT; 1358 if (!(cfg->fc_nlflags & NLM_F_CREATE)) 1359 goto out; 1360 1361 nlflags |= NLM_F_CREATE; 1362 err = -ENOBUFS; 1363 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1364 if (!new_fa) 1365 goto out; 1366 1367 new_fa->fa_info = fi; 1368 new_fa->fa_dscp = dscp; 1369 new_fa->fa_type = cfg->fc_type; 1370 new_fa->fa_state = 0; 1371 new_fa->fa_slen = slen; 1372 new_fa->tb_id = tb->tb_id; 1373 new_fa->fa_default = -1; 1374 new_fa->offload = 0; 1375 new_fa->trap = 0; 1376 new_fa->offload_failed = 0; 1377 1378 /* Insert new entry to the list. */ 1379 err = fib_insert_alias(t, tp, l, new_fa, fa, key); 1380 if (err) 1381 goto out_free_new_fa; 1382 1383 /* The alias was already inserted, so the node must exist. */ 1384 l = l ? l : fib_find_node(t, &tp, key); 1385 if (WARN_ON_ONCE(!l)) { 1386 err = -ENOENT; 1387 goto out_free_new_fa; 1388 } 1389 1390 if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) == 1391 new_fa) { 1392 enum fib_event_type fib_event; 1393 1394 fib_event = FIB_EVENT_ENTRY_REPLACE; 1395 err = call_fib_entry_notifiers(net, fib_event, key, plen, 1396 new_fa, extack); 1397 if (err) 1398 goto out_remove_new_fa; 1399 } 1400 1401 if (!plen) 1402 tb->tb_num_default++; 1403 1404 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1405 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id, 1406 &cfg->fc_nlinfo, nlflags); 1407 succeeded: 1408 return 0; 1409 1410 out_remove_new_fa: 1411 fib_remove_alias(t, tp, l, new_fa); 1412 out_free_new_fa: 1413 kmem_cache_free(fn_alias_kmem, new_fa); 1414 out: 1415 fib_release_info(fi); 1416 err: 1417 return err; 1418 } 1419 1420 static inline t_key prefix_mismatch(t_key key, struct key_vector *n) 1421 { 1422 t_key prefix = n->key; 1423 1424 return (key ^ prefix) & (prefix | -prefix); 1425 } 1426 1427 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags, 1428 const struct flowi4 *flp) 1429 { 1430 if (nhc->nhc_flags & RTNH_F_DEAD) 1431 return false; 1432 1433 if (ip_ignore_linkdown(nhc->nhc_dev) && 1434 nhc->nhc_flags & RTNH_F_LINKDOWN && 1435 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE)) 1436 return false; 1437 1438 if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif) 1439 return false; 1440 1441 return true; 1442 } 1443 1444 /* should be called with rcu_read_lock */ 1445 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp, 1446 struct fib_result *res, int fib_flags) 1447 { 1448 struct trie *t = (struct trie *) tb->tb_data; 1449 #ifdef CONFIG_IP_FIB_TRIE_STATS 1450 struct trie_use_stats __percpu *stats = t->stats; 1451 #endif 1452 const t_key key = ntohl(flp->daddr); 1453 struct key_vector *n, *pn; 1454 struct fib_alias *fa; 1455 unsigned long index; 1456 t_key cindex; 1457 1458 pn = t->kv; 1459 cindex = 0; 1460 1461 n = get_child_rcu(pn, cindex); 1462 if (!n) { 1463 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN); 1464 return -EAGAIN; 1465 } 1466 1467 #ifdef CONFIG_IP_FIB_TRIE_STATS 1468 this_cpu_inc(stats->gets); 1469 #endif 1470 1471 /* Step 1: Travel to the longest prefix match in the trie */ 1472 for (;;) { 1473 index = get_cindex(key, n); 1474 1475 /* This bit of code is a bit tricky but it combines multiple 1476 * checks into a single check. The prefix consists of the 1477 * prefix plus zeros for the "bits" in the prefix. The index 1478 * is the difference between the key and this value. From 1479 * this we can actually derive several pieces of data. 1480 * if (index >= (1ul << bits)) 1481 * we have a mismatch in skip bits and failed 1482 * else 1483 * we know the value is cindex 1484 * 1485 * This check is safe even if bits == KEYLENGTH due to the 1486 * fact that we can only allocate a node with 32 bits if a 1487 * long is greater than 32 bits. 1488 */ 1489 if (index >= (1ul << n->bits)) 1490 break; 1491 1492 /* we have found a leaf. Prefixes have already been compared */ 1493 if (IS_LEAF(n)) 1494 goto found; 1495 1496 /* only record pn and cindex if we are going to be chopping 1497 * bits later. Otherwise we are just wasting cycles. 1498 */ 1499 if (n->slen > n->pos) { 1500 pn = n; 1501 cindex = index; 1502 } 1503 1504 n = get_child_rcu(n, index); 1505 if (unlikely(!n)) 1506 goto backtrace; 1507 } 1508 1509 /* Step 2: Sort out leaves and begin backtracing for longest prefix */ 1510 for (;;) { 1511 /* record the pointer where our next node pointer is stored */ 1512 struct key_vector __rcu **cptr = n->tnode; 1513 1514 /* This test verifies that none of the bits that differ 1515 * between the key and the prefix exist in the region of 1516 * the lsb and higher in the prefix. 1517 */ 1518 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos)) 1519 goto backtrace; 1520 1521 /* exit out and process leaf */ 1522 if (unlikely(IS_LEAF(n))) 1523 break; 1524 1525 /* Don't bother recording parent info. Since we are in 1526 * prefix match mode we will have to come back to wherever 1527 * we started this traversal anyway 1528 */ 1529 1530 while ((n = rcu_dereference(*cptr)) == NULL) { 1531 backtrace: 1532 #ifdef CONFIG_IP_FIB_TRIE_STATS 1533 if (!n) 1534 this_cpu_inc(stats->null_node_hit); 1535 #endif 1536 /* If we are at cindex 0 there are no more bits for 1537 * us to strip at this level so we must ascend back 1538 * up one level to see if there are any more bits to 1539 * be stripped there. 1540 */ 1541 while (!cindex) { 1542 t_key pkey = pn->key; 1543 1544 /* If we don't have a parent then there is 1545 * nothing for us to do as we do not have any 1546 * further nodes to parse. 1547 */ 1548 if (IS_TRIE(pn)) { 1549 trace_fib_table_lookup(tb->tb_id, flp, 1550 NULL, -EAGAIN); 1551 return -EAGAIN; 1552 } 1553 #ifdef CONFIG_IP_FIB_TRIE_STATS 1554 this_cpu_inc(stats->backtrack); 1555 #endif 1556 /* Get Child's index */ 1557 pn = node_parent_rcu(pn); 1558 cindex = get_index(pkey, pn); 1559 } 1560 1561 /* strip the least significant bit from the cindex */ 1562 cindex &= cindex - 1; 1563 1564 /* grab pointer for next child node */ 1565 cptr = &pn->tnode[cindex]; 1566 } 1567 } 1568 1569 found: 1570 /* this line carries forward the xor from earlier in the function */ 1571 index = key ^ n->key; 1572 1573 /* Step 3: Process the leaf, if that fails fall back to backtracing */ 1574 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 1575 struct fib_info *fi = fa->fa_info; 1576 struct fib_nh_common *nhc; 1577 int nhsel, err; 1578 1579 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) { 1580 if (index >= (1ul << fa->fa_slen)) 1581 continue; 1582 } 1583 if (fa->fa_dscp && 1584 inet_dscp_to_dsfield(fa->fa_dscp) != flp->flowi4_tos) 1585 continue; 1586 /* Paired with WRITE_ONCE() in fib_release_info() */ 1587 if (READ_ONCE(fi->fib_dead)) 1588 continue; 1589 if (fa->fa_info->fib_scope < flp->flowi4_scope) 1590 continue; 1591 fib_alias_accessed(fa); 1592 err = fib_props[fa->fa_type].error; 1593 if (unlikely(err < 0)) { 1594 out_reject: 1595 #ifdef CONFIG_IP_FIB_TRIE_STATS 1596 this_cpu_inc(stats->semantic_match_passed); 1597 #endif 1598 trace_fib_table_lookup(tb->tb_id, flp, NULL, err); 1599 return err; 1600 } 1601 if (fi->fib_flags & RTNH_F_DEAD) 1602 continue; 1603 1604 if (unlikely(fi->nh)) { 1605 if (nexthop_is_blackhole(fi->nh)) { 1606 err = fib_props[RTN_BLACKHOLE].error; 1607 goto out_reject; 1608 } 1609 1610 nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp, 1611 &nhsel); 1612 if (nhc) 1613 goto set_result; 1614 goto miss; 1615 } 1616 1617 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) { 1618 nhc = fib_info_nhc(fi, nhsel); 1619 1620 if (!fib_lookup_good_nhc(nhc, fib_flags, flp)) 1621 continue; 1622 set_result: 1623 if (!(fib_flags & FIB_LOOKUP_NOREF)) 1624 refcount_inc(&fi->fib_clntref); 1625 1626 res->prefix = htonl(n->key); 1627 res->prefixlen = KEYLENGTH - fa->fa_slen; 1628 res->nh_sel = nhsel; 1629 res->nhc = nhc; 1630 res->type = fa->fa_type; 1631 res->scope = fi->fib_scope; 1632 res->dscp = fa->fa_dscp; 1633 res->fi = fi; 1634 res->table = tb; 1635 res->fa_head = &n->leaf; 1636 #ifdef CONFIG_IP_FIB_TRIE_STATS 1637 this_cpu_inc(stats->semantic_match_passed); 1638 #endif 1639 trace_fib_table_lookup(tb->tb_id, flp, nhc, err); 1640 1641 return err; 1642 } 1643 } 1644 miss: 1645 #ifdef CONFIG_IP_FIB_TRIE_STATS 1646 this_cpu_inc(stats->semantic_match_miss); 1647 #endif 1648 goto backtrace; 1649 } 1650 EXPORT_SYMBOL_GPL(fib_table_lookup); 1651 1652 static void fib_remove_alias(struct trie *t, struct key_vector *tp, 1653 struct key_vector *l, struct fib_alias *old) 1654 { 1655 /* record the location of the previous list_info entry */ 1656 struct hlist_node **pprev = old->fa_list.pprev; 1657 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next); 1658 1659 /* remove the fib_alias from the list */ 1660 hlist_del_rcu(&old->fa_list); 1661 1662 /* if we emptied the list this leaf will be freed and we can sort 1663 * out parent suffix lengths as a part of trie_rebalance 1664 */ 1665 if (hlist_empty(&l->leaf)) { 1666 if (tp->slen == l->slen) 1667 node_pull_suffix(tp, tp->pos); 1668 put_child_root(tp, l->key, NULL); 1669 node_free(l); 1670 trie_rebalance(t, tp); 1671 return; 1672 } 1673 1674 /* only access fa if it is pointing at the last valid hlist_node */ 1675 if (*pprev) 1676 return; 1677 1678 /* update the trie with the latest suffix length */ 1679 l->slen = fa->fa_slen; 1680 node_pull_suffix(tp, fa->fa_slen); 1681 } 1682 1683 static void fib_notify_alias_delete(struct net *net, u32 key, 1684 struct hlist_head *fah, 1685 struct fib_alias *fa_to_delete, 1686 struct netlink_ext_ack *extack) 1687 { 1688 struct fib_alias *fa_next, *fa_to_notify; 1689 u32 tb_id = fa_to_delete->tb_id; 1690 u8 slen = fa_to_delete->fa_slen; 1691 enum fib_event_type fib_event; 1692 1693 /* Do not notify if we do not care about the route. */ 1694 if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete) 1695 return; 1696 1697 /* Determine if the route should be replaced by the next route in the 1698 * list. 1699 */ 1700 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next, 1701 struct fib_alias, fa_list); 1702 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) { 1703 fib_event = FIB_EVENT_ENTRY_REPLACE; 1704 fa_to_notify = fa_next; 1705 } else { 1706 fib_event = FIB_EVENT_ENTRY_DEL; 1707 fa_to_notify = fa_to_delete; 1708 } 1709 call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen, 1710 fa_to_notify, extack); 1711 } 1712 1713 /* Caller must hold RTNL. */ 1714 int fib_table_delete(struct net *net, struct fib_table *tb, 1715 struct fib_config *cfg, struct netlink_ext_ack *extack) 1716 { 1717 struct trie *t = (struct trie *) tb->tb_data; 1718 struct fib_alias *fa, *fa_to_delete; 1719 struct key_vector *l, *tp; 1720 u8 plen = cfg->fc_dst_len; 1721 u8 slen = KEYLENGTH - plen; 1722 dscp_t dscp; 1723 u32 key; 1724 1725 key = ntohl(cfg->fc_dst); 1726 1727 if (!fib_valid_key_len(key, plen, extack)) 1728 return -EINVAL; 1729 1730 l = fib_find_node(t, &tp, key); 1731 if (!l) 1732 return -ESRCH; 1733 1734 dscp = cfg->fc_dscp; 1735 fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false); 1736 if (!fa) 1737 return -ESRCH; 1738 1739 pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen, 1740 inet_dscp_to_dsfield(dscp), t); 1741 1742 fa_to_delete = NULL; 1743 hlist_for_each_entry_from(fa, fa_list) { 1744 struct fib_info *fi = fa->fa_info; 1745 1746 if ((fa->fa_slen != slen) || 1747 (fa->tb_id != tb->tb_id) || 1748 (fa->fa_dscp != dscp)) 1749 break; 1750 1751 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && 1752 (cfg->fc_scope == RT_SCOPE_NOWHERE || 1753 fa->fa_info->fib_scope == cfg->fc_scope) && 1754 (!cfg->fc_prefsrc || 1755 fi->fib_prefsrc == cfg->fc_prefsrc) && 1756 (!cfg->fc_protocol || 1757 fi->fib_protocol == cfg->fc_protocol) && 1758 fib_nh_match(net, cfg, fi, extack) == 0 && 1759 fib_metrics_match(cfg, fi)) { 1760 fa_to_delete = fa; 1761 break; 1762 } 1763 } 1764 1765 if (!fa_to_delete) 1766 return -ESRCH; 1767 1768 fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack); 1769 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id, 1770 &cfg->fc_nlinfo, 0); 1771 1772 if (!plen) 1773 tb->tb_num_default--; 1774 1775 fib_remove_alias(t, tp, l, fa_to_delete); 1776 1777 if (fa_to_delete->fa_state & FA_S_ACCESSED) 1778 rt_cache_flush(cfg->fc_nlinfo.nl_net); 1779 1780 fib_release_info(fa_to_delete->fa_info); 1781 alias_free_mem_rcu(fa_to_delete); 1782 return 0; 1783 } 1784 1785 /* Scan for the next leaf starting at the provided key value */ 1786 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key) 1787 { 1788 struct key_vector *pn, *n = *tn; 1789 unsigned long cindex; 1790 1791 /* this loop is meant to try and find the key in the trie */ 1792 do { 1793 /* record parent and next child index */ 1794 pn = n; 1795 cindex = (key > pn->key) ? get_index(key, pn) : 0; 1796 1797 if (cindex >> pn->bits) 1798 break; 1799 1800 /* descend into the next child */ 1801 n = get_child_rcu(pn, cindex++); 1802 if (!n) 1803 break; 1804 1805 /* guarantee forward progress on the keys */ 1806 if (IS_LEAF(n) && (n->key >= key)) 1807 goto found; 1808 } while (IS_TNODE(n)); 1809 1810 /* this loop will search for the next leaf with a greater key */ 1811 while (!IS_TRIE(pn)) { 1812 /* if we exhausted the parent node we will need to climb */ 1813 if (cindex >= (1ul << pn->bits)) { 1814 t_key pkey = pn->key; 1815 1816 pn = node_parent_rcu(pn); 1817 cindex = get_index(pkey, pn) + 1; 1818 continue; 1819 } 1820 1821 /* grab the next available node */ 1822 n = get_child_rcu(pn, cindex++); 1823 if (!n) 1824 continue; 1825 1826 /* no need to compare keys since we bumped the index */ 1827 if (IS_LEAF(n)) 1828 goto found; 1829 1830 /* Rescan start scanning in new node */ 1831 pn = n; 1832 cindex = 0; 1833 } 1834 1835 *tn = pn; 1836 return NULL; /* Root of trie */ 1837 found: 1838 /* if we are at the limit for keys just return NULL for the tnode */ 1839 *tn = pn; 1840 return n; 1841 } 1842 1843 static void fib_trie_free(struct fib_table *tb) 1844 { 1845 struct trie *t = (struct trie *)tb->tb_data; 1846 struct key_vector *pn = t->kv; 1847 unsigned long cindex = 1; 1848 struct hlist_node *tmp; 1849 struct fib_alias *fa; 1850 1851 /* walk trie in reverse order and free everything */ 1852 for (;;) { 1853 struct key_vector *n; 1854 1855 if (!(cindex--)) { 1856 t_key pkey = pn->key; 1857 1858 if (IS_TRIE(pn)) 1859 break; 1860 1861 n = pn; 1862 pn = node_parent(pn); 1863 1864 /* drop emptied tnode */ 1865 put_child_root(pn, n->key, NULL); 1866 node_free(n); 1867 1868 cindex = get_index(pkey, pn); 1869 1870 continue; 1871 } 1872 1873 /* grab the next available node */ 1874 n = get_child(pn, cindex); 1875 if (!n) 1876 continue; 1877 1878 if (IS_TNODE(n)) { 1879 /* record pn and cindex for leaf walking */ 1880 pn = n; 1881 cindex = 1ul << n->bits; 1882 1883 continue; 1884 } 1885 1886 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 1887 hlist_del_rcu(&fa->fa_list); 1888 alias_free_mem_rcu(fa); 1889 } 1890 1891 put_child_root(pn, n->key, NULL); 1892 node_free(n); 1893 } 1894 1895 #ifdef CONFIG_IP_FIB_TRIE_STATS 1896 free_percpu(t->stats); 1897 #endif 1898 kfree(tb); 1899 } 1900 1901 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb) 1902 { 1903 struct trie *ot = (struct trie *)oldtb->tb_data; 1904 struct key_vector *l, *tp = ot->kv; 1905 struct fib_table *local_tb; 1906 struct fib_alias *fa; 1907 struct trie *lt; 1908 t_key key = 0; 1909 1910 if (oldtb->tb_data == oldtb->__data) 1911 return oldtb; 1912 1913 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL); 1914 if (!local_tb) 1915 return NULL; 1916 1917 lt = (struct trie *)local_tb->tb_data; 1918 1919 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 1920 struct key_vector *local_l = NULL, *local_tp; 1921 1922 hlist_for_each_entry(fa, &l->leaf, fa_list) { 1923 struct fib_alias *new_fa; 1924 1925 if (local_tb->tb_id != fa->tb_id) 1926 continue; 1927 1928 /* clone fa for new local table */ 1929 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); 1930 if (!new_fa) 1931 goto out; 1932 1933 memcpy(new_fa, fa, sizeof(*fa)); 1934 1935 /* insert clone into table */ 1936 if (!local_l) 1937 local_l = fib_find_node(lt, &local_tp, l->key); 1938 1939 if (fib_insert_alias(lt, local_tp, local_l, new_fa, 1940 NULL, l->key)) { 1941 kmem_cache_free(fn_alias_kmem, new_fa); 1942 goto out; 1943 } 1944 } 1945 1946 /* stop loop if key wrapped back to 0 */ 1947 key = l->key + 1; 1948 if (key < l->key) 1949 break; 1950 } 1951 1952 return local_tb; 1953 out: 1954 fib_trie_free(local_tb); 1955 1956 return NULL; 1957 } 1958 1959 /* Caller must hold RTNL */ 1960 void fib_table_flush_external(struct fib_table *tb) 1961 { 1962 struct trie *t = (struct trie *)tb->tb_data; 1963 struct key_vector *pn = t->kv; 1964 unsigned long cindex = 1; 1965 struct hlist_node *tmp; 1966 struct fib_alias *fa; 1967 1968 /* walk trie in reverse order */ 1969 for (;;) { 1970 unsigned char slen = 0; 1971 struct key_vector *n; 1972 1973 if (!(cindex--)) { 1974 t_key pkey = pn->key; 1975 1976 /* cannot resize the trie vector */ 1977 if (IS_TRIE(pn)) 1978 break; 1979 1980 /* update the suffix to address pulled leaves */ 1981 if (pn->slen > pn->pos) 1982 update_suffix(pn); 1983 1984 /* resize completed node */ 1985 pn = resize(t, pn); 1986 cindex = get_index(pkey, pn); 1987 1988 continue; 1989 } 1990 1991 /* grab the next available node */ 1992 n = get_child(pn, cindex); 1993 if (!n) 1994 continue; 1995 1996 if (IS_TNODE(n)) { 1997 /* record pn and cindex for leaf walking */ 1998 pn = n; 1999 cindex = 1ul << n->bits; 2000 2001 continue; 2002 } 2003 2004 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 2005 /* if alias was cloned to local then we just 2006 * need to remove the local copy from main 2007 */ 2008 if (tb->tb_id != fa->tb_id) { 2009 hlist_del_rcu(&fa->fa_list); 2010 alias_free_mem_rcu(fa); 2011 continue; 2012 } 2013 2014 /* record local slen */ 2015 slen = fa->fa_slen; 2016 } 2017 2018 /* update leaf slen */ 2019 n->slen = slen; 2020 2021 if (hlist_empty(&n->leaf)) { 2022 put_child_root(pn, n->key, NULL); 2023 node_free(n); 2024 } 2025 } 2026 } 2027 2028 /* Caller must hold RTNL. */ 2029 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all) 2030 { 2031 struct trie *t = (struct trie *)tb->tb_data; 2032 struct nl_info info = { .nl_net = net }; 2033 struct key_vector *pn = t->kv; 2034 unsigned long cindex = 1; 2035 struct hlist_node *tmp; 2036 struct fib_alias *fa; 2037 int found = 0; 2038 2039 /* walk trie in reverse order */ 2040 for (;;) { 2041 unsigned char slen = 0; 2042 struct key_vector *n; 2043 2044 if (!(cindex--)) { 2045 t_key pkey = pn->key; 2046 2047 /* cannot resize the trie vector */ 2048 if (IS_TRIE(pn)) 2049 break; 2050 2051 /* update the suffix to address pulled leaves */ 2052 if (pn->slen > pn->pos) 2053 update_suffix(pn); 2054 2055 /* resize completed node */ 2056 pn = resize(t, pn); 2057 cindex = get_index(pkey, pn); 2058 2059 continue; 2060 } 2061 2062 /* grab the next available node */ 2063 n = get_child(pn, cindex); 2064 if (!n) 2065 continue; 2066 2067 if (IS_TNODE(n)) { 2068 /* record pn and cindex for leaf walking */ 2069 pn = n; 2070 cindex = 1ul << n->bits; 2071 2072 continue; 2073 } 2074 2075 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) { 2076 struct fib_info *fi = fa->fa_info; 2077 2078 if (!fi || tb->tb_id != fa->tb_id || 2079 (!(fi->fib_flags & RTNH_F_DEAD) && 2080 !fib_props[fa->fa_type].error)) { 2081 slen = fa->fa_slen; 2082 continue; 2083 } 2084 2085 /* Do not flush error routes if network namespace is 2086 * not being dismantled 2087 */ 2088 if (!flush_all && fib_props[fa->fa_type].error) { 2089 slen = fa->fa_slen; 2090 continue; 2091 } 2092 2093 fib_notify_alias_delete(net, n->key, &n->leaf, fa, 2094 NULL); 2095 if (fi->pfsrc_removed) 2096 rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa, 2097 KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0); 2098 hlist_del_rcu(&fa->fa_list); 2099 fib_release_info(fa->fa_info); 2100 alias_free_mem_rcu(fa); 2101 found++; 2102 } 2103 2104 /* update leaf slen */ 2105 n->slen = slen; 2106 2107 if (hlist_empty(&n->leaf)) { 2108 put_child_root(pn, n->key, NULL); 2109 node_free(n); 2110 } 2111 } 2112 2113 pr_debug("trie_flush found=%d\n", found); 2114 return found; 2115 } 2116 2117 /* derived from fib_trie_free */ 2118 static void __fib_info_notify_update(struct net *net, struct fib_table *tb, 2119 struct nl_info *info) 2120 { 2121 struct trie *t = (struct trie *)tb->tb_data; 2122 struct key_vector *pn = t->kv; 2123 unsigned long cindex = 1; 2124 struct fib_alias *fa; 2125 2126 for (;;) { 2127 struct key_vector *n; 2128 2129 if (!(cindex--)) { 2130 t_key pkey = pn->key; 2131 2132 if (IS_TRIE(pn)) 2133 break; 2134 2135 pn = node_parent(pn); 2136 cindex = get_index(pkey, pn); 2137 continue; 2138 } 2139 2140 /* grab the next available node */ 2141 n = get_child(pn, cindex); 2142 if (!n) 2143 continue; 2144 2145 if (IS_TNODE(n)) { 2146 /* record pn and cindex for leaf walking */ 2147 pn = n; 2148 cindex = 1ul << n->bits; 2149 2150 continue; 2151 } 2152 2153 hlist_for_each_entry(fa, &n->leaf, fa_list) { 2154 struct fib_info *fi = fa->fa_info; 2155 2156 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id) 2157 continue; 2158 2159 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa, 2160 KEYLENGTH - fa->fa_slen, tb->tb_id, 2161 info, NLM_F_REPLACE); 2162 } 2163 } 2164 } 2165 2166 void fib_info_notify_update(struct net *net, struct nl_info *info) 2167 { 2168 unsigned int h; 2169 2170 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2171 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2172 struct fib_table *tb; 2173 2174 hlist_for_each_entry_rcu(tb, head, tb_hlist, 2175 lockdep_rtnl_is_held()) 2176 __fib_info_notify_update(net, tb, info); 2177 } 2178 } 2179 2180 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb, 2181 struct notifier_block *nb, 2182 struct netlink_ext_ack *extack) 2183 { 2184 struct fib_alias *fa; 2185 int last_slen = -1; 2186 int err; 2187 2188 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2189 struct fib_info *fi = fa->fa_info; 2190 2191 if (!fi) 2192 continue; 2193 2194 /* local and main table can share the same trie, 2195 * so don't notify twice for the same entry. 2196 */ 2197 if (tb->tb_id != fa->tb_id) 2198 continue; 2199 2200 if (fa->fa_slen == last_slen) 2201 continue; 2202 2203 last_slen = fa->fa_slen; 2204 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE, 2205 l->key, KEYLENGTH - fa->fa_slen, 2206 fa, extack); 2207 if (err) 2208 return err; 2209 } 2210 return 0; 2211 } 2212 2213 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb, 2214 struct netlink_ext_ack *extack) 2215 { 2216 struct trie *t = (struct trie *)tb->tb_data; 2217 struct key_vector *l, *tp = t->kv; 2218 t_key key = 0; 2219 int err; 2220 2221 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2222 err = fib_leaf_notify(l, tb, nb, extack); 2223 if (err) 2224 return err; 2225 2226 key = l->key + 1; 2227 /* stop in case of wrap around */ 2228 if (key < l->key) 2229 break; 2230 } 2231 return 0; 2232 } 2233 2234 int fib_notify(struct net *net, struct notifier_block *nb, 2235 struct netlink_ext_ack *extack) 2236 { 2237 unsigned int h; 2238 int err; 2239 2240 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2241 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2242 struct fib_table *tb; 2243 2244 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2245 err = fib_table_notify(tb, nb, extack); 2246 if (err) 2247 return err; 2248 } 2249 } 2250 return 0; 2251 } 2252 2253 static void __trie_free_rcu(struct rcu_head *head) 2254 { 2255 struct fib_table *tb = container_of(head, struct fib_table, rcu); 2256 #ifdef CONFIG_IP_FIB_TRIE_STATS 2257 struct trie *t = (struct trie *)tb->tb_data; 2258 2259 if (tb->tb_data == tb->__data) 2260 free_percpu(t->stats); 2261 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2262 kfree(tb); 2263 } 2264 2265 void fib_free_table(struct fib_table *tb) 2266 { 2267 call_rcu(&tb->rcu, __trie_free_rcu); 2268 } 2269 2270 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb, 2271 struct sk_buff *skb, struct netlink_callback *cb, 2272 struct fib_dump_filter *filter) 2273 { 2274 unsigned int flags = NLM_F_MULTI; 2275 __be32 xkey = htonl(l->key); 2276 int i, s_i, i_fa, s_fa, err; 2277 struct fib_alias *fa; 2278 2279 if (filter->filter_set || 2280 !filter->dump_exceptions || !filter->dump_routes) 2281 flags |= NLM_F_DUMP_FILTERED; 2282 2283 s_i = cb->args[4]; 2284 s_fa = cb->args[5]; 2285 i = 0; 2286 2287 /* rcu_read_lock is hold by caller */ 2288 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2289 struct fib_info *fi = fa->fa_info; 2290 2291 if (i < s_i) 2292 goto next; 2293 2294 i_fa = 0; 2295 2296 if (tb->tb_id != fa->tb_id) 2297 goto next; 2298 2299 if (filter->filter_set) { 2300 if (filter->rt_type && fa->fa_type != filter->rt_type) 2301 goto next; 2302 2303 if ((filter->protocol && 2304 fi->fib_protocol != filter->protocol)) 2305 goto next; 2306 2307 if (filter->dev && 2308 !fib_info_nh_uses_dev(fi, filter->dev)) 2309 goto next; 2310 } 2311 2312 if (filter->dump_routes) { 2313 if (!s_fa) { 2314 struct fib_rt_info fri; 2315 2316 fri.fi = fi; 2317 fri.tb_id = tb->tb_id; 2318 fri.dst = xkey; 2319 fri.dst_len = KEYLENGTH - fa->fa_slen; 2320 fri.dscp = fa->fa_dscp; 2321 fri.type = fa->fa_type; 2322 fri.offload = READ_ONCE(fa->offload); 2323 fri.trap = READ_ONCE(fa->trap); 2324 fri.offload_failed = READ_ONCE(fa->offload_failed); 2325 err = fib_dump_info(skb, 2326 NETLINK_CB(cb->skb).portid, 2327 cb->nlh->nlmsg_seq, 2328 RTM_NEWROUTE, &fri, flags); 2329 if (err < 0) 2330 goto stop; 2331 } 2332 2333 i_fa++; 2334 } 2335 2336 if (filter->dump_exceptions) { 2337 err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi, 2338 &i_fa, s_fa, flags); 2339 if (err < 0) 2340 goto stop; 2341 } 2342 2343 next: 2344 i++; 2345 } 2346 2347 cb->args[4] = i; 2348 return skb->len; 2349 2350 stop: 2351 cb->args[4] = i; 2352 cb->args[5] = i_fa; 2353 return err; 2354 } 2355 2356 /* rcu_read_lock needs to be hold by caller from readside */ 2357 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, 2358 struct netlink_callback *cb, struct fib_dump_filter *filter) 2359 { 2360 struct trie *t = (struct trie *)tb->tb_data; 2361 struct key_vector *l, *tp = t->kv; 2362 /* Dump starting at last key. 2363 * Note: 0.0.0.0/0 (ie default) is first key. 2364 */ 2365 int count = cb->args[2]; 2366 t_key key = cb->args[3]; 2367 2368 /* First time here, count and key are both always 0. Count > 0 2369 * and key == 0 means the dump has wrapped around and we are done. 2370 */ 2371 if (count && !key) 2372 return 0; 2373 2374 while ((l = leaf_walk_rcu(&tp, key)) != NULL) { 2375 int err; 2376 2377 err = fn_trie_dump_leaf(l, tb, skb, cb, filter); 2378 if (err < 0) { 2379 cb->args[3] = key; 2380 cb->args[2] = count; 2381 return err; 2382 } 2383 2384 ++count; 2385 key = l->key + 1; 2386 2387 memset(&cb->args[4], 0, 2388 sizeof(cb->args) - 4*sizeof(cb->args[0])); 2389 2390 /* stop loop if key wrapped back to 0 */ 2391 if (key < l->key) 2392 break; 2393 } 2394 2395 cb->args[3] = key; 2396 cb->args[2] = count; 2397 2398 return 0; 2399 } 2400 2401 void __init fib_trie_init(void) 2402 { 2403 fn_alias_kmem = kmem_cache_create("ip_fib_alias", 2404 sizeof(struct fib_alias), 2405 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); 2406 2407 trie_leaf_kmem = kmem_cache_create("ip_fib_trie", 2408 LEAF_SIZE, 2409 0, SLAB_PANIC | SLAB_ACCOUNT, NULL); 2410 } 2411 2412 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias) 2413 { 2414 struct fib_table *tb; 2415 struct trie *t; 2416 size_t sz = sizeof(*tb); 2417 2418 if (!alias) 2419 sz += sizeof(struct trie); 2420 2421 tb = kzalloc(sz, GFP_KERNEL); 2422 if (!tb) 2423 return NULL; 2424 2425 tb->tb_id = id; 2426 tb->tb_num_default = 0; 2427 tb->tb_data = (alias ? alias->__data : tb->__data); 2428 2429 if (alias) 2430 return tb; 2431 2432 t = (struct trie *) tb->tb_data; 2433 t->kv[0].pos = KEYLENGTH; 2434 t->kv[0].slen = KEYLENGTH; 2435 #ifdef CONFIG_IP_FIB_TRIE_STATS 2436 t->stats = alloc_percpu(struct trie_use_stats); 2437 if (!t->stats) { 2438 kfree(tb); 2439 tb = NULL; 2440 } 2441 #endif 2442 2443 return tb; 2444 } 2445 2446 #ifdef CONFIG_PROC_FS 2447 /* Depth first Trie walk iterator */ 2448 struct fib_trie_iter { 2449 struct seq_net_private p; 2450 struct fib_table *tb; 2451 struct key_vector *tnode; 2452 unsigned int index; 2453 unsigned int depth; 2454 }; 2455 2456 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter) 2457 { 2458 unsigned long cindex = iter->index; 2459 struct key_vector *pn = iter->tnode; 2460 t_key pkey; 2461 2462 pr_debug("get_next iter={node=%p index=%d depth=%d}\n", 2463 iter->tnode, iter->index, iter->depth); 2464 2465 while (!IS_TRIE(pn)) { 2466 while (cindex < child_length(pn)) { 2467 struct key_vector *n = get_child_rcu(pn, cindex++); 2468 2469 if (!n) 2470 continue; 2471 2472 if (IS_LEAF(n)) { 2473 iter->tnode = pn; 2474 iter->index = cindex; 2475 } else { 2476 /* push down one level */ 2477 iter->tnode = n; 2478 iter->index = 0; 2479 ++iter->depth; 2480 } 2481 2482 return n; 2483 } 2484 2485 /* Current node exhausted, pop back up */ 2486 pkey = pn->key; 2487 pn = node_parent_rcu(pn); 2488 cindex = get_index(pkey, pn) + 1; 2489 --iter->depth; 2490 } 2491 2492 /* record root node so further searches know we are done */ 2493 iter->tnode = pn; 2494 iter->index = 0; 2495 2496 return NULL; 2497 } 2498 2499 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter, 2500 struct trie *t) 2501 { 2502 struct key_vector *n, *pn; 2503 2504 if (!t) 2505 return NULL; 2506 2507 pn = t->kv; 2508 n = rcu_dereference(pn->tnode[0]); 2509 if (!n) 2510 return NULL; 2511 2512 if (IS_TNODE(n)) { 2513 iter->tnode = n; 2514 iter->index = 0; 2515 iter->depth = 1; 2516 } else { 2517 iter->tnode = pn; 2518 iter->index = 0; 2519 iter->depth = 0; 2520 } 2521 2522 return n; 2523 } 2524 2525 static void trie_collect_stats(struct trie *t, struct trie_stat *s) 2526 { 2527 struct key_vector *n; 2528 struct fib_trie_iter iter; 2529 2530 memset(s, 0, sizeof(*s)); 2531 2532 rcu_read_lock(); 2533 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { 2534 if (IS_LEAF(n)) { 2535 struct fib_alias *fa; 2536 2537 s->leaves++; 2538 s->totdepth += iter.depth; 2539 if (iter.depth > s->maxdepth) 2540 s->maxdepth = iter.depth; 2541 2542 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) 2543 ++s->prefixes; 2544 } else { 2545 s->tnodes++; 2546 if (n->bits < MAX_STAT_DEPTH) 2547 s->nodesizes[n->bits]++; 2548 s->nullpointers += tn_info(n)->empty_children; 2549 } 2550 } 2551 rcu_read_unlock(); 2552 } 2553 2554 /* 2555 * This outputs /proc/net/fib_triestats 2556 */ 2557 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) 2558 { 2559 unsigned int i, max, pointers, bytes, avdepth; 2560 2561 if (stat->leaves) 2562 avdepth = stat->totdepth*100 / stat->leaves; 2563 else 2564 avdepth = 0; 2565 2566 seq_printf(seq, "\tAver depth: %u.%02d\n", 2567 avdepth / 100, avdepth % 100); 2568 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth); 2569 2570 seq_printf(seq, "\tLeaves: %u\n", stat->leaves); 2571 bytes = LEAF_SIZE * stat->leaves; 2572 2573 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes); 2574 bytes += sizeof(struct fib_alias) * stat->prefixes; 2575 2576 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); 2577 bytes += TNODE_SIZE(0) * stat->tnodes; 2578 2579 max = MAX_STAT_DEPTH; 2580 while (max > 0 && stat->nodesizes[max-1] == 0) 2581 max--; 2582 2583 pointers = 0; 2584 for (i = 1; i < max; i++) 2585 if (stat->nodesizes[i] != 0) { 2586 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]); 2587 pointers += (1<<i) * stat->nodesizes[i]; 2588 } 2589 seq_putc(seq, '\n'); 2590 seq_printf(seq, "\tPointers: %u\n", pointers); 2591 2592 bytes += sizeof(struct key_vector *) * pointers; 2593 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); 2594 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024); 2595 } 2596 2597 #ifdef CONFIG_IP_FIB_TRIE_STATS 2598 static void trie_show_usage(struct seq_file *seq, 2599 const struct trie_use_stats __percpu *stats) 2600 { 2601 struct trie_use_stats s = { 0 }; 2602 int cpu; 2603 2604 /* loop through all of the CPUs and gather up the stats */ 2605 for_each_possible_cpu(cpu) { 2606 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu); 2607 2608 s.gets += pcpu->gets; 2609 s.backtrack += pcpu->backtrack; 2610 s.semantic_match_passed += pcpu->semantic_match_passed; 2611 s.semantic_match_miss += pcpu->semantic_match_miss; 2612 s.null_node_hit += pcpu->null_node_hit; 2613 s.resize_node_skipped += pcpu->resize_node_skipped; 2614 } 2615 2616 seq_printf(seq, "\nCounters:\n---------\n"); 2617 seq_printf(seq, "gets = %u\n", s.gets); 2618 seq_printf(seq, "backtracks = %u\n", s.backtrack); 2619 seq_printf(seq, "semantic match passed = %u\n", 2620 s.semantic_match_passed); 2621 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss); 2622 seq_printf(seq, "null node hit= %u\n", s.null_node_hit); 2623 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped); 2624 } 2625 #endif /* CONFIG_IP_FIB_TRIE_STATS */ 2626 2627 static void fib_table_print(struct seq_file *seq, struct fib_table *tb) 2628 { 2629 if (tb->tb_id == RT_TABLE_LOCAL) 2630 seq_puts(seq, "Local:\n"); 2631 else if (tb->tb_id == RT_TABLE_MAIN) 2632 seq_puts(seq, "Main:\n"); 2633 else 2634 seq_printf(seq, "Id %d:\n", tb->tb_id); 2635 } 2636 2637 2638 static int fib_triestat_seq_show(struct seq_file *seq, void *v) 2639 { 2640 struct net *net = seq->private; 2641 unsigned int h; 2642 2643 seq_printf(seq, 2644 "Basic info: size of leaf:" 2645 " %zd bytes, size of tnode: %zd bytes.\n", 2646 LEAF_SIZE, TNODE_SIZE(0)); 2647 2648 rcu_read_lock(); 2649 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2650 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2651 struct fib_table *tb; 2652 2653 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2654 struct trie *t = (struct trie *) tb->tb_data; 2655 struct trie_stat stat; 2656 2657 if (!t) 2658 continue; 2659 2660 fib_table_print(seq, tb); 2661 2662 trie_collect_stats(t, &stat); 2663 trie_show_stats(seq, &stat); 2664 #ifdef CONFIG_IP_FIB_TRIE_STATS 2665 trie_show_usage(seq, t->stats); 2666 #endif 2667 } 2668 cond_resched_rcu(); 2669 } 2670 rcu_read_unlock(); 2671 2672 return 0; 2673 } 2674 2675 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos) 2676 { 2677 struct fib_trie_iter *iter = seq->private; 2678 struct net *net = seq_file_net(seq); 2679 loff_t idx = 0; 2680 unsigned int h; 2681 2682 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 2683 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2684 struct fib_table *tb; 2685 2686 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2687 struct key_vector *n; 2688 2689 for (n = fib_trie_get_first(iter, 2690 (struct trie *) tb->tb_data); 2691 n; n = fib_trie_get_next(iter)) 2692 if (pos == idx++) { 2693 iter->tb = tb; 2694 return n; 2695 } 2696 } 2697 } 2698 2699 return NULL; 2700 } 2701 2702 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) 2703 __acquires(RCU) 2704 { 2705 rcu_read_lock(); 2706 return fib_trie_get_idx(seq, *pos); 2707 } 2708 2709 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2710 { 2711 struct fib_trie_iter *iter = seq->private; 2712 struct net *net = seq_file_net(seq); 2713 struct fib_table *tb = iter->tb; 2714 struct hlist_node *tb_node; 2715 unsigned int h; 2716 struct key_vector *n; 2717 2718 ++*pos; 2719 /* next node in same table */ 2720 n = fib_trie_get_next(iter); 2721 if (n) 2722 return n; 2723 2724 /* walk rest of this hash chain */ 2725 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); 2726 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) { 2727 tb = hlist_entry(tb_node, struct fib_table, tb_hlist); 2728 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2729 if (n) 2730 goto found; 2731 } 2732 2733 /* new hash chain */ 2734 while (++h < FIB_TABLE_HASHSZ) { 2735 struct hlist_head *head = &net->ipv4.fib_table_hash[h]; 2736 hlist_for_each_entry_rcu(tb, head, tb_hlist) { 2737 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); 2738 if (n) 2739 goto found; 2740 } 2741 } 2742 return NULL; 2743 2744 found: 2745 iter->tb = tb; 2746 return n; 2747 } 2748 2749 static void fib_trie_seq_stop(struct seq_file *seq, void *v) 2750 __releases(RCU) 2751 { 2752 rcu_read_unlock(); 2753 } 2754 2755 static void seq_indent(struct seq_file *seq, int n) 2756 { 2757 while (n-- > 0) 2758 seq_puts(seq, " "); 2759 } 2760 2761 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) 2762 { 2763 switch (s) { 2764 case RT_SCOPE_UNIVERSE: return "universe"; 2765 case RT_SCOPE_SITE: return "site"; 2766 case RT_SCOPE_LINK: return "link"; 2767 case RT_SCOPE_HOST: return "host"; 2768 case RT_SCOPE_NOWHERE: return "nowhere"; 2769 default: 2770 snprintf(buf, len, "scope=%d", s); 2771 return buf; 2772 } 2773 } 2774 2775 static const char *const rtn_type_names[__RTN_MAX] = { 2776 [RTN_UNSPEC] = "UNSPEC", 2777 [RTN_UNICAST] = "UNICAST", 2778 [RTN_LOCAL] = "LOCAL", 2779 [RTN_BROADCAST] = "BROADCAST", 2780 [RTN_ANYCAST] = "ANYCAST", 2781 [RTN_MULTICAST] = "MULTICAST", 2782 [RTN_BLACKHOLE] = "BLACKHOLE", 2783 [RTN_UNREACHABLE] = "UNREACHABLE", 2784 [RTN_PROHIBIT] = "PROHIBIT", 2785 [RTN_THROW] = "THROW", 2786 [RTN_NAT] = "NAT", 2787 [RTN_XRESOLVE] = "XRESOLVE", 2788 }; 2789 2790 static inline const char *rtn_type(char *buf, size_t len, unsigned int t) 2791 { 2792 if (t < __RTN_MAX && rtn_type_names[t]) 2793 return rtn_type_names[t]; 2794 snprintf(buf, len, "type %u", t); 2795 return buf; 2796 } 2797 2798 /* Pretty print the trie */ 2799 static int fib_trie_seq_show(struct seq_file *seq, void *v) 2800 { 2801 const struct fib_trie_iter *iter = seq->private; 2802 struct key_vector *n = v; 2803 2804 if (IS_TRIE(node_parent_rcu(n))) 2805 fib_table_print(seq, iter->tb); 2806 2807 if (IS_TNODE(n)) { 2808 __be32 prf = htonl(n->key); 2809 2810 seq_indent(seq, iter->depth-1); 2811 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n", 2812 &prf, KEYLENGTH - n->pos - n->bits, n->bits, 2813 tn_info(n)->full_children, 2814 tn_info(n)->empty_children); 2815 } else { 2816 __be32 val = htonl(n->key); 2817 struct fib_alias *fa; 2818 2819 seq_indent(seq, iter->depth); 2820 seq_printf(seq, " |-- %pI4\n", &val); 2821 2822 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) { 2823 char buf1[32], buf2[32]; 2824 2825 seq_indent(seq, iter->depth + 1); 2826 seq_printf(seq, " /%zu %s %s", 2827 KEYLENGTH - fa->fa_slen, 2828 rtn_scope(buf1, sizeof(buf1), 2829 fa->fa_info->fib_scope), 2830 rtn_type(buf2, sizeof(buf2), 2831 fa->fa_type)); 2832 if (fa->fa_dscp) 2833 seq_printf(seq, " tos=%d", 2834 inet_dscp_to_dsfield(fa->fa_dscp)); 2835 seq_putc(seq, '\n'); 2836 } 2837 } 2838 2839 return 0; 2840 } 2841 2842 static const struct seq_operations fib_trie_seq_ops = { 2843 .start = fib_trie_seq_start, 2844 .next = fib_trie_seq_next, 2845 .stop = fib_trie_seq_stop, 2846 .show = fib_trie_seq_show, 2847 }; 2848 2849 struct fib_route_iter { 2850 struct seq_net_private p; 2851 struct fib_table *main_tb; 2852 struct key_vector *tnode; 2853 loff_t pos; 2854 t_key key; 2855 }; 2856 2857 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter, 2858 loff_t pos) 2859 { 2860 struct key_vector *l, **tp = &iter->tnode; 2861 t_key key; 2862 2863 /* use cached location of previously found key */ 2864 if (iter->pos > 0 && pos >= iter->pos) { 2865 key = iter->key; 2866 } else { 2867 iter->pos = 1; 2868 key = 0; 2869 } 2870 2871 pos -= iter->pos; 2872 2873 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) { 2874 key = l->key + 1; 2875 iter->pos++; 2876 l = NULL; 2877 2878 /* handle unlikely case of a key wrap */ 2879 if (!key) 2880 break; 2881 } 2882 2883 if (l) 2884 iter->key = l->key; /* remember it */ 2885 else 2886 iter->pos = 0; /* forget it */ 2887 2888 return l; 2889 } 2890 2891 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) 2892 __acquires(RCU) 2893 { 2894 struct fib_route_iter *iter = seq->private; 2895 struct fib_table *tb; 2896 struct trie *t; 2897 2898 rcu_read_lock(); 2899 2900 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); 2901 if (!tb) 2902 return NULL; 2903 2904 iter->main_tb = tb; 2905 t = (struct trie *)tb->tb_data; 2906 iter->tnode = t->kv; 2907 2908 if (*pos != 0) 2909 return fib_route_get_idx(iter, *pos); 2910 2911 iter->pos = 0; 2912 iter->key = KEY_MAX; 2913 2914 return SEQ_START_TOKEN; 2915 } 2916 2917 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2918 { 2919 struct fib_route_iter *iter = seq->private; 2920 struct key_vector *l = NULL; 2921 t_key key = iter->key + 1; 2922 2923 ++*pos; 2924 2925 /* only allow key of 0 for start of sequence */ 2926 if ((v == SEQ_START_TOKEN) || key) 2927 l = leaf_walk_rcu(&iter->tnode, key); 2928 2929 if (l) { 2930 iter->key = l->key; 2931 iter->pos++; 2932 } else { 2933 iter->pos = 0; 2934 } 2935 2936 return l; 2937 } 2938 2939 static void fib_route_seq_stop(struct seq_file *seq, void *v) 2940 __releases(RCU) 2941 { 2942 rcu_read_unlock(); 2943 } 2944 2945 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi) 2946 { 2947 unsigned int flags = 0; 2948 2949 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) 2950 flags = RTF_REJECT; 2951 if (fi) { 2952 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 2953 2954 if (nhc->nhc_gw.ipv4) 2955 flags |= RTF_GATEWAY; 2956 } 2957 if (mask == htonl(0xFFFFFFFF)) 2958 flags |= RTF_HOST; 2959 flags |= RTF_UP; 2960 return flags; 2961 } 2962 2963 /* 2964 * This outputs /proc/net/route. 2965 * The format of the file is not supposed to be changed 2966 * and needs to be same as fib_hash output to avoid breaking 2967 * legacy utilities 2968 */ 2969 static int fib_route_seq_show(struct seq_file *seq, void *v) 2970 { 2971 struct fib_route_iter *iter = seq->private; 2972 struct fib_table *tb = iter->main_tb; 2973 struct fib_alias *fa; 2974 struct key_vector *l = v; 2975 __be32 prefix; 2976 2977 if (v == SEQ_START_TOKEN) { 2978 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " 2979 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" 2980 "\tWindow\tIRTT"); 2981 return 0; 2982 } 2983 2984 prefix = htonl(l->key); 2985 2986 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) { 2987 struct fib_info *fi = fa->fa_info; 2988 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen); 2989 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); 2990 2991 if ((fa->fa_type == RTN_BROADCAST) || 2992 (fa->fa_type == RTN_MULTICAST)) 2993 continue; 2994 2995 if (fa->tb_id != tb->tb_id) 2996 continue; 2997 2998 seq_setwidth(seq, 127); 2999 3000 if (fi) { 3001 struct fib_nh_common *nhc = fib_info_nhc(fi, 0); 3002 __be32 gw = 0; 3003 3004 if (nhc->nhc_gw_family == AF_INET) 3005 gw = nhc->nhc_gw.ipv4; 3006 3007 seq_printf(seq, 3008 "%s\t%08X\t%08X\t%04X\t%d\t%u\t" 3009 "%d\t%08X\t%d\t%u\t%u", 3010 nhc->nhc_dev ? nhc->nhc_dev->name : "*", 3011 prefix, gw, flags, 0, 0, 3012 fi->fib_priority, 3013 mask, 3014 (fi->fib_advmss ? 3015 fi->fib_advmss + 40 : 0), 3016 fi->fib_window, 3017 fi->fib_rtt >> 3); 3018 } else { 3019 seq_printf(seq, 3020 "*\t%08X\t%08X\t%04X\t%d\t%u\t" 3021 "%d\t%08X\t%d\t%u\t%u", 3022 prefix, 0, flags, 0, 0, 0, 3023 mask, 0, 0, 0); 3024 } 3025 seq_pad(seq, '\n'); 3026 } 3027 3028 return 0; 3029 } 3030 3031 static const struct seq_operations fib_route_seq_ops = { 3032 .start = fib_route_seq_start, 3033 .next = fib_route_seq_next, 3034 .stop = fib_route_seq_stop, 3035 .show = fib_route_seq_show, 3036 }; 3037 3038 int __net_init fib_proc_init(struct net *net) 3039 { 3040 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops, 3041 sizeof(struct fib_trie_iter))) 3042 goto out1; 3043 3044 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net, 3045 fib_triestat_seq_show, NULL)) 3046 goto out2; 3047 3048 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops, 3049 sizeof(struct fib_route_iter))) 3050 goto out3; 3051 3052 return 0; 3053 3054 out3: 3055 remove_proc_entry("fib_triestat", net->proc_net); 3056 out2: 3057 remove_proc_entry("fib_trie", net->proc_net); 3058 out1: 3059 return -ENOMEM; 3060 } 3061 3062 void __net_exit fib_proc_exit(struct net *net) 3063 { 3064 remove_proc_entry("fib_trie", net->proc_net); 3065 remove_proc_entry("fib_triestat", net->proc_net); 3066 remove_proc_entry("route", net->proc_net); 3067 } 3068 3069 #endif /* CONFIG_PROC_FS */ 3070
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.