~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/ipv4/fib_trie.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *
  4  *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  5  *     & Swedish University of Agricultural Sciences.
  6  *
  7  *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  8  *     Agricultural Sciences.
  9  *
 10  *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
 11  *
 12  * This work is based on the LPC-trie which is originally described in:
 13  *
 14  * An experimental study of compression methods for dynamic tries
 15  * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
 16  * https://www.csc.kth.se/~snilsson/software/dyntrie2/
 17  *
 18  * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
 19  * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
 20  *
 21  * Code from fib_hash has been reused which includes the following header:
 22  *
 23  * INET         An implementation of the TCP/IP protocol suite for the LINUX
 24  *              operating system.  INET is implemented using the  BSD Socket
 25  *              interface as the means of communication with the user level.
 26  *
 27  *              IPv4 FIB: lookup engine and maintenance routines.
 28  *
 29  * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 30  *
 31  * Substantial contributions to this work comes from:
 32  *
 33  *              David S. Miller, <davem@davemloft.net>
 34  *              Stephen Hemminger <shemminger@osdl.org>
 35  *              Paul E. McKenney <paulmck@us.ibm.com>
 36  *              Patrick McHardy <kaber@trash.net>
 37  */
 38 #include <linux/cache.h>
 39 #include <linux/uaccess.h>
 40 #include <linux/bitops.h>
 41 #include <linux/types.h>
 42 #include <linux/kernel.h>
 43 #include <linux/mm.h>
 44 #include <linux/string.h>
 45 #include <linux/socket.h>
 46 #include <linux/sockios.h>
 47 #include <linux/errno.h>
 48 #include <linux/in.h>
 49 #include <linux/inet.h>
 50 #include <linux/inetdevice.h>
 51 #include <linux/netdevice.h>
 52 #include <linux/if_arp.h>
 53 #include <linux/proc_fs.h>
 54 #include <linux/rcupdate.h>
 55 #include <linux/rcupdate_wait.h>
 56 #include <linux/skbuff.h>
 57 #include <linux/netlink.h>
 58 #include <linux/init.h>
 59 #include <linux/list.h>
 60 #include <linux/slab.h>
 61 #include <linux/export.h>
 62 #include <linux/vmalloc.h>
 63 #include <linux/notifier.h>
 64 #include <net/net_namespace.h>
 65 #include <net/inet_dscp.h>
 66 #include <net/ip.h>
 67 #include <net/protocol.h>
 68 #include <net/route.h>
 69 #include <net/tcp.h>
 70 #include <net/sock.h>
 71 #include <net/ip_fib.h>
 72 #include <net/fib_notifier.h>
 73 #include <trace/events/fib.h>
 74 #include "fib_lookup.h"
 75 
 76 static int call_fib_entry_notifier(struct notifier_block *nb,
 77                                    enum fib_event_type event_type, u32 dst,
 78                                    int dst_len, struct fib_alias *fa,
 79                                    struct netlink_ext_ack *extack)
 80 {
 81         struct fib_entry_notifier_info info = {
 82                 .info.extack = extack,
 83                 .dst = dst,
 84                 .dst_len = dst_len,
 85                 .fi = fa->fa_info,
 86                 .dscp = fa->fa_dscp,
 87                 .type = fa->fa_type,
 88                 .tb_id = fa->tb_id,
 89         };
 90         return call_fib4_notifier(nb, event_type, &info.info);
 91 }
 92 
 93 static int call_fib_entry_notifiers(struct net *net,
 94                                     enum fib_event_type event_type, u32 dst,
 95                                     int dst_len, struct fib_alias *fa,
 96                                     struct netlink_ext_ack *extack)
 97 {
 98         struct fib_entry_notifier_info info = {
 99                 .info.extack = extack,
100                 .dst = dst,
101                 .dst_len = dst_len,
102                 .fi = fa->fa_info,
103                 .dscp = fa->fa_dscp,
104                 .type = fa->fa_type,
105                 .tb_id = fa->tb_id,
106         };
107         return call_fib4_notifiers(net, event_type, &info.info);
108 }
109 
110 #define MAX_STAT_DEPTH 32
111 
112 #define KEYLENGTH       (8*sizeof(t_key))
113 #define KEY_MAX         ((t_key)~0)
114 
115 typedef unsigned int t_key;
116 
117 #define IS_TRIE(n)      ((n)->pos >= KEYLENGTH)
118 #define IS_TNODE(n)     ((n)->bits)
119 #define IS_LEAF(n)      (!(n)->bits)
120 
121 struct key_vector {
122         t_key key;
123         unsigned char pos;              /* 2log(KEYLENGTH) bits needed */
124         unsigned char bits;             /* 2log(KEYLENGTH) bits needed */
125         unsigned char slen;
126         union {
127                 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
128                 struct hlist_head leaf;
129                 /* This array is valid if (pos | bits) > 0 (TNODE) */
130                 DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
131         };
132 };
133 
134 struct tnode {
135         struct rcu_head rcu;
136         t_key empty_children;           /* KEYLENGTH bits needed */
137         t_key full_children;            /* KEYLENGTH bits needed */
138         struct key_vector __rcu *parent;
139         struct key_vector kv[1];
140 #define tn_bits kv[0].bits
141 };
142 
143 #define TNODE_SIZE(n)   offsetof(struct tnode, kv[0].tnode[n])
144 #define LEAF_SIZE       TNODE_SIZE(1)
145 
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 struct trie_use_stats {
148         unsigned int gets;
149         unsigned int backtrack;
150         unsigned int semantic_match_passed;
151         unsigned int semantic_match_miss;
152         unsigned int null_node_hit;
153         unsigned int resize_node_skipped;
154 };
155 #endif
156 
157 struct trie_stat {
158         unsigned int totdepth;
159         unsigned int maxdepth;
160         unsigned int tnodes;
161         unsigned int leaves;
162         unsigned int nullpointers;
163         unsigned int prefixes;
164         unsigned int nodesizes[MAX_STAT_DEPTH];
165 };
166 
167 struct trie {
168         struct key_vector kv[1];
169 #ifdef CONFIG_IP_FIB_TRIE_STATS
170         struct trie_use_stats __percpu *stats;
171 #endif
172 };
173 
174 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
175 static unsigned int tnode_free_size;
176 
177 /*
178  * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
179  * especially useful before resizing the root node with PREEMPT_NONE configs;
180  * the value was obtained experimentally, aiming to avoid visible slowdown.
181  */
182 unsigned int sysctl_fib_sync_mem = 512 * 1024;
183 unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
184 unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
185 
186 static struct kmem_cache *fn_alias_kmem __ro_after_init;
187 static struct kmem_cache *trie_leaf_kmem __ro_after_init;
188 
189 static inline struct tnode *tn_info(struct key_vector *kv)
190 {
191         return container_of(kv, struct tnode, kv[0]);
192 }
193 
194 /* caller must hold RTNL */
195 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
196 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
197 
198 /* caller must hold RCU read lock or RTNL */
199 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
200 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
201 
202 /* wrapper for rcu_assign_pointer */
203 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
204 {
205         if (n)
206                 rcu_assign_pointer(tn_info(n)->parent, tp);
207 }
208 
209 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
210 
211 /* This provides us with the number of children in this node, in the case of a
212  * leaf this will return 0 meaning none of the children are accessible.
213  */
214 static inline unsigned long child_length(const struct key_vector *tn)
215 {
216         return (1ul << tn->bits) & ~(1ul);
217 }
218 
219 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
220 
221 static inline unsigned long get_index(t_key key, struct key_vector *kv)
222 {
223         unsigned long index = key ^ kv->key;
224 
225         if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
226                 return 0;
227 
228         return index >> kv->pos;
229 }
230 
231 /* To understand this stuff, an understanding of keys and all their bits is
232  * necessary. Every node in the trie has a key associated with it, but not
233  * all of the bits in that key are significant.
234  *
235  * Consider a node 'n' and its parent 'tp'.
236  *
237  * If n is a leaf, every bit in its key is significant. Its presence is
238  * necessitated by path compression, since during a tree traversal (when
239  * searching for a leaf - unless we are doing an insertion) we will completely
240  * ignore all skipped bits we encounter. Thus we need to verify, at the end of
241  * a potentially successful search, that we have indeed been walking the
242  * correct key path.
243  *
244  * Note that we can never "miss" the correct key in the tree if present by
245  * following the wrong path. Path compression ensures that segments of the key
246  * that are the same for all keys with a given prefix are skipped, but the
247  * skipped part *is* identical for each node in the subtrie below the skipped
248  * bit! trie_insert() in this implementation takes care of that.
249  *
250  * if n is an internal node - a 'tnode' here, the various parts of its key
251  * have many different meanings.
252  *
253  * Example:
254  * _________________________________________________________________
255  * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
256  * -----------------------------------------------------------------
257  *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
258  *
259  * _________________________________________________________________
260  * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
261  * -----------------------------------------------------------------
262  *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
263  *
264  * tp->pos = 22
265  * tp->bits = 3
266  * n->pos = 13
267  * n->bits = 4
268  *
269  * First, let's just ignore the bits that come before the parent tp, that is
270  * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
271  * point we do not use them for anything.
272  *
273  * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
274  * index into the parent's child array. That is, they will be used to find
275  * 'n' among tp's children.
276  *
277  * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
278  * for the node n.
279  *
280  * All the bits we have seen so far are significant to the node n. The rest
281  * of the bits are really not needed or indeed known in n->key.
282  *
283  * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
284  * n's child array, and will of course be different for each child.
285  *
286  * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
287  * at this point.
288  */
289 
290 static const int halve_threshold = 25;
291 static const int inflate_threshold = 50;
292 static const int halve_threshold_root = 15;
293 static const int inflate_threshold_root = 30;
294 
295 static void __alias_free_mem(struct rcu_head *head)
296 {
297         struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
298         kmem_cache_free(fn_alias_kmem, fa);
299 }
300 
301 static inline void alias_free_mem_rcu(struct fib_alias *fa)
302 {
303         call_rcu(&fa->rcu, __alias_free_mem);
304 }
305 
306 #define TNODE_VMALLOC_MAX \
307         ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
308 
309 static void __node_free_rcu(struct rcu_head *head)
310 {
311         struct tnode *n = container_of(head, struct tnode, rcu);
312 
313         if (!n->tn_bits)
314                 kmem_cache_free(trie_leaf_kmem, n);
315         else
316                 kvfree(n);
317 }
318 
319 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
320 
321 static struct tnode *tnode_alloc(int bits)
322 {
323         size_t size;
324 
325         /* verify bits is within bounds */
326         if (bits > TNODE_VMALLOC_MAX)
327                 return NULL;
328 
329         /* determine size and verify it is non-zero and didn't overflow */
330         size = TNODE_SIZE(1ul << bits);
331 
332         if (size <= PAGE_SIZE)
333                 return kzalloc(size, GFP_KERNEL);
334         else
335                 return vzalloc(size);
336 }
337 
338 static inline void empty_child_inc(struct key_vector *n)
339 {
340         tn_info(n)->empty_children++;
341 
342         if (!tn_info(n)->empty_children)
343                 tn_info(n)->full_children++;
344 }
345 
346 static inline void empty_child_dec(struct key_vector *n)
347 {
348         if (!tn_info(n)->empty_children)
349                 tn_info(n)->full_children--;
350 
351         tn_info(n)->empty_children--;
352 }
353 
354 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
355 {
356         struct key_vector *l;
357         struct tnode *kv;
358 
359         kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
360         if (!kv)
361                 return NULL;
362 
363         /* initialize key vector */
364         l = kv->kv;
365         l->key = key;
366         l->pos = 0;
367         l->bits = 0;
368         l->slen = fa->fa_slen;
369 
370         /* link leaf to fib alias */
371         INIT_HLIST_HEAD(&l->leaf);
372         hlist_add_head(&fa->fa_list, &l->leaf);
373 
374         return l;
375 }
376 
377 static struct key_vector *tnode_new(t_key key, int pos, int bits)
378 {
379         unsigned int shift = pos + bits;
380         struct key_vector *tn;
381         struct tnode *tnode;
382 
383         /* verify bits and pos their msb bits clear and values are valid */
384         BUG_ON(!bits || (shift > KEYLENGTH));
385 
386         tnode = tnode_alloc(bits);
387         if (!tnode)
388                 return NULL;
389 
390         pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
391                  sizeof(struct key_vector *) << bits);
392 
393         if (bits == KEYLENGTH)
394                 tnode->full_children = 1;
395         else
396                 tnode->empty_children = 1ul << bits;
397 
398         tn = tnode->kv;
399         tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
400         tn->pos = pos;
401         tn->bits = bits;
402         tn->slen = pos;
403 
404         return tn;
405 }
406 
407 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
408  * and no bits are skipped. See discussion in dyntree paper p. 6
409  */
410 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
411 {
412         return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
413 }
414 
415 /* Add a child at position i overwriting the old value.
416  * Update the value of full_children and empty_children.
417  */
418 static void put_child(struct key_vector *tn, unsigned long i,
419                       struct key_vector *n)
420 {
421         struct key_vector *chi = get_child(tn, i);
422         int isfull, wasfull;
423 
424         BUG_ON(i >= child_length(tn));
425 
426         /* update emptyChildren, overflow into fullChildren */
427         if (!n && chi)
428                 empty_child_inc(tn);
429         if (n && !chi)
430                 empty_child_dec(tn);
431 
432         /* update fullChildren */
433         wasfull = tnode_full(tn, chi);
434         isfull = tnode_full(tn, n);
435 
436         if (wasfull && !isfull)
437                 tn_info(tn)->full_children--;
438         else if (!wasfull && isfull)
439                 tn_info(tn)->full_children++;
440 
441         if (n && (tn->slen < n->slen))
442                 tn->slen = n->slen;
443 
444         rcu_assign_pointer(tn->tnode[i], n);
445 }
446 
447 static void update_children(struct key_vector *tn)
448 {
449         unsigned long i;
450 
451         /* update all of the child parent pointers */
452         for (i = child_length(tn); i;) {
453                 struct key_vector *inode = get_child(tn, --i);
454 
455                 if (!inode)
456                         continue;
457 
458                 /* Either update the children of a tnode that
459                  * already belongs to us or update the child
460                  * to point to ourselves.
461                  */
462                 if (node_parent(inode) == tn)
463                         update_children(inode);
464                 else
465                         node_set_parent(inode, tn);
466         }
467 }
468 
469 static inline void put_child_root(struct key_vector *tp, t_key key,
470                                   struct key_vector *n)
471 {
472         if (IS_TRIE(tp))
473                 rcu_assign_pointer(tp->tnode[0], n);
474         else
475                 put_child(tp, get_index(key, tp), n);
476 }
477 
478 static inline void tnode_free_init(struct key_vector *tn)
479 {
480         tn_info(tn)->rcu.next = NULL;
481 }
482 
483 static inline void tnode_free_append(struct key_vector *tn,
484                                      struct key_vector *n)
485 {
486         tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
487         tn_info(tn)->rcu.next = &tn_info(n)->rcu;
488 }
489 
490 static void tnode_free(struct key_vector *tn)
491 {
492         struct callback_head *head = &tn_info(tn)->rcu;
493 
494         while (head) {
495                 head = head->next;
496                 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
497                 node_free(tn);
498 
499                 tn = container_of(head, struct tnode, rcu)->kv;
500         }
501 
502         if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
503                 tnode_free_size = 0;
504                 synchronize_net();
505         }
506 }
507 
508 static struct key_vector *replace(struct trie *t,
509                                   struct key_vector *oldtnode,
510                                   struct key_vector *tn)
511 {
512         struct key_vector *tp = node_parent(oldtnode);
513         unsigned long i;
514 
515         /* setup the parent pointer out of and back into this node */
516         NODE_INIT_PARENT(tn, tp);
517         put_child_root(tp, tn->key, tn);
518 
519         /* update all of the child parent pointers */
520         update_children(tn);
521 
522         /* all pointers should be clean so we are done */
523         tnode_free(oldtnode);
524 
525         /* resize children now that oldtnode is freed */
526         for (i = child_length(tn); i;) {
527                 struct key_vector *inode = get_child(tn, --i);
528 
529                 /* resize child node */
530                 if (tnode_full(tn, inode))
531                         tn = resize(t, inode);
532         }
533 
534         return tp;
535 }
536 
537 static struct key_vector *inflate(struct trie *t,
538                                   struct key_vector *oldtnode)
539 {
540         struct key_vector *tn;
541         unsigned long i;
542         t_key m;
543 
544         pr_debug("In inflate\n");
545 
546         tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
547         if (!tn)
548                 goto notnode;
549 
550         /* prepare oldtnode to be freed */
551         tnode_free_init(oldtnode);
552 
553         /* Assemble all of the pointers in our cluster, in this case that
554          * represents all of the pointers out of our allocated nodes that
555          * point to existing tnodes and the links between our allocated
556          * nodes.
557          */
558         for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
559                 struct key_vector *inode = get_child(oldtnode, --i);
560                 struct key_vector *node0, *node1;
561                 unsigned long j, k;
562 
563                 /* An empty child */
564                 if (!inode)
565                         continue;
566 
567                 /* A leaf or an internal node with skipped bits */
568                 if (!tnode_full(oldtnode, inode)) {
569                         put_child(tn, get_index(inode->key, tn), inode);
570                         continue;
571                 }
572 
573                 /* drop the node in the old tnode free list */
574                 tnode_free_append(oldtnode, inode);
575 
576                 /* An internal node with two children */
577                 if (inode->bits == 1) {
578                         put_child(tn, 2 * i + 1, get_child(inode, 1));
579                         put_child(tn, 2 * i, get_child(inode, 0));
580                         continue;
581                 }
582 
583                 /* We will replace this node 'inode' with two new
584                  * ones, 'node0' and 'node1', each with half of the
585                  * original children. The two new nodes will have
586                  * a position one bit further down the key and this
587                  * means that the "significant" part of their keys
588                  * (see the discussion near the top of this file)
589                  * will differ by one bit, which will be "" in
590                  * node0's key and "1" in node1's key. Since we are
591                  * moving the key position by one step, the bit that
592                  * we are moving away from - the bit at position
593                  * (tn->pos) - is the one that will differ between
594                  * node0 and node1. So... we synthesize that bit in the
595                  * two new keys.
596                  */
597                 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
598                 if (!node1)
599                         goto nomem;
600                 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
601 
602                 tnode_free_append(tn, node1);
603                 if (!node0)
604                         goto nomem;
605                 tnode_free_append(tn, node0);
606 
607                 /* populate child pointers in new nodes */
608                 for (k = child_length(inode), j = k / 2; j;) {
609                         put_child(node1, --j, get_child(inode, --k));
610                         put_child(node0, j, get_child(inode, j));
611                         put_child(node1, --j, get_child(inode, --k));
612                         put_child(node0, j, get_child(inode, j));
613                 }
614 
615                 /* link new nodes to parent */
616                 NODE_INIT_PARENT(node1, tn);
617                 NODE_INIT_PARENT(node0, tn);
618 
619                 /* link parent to nodes */
620                 put_child(tn, 2 * i + 1, node1);
621                 put_child(tn, 2 * i, node0);
622         }
623 
624         /* setup the parent pointers into and out of this node */
625         return replace(t, oldtnode, tn);
626 nomem:
627         /* all pointers should be clean so we are done */
628         tnode_free(tn);
629 notnode:
630         return NULL;
631 }
632 
633 static struct key_vector *halve(struct trie *t,
634                                 struct key_vector *oldtnode)
635 {
636         struct key_vector *tn;
637         unsigned long i;
638 
639         pr_debug("In halve\n");
640 
641         tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
642         if (!tn)
643                 goto notnode;
644 
645         /* prepare oldtnode to be freed */
646         tnode_free_init(oldtnode);
647 
648         /* Assemble all of the pointers in our cluster, in this case that
649          * represents all of the pointers out of our allocated nodes that
650          * point to existing tnodes and the links between our allocated
651          * nodes.
652          */
653         for (i = child_length(oldtnode); i;) {
654                 struct key_vector *node1 = get_child(oldtnode, --i);
655                 struct key_vector *node0 = get_child(oldtnode, --i);
656                 struct key_vector *inode;
657 
658                 /* At least one of the children is empty */
659                 if (!node1 || !node0) {
660                         put_child(tn, i / 2, node1 ? : node0);
661                         continue;
662                 }
663 
664                 /* Two nonempty children */
665                 inode = tnode_new(node0->key, oldtnode->pos, 1);
666                 if (!inode)
667                         goto nomem;
668                 tnode_free_append(tn, inode);
669 
670                 /* initialize pointers out of node */
671                 put_child(inode, 1, node1);
672                 put_child(inode, 0, node0);
673                 NODE_INIT_PARENT(inode, tn);
674 
675                 /* link parent to node */
676                 put_child(tn, i / 2, inode);
677         }
678 
679         /* setup the parent pointers into and out of this node */
680         return replace(t, oldtnode, tn);
681 nomem:
682         /* all pointers should be clean so we are done */
683         tnode_free(tn);
684 notnode:
685         return NULL;
686 }
687 
688 static struct key_vector *collapse(struct trie *t,
689                                    struct key_vector *oldtnode)
690 {
691         struct key_vector *n, *tp;
692         unsigned long i;
693 
694         /* scan the tnode looking for that one child that might still exist */
695         for (n = NULL, i = child_length(oldtnode); !n && i;)
696                 n = get_child(oldtnode, --i);
697 
698         /* compress one level */
699         tp = node_parent(oldtnode);
700         put_child_root(tp, oldtnode->key, n);
701         node_set_parent(n, tp);
702 
703         /* drop dead node */
704         node_free(oldtnode);
705 
706         return tp;
707 }
708 
709 static unsigned char update_suffix(struct key_vector *tn)
710 {
711         unsigned char slen = tn->pos;
712         unsigned long stride, i;
713         unsigned char slen_max;
714 
715         /* only vector 0 can have a suffix length greater than or equal to
716          * tn->pos + tn->bits, the second highest node will have a suffix
717          * length at most of tn->pos + tn->bits - 1
718          */
719         slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
720 
721         /* search though the list of children looking for nodes that might
722          * have a suffix greater than the one we currently have.  This is
723          * why we start with a stride of 2 since a stride of 1 would
724          * represent the nodes with suffix length equal to tn->pos
725          */
726         for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
727                 struct key_vector *n = get_child(tn, i);
728 
729                 if (!n || (n->slen <= slen))
730                         continue;
731 
732                 /* update stride and slen based on new value */
733                 stride <<= (n->slen - slen);
734                 slen = n->slen;
735                 i &= ~(stride - 1);
736 
737                 /* stop searching if we have hit the maximum possible value */
738                 if (slen >= slen_max)
739                         break;
740         }
741 
742         tn->slen = slen;
743 
744         return slen;
745 }
746 
747 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
748  * the Helsinki University of Technology and Matti Tikkanen of Nokia
749  * Telecommunications, page 6:
750  * "A node is doubled if the ratio of non-empty children to all
751  * children in the *doubled* node is at least 'high'."
752  *
753  * 'high' in this instance is the variable 'inflate_threshold'. It
754  * is expressed as a percentage, so we multiply it with
755  * child_length() and instead of multiplying by 2 (since the
756  * child array will be doubled by inflate()) and multiplying
757  * the left-hand side by 100 (to handle the percentage thing) we
758  * multiply the left-hand side by 50.
759  *
760  * The left-hand side may look a bit weird: child_length(tn)
761  * - tn->empty_children is of course the number of non-null children
762  * in the current node. tn->full_children is the number of "full"
763  * children, that is non-null tnodes with a skip value of 0.
764  * All of those will be doubled in the resulting inflated tnode, so
765  * we just count them one extra time here.
766  *
767  * A clearer way to write this would be:
768  *
769  * to_be_doubled = tn->full_children;
770  * not_to_be_doubled = child_length(tn) - tn->empty_children -
771  *     tn->full_children;
772  *
773  * new_child_length = child_length(tn) * 2;
774  *
775  * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
776  *      new_child_length;
777  * if (new_fill_factor >= inflate_threshold)
778  *
779  * ...and so on, tho it would mess up the while () loop.
780  *
781  * anyway,
782  * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
783  *      inflate_threshold
784  *
785  * avoid a division:
786  * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
787  *      inflate_threshold * new_child_length
788  *
789  * expand not_to_be_doubled and to_be_doubled, and shorten:
790  * 100 * (child_length(tn) - tn->empty_children +
791  *    tn->full_children) >= inflate_threshold * new_child_length
792  *
793  * expand new_child_length:
794  * 100 * (child_length(tn) - tn->empty_children +
795  *    tn->full_children) >=
796  *      inflate_threshold * child_length(tn) * 2
797  *
798  * shorten again:
799  * 50 * (tn->full_children + child_length(tn) -
800  *    tn->empty_children) >= inflate_threshold *
801  *    child_length(tn)
802  *
803  */
804 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
805 {
806         unsigned long used = child_length(tn);
807         unsigned long threshold = used;
808 
809         /* Keep root node larger */
810         threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
811         used -= tn_info(tn)->empty_children;
812         used += tn_info(tn)->full_children;
813 
814         /* if bits == KEYLENGTH then pos = 0, and will fail below */
815 
816         return (used > 1) && tn->pos && ((50 * used) >= threshold);
817 }
818 
819 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
820 {
821         unsigned long used = child_length(tn);
822         unsigned long threshold = used;
823 
824         /* Keep root node larger */
825         threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
826         used -= tn_info(tn)->empty_children;
827 
828         /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
829 
830         return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
831 }
832 
833 static inline bool should_collapse(struct key_vector *tn)
834 {
835         unsigned long used = child_length(tn);
836 
837         used -= tn_info(tn)->empty_children;
838 
839         /* account for bits == KEYLENGTH case */
840         if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
841                 used -= KEY_MAX;
842 
843         /* One child or none, time to drop us from the trie */
844         return used < 2;
845 }
846 
847 #define MAX_WORK 10
848 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
849 {
850 #ifdef CONFIG_IP_FIB_TRIE_STATS
851         struct trie_use_stats __percpu *stats = t->stats;
852 #endif
853         struct key_vector *tp = node_parent(tn);
854         unsigned long cindex = get_index(tn->key, tp);
855         int max_work = MAX_WORK;
856 
857         pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
858                  tn, inflate_threshold, halve_threshold);
859 
860         /* track the tnode via the pointer from the parent instead of
861          * doing it ourselves.  This way we can let RCU fully do its
862          * thing without us interfering
863          */
864         BUG_ON(tn != get_child(tp, cindex));
865 
866         /* Double as long as the resulting node has a number of
867          * nonempty nodes that are above the threshold.
868          */
869         while (should_inflate(tp, tn) && max_work) {
870                 tp = inflate(t, tn);
871                 if (!tp) {
872 #ifdef CONFIG_IP_FIB_TRIE_STATS
873                         this_cpu_inc(stats->resize_node_skipped);
874 #endif
875                         break;
876                 }
877 
878                 max_work--;
879                 tn = get_child(tp, cindex);
880         }
881 
882         /* update parent in case inflate failed */
883         tp = node_parent(tn);
884 
885         /* Return if at least one inflate is run */
886         if (max_work != MAX_WORK)
887                 return tp;
888 
889         /* Halve as long as the number of empty children in this
890          * node is above threshold.
891          */
892         while (should_halve(tp, tn) && max_work) {
893                 tp = halve(t, tn);
894                 if (!tp) {
895 #ifdef CONFIG_IP_FIB_TRIE_STATS
896                         this_cpu_inc(stats->resize_node_skipped);
897 #endif
898                         break;
899                 }
900 
901                 max_work--;
902                 tn = get_child(tp, cindex);
903         }
904 
905         /* Only one child remains */
906         if (should_collapse(tn))
907                 return collapse(t, tn);
908 
909         /* update parent in case halve failed */
910         return node_parent(tn);
911 }
912 
913 static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
914 {
915         unsigned char node_slen = tn->slen;
916 
917         while ((node_slen > tn->pos) && (node_slen > slen)) {
918                 slen = update_suffix(tn);
919                 if (node_slen == slen)
920                         break;
921 
922                 tn = node_parent(tn);
923                 node_slen = tn->slen;
924         }
925 }
926 
927 static void node_push_suffix(struct key_vector *tn, unsigned char slen)
928 {
929         while (tn->slen < slen) {
930                 tn->slen = slen;
931                 tn = node_parent(tn);
932         }
933 }
934 
935 /* rcu_read_lock needs to be hold by caller from readside */
936 static struct key_vector *fib_find_node(struct trie *t,
937                                         struct key_vector **tp, u32 key)
938 {
939         struct key_vector *pn, *n = t->kv;
940         unsigned long index = 0;
941 
942         do {
943                 pn = n;
944                 n = get_child_rcu(n, index);
945 
946                 if (!n)
947                         break;
948 
949                 index = get_cindex(key, n);
950 
951                 /* This bit of code is a bit tricky but it combines multiple
952                  * checks into a single check.  The prefix consists of the
953                  * prefix plus zeros for the bits in the cindex. The index
954                  * is the difference between the key and this value.  From
955                  * this we can actually derive several pieces of data.
956                  *   if (index >= (1ul << bits))
957                  *     we have a mismatch in skip bits and failed
958                  *   else
959                  *     we know the value is cindex
960                  *
961                  * This check is safe even if bits == KEYLENGTH due to the
962                  * fact that we can only allocate a node with 32 bits if a
963                  * long is greater than 32 bits.
964                  */
965                 if (index >= (1ul << n->bits)) {
966                         n = NULL;
967                         break;
968                 }
969 
970                 /* keep searching until we find a perfect match leaf or NULL */
971         } while (IS_TNODE(n));
972 
973         *tp = pn;
974 
975         return n;
976 }
977 
978 /* Return the first fib alias matching DSCP with
979  * priority less than or equal to PRIO.
980  * If 'find_first' is set, return the first matching
981  * fib alias, regardless of DSCP and priority.
982  */
983 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
984                                         dscp_t dscp, u32 prio, u32 tb_id,
985                                         bool find_first)
986 {
987         struct fib_alias *fa;
988 
989         if (!fah)
990                 return NULL;
991 
992         hlist_for_each_entry(fa, fah, fa_list) {
993                 /* Avoid Sparse warning when using dscp_t in inequalities */
994                 u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
995                 u8 __dscp = inet_dscp_to_dsfield(dscp);
996 
997                 if (fa->fa_slen < slen)
998                         continue;
999                 if (fa->fa_slen != slen)
1000                         break;
1001                 if (fa->tb_id > tb_id)
1002                         continue;
1003                 if (fa->tb_id != tb_id)
1004                         break;
1005                 if (find_first)
1006                         return fa;
1007                 if (__fa_dscp > __dscp)
1008                         continue;
1009                 if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1010                         return fa;
1011         }
1012 
1013         return NULL;
1014 }
1015 
1016 static struct fib_alias *
1017 fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1018 {
1019         u8 slen = KEYLENGTH - fri->dst_len;
1020         struct key_vector *l, *tp;
1021         struct fib_table *tb;
1022         struct fib_alias *fa;
1023         struct trie *t;
1024 
1025         tb = fib_get_table(net, fri->tb_id);
1026         if (!tb)
1027                 return NULL;
1028 
1029         t = (struct trie *)tb->tb_data;
1030         l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1031         if (!l)
1032                 return NULL;
1033 
1034         hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1035                 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1036                     fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1037                     fa->fa_type == fri->type)
1038                         return fa;
1039         }
1040 
1041         return NULL;
1042 }
1043 
1044 void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1045 {
1046         u8 fib_notify_on_flag_change;
1047         struct fib_alias *fa_match;
1048         struct sk_buff *skb;
1049         int err;
1050 
1051         rcu_read_lock();
1052 
1053         fa_match = fib_find_matching_alias(net, fri);
1054         if (!fa_match)
1055                 goto out;
1056 
1057         /* These are paired with the WRITE_ONCE() happening in this function.
1058          * The reason is that we are only protected by RCU at this point.
1059          */
1060         if (READ_ONCE(fa_match->offload) == fri->offload &&
1061             READ_ONCE(fa_match->trap) == fri->trap &&
1062             READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1063                 goto out;
1064 
1065         WRITE_ONCE(fa_match->offload, fri->offload);
1066         WRITE_ONCE(fa_match->trap, fri->trap);
1067 
1068         fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1069 
1070         /* 2 means send notifications only if offload_failed was changed. */
1071         if (fib_notify_on_flag_change == 2 &&
1072             READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1073                 goto out;
1074 
1075         WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1076 
1077         if (!fib_notify_on_flag_change)
1078                 goto out;
1079 
1080         skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1081         if (!skb) {
1082                 err = -ENOBUFS;
1083                 goto errout;
1084         }
1085 
1086         err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1087         if (err < 0) {
1088                 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1089                 WARN_ON(err == -EMSGSIZE);
1090                 kfree_skb(skb);
1091                 goto errout;
1092         }
1093 
1094         rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1095         goto out;
1096 
1097 errout:
1098         rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1099 out:
1100         rcu_read_unlock();
1101 }
1102 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1103 
1104 static void trie_rebalance(struct trie *t, struct key_vector *tn)
1105 {
1106         while (!IS_TRIE(tn))
1107                 tn = resize(t, tn);
1108 }
1109 
1110 static int fib_insert_node(struct trie *t, struct key_vector *tp,
1111                            struct fib_alias *new, t_key key)
1112 {
1113         struct key_vector *n, *l;
1114 
1115         l = leaf_new(key, new);
1116         if (!l)
1117                 goto noleaf;
1118 
1119         /* retrieve child from parent node */
1120         n = get_child(tp, get_index(key, tp));
1121 
1122         /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1123          *
1124          *  Add a new tnode here
1125          *  first tnode need some special handling
1126          *  leaves us in position for handling as case 3
1127          */
1128         if (n) {
1129                 struct key_vector *tn;
1130 
1131                 tn = tnode_new(key, __fls(key ^ n->key), 1);
1132                 if (!tn)
1133                         goto notnode;
1134 
1135                 /* initialize routes out of node */
1136                 NODE_INIT_PARENT(tn, tp);
1137                 put_child(tn, get_index(key, tn) ^ 1, n);
1138 
1139                 /* start adding routes into the node */
1140                 put_child_root(tp, key, tn);
1141                 node_set_parent(n, tn);
1142 
1143                 /* parent now has a NULL spot where the leaf can go */
1144                 tp = tn;
1145         }
1146 
1147         /* Case 3: n is NULL, and will just insert a new leaf */
1148         node_push_suffix(tp, new->fa_slen);
1149         NODE_INIT_PARENT(l, tp);
1150         put_child_root(tp, key, l);
1151         trie_rebalance(t, tp);
1152 
1153         return 0;
1154 notnode:
1155         node_free(l);
1156 noleaf:
1157         return -ENOMEM;
1158 }
1159 
1160 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1161                             struct key_vector *l, struct fib_alias *new,
1162                             struct fib_alias *fa, t_key key)
1163 {
1164         if (!l)
1165                 return fib_insert_node(t, tp, new, key);
1166 
1167         if (fa) {
1168                 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1169         } else {
1170                 struct fib_alias *last;
1171 
1172                 hlist_for_each_entry(last, &l->leaf, fa_list) {
1173                         if (new->fa_slen < last->fa_slen)
1174                                 break;
1175                         if ((new->fa_slen == last->fa_slen) &&
1176                             (new->tb_id > last->tb_id))
1177                                 break;
1178                         fa = last;
1179                 }
1180 
1181                 if (fa)
1182                         hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1183                 else
1184                         hlist_add_head_rcu(&new->fa_list, &l->leaf);
1185         }
1186 
1187         /* if we added to the tail node then we need to update slen */
1188         if (l->slen < new->fa_slen) {
1189                 l->slen = new->fa_slen;
1190                 node_push_suffix(tp, new->fa_slen);
1191         }
1192 
1193         return 0;
1194 }
1195 
1196 static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1197 {
1198         if (plen > KEYLENGTH) {
1199                 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1200                 return false;
1201         }
1202 
1203         if ((plen < KEYLENGTH) && (key << plen)) {
1204                 NL_SET_ERR_MSG(extack,
1205                                "Invalid prefix for given prefix length");
1206                 return false;
1207         }
1208 
1209         return true;
1210 }
1211 
1212 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1213                              struct key_vector *l, struct fib_alias *old);
1214 
1215 /* Caller must hold RTNL. */
1216 int fib_table_insert(struct net *net, struct fib_table *tb,
1217                      struct fib_config *cfg, struct netlink_ext_ack *extack)
1218 {
1219         struct trie *t = (struct trie *)tb->tb_data;
1220         struct fib_alias *fa, *new_fa;
1221         struct key_vector *l, *tp;
1222         u16 nlflags = NLM_F_EXCL;
1223         struct fib_info *fi;
1224         u8 plen = cfg->fc_dst_len;
1225         u8 slen = KEYLENGTH - plen;
1226         dscp_t dscp;
1227         u32 key;
1228         int err;
1229 
1230         key = ntohl(cfg->fc_dst);
1231 
1232         if (!fib_valid_key_len(key, plen, extack))
1233                 return -EINVAL;
1234 
1235         pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1236 
1237         fi = fib_create_info(cfg, extack);
1238         if (IS_ERR(fi)) {
1239                 err = PTR_ERR(fi);
1240                 goto err;
1241         }
1242 
1243         dscp = cfg->fc_dscp;
1244         l = fib_find_node(t, &tp, key);
1245         fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1246                                 tb->tb_id, false) : NULL;
1247 
1248         /* Now fa, if non-NULL, points to the first fib alias
1249          * with the same keys [prefix,dscp,priority], if such key already
1250          * exists or to the node before which we will insert new one.
1251          *
1252          * If fa is NULL, we will need to allocate a new one and
1253          * insert to the tail of the section matching the suffix length
1254          * of the new alias.
1255          */
1256 
1257         if (fa && fa->fa_dscp == dscp &&
1258             fa->fa_info->fib_priority == fi->fib_priority) {
1259                 struct fib_alias *fa_first, *fa_match;
1260 
1261                 err = -EEXIST;
1262                 if (cfg->fc_nlflags & NLM_F_EXCL)
1263                         goto out;
1264 
1265                 nlflags &= ~NLM_F_EXCL;
1266 
1267                 /* We have 2 goals:
1268                  * 1. Find exact match for type, scope, fib_info to avoid
1269                  * duplicate routes
1270                  * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1271                  */
1272                 fa_match = NULL;
1273                 fa_first = fa;
1274                 hlist_for_each_entry_from(fa, fa_list) {
1275                         if ((fa->fa_slen != slen) ||
1276                             (fa->tb_id != tb->tb_id) ||
1277                             (fa->fa_dscp != dscp))
1278                                 break;
1279                         if (fa->fa_info->fib_priority != fi->fib_priority)
1280                                 break;
1281                         if (fa->fa_type == cfg->fc_type &&
1282                             fa->fa_info == fi) {
1283                                 fa_match = fa;
1284                                 break;
1285                         }
1286                 }
1287 
1288                 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1289                         struct fib_info *fi_drop;
1290                         u8 state;
1291 
1292                         nlflags |= NLM_F_REPLACE;
1293                         fa = fa_first;
1294                         if (fa_match) {
1295                                 if (fa == fa_match)
1296                                         err = 0;
1297                                 goto out;
1298                         }
1299                         err = -ENOBUFS;
1300                         new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1301                         if (!new_fa)
1302                                 goto out;
1303 
1304                         fi_drop = fa->fa_info;
1305                         new_fa->fa_dscp = fa->fa_dscp;
1306                         new_fa->fa_info = fi;
1307                         new_fa->fa_type = cfg->fc_type;
1308                         state = fa->fa_state;
1309                         new_fa->fa_state = state & ~FA_S_ACCESSED;
1310                         new_fa->fa_slen = fa->fa_slen;
1311                         new_fa->tb_id = tb->tb_id;
1312                         new_fa->fa_default = -1;
1313                         new_fa->offload = 0;
1314                         new_fa->trap = 0;
1315                         new_fa->offload_failed = 0;
1316 
1317                         hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1318 
1319                         if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1320                                            tb->tb_id, true) == new_fa) {
1321                                 enum fib_event_type fib_event;
1322 
1323                                 fib_event = FIB_EVENT_ENTRY_REPLACE;
1324                                 err = call_fib_entry_notifiers(net, fib_event,
1325                                                                key, plen,
1326                                                                new_fa, extack);
1327                                 if (err) {
1328                                         hlist_replace_rcu(&new_fa->fa_list,
1329                                                           &fa->fa_list);
1330                                         goto out_free_new_fa;
1331                                 }
1332                         }
1333 
1334                         rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1335                                   tb->tb_id, &cfg->fc_nlinfo, nlflags);
1336 
1337                         alias_free_mem_rcu(fa);
1338 
1339                         fib_release_info(fi_drop);
1340                         if (state & FA_S_ACCESSED)
1341                                 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1342 
1343                         goto succeeded;
1344                 }
1345                 /* Error if we find a perfect match which
1346                  * uses the same scope, type, and nexthop
1347                  * information.
1348                  */
1349                 if (fa_match)
1350                         goto out;
1351 
1352                 if (cfg->fc_nlflags & NLM_F_APPEND)
1353                         nlflags |= NLM_F_APPEND;
1354                 else
1355                         fa = fa_first;
1356         }
1357         err = -ENOENT;
1358         if (!(cfg->fc_nlflags & NLM_F_CREATE))
1359                 goto out;
1360 
1361         nlflags |= NLM_F_CREATE;
1362         err = -ENOBUFS;
1363         new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1364         if (!new_fa)
1365                 goto out;
1366 
1367         new_fa->fa_info = fi;
1368         new_fa->fa_dscp = dscp;
1369         new_fa->fa_type = cfg->fc_type;
1370         new_fa->fa_state = 0;
1371         new_fa->fa_slen = slen;
1372         new_fa->tb_id = tb->tb_id;
1373         new_fa->fa_default = -1;
1374         new_fa->offload = 0;
1375         new_fa->trap = 0;
1376         new_fa->offload_failed = 0;
1377 
1378         /* Insert new entry to the list. */
1379         err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1380         if (err)
1381                 goto out_free_new_fa;
1382 
1383         /* The alias was already inserted, so the node must exist. */
1384         l = l ? l : fib_find_node(t, &tp, key);
1385         if (WARN_ON_ONCE(!l)) {
1386                 err = -ENOENT;
1387                 goto out_free_new_fa;
1388         }
1389 
1390         if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1391             new_fa) {
1392                 enum fib_event_type fib_event;
1393 
1394                 fib_event = FIB_EVENT_ENTRY_REPLACE;
1395                 err = call_fib_entry_notifiers(net, fib_event, key, plen,
1396                                                new_fa, extack);
1397                 if (err)
1398                         goto out_remove_new_fa;
1399         }
1400 
1401         if (!plen)
1402                 tb->tb_num_default++;
1403 
1404         rt_cache_flush(cfg->fc_nlinfo.nl_net);
1405         rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1406                   &cfg->fc_nlinfo, nlflags);
1407 succeeded:
1408         return 0;
1409 
1410 out_remove_new_fa:
1411         fib_remove_alias(t, tp, l, new_fa);
1412 out_free_new_fa:
1413         kmem_cache_free(fn_alias_kmem, new_fa);
1414 out:
1415         fib_release_info(fi);
1416 err:
1417         return err;
1418 }
1419 
1420 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1421 {
1422         t_key prefix = n->key;
1423 
1424         return (key ^ prefix) & (prefix | -prefix);
1425 }
1426 
1427 bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1428                          const struct flowi4 *flp)
1429 {
1430         if (nhc->nhc_flags & RTNH_F_DEAD)
1431                 return false;
1432 
1433         if (ip_ignore_linkdown(nhc->nhc_dev) &&
1434             nhc->nhc_flags & RTNH_F_LINKDOWN &&
1435             !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1436                 return false;
1437 
1438         if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1439                 return false;
1440 
1441         return true;
1442 }
1443 
1444 /* should be called with rcu_read_lock */
1445 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1446                      struct fib_result *res, int fib_flags)
1447 {
1448         struct trie *t = (struct trie *) tb->tb_data;
1449 #ifdef CONFIG_IP_FIB_TRIE_STATS
1450         struct trie_use_stats __percpu *stats = t->stats;
1451 #endif
1452         const t_key key = ntohl(flp->daddr);
1453         struct key_vector *n, *pn;
1454         struct fib_alias *fa;
1455         unsigned long index;
1456         t_key cindex;
1457 
1458         pn = t->kv;
1459         cindex = 0;
1460 
1461         n = get_child_rcu(pn, cindex);
1462         if (!n) {
1463                 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1464                 return -EAGAIN;
1465         }
1466 
1467 #ifdef CONFIG_IP_FIB_TRIE_STATS
1468         this_cpu_inc(stats->gets);
1469 #endif
1470 
1471         /* Step 1: Travel to the longest prefix match in the trie */
1472         for (;;) {
1473                 index = get_cindex(key, n);
1474 
1475                 /* This bit of code is a bit tricky but it combines multiple
1476                  * checks into a single check.  The prefix consists of the
1477                  * prefix plus zeros for the "bits" in the prefix. The index
1478                  * is the difference between the key and this value.  From
1479                  * this we can actually derive several pieces of data.
1480                  *   if (index >= (1ul << bits))
1481                  *     we have a mismatch in skip bits and failed
1482                  *   else
1483                  *     we know the value is cindex
1484                  *
1485                  * This check is safe even if bits == KEYLENGTH due to the
1486                  * fact that we can only allocate a node with 32 bits if a
1487                  * long is greater than 32 bits.
1488                  */
1489                 if (index >= (1ul << n->bits))
1490                         break;
1491 
1492                 /* we have found a leaf. Prefixes have already been compared */
1493                 if (IS_LEAF(n))
1494                         goto found;
1495 
1496                 /* only record pn and cindex if we are going to be chopping
1497                  * bits later.  Otherwise we are just wasting cycles.
1498                  */
1499                 if (n->slen > n->pos) {
1500                         pn = n;
1501                         cindex = index;
1502                 }
1503 
1504                 n = get_child_rcu(n, index);
1505                 if (unlikely(!n))
1506                         goto backtrace;
1507         }
1508 
1509         /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1510         for (;;) {
1511                 /* record the pointer where our next node pointer is stored */
1512                 struct key_vector __rcu **cptr = n->tnode;
1513 
1514                 /* This test verifies that none of the bits that differ
1515                  * between the key and the prefix exist in the region of
1516                  * the lsb and higher in the prefix.
1517                  */
1518                 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1519                         goto backtrace;
1520 
1521                 /* exit out and process leaf */
1522                 if (unlikely(IS_LEAF(n)))
1523                         break;
1524 
1525                 /* Don't bother recording parent info.  Since we are in
1526                  * prefix match mode we will have to come back to wherever
1527                  * we started this traversal anyway
1528                  */
1529 
1530                 while ((n = rcu_dereference(*cptr)) == NULL) {
1531 backtrace:
1532 #ifdef CONFIG_IP_FIB_TRIE_STATS
1533                         if (!n)
1534                                 this_cpu_inc(stats->null_node_hit);
1535 #endif
1536                         /* If we are at cindex 0 there are no more bits for
1537                          * us to strip at this level so we must ascend back
1538                          * up one level to see if there are any more bits to
1539                          * be stripped there.
1540                          */
1541                         while (!cindex) {
1542                                 t_key pkey = pn->key;
1543 
1544                                 /* If we don't have a parent then there is
1545                                  * nothing for us to do as we do not have any
1546                                  * further nodes to parse.
1547                                  */
1548                                 if (IS_TRIE(pn)) {
1549                                         trace_fib_table_lookup(tb->tb_id, flp,
1550                                                                NULL, -EAGAIN);
1551                                         return -EAGAIN;
1552                                 }
1553 #ifdef CONFIG_IP_FIB_TRIE_STATS
1554                                 this_cpu_inc(stats->backtrack);
1555 #endif
1556                                 /* Get Child's index */
1557                                 pn = node_parent_rcu(pn);
1558                                 cindex = get_index(pkey, pn);
1559                         }
1560 
1561                         /* strip the least significant bit from the cindex */
1562                         cindex &= cindex - 1;
1563 
1564                         /* grab pointer for next child node */
1565                         cptr = &pn->tnode[cindex];
1566                 }
1567         }
1568 
1569 found:
1570         /* this line carries forward the xor from earlier in the function */
1571         index = key ^ n->key;
1572 
1573         /* Step 3: Process the leaf, if that fails fall back to backtracing */
1574         hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1575                 struct fib_info *fi = fa->fa_info;
1576                 struct fib_nh_common *nhc;
1577                 int nhsel, err;
1578 
1579                 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1580                         if (index >= (1ul << fa->fa_slen))
1581                                 continue;
1582                 }
1583                 if (fa->fa_dscp &&
1584                     inet_dscp_to_dsfield(fa->fa_dscp) != flp->flowi4_tos)
1585                         continue;
1586                 /* Paired with WRITE_ONCE() in fib_release_info() */
1587                 if (READ_ONCE(fi->fib_dead))
1588                         continue;
1589                 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1590                         continue;
1591                 fib_alias_accessed(fa);
1592                 err = fib_props[fa->fa_type].error;
1593                 if (unlikely(err < 0)) {
1594 out_reject:
1595 #ifdef CONFIG_IP_FIB_TRIE_STATS
1596                         this_cpu_inc(stats->semantic_match_passed);
1597 #endif
1598                         trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1599                         return err;
1600                 }
1601                 if (fi->fib_flags & RTNH_F_DEAD)
1602                         continue;
1603 
1604                 if (unlikely(fi->nh)) {
1605                         if (nexthop_is_blackhole(fi->nh)) {
1606                                 err = fib_props[RTN_BLACKHOLE].error;
1607                                 goto out_reject;
1608                         }
1609 
1610                         nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1611                                                      &nhsel);
1612                         if (nhc)
1613                                 goto set_result;
1614                         goto miss;
1615                 }
1616 
1617                 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1618                         nhc = fib_info_nhc(fi, nhsel);
1619 
1620                         if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1621                                 continue;
1622 set_result:
1623                         if (!(fib_flags & FIB_LOOKUP_NOREF))
1624                                 refcount_inc(&fi->fib_clntref);
1625 
1626                         res->prefix = htonl(n->key);
1627                         res->prefixlen = KEYLENGTH - fa->fa_slen;
1628                         res->nh_sel = nhsel;
1629                         res->nhc = nhc;
1630                         res->type = fa->fa_type;
1631                         res->scope = fi->fib_scope;
1632                         res->dscp = fa->fa_dscp;
1633                         res->fi = fi;
1634                         res->table = tb;
1635                         res->fa_head = &n->leaf;
1636 #ifdef CONFIG_IP_FIB_TRIE_STATS
1637                         this_cpu_inc(stats->semantic_match_passed);
1638 #endif
1639                         trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1640 
1641                         return err;
1642                 }
1643         }
1644 miss:
1645 #ifdef CONFIG_IP_FIB_TRIE_STATS
1646         this_cpu_inc(stats->semantic_match_miss);
1647 #endif
1648         goto backtrace;
1649 }
1650 EXPORT_SYMBOL_GPL(fib_table_lookup);
1651 
1652 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1653                              struct key_vector *l, struct fib_alias *old)
1654 {
1655         /* record the location of the previous list_info entry */
1656         struct hlist_node **pprev = old->fa_list.pprev;
1657         struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1658 
1659         /* remove the fib_alias from the list */
1660         hlist_del_rcu(&old->fa_list);
1661 
1662         /* if we emptied the list this leaf will be freed and we can sort
1663          * out parent suffix lengths as a part of trie_rebalance
1664          */
1665         if (hlist_empty(&l->leaf)) {
1666                 if (tp->slen == l->slen)
1667                         node_pull_suffix(tp, tp->pos);
1668                 put_child_root(tp, l->key, NULL);
1669                 node_free(l);
1670                 trie_rebalance(t, tp);
1671                 return;
1672         }
1673 
1674         /* only access fa if it is pointing at the last valid hlist_node */
1675         if (*pprev)
1676                 return;
1677 
1678         /* update the trie with the latest suffix length */
1679         l->slen = fa->fa_slen;
1680         node_pull_suffix(tp, fa->fa_slen);
1681 }
1682 
1683 static void fib_notify_alias_delete(struct net *net, u32 key,
1684                                     struct hlist_head *fah,
1685                                     struct fib_alias *fa_to_delete,
1686                                     struct netlink_ext_ack *extack)
1687 {
1688         struct fib_alias *fa_next, *fa_to_notify;
1689         u32 tb_id = fa_to_delete->tb_id;
1690         u8 slen = fa_to_delete->fa_slen;
1691         enum fib_event_type fib_event;
1692 
1693         /* Do not notify if we do not care about the route. */
1694         if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1695                 return;
1696 
1697         /* Determine if the route should be replaced by the next route in the
1698          * list.
1699          */
1700         fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1701                                    struct fib_alias, fa_list);
1702         if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1703                 fib_event = FIB_EVENT_ENTRY_REPLACE;
1704                 fa_to_notify = fa_next;
1705         } else {
1706                 fib_event = FIB_EVENT_ENTRY_DEL;
1707                 fa_to_notify = fa_to_delete;
1708         }
1709         call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1710                                  fa_to_notify, extack);
1711 }
1712 
1713 /* Caller must hold RTNL. */
1714 int fib_table_delete(struct net *net, struct fib_table *tb,
1715                      struct fib_config *cfg, struct netlink_ext_ack *extack)
1716 {
1717         struct trie *t = (struct trie *) tb->tb_data;
1718         struct fib_alias *fa, *fa_to_delete;
1719         struct key_vector *l, *tp;
1720         u8 plen = cfg->fc_dst_len;
1721         u8 slen = KEYLENGTH - plen;
1722         dscp_t dscp;
1723         u32 key;
1724 
1725         key = ntohl(cfg->fc_dst);
1726 
1727         if (!fib_valid_key_len(key, plen, extack))
1728                 return -EINVAL;
1729 
1730         l = fib_find_node(t, &tp, key);
1731         if (!l)
1732                 return -ESRCH;
1733 
1734         dscp = cfg->fc_dscp;
1735         fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1736         if (!fa)
1737                 return -ESRCH;
1738 
1739         pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1740                  inet_dscp_to_dsfield(dscp), t);
1741 
1742         fa_to_delete = NULL;
1743         hlist_for_each_entry_from(fa, fa_list) {
1744                 struct fib_info *fi = fa->fa_info;
1745 
1746                 if ((fa->fa_slen != slen) ||
1747                     (fa->tb_id != tb->tb_id) ||
1748                     (fa->fa_dscp != dscp))
1749                         break;
1750 
1751                 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1752                     (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1753                      fa->fa_info->fib_scope == cfg->fc_scope) &&
1754                     (!cfg->fc_prefsrc ||
1755                      fi->fib_prefsrc == cfg->fc_prefsrc) &&
1756                     (!cfg->fc_protocol ||
1757                      fi->fib_protocol == cfg->fc_protocol) &&
1758                     fib_nh_match(net, cfg, fi, extack) == 0 &&
1759                     fib_metrics_match(cfg, fi)) {
1760                         fa_to_delete = fa;
1761                         break;
1762                 }
1763         }
1764 
1765         if (!fa_to_delete)
1766                 return -ESRCH;
1767 
1768         fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1769         rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1770                   &cfg->fc_nlinfo, 0);
1771 
1772         if (!plen)
1773                 tb->tb_num_default--;
1774 
1775         fib_remove_alias(t, tp, l, fa_to_delete);
1776 
1777         if (fa_to_delete->fa_state & FA_S_ACCESSED)
1778                 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1779 
1780         fib_release_info(fa_to_delete->fa_info);
1781         alias_free_mem_rcu(fa_to_delete);
1782         return 0;
1783 }
1784 
1785 /* Scan for the next leaf starting at the provided key value */
1786 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1787 {
1788         struct key_vector *pn, *n = *tn;
1789         unsigned long cindex;
1790 
1791         /* this loop is meant to try and find the key in the trie */
1792         do {
1793                 /* record parent and next child index */
1794                 pn = n;
1795                 cindex = (key > pn->key) ? get_index(key, pn) : 0;
1796 
1797                 if (cindex >> pn->bits)
1798                         break;
1799 
1800                 /* descend into the next child */
1801                 n = get_child_rcu(pn, cindex++);
1802                 if (!n)
1803                         break;
1804 
1805                 /* guarantee forward progress on the keys */
1806                 if (IS_LEAF(n) && (n->key >= key))
1807                         goto found;
1808         } while (IS_TNODE(n));
1809 
1810         /* this loop will search for the next leaf with a greater key */
1811         while (!IS_TRIE(pn)) {
1812                 /* if we exhausted the parent node we will need to climb */
1813                 if (cindex >= (1ul << pn->bits)) {
1814                         t_key pkey = pn->key;
1815 
1816                         pn = node_parent_rcu(pn);
1817                         cindex = get_index(pkey, pn) + 1;
1818                         continue;
1819                 }
1820 
1821                 /* grab the next available node */
1822                 n = get_child_rcu(pn, cindex++);
1823                 if (!n)
1824                         continue;
1825 
1826                 /* no need to compare keys since we bumped the index */
1827                 if (IS_LEAF(n))
1828                         goto found;
1829 
1830                 /* Rescan start scanning in new node */
1831                 pn = n;
1832                 cindex = 0;
1833         }
1834 
1835         *tn = pn;
1836         return NULL; /* Root of trie */
1837 found:
1838         /* if we are at the limit for keys just return NULL for the tnode */
1839         *tn = pn;
1840         return n;
1841 }
1842 
1843 static void fib_trie_free(struct fib_table *tb)
1844 {
1845         struct trie *t = (struct trie *)tb->tb_data;
1846         struct key_vector *pn = t->kv;
1847         unsigned long cindex = 1;
1848         struct hlist_node *tmp;
1849         struct fib_alias *fa;
1850 
1851         /* walk trie in reverse order and free everything */
1852         for (;;) {
1853                 struct key_vector *n;
1854 
1855                 if (!(cindex--)) {
1856                         t_key pkey = pn->key;
1857 
1858                         if (IS_TRIE(pn))
1859                                 break;
1860 
1861                         n = pn;
1862                         pn = node_parent(pn);
1863 
1864                         /* drop emptied tnode */
1865                         put_child_root(pn, n->key, NULL);
1866                         node_free(n);
1867 
1868                         cindex = get_index(pkey, pn);
1869 
1870                         continue;
1871                 }
1872 
1873                 /* grab the next available node */
1874                 n = get_child(pn, cindex);
1875                 if (!n)
1876                         continue;
1877 
1878                 if (IS_TNODE(n)) {
1879                         /* record pn and cindex for leaf walking */
1880                         pn = n;
1881                         cindex = 1ul << n->bits;
1882 
1883                         continue;
1884                 }
1885 
1886                 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1887                         hlist_del_rcu(&fa->fa_list);
1888                         alias_free_mem_rcu(fa);
1889                 }
1890 
1891                 put_child_root(pn, n->key, NULL);
1892                 node_free(n);
1893         }
1894 
1895 #ifdef CONFIG_IP_FIB_TRIE_STATS
1896         free_percpu(t->stats);
1897 #endif
1898         kfree(tb);
1899 }
1900 
1901 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1902 {
1903         struct trie *ot = (struct trie *)oldtb->tb_data;
1904         struct key_vector *l, *tp = ot->kv;
1905         struct fib_table *local_tb;
1906         struct fib_alias *fa;
1907         struct trie *lt;
1908         t_key key = 0;
1909 
1910         if (oldtb->tb_data == oldtb->__data)
1911                 return oldtb;
1912 
1913         local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1914         if (!local_tb)
1915                 return NULL;
1916 
1917         lt = (struct trie *)local_tb->tb_data;
1918 
1919         while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1920                 struct key_vector *local_l = NULL, *local_tp;
1921 
1922                 hlist_for_each_entry(fa, &l->leaf, fa_list) {
1923                         struct fib_alias *new_fa;
1924 
1925                         if (local_tb->tb_id != fa->tb_id)
1926                                 continue;
1927 
1928                         /* clone fa for new local table */
1929                         new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1930                         if (!new_fa)
1931                                 goto out;
1932 
1933                         memcpy(new_fa, fa, sizeof(*fa));
1934 
1935                         /* insert clone into table */
1936                         if (!local_l)
1937                                 local_l = fib_find_node(lt, &local_tp, l->key);
1938 
1939                         if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1940                                              NULL, l->key)) {
1941                                 kmem_cache_free(fn_alias_kmem, new_fa);
1942                                 goto out;
1943                         }
1944                 }
1945 
1946                 /* stop loop if key wrapped back to 0 */
1947                 key = l->key + 1;
1948                 if (key < l->key)
1949                         break;
1950         }
1951 
1952         return local_tb;
1953 out:
1954         fib_trie_free(local_tb);
1955 
1956         return NULL;
1957 }
1958 
1959 /* Caller must hold RTNL */
1960 void fib_table_flush_external(struct fib_table *tb)
1961 {
1962         struct trie *t = (struct trie *)tb->tb_data;
1963         struct key_vector *pn = t->kv;
1964         unsigned long cindex = 1;
1965         struct hlist_node *tmp;
1966         struct fib_alias *fa;
1967 
1968         /* walk trie in reverse order */
1969         for (;;) {
1970                 unsigned char slen = 0;
1971                 struct key_vector *n;
1972 
1973                 if (!(cindex--)) {
1974                         t_key pkey = pn->key;
1975 
1976                         /* cannot resize the trie vector */
1977                         if (IS_TRIE(pn))
1978                                 break;
1979 
1980                         /* update the suffix to address pulled leaves */
1981                         if (pn->slen > pn->pos)
1982                                 update_suffix(pn);
1983 
1984                         /* resize completed node */
1985                         pn = resize(t, pn);
1986                         cindex = get_index(pkey, pn);
1987 
1988                         continue;
1989                 }
1990 
1991                 /* grab the next available node */
1992                 n = get_child(pn, cindex);
1993                 if (!n)
1994                         continue;
1995 
1996                 if (IS_TNODE(n)) {
1997                         /* record pn and cindex for leaf walking */
1998                         pn = n;
1999                         cindex = 1ul << n->bits;
2000 
2001                         continue;
2002                 }
2003 
2004                 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2005                         /* if alias was cloned to local then we just
2006                          * need to remove the local copy from main
2007                          */
2008                         if (tb->tb_id != fa->tb_id) {
2009                                 hlist_del_rcu(&fa->fa_list);
2010                                 alias_free_mem_rcu(fa);
2011                                 continue;
2012                         }
2013 
2014                         /* record local slen */
2015                         slen = fa->fa_slen;
2016                 }
2017 
2018                 /* update leaf slen */
2019                 n->slen = slen;
2020 
2021                 if (hlist_empty(&n->leaf)) {
2022                         put_child_root(pn, n->key, NULL);
2023                         node_free(n);
2024                 }
2025         }
2026 }
2027 
2028 /* Caller must hold RTNL. */
2029 int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2030 {
2031         struct trie *t = (struct trie *)tb->tb_data;
2032         struct nl_info info = { .nl_net = net };
2033         struct key_vector *pn = t->kv;
2034         unsigned long cindex = 1;
2035         struct hlist_node *tmp;
2036         struct fib_alias *fa;
2037         int found = 0;
2038 
2039         /* walk trie in reverse order */
2040         for (;;) {
2041                 unsigned char slen = 0;
2042                 struct key_vector *n;
2043 
2044                 if (!(cindex--)) {
2045                         t_key pkey = pn->key;
2046 
2047                         /* cannot resize the trie vector */
2048                         if (IS_TRIE(pn))
2049                                 break;
2050 
2051                         /* update the suffix to address pulled leaves */
2052                         if (pn->slen > pn->pos)
2053                                 update_suffix(pn);
2054 
2055                         /* resize completed node */
2056                         pn = resize(t, pn);
2057                         cindex = get_index(pkey, pn);
2058 
2059                         continue;
2060                 }
2061 
2062                 /* grab the next available node */
2063                 n = get_child(pn, cindex);
2064                 if (!n)
2065                         continue;
2066 
2067                 if (IS_TNODE(n)) {
2068                         /* record pn and cindex for leaf walking */
2069                         pn = n;
2070                         cindex = 1ul << n->bits;
2071 
2072                         continue;
2073                 }
2074 
2075                 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2076                         struct fib_info *fi = fa->fa_info;
2077 
2078                         if (!fi || tb->tb_id != fa->tb_id ||
2079                             (!(fi->fib_flags & RTNH_F_DEAD) &&
2080                              !fib_props[fa->fa_type].error)) {
2081                                 slen = fa->fa_slen;
2082                                 continue;
2083                         }
2084 
2085                         /* Do not flush error routes if network namespace is
2086                          * not being dismantled
2087                          */
2088                         if (!flush_all && fib_props[fa->fa_type].error) {
2089                                 slen = fa->fa_slen;
2090                                 continue;
2091                         }
2092 
2093                         fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2094                                                 NULL);
2095                         if (fi->pfsrc_removed)
2096                                 rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2097                                           KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2098                         hlist_del_rcu(&fa->fa_list);
2099                         fib_release_info(fa->fa_info);
2100                         alias_free_mem_rcu(fa);
2101                         found++;
2102                 }
2103 
2104                 /* update leaf slen */
2105                 n->slen = slen;
2106 
2107                 if (hlist_empty(&n->leaf)) {
2108                         put_child_root(pn, n->key, NULL);
2109                         node_free(n);
2110                 }
2111         }
2112 
2113         pr_debug("trie_flush found=%d\n", found);
2114         return found;
2115 }
2116 
2117 /* derived from fib_trie_free */
2118 static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2119                                      struct nl_info *info)
2120 {
2121         struct trie *t = (struct trie *)tb->tb_data;
2122         struct key_vector *pn = t->kv;
2123         unsigned long cindex = 1;
2124         struct fib_alias *fa;
2125 
2126         for (;;) {
2127                 struct key_vector *n;
2128 
2129                 if (!(cindex--)) {
2130                         t_key pkey = pn->key;
2131 
2132                         if (IS_TRIE(pn))
2133                                 break;
2134 
2135                         pn = node_parent(pn);
2136                         cindex = get_index(pkey, pn);
2137                         continue;
2138                 }
2139 
2140                 /* grab the next available node */
2141                 n = get_child(pn, cindex);
2142                 if (!n)
2143                         continue;
2144 
2145                 if (IS_TNODE(n)) {
2146                         /* record pn and cindex for leaf walking */
2147                         pn = n;
2148                         cindex = 1ul << n->bits;
2149 
2150                         continue;
2151                 }
2152 
2153                 hlist_for_each_entry(fa, &n->leaf, fa_list) {
2154                         struct fib_info *fi = fa->fa_info;
2155 
2156                         if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2157                                 continue;
2158 
2159                         rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2160                                   KEYLENGTH - fa->fa_slen, tb->tb_id,
2161                                   info, NLM_F_REPLACE);
2162                 }
2163         }
2164 }
2165 
2166 void fib_info_notify_update(struct net *net, struct nl_info *info)
2167 {
2168         unsigned int h;
2169 
2170         for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2171                 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2172                 struct fib_table *tb;
2173 
2174                 hlist_for_each_entry_rcu(tb, head, tb_hlist,
2175                                          lockdep_rtnl_is_held())
2176                         __fib_info_notify_update(net, tb, info);
2177         }
2178 }
2179 
2180 static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2181                            struct notifier_block *nb,
2182                            struct netlink_ext_ack *extack)
2183 {
2184         struct fib_alias *fa;
2185         int last_slen = -1;
2186         int err;
2187 
2188         hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2189                 struct fib_info *fi = fa->fa_info;
2190 
2191                 if (!fi)
2192                         continue;
2193 
2194                 /* local and main table can share the same trie,
2195                  * so don't notify twice for the same entry.
2196                  */
2197                 if (tb->tb_id != fa->tb_id)
2198                         continue;
2199 
2200                 if (fa->fa_slen == last_slen)
2201                         continue;
2202 
2203                 last_slen = fa->fa_slen;
2204                 err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2205                                               l->key, KEYLENGTH - fa->fa_slen,
2206                                               fa, extack);
2207                 if (err)
2208                         return err;
2209         }
2210         return 0;
2211 }
2212 
2213 static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2214                             struct netlink_ext_ack *extack)
2215 {
2216         struct trie *t = (struct trie *)tb->tb_data;
2217         struct key_vector *l, *tp = t->kv;
2218         t_key key = 0;
2219         int err;
2220 
2221         while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2222                 err = fib_leaf_notify(l, tb, nb, extack);
2223                 if (err)
2224                         return err;
2225 
2226                 key = l->key + 1;
2227                 /* stop in case of wrap around */
2228                 if (key < l->key)
2229                         break;
2230         }
2231         return 0;
2232 }
2233 
2234 int fib_notify(struct net *net, struct notifier_block *nb,
2235                struct netlink_ext_ack *extack)
2236 {
2237         unsigned int h;
2238         int err;
2239 
2240         for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2241                 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2242                 struct fib_table *tb;
2243 
2244                 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2245                         err = fib_table_notify(tb, nb, extack);
2246                         if (err)
2247                                 return err;
2248                 }
2249         }
2250         return 0;
2251 }
2252 
2253 static void __trie_free_rcu(struct rcu_head *head)
2254 {
2255         struct fib_table *tb = container_of(head, struct fib_table, rcu);
2256 #ifdef CONFIG_IP_FIB_TRIE_STATS
2257         struct trie *t = (struct trie *)tb->tb_data;
2258 
2259         if (tb->tb_data == tb->__data)
2260                 free_percpu(t->stats);
2261 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2262         kfree(tb);
2263 }
2264 
2265 void fib_free_table(struct fib_table *tb)
2266 {
2267         call_rcu(&tb->rcu, __trie_free_rcu);
2268 }
2269 
2270 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2271                              struct sk_buff *skb, struct netlink_callback *cb,
2272                              struct fib_dump_filter *filter)
2273 {
2274         unsigned int flags = NLM_F_MULTI;
2275         __be32 xkey = htonl(l->key);
2276         int i, s_i, i_fa, s_fa, err;
2277         struct fib_alias *fa;
2278 
2279         if (filter->filter_set ||
2280             !filter->dump_exceptions || !filter->dump_routes)
2281                 flags |= NLM_F_DUMP_FILTERED;
2282 
2283         s_i = cb->args[4];
2284         s_fa = cb->args[5];
2285         i = 0;
2286 
2287         /* rcu_read_lock is hold by caller */
2288         hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2289                 struct fib_info *fi = fa->fa_info;
2290 
2291                 if (i < s_i)
2292                         goto next;
2293 
2294                 i_fa = 0;
2295 
2296                 if (tb->tb_id != fa->tb_id)
2297                         goto next;
2298 
2299                 if (filter->filter_set) {
2300                         if (filter->rt_type && fa->fa_type != filter->rt_type)
2301                                 goto next;
2302 
2303                         if ((filter->protocol &&
2304                              fi->fib_protocol != filter->protocol))
2305                                 goto next;
2306 
2307                         if (filter->dev &&
2308                             !fib_info_nh_uses_dev(fi, filter->dev))
2309                                 goto next;
2310                 }
2311 
2312                 if (filter->dump_routes) {
2313                         if (!s_fa) {
2314                                 struct fib_rt_info fri;
2315 
2316                                 fri.fi = fi;
2317                                 fri.tb_id = tb->tb_id;
2318                                 fri.dst = xkey;
2319                                 fri.dst_len = KEYLENGTH - fa->fa_slen;
2320                                 fri.dscp = fa->fa_dscp;
2321                                 fri.type = fa->fa_type;
2322                                 fri.offload = READ_ONCE(fa->offload);
2323                                 fri.trap = READ_ONCE(fa->trap);
2324                                 fri.offload_failed = READ_ONCE(fa->offload_failed);
2325                                 err = fib_dump_info(skb,
2326                                                     NETLINK_CB(cb->skb).portid,
2327                                                     cb->nlh->nlmsg_seq,
2328                                                     RTM_NEWROUTE, &fri, flags);
2329                                 if (err < 0)
2330                                         goto stop;
2331                         }
2332 
2333                         i_fa++;
2334                 }
2335 
2336                 if (filter->dump_exceptions) {
2337                         err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2338                                                  &i_fa, s_fa, flags);
2339                         if (err < 0)
2340                                 goto stop;
2341                 }
2342 
2343 next:
2344                 i++;
2345         }
2346 
2347         cb->args[4] = i;
2348         return skb->len;
2349 
2350 stop:
2351         cb->args[4] = i;
2352         cb->args[5] = i_fa;
2353         return err;
2354 }
2355 
2356 /* rcu_read_lock needs to be hold by caller from readside */
2357 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2358                    struct netlink_callback *cb, struct fib_dump_filter *filter)
2359 {
2360         struct trie *t = (struct trie *)tb->tb_data;
2361         struct key_vector *l, *tp = t->kv;
2362         /* Dump starting at last key.
2363          * Note: 0.0.0.0/0 (ie default) is first key.
2364          */
2365         int count = cb->args[2];
2366         t_key key = cb->args[3];
2367 
2368         /* First time here, count and key are both always 0. Count > 0
2369          * and key == 0 means the dump has wrapped around and we are done.
2370          */
2371         if (count && !key)
2372                 return 0;
2373 
2374         while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2375                 int err;
2376 
2377                 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2378                 if (err < 0) {
2379                         cb->args[3] = key;
2380                         cb->args[2] = count;
2381                         return err;
2382                 }
2383 
2384                 ++count;
2385                 key = l->key + 1;
2386 
2387                 memset(&cb->args[4], 0,
2388                        sizeof(cb->args) - 4*sizeof(cb->args[0]));
2389 
2390                 /* stop loop if key wrapped back to 0 */
2391                 if (key < l->key)
2392                         break;
2393         }
2394 
2395         cb->args[3] = key;
2396         cb->args[2] = count;
2397 
2398         return 0;
2399 }
2400 
2401 void __init fib_trie_init(void)
2402 {
2403         fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2404                                           sizeof(struct fib_alias),
2405                                           0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2406 
2407         trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2408                                            LEAF_SIZE,
2409                                            0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2410 }
2411 
2412 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2413 {
2414         struct fib_table *tb;
2415         struct trie *t;
2416         size_t sz = sizeof(*tb);
2417 
2418         if (!alias)
2419                 sz += sizeof(struct trie);
2420 
2421         tb = kzalloc(sz, GFP_KERNEL);
2422         if (!tb)
2423                 return NULL;
2424 
2425         tb->tb_id = id;
2426         tb->tb_num_default = 0;
2427         tb->tb_data = (alias ? alias->__data : tb->__data);
2428 
2429         if (alias)
2430                 return tb;
2431 
2432         t = (struct trie *) tb->tb_data;
2433         t->kv[0].pos = KEYLENGTH;
2434         t->kv[0].slen = KEYLENGTH;
2435 #ifdef CONFIG_IP_FIB_TRIE_STATS
2436         t->stats = alloc_percpu(struct trie_use_stats);
2437         if (!t->stats) {
2438                 kfree(tb);
2439                 tb = NULL;
2440         }
2441 #endif
2442 
2443         return tb;
2444 }
2445 
2446 #ifdef CONFIG_PROC_FS
2447 /* Depth first Trie walk iterator */
2448 struct fib_trie_iter {
2449         struct seq_net_private p;
2450         struct fib_table *tb;
2451         struct key_vector *tnode;
2452         unsigned int index;
2453         unsigned int depth;
2454 };
2455 
2456 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2457 {
2458         unsigned long cindex = iter->index;
2459         struct key_vector *pn = iter->tnode;
2460         t_key pkey;
2461 
2462         pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2463                  iter->tnode, iter->index, iter->depth);
2464 
2465         while (!IS_TRIE(pn)) {
2466                 while (cindex < child_length(pn)) {
2467                         struct key_vector *n = get_child_rcu(pn, cindex++);
2468 
2469                         if (!n)
2470                                 continue;
2471 
2472                         if (IS_LEAF(n)) {
2473                                 iter->tnode = pn;
2474                                 iter->index = cindex;
2475                         } else {
2476                                 /* push down one level */
2477                                 iter->tnode = n;
2478                                 iter->index = 0;
2479                                 ++iter->depth;
2480                         }
2481 
2482                         return n;
2483                 }
2484 
2485                 /* Current node exhausted, pop back up */
2486                 pkey = pn->key;
2487                 pn = node_parent_rcu(pn);
2488                 cindex = get_index(pkey, pn) + 1;
2489                 --iter->depth;
2490         }
2491 
2492         /* record root node so further searches know we are done */
2493         iter->tnode = pn;
2494         iter->index = 0;
2495 
2496         return NULL;
2497 }
2498 
2499 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2500                                              struct trie *t)
2501 {
2502         struct key_vector *n, *pn;
2503 
2504         if (!t)
2505                 return NULL;
2506 
2507         pn = t->kv;
2508         n = rcu_dereference(pn->tnode[0]);
2509         if (!n)
2510                 return NULL;
2511 
2512         if (IS_TNODE(n)) {
2513                 iter->tnode = n;
2514                 iter->index = 0;
2515                 iter->depth = 1;
2516         } else {
2517                 iter->tnode = pn;
2518                 iter->index = 0;
2519                 iter->depth = 0;
2520         }
2521 
2522         return n;
2523 }
2524 
2525 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2526 {
2527         struct key_vector *n;
2528         struct fib_trie_iter iter;
2529 
2530         memset(s, 0, sizeof(*s));
2531 
2532         rcu_read_lock();
2533         for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2534                 if (IS_LEAF(n)) {
2535                         struct fib_alias *fa;
2536 
2537                         s->leaves++;
2538                         s->totdepth += iter.depth;
2539                         if (iter.depth > s->maxdepth)
2540                                 s->maxdepth = iter.depth;
2541 
2542                         hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2543                                 ++s->prefixes;
2544                 } else {
2545                         s->tnodes++;
2546                         if (n->bits < MAX_STAT_DEPTH)
2547                                 s->nodesizes[n->bits]++;
2548                         s->nullpointers += tn_info(n)->empty_children;
2549                 }
2550         }
2551         rcu_read_unlock();
2552 }
2553 
2554 /*
2555  *      This outputs /proc/net/fib_triestats
2556  */
2557 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2558 {
2559         unsigned int i, max, pointers, bytes, avdepth;
2560 
2561         if (stat->leaves)
2562                 avdepth = stat->totdepth*100 / stat->leaves;
2563         else
2564                 avdepth = 0;
2565 
2566         seq_printf(seq, "\tAver depth:     %u.%02d\n",
2567                    avdepth / 100, avdepth % 100);
2568         seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2569 
2570         seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2571         bytes = LEAF_SIZE * stat->leaves;
2572 
2573         seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2574         bytes += sizeof(struct fib_alias) * stat->prefixes;
2575 
2576         seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2577         bytes += TNODE_SIZE(0) * stat->tnodes;
2578 
2579         max = MAX_STAT_DEPTH;
2580         while (max > 0 && stat->nodesizes[max-1] == 0)
2581                 max--;
2582 
2583         pointers = 0;
2584         for (i = 1; i < max; i++)
2585                 if (stat->nodesizes[i] != 0) {
2586                         seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2587                         pointers += (1<<i) * stat->nodesizes[i];
2588                 }
2589         seq_putc(seq, '\n');
2590         seq_printf(seq, "\tPointers: %u\n", pointers);
2591 
2592         bytes += sizeof(struct key_vector *) * pointers;
2593         seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2594         seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2595 }
2596 
2597 #ifdef CONFIG_IP_FIB_TRIE_STATS
2598 static void trie_show_usage(struct seq_file *seq,
2599                             const struct trie_use_stats __percpu *stats)
2600 {
2601         struct trie_use_stats s = { 0 };
2602         int cpu;
2603 
2604         /* loop through all of the CPUs and gather up the stats */
2605         for_each_possible_cpu(cpu) {
2606                 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2607 
2608                 s.gets += pcpu->gets;
2609                 s.backtrack += pcpu->backtrack;
2610                 s.semantic_match_passed += pcpu->semantic_match_passed;
2611                 s.semantic_match_miss += pcpu->semantic_match_miss;
2612                 s.null_node_hit += pcpu->null_node_hit;
2613                 s.resize_node_skipped += pcpu->resize_node_skipped;
2614         }
2615 
2616         seq_printf(seq, "\nCounters:\n---------\n");
2617         seq_printf(seq, "gets = %u\n", s.gets);
2618         seq_printf(seq, "backtracks = %u\n", s.backtrack);
2619         seq_printf(seq, "semantic match passed = %u\n",
2620                    s.semantic_match_passed);
2621         seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2622         seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2623         seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2624 }
2625 #endif /*  CONFIG_IP_FIB_TRIE_STATS */
2626 
2627 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2628 {
2629         if (tb->tb_id == RT_TABLE_LOCAL)
2630                 seq_puts(seq, "Local:\n");
2631         else if (tb->tb_id == RT_TABLE_MAIN)
2632                 seq_puts(seq, "Main:\n");
2633         else
2634                 seq_printf(seq, "Id %d:\n", tb->tb_id);
2635 }
2636 
2637 
2638 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2639 {
2640         struct net *net = seq->private;
2641         unsigned int h;
2642 
2643         seq_printf(seq,
2644                    "Basic info: size of leaf:"
2645                    " %zd bytes, size of tnode: %zd bytes.\n",
2646                    LEAF_SIZE, TNODE_SIZE(0));
2647 
2648         rcu_read_lock();
2649         for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2650                 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2651                 struct fib_table *tb;
2652 
2653                 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2654                         struct trie *t = (struct trie *) tb->tb_data;
2655                         struct trie_stat stat;
2656 
2657                         if (!t)
2658                                 continue;
2659 
2660                         fib_table_print(seq, tb);
2661 
2662                         trie_collect_stats(t, &stat);
2663                         trie_show_stats(seq, &stat);
2664 #ifdef CONFIG_IP_FIB_TRIE_STATS
2665                         trie_show_usage(seq, t->stats);
2666 #endif
2667                 }
2668                 cond_resched_rcu();
2669         }
2670         rcu_read_unlock();
2671 
2672         return 0;
2673 }
2674 
2675 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2676 {
2677         struct fib_trie_iter *iter = seq->private;
2678         struct net *net = seq_file_net(seq);
2679         loff_t idx = 0;
2680         unsigned int h;
2681 
2682         for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2683                 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2684                 struct fib_table *tb;
2685 
2686                 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2687                         struct key_vector *n;
2688 
2689                         for (n = fib_trie_get_first(iter,
2690                                                     (struct trie *) tb->tb_data);
2691                              n; n = fib_trie_get_next(iter))
2692                                 if (pos == idx++) {
2693                                         iter->tb = tb;
2694                                         return n;
2695                                 }
2696                 }
2697         }
2698 
2699         return NULL;
2700 }
2701 
2702 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2703         __acquires(RCU)
2704 {
2705         rcu_read_lock();
2706         return fib_trie_get_idx(seq, *pos);
2707 }
2708 
2709 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2710 {
2711         struct fib_trie_iter *iter = seq->private;
2712         struct net *net = seq_file_net(seq);
2713         struct fib_table *tb = iter->tb;
2714         struct hlist_node *tb_node;
2715         unsigned int h;
2716         struct key_vector *n;
2717 
2718         ++*pos;
2719         /* next node in same table */
2720         n = fib_trie_get_next(iter);
2721         if (n)
2722                 return n;
2723 
2724         /* walk rest of this hash chain */
2725         h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2726         while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2727                 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2728                 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2729                 if (n)
2730                         goto found;
2731         }
2732 
2733         /* new hash chain */
2734         while (++h < FIB_TABLE_HASHSZ) {
2735                 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2736                 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2737                         n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2738                         if (n)
2739                                 goto found;
2740                 }
2741         }
2742         return NULL;
2743 
2744 found:
2745         iter->tb = tb;
2746         return n;
2747 }
2748 
2749 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2750         __releases(RCU)
2751 {
2752         rcu_read_unlock();
2753 }
2754 
2755 static void seq_indent(struct seq_file *seq, int n)
2756 {
2757         while (n-- > 0)
2758                 seq_puts(seq, "   ");
2759 }
2760 
2761 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2762 {
2763         switch (s) {
2764         case RT_SCOPE_UNIVERSE: return "universe";
2765         case RT_SCOPE_SITE:     return "site";
2766         case RT_SCOPE_LINK:     return "link";
2767         case RT_SCOPE_HOST:     return "host";
2768         case RT_SCOPE_NOWHERE:  return "nowhere";
2769         default:
2770                 snprintf(buf, len, "scope=%d", s);
2771                 return buf;
2772         }
2773 }
2774 
2775 static const char *const rtn_type_names[__RTN_MAX] = {
2776         [RTN_UNSPEC] = "UNSPEC",
2777         [RTN_UNICAST] = "UNICAST",
2778         [RTN_LOCAL] = "LOCAL",
2779         [RTN_BROADCAST] = "BROADCAST",
2780         [RTN_ANYCAST] = "ANYCAST",
2781         [RTN_MULTICAST] = "MULTICAST",
2782         [RTN_BLACKHOLE] = "BLACKHOLE",
2783         [RTN_UNREACHABLE] = "UNREACHABLE",
2784         [RTN_PROHIBIT] = "PROHIBIT",
2785         [RTN_THROW] = "THROW",
2786         [RTN_NAT] = "NAT",
2787         [RTN_XRESOLVE] = "XRESOLVE",
2788 };
2789 
2790 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2791 {
2792         if (t < __RTN_MAX && rtn_type_names[t])
2793                 return rtn_type_names[t];
2794         snprintf(buf, len, "type %u", t);
2795         return buf;
2796 }
2797 
2798 /* Pretty print the trie */
2799 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2800 {
2801         const struct fib_trie_iter *iter = seq->private;
2802         struct key_vector *n = v;
2803 
2804         if (IS_TRIE(node_parent_rcu(n)))
2805                 fib_table_print(seq, iter->tb);
2806 
2807         if (IS_TNODE(n)) {
2808                 __be32 prf = htonl(n->key);
2809 
2810                 seq_indent(seq, iter->depth-1);
2811                 seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2812                            &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2813                            tn_info(n)->full_children,
2814                            tn_info(n)->empty_children);
2815         } else {
2816                 __be32 val = htonl(n->key);
2817                 struct fib_alias *fa;
2818 
2819                 seq_indent(seq, iter->depth);
2820                 seq_printf(seq, "  |-- %pI4\n", &val);
2821 
2822                 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2823                         char buf1[32], buf2[32];
2824 
2825                         seq_indent(seq, iter->depth + 1);
2826                         seq_printf(seq, "  /%zu %s %s",
2827                                    KEYLENGTH - fa->fa_slen,
2828                                    rtn_scope(buf1, sizeof(buf1),
2829                                              fa->fa_info->fib_scope),
2830                                    rtn_type(buf2, sizeof(buf2),
2831                                             fa->fa_type));
2832                         if (fa->fa_dscp)
2833                                 seq_printf(seq, " tos=%d",
2834                                            inet_dscp_to_dsfield(fa->fa_dscp));
2835                         seq_putc(seq, '\n');
2836                 }
2837         }
2838 
2839         return 0;
2840 }
2841 
2842 static const struct seq_operations fib_trie_seq_ops = {
2843         .start  = fib_trie_seq_start,
2844         .next   = fib_trie_seq_next,
2845         .stop   = fib_trie_seq_stop,
2846         .show   = fib_trie_seq_show,
2847 };
2848 
2849 struct fib_route_iter {
2850         struct seq_net_private p;
2851         struct fib_table *main_tb;
2852         struct key_vector *tnode;
2853         loff_t  pos;
2854         t_key   key;
2855 };
2856 
2857 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2858                                             loff_t pos)
2859 {
2860         struct key_vector *l, **tp = &iter->tnode;
2861         t_key key;
2862 
2863         /* use cached location of previously found key */
2864         if (iter->pos > 0 && pos >= iter->pos) {
2865                 key = iter->key;
2866         } else {
2867                 iter->pos = 1;
2868                 key = 0;
2869         }
2870 
2871         pos -= iter->pos;
2872 
2873         while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2874                 key = l->key + 1;
2875                 iter->pos++;
2876                 l = NULL;
2877 
2878                 /* handle unlikely case of a key wrap */
2879                 if (!key)
2880                         break;
2881         }
2882 
2883         if (l)
2884                 iter->key = l->key;     /* remember it */
2885         else
2886                 iter->pos = 0;          /* forget it */
2887 
2888         return l;
2889 }
2890 
2891 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2892         __acquires(RCU)
2893 {
2894         struct fib_route_iter *iter = seq->private;
2895         struct fib_table *tb;
2896         struct trie *t;
2897 
2898         rcu_read_lock();
2899 
2900         tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2901         if (!tb)
2902                 return NULL;
2903 
2904         iter->main_tb = tb;
2905         t = (struct trie *)tb->tb_data;
2906         iter->tnode = t->kv;
2907 
2908         if (*pos != 0)
2909                 return fib_route_get_idx(iter, *pos);
2910 
2911         iter->pos = 0;
2912         iter->key = KEY_MAX;
2913 
2914         return SEQ_START_TOKEN;
2915 }
2916 
2917 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2918 {
2919         struct fib_route_iter *iter = seq->private;
2920         struct key_vector *l = NULL;
2921         t_key key = iter->key + 1;
2922 
2923         ++*pos;
2924 
2925         /* only allow key of 0 for start of sequence */
2926         if ((v == SEQ_START_TOKEN) || key)
2927                 l = leaf_walk_rcu(&iter->tnode, key);
2928 
2929         if (l) {
2930                 iter->key = l->key;
2931                 iter->pos++;
2932         } else {
2933                 iter->pos = 0;
2934         }
2935 
2936         return l;
2937 }
2938 
2939 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2940         __releases(RCU)
2941 {
2942         rcu_read_unlock();
2943 }
2944 
2945 static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2946 {
2947         unsigned int flags = 0;
2948 
2949         if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2950                 flags = RTF_REJECT;
2951         if (fi) {
2952                 const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2953 
2954                 if (nhc->nhc_gw.ipv4)
2955                         flags |= RTF_GATEWAY;
2956         }
2957         if (mask == htonl(0xFFFFFFFF))
2958                 flags |= RTF_HOST;
2959         flags |= RTF_UP;
2960         return flags;
2961 }
2962 
2963 /*
2964  *      This outputs /proc/net/route.
2965  *      The format of the file is not supposed to be changed
2966  *      and needs to be same as fib_hash output to avoid breaking
2967  *      legacy utilities
2968  */
2969 static int fib_route_seq_show(struct seq_file *seq, void *v)
2970 {
2971         struct fib_route_iter *iter = seq->private;
2972         struct fib_table *tb = iter->main_tb;
2973         struct fib_alias *fa;
2974         struct key_vector *l = v;
2975         __be32 prefix;
2976 
2977         if (v == SEQ_START_TOKEN) {
2978                 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2979                            "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2980                            "\tWindow\tIRTT");
2981                 return 0;
2982         }
2983 
2984         prefix = htonl(l->key);
2985 
2986         hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2987                 struct fib_info *fi = fa->fa_info;
2988                 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2989                 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2990 
2991                 if ((fa->fa_type == RTN_BROADCAST) ||
2992                     (fa->fa_type == RTN_MULTICAST))
2993                         continue;
2994 
2995                 if (fa->tb_id != tb->tb_id)
2996                         continue;
2997 
2998                 seq_setwidth(seq, 127);
2999 
3000                 if (fi) {
3001                         struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
3002                         __be32 gw = 0;
3003 
3004                         if (nhc->nhc_gw_family == AF_INET)
3005                                 gw = nhc->nhc_gw.ipv4;
3006 
3007                         seq_printf(seq,
3008                                    "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3009                                    "%d\t%08X\t%d\t%u\t%u",
3010                                    nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3011                                    prefix, gw, flags, 0, 0,
3012                                    fi->fib_priority,
3013                                    mask,
3014                                    (fi->fib_advmss ?
3015                                     fi->fib_advmss + 40 : 0),
3016                                    fi->fib_window,
3017                                    fi->fib_rtt >> 3);
3018                 } else {
3019                         seq_printf(seq,
3020                                    "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3021                                    "%d\t%08X\t%d\t%u\t%u",
3022                                    prefix, 0, flags, 0, 0, 0,
3023                                    mask, 0, 0, 0);
3024                 }
3025                 seq_pad(seq, '\n');
3026         }
3027 
3028         return 0;
3029 }
3030 
3031 static const struct seq_operations fib_route_seq_ops = {
3032         .start  = fib_route_seq_start,
3033         .next   = fib_route_seq_next,
3034         .stop   = fib_route_seq_stop,
3035         .show   = fib_route_seq_show,
3036 };
3037 
3038 int __net_init fib_proc_init(struct net *net)
3039 {
3040         if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3041                         sizeof(struct fib_trie_iter)))
3042                 goto out1;
3043 
3044         if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3045                         fib_triestat_seq_show, NULL))
3046                 goto out2;
3047 
3048         if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3049                         sizeof(struct fib_route_iter)))
3050                 goto out3;
3051 
3052         return 0;
3053 
3054 out3:
3055         remove_proc_entry("fib_triestat", net->proc_net);
3056 out2:
3057         remove_proc_entry("fib_trie", net->proc_net);
3058 out1:
3059         return -ENOMEM;
3060 }
3061 
3062 void __net_exit fib_proc_exit(struct net *net)
3063 {
3064         remove_proc_entry("fib_trie", net->proc_net);
3065         remove_proc_entry("fib_triestat", net->proc_net);
3066         remove_proc_entry("route", net->proc_net);
3067 }
3068 
3069 #endif /* CONFIG_PROC_FS */
3070 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php