~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/ipv4/inet_connection_sock.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  4  *              operating system.  INET is implemented using the  BSD Socket
  5  *              interface as the means of communication with the user level.
  6  *
  7  *              Support for INET connection oriented protocols.
  8  *
  9  * Authors:     See the TCP sources
 10  */
 11 
 12 #include <linux/module.h>
 13 #include <linux/jhash.h>
 14 
 15 #include <net/inet_connection_sock.h>
 16 #include <net/inet_hashtables.h>
 17 #include <net/inet_timewait_sock.h>
 18 #include <net/ip.h>
 19 #include <net/route.h>
 20 #include <net/tcp_states.h>
 21 #include <net/xfrm.h>
 22 #include <net/tcp.h>
 23 #include <net/sock_reuseport.h>
 24 #include <net/addrconf.h>
 25 
 26 #if IS_ENABLED(CONFIG_IPV6)
 27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
 28  *                              if IPv6 only, and any IPv4 addresses
 29  *                              if not IPv6 only
 30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
 31  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
 32  *                              and 0.0.0.0 equals to 0.0.0.0 only
 33  */
 34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
 35                                  const struct in6_addr *sk2_rcv_saddr6,
 36                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
 37                                  bool sk1_ipv6only, bool sk2_ipv6only,
 38                                  bool match_sk1_wildcard,
 39                                  bool match_sk2_wildcard)
 40 {
 41         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
 42         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
 43 
 44         /* if both are mapped, treat as IPv4 */
 45         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
 46                 if (!sk2_ipv6only) {
 47                         if (sk1_rcv_saddr == sk2_rcv_saddr)
 48                                 return true;
 49                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
 50                                 (match_sk2_wildcard && !sk2_rcv_saddr);
 51                 }
 52                 return false;
 53         }
 54 
 55         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
 56                 return true;
 57 
 58         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
 59             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
 60                 return true;
 61 
 62         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
 63             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
 64                 return true;
 65 
 66         if (sk2_rcv_saddr6 &&
 67             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
 68                 return true;
 69 
 70         return false;
 71 }
 72 #endif
 73 
 74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
 75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
 76  *                              0.0.0.0 only equals to 0.0.0.0
 77  */
 78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
 79                                  bool sk2_ipv6only, bool match_sk1_wildcard,
 80                                  bool match_sk2_wildcard)
 81 {
 82         if (!sk2_ipv6only) {
 83                 if (sk1_rcv_saddr == sk2_rcv_saddr)
 84                         return true;
 85                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
 86                         (match_sk2_wildcard && !sk2_rcv_saddr);
 87         }
 88         return false;
 89 }
 90 
 91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
 92                           bool match_wildcard)
 93 {
 94 #if IS_ENABLED(CONFIG_IPV6)
 95         if (sk->sk_family == AF_INET6)
 96                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
 97                                             inet6_rcv_saddr(sk2),
 98                                             sk->sk_rcv_saddr,
 99                                             sk2->sk_rcv_saddr,
100                                             ipv6_only_sock(sk),
101                                             ipv6_only_sock(sk2),
102                                             match_wildcard,
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard,
107                                     match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114         if (sk->sk_family == AF_INET6)
115                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117         return !sk->sk_rcv_saddr;
118 }
119 
120 /**
121  *      inet_sk_get_local_port_range - fetch ephemeral ports range
122  *      @sk: socket
123  *      @low: pointer to low port
124  *      @high: pointer to high port
125  *
126  *      Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127  *      Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128  *      Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129  */
130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132         int lo, hi, sk_lo, sk_hi;
133         bool local_range = false;
134         u32 sk_range;
135 
136         inet_get_local_port_range(sock_net(sk), &lo, &hi);
137 
138         sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139         if (unlikely(sk_range)) {
140                 sk_lo = sk_range & 0xffff;
141                 sk_hi = sk_range >> 16;
142 
143                 if (lo <= sk_lo && sk_lo <= hi)
144                         lo = sk_lo;
145                 if (lo <= sk_hi && sk_hi <= hi)
146                         hi = sk_hi;
147                 local_range = true;
148         }
149 
150         *low = lo;
151         *high = hi;
152         return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155 
156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159         if (sk->sk_family == AF_INET6) {
160                 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
161 
162                 if (addr_type == IPV6_ADDR_ANY)
163                         return false;
164 
165                 if (addr_type != IPV6_ADDR_MAPPED)
166                         return true;
167         }
168 #endif
169         return sk->sk_rcv_saddr != htonl(INADDR_ANY);
170 }
171 
172 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
173                                kuid_t sk_uid, bool relax,
174                                bool reuseport_cb_ok, bool reuseport_ok)
175 {
176         int bound_dev_if2;
177 
178         if (sk == sk2)
179                 return false;
180 
181         bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
182 
183         if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
184             sk->sk_bound_dev_if == bound_dev_if2) {
185                 if (sk->sk_reuse && sk2->sk_reuse &&
186                     sk2->sk_state != TCP_LISTEN) {
187                         if (!relax || (!reuseport_ok && sk->sk_reuseport &&
188                                        sk2->sk_reuseport && reuseport_cb_ok &&
189                                        (sk2->sk_state == TCP_TIME_WAIT ||
190                                         uid_eq(sk_uid, sock_i_uid(sk2)))))
191                                 return true;
192                 } else if (!reuseport_ok || !sk->sk_reuseport ||
193                            !sk2->sk_reuseport || !reuseport_cb_ok ||
194                            (sk2->sk_state != TCP_TIME_WAIT &&
195                             !uid_eq(sk_uid, sock_i_uid(sk2)))) {
196                         return true;
197                 }
198         }
199         return false;
200 }
201 
202 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
203                                    kuid_t sk_uid, bool relax,
204                                    bool reuseport_cb_ok, bool reuseport_ok)
205 {
206         if (ipv6_only_sock(sk2)) {
207                 if (sk->sk_family == AF_INET)
208                         return false;
209 
210 #if IS_ENABLED(CONFIG_IPV6)
211                 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
212                         return false;
213 #endif
214         }
215 
216         return inet_bind_conflict(sk, sk2, sk_uid, relax,
217                                   reuseport_cb_ok, reuseport_ok);
218 }
219 
220 static bool inet_bhash2_conflict(const struct sock *sk,
221                                  const struct inet_bind2_bucket *tb2,
222                                  kuid_t sk_uid,
223                                  bool relax, bool reuseport_cb_ok,
224                                  bool reuseport_ok)
225 {
226         struct sock *sk2;
227 
228         sk_for_each_bound(sk2, &tb2->owners) {
229                 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
230                                            reuseport_cb_ok, reuseport_ok))
231                         return true;
232         }
233 
234         return false;
235 }
236 
237 #define sk_for_each_bound_bhash(__sk, __tb2, __tb)                      \
238         hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)        \
239                 sk_for_each_bound(sk2, &(__tb2)->owners)
240 
241 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
242 static int inet_csk_bind_conflict(const struct sock *sk,
243                                   const struct inet_bind_bucket *tb,
244                                   const struct inet_bind2_bucket *tb2, /* may be null */
245                                   bool relax, bool reuseport_ok)
246 {
247         kuid_t uid = sock_i_uid((struct sock *)sk);
248         struct sock_reuseport *reuseport_cb;
249         bool reuseport_cb_ok;
250         struct sock *sk2;
251 
252         rcu_read_lock();
253         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
254         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
255         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
256         rcu_read_unlock();
257 
258         /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
259          * ipv4) should have been checked already. We need to do these two
260          * checks separately because their spinlocks have to be acquired/released
261          * independently of each other, to prevent possible deadlocks
262          */
263         if (inet_use_bhash2_on_bind(sk))
264                 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
265                                                    reuseport_cb_ok, reuseport_ok);
266 
267         /* Unlike other sk lookup places we do not check
268          * for sk_net here, since _all_ the socks listed
269          * in tb->owners and tb2->owners list belong
270          * to the same net - the one this bucket belongs to.
271          */
272         sk_for_each_bound_bhash(sk2, tb2, tb) {
273                 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
274                         continue;
275 
276                 if (inet_rcv_saddr_equal(sk, sk2, true))
277                         return true;
278         }
279 
280         return false;
281 }
282 
283 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
284  * INADDR_ANY (if ipv4) socket.
285  *
286  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
287  * against concurrent binds on the port for addr any
288  */
289 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
290                                           bool relax, bool reuseport_ok)
291 {
292         kuid_t uid = sock_i_uid((struct sock *)sk);
293         const struct net *net = sock_net(sk);
294         struct sock_reuseport *reuseport_cb;
295         struct inet_bind_hashbucket *head2;
296         struct inet_bind2_bucket *tb2;
297         bool conflict = false;
298         bool reuseport_cb_ok;
299 
300         rcu_read_lock();
301         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
302         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
303         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
304         rcu_read_unlock();
305 
306         head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
307 
308         spin_lock(&head2->lock);
309 
310         inet_bind_bucket_for_each(tb2, &head2->chain) {
311                 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
312                         continue;
313 
314                 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
315                         continue;
316 
317                 conflict = true;
318                 break;
319         }
320 
321         spin_unlock(&head2->lock);
322 
323         return conflict;
324 }
325 
326 /*
327  * Find an open port number for the socket.  Returns with the
328  * inet_bind_hashbucket locks held if successful.
329  */
330 static struct inet_bind_hashbucket *
331 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
332                         struct inet_bind2_bucket **tb2_ret,
333                         struct inet_bind_hashbucket **head2_ret, int *port_ret)
334 {
335         struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
336         int i, low, high, attempt_half, port, l3mdev;
337         struct inet_bind_hashbucket *head, *head2;
338         struct net *net = sock_net(sk);
339         struct inet_bind2_bucket *tb2;
340         struct inet_bind_bucket *tb;
341         u32 remaining, offset;
342         bool relax = false;
343 
344         l3mdev = inet_sk_bound_l3mdev(sk);
345 ports_exhausted:
346         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
347 other_half_scan:
348         inet_sk_get_local_port_range(sk, &low, &high);
349         high++; /* [32768, 60999] -> [32768, 61000[ */
350         if (high - low < 4)
351                 attempt_half = 0;
352         if (attempt_half) {
353                 int half = low + (((high - low) >> 2) << 1);
354 
355                 if (attempt_half == 1)
356                         high = half;
357                 else
358                         low = half;
359         }
360         remaining = high - low;
361         if (likely(remaining > 1))
362                 remaining &= ~1U;
363 
364         offset = get_random_u32_below(remaining);
365         /* __inet_hash_connect() favors ports having @low parity
366          * We do the opposite to not pollute connect() users.
367          */
368         offset |= 1U;
369 
370 other_parity_scan:
371         port = low + offset;
372         for (i = 0; i < remaining; i += 2, port += 2) {
373                 if (unlikely(port >= high))
374                         port -= remaining;
375                 if (inet_is_local_reserved_port(net, port))
376                         continue;
377                 head = &hinfo->bhash[inet_bhashfn(net, port,
378                                                   hinfo->bhash_size)];
379                 spin_lock_bh(&head->lock);
380                 if (inet_use_bhash2_on_bind(sk)) {
381                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
382                                 goto next_port;
383                 }
384 
385                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
386                 spin_lock(&head2->lock);
387                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
388                 inet_bind_bucket_for_each(tb, &head->chain)
389                         if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
390                                 if (!inet_csk_bind_conflict(sk, tb, tb2,
391                                                             relax, false))
392                                         goto success;
393                                 spin_unlock(&head2->lock);
394                                 goto next_port;
395                         }
396                 tb = NULL;
397                 goto success;
398 next_port:
399                 spin_unlock_bh(&head->lock);
400                 cond_resched();
401         }
402 
403         offset--;
404         if (!(offset & 1))
405                 goto other_parity_scan;
406 
407         if (attempt_half == 1) {
408                 /* OK we now try the upper half of the range */
409                 attempt_half = 2;
410                 goto other_half_scan;
411         }
412 
413         if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
414                 /* We still have a chance to connect to different destinations */
415                 relax = true;
416                 goto ports_exhausted;
417         }
418         return NULL;
419 success:
420         *port_ret = port;
421         *tb_ret = tb;
422         *tb2_ret = tb2;
423         *head2_ret = head2;
424         return head;
425 }
426 
427 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
428                                      struct sock *sk)
429 {
430         kuid_t uid = sock_i_uid(sk);
431 
432         if (tb->fastreuseport <= 0)
433                 return 0;
434         if (!sk->sk_reuseport)
435                 return 0;
436         if (rcu_access_pointer(sk->sk_reuseport_cb))
437                 return 0;
438         if (!uid_eq(tb->fastuid, uid))
439                 return 0;
440         /* We only need to check the rcv_saddr if this tb was once marked
441          * without fastreuseport and then was reset, as we can only know that
442          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
443          * owners list.
444          */
445         if (tb->fastreuseport == FASTREUSEPORT_ANY)
446                 return 1;
447 #if IS_ENABLED(CONFIG_IPV6)
448         if (tb->fast_sk_family == AF_INET6)
449                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
450                                             inet6_rcv_saddr(sk),
451                                             tb->fast_rcv_saddr,
452                                             sk->sk_rcv_saddr,
453                                             tb->fast_ipv6_only,
454                                             ipv6_only_sock(sk), true, false);
455 #endif
456         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
457                                     ipv6_only_sock(sk), true, false);
458 }
459 
460 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
461                                struct sock *sk)
462 {
463         kuid_t uid = sock_i_uid(sk);
464         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
465 
466         if (hlist_empty(&tb->bhash2)) {
467                 tb->fastreuse = reuse;
468                 if (sk->sk_reuseport) {
469                         tb->fastreuseport = FASTREUSEPORT_ANY;
470                         tb->fastuid = uid;
471                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
472                         tb->fast_ipv6_only = ipv6_only_sock(sk);
473                         tb->fast_sk_family = sk->sk_family;
474 #if IS_ENABLED(CONFIG_IPV6)
475                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
476 #endif
477                 } else {
478                         tb->fastreuseport = 0;
479                 }
480         } else {
481                 if (!reuse)
482                         tb->fastreuse = 0;
483                 if (sk->sk_reuseport) {
484                         /* We didn't match or we don't have fastreuseport set on
485                          * the tb, but we have sk_reuseport set on this socket
486                          * and we know that there are no bind conflicts with
487                          * this socket in this tb, so reset our tb's reuseport
488                          * settings so that any subsequent sockets that match
489                          * our current socket will be put on the fast path.
490                          *
491                          * If we reset we need to set FASTREUSEPORT_STRICT so we
492                          * do extra checking for all subsequent sk_reuseport
493                          * socks.
494                          */
495                         if (!sk_reuseport_match(tb, sk)) {
496                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
497                                 tb->fastuid = uid;
498                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
499                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
500                                 tb->fast_sk_family = sk->sk_family;
501 #if IS_ENABLED(CONFIG_IPV6)
502                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
503 #endif
504                         }
505                 } else {
506                         tb->fastreuseport = 0;
507                 }
508         }
509 }
510 
511 /* Obtain a reference to a local port for the given sock,
512  * if snum is zero it means select any available local port.
513  * We try to allocate an odd port (and leave even ports for connect())
514  */
515 int inet_csk_get_port(struct sock *sk, unsigned short snum)
516 {
517         struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
518         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
519         bool found_port = false, check_bind_conflict = true;
520         bool bhash_created = false, bhash2_created = false;
521         int ret = -EADDRINUSE, port = snum, l3mdev;
522         struct inet_bind_hashbucket *head, *head2;
523         struct inet_bind2_bucket *tb2 = NULL;
524         struct inet_bind_bucket *tb = NULL;
525         bool head2_lock_acquired = false;
526         struct net *net = sock_net(sk);
527 
528         l3mdev = inet_sk_bound_l3mdev(sk);
529 
530         if (!port) {
531                 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
532                 if (!head)
533                         return ret;
534 
535                 head2_lock_acquired = true;
536 
537                 if (tb && tb2)
538                         goto success;
539                 found_port = true;
540         } else {
541                 head = &hinfo->bhash[inet_bhashfn(net, port,
542                                                   hinfo->bhash_size)];
543                 spin_lock_bh(&head->lock);
544                 inet_bind_bucket_for_each(tb, &head->chain)
545                         if (inet_bind_bucket_match(tb, net, port, l3mdev))
546                                 break;
547         }
548 
549         if (!tb) {
550                 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
551                                              head, port, l3mdev);
552                 if (!tb)
553                         goto fail_unlock;
554                 bhash_created = true;
555         }
556 
557         if (!found_port) {
558                 if (!hlist_empty(&tb->bhash2)) {
559                         if (sk->sk_reuse == SK_FORCE_REUSE ||
560                             (tb->fastreuse > 0 && reuse) ||
561                             sk_reuseport_match(tb, sk))
562                                 check_bind_conflict = false;
563                 }
564 
565                 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
566                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
567                                 goto fail_unlock;
568                 }
569 
570                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
571                 spin_lock(&head2->lock);
572                 head2_lock_acquired = true;
573                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
574         }
575 
576         if (!tb2) {
577                 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
578                                                net, head2, tb, sk);
579                 if (!tb2)
580                         goto fail_unlock;
581                 bhash2_created = true;
582         }
583 
584         if (!found_port && check_bind_conflict) {
585                 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
586                         goto fail_unlock;
587         }
588 
589 success:
590         inet_csk_update_fastreuse(tb, sk);
591 
592         if (!inet_csk(sk)->icsk_bind_hash)
593                 inet_bind_hash(sk, tb, tb2, port);
594         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
595         WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
596         ret = 0;
597 
598 fail_unlock:
599         if (ret) {
600                 if (bhash2_created)
601                         inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
602                 if (bhash_created)
603                         inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
604         }
605         if (head2_lock_acquired)
606                 spin_unlock(&head2->lock);
607         spin_unlock_bh(&head->lock);
608         return ret;
609 }
610 EXPORT_SYMBOL_GPL(inet_csk_get_port);
611 
612 /*
613  * Wait for an incoming connection, avoid race conditions. This must be called
614  * with the socket locked.
615  */
616 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
617 {
618         struct inet_connection_sock *icsk = inet_csk(sk);
619         DEFINE_WAIT(wait);
620         int err;
621 
622         /*
623          * True wake-one mechanism for incoming connections: only
624          * one process gets woken up, not the 'whole herd'.
625          * Since we do not 'race & poll' for established sockets
626          * anymore, the common case will execute the loop only once.
627          *
628          * Subtle issue: "add_wait_queue_exclusive()" will be added
629          * after any current non-exclusive waiters, and we know that
630          * it will always _stay_ after any new non-exclusive waiters
631          * because all non-exclusive waiters are added at the
632          * beginning of the wait-queue. As such, it's ok to "drop"
633          * our exclusiveness temporarily when we get woken up without
634          * having to remove and re-insert us on the wait queue.
635          */
636         for (;;) {
637                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
638                                           TASK_INTERRUPTIBLE);
639                 release_sock(sk);
640                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
641                         timeo = schedule_timeout(timeo);
642                 sched_annotate_sleep();
643                 lock_sock(sk);
644                 err = 0;
645                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
646                         break;
647                 err = -EINVAL;
648                 if (sk->sk_state != TCP_LISTEN)
649                         break;
650                 err = sock_intr_errno(timeo);
651                 if (signal_pending(current))
652                         break;
653                 err = -EAGAIN;
654                 if (!timeo)
655                         break;
656         }
657         finish_wait(sk_sleep(sk), &wait);
658         return err;
659 }
660 
661 /*
662  * This will accept the next outstanding connection.
663  */
664 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
665 {
666         struct inet_connection_sock *icsk = inet_csk(sk);
667         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
668         struct request_sock *req;
669         struct sock *newsk;
670         int error;
671 
672         lock_sock(sk);
673 
674         /* We need to make sure that this socket is listening,
675          * and that it has something pending.
676          */
677         error = -EINVAL;
678         if (sk->sk_state != TCP_LISTEN)
679                 goto out_err;
680 
681         /* Find already established connection */
682         if (reqsk_queue_empty(queue)) {
683                 long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
684 
685                 /* If this is a non blocking socket don't sleep */
686                 error = -EAGAIN;
687                 if (!timeo)
688                         goto out_err;
689 
690                 error = inet_csk_wait_for_connect(sk, timeo);
691                 if (error)
692                         goto out_err;
693         }
694         req = reqsk_queue_remove(queue, sk);
695         arg->is_empty = reqsk_queue_empty(queue);
696         newsk = req->sk;
697 
698         if (sk->sk_protocol == IPPROTO_TCP &&
699             tcp_rsk(req)->tfo_listener) {
700                 spin_lock_bh(&queue->fastopenq.lock);
701                 if (tcp_rsk(req)->tfo_listener) {
702                         /* We are still waiting for the final ACK from 3WHS
703                          * so can't free req now. Instead, we set req->sk to
704                          * NULL to signify that the child socket is taken
705                          * so reqsk_fastopen_remove() will free the req
706                          * when 3WHS finishes (or is aborted).
707                          */
708                         req->sk = NULL;
709                         req = NULL;
710                 }
711                 spin_unlock_bh(&queue->fastopenq.lock);
712         }
713 
714 out:
715         release_sock(sk);
716         if (newsk && mem_cgroup_sockets_enabled) {
717                 int amt = 0;
718 
719                 /* atomically get the memory usage, set and charge the
720                  * newsk->sk_memcg.
721                  */
722                 lock_sock(newsk);
723 
724                 mem_cgroup_sk_alloc(newsk);
725                 if (newsk->sk_memcg) {
726                         /* The socket has not been accepted yet, no need
727                          * to look at newsk->sk_wmem_queued.
728                          */
729                         amt = sk_mem_pages(newsk->sk_forward_alloc +
730                                            atomic_read(&newsk->sk_rmem_alloc));
731                 }
732 
733                 if (amt)
734                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
735                                                 GFP_KERNEL | __GFP_NOFAIL);
736 
737                 release_sock(newsk);
738         }
739         if (req)
740                 reqsk_put(req);
741 
742         if (newsk)
743                 inet_init_csk_locks(newsk);
744 
745         return newsk;
746 out_err:
747         newsk = NULL;
748         req = NULL;
749         arg->err = error;
750         goto out;
751 }
752 EXPORT_SYMBOL(inet_csk_accept);
753 
754 /*
755  * Using different timers for retransmit, delayed acks and probes
756  * We may wish use just one timer maintaining a list of expire jiffies
757  * to optimize.
758  */
759 void inet_csk_init_xmit_timers(struct sock *sk,
760                                void (*retransmit_handler)(struct timer_list *t),
761                                void (*delack_handler)(struct timer_list *t),
762                                void (*keepalive_handler)(struct timer_list *t))
763 {
764         struct inet_connection_sock *icsk = inet_csk(sk);
765 
766         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
767         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
768         timer_setup(&sk->sk_timer, keepalive_handler, 0);
769         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
770 }
771 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
772 
773 void inet_csk_clear_xmit_timers(struct sock *sk)
774 {
775         struct inet_connection_sock *icsk = inet_csk(sk);
776 
777         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
778 
779         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
780         sk_stop_timer(sk, &icsk->icsk_delack_timer);
781         sk_stop_timer(sk, &sk->sk_timer);
782 }
783 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
784 
785 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
786 {
787         struct inet_connection_sock *icsk = inet_csk(sk);
788 
789         /* ongoing timer handlers need to acquire socket lock. */
790         sock_not_owned_by_me(sk);
791 
792         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
793 
794         sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
795         sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
796         sk_stop_timer_sync(sk, &sk->sk_timer);
797 }
798 
799 void inet_csk_delete_keepalive_timer(struct sock *sk)
800 {
801         sk_stop_timer(sk, &sk->sk_timer);
802 }
803 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
804 
805 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
806 {
807         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
808 }
809 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
810 
811 struct dst_entry *inet_csk_route_req(const struct sock *sk,
812                                      struct flowi4 *fl4,
813                                      const struct request_sock *req)
814 {
815         const struct inet_request_sock *ireq = inet_rsk(req);
816         struct net *net = read_pnet(&ireq->ireq_net);
817         struct ip_options_rcu *opt;
818         struct rtable *rt;
819 
820         rcu_read_lock();
821         opt = rcu_dereference(ireq->ireq_opt);
822 
823         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
824                            ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
825                            sk->sk_protocol, inet_sk_flowi_flags(sk),
826                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
827                            ireq->ir_loc_addr, ireq->ir_rmt_port,
828                            htons(ireq->ir_num), sk->sk_uid);
829         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
830         rt = ip_route_output_flow(net, fl4, sk);
831         if (IS_ERR(rt))
832                 goto no_route;
833         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
834                 goto route_err;
835         rcu_read_unlock();
836         return &rt->dst;
837 
838 route_err:
839         ip_rt_put(rt);
840 no_route:
841         rcu_read_unlock();
842         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
843         return NULL;
844 }
845 EXPORT_SYMBOL_GPL(inet_csk_route_req);
846 
847 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
848                                             struct sock *newsk,
849                                             const struct request_sock *req)
850 {
851         const struct inet_request_sock *ireq = inet_rsk(req);
852         struct net *net = read_pnet(&ireq->ireq_net);
853         struct inet_sock *newinet = inet_sk(newsk);
854         struct ip_options_rcu *opt;
855         struct flowi4 *fl4;
856         struct rtable *rt;
857 
858         opt = rcu_dereference(ireq->ireq_opt);
859         fl4 = &newinet->cork.fl.u.ip4;
860 
861         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
862                            ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
863                            sk->sk_protocol, inet_sk_flowi_flags(sk),
864                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
865                            ireq->ir_loc_addr, ireq->ir_rmt_port,
866                            htons(ireq->ir_num), sk->sk_uid);
867         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
868         rt = ip_route_output_flow(net, fl4, sk);
869         if (IS_ERR(rt))
870                 goto no_route;
871         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
872                 goto route_err;
873         return &rt->dst;
874 
875 route_err:
876         ip_rt_put(rt);
877 no_route:
878         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
879         return NULL;
880 }
881 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
882 
883 /* Decide when to expire the request and when to resend SYN-ACK */
884 static void syn_ack_recalc(struct request_sock *req,
885                            const int max_syn_ack_retries,
886                            const u8 rskq_defer_accept,
887                            int *expire, int *resend)
888 {
889         if (!rskq_defer_accept) {
890                 *expire = req->num_timeout >= max_syn_ack_retries;
891                 *resend = 1;
892                 return;
893         }
894         *expire = req->num_timeout >= max_syn_ack_retries &&
895                   (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
896         /* Do not resend while waiting for data after ACK,
897          * start to resend on end of deferring period to give
898          * last chance for data or ACK to create established socket.
899          */
900         *resend = !inet_rsk(req)->acked ||
901                   req->num_timeout >= rskq_defer_accept - 1;
902 }
903 
904 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
905 {
906         int err = req->rsk_ops->rtx_syn_ack(parent, req);
907 
908         if (!err)
909                 req->num_retrans++;
910         return err;
911 }
912 EXPORT_SYMBOL(inet_rtx_syn_ack);
913 
914 static struct request_sock *
915 reqsk_alloc_noprof(const struct request_sock_ops *ops, struct sock *sk_listener,
916                    bool attach_listener)
917 {
918         struct request_sock *req;
919 
920         req = kmem_cache_alloc_noprof(ops->slab, GFP_ATOMIC | __GFP_NOWARN);
921         if (!req)
922                 return NULL;
923         req->rsk_listener = NULL;
924         if (attach_listener) {
925                 if (unlikely(!refcount_inc_not_zero(&sk_listener->sk_refcnt))) {
926                         kmem_cache_free(ops->slab, req);
927                         return NULL;
928                 }
929                 req->rsk_listener = sk_listener;
930         }
931         req->rsk_ops = ops;
932         req_to_sk(req)->sk_prot = sk_listener->sk_prot;
933         sk_node_init(&req_to_sk(req)->sk_node);
934         sk_tx_queue_clear(req_to_sk(req));
935         req->saved_syn = NULL;
936         req->syncookie = 0;
937         req->timeout = 0;
938         req->num_timeout = 0;
939         req->num_retrans = 0;
940         req->sk = NULL;
941         refcount_set(&req->rsk_refcnt, 0);
942 
943         return req;
944 }
945 #define reqsk_alloc(...)        alloc_hooks(reqsk_alloc_noprof(__VA_ARGS__))
946 
947 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
948                                       struct sock *sk_listener,
949                                       bool attach_listener)
950 {
951         struct request_sock *req = reqsk_alloc(ops, sk_listener,
952                                                attach_listener);
953 
954         if (req) {
955                 struct inet_request_sock *ireq = inet_rsk(req);
956 
957                 ireq->ireq_opt = NULL;
958 #if IS_ENABLED(CONFIG_IPV6)
959                 ireq->pktopts = NULL;
960 #endif
961                 atomic64_set(&ireq->ir_cookie, 0);
962                 ireq->ireq_state = TCP_NEW_SYN_RECV;
963                 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
964                 ireq->ireq_family = sk_listener->sk_family;
965                 req->timeout = TCP_TIMEOUT_INIT;
966         }
967 
968         return req;
969 }
970 EXPORT_SYMBOL(inet_reqsk_alloc);
971 
972 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
973                                              struct sock *sk)
974 {
975         struct sock *req_sk, *nreq_sk;
976         struct request_sock *nreq;
977 
978         nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
979         if (!nreq) {
980                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
981 
982                 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
983                 sock_put(sk);
984                 return NULL;
985         }
986 
987         req_sk = req_to_sk(req);
988         nreq_sk = req_to_sk(nreq);
989 
990         memcpy(nreq_sk, req_sk,
991                offsetof(struct sock, sk_dontcopy_begin));
992         unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
993                       req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
994                       /* alloc is larger than struct, see above */);
995 
996         sk_node_init(&nreq_sk->sk_node);
997         nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
998 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
999         nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
1000 #endif
1001         nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
1002 
1003         nreq->rsk_listener = sk;
1004 
1005         /* We need not acquire fastopenq->lock
1006          * because the child socket is locked in inet_csk_listen_stop().
1007          */
1008         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
1009                 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
1010 
1011         return nreq;
1012 }
1013 
1014 static void reqsk_queue_migrated(struct request_sock_queue *queue,
1015                                  const struct request_sock *req)
1016 {
1017         if (req->num_timeout == 0)
1018                 atomic_inc(&queue->young);
1019         atomic_inc(&queue->qlen);
1020 }
1021 
1022 static void reqsk_migrate_reset(struct request_sock *req)
1023 {
1024         req->saved_syn = NULL;
1025 #if IS_ENABLED(CONFIG_IPV6)
1026         inet_rsk(req)->ipv6_opt = NULL;
1027         inet_rsk(req)->pktopts = NULL;
1028 #else
1029         inet_rsk(req)->ireq_opt = NULL;
1030 #endif
1031 }
1032 
1033 /* return true if req was found in the ehash table */
1034 static bool reqsk_queue_unlink(struct request_sock *req)
1035 {
1036         struct sock *sk = req_to_sk(req);
1037         bool found = false;
1038 
1039         if (sk_hashed(sk)) {
1040                 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
1041                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
1042 
1043                 spin_lock(lock);
1044                 found = __sk_nulls_del_node_init_rcu(sk);
1045                 spin_unlock(lock);
1046         }
1047         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
1048                 reqsk_put(req);
1049         return found;
1050 }
1051 
1052 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
1053 {
1054         bool unlinked = reqsk_queue_unlink(req);
1055 
1056         if (unlinked) {
1057                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1058                 reqsk_put(req);
1059         }
1060         return unlinked;
1061 }
1062 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
1063 
1064 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1065 {
1066         inet_csk_reqsk_queue_drop(sk, req);
1067         reqsk_put(req);
1068 }
1069 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
1070 
1071 static void reqsk_timer_handler(struct timer_list *t)
1072 {
1073         struct request_sock *req = from_timer(req, t, rsk_timer);
1074         struct request_sock *nreq = NULL, *oreq = req;
1075         struct sock *sk_listener = req->rsk_listener;
1076         struct inet_connection_sock *icsk;
1077         struct request_sock_queue *queue;
1078         struct net *net;
1079         int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1080 
1081         if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1082                 struct sock *nsk;
1083 
1084                 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1085                 if (!nsk)
1086                         goto drop;
1087 
1088                 nreq = inet_reqsk_clone(req, nsk);
1089                 if (!nreq)
1090                         goto drop;
1091 
1092                 /* The new timer for the cloned req can decrease the 2
1093                  * by calling inet_csk_reqsk_queue_drop_and_put(), so
1094                  * hold another count to prevent use-after-free and
1095                  * call reqsk_put() just before return.
1096                  */
1097                 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1098                 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1099                 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1100 
1101                 req = nreq;
1102                 sk_listener = nsk;
1103         }
1104 
1105         icsk = inet_csk(sk_listener);
1106         net = sock_net(sk_listener);
1107         max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1108                 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1109         /* Normally all the openreqs are young and become mature
1110          * (i.e. converted to established socket) for first timeout.
1111          * If synack was not acknowledged for 1 second, it means
1112          * one of the following things: synack was lost, ack was lost,
1113          * rtt is high or nobody planned to ack (i.e. synflood).
1114          * When server is a bit loaded, queue is populated with old
1115          * open requests, reducing effective size of queue.
1116          * When server is well loaded, queue size reduces to zero
1117          * after several minutes of work. It is not synflood,
1118          * it is normal operation. The solution is pruning
1119          * too old entries overriding normal timeout, when
1120          * situation becomes dangerous.
1121          *
1122          * Essentially, we reserve half of room for young
1123          * embrions; and abort old ones without pity, if old
1124          * ones are about to clog our table.
1125          */
1126         queue = &icsk->icsk_accept_queue;
1127         qlen = reqsk_queue_len(queue);
1128         if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1129                 int young = reqsk_queue_len_young(queue) << 1;
1130 
1131                 while (max_syn_ack_retries > 2) {
1132                         if (qlen < young)
1133                                 break;
1134                         max_syn_ack_retries--;
1135                         young <<= 1;
1136                 }
1137         }
1138         syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1139                        &expire, &resend);
1140         req->rsk_ops->syn_ack_timeout(req);
1141         if (!expire &&
1142             (!resend ||
1143              !inet_rtx_syn_ack(sk_listener, req) ||
1144              inet_rsk(req)->acked)) {
1145                 if (req->num_timeout++ == 0)
1146                         atomic_dec(&queue->young);
1147                 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1148 
1149                 if (!nreq)
1150                         return;
1151 
1152                 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1153                         /* delete timer */
1154                         inet_csk_reqsk_queue_drop(sk_listener, nreq);
1155                         goto no_ownership;
1156                 }
1157 
1158                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1159                 reqsk_migrate_reset(oreq);
1160                 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1161                 reqsk_put(oreq);
1162 
1163                 reqsk_put(nreq);
1164                 return;
1165         }
1166 
1167         /* Even if we can clone the req, we may need not retransmit any more
1168          * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1169          * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1170          */
1171         if (nreq) {
1172                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1173 no_ownership:
1174                 reqsk_migrate_reset(nreq);
1175                 reqsk_queue_removed(queue, nreq);
1176                 __reqsk_free(nreq);
1177         }
1178 
1179 drop:
1180         inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1181 }
1182 
1183 static bool reqsk_queue_hash_req(struct request_sock *req,
1184                                  unsigned long timeout)
1185 {
1186         bool found_dup_sk = false;
1187 
1188         if (!inet_ehash_insert(req_to_sk(req), NULL, &found_dup_sk))
1189                 return false;
1190 
1191         /* The timer needs to be setup after a successful insertion. */
1192         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1193         mod_timer(&req->rsk_timer, jiffies + timeout);
1194 
1195         /* before letting lookups find us, make sure all req fields
1196          * are committed to memory and refcnt initialized.
1197          */
1198         smp_wmb();
1199         refcount_set(&req->rsk_refcnt, 2 + 1);
1200         return true;
1201 }
1202 
1203 bool inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1204                                    unsigned long timeout)
1205 {
1206         if (!reqsk_queue_hash_req(req, timeout))
1207                 return false;
1208 
1209         inet_csk_reqsk_queue_added(sk);
1210         return true;
1211 }
1212 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1213 
1214 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1215                            const gfp_t priority)
1216 {
1217         struct inet_connection_sock *icsk = inet_csk(newsk);
1218 
1219         if (!icsk->icsk_ulp_ops)
1220                 return;
1221 
1222         icsk->icsk_ulp_ops->clone(req, newsk, priority);
1223 }
1224 
1225 /**
1226  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
1227  *      @sk: the socket to clone
1228  *      @req: request_sock
1229  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1230  *
1231  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1232  */
1233 struct sock *inet_csk_clone_lock(const struct sock *sk,
1234                                  const struct request_sock *req,
1235                                  const gfp_t priority)
1236 {
1237         struct sock *newsk = sk_clone_lock(sk, priority);
1238 
1239         if (newsk) {
1240                 struct inet_connection_sock *newicsk = inet_csk(newsk);
1241 
1242                 inet_sk_set_state(newsk, TCP_SYN_RECV);
1243                 newicsk->icsk_bind_hash = NULL;
1244                 newicsk->icsk_bind2_hash = NULL;
1245 
1246                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1247                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1248                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1249 
1250                 /* listeners have SOCK_RCU_FREE, not the children */
1251                 sock_reset_flag(newsk, SOCK_RCU_FREE);
1252 
1253                 inet_sk(newsk)->mc_list = NULL;
1254 
1255                 newsk->sk_mark = inet_rsk(req)->ir_mark;
1256                 atomic64_set(&newsk->sk_cookie,
1257                              atomic64_read(&inet_rsk(req)->ir_cookie));
1258 
1259                 newicsk->icsk_retransmits = 0;
1260                 newicsk->icsk_backoff     = 0;
1261                 newicsk->icsk_probes_out  = 0;
1262                 newicsk->icsk_probes_tstamp = 0;
1263 
1264                 /* Deinitialize accept_queue to trap illegal accesses. */
1265                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1266 
1267                 inet_clone_ulp(req, newsk, priority);
1268 
1269                 security_inet_csk_clone(newsk, req);
1270         }
1271         return newsk;
1272 }
1273 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1274 
1275 /*
1276  * At this point, there should be no process reference to this
1277  * socket, and thus no user references at all.  Therefore we
1278  * can assume the socket waitqueue is inactive and nobody will
1279  * try to jump onto it.
1280  */
1281 void inet_csk_destroy_sock(struct sock *sk)
1282 {
1283         WARN_ON(sk->sk_state != TCP_CLOSE);
1284         WARN_ON(!sock_flag(sk, SOCK_DEAD));
1285 
1286         /* It cannot be in hash table! */
1287         WARN_ON(!sk_unhashed(sk));
1288 
1289         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1290         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1291 
1292         sk->sk_prot->destroy(sk);
1293 
1294         sk_stream_kill_queues(sk);
1295 
1296         xfrm_sk_free_policy(sk);
1297 
1298         this_cpu_dec(*sk->sk_prot->orphan_count);
1299 
1300         sock_put(sk);
1301 }
1302 EXPORT_SYMBOL(inet_csk_destroy_sock);
1303 
1304 /* This function allows to force a closure of a socket after the call to
1305  * tcp/dccp_create_openreq_child().
1306  */
1307 void inet_csk_prepare_forced_close(struct sock *sk)
1308         __releases(&sk->sk_lock.slock)
1309 {
1310         /* sk_clone_lock locked the socket and set refcnt to 2 */
1311         bh_unlock_sock(sk);
1312         sock_put(sk);
1313         inet_csk_prepare_for_destroy_sock(sk);
1314         inet_sk(sk)->inet_num = 0;
1315 }
1316 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1317 
1318 static int inet_ulp_can_listen(const struct sock *sk)
1319 {
1320         const struct inet_connection_sock *icsk = inet_csk(sk);
1321 
1322         if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1323                 return -EINVAL;
1324 
1325         return 0;
1326 }
1327 
1328 int inet_csk_listen_start(struct sock *sk)
1329 {
1330         struct inet_connection_sock *icsk = inet_csk(sk);
1331         struct inet_sock *inet = inet_sk(sk);
1332         int err;
1333 
1334         err = inet_ulp_can_listen(sk);
1335         if (unlikely(err))
1336                 return err;
1337 
1338         reqsk_queue_alloc(&icsk->icsk_accept_queue);
1339 
1340         sk->sk_ack_backlog = 0;
1341         inet_csk_delack_init(sk);
1342 
1343         /* There is race window here: we announce ourselves listening,
1344          * but this transition is still not validated by get_port().
1345          * It is OK, because this socket enters to hash table only
1346          * after validation is complete.
1347          */
1348         inet_sk_state_store(sk, TCP_LISTEN);
1349         err = sk->sk_prot->get_port(sk, inet->inet_num);
1350         if (!err) {
1351                 inet->inet_sport = htons(inet->inet_num);
1352 
1353                 sk_dst_reset(sk);
1354                 err = sk->sk_prot->hash(sk);
1355 
1356                 if (likely(!err))
1357                         return 0;
1358         }
1359 
1360         inet_sk_set_state(sk, TCP_CLOSE);
1361         return err;
1362 }
1363 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1364 
1365 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1366                               struct sock *child)
1367 {
1368         sk->sk_prot->disconnect(child, O_NONBLOCK);
1369 
1370         sock_orphan(child);
1371 
1372         this_cpu_inc(*sk->sk_prot->orphan_count);
1373 
1374         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1375                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1376                 BUG_ON(sk != req->rsk_listener);
1377 
1378                 /* Paranoid, to prevent race condition if
1379                  * an inbound pkt destined for child is
1380                  * blocked by sock lock in tcp_v4_rcv().
1381                  * Also to satisfy an assertion in
1382                  * tcp_v4_destroy_sock().
1383                  */
1384                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1385         }
1386         inet_csk_destroy_sock(child);
1387 }
1388 
1389 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1390                                       struct request_sock *req,
1391                                       struct sock *child)
1392 {
1393         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1394 
1395         spin_lock(&queue->rskq_lock);
1396         if (unlikely(sk->sk_state != TCP_LISTEN)) {
1397                 inet_child_forget(sk, req, child);
1398                 child = NULL;
1399         } else {
1400                 req->sk = child;
1401                 req->dl_next = NULL;
1402                 if (queue->rskq_accept_head == NULL)
1403                         WRITE_ONCE(queue->rskq_accept_head, req);
1404                 else
1405                         queue->rskq_accept_tail->dl_next = req;
1406                 queue->rskq_accept_tail = req;
1407                 sk_acceptq_added(sk);
1408         }
1409         spin_unlock(&queue->rskq_lock);
1410         return child;
1411 }
1412 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1413 
1414 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1415                                          struct request_sock *req, bool own_req)
1416 {
1417         if (own_req) {
1418                 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1419                 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1420 
1421                 if (sk != req->rsk_listener) {
1422                         /* another listening sk has been selected,
1423                          * migrate the req to it.
1424                          */
1425                         struct request_sock *nreq;
1426 
1427                         /* hold a refcnt for the nreq->rsk_listener
1428                          * which is assigned in inet_reqsk_clone()
1429                          */
1430                         sock_hold(sk);
1431                         nreq = inet_reqsk_clone(req, sk);
1432                         if (!nreq) {
1433                                 inet_child_forget(sk, req, child);
1434                                 goto child_put;
1435                         }
1436 
1437                         refcount_set(&nreq->rsk_refcnt, 1);
1438                         if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1439                                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1440                                 reqsk_migrate_reset(req);
1441                                 reqsk_put(req);
1442                                 return child;
1443                         }
1444 
1445                         __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1446                         reqsk_migrate_reset(nreq);
1447                         __reqsk_free(nreq);
1448                 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1449                         return child;
1450                 }
1451         }
1452         /* Too bad, another child took ownership of the request, undo. */
1453 child_put:
1454         bh_unlock_sock(child);
1455         sock_put(child);
1456         return NULL;
1457 }
1458 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1459 
1460 /*
1461  *      This routine closes sockets which have been at least partially
1462  *      opened, but not yet accepted.
1463  */
1464 void inet_csk_listen_stop(struct sock *sk)
1465 {
1466         struct inet_connection_sock *icsk = inet_csk(sk);
1467         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1468         struct request_sock *next, *req;
1469 
1470         /* Following specs, it would be better either to send FIN
1471          * (and enter FIN-WAIT-1, it is normal close)
1472          * or to send active reset (abort).
1473          * Certainly, it is pretty dangerous while synflood, but it is
1474          * bad justification for our negligence 8)
1475          * To be honest, we are not able to make either
1476          * of the variants now.                 --ANK
1477          */
1478         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1479                 struct sock *child = req->sk, *nsk;
1480                 struct request_sock *nreq;
1481 
1482                 local_bh_disable();
1483                 bh_lock_sock(child);
1484                 WARN_ON(sock_owned_by_user(child));
1485                 sock_hold(child);
1486 
1487                 nsk = reuseport_migrate_sock(sk, child, NULL);
1488                 if (nsk) {
1489                         nreq = inet_reqsk_clone(req, nsk);
1490                         if (nreq) {
1491                                 refcount_set(&nreq->rsk_refcnt, 1);
1492 
1493                                 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1494                                         __NET_INC_STATS(sock_net(nsk),
1495                                                         LINUX_MIB_TCPMIGRATEREQSUCCESS);
1496                                         reqsk_migrate_reset(req);
1497                                 } else {
1498                                         __NET_INC_STATS(sock_net(nsk),
1499                                                         LINUX_MIB_TCPMIGRATEREQFAILURE);
1500                                         reqsk_migrate_reset(nreq);
1501                                         __reqsk_free(nreq);
1502                                 }
1503 
1504                                 /* inet_csk_reqsk_queue_add() has already
1505                                  * called inet_child_forget() on failure case.
1506                                  */
1507                                 goto skip_child_forget;
1508                         }
1509                 }
1510 
1511                 inet_child_forget(sk, req, child);
1512 skip_child_forget:
1513                 reqsk_put(req);
1514                 bh_unlock_sock(child);
1515                 local_bh_enable();
1516                 sock_put(child);
1517 
1518                 cond_resched();
1519         }
1520         if (queue->fastopenq.rskq_rst_head) {
1521                 /* Free all the reqs queued in rskq_rst_head. */
1522                 spin_lock_bh(&queue->fastopenq.lock);
1523                 req = queue->fastopenq.rskq_rst_head;
1524                 queue->fastopenq.rskq_rst_head = NULL;
1525                 spin_unlock_bh(&queue->fastopenq.lock);
1526                 while (req != NULL) {
1527                         next = req->dl_next;
1528                         reqsk_put(req);
1529                         req = next;
1530                 }
1531         }
1532         WARN_ON_ONCE(sk->sk_ack_backlog);
1533 }
1534 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1535 
1536 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1537 {
1538         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1539         const struct inet_sock *inet = inet_sk(sk);
1540 
1541         sin->sin_family         = AF_INET;
1542         sin->sin_addr.s_addr    = inet->inet_daddr;
1543         sin->sin_port           = inet->inet_dport;
1544 }
1545 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1546 
1547 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1548 {
1549         const struct inet_sock *inet = inet_sk(sk);
1550         const struct ip_options_rcu *inet_opt;
1551         __be32 daddr = inet->inet_daddr;
1552         struct flowi4 *fl4;
1553         struct rtable *rt;
1554 
1555         rcu_read_lock();
1556         inet_opt = rcu_dereference(inet->inet_opt);
1557         if (inet_opt && inet_opt->opt.srr)
1558                 daddr = inet_opt->opt.faddr;
1559         fl4 = &fl->u.ip4;
1560         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1561                                    inet->inet_saddr, inet->inet_dport,
1562                                    inet->inet_sport, sk->sk_protocol,
1563                                    ip_sock_rt_tos(sk), sk->sk_bound_dev_if);
1564         if (IS_ERR(rt))
1565                 rt = NULL;
1566         if (rt)
1567                 sk_setup_caps(sk, &rt->dst);
1568         rcu_read_unlock();
1569 
1570         return &rt->dst;
1571 }
1572 
1573 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1574 {
1575         struct dst_entry *dst = __sk_dst_check(sk, 0);
1576         struct inet_sock *inet = inet_sk(sk);
1577 
1578         if (!dst) {
1579                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1580                 if (!dst)
1581                         goto out;
1582         }
1583         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1584 
1585         dst = __sk_dst_check(sk, 0);
1586         if (!dst)
1587                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1588 out:
1589         return dst;
1590 }
1591 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1592 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php