1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/proto_memory.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 #include <net/rstreason.h> 280 281 #include <linux/uaccess.h> 282 #include <asm/ioctls.h> 283 #include <net/busy_poll.h> 284 #include <net/hotdata.h> 285 #include <trace/events/tcp.h> 286 #include <net/rps.h> 287 288 /* Track pending CMSGs. */ 289 enum { 290 TCP_CMSG_INQ = 1, 291 TCP_CMSG_TS = 2 292 }; 293 294 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 295 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 296 297 DEFINE_PER_CPU(u32, tcp_tw_isn); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn); 299 300 long sysctl_tcp_mem[3] __read_mostly; 301 EXPORT_SYMBOL(sysctl_tcp_mem); 302 303 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 304 EXPORT_SYMBOL(tcp_memory_allocated); 305 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 306 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 307 308 #if IS_ENABLED(CONFIG_SMC) 309 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 310 EXPORT_SYMBOL(tcp_have_smc); 311 #endif 312 313 /* 314 * Current number of TCP sockets. 315 */ 316 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 317 EXPORT_SYMBOL(tcp_sockets_allocated); 318 319 /* 320 * TCP splice context 321 */ 322 struct tcp_splice_state { 323 struct pipe_inode_info *pipe; 324 size_t len; 325 unsigned int flags; 326 }; 327 328 /* 329 * Pressure flag: try to collapse. 330 * Technical note: it is used by multiple contexts non atomically. 331 * All the __sk_mem_schedule() is of this nature: accounting 332 * is strict, actions are advisory and have some latency. 333 */ 334 unsigned long tcp_memory_pressure __read_mostly; 335 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 336 337 void tcp_enter_memory_pressure(struct sock *sk) 338 { 339 unsigned long val; 340 341 if (READ_ONCE(tcp_memory_pressure)) 342 return; 343 val = jiffies; 344 345 if (!val) 346 val--; 347 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 348 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 349 } 350 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 351 352 void tcp_leave_memory_pressure(struct sock *sk) 353 { 354 unsigned long val; 355 356 if (!READ_ONCE(tcp_memory_pressure)) 357 return; 358 val = xchg(&tcp_memory_pressure, 0); 359 if (val) 360 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 361 jiffies_to_msecs(jiffies - val)); 362 } 363 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 364 365 /* Convert seconds to retransmits based on initial and max timeout */ 366 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 367 { 368 u8 res = 0; 369 370 if (seconds > 0) { 371 int period = timeout; 372 373 res = 1; 374 while (seconds > period && res < 255) { 375 res++; 376 timeout <<= 1; 377 if (timeout > rto_max) 378 timeout = rto_max; 379 period += timeout; 380 } 381 } 382 return res; 383 } 384 385 /* Convert retransmits to seconds based on initial and max timeout */ 386 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 387 { 388 int period = 0; 389 390 if (retrans > 0) { 391 period = timeout; 392 while (--retrans) { 393 timeout <<= 1; 394 if (timeout > rto_max) 395 timeout = rto_max; 396 period += timeout; 397 } 398 } 399 return period; 400 } 401 402 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 403 { 404 u32 rate = READ_ONCE(tp->rate_delivered); 405 u32 intv = READ_ONCE(tp->rate_interval_us); 406 u64 rate64 = 0; 407 408 if (rate && intv) { 409 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 410 do_div(rate64, intv); 411 } 412 return rate64; 413 } 414 415 /* Address-family independent initialization for a tcp_sock. 416 * 417 * NOTE: A lot of things set to zero explicitly by call to 418 * sk_alloc() so need not be done here. 419 */ 420 void tcp_init_sock(struct sock *sk) 421 { 422 struct inet_connection_sock *icsk = inet_csk(sk); 423 struct tcp_sock *tp = tcp_sk(sk); 424 int rto_min_us; 425 426 tp->out_of_order_queue = RB_ROOT; 427 sk->tcp_rtx_queue = RB_ROOT; 428 tcp_init_xmit_timers(sk); 429 INIT_LIST_HEAD(&tp->tsq_node); 430 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 431 432 icsk->icsk_rto = TCP_TIMEOUT_INIT; 433 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us); 434 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us); 435 icsk->icsk_delack_max = TCP_DELACK_MAX; 436 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 437 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 438 439 /* So many TCP implementations out there (incorrectly) count the 440 * initial SYN frame in their delayed-ACK and congestion control 441 * algorithms that we must have the following bandaid to talk 442 * efficiently to them. -DaveM 443 */ 444 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 445 446 /* There's a bubble in the pipe until at least the first ACK. */ 447 tp->app_limited = ~0U; 448 tp->rate_app_limited = 1; 449 450 /* See draft-stevens-tcpca-spec-01 for discussion of the 451 * initialization of these values. 452 */ 453 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 454 tp->snd_cwnd_clamp = ~0; 455 tp->mss_cache = TCP_MSS_DEFAULT; 456 457 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 458 tcp_assign_congestion_control(sk); 459 460 tp->tsoffset = 0; 461 tp->rack.reo_wnd_steps = 1; 462 463 sk->sk_write_space = sk_stream_write_space; 464 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 465 466 icsk->icsk_sync_mss = tcp_sync_mss; 467 468 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 469 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 470 tcp_scaling_ratio_init(sk); 471 472 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 473 sk_sockets_allocated_inc(sk); 474 } 475 EXPORT_SYMBOL(tcp_init_sock); 476 477 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 478 { 479 struct sk_buff *skb = tcp_write_queue_tail(sk); 480 481 if (tsflags && skb) { 482 struct skb_shared_info *shinfo = skb_shinfo(skb); 483 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 484 485 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 486 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 487 tcb->txstamp_ack = 1; 488 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 489 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 490 } 491 } 492 493 static bool tcp_stream_is_readable(struct sock *sk, int target) 494 { 495 if (tcp_epollin_ready(sk, target)) 496 return true; 497 return sk_is_readable(sk); 498 } 499 500 /* 501 * Wait for a TCP event. 502 * 503 * Note that we don't need to lock the socket, as the upper poll layers 504 * take care of normal races (between the test and the event) and we don't 505 * go look at any of the socket buffers directly. 506 */ 507 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 508 { 509 __poll_t mask; 510 struct sock *sk = sock->sk; 511 const struct tcp_sock *tp = tcp_sk(sk); 512 u8 shutdown; 513 int state; 514 515 sock_poll_wait(file, sock, wait); 516 517 state = inet_sk_state_load(sk); 518 if (state == TCP_LISTEN) 519 return inet_csk_listen_poll(sk); 520 521 /* Socket is not locked. We are protected from async events 522 * by poll logic and correct handling of state changes 523 * made by other threads is impossible in any case. 524 */ 525 526 mask = 0; 527 528 /* 529 * EPOLLHUP is certainly not done right. But poll() doesn't 530 * have a notion of HUP in just one direction, and for a 531 * socket the read side is more interesting. 532 * 533 * Some poll() documentation says that EPOLLHUP is incompatible 534 * with the EPOLLOUT/POLLWR flags, so somebody should check this 535 * all. But careful, it tends to be safer to return too many 536 * bits than too few, and you can easily break real applications 537 * if you don't tell them that something has hung up! 538 * 539 * Check-me. 540 * 541 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 542 * our fs/select.c). It means that after we received EOF, 543 * poll always returns immediately, making impossible poll() on write() 544 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 545 * if and only if shutdown has been made in both directions. 546 * Actually, it is interesting to look how Solaris and DUX 547 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 548 * then we could set it on SND_SHUTDOWN. BTW examples given 549 * in Stevens' books assume exactly this behaviour, it explains 550 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 551 * 552 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 553 * blocking on fresh not-connected or disconnected socket. --ANK 554 */ 555 shutdown = READ_ONCE(sk->sk_shutdown); 556 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 557 mask |= EPOLLHUP; 558 if (shutdown & RCV_SHUTDOWN) 559 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 560 561 /* Connected or passive Fast Open socket? */ 562 if (state != TCP_SYN_SENT && 563 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 564 int target = sock_rcvlowat(sk, 0, INT_MAX); 565 u16 urg_data = READ_ONCE(tp->urg_data); 566 567 if (unlikely(urg_data) && 568 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 569 !sock_flag(sk, SOCK_URGINLINE)) 570 target++; 571 572 if (tcp_stream_is_readable(sk, target)) 573 mask |= EPOLLIN | EPOLLRDNORM; 574 575 if (!(shutdown & SEND_SHUTDOWN)) { 576 if (__sk_stream_is_writeable(sk, 1)) { 577 mask |= EPOLLOUT | EPOLLWRNORM; 578 } else { /* send SIGIO later */ 579 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 580 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 581 582 /* Race breaker. If space is freed after 583 * wspace test but before the flags are set, 584 * IO signal will be lost. Memory barrier 585 * pairs with the input side. 586 */ 587 smp_mb__after_atomic(); 588 if (__sk_stream_is_writeable(sk, 1)) 589 mask |= EPOLLOUT | EPOLLWRNORM; 590 } 591 } else 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 594 if (urg_data & TCP_URG_VALID) 595 mask |= EPOLLPRI; 596 } else if (state == TCP_SYN_SENT && 597 inet_test_bit(DEFER_CONNECT, sk)) { 598 /* Active TCP fastopen socket with defer_connect 599 * Return EPOLLOUT so application can call write() 600 * in order for kernel to generate SYN+data 601 */ 602 mask |= EPOLLOUT | EPOLLWRNORM; 603 } 604 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 605 smp_rmb(); 606 if (READ_ONCE(sk->sk_err) || 607 !skb_queue_empty_lockless(&sk->sk_error_queue)) 608 mask |= EPOLLERR; 609 610 return mask; 611 } 612 EXPORT_SYMBOL(tcp_poll); 613 614 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 615 { 616 struct tcp_sock *tp = tcp_sk(sk); 617 int answ; 618 bool slow; 619 620 switch (cmd) { 621 case SIOCINQ: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 slow = lock_sock_fast(sk); 626 answ = tcp_inq(sk); 627 unlock_sock_fast(sk, slow); 628 break; 629 case SIOCATMARK: 630 answ = READ_ONCE(tp->urg_data) && 631 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 632 break; 633 case SIOCOUTQ: 634 if (sk->sk_state == TCP_LISTEN) 635 return -EINVAL; 636 637 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 638 answ = 0; 639 else 640 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 641 break; 642 case SIOCOUTQNSD: 643 if (sk->sk_state == TCP_LISTEN) 644 return -EINVAL; 645 646 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 647 answ = 0; 648 else 649 answ = READ_ONCE(tp->write_seq) - 650 READ_ONCE(tp->snd_nxt); 651 break; 652 default: 653 return -ENOIOCTLCMD; 654 } 655 656 *karg = answ; 657 return 0; 658 } 659 EXPORT_SYMBOL(tcp_ioctl); 660 661 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 662 { 663 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 664 tp->pushed_seq = tp->write_seq; 665 } 666 667 static inline bool forced_push(const struct tcp_sock *tp) 668 { 669 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 670 } 671 672 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 673 { 674 struct tcp_sock *tp = tcp_sk(sk); 675 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 676 677 tcb->seq = tcb->end_seq = tp->write_seq; 678 tcb->tcp_flags = TCPHDR_ACK; 679 __skb_header_release(skb); 680 tcp_add_write_queue_tail(sk, skb); 681 sk_wmem_queued_add(sk, skb->truesize); 682 sk_mem_charge(sk, skb->truesize); 683 if (tp->nonagle & TCP_NAGLE_PUSH) 684 tp->nonagle &= ~TCP_NAGLE_PUSH; 685 686 tcp_slow_start_after_idle_check(sk); 687 } 688 689 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 690 { 691 if (flags & MSG_OOB) 692 tp->snd_up = tp->write_seq; 693 } 694 695 /* If a not yet filled skb is pushed, do not send it if 696 * we have data packets in Qdisc or NIC queues : 697 * Because TX completion will happen shortly, it gives a chance 698 * to coalesce future sendmsg() payload into this skb, without 699 * need for a timer, and with no latency trade off. 700 * As packets containing data payload have a bigger truesize 701 * than pure acks (dataless) packets, the last checks prevent 702 * autocorking if we only have an ACK in Qdisc/NIC queues, 703 * or if TX completion was delayed after we processed ACK packet. 704 */ 705 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 706 int size_goal) 707 { 708 return skb->len < size_goal && 709 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 710 !tcp_rtx_queue_empty(sk) && 711 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 712 tcp_skb_can_collapse_to(skb); 713 } 714 715 void tcp_push(struct sock *sk, int flags, int mss_now, 716 int nonagle, int size_goal) 717 { 718 struct tcp_sock *tp = tcp_sk(sk); 719 struct sk_buff *skb; 720 721 skb = tcp_write_queue_tail(sk); 722 if (!skb) 723 return; 724 if (!(flags & MSG_MORE) || forced_push(tp)) 725 tcp_mark_push(tp, skb); 726 727 tcp_mark_urg(tp, flags); 728 729 if (tcp_should_autocork(sk, skb, size_goal)) { 730 731 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 732 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 733 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 734 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 735 smp_mb__after_atomic(); 736 } 737 /* It is possible TX completion already happened 738 * before we set TSQ_THROTTLED. 739 */ 740 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 741 return; 742 } 743 744 if (flags & MSG_MORE) 745 nonagle = TCP_NAGLE_CORK; 746 747 __tcp_push_pending_frames(sk, mss_now, nonagle); 748 } 749 750 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 751 unsigned int offset, size_t len) 752 { 753 struct tcp_splice_state *tss = rd_desc->arg.data; 754 int ret; 755 756 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 757 min(rd_desc->count, len), tss->flags); 758 if (ret > 0) 759 rd_desc->count -= ret; 760 return ret; 761 } 762 763 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 764 { 765 /* Store TCP splice context information in read_descriptor_t. */ 766 read_descriptor_t rd_desc = { 767 .arg.data = tss, 768 .count = tss->len, 769 }; 770 771 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 772 } 773 774 /** 775 * tcp_splice_read - splice data from TCP socket to a pipe 776 * @sock: socket to splice from 777 * @ppos: position (not valid) 778 * @pipe: pipe to splice to 779 * @len: number of bytes to splice 780 * @flags: splice modifier flags 781 * 782 * Description: 783 * Will read pages from given socket and fill them into a pipe. 784 * 785 **/ 786 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 787 struct pipe_inode_info *pipe, size_t len, 788 unsigned int flags) 789 { 790 struct sock *sk = sock->sk; 791 struct tcp_splice_state tss = { 792 .pipe = pipe, 793 .len = len, 794 .flags = flags, 795 }; 796 long timeo; 797 ssize_t spliced; 798 int ret; 799 800 sock_rps_record_flow(sk); 801 /* 802 * We can't seek on a socket input 803 */ 804 if (unlikely(*ppos)) 805 return -ESPIPE; 806 807 ret = spliced = 0; 808 809 lock_sock(sk); 810 811 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 812 while (tss.len) { 813 ret = __tcp_splice_read(sk, &tss); 814 if (ret < 0) 815 break; 816 else if (!ret) { 817 if (spliced) 818 break; 819 if (sock_flag(sk, SOCK_DONE)) 820 break; 821 if (sk->sk_err) { 822 ret = sock_error(sk); 823 break; 824 } 825 if (sk->sk_shutdown & RCV_SHUTDOWN) 826 break; 827 if (sk->sk_state == TCP_CLOSE) { 828 /* 829 * This occurs when user tries to read 830 * from never connected socket. 831 */ 832 ret = -ENOTCONN; 833 break; 834 } 835 if (!timeo) { 836 ret = -EAGAIN; 837 break; 838 } 839 /* if __tcp_splice_read() got nothing while we have 840 * an skb in receive queue, we do not want to loop. 841 * This might happen with URG data. 842 */ 843 if (!skb_queue_empty(&sk->sk_receive_queue)) 844 break; 845 ret = sk_wait_data(sk, &timeo, NULL); 846 if (ret < 0) 847 break; 848 if (signal_pending(current)) { 849 ret = sock_intr_errno(timeo); 850 break; 851 } 852 continue; 853 } 854 tss.len -= ret; 855 spliced += ret; 856 857 if (!tss.len || !timeo) 858 break; 859 release_sock(sk); 860 lock_sock(sk); 861 862 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 863 (sk->sk_shutdown & RCV_SHUTDOWN) || 864 signal_pending(current)) 865 break; 866 } 867 868 release_sock(sk); 869 870 if (spliced) 871 return spliced; 872 873 return ret; 874 } 875 EXPORT_SYMBOL(tcp_splice_read); 876 877 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 878 bool force_schedule) 879 { 880 struct sk_buff *skb; 881 882 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 883 if (likely(skb)) { 884 bool mem_scheduled; 885 886 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 887 if (force_schedule) { 888 mem_scheduled = true; 889 sk_forced_mem_schedule(sk, skb->truesize); 890 } else { 891 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 892 } 893 if (likely(mem_scheduled)) { 894 skb_reserve(skb, MAX_TCP_HEADER); 895 skb->ip_summed = CHECKSUM_PARTIAL; 896 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 897 return skb; 898 } 899 __kfree_skb(skb); 900 } else { 901 sk->sk_prot->enter_memory_pressure(sk); 902 sk_stream_moderate_sndbuf(sk); 903 } 904 return NULL; 905 } 906 907 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 908 int large_allowed) 909 { 910 struct tcp_sock *tp = tcp_sk(sk); 911 u32 new_size_goal, size_goal; 912 913 if (!large_allowed) 914 return mss_now; 915 916 /* Note : tcp_tso_autosize() will eventually split this later */ 917 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 918 919 /* We try hard to avoid divides here */ 920 size_goal = tp->gso_segs * mss_now; 921 if (unlikely(new_size_goal < size_goal || 922 new_size_goal >= size_goal + mss_now)) { 923 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 924 sk->sk_gso_max_segs); 925 size_goal = tp->gso_segs * mss_now; 926 } 927 928 return max(size_goal, mss_now); 929 } 930 931 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 932 { 933 int mss_now; 934 935 mss_now = tcp_current_mss(sk); 936 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 937 938 return mss_now; 939 } 940 941 /* In some cases, sendmsg() could have added an skb to the write queue, 942 * but failed adding payload on it. We need to remove it to consume less 943 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 944 * epoll() users. Another reason is that tcp_write_xmit() does not like 945 * finding an empty skb in the write queue. 946 */ 947 void tcp_remove_empty_skb(struct sock *sk) 948 { 949 struct sk_buff *skb = tcp_write_queue_tail(sk); 950 951 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 952 tcp_unlink_write_queue(skb, sk); 953 if (tcp_write_queue_empty(sk)) 954 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 955 tcp_wmem_free_skb(sk, skb); 956 } 957 } 958 959 /* skb changing from pure zc to mixed, must charge zc */ 960 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 961 { 962 if (unlikely(skb_zcopy_pure(skb))) { 963 u32 extra = skb->truesize - 964 SKB_TRUESIZE(skb_end_offset(skb)); 965 966 if (!sk_wmem_schedule(sk, extra)) 967 return -ENOMEM; 968 969 sk_mem_charge(sk, extra); 970 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 971 } 972 return 0; 973 } 974 975 976 int tcp_wmem_schedule(struct sock *sk, int copy) 977 { 978 int left; 979 980 if (likely(sk_wmem_schedule(sk, copy))) 981 return copy; 982 983 /* We could be in trouble if we have nothing queued. 984 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 985 * to guarantee some progress. 986 */ 987 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued; 988 if (left > 0) 989 sk_forced_mem_schedule(sk, min(left, copy)); 990 return min(copy, sk->sk_forward_alloc); 991 } 992 993 void tcp_free_fastopen_req(struct tcp_sock *tp) 994 { 995 if (tp->fastopen_req) { 996 kfree(tp->fastopen_req); 997 tp->fastopen_req = NULL; 998 } 999 } 1000 1001 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 1002 size_t size, struct ubuf_info *uarg) 1003 { 1004 struct tcp_sock *tp = tcp_sk(sk); 1005 struct inet_sock *inet = inet_sk(sk); 1006 struct sockaddr *uaddr = msg->msg_name; 1007 int err, flags; 1008 1009 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1010 TFO_CLIENT_ENABLE) || 1011 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1012 uaddr->sa_family == AF_UNSPEC)) 1013 return -EOPNOTSUPP; 1014 if (tp->fastopen_req) 1015 return -EALREADY; /* Another Fast Open is in progress */ 1016 1017 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1018 sk->sk_allocation); 1019 if (unlikely(!tp->fastopen_req)) 1020 return -ENOBUFS; 1021 tp->fastopen_req->data = msg; 1022 tp->fastopen_req->size = size; 1023 tp->fastopen_req->uarg = uarg; 1024 1025 if (inet_test_bit(DEFER_CONNECT, sk)) { 1026 err = tcp_connect(sk); 1027 /* Same failure procedure as in tcp_v4/6_connect */ 1028 if (err) { 1029 tcp_set_state(sk, TCP_CLOSE); 1030 inet->inet_dport = 0; 1031 sk->sk_route_caps = 0; 1032 } 1033 } 1034 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1035 err = __inet_stream_connect(sk->sk_socket, uaddr, 1036 msg->msg_namelen, flags, 1); 1037 /* fastopen_req could already be freed in __inet_stream_connect 1038 * if the connection times out or gets rst 1039 */ 1040 if (tp->fastopen_req) { 1041 *copied = tp->fastopen_req->copied; 1042 tcp_free_fastopen_req(tp); 1043 inet_clear_bit(DEFER_CONNECT, sk); 1044 } 1045 return err; 1046 } 1047 1048 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1049 { 1050 struct tcp_sock *tp = tcp_sk(sk); 1051 struct ubuf_info *uarg = NULL; 1052 struct sk_buff *skb; 1053 struct sockcm_cookie sockc; 1054 int flags, err, copied = 0; 1055 int mss_now = 0, size_goal, copied_syn = 0; 1056 int process_backlog = 0; 1057 int zc = 0; 1058 long timeo; 1059 1060 flags = msg->msg_flags; 1061 1062 if ((flags & MSG_ZEROCOPY) && size) { 1063 if (msg->msg_ubuf) { 1064 uarg = msg->msg_ubuf; 1065 if (sk->sk_route_caps & NETIF_F_SG) 1066 zc = MSG_ZEROCOPY; 1067 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1068 skb = tcp_write_queue_tail(sk); 1069 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1070 if (!uarg) { 1071 err = -ENOBUFS; 1072 goto out_err; 1073 } 1074 if (sk->sk_route_caps & NETIF_F_SG) 1075 zc = MSG_ZEROCOPY; 1076 else 1077 uarg_to_msgzc(uarg)->zerocopy = 0; 1078 } 1079 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1080 if (sk->sk_route_caps & NETIF_F_SG) 1081 zc = MSG_SPLICE_PAGES; 1082 } 1083 1084 if (unlikely(flags & MSG_FASTOPEN || 1085 inet_test_bit(DEFER_CONNECT, sk)) && 1086 !tp->repair) { 1087 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1088 if (err == -EINPROGRESS && copied_syn > 0) 1089 goto out; 1090 else if (err) 1091 goto out_err; 1092 } 1093 1094 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1095 1096 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1097 1098 /* Wait for a connection to finish. One exception is TCP Fast Open 1099 * (passive side) where data is allowed to be sent before a connection 1100 * is fully established. 1101 */ 1102 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1103 !tcp_passive_fastopen(sk)) { 1104 err = sk_stream_wait_connect(sk, &timeo); 1105 if (err != 0) 1106 goto do_error; 1107 } 1108 1109 if (unlikely(tp->repair)) { 1110 if (tp->repair_queue == TCP_RECV_QUEUE) { 1111 copied = tcp_send_rcvq(sk, msg, size); 1112 goto out_nopush; 1113 } 1114 1115 err = -EINVAL; 1116 if (tp->repair_queue == TCP_NO_QUEUE) 1117 goto out_err; 1118 1119 /* 'common' sending to sendq */ 1120 } 1121 1122 sockcm_init(&sockc, sk); 1123 if (msg->msg_controllen) { 1124 err = sock_cmsg_send(sk, msg, &sockc); 1125 if (unlikely(err)) { 1126 err = -EINVAL; 1127 goto out_err; 1128 } 1129 } 1130 1131 /* This should be in poll */ 1132 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1133 1134 /* Ok commence sending. */ 1135 copied = 0; 1136 1137 restart: 1138 mss_now = tcp_send_mss(sk, &size_goal, flags); 1139 1140 err = -EPIPE; 1141 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1142 goto do_error; 1143 1144 while (msg_data_left(msg)) { 1145 ssize_t copy = 0; 1146 1147 skb = tcp_write_queue_tail(sk); 1148 if (skb) 1149 copy = size_goal - skb->len; 1150 1151 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1152 bool first_skb; 1153 1154 new_segment: 1155 if (!sk_stream_memory_free(sk)) 1156 goto wait_for_space; 1157 1158 if (unlikely(process_backlog >= 16)) { 1159 process_backlog = 0; 1160 if (sk_flush_backlog(sk)) 1161 goto restart; 1162 } 1163 first_skb = tcp_rtx_and_write_queues_empty(sk); 1164 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1165 first_skb); 1166 if (!skb) 1167 goto wait_for_space; 1168 1169 process_backlog++; 1170 1171 #ifdef CONFIG_SKB_DECRYPTED 1172 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1173 #endif 1174 tcp_skb_entail(sk, skb); 1175 copy = size_goal; 1176 1177 /* All packets are restored as if they have 1178 * already been sent. skb_mstamp_ns isn't set to 1179 * avoid wrong rtt estimation. 1180 */ 1181 if (tp->repair) 1182 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1183 } 1184 1185 /* Try to append data to the end of skb. */ 1186 if (copy > msg_data_left(msg)) 1187 copy = msg_data_left(msg); 1188 1189 if (zc == 0) { 1190 bool merge = true; 1191 int i = skb_shinfo(skb)->nr_frags; 1192 struct page_frag *pfrag = sk_page_frag(sk); 1193 1194 if (!sk_page_frag_refill(sk, pfrag)) 1195 goto wait_for_space; 1196 1197 if (!skb_can_coalesce(skb, i, pfrag->page, 1198 pfrag->offset)) { 1199 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1200 tcp_mark_push(tp, skb); 1201 goto new_segment; 1202 } 1203 merge = false; 1204 } 1205 1206 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1207 1208 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1209 if (tcp_downgrade_zcopy_pure(sk, skb)) 1210 goto wait_for_space; 1211 skb_zcopy_downgrade_managed(skb); 1212 } 1213 1214 copy = tcp_wmem_schedule(sk, copy); 1215 if (!copy) 1216 goto wait_for_space; 1217 1218 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1219 pfrag->page, 1220 pfrag->offset, 1221 copy); 1222 if (err) 1223 goto do_error; 1224 1225 /* Update the skb. */ 1226 if (merge) { 1227 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1228 } else { 1229 skb_fill_page_desc(skb, i, pfrag->page, 1230 pfrag->offset, copy); 1231 page_ref_inc(pfrag->page); 1232 } 1233 pfrag->offset += copy; 1234 } else if (zc == MSG_ZEROCOPY) { 1235 /* First append to a fragless skb builds initial 1236 * pure zerocopy skb 1237 */ 1238 if (!skb->len) 1239 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1240 1241 if (!skb_zcopy_pure(skb)) { 1242 copy = tcp_wmem_schedule(sk, copy); 1243 if (!copy) 1244 goto wait_for_space; 1245 } 1246 1247 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1248 if (err == -EMSGSIZE || err == -EEXIST) { 1249 tcp_mark_push(tp, skb); 1250 goto new_segment; 1251 } 1252 if (err < 0) 1253 goto do_error; 1254 copy = err; 1255 } else if (zc == MSG_SPLICE_PAGES) { 1256 /* Splice in data if we can; copy if we can't. */ 1257 if (tcp_downgrade_zcopy_pure(sk, skb)) 1258 goto wait_for_space; 1259 copy = tcp_wmem_schedule(sk, copy); 1260 if (!copy) 1261 goto wait_for_space; 1262 1263 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1264 sk->sk_allocation); 1265 if (err < 0) { 1266 if (err == -EMSGSIZE) { 1267 tcp_mark_push(tp, skb); 1268 goto new_segment; 1269 } 1270 goto do_error; 1271 } 1272 copy = err; 1273 1274 if (!(flags & MSG_NO_SHARED_FRAGS)) 1275 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1276 1277 sk_wmem_queued_add(sk, copy); 1278 sk_mem_charge(sk, copy); 1279 } 1280 1281 if (!copied) 1282 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1283 1284 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1285 TCP_SKB_CB(skb)->end_seq += copy; 1286 tcp_skb_pcount_set(skb, 0); 1287 1288 copied += copy; 1289 if (!msg_data_left(msg)) { 1290 if (unlikely(flags & MSG_EOR)) 1291 TCP_SKB_CB(skb)->eor = 1; 1292 goto out; 1293 } 1294 1295 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1296 continue; 1297 1298 if (forced_push(tp)) { 1299 tcp_mark_push(tp, skb); 1300 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1301 } else if (skb == tcp_send_head(sk)) 1302 tcp_push_one(sk, mss_now); 1303 continue; 1304 1305 wait_for_space: 1306 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1307 tcp_remove_empty_skb(sk); 1308 if (copied) 1309 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1310 TCP_NAGLE_PUSH, size_goal); 1311 1312 err = sk_stream_wait_memory(sk, &timeo); 1313 if (err != 0) 1314 goto do_error; 1315 1316 mss_now = tcp_send_mss(sk, &size_goal, flags); 1317 } 1318 1319 out: 1320 if (copied) { 1321 tcp_tx_timestamp(sk, sockc.tsflags); 1322 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1323 } 1324 out_nopush: 1325 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1326 if (uarg && !msg->msg_ubuf) 1327 net_zcopy_put(uarg); 1328 return copied + copied_syn; 1329 1330 do_error: 1331 tcp_remove_empty_skb(sk); 1332 1333 if (copied + copied_syn) 1334 goto out; 1335 out_err: 1336 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1337 if (uarg && !msg->msg_ubuf) 1338 net_zcopy_put_abort(uarg, true); 1339 err = sk_stream_error(sk, flags, err); 1340 /* make sure we wake any epoll edge trigger waiter */ 1341 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1342 sk->sk_write_space(sk); 1343 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1344 } 1345 return err; 1346 } 1347 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1348 1349 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1350 { 1351 int ret; 1352 1353 lock_sock(sk); 1354 ret = tcp_sendmsg_locked(sk, msg, size); 1355 release_sock(sk); 1356 1357 return ret; 1358 } 1359 EXPORT_SYMBOL(tcp_sendmsg); 1360 1361 void tcp_splice_eof(struct socket *sock) 1362 { 1363 struct sock *sk = sock->sk; 1364 struct tcp_sock *tp = tcp_sk(sk); 1365 int mss_now, size_goal; 1366 1367 if (!tcp_write_queue_tail(sk)) 1368 return; 1369 1370 lock_sock(sk); 1371 mss_now = tcp_send_mss(sk, &size_goal, 0); 1372 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1373 release_sock(sk); 1374 } 1375 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1376 1377 /* 1378 * Handle reading urgent data. BSD has very simple semantics for 1379 * this, no blocking and very strange errors 8) 1380 */ 1381 1382 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1383 { 1384 struct tcp_sock *tp = tcp_sk(sk); 1385 1386 /* No URG data to read. */ 1387 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1388 tp->urg_data == TCP_URG_READ) 1389 return -EINVAL; /* Yes this is right ! */ 1390 1391 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1392 return -ENOTCONN; 1393 1394 if (tp->urg_data & TCP_URG_VALID) { 1395 int err = 0; 1396 char c = tp->urg_data; 1397 1398 if (!(flags & MSG_PEEK)) 1399 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1400 1401 /* Read urgent data. */ 1402 msg->msg_flags |= MSG_OOB; 1403 1404 if (len > 0) { 1405 if (!(flags & MSG_TRUNC)) 1406 err = memcpy_to_msg(msg, &c, 1); 1407 len = 1; 1408 } else 1409 msg->msg_flags |= MSG_TRUNC; 1410 1411 return err ? -EFAULT : len; 1412 } 1413 1414 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1415 return 0; 1416 1417 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1418 * the available implementations agree in this case: 1419 * this call should never block, independent of the 1420 * blocking state of the socket. 1421 * Mike <pall@rz.uni-karlsruhe.de> 1422 */ 1423 return -EAGAIN; 1424 } 1425 1426 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1427 { 1428 struct sk_buff *skb; 1429 int copied = 0, err = 0; 1430 1431 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1432 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1433 if (err) 1434 return err; 1435 copied += skb->len; 1436 } 1437 1438 skb_queue_walk(&sk->sk_write_queue, skb) { 1439 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1440 if (err) 1441 break; 1442 1443 copied += skb->len; 1444 } 1445 1446 return err ?: copied; 1447 } 1448 1449 /* Clean up the receive buffer for full frames taken by the user, 1450 * then send an ACK if necessary. COPIED is the number of bytes 1451 * tcp_recvmsg has given to the user so far, it speeds up the 1452 * calculation of whether or not we must ACK for the sake of 1453 * a window update. 1454 */ 1455 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1456 { 1457 struct tcp_sock *tp = tcp_sk(sk); 1458 bool time_to_ack = false; 1459 1460 if (inet_csk_ack_scheduled(sk)) { 1461 const struct inet_connection_sock *icsk = inet_csk(sk); 1462 1463 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1464 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1465 /* 1466 * If this read emptied read buffer, we send ACK, if 1467 * connection is not bidirectional, user drained 1468 * receive buffer and there was a small segment 1469 * in queue. 1470 */ 1471 (copied > 0 && 1472 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1473 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1474 !inet_csk_in_pingpong_mode(sk))) && 1475 !atomic_read(&sk->sk_rmem_alloc))) 1476 time_to_ack = true; 1477 } 1478 1479 /* We send an ACK if we can now advertise a non-zero window 1480 * which has been raised "significantly". 1481 * 1482 * Even if window raised up to infinity, do not send window open ACK 1483 * in states, where we will not receive more. It is useless. 1484 */ 1485 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1486 __u32 rcv_window_now = tcp_receive_window(tp); 1487 1488 /* Optimize, __tcp_select_window() is not cheap. */ 1489 if (2*rcv_window_now <= tp->window_clamp) { 1490 __u32 new_window = __tcp_select_window(sk); 1491 1492 /* Send ACK now, if this read freed lots of space 1493 * in our buffer. Certainly, new_window is new window. 1494 * We can advertise it now, if it is not less than current one. 1495 * "Lots" means "at least twice" here. 1496 */ 1497 if (new_window && new_window >= 2 * rcv_window_now) 1498 time_to_ack = true; 1499 } 1500 } 1501 if (time_to_ack) 1502 tcp_send_ack(sk); 1503 } 1504 1505 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1506 { 1507 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1508 struct tcp_sock *tp = tcp_sk(sk); 1509 1510 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1511 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1512 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1513 __tcp_cleanup_rbuf(sk, copied); 1514 } 1515 1516 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1517 { 1518 __skb_unlink(skb, &sk->sk_receive_queue); 1519 if (likely(skb->destructor == sock_rfree)) { 1520 sock_rfree(skb); 1521 skb->destructor = NULL; 1522 skb->sk = NULL; 1523 return skb_attempt_defer_free(skb); 1524 } 1525 __kfree_skb(skb); 1526 } 1527 1528 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1529 { 1530 struct sk_buff *skb; 1531 u32 offset; 1532 1533 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1534 offset = seq - TCP_SKB_CB(skb)->seq; 1535 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1536 pr_err_once("%s: found a SYN, please report !\n", __func__); 1537 offset--; 1538 } 1539 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1540 *off = offset; 1541 return skb; 1542 } 1543 /* This looks weird, but this can happen if TCP collapsing 1544 * splitted a fat GRO packet, while we released socket lock 1545 * in skb_splice_bits() 1546 */ 1547 tcp_eat_recv_skb(sk, skb); 1548 } 1549 return NULL; 1550 } 1551 EXPORT_SYMBOL(tcp_recv_skb); 1552 1553 /* 1554 * This routine provides an alternative to tcp_recvmsg() for routines 1555 * that would like to handle copying from skbuffs directly in 'sendfile' 1556 * fashion. 1557 * Note: 1558 * - It is assumed that the socket was locked by the caller. 1559 * - The routine does not block. 1560 * - At present, there is no support for reading OOB data 1561 * or for 'peeking' the socket using this routine 1562 * (although both would be easy to implement). 1563 */ 1564 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1565 sk_read_actor_t recv_actor) 1566 { 1567 struct sk_buff *skb; 1568 struct tcp_sock *tp = tcp_sk(sk); 1569 u32 seq = tp->copied_seq; 1570 u32 offset; 1571 int copied = 0; 1572 1573 if (sk->sk_state == TCP_LISTEN) 1574 return -ENOTCONN; 1575 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1576 if (offset < skb->len) { 1577 int used; 1578 size_t len; 1579 1580 len = skb->len - offset; 1581 /* Stop reading if we hit a patch of urgent data */ 1582 if (unlikely(tp->urg_data)) { 1583 u32 urg_offset = tp->urg_seq - seq; 1584 if (urg_offset < len) 1585 len = urg_offset; 1586 if (!len) 1587 break; 1588 } 1589 used = recv_actor(desc, skb, offset, len); 1590 if (used <= 0) { 1591 if (!copied) 1592 copied = used; 1593 break; 1594 } 1595 if (WARN_ON_ONCE(used > len)) 1596 used = len; 1597 seq += used; 1598 copied += used; 1599 offset += used; 1600 1601 /* If recv_actor drops the lock (e.g. TCP splice 1602 * receive) the skb pointer might be invalid when 1603 * getting here: tcp_collapse might have deleted it 1604 * while aggregating skbs from the socket queue. 1605 */ 1606 skb = tcp_recv_skb(sk, seq - 1, &offset); 1607 if (!skb) 1608 break; 1609 /* TCP coalescing might have appended data to the skb. 1610 * Try to splice more frags 1611 */ 1612 if (offset + 1 != skb->len) 1613 continue; 1614 } 1615 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1616 tcp_eat_recv_skb(sk, skb); 1617 ++seq; 1618 break; 1619 } 1620 tcp_eat_recv_skb(sk, skb); 1621 if (!desc->count) 1622 break; 1623 WRITE_ONCE(tp->copied_seq, seq); 1624 } 1625 WRITE_ONCE(tp->copied_seq, seq); 1626 1627 tcp_rcv_space_adjust(sk); 1628 1629 /* Clean up data we have read: This will do ACK frames. */ 1630 if (copied > 0) { 1631 tcp_recv_skb(sk, seq, &offset); 1632 tcp_cleanup_rbuf(sk, copied); 1633 } 1634 return copied; 1635 } 1636 EXPORT_SYMBOL(tcp_read_sock); 1637 1638 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1639 { 1640 struct sk_buff *skb; 1641 int copied = 0; 1642 1643 if (sk->sk_state == TCP_LISTEN) 1644 return -ENOTCONN; 1645 1646 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1647 u8 tcp_flags; 1648 int used; 1649 1650 __skb_unlink(skb, &sk->sk_receive_queue); 1651 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1652 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1653 used = recv_actor(sk, skb); 1654 if (used < 0) { 1655 if (!copied) 1656 copied = used; 1657 break; 1658 } 1659 copied += used; 1660 1661 if (tcp_flags & TCPHDR_FIN) 1662 break; 1663 } 1664 return copied; 1665 } 1666 EXPORT_SYMBOL(tcp_read_skb); 1667 1668 void tcp_read_done(struct sock *sk, size_t len) 1669 { 1670 struct tcp_sock *tp = tcp_sk(sk); 1671 u32 seq = tp->copied_seq; 1672 struct sk_buff *skb; 1673 size_t left; 1674 u32 offset; 1675 1676 if (sk->sk_state == TCP_LISTEN) 1677 return; 1678 1679 left = len; 1680 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1681 int used; 1682 1683 used = min_t(size_t, skb->len - offset, left); 1684 seq += used; 1685 left -= used; 1686 1687 if (skb->len > offset + used) 1688 break; 1689 1690 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1691 tcp_eat_recv_skb(sk, skb); 1692 ++seq; 1693 break; 1694 } 1695 tcp_eat_recv_skb(sk, skb); 1696 } 1697 WRITE_ONCE(tp->copied_seq, seq); 1698 1699 tcp_rcv_space_adjust(sk); 1700 1701 /* Clean up data we have read: This will do ACK frames. */ 1702 if (left != len) 1703 tcp_cleanup_rbuf(sk, len - left); 1704 } 1705 EXPORT_SYMBOL(tcp_read_done); 1706 1707 int tcp_peek_len(struct socket *sock) 1708 { 1709 return tcp_inq(sock->sk); 1710 } 1711 EXPORT_SYMBOL(tcp_peek_len); 1712 1713 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1714 int tcp_set_rcvlowat(struct sock *sk, int val) 1715 { 1716 int space, cap; 1717 1718 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1719 cap = sk->sk_rcvbuf >> 1; 1720 else 1721 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1722 val = min(val, cap); 1723 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1724 1725 /* Check if we need to signal EPOLLIN right now */ 1726 tcp_data_ready(sk); 1727 1728 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1729 return 0; 1730 1731 space = tcp_space_from_win(sk, val); 1732 if (space > sk->sk_rcvbuf) { 1733 WRITE_ONCE(sk->sk_rcvbuf, space); 1734 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1735 } 1736 return 0; 1737 } 1738 EXPORT_SYMBOL(tcp_set_rcvlowat); 1739 1740 void tcp_update_recv_tstamps(struct sk_buff *skb, 1741 struct scm_timestamping_internal *tss) 1742 { 1743 if (skb->tstamp) 1744 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1745 else 1746 tss->ts[0] = (struct timespec64) {0}; 1747 1748 if (skb_hwtstamps(skb)->hwtstamp) 1749 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1750 else 1751 tss->ts[2] = (struct timespec64) {0}; 1752 } 1753 1754 #ifdef CONFIG_MMU 1755 static const struct vm_operations_struct tcp_vm_ops = { 1756 }; 1757 1758 int tcp_mmap(struct file *file, struct socket *sock, 1759 struct vm_area_struct *vma) 1760 { 1761 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1762 return -EPERM; 1763 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1764 1765 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1766 vm_flags_set(vma, VM_MIXEDMAP); 1767 1768 vma->vm_ops = &tcp_vm_ops; 1769 return 0; 1770 } 1771 EXPORT_SYMBOL(tcp_mmap); 1772 1773 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1774 u32 *offset_frag) 1775 { 1776 skb_frag_t *frag; 1777 1778 if (unlikely(offset_skb >= skb->len)) 1779 return NULL; 1780 1781 offset_skb -= skb_headlen(skb); 1782 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1783 return NULL; 1784 1785 frag = skb_shinfo(skb)->frags; 1786 while (offset_skb) { 1787 if (skb_frag_size(frag) > offset_skb) { 1788 *offset_frag = offset_skb; 1789 return frag; 1790 } 1791 offset_skb -= skb_frag_size(frag); 1792 ++frag; 1793 } 1794 *offset_frag = 0; 1795 return frag; 1796 } 1797 1798 static bool can_map_frag(const skb_frag_t *frag) 1799 { 1800 struct page *page; 1801 1802 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1803 return false; 1804 1805 page = skb_frag_page(frag); 1806 1807 if (PageCompound(page) || page->mapping) 1808 return false; 1809 1810 return true; 1811 } 1812 1813 static int find_next_mappable_frag(const skb_frag_t *frag, 1814 int remaining_in_skb) 1815 { 1816 int offset = 0; 1817 1818 if (likely(can_map_frag(frag))) 1819 return 0; 1820 1821 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1822 offset += skb_frag_size(frag); 1823 ++frag; 1824 } 1825 return offset; 1826 } 1827 1828 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1829 struct tcp_zerocopy_receive *zc, 1830 struct sk_buff *skb, u32 offset) 1831 { 1832 u32 frag_offset, partial_frag_remainder = 0; 1833 int mappable_offset; 1834 skb_frag_t *frag; 1835 1836 /* worst case: skip to next skb. try to improve on this case below */ 1837 zc->recv_skip_hint = skb->len - offset; 1838 1839 /* Find the frag containing this offset (and how far into that frag) */ 1840 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1841 if (!frag) 1842 return; 1843 1844 if (frag_offset) { 1845 struct skb_shared_info *info = skb_shinfo(skb); 1846 1847 /* We read part of the last frag, must recvmsg() rest of skb. */ 1848 if (frag == &info->frags[info->nr_frags - 1]) 1849 return; 1850 1851 /* Else, we must at least read the remainder in this frag. */ 1852 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1853 zc->recv_skip_hint -= partial_frag_remainder; 1854 ++frag; 1855 } 1856 1857 /* partial_frag_remainder: If part way through a frag, must read rest. 1858 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1859 * in partial_frag_remainder. 1860 */ 1861 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1862 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1863 } 1864 1865 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1866 int flags, struct scm_timestamping_internal *tss, 1867 int *cmsg_flags); 1868 static int receive_fallback_to_copy(struct sock *sk, 1869 struct tcp_zerocopy_receive *zc, int inq, 1870 struct scm_timestamping_internal *tss) 1871 { 1872 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1873 struct msghdr msg = {}; 1874 int err; 1875 1876 zc->length = 0; 1877 zc->recv_skip_hint = 0; 1878 1879 if (copy_address != zc->copybuf_address) 1880 return -EINVAL; 1881 1882 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq, 1883 &msg.msg_iter); 1884 if (err) 1885 return err; 1886 1887 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1888 tss, &zc->msg_flags); 1889 if (err < 0) 1890 return err; 1891 1892 zc->copybuf_len = err; 1893 if (likely(zc->copybuf_len)) { 1894 struct sk_buff *skb; 1895 u32 offset; 1896 1897 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1898 if (skb) 1899 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1900 } 1901 return 0; 1902 } 1903 1904 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1905 struct sk_buff *skb, u32 copylen, 1906 u32 *offset, u32 *seq) 1907 { 1908 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1909 struct msghdr msg = {}; 1910 int err; 1911 1912 if (copy_address != zc->copybuf_address) 1913 return -EINVAL; 1914 1915 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen, 1916 &msg.msg_iter); 1917 if (err) 1918 return err; 1919 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1920 if (err) 1921 return err; 1922 zc->recv_skip_hint -= copylen; 1923 *offset += copylen; 1924 *seq += copylen; 1925 return (__s32)copylen; 1926 } 1927 1928 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1929 struct sock *sk, 1930 struct sk_buff *skb, 1931 u32 *seq, 1932 s32 copybuf_len, 1933 struct scm_timestamping_internal *tss) 1934 { 1935 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1936 1937 if (!copylen) 1938 return 0; 1939 /* skb is null if inq < PAGE_SIZE. */ 1940 if (skb) { 1941 offset = *seq - TCP_SKB_CB(skb)->seq; 1942 } else { 1943 skb = tcp_recv_skb(sk, *seq, &offset); 1944 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1945 tcp_update_recv_tstamps(skb, tss); 1946 zc->msg_flags |= TCP_CMSG_TS; 1947 } 1948 } 1949 1950 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1951 seq); 1952 return zc->copybuf_len < 0 ? 0 : copylen; 1953 } 1954 1955 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1956 struct page **pending_pages, 1957 unsigned long pages_remaining, 1958 unsigned long *address, 1959 u32 *length, 1960 u32 *seq, 1961 struct tcp_zerocopy_receive *zc, 1962 u32 total_bytes_to_map, 1963 int err) 1964 { 1965 /* At least one page did not map. Try zapping if we skipped earlier. */ 1966 if (err == -EBUSY && 1967 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1968 u32 maybe_zap_len; 1969 1970 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1971 *length + /* Mapped or pending */ 1972 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1973 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1974 err = 0; 1975 } 1976 1977 if (!err) { 1978 unsigned long leftover_pages = pages_remaining; 1979 int bytes_mapped; 1980 1981 /* We called zap_page_range_single, try to reinsert. */ 1982 err = vm_insert_pages(vma, *address, 1983 pending_pages, 1984 &pages_remaining); 1985 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1986 *seq += bytes_mapped; 1987 *address += bytes_mapped; 1988 } 1989 if (err) { 1990 /* Either we were unable to zap, OR we zapped, retried an 1991 * insert, and still had an issue. Either ways, pages_remaining 1992 * is the number of pages we were unable to map, and we unroll 1993 * some state we speculatively touched before. 1994 */ 1995 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1996 1997 *length -= bytes_not_mapped; 1998 zc->recv_skip_hint += bytes_not_mapped; 1999 } 2000 return err; 2001 } 2002 2003 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2004 struct page **pages, 2005 unsigned int pages_to_map, 2006 unsigned long *address, 2007 u32 *length, 2008 u32 *seq, 2009 struct tcp_zerocopy_receive *zc, 2010 u32 total_bytes_to_map) 2011 { 2012 unsigned long pages_remaining = pages_to_map; 2013 unsigned int pages_mapped; 2014 unsigned int bytes_mapped; 2015 int err; 2016 2017 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2018 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2019 bytes_mapped = PAGE_SIZE * pages_mapped; 2020 /* Even if vm_insert_pages fails, it may have partially succeeded in 2021 * mapping (some but not all of the pages). 2022 */ 2023 *seq += bytes_mapped; 2024 *address += bytes_mapped; 2025 2026 if (likely(!err)) 2027 return 0; 2028 2029 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2030 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2031 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2032 err); 2033 } 2034 2035 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2036 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2037 struct tcp_zerocopy_receive *zc, 2038 struct scm_timestamping_internal *tss) 2039 { 2040 unsigned long msg_control_addr; 2041 struct msghdr cmsg_dummy; 2042 2043 msg_control_addr = (unsigned long)zc->msg_control; 2044 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2045 cmsg_dummy.msg_controllen = 2046 (__kernel_size_t)zc->msg_controllen; 2047 cmsg_dummy.msg_flags = in_compat_syscall() 2048 ? MSG_CMSG_COMPAT : 0; 2049 cmsg_dummy.msg_control_is_user = true; 2050 zc->msg_flags = 0; 2051 if (zc->msg_control == msg_control_addr && 2052 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2053 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2054 zc->msg_control = (__u64) 2055 ((uintptr_t)cmsg_dummy.msg_control_user); 2056 zc->msg_controllen = 2057 (__u64)cmsg_dummy.msg_controllen; 2058 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2059 } 2060 } 2061 2062 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2063 unsigned long address, 2064 bool *mmap_locked) 2065 { 2066 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2067 2068 if (vma) { 2069 if (vma->vm_ops != &tcp_vm_ops) { 2070 vma_end_read(vma); 2071 return NULL; 2072 } 2073 *mmap_locked = false; 2074 return vma; 2075 } 2076 2077 mmap_read_lock(mm); 2078 vma = vma_lookup(mm, address); 2079 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2080 mmap_read_unlock(mm); 2081 return NULL; 2082 } 2083 *mmap_locked = true; 2084 return vma; 2085 } 2086 2087 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2088 static int tcp_zerocopy_receive(struct sock *sk, 2089 struct tcp_zerocopy_receive *zc, 2090 struct scm_timestamping_internal *tss) 2091 { 2092 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2093 unsigned long address = (unsigned long)zc->address; 2094 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2095 s32 copybuf_len = zc->copybuf_len; 2096 struct tcp_sock *tp = tcp_sk(sk); 2097 const skb_frag_t *frags = NULL; 2098 unsigned int pages_to_map = 0; 2099 struct vm_area_struct *vma; 2100 struct sk_buff *skb = NULL; 2101 u32 seq = tp->copied_seq; 2102 u32 total_bytes_to_map; 2103 int inq = tcp_inq(sk); 2104 bool mmap_locked; 2105 int ret; 2106 2107 zc->copybuf_len = 0; 2108 zc->msg_flags = 0; 2109 2110 if (address & (PAGE_SIZE - 1) || address != zc->address) 2111 return -EINVAL; 2112 2113 if (sk->sk_state == TCP_LISTEN) 2114 return -ENOTCONN; 2115 2116 sock_rps_record_flow(sk); 2117 2118 if (inq && inq <= copybuf_len) 2119 return receive_fallback_to_copy(sk, zc, inq, tss); 2120 2121 if (inq < PAGE_SIZE) { 2122 zc->length = 0; 2123 zc->recv_skip_hint = inq; 2124 if (!inq && sock_flag(sk, SOCK_DONE)) 2125 return -EIO; 2126 return 0; 2127 } 2128 2129 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2130 if (!vma) 2131 return -EINVAL; 2132 2133 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2134 avail_len = min_t(u32, vma_len, inq); 2135 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2136 if (total_bytes_to_map) { 2137 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2138 zap_page_range_single(vma, address, total_bytes_to_map, 2139 NULL); 2140 zc->length = total_bytes_to_map; 2141 zc->recv_skip_hint = 0; 2142 } else { 2143 zc->length = avail_len; 2144 zc->recv_skip_hint = avail_len; 2145 } 2146 ret = 0; 2147 while (length + PAGE_SIZE <= zc->length) { 2148 int mappable_offset; 2149 struct page *page; 2150 2151 if (zc->recv_skip_hint < PAGE_SIZE) { 2152 u32 offset_frag; 2153 2154 if (skb) { 2155 if (zc->recv_skip_hint > 0) 2156 break; 2157 skb = skb->next; 2158 offset = seq - TCP_SKB_CB(skb)->seq; 2159 } else { 2160 skb = tcp_recv_skb(sk, seq, &offset); 2161 } 2162 2163 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2164 tcp_update_recv_tstamps(skb, tss); 2165 zc->msg_flags |= TCP_CMSG_TS; 2166 } 2167 zc->recv_skip_hint = skb->len - offset; 2168 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2169 if (!frags || offset_frag) 2170 break; 2171 } 2172 2173 mappable_offset = find_next_mappable_frag(frags, 2174 zc->recv_skip_hint); 2175 if (mappable_offset) { 2176 zc->recv_skip_hint = mappable_offset; 2177 break; 2178 } 2179 page = skb_frag_page(frags); 2180 prefetchw(page); 2181 pages[pages_to_map++] = page; 2182 length += PAGE_SIZE; 2183 zc->recv_skip_hint -= PAGE_SIZE; 2184 frags++; 2185 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2186 zc->recv_skip_hint < PAGE_SIZE) { 2187 /* Either full batch, or we're about to go to next skb 2188 * (and we cannot unroll failed ops across skbs). 2189 */ 2190 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2191 pages_to_map, 2192 &address, &length, 2193 &seq, zc, 2194 total_bytes_to_map); 2195 if (ret) 2196 goto out; 2197 pages_to_map = 0; 2198 } 2199 } 2200 if (pages_to_map) { 2201 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2202 &address, &length, &seq, 2203 zc, total_bytes_to_map); 2204 } 2205 out: 2206 if (mmap_locked) 2207 mmap_read_unlock(current->mm); 2208 else 2209 vma_end_read(vma); 2210 /* Try to copy straggler data. */ 2211 if (!ret) 2212 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2213 2214 if (length + copylen) { 2215 WRITE_ONCE(tp->copied_seq, seq); 2216 tcp_rcv_space_adjust(sk); 2217 2218 /* Clean up data we have read: This will do ACK frames. */ 2219 tcp_recv_skb(sk, seq, &offset); 2220 tcp_cleanup_rbuf(sk, length + copylen); 2221 ret = 0; 2222 if (length == zc->length) 2223 zc->recv_skip_hint = 0; 2224 } else { 2225 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2226 ret = -EIO; 2227 } 2228 zc->length = length; 2229 return ret; 2230 } 2231 #endif 2232 2233 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2234 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2235 struct scm_timestamping_internal *tss) 2236 { 2237 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2238 bool has_timestamping = false; 2239 2240 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2241 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2242 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2243 if (new_tstamp) { 2244 struct __kernel_timespec kts = { 2245 .tv_sec = tss->ts[0].tv_sec, 2246 .tv_nsec = tss->ts[0].tv_nsec, 2247 }; 2248 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2249 sizeof(kts), &kts); 2250 } else { 2251 struct __kernel_old_timespec ts_old = { 2252 .tv_sec = tss->ts[0].tv_sec, 2253 .tv_nsec = tss->ts[0].tv_nsec, 2254 }; 2255 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2256 sizeof(ts_old), &ts_old); 2257 } 2258 } else { 2259 if (new_tstamp) { 2260 struct __kernel_sock_timeval stv = { 2261 .tv_sec = tss->ts[0].tv_sec, 2262 .tv_usec = tss->ts[0].tv_nsec / 1000, 2263 }; 2264 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2265 sizeof(stv), &stv); 2266 } else { 2267 struct __kernel_old_timeval tv = { 2268 .tv_sec = tss->ts[0].tv_sec, 2269 .tv_usec = tss->ts[0].tv_nsec / 1000, 2270 }; 2271 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2272 sizeof(tv), &tv); 2273 } 2274 } 2275 } 2276 2277 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2278 has_timestamping = true; 2279 else 2280 tss->ts[0] = (struct timespec64) {0}; 2281 } 2282 2283 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2284 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2285 has_timestamping = true; 2286 else 2287 tss->ts[2] = (struct timespec64) {0}; 2288 } 2289 2290 if (has_timestamping) { 2291 tss->ts[1] = (struct timespec64) {0}; 2292 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2293 put_cmsg_scm_timestamping64(msg, tss); 2294 else 2295 put_cmsg_scm_timestamping(msg, tss); 2296 } 2297 } 2298 2299 static int tcp_inq_hint(struct sock *sk) 2300 { 2301 const struct tcp_sock *tp = tcp_sk(sk); 2302 u32 copied_seq = READ_ONCE(tp->copied_seq); 2303 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2304 int inq; 2305 2306 inq = rcv_nxt - copied_seq; 2307 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2308 lock_sock(sk); 2309 inq = tp->rcv_nxt - tp->copied_seq; 2310 release_sock(sk); 2311 } 2312 /* After receiving a FIN, tell the user-space to continue reading 2313 * by returning a non-zero inq. 2314 */ 2315 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2316 inq = 1; 2317 return inq; 2318 } 2319 2320 /* 2321 * This routine copies from a sock struct into the user buffer. 2322 * 2323 * Technical note: in 2.3 we work on _locked_ socket, so that 2324 * tricks with *seq access order and skb->users are not required. 2325 * Probably, code can be easily improved even more. 2326 */ 2327 2328 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2329 int flags, struct scm_timestamping_internal *tss, 2330 int *cmsg_flags) 2331 { 2332 struct tcp_sock *tp = tcp_sk(sk); 2333 int copied = 0; 2334 u32 peek_seq; 2335 u32 *seq; 2336 unsigned long used; 2337 int err; 2338 int target; /* Read at least this many bytes */ 2339 long timeo; 2340 struct sk_buff *skb, *last; 2341 u32 peek_offset = 0; 2342 u32 urg_hole = 0; 2343 2344 err = -ENOTCONN; 2345 if (sk->sk_state == TCP_LISTEN) 2346 goto out; 2347 2348 if (tp->recvmsg_inq) { 2349 *cmsg_flags = TCP_CMSG_INQ; 2350 msg->msg_get_inq = 1; 2351 } 2352 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2353 2354 /* Urgent data needs to be handled specially. */ 2355 if (flags & MSG_OOB) 2356 goto recv_urg; 2357 2358 if (unlikely(tp->repair)) { 2359 err = -EPERM; 2360 if (!(flags & MSG_PEEK)) 2361 goto out; 2362 2363 if (tp->repair_queue == TCP_SEND_QUEUE) 2364 goto recv_sndq; 2365 2366 err = -EINVAL; 2367 if (tp->repair_queue == TCP_NO_QUEUE) 2368 goto out; 2369 2370 /* 'common' recv queue MSG_PEEK-ing */ 2371 } 2372 2373 seq = &tp->copied_seq; 2374 if (flags & MSG_PEEK) { 2375 peek_offset = max(sk_peek_offset(sk, flags), 0); 2376 peek_seq = tp->copied_seq + peek_offset; 2377 seq = &peek_seq; 2378 } 2379 2380 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2381 2382 do { 2383 u32 offset; 2384 2385 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2386 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2387 if (copied) 2388 break; 2389 if (signal_pending(current)) { 2390 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2391 break; 2392 } 2393 } 2394 2395 /* Next get a buffer. */ 2396 2397 last = skb_peek_tail(&sk->sk_receive_queue); 2398 skb_queue_walk(&sk->sk_receive_queue, skb) { 2399 last = skb; 2400 /* Now that we have two receive queues this 2401 * shouldn't happen. 2402 */ 2403 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2404 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2405 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2406 flags)) 2407 break; 2408 2409 offset = *seq - TCP_SKB_CB(skb)->seq; 2410 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2411 pr_err_once("%s: found a SYN, please report !\n", __func__); 2412 offset--; 2413 } 2414 if (offset < skb->len) 2415 goto found_ok_skb; 2416 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2417 goto found_fin_ok; 2418 WARN(!(flags & MSG_PEEK), 2419 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2420 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2421 } 2422 2423 /* Well, if we have backlog, try to process it now yet. */ 2424 2425 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2426 break; 2427 2428 if (copied) { 2429 if (!timeo || 2430 sk->sk_err || 2431 sk->sk_state == TCP_CLOSE || 2432 (sk->sk_shutdown & RCV_SHUTDOWN) || 2433 signal_pending(current)) 2434 break; 2435 } else { 2436 if (sock_flag(sk, SOCK_DONE)) 2437 break; 2438 2439 if (sk->sk_err) { 2440 copied = sock_error(sk); 2441 break; 2442 } 2443 2444 if (sk->sk_shutdown & RCV_SHUTDOWN) 2445 break; 2446 2447 if (sk->sk_state == TCP_CLOSE) { 2448 /* This occurs when user tries to read 2449 * from never connected socket. 2450 */ 2451 copied = -ENOTCONN; 2452 break; 2453 } 2454 2455 if (!timeo) { 2456 copied = -EAGAIN; 2457 break; 2458 } 2459 2460 if (signal_pending(current)) { 2461 copied = sock_intr_errno(timeo); 2462 break; 2463 } 2464 } 2465 2466 if (copied >= target) { 2467 /* Do not sleep, just process backlog. */ 2468 __sk_flush_backlog(sk); 2469 } else { 2470 tcp_cleanup_rbuf(sk, copied); 2471 err = sk_wait_data(sk, &timeo, last); 2472 if (err < 0) { 2473 err = copied ? : err; 2474 goto out; 2475 } 2476 } 2477 2478 if ((flags & MSG_PEEK) && 2479 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) { 2480 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2481 current->comm, 2482 task_pid_nr(current)); 2483 peek_seq = tp->copied_seq + peek_offset; 2484 } 2485 continue; 2486 2487 found_ok_skb: 2488 /* Ok so how much can we use? */ 2489 used = skb->len - offset; 2490 if (len < used) 2491 used = len; 2492 2493 /* Do we have urgent data here? */ 2494 if (unlikely(tp->urg_data)) { 2495 u32 urg_offset = tp->urg_seq - *seq; 2496 if (urg_offset < used) { 2497 if (!urg_offset) { 2498 if (!sock_flag(sk, SOCK_URGINLINE)) { 2499 WRITE_ONCE(*seq, *seq + 1); 2500 urg_hole++; 2501 offset++; 2502 used--; 2503 if (!used) 2504 goto skip_copy; 2505 } 2506 } else 2507 used = urg_offset; 2508 } 2509 } 2510 2511 if (!(flags & MSG_TRUNC)) { 2512 err = skb_copy_datagram_msg(skb, offset, msg, used); 2513 if (err) { 2514 /* Exception. Bailout! */ 2515 if (!copied) 2516 copied = -EFAULT; 2517 break; 2518 } 2519 } 2520 2521 WRITE_ONCE(*seq, *seq + used); 2522 copied += used; 2523 len -= used; 2524 if (flags & MSG_PEEK) 2525 sk_peek_offset_fwd(sk, used); 2526 else 2527 sk_peek_offset_bwd(sk, used); 2528 tcp_rcv_space_adjust(sk); 2529 2530 skip_copy: 2531 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2532 WRITE_ONCE(tp->urg_data, 0); 2533 tcp_fast_path_check(sk); 2534 } 2535 2536 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2537 tcp_update_recv_tstamps(skb, tss); 2538 *cmsg_flags |= TCP_CMSG_TS; 2539 } 2540 2541 if (used + offset < skb->len) 2542 continue; 2543 2544 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2545 goto found_fin_ok; 2546 if (!(flags & MSG_PEEK)) 2547 tcp_eat_recv_skb(sk, skb); 2548 continue; 2549 2550 found_fin_ok: 2551 /* Process the FIN. */ 2552 WRITE_ONCE(*seq, *seq + 1); 2553 if (!(flags & MSG_PEEK)) 2554 tcp_eat_recv_skb(sk, skb); 2555 break; 2556 } while (len > 0); 2557 2558 /* According to UNIX98, msg_name/msg_namelen are ignored 2559 * on connected socket. I was just happy when found this 8) --ANK 2560 */ 2561 2562 /* Clean up data we have read: This will do ACK frames. */ 2563 tcp_cleanup_rbuf(sk, copied); 2564 return copied; 2565 2566 out: 2567 return err; 2568 2569 recv_urg: 2570 err = tcp_recv_urg(sk, msg, len, flags); 2571 goto out; 2572 2573 recv_sndq: 2574 err = tcp_peek_sndq(sk, msg, len); 2575 goto out; 2576 } 2577 2578 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2579 int *addr_len) 2580 { 2581 int cmsg_flags = 0, ret; 2582 struct scm_timestamping_internal tss; 2583 2584 if (unlikely(flags & MSG_ERRQUEUE)) 2585 return inet_recv_error(sk, msg, len, addr_len); 2586 2587 if (sk_can_busy_loop(sk) && 2588 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2589 sk->sk_state == TCP_ESTABLISHED) 2590 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2591 2592 lock_sock(sk); 2593 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2594 release_sock(sk); 2595 2596 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2597 if (cmsg_flags & TCP_CMSG_TS) 2598 tcp_recv_timestamp(msg, sk, &tss); 2599 if (msg->msg_get_inq) { 2600 msg->msg_inq = tcp_inq_hint(sk); 2601 if (cmsg_flags & TCP_CMSG_INQ) 2602 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2603 sizeof(msg->msg_inq), &msg->msg_inq); 2604 } 2605 } 2606 return ret; 2607 } 2608 EXPORT_SYMBOL(tcp_recvmsg); 2609 2610 void tcp_set_state(struct sock *sk, int state) 2611 { 2612 int oldstate = sk->sk_state; 2613 2614 /* We defined a new enum for TCP states that are exported in BPF 2615 * so as not force the internal TCP states to be frozen. The 2616 * following checks will detect if an internal state value ever 2617 * differs from the BPF value. If this ever happens, then we will 2618 * need to remap the internal value to the BPF value before calling 2619 * tcp_call_bpf_2arg. 2620 */ 2621 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2622 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2623 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2624 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2625 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2626 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2627 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2628 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2629 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2630 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2631 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2632 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2633 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE); 2634 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2635 2636 /* bpf uapi header bpf.h defines an anonymous enum with values 2637 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2638 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2639 * But clang built vmlinux does not have this enum in DWARF 2640 * since clang removes the above code before generating IR/debuginfo. 2641 * Let us explicitly emit the type debuginfo to ensure the 2642 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2643 * regardless of which compiler is used. 2644 */ 2645 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2646 2647 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2648 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2649 2650 switch (state) { 2651 case TCP_ESTABLISHED: 2652 if (oldstate != TCP_ESTABLISHED) 2653 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2654 break; 2655 case TCP_CLOSE_WAIT: 2656 if (oldstate == TCP_SYN_RECV) 2657 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2658 break; 2659 2660 case TCP_CLOSE: 2661 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2662 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2663 2664 sk->sk_prot->unhash(sk); 2665 if (inet_csk(sk)->icsk_bind_hash && 2666 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2667 inet_put_port(sk); 2668 fallthrough; 2669 default: 2670 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2671 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2672 } 2673 2674 /* Change state AFTER socket is unhashed to avoid closed 2675 * socket sitting in hash tables. 2676 */ 2677 inet_sk_state_store(sk, state); 2678 } 2679 EXPORT_SYMBOL_GPL(tcp_set_state); 2680 2681 /* 2682 * State processing on a close. This implements the state shift for 2683 * sending our FIN frame. Note that we only send a FIN for some 2684 * states. A shutdown() may have already sent the FIN, or we may be 2685 * closed. 2686 */ 2687 2688 static const unsigned char new_state[16] = { 2689 /* current state: new state: action: */ 2690 [0 /* (Invalid) */] = TCP_CLOSE, 2691 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2692 [TCP_SYN_SENT] = TCP_CLOSE, 2693 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2694 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2695 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2696 [TCP_TIME_WAIT] = TCP_CLOSE, 2697 [TCP_CLOSE] = TCP_CLOSE, 2698 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2699 [TCP_LAST_ACK] = TCP_LAST_ACK, 2700 [TCP_LISTEN] = TCP_CLOSE, 2701 [TCP_CLOSING] = TCP_CLOSING, 2702 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2703 }; 2704 2705 static int tcp_close_state(struct sock *sk) 2706 { 2707 int next = (int)new_state[sk->sk_state]; 2708 int ns = next & TCP_STATE_MASK; 2709 2710 tcp_set_state(sk, ns); 2711 2712 return next & TCP_ACTION_FIN; 2713 } 2714 2715 /* 2716 * Shutdown the sending side of a connection. Much like close except 2717 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2718 */ 2719 2720 void tcp_shutdown(struct sock *sk, int how) 2721 { 2722 /* We need to grab some memory, and put together a FIN, 2723 * and then put it into the queue to be sent. 2724 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2725 */ 2726 if (!(how & SEND_SHUTDOWN)) 2727 return; 2728 2729 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2730 if ((1 << sk->sk_state) & 2731 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2732 TCPF_CLOSE_WAIT)) { 2733 /* Clear out any half completed packets. FIN if needed. */ 2734 if (tcp_close_state(sk)) 2735 tcp_send_fin(sk); 2736 } 2737 } 2738 EXPORT_SYMBOL(tcp_shutdown); 2739 2740 int tcp_orphan_count_sum(void) 2741 { 2742 int i, total = 0; 2743 2744 for_each_possible_cpu(i) 2745 total += per_cpu(tcp_orphan_count, i); 2746 2747 return max(total, 0); 2748 } 2749 2750 static int tcp_orphan_cache; 2751 static struct timer_list tcp_orphan_timer; 2752 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2753 2754 static void tcp_orphan_update(struct timer_list *unused) 2755 { 2756 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2757 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2758 } 2759 2760 static bool tcp_too_many_orphans(int shift) 2761 { 2762 return READ_ONCE(tcp_orphan_cache) << shift > 2763 READ_ONCE(sysctl_tcp_max_orphans); 2764 } 2765 2766 static bool tcp_out_of_memory(const struct sock *sk) 2767 { 2768 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 2769 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 2770 return true; 2771 return false; 2772 } 2773 2774 bool tcp_check_oom(const struct sock *sk, int shift) 2775 { 2776 bool too_many_orphans, out_of_socket_memory; 2777 2778 too_many_orphans = tcp_too_many_orphans(shift); 2779 out_of_socket_memory = tcp_out_of_memory(sk); 2780 2781 if (too_many_orphans) 2782 net_info_ratelimited("too many orphaned sockets\n"); 2783 if (out_of_socket_memory) 2784 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2785 return too_many_orphans || out_of_socket_memory; 2786 } 2787 2788 void __tcp_close(struct sock *sk, long timeout) 2789 { 2790 struct sk_buff *skb; 2791 int data_was_unread = 0; 2792 int state; 2793 2794 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2795 2796 if (sk->sk_state == TCP_LISTEN) { 2797 tcp_set_state(sk, TCP_CLOSE); 2798 2799 /* Special case. */ 2800 inet_csk_listen_stop(sk); 2801 2802 goto adjudge_to_death; 2803 } 2804 2805 /* We need to flush the recv. buffs. We do this only on the 2806 * descriptor close, not protocol-sourced closes, because the 2807 * reader process may not have drained the data yet! 2808 */ 2809 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2810 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2811 2812 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2813 len--; 2814 data_was_unread += len; 2815 __kfree_skb(skb); 2816 } 2817 2818 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2819 if (sk->sk_state == TCP_CLOSE) 2820 goto adjudge_to_death; 2821 2822 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2823 * data was lost. To witness the awful effects of the old behavior of 2824 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2825 * GET in an FTP client, suspend the process, wait for the client to 2826 * advertise a zero window, then kill -9 the FTP client, wheee... 2827 * Note: timeout is always zero in such a case. 2828 */ 2829 if (unlikely(tcp_sk(sk)->repair)) { 2830 sk->sk_prot->disconnect(sk, 0); 2831 } else if (data_was_unread) { 2832 /* Unread data was tossed, zap the connection. */ 2833 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2834 tcp_set_state(sk, TCP_CLOSE); 2835 tcp_send_active_reset(sk, sk->sk_allocation, 2836 SK_RST_REASON_NOT_SPECIFIED); 2837 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2838 /* Check zero linger _after_ checking for unread data. */ 2839 sk->sk_prot->disconnect(sk, 0); 2840 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2841 } else if (tcp_close_state(sk)) { 2842 /* We FIN if the application ate all the data before 2843 * zapping the connection. 2844 */ 2845 2846 /* RED-PEN. Formally speaking, we have broken TCP state 2847 * machine. State transitions: 2848 * 2849 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2850 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 2851 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2852 * 2853 * are legal only when FIN has been sent (i.e. in window), 2854 * rather than queued out of window. Purists blame. 2855 * 2856 * F.e. "RFC state" is ESTABLISHED, 2857 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2858 * 2859 * The visible declinations are that sometimes 2860 * we enter time-wait state, when it is not required really 2861 * (harmless), do not send active resets, when they are 2862 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2863 * they look as CLOSING or LAST_ACK for Linux) 2864 * Probably, I missed some more holelets. 2865 * --ANK 2866 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2867 * in a single packet! (May consider it later but will 2868 * probably need API support or TCP_CORK SYN-ACK until 2869 * data is written and socket is closed.) 2870 */ 2871 tcp_send_fin(sk); 2872 } 2873 2874 sk_stream_wait_close(sk, timeout); 2875 2876 adjudge_to_death: 2877 state = sk->sk_state; 2878 sock_hold(sk); 2879 sock_orphan(sk); 2880 2881 local_bh_disable(); 2882 bh_lock_sock(sk); 2883 /* remove backlog if any, without releasing ownership. */ 2884 __release_sock(sk); 2885 2886 this_cpu_inc(tcp_orphan_count); 2887 2888 /* Have we already been destroyed by a softirq or backlog? */ 2889 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2890 goto out; 2891 2892 /* This is a (useful) BSD violating of the RFC. There is a 2893 * problem with TCP as specified in that the other end could 2894 * keep a socket open forever with no application left this end. 2895 * We use a 1 minute timeout (about the same as BSD) then kill 2896 * our end. If they send after that then tough - BUT: long enough 2897 * that we won't make the old 4*rto = almost no time - whoops 2898 * reset mistake. 2899 * 2900 * Nope, it was not mistake. It is really desired behaviour 2901 * f.e. on http servers, when such sockets are useless, but 2902 * consume significant resources. Let's do it with special 2903 * linger2 option. --ANK 2904 */ 2905 2906 if (sk->sk_state == TCP_FIN_WAIT2) { 2907 struct tcp_sock *tp = tcp_sk(sk); 2908 if (READ_ONCE(tp->linger2) < 0) { 2909 tcp_set_state(sk, TCP_CLOSE); 2910 tcp_send_active_reset(sk, GFP_ATOMIC, 2911 SK_RST_REASON_NOT_SPECIFIED); 2912 __NET_INC_STATS(sock_net(sk), 2913 LINUX_MIB_TCPABORTONLINGER); 2914 } else { 2915 const int tmo = tcp_fin_time(sk); 2916 2917 if (tmo > TCP_TIMEWAIT_LEN) { 2918 inet_csk_reset_keepalive_timer(sk, 2919 tmo - TCP_TIMEWAIT_LEN); 2920 } else { 2921 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2922 goto out; 2923 } 2924 } 2925 } 2926 if (sk->sk_state != TCP_CLOSE) { 2927 if (tcp_check_oom(sk, 0)) { 2928 tcp_set_state(sk, TCP_CLOSE); 2929 tcp_send_active_reset(sk, GFP_ATOMIC, 2930 SK_RST_REASON_NOT_SPECIFIED); 2931 __NET_INC_STATS(sock_net(sk), 2932 LINUX_MIB_TCPABORTONMEMORY); 2933 } else if (!check_net(sock_net(sk))) { 2934 /* Not possible to send reset; just close */ 2935 tcp_set_state(sk, TCP_CLOSE); 2936 } 2937 } 2938 2939 if (sk->sk_state == TCP_CLOSE) { 2940 struct request_sock *req; 2941 2942 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2943 lockdep_sock_is_held(sk)); 2944 /* We could get here with a non-NULL req if the socket is 2945 * aborted (e.g., closed with unread data) before 3WHS 2946 * finishes. 2947 */ 2948 if (req) 2949 reqsk_fastopen_remove(sk, req, false); 2950 inet_csk_destroy_sock(sk); 2951 } 2952 /* Otherwise, socket is reprieved until protocol close. */ 2953 2954 out: 2955 bh_unlock_sock(sk); 2956 local_bh_enable(); 2957 } 2958 2959 void tcp_close(struct sock *sk, long timeout) 2960 { 2961 lock_sock(sk); 2962 __tcp_close(sk, timeout); 2963 release_sock(sk); 2964 if (!sk->sk_net_refcnt) 2965 inet_csk_clear_xmit_timers_sync(sk); 2966 sock_put(sk); 2967 } 2968 EXPORT_SYMBOL(tcp_close); 2969 2970 /* These states need RST on ABORT according to RFC793 */ 2971 2972 static inline bool tcp_need_reset(int state) 2973 { 2974 return (1 << state) & 2975 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2976 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2977 } 2978 2979 static void tcp_rtx_queue_purge(struct sock *sk) 2980 { 2981 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2982 2983 tcp_sk(sk)->highest_sack = NULL; 2984 while (p) { 2985 struct sk_buff *skb = rb_to_skb(p); 2986 2987 p = rb_next(p); 2988 /* Since we are deleting whole queue, no need to 2989 * list_del(&skb->tcp_tsorted_anchor) 2990 */ 2991 tcp_rtx_queue_unlink(skb, sk); 2992 tcp_wmem_free_skb(sk, skb); 2993 } 2994 } 2995 2996 void tcp_write_queue_purge(struct sock *sk) 2997 { 2998 struct sk_buff *skb; 2999 3000 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3001 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 3002 tcp_skb_tsorted_anchor_cleanup(skb); 3003 tcp_wmem_free_skb(sk, skb); 3004 } 3005 tcp_rtx_queue_purge(sk); 3006 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3007 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3008 tcp_sk(sk)->packets_out = 0; 3009 inet_csk(sk)->icsk_backoff = 0; 3010 } 3011 3012 int tcp_disconnect(struct sock *sk, int flags) 3013 { 3014 struct inet_sock *inet = inet_sk(sk); 3015 struct inet_connection_sock *icsk = inet_csk(sk); 3016 struct tcp_sock *tp = tcp_sk(sk); 3017 int old_state = sk->sk_state; 3018 u32 seq; 3019 3020 if (old_state != TCP_CLOSE) 3021 tcp_set_state(sk, TCP_CLOSE); 3022 3023 /* ABORT function of RFC793 */ 3024 if (old_state == TCP_LISTEN) { 3025 inet_csk_listen_stop(sk); 3026 } else if (unlikely(tp->repair)) { 3027 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3028 } else if (tcp_need_reset(old_state) || 3029 (tp->snd_nxt != tp->write_seq && 3030 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3031 /* The last check adjusts for discrepancy of Linux wrt. RFC 3032 * states 3033 */ 3034 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_NOT_SPECIFIED); 3035 WRITE_ONCE(sk->sk_err, ECONNRESET); 3036 } else if (old_state == TCP_SYN_SENT) 3037 WRITE_ONCE(sk->sk_err, ECONNRESET); 3038 3039 tcp_clear_xmit_timers(sk); 3040 __skb_queue_purge(&sk->sk_receive_queue); 3041 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3042 WRITE_ONCE(tp->urg_data, 0); 3043 sk_set_peek_off(sk, -1); 3044 tcp_write_queue_purge(sk); 3045 tcp_fastopen_active_disable_ofo_check(sk); 3046 skb_rbtree_purge(&tp->out_of_order_queue); 3047 3048 inet->inet_dport = 0; 3049 3050 inet_bhash2_reset_saddr(sk); 3051 3052 WRITE_ONCE(sk->sk_shutdown, 0); 3053 sock_reset_flag(sk, SOCK_DONE); 3054 tp->srtt_us = 0; 3055 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3056 tp->rcv_rtt_last_tsecr = 0; 3057 3058 seq = tp->write_seq + tp->max_window + 2; 3059 if (!seq) 3060 seq = 1; 3061 WRITE_ONCE(tp->write_seq, seq); 3062 3063 icsk->icsk_backoff = 0; 3064 icsk->icsk_probes_out = 0; 3065 icsk->icsk_probes_tstamp = 0; 3066 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3067 icsk->icsk_rto_min = TCP_RTO_MIN; 3068 icsk->icsk_delack_max = TCP_DELACK_MAX; 3069 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3070 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3071 tp->snd_cwnd_cnt = 0; 3072 tp->is_cwnd_limited = 0; 3073 tp->max_packets_out = 0; 3074 tp->window_clamp = 0; 3075 tp->delivered = 0; 3076 tp->delivered_ce = 0; 3077 if (icsk->icsk_ca_ops->release) 3078 icsk->icsk_ca_ops->release(sk); 3079 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3080 icsk->icsk_ca_initialized = 0; 3081 tcp_set_ca_state(sk, TCP_CA_Open); 3082 tp->is_sack_reneg = 0; 3083 tcp_clear_retrans(tp); 3084 tp->total_retrans = 0; 3085 inet_csk_delack_init(sk); 3086 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3087 * issue in __tcp_select_window() 3088 */ 3089 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3090 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3091 __sk_dst_reset(sk); 3092 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3093 tcp_saved_syn_free(tp); 3094 tp->compressed_ack = 0; 3095 tp->segs_in = 0; 3096 tp->segs_out = 0; 3097 tp->bytes_sent = 0; 3098 tp->bytes_acked = 0; 3099 tp->bytes_received = 0; 3100 tp->bytes_retrans = 0; 3101 tp->data_segs_in = 0; 3102 tp->data_segs_out = 0; 3103 tp->duplicate_sack[0].start_seq = 0; 3104 tp->duplicate_sack[0].end_seq = 0; 3105 tp->dsack_dups = 0; 3106 tp->reord_seen = 0; 3107 tp->retrans_out = 0; 3108 tp->sacked_out = 0; 3109 tp->tlp_high_seq = 0; 3110 tp->last_oow_ack_time = 0; 3111 tp->plb_rehash = 0; 3112 /* There's a bubble in the pipe until at least the first ACK. */ 3113 tp->app_limited = ~0U; 3114 tp->rate_app_limited = 1; 3115 tp->rack.mstamp = 0; 3116 tp->rack.advanced = 0; 3117 tp->rack.reo_wnd_steps = 1; 3118 tp->rack.last_delivered = 0; 3119 tp->rack.reo_wnd_persist = 0; 3120 tp->rack.dsack_seen = 0; 3121 tp->syn_data_acked = 0; 3122 tp->rx_opt.saw_tstamp = 0; 3123 tp->rx_opt.dsack = 0; 3124 tp->rx_opt.num_sacks = 0; 3125 tp->rcv_ooopack = 0; 3126 3127 3128 /* Clean up fastopen related fields */ 3129 tcp_free_fastopen_req(tp); 3130 inet_clear_bit(DEFER_CONNECT, sk); 3131 tp->fastopen_client_fail = 0; 3132 3133 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3134 3135 if (sk->sk_frag.page) { 3136 put_page(sk->sk_frag.page); 3137 sk->sk_frag.page = NULL; 3138 sk->sk_frag.offset = 0; 3139 } 3140 sk_error_report(sk); 3141 return 0; 3142 } 3143 EXPORT_SYMBOL(tcp_disconnect); 3144 3145 static inline bool tcp_can_repair_sock(const struct sock *sk) 3146 { 3147 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3148 (sk->sk_state != TCP_LISTEN); 3149 } 3150 3151 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3152 { 3153 struct tcp_repair_window opt; 3154 3155 if (!tp->repair) 3156 return -EPERM; 3157 3158 if (len != sizeof(opt)) 3159 return -EINVAL; 3160 3161 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3162 return -EFAULT; 3163 3164 if (opt.max_window < opt.snd_wnd) 3165 return -EINVAL; 3166 3167 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3168 return -EINVAL; 3169 3170 if (after(opt.rcv_wup, tp->rcv_nxt)) 3171 return -EINVAL; 3172 3173 tp->snd_wl1 = opt.snd_wl1; 3174 tp->snd_wnd = opt.snd_wnd; 3175 tp->max_window = opt.max_window; 3176 3177 tp->rcv_wnd = opt.rcv_wnd; 3178 tp->rcv_wup = opt.rcv_wup; 3179 3180 return 0; 3181 } 3182 3183 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3184 unsigned int len) 3185 { 3186 struct tcp_sock *tp = tcp_sk(sk); 3187 struct tcp_repair_opt opt; 3188 size_t offset = 0; 3189 3190 while (len >= sizeof(opt)) { 3191 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3192 return -EFAULT; 3193 3194 offset += sizeof(opt); 3195 len -= sizeof(opt); 3196 3197 switch (opt.opt_code) { 3198 case TCPOPT_MSS: 3199 tp->rx_opt.mss_clamp = opt.opt_val; 3200 tcp_mtup_init(sk); 3201 break; 3202 case TCPOPT_WINDOW: 3203 { 3204 u16 snd_wscale = opt.opt_val & 0xFFFF; 3205 u16 rcv_wscale = opt.opt_val >> 16; 3206 3207 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3208 return -EFBIG; 3209 3210 tp->rx_opt.snd_wscale = snd_wscale; 3211 tp->rx_opt.rcv_wscale = rcv_wscale; 3212 tp->rx_opt.wscale_ok = 1; 3213 } 3214 break; 3215 case TCPOPT_SACK_PERM: 3216 if (opt.opt_val != 0) 3217 return -EINVAL; 3218 3219 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3220 break; 3221 case TCPOPT_TIMESTAMP: 3222 if (opt.opt_val != 0) 3223 return -EINVAL; 3224 3225 tp->rx_opt.tstamp_ok = 1; 3226 break; 3227 } 3228 } 3229 3230 return 0; 3231 } 3232 3233 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3234 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3235 3236 static void tcp_enable_tx_delay(void) 3237 { 3238 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3239 static int __tcp_tx_delay_enabled = 0; 3240 3241 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3242 static_branch_enable(&tcp_tx_delay_enabled); 3243 pr_info("TCP_TX_DELAY enabled\n"); 3244 } 3245 } 3246 } 3247 3248 /* When set indicates to always queue non-full frames. Later the user clears 3249 * this option and we transmit any pending partial frames in the queue. This is 3250 * meant to be used alongside sendfile() to get properly filled frames when the 3251 * user (for example) must write out headers with a write() call first and then 3252 * use sendfile to send out the data parts. 3253 * 3254 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3255 * TCP_NODELAY. 3256 */ 3257 void __tcp_sock_set_cork(struct sock *sk, bool on) 3258 { 3259 struct tcp_sock *tp = tcp_sk(sk); 3260 3261 if (on) { 3262 tp->nonagle |= TCP_NAGLE_CORK; 3263 } else { 3264 tp->nonagle &= ~TCP_NAGLE_CORK; 3265 if (tp->nonagle & TCP_NAGLE_OFF) 3266 tp->nonagle |= TCP_NAGLE_PUSH; 3267 tcp_push_pending_frames(sk); 3268 } 3269 } 3270 3271 void tcp_sock_set_cork(struct sock *sk, bool on) 3272 { 3273 lock_sock(sk); 3274 __tcp_sock_set_cork(sk, on); 3275 release_sock(sk); 3276 } 3277 EXPORT_SYMBOL(tcp_sock_set_cork); 3278 3279 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3280 * remembered, but it is not activated until cork is cleared. 3281 * 3282 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3283 * even TCP_CORK for currently queued segments. 3284 */ 3285 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3286 { 3287 if (on) { 3288 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3289 tcp_push_pending_frames(sk); 3290 } else { 3291 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3292 } 3293 } 3294 3295 void tcp_sock_set_nodelay(struct sock *sk) 3296 { 3297 lock_sock(sk); 3298 __tcp_sock_set_nodelay(sk, true); 3299 release_sock(sk); 3300 } 3301 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3302 3303 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3304 { 3305 if (!val) { 3306 inet_csk_enter_pingpong_mode(sk); 3307 return; 3308 } 3309 3310 inet_csk_exit_pingpong_mode(sk); 3311 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3312 inet_csk_ack_scheduled(sk)) { 3313 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3314 tcp_cleanup_rbuf(sk, 1); 3315 if (!(val & 1)) 3316 inet_csk_enter_pingpong_mode(sk); 3317 } 3318 } 3319 3320 void tcp_sock_set_quickack(struct sock *sk, int val) 3321 { 3322 lock_sock(sk); 3323 __tcp_sock_set_quickack(sk, val); 3324 release_sock(sk); 3325 } 3326 EXPORT_SYMBOL(tcp_sock_set_quickack); 3327 3328 int tcp_sock_set_syncnt(struct sock *sk, int val) 3329 { 3330 if (val < 1 || val > MAX_TCP_SYNCNT) 3331 return -EINVAL; 3332 3333 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3334 return 0; 3335 } 3336 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3337 3338 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3339 { 3340 /* Cap the max time in ms TCP will retry or probe the window 3341 * before giving up and aborting (ETIMEDOUT) a connection. 3342 */ 3343 if (val < 0) 3344 return -EINVAL; 3345 3346 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3347 return 0; 3348 } 3349 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3350 3351 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3352 { 3353 struct tcp_sock *tp = tcp_sk(sk); 3354 3355 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3356 return -EINVAL; 3357 3358 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3359 WRITE_ONCE(tp->keepalive_time, val * HZ); 3360 if (sock_flag(sk, SOCK_KEEPOPEN) && 3361 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3362 u32 elapsed = keepalive_time_elapsed(tp); 3363 3364 if (tp->keepalive_time > elapsed) 3365 elapsed = tp->keepalive_time - elapsed; 3366 else 3367 elapsed = 0; 3368 inet_csk_reset_keepalive_timer(sk, elapsed); 3369 } 3370 3371 return 0; 3372 } 3373 3374 int tcp_sock_set_keepidle(struct sock *sk, int val) 3375 { 3376 int err; 3377 3378 lock_sock(sk); 3379 err = tcp_sock_set_keepidle_locked(sk, val); 3380 release_sock(sk); 3381 return err; 3382 } 3383 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3384 3385 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3386 { 3387 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3388 return -EINVAL; 3389 3390 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3391 return 0; 3392 } 3393 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3394 3395 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3396 { 3397 if (val < 1 || val > MAX_TCP_KEEPCNT) 3398 return -EINVAL; 3399 3400 /* Paired with READ_ONCE() in keepalive_probes() */ 3401 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3402 return 0; 3403 } 3404 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3405 3406 int tcp_set_window_clamp(struct sock *sk, int val) 3407 { 3408 struct tcp_sock *tp = tcp_sk(sk); 3409 3410 if (!val) { 3411 if (sk->sk_state != TCP_CLOSE) 3412 return -EINVAL; 3413 WRITE_ONCE(tp->window_clamp, 0); 3414 } else { 3415 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3416 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3417 SOCK_MIN_RCVBUF / 2 : val; 3418 3419 if (new_window_clamp == old_window_clamp) 3420 return 0; 3421 3422 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3423 if (new_window_clamp < old_window_clamp) { 3424 /* need to apply the reserved mem provisioning only 3425 * when shrinking the window clamp 3426 */ 3427 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3428 3429 } else { 3430 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3431 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3432 tp->rcv_ssthresh); 3433 } 3434 } 3435 return 0; 3436 } 3437 3438 /* 3439 * Socket option code for TCP. 3440 */ 3441 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3442 sockptr_t optval, unsigned int optlen) 3443 { 3444 struct tcp_sock *tp = tcp_sk(sk); 3445 struct inet_connection_sock *icsk = inet_csk(sk); 3446 struct net *net = sock_net(sk); 3447 int val; 3448 int err = 0; 3449 3450 /* These are data/string values, all the others are ints */ 3451 switch (optname) { 3452 case TCP_CONGESTION: { 3453 char name[TCP_CA_NAME_MAX]; 3454 3455 if (optlen < 1) 3456 return -EINVAL; 3457 3458 val = strncpy_from_sockptr(name, optval, 3459 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3460 if (val < 0) 3461 return -EFAULT; 3462 name[val] = 0; 3463 3464 sockopt_lock_sock(sk); 3465 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3466 sockopt_ns_capable(sock_net(sk)->user_ns, 3467 CAP_NET_ADMIN)); 3468 sockopt_release_sock(sk); 3469 return err; 3470 } 3471 case TCP_ULP: { 3472 char name[TCP_ULP_NAME_MAX]; 3473 3474 if (optlen < 1) 3475 return -EINVAL; 3476 3477 val = strncpy_from_sockptr(name, optval, 3478 min_t(long, TCP_ULP_NAME_MAX - 1, 3479 optlen)); 3480 if (val < 0) 3481 return -EFAULT; 3482 name[val] = 0; 3483 3484 sockopt_lock_sock(sk); 3485 err = tcp_set_ulp(sk, name); 3486 sockopt_release_sock(sk); 3487 return err; 3488 } 3489 case TCP_FASTOPEN_KEY: { 3490 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3491 __u8 *backup_key = NULL; 3492 3493 /* Allow a backup key as well to facilitate key rotation 3494 * First key is the active one. 3495 */ 3496 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3497 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3498 return -EINVAL; 3499 3500 if (copy_from_sockptr(key, optval, optlen)) 3501 return -EFAULT; 3502 3503 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3504 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3505 3506 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3507 } 3508 default: 3509 /* fallthru */ 3510 break; 3511 } 3512 3513 if (optlen < sizeof(int)) 3514 return -EINVAL; 3515 3516 if (copy_from_sockptr(&val, optval, sizeof(val))) 3517 return -EFAULT; 3518 3519 /* Handle options that can be set without locking the socket. */ 3520 switch (optname) { 3521 case TCP_SYNCNT: 3522 return tcp_sock_set_syncnt(sk, val); 3523 case TCP_USER_TIMEOUT: 3524 return tcp_sock_set_user_timeout(sk, val); 3525 case TCP_KEEPINTVL: 3526 return tcp_sock_set_keepintvl(sk, val); 3527 case TCP_KEEPCNT: 3528 return tcp_sock_set_keepcnt(sk, val); 3529 case TCP_LINGER2: 3530 if (val < 0) 3531 WRITE_ONCE(tp->linger2, -1); 3532 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3533 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3534 else 3535 WRITE_ONCE(tp->linger2, val * HZ); 3536 return 0; 3537 case TCP_DEFER_ACCEPT: 3538 /* Translate value in seconds to number of retransmits */ 3539 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3540 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3541 TCP_RTO_MAX / HZ)); 3542 return 0; 3543 } 3544 3545 sockopt_lock_sock(sk); 3546 3547 switch (optname) { 3548 case TCP_MAXSEG: 3549 /* Values greater than interface MTU won't take effect. However 3550 * at the point when this call is done we typically don't yet 3551 * know which interface is going to be used 3552 */ 3553 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3554 err = -EINVAL; 3555 break; 3556 } 3557 tp->rx_opt.user_mss = val; 3558 break; 3559 3560 case TCP_NODELAY: 3561 __tcp_sock_set_nodelay(sk, val); 3562 break; 3563 3564 case TCP_THIN_LINEAR_TIMEOUTS: 3565 if (val < 0 || val > 1) 3566 err = -EINVAL; 3567 else 3568 tp->thin_lto = val; 3569 break; 3570 3571 case TCP_THIN_DUPACK: 3572 if (val < 0 || val > 1) 3573 err = -EINVAL; 3574 break; 3575 3576 case TCP_REPAIR: 3577 if (!tcp_can_repair_sock(sk)) 3578 err = -EPERM; 3579 else if (val == TCP_REPAIR_ON) { 3580 tp->repair = 1; 3581 sk->sk_reuse = SK_FORCE_REUSE; 3582 tp->repair_queue = TCP_NO_QUEUE; 3583 } else if (val == TCP_REPAIR_OFF) { 3584 tp->repair = 0; 3585 sk->sk_reuse = SK_NO_REUSE; 3586 tcp_send_window_probe(sk); 3587 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3588 tp->repair = 0; 3589 sk->sk_reuse = SK_NO_REUSE; 3590 } else 3591 err = -EINVAL; 3592 3593 break; 3594 3595 case TCP_REPAIR_QUEUE: 3596 if (!tp->repair) 3597 err = -EPERM; 3598 else if ((unsigned int)val < TCP_QUEUES_NR) 3599 tp->repair_queue = val; 3600 else 3601 err = -EINVAL; 3602 break; 3603 3604 case TCP_QUEUE_SEQ: 3605 if (sk->sk_state != TCP_CLOSE) { 3606 err = -EPERM; 3607 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3608 if (!tcp_rtx_queue_empty(sk)) 3609 err = -EPERM; 3610 else 3611 WRITE_ONCE(tp->write_seq, val); 3612 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3613 if (tp->rcv_nxt != tp->copied_seq) { 3614 err = -EPERM; 3615 } else { 3616 WRITE_ONCE(tp->rcv_nxt, val); 3617 WRITE_ONCE(tp->copied_seq, val); 3618 } 3619 } else { 3620 err = -EINVAL; 3621 } 3622 break; 3623 3624 case TCP_REPAIR_OPTIONS: 3625 if (!tp->repair) 3626 err = -EINVAL; 3627 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3628 err = tcp_repair_options_est(sk, optval, optlen); 3629 else 3630 err = -EPERM; 3631 break; 3632 3633 case TCP_CORK: 3634 __tcp_sock_set_cork(sk, val); 3635 break; 3636 3637 case TCP_KEEPIDLE: 3638 err = tcp_sock_set_keepidle_locked(sk, val); 3639 break; 3640 case TCP_SAVE_SYN: 3641 /* 0: disable, 1: enable, 2: start from ether_header */ 3642 if (val < 0 || val > 2) 3643 err = -EINVAL; 3644 else 3645 tp->save_syn = val; 3646 break; 3647 3648 case TCP_WINDOW_CLAMP: 3649 err = tcp_set_window_clamp(sk, val); 3650 break; 3651 3652 case TCP_QUICKACK: 3653 __tcp_sock_set_quickack(sk, val); 3654 break; 3655 3656 case TCP_AO_REPAIR: 3657 if (!tcp_can_repair_sock(sk)) { 3658 err = -EPERM; 3659 break; 3660 } 3661 err = tcp_ao_set_repair(sk, optval, optlen); 3662 break; 3663 #ifdef CONFIG_TCP_AO 3664 case TCP_AO_ADD_KEY: 3665 case TCP_AO_DEL_KEY: 3666 case TCP_AO_INFO: { 3667 /* If this is the first TCP-AO setsockopt() on the socket, 3668 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR 3669 * in any state. 3670 */ 3671 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 3672 goto ao_parse; 3673 if (rcu_dereference_protected(tcp_sk(sk)->ao_info, 3674 lockdep_sock_is_held(sk))) 3675 goto ao_parse; 3676 if (tp->repair) 3677 goto ao_parse; 3678 err = -EISCONN; 3679 break; 3680 ao_parse: 3681 err = tp->af_specific->ao_parse(sk, optname, optval, optlen); 3682 break; 3683 } 3684 #endif 3685 #ifdef CONFIG_TCP_MD5SIG 3686 case TCP_MD5SIG: 3687 case TCP_MD5SIG_EXT: 3688 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3689 break; 3690 #endif 3691 case TCP_FASTOPEN: 3692 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3693 TCPF_LISTEN))) { 3694 tcp_fastopen_init_key_once(net); 3695 3696 fastopen_queue_tune(sk, val); 3697 } else { 3698 err = -EINVAL; 3699 } 3700 break; 3701 case TCP_FASTOPEN_CONNECT: 3702 if (val > 1 || val < 0) { 3703 err = -EINVAL; 3704 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3705 TFO_CLIENT_ENABLE) { 3706 if (sk->sk_state == TCP_CLOSE) 3707 tp->fastopen_connect = val; 3708 else 3709 err = -EINVAL; 3710 } else { 3711 err = -EOPNOTSUPP; 3712 } 3713 break; 3714 case TCP_FASTOPEN_NO_COOKIE: 3715 if (val > 1 || val < 0) 3716 err = -EINVAL; 3717 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3718 err = -EINVAL; 3719 else 3720 tp->fastopen_no_cookie = val; 3721 break; 3722 case TCP_TIMESTAMP: 3723 if (!tp->repair) { 3724 err = -EPERM; 3725 break; 3726 } 3727 /* val is an opaque field, 3728 * and low order bit contains usec_ts enable bit. 3729 * Its a best effort, and we do not care if user makes an error. 3730 */ 3731 tp->tcp_usec_ts = val & 1; 3732 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts)); 3733 break; 3734 case TCP_REPAIR_WINDOW: 3735 err = tcp_repair_set_window(tp, optval, optlen); 3736 break; 3737 case TCP_NOTSENT_LOWAT: 3738 WRITE_ONCE(tp->notsent_lowat, val); 3739 sk->sk_write_space(sk); 3740 break; 3741 case TCP_INQ: 3742 if (val > 1 || val < 0) 3743 err = -EINVAL; 3744 else 3745 tp->recvmsg_inq = val; 3746 break; 3747 case TCP_TX_DELAY: 3748 if (val) 3749 tcp_enable_tx_delay(); 3750 WRITE_ONCE(tp->tcp_tx_delay, val); 3751 break; 3752 default: 3753 err = -ENOPROTOOPT; 3754 break; 3755 } 3756 3757 sockopt_release_sock(sk); 3758 return err; 3759 } 3760 3761 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3762 unsigned int optlen) 3763 { 3764 const struct inet_connection_sock *icsk = inet_csk(sk); 3765 3766 if (level != SOL_TCP) 3767 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3768 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3769 optval, optlen); 3770 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3771 } 3772 EXPORT_SYMBOL(tcp_setsockopt); 3773 3774 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3775 struct tcp_info *info) 3776 { 3777 u64 stats[__TCP_CHRONO_MAX], total = 0; 3778 enum tcp_chrono i; 3779 3780 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3781 stats[i] = tp->chrono_stat[i - 1]; 3782 if (i == tp->chrono_type) 3783 stats[i] += tcp_jiffies32 - tp->chrono_start; 3784 stats[i] *= USEC_PER_SEC / HZ; 3785 total += stats[i]; 3786 } 3787 3788 info->tcpi_busy_time = total; 3789 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3790 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3791 } 3792 3793 /* Return information about state of tcp endpoint in API format. */ 3794 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3795 { 3796 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3797 const struct inet_connection_sock *icsk = inet_csk(sk); 3798 unsigned long rate; 3799 u32 now; 3800 u64 rate64; 3801 bool slow; 3802 3803 memset(info, 0, sizeof(*info)); 3804 if (sk->sk_type != SOCK_STREAM) 3805 return; 3806 3807 info->tcpi_state = inet_sk_state_load(sk); 3808 3809 /* Report meaningful fields for all TCP states, including listeners */ 3810 rate = READ_ONCE(sk->sk_pacing_rate); 3811 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3812 info->tcpi_pacing_rate = rate64; 3813 3814 rate = READ_ONCE(sk->sk_max_pacing_rate); 3815 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3816 info->tcpi_max_pacing_rate = rate64; 3817 3818 info->tcpi_reordering = tp->reordering; 3819 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3820 3821 if (info->tcpi_state == TCP_LISTEN) { 3822 /* listeners aliased fields : 3823 * tcpi_unacked -> Number of children ready for accept() 3824 * tcpi_sacked -> max backlog 3825 */ 3826 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3827 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3828 return; 3829 } 3830 3831 slow = lock_sock_fast(sk); 3832 3833 info->tcpi_ca_state = icsk->icsk_ca_state; 3834 info->tcpi_retransmits = icsk->icsk_retransmits; 3835 info->tcpi_probes = icsk->icsk_probes_out; 3836 info->tcpi_backoff = icsk->icsk_backoff; 3837 3838 if (tp->rx_opt.tstamp_ok) 3839 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3840 if (tcp_is_sack(tp)) 3841 info->tcpi_options |= TCPI_OPT_SACK; 3842 if (tp->rx_opt.wscale_ok) { 3843 info->tcpi_options |= TCPI_OPT_WSCALE; 3844 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3845 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3846 } 3847 3848 if (tp->ecn_flags & TCP_ECN_OK) 3849 info->tcpi_options |= TCPI_OPT_ECN; 3850 if (tp->ecn_flags & TCP_ECN_SEEN) 3851 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3852 if (tp->syn_data_acked) 3853 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3854 if (tp->tcp_usec_ts) 3855 info->tcpi_options |= TCPI_OPT_USEC_TS; 3856 3857 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3858 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato, 3859 tcp_delack_max(sk))); 3860 info->tcpi_snd_mss = tp->mss_cache; 3861 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3862 3863 info->tcpi_unacked = tp->packets_out; 3864 info->tcpi_sacked = tp->sacked_out; 3865 3866 info->tcpi_lost = tp->lost_out; 3867 info->tcpi_retrans = tp->retrans_out; 3868 3869 now = tcp_jiffies32; 3870 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3871 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3872 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3873 3874 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3875 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3876 info->tcpi_rtt = tp->srtt_us >> 3; 3877 info->tcpi_rttvar = tp->mdev_us >> 2; 3878 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3879 info->tcpi_advmss = tp->advmss; 3880 3881 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3882 info->tcpi_rcv_space = tp->rcvq_space.space; 3883 3884 info->tcpi_total_retrans = tp->total_retrans; 3885 3886 info->tcpi_bytes_acked = tp->bytes_acked; 3887 info->tcpi_bytes_received = tp->bytes_received; 3888 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3889 tcp_get_info_chrono_stats(tp, info); 3890 3891 info->tcpi_segs_out = tp->segs_out; 3892 3893 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3894 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3895 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3896 3897 info->tcpi_min_rtt = tcp_min_rtt(tp); 3898 info->tcpi_data_segs_out = tp->data_segs_out; 3899 3900 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3901 rate64 = tcp_compute_delivery_rate(tp); 3902 if (rate64) 3903 info->tcpi_delivery_rate = rate64; 3904 info->tcpi_delivered = tp->delivered; 3905 info->tcpi_delivered_ce = tp->delivered_ce; 3906 info->tcpi_bytes_sent = tp->bytes_sent; 3907 info->tcpi_bytes_retrans = tp->bytes_retrans; 3908 info->tcpi_dsack_dups = tp->dsack_dups; 3909 info->tcpi_reord_seen = tp->reord_seen; 3910 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3911 info->tcpi_snd_wnd = tp->snd_wnd; 3912 info->tcpi_rcv_wnd = tp->rcv_wnd; 3913 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3914 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3915 3916 info->tcpi_total_rto = tp->total_rto; 3917 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 3918 info->tcpi_total_rto_time = tp->total_rto_time; 3919 if (tp->rto_stamp) 3920 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp; 3921 3922 unlock_sock_fast(sk, slow); 3923 } 3924 EXPORT_SYMBOL_GPL(tcp_get_info); 3925 3926 static size_t tcp_opt_stats_get_size(void) 3927 { 3928 return 3929 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3930 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3931 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3932 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3933 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3934 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3935 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3936 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3937 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3938 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3939 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3940 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3941 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3942 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3943 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3944 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3945 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3946 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3947 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3948 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3949 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3950 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3951 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3952 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3953 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3954 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3955 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3956 0; 3957 } 3958 3959 /* Returns TTL or hop limit of an incoming packet from skb. */ 3960 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3961 { 3962 if (skb->protocol == htons(ETH_P_IP)) 3963 return ip_hdr(skb)->ttl; 3964 else if (skb->protocol == htons(ETH_P_IPV6)) 3965 return ipv6_hdr(skb)->hop_limit; 3966 else 3967 return 0; 3968 } 3969 3970 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3971 const struct sk_buff *orig_skb, 3972 const struct sk_buff *ack_skb) 3973 { 3974 const struct tcp_sock *tp = tcp_sk(sk); 3975 struct sk_buff *stats; 3976 struct tcp_info info; 3977 unsigned long rate; 3978 u64 rate64; 3979 3980 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3981 if (!stats) 3982 return NULL; 3983 3984 tcp_get_info_chrono_stats(tp, &info); 3985 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3986 info.tcpi_busy_time, TCP_NLA_PAD); 3987 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3988 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3989 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3990 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3991 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3992 tp->data_segs_out, TCP_NLA_PAD); 3993 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3994 tp->total_retrans, TCP_NLA_PAD); 3995 3996 rate = READ_ONCE(sk->sk_pacing_rate); 3997 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3998 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3999 4000 rate64 = tcp_compute_delivery_rate(tp); 4001 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 4002 4003 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 4004 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 4005 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 4006 4007 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 4008 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 4009 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 4010 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 4011 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 4012 4013 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 4014 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 4015 4016 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 4017 TCP_NLA_PAD); 4018 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 4019 TCP_NLA_PAD); 4020 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 4021 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 4022 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 4023 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 4024 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 4025 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 4026 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 4027 TCP_NLA_PAD); 4028 if (ack_skb) 4029 nla_put_u8(stats, TCP_NLA_TTL, 4030 tcp_skb_ttl_or_hop_limit(ack_skb)); 4031 4032 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 4033 return stats; 4034 } 4035 4036 int do_tcp_getsockopt(struct sock *sk, int level, 4037 int optname, sockptr_t optval, sockptr_t optlen) 4038 { 4039 struct inet_connection_sock *icsk = inet_csk(sk); 4040 struct tcp_sock *tp = tcp_sk(sk); 4041 struct net *net = sock_net(sk); 4042 int val, len; 4043 4044 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4045 return -EFAULT; 4046 4047 if (len < 0) 4048 return -EINVAL; 4049 4050 len = min_t(unsigned int, len, sizeof(int)); 4051 4052 switch (optname) { 4053 case TCP_MAXSEG: 4054 val = tp->mss_cache; 4055 if (tp->rx_opt.user_mss && 4056 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4057 val = tp->rx_opt.user_mss; 4058 if (tp->repair) 4059 val = tp->rx_opt.mss_clamp; 4060 break; 4061 case TCP_NODELAY: 4062 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4063 break; 4064 case TCP_CORK: 4065 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4066 break; 4067 case TCP_KEEPIDLE: 4068 val = keepalive_time_when(tp) / HZ; 4069 break; 4070 case TCP_KEEPINTVL: 4071 val = keepalive_intvl_when(tp) / HZ; 4072 break; 4073 case TCP_KEEPCNT: 4074 val = keepalive_probes(tp); 4075 break; 4076 case TCP_SYNCNT: 4077 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4078 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4079 break; 4080 case TCP_LINGER2: 4081 val = READ_ONCE(tp->linger2); 4082 if (val >= 0) 4083 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4084 break; 4085 case TCP_DEFER_ACCEPT: 4086 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4087 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4088 TCP_RTO_MAX / HZ); 4089 break; 4090 case TCP_WINDOW_CLAMP: 4091 val = READ_ONCE(tp->window_clamp); 4092 break; 4093 case TCP_INFO: { 4094 struct tcp_info info; 4095 4096 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4097 return -EFAULT; 4098 4099 tcp_get_info(sk, &info); 4100 4101 len = min_t(unsigned int, len, sizeof(info)); 4102 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4103 return -EFAULT; 4104 if (copy_to_sockptr(optval, &info, len)) 4105 return -EFAULT; 4106 return 0; 4107 } 4108 case TCP_CC_INFO: { 4109 const struct tcp_congestion_ops *ca_ops; 4110 union tcp_cc_info info; 4111 size_t sz = 0; 4112 int attr; 4113 4114 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4115 return -EFAULT; 4116 4117 ca_ops = icsk->icsk_ca_ops; 4118 if (ca_ops && ca_ops->get_info) 4119 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4120 4121 len = min_t(unsigned int, len, sz); 4122 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4123 return -EFAULT; 4124 if (copy_to_sockptr(optval, &info, len)) 4125 return -EFAULT; 4126 return 0; 4127 } 4128 case TCP_QUICKACK: 4129 val = !inet_csk_in_pingpong_mode(sk); 4130 break; 4131 4132 case TCP_CONGESTION: 4133 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4134 return -EFAULT; 4135 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4136 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4137 return -EFAULT; 4138 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4139 return -EFAULT; 4140 return 0; 4141 4142 case TCP_ULP: 4143 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4144 return -EFAULT; 4145 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4146 if (!icsk->icsk_ulp_ops) { 4147 len = 0; 4148 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4149 return -EFAULT; 4150 return 0; 4151 } 4152 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4153 return -EFAULT; 4154 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4155 return -EFAULT; 4156 return 0; 4157 4158 case TCP_FASTOPEN_KEY: { 4159 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4160 unsigned int key_len; 4161 4162 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4163 return -EFAULT; 4164 4165 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4166 TCP_FASTOPEN_KEY_LENGTH; 4167 len = min_t(unsigned int, len, key_len); 4168 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4169 return -EFAULT; 4170 if (copy_to_sockptr(optval, key, len)) 4171 return -EFAULT; 4172 return 0; 4173 } 4174 case TCP_THIN_LINEAR_TIMEOUTS: 4175 val = tp->thin_lto; 4176 break; 4177 4178 case TCP_THIN_DUPACK: 4179 val = 0; 4180 break; 4181 4182 case TCP_REPAIR: 4183 val = tp->repair; 4184 break; 4185 4186 case TCP_REPAIR_QUEUE: 4187 if (tp->repair) 4188 val = tp->repair_queue; 4189 else 4190 return -EINVAL; 4191 break; 4192 4193 case TCP_REPAIR_WINDOW: { 4194 struct tcp_repair_window opt; 4195 4196 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4197 return -EFAULT; 4198 4199 if (len != sizeof(opt)) 4200 return -EINVAL; 4201 4202 if (!tp->repair) 4203 return -EPERM; 4204 4205 opt.snd_wl1 = tp->snd_wl1; 4206 opt.snd_wnd = tp->snd_wnd; 4207 opt.max_window = tp->max_window; 4208 opt.rcv_wnd = tp->rcv_wnd; 4209 opt.rcv_wup = tp->rcv_wup; 4210 4211 if (copy_to_sockptr(optval, &opt, len)) 4212 return -EFAULT; 4213 return 0; 4214 } 4215 case TCP_QUEUE_SEQ: 4216 if (tp->repair_queue == TCP_SEND_QUEUE) 4217 val = tp->write_seq; 4218 else if (tp->repair_queue == TCP_RECV_QUEUE) 4219 val = tp->rcv_nxt; 4220 else 4221 return -EINVAL; 4222 break; 4223 4224 case TCP_USER_TIMEOUT: 4225 val = READ_ONCE(icsk->icsk_user_timeout); 4226 break; 4227 4228 case TCP_FASTOPEN: 4229 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4230 break; 4231 4232 case TCP_FASTOPEN_CONNECT: 4233 val = tp->fastopen_connect; 4234 break; 4235 4236 case TCP_FASTOPEN_NO_COOKIE: 4237 val = tp->fastopen_no_cookie; 4238 break; 4239 4240 case TCP_TX_DELAY: 4241 val = READ_ONCE(tp->tcp_tx_delay); 4242 break; 4243 4244 case TCP_TIMESTAMP: 4245 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset); 4246 if (tp->tcp_usec_ts) 4247 val |= 1; 4248 else 4249 val &= ~1; 4250 break; 4251 case TCP_NOTSENT_LOWAT: 4252 val = READ_ONCE(tp->notsent_lowat); 4253 break; 4254 case TCP_INQ: 4255 val = tp->recvmsg_inq; 4256 break; 4257 case TCP_SAVE_SYN: 4258 val = tp->save_syn; 4259 break; 4260 case TCP_SAVED_SYN: { 4261 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4262 return -EFAULT; 4263 4264 sockopt_lock_sock(sk); 4265 if (tp->saved_syn) { 4266 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4267 len = tcp_saved_syn_len(tp->saved_syn); 4268 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4269 sockopt_release_sock(sk); 4270 return -EFAULT; 4271 } 4272 sockopt_release_sock(sk); 4273 return -EINVAL; 4274 } 4275 len = tcp_saved_syn_len(tp->saved_syn); 4276 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4277 sockopt_release_sock(sk); 4278 return -EFAULT; 4279 } 4280 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4281 sockopt_release_sock(sk); 4282 return -EFAULT; 4283 } 4284 tcp_saved_syn_free(tp); 4285 sockopt_release_sock(sk); 4286 } else { 4287 sockopt_release_sock(sk); 4288 len = 0; 4289 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4290 return -EFAULT; 4291 } 4292 return 0; 4293 } 4294 #ifdef CONFIG_MMU 4295 case TCP_ZEROCOPY_RECEIVE: { 4296 struct scm_timestamping_internal tss; 4297 struct tcp_zerocopy_receive zc = {}; 4298 int err; 4299 4300 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4301 return -EFAULT; 4302 if (len < 0 || 4303 len < offsetofend(struct tcp_zerocopy_receive, length)) 4304 return -EINVAL; 4305 if (unlikely(len > sizeof(zc))) { 4306 err = check_zeroed_sockptr(optval, sizeof(zc), 4307 len - sizeof(zc)); 4308 if (err < 1) 4309 return err == 0 ? -EINVAL : err; 4310 len = sizeof(zc); 4311 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4312 return -EFAULT; 4313 } 4314 if (copy_from_sockptr(&zc, optval, len)) 4315 return -EFAULT; 4316 if (zc.reserved) 4317 return -EINVAL; 4318 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4319 return -EINVAL; 4320 sockopt_lock_sock(sk); 4321 err = tcp_zerocopy_receive(sk, &zc, &tss); 4322 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4323 &zc, &len, err); 4324 sockopt_release_sock(sk); 4325 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4326 goto zerocopy_rcv_cmsg; 4327 switch (len) { 4328 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4329 goto zerocopy_rcv_cmsg; 4330 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4331 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4332 case offsetofend(struct tcp_zerocopy_receive, flags): 4333 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4334 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4335 case offsetofend(struct tcp_zerocopy_receive, err): 4336 goto zerocopy_rcv_sk_err; 4337 case offsetofend(struct tcp_zerocopy_receive, inq): 4338 goto zerocopy_rcv_inq; 4339 case offsetofend(struct tcp_zerocopy_receive, length): 4340 default: 4341 goto zerocopy_rcv_out; 4342 } 4343 zerocopy_rcv_cmsg: 4344 if (zc.msg_flags & TCP_CMSG_TS) 4345 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4346 else 4347 zc.msg_flags = 0; 4348 zerocopy_rcv_sk_err: 4349 if (!err) 4350 zc.err = sock_error(sk); 4351 zerocopy_rcv_inq: 4352 zc.inq = tcp_inq_hint(sk); 4353 zerocopy_rcv_out: 4354 if (!err && copy_to_sockptr(optval, &zc, len)) 4355 err = -EFAULT; 4356 return err; 4357 } 4358 #endif 4359 case TCP_AO_REPAIR: 4360 if (!tcp_can_repair_sock(sk)) 4361 return -EPERM; 4362 return tcp_ao_get_repair(sk, optval, optlen); 4363 case TCP_AO_GET_KEYS: 4364 case TCP_AO_INFO: { 4365 int err; 4366 4367 sockopt_lock_sock(sk); 4368 if (optname == TCP_AO_GET_KEYS) 4369 err = tcp_ao_get_mkts(sk, optval, optlen); 4370 else 4371 err = tcp_ao_get_sock_info(sk, optval, optlen); 4372 sockopt_release_sock(sk); 4373 4374 return err; 4375 } 4376 case TCP_IS_MPTCP: 4377 val = 0; 4378 break; 4379 default: 4380 return -ENOPROTOOPT; 4381 } 4382 4383 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4384 return -EFAULT; 4385 if (copy_to_sockptr(optval, &val, len)) 4386 return -EFAULT; 4387 return 0; 4388 } 4389 4390 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4391 { 4392 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4393 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4394 */ 4395 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4396 return true; 4397 4398 return false; 4399 } 4400 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4401 4402 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4403 int __user *optlen) 4404 { 4405 struct inet_connection_sock *icsk = inet_csk(sk); 4406 4407 if (level != SOL_TCP) 4408 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4409 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4410 optval, optlen); 4411 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4412 USER_SOCKPTR(optlen)); 4413 } 4414 EXPORT_SYMBOL(tcp_getsockopt); 4415 4416 #ifdef CONFIG_TCP_MD5SIG 4417 int tcp_md5_sigpool_id = -1; 4418 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id); 4419 4420 int tcp_md5_alloc_sigpool(void) 4421 { 4422 size_t scratch_size; 4423 int ret; 4424 4425 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr); 4426 ret = tcp_sigpool_alloc_ahash("md5", scratch_size); 4427 if (ret >= 0) { 4428 /* As long as any md5 sigpool was allocated, the return 4429 * id would stay the same. Re-write the id only for the case 4430 * when previously all MD5 keys were deleted and this call 4431 * allocates the first MD5 key, which may return a different 4432 * sigpool id than was used previously. 4433 */ 4434 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */ 4435 return 0; 4436 } 4437 return ret; 4438 } 4439 4440 void tcp_md5_release_sigpool(void) 4441 { 4442 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id)); 4443 } 4444 4445 void tcp_md5_add_sigpool(void) 4446 { 4447 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id)); 4448 } 4449 4450 int tcp_md5_hash_key(struct tcp_sigpool *hp, 4451 const struct tcp_md5sig_key *key) 4452 { 4453 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4454 struct scatterlist sg; 4455 4456 sg_init_one(&sg, key->key, keylen); 4457 ahash_request_set_crypt(hp->req, &sg, NULL, keylen); 4458 4459 /* We use data_race() because tcp_md5_do_add() might change 4460 * key->key under us 4461 */ 4462 return data_race(crypto_ahash_update(hp->req)); 4463 } 4464 EXPORT_SYMBOL(tcp_md5_hash_key); 4465 4466 /* Called with rcu_read_lock() */ 4467 static enum skb_drop_reason 4468 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4469 const void *saddr, const void *daddr, 4470 int family, int l3index, const __u8 *hash_location) 4471 { 4472 /* This gets called for each TCP segment that has TCP-MD5 option. 4473 * We have 3 drop cases: 4474 * o No MD5 hash and one expected. 4475 * o MD5 hash and we're not expecting one. 4476 * o MD5 hash and its wrong. 4477 */ 4478 const struct tcp_sock *tp = tcp_sk(sk); 4479 struct tcp_md5sig_key *key; 4480 u8 newhash[16]; 4481 int genhash; 4482 4483 key = tcp_md5_do_lookup(sk, l3index, saddr, family); 4484 4485 if (!key && hash_location) { 4486 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4487 trace_tcp_hash_md5_unexpected(sk, skb); 4488 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4489 } 4490 4491 /* Check the signature. 4492 * To support dual stack listeners, we need to handle 4493 * IPv4-mapped case. 4494 */ 4495 if (family == AF_INET) 4496 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 4497 else 4498 genhash = tp->af_specific->calc_md5_hash(newhash, key, 4499 NULL, skb); 4500 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4501 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4502 trace_tcp_hash_md5_mismatch(sk, skb); 4503 return SKB_DROP_REASON_TCP_MD5FAILURE; 4504 } 4505 return SKB_NOT_DROPPED_YET; 4506 } 4507 #else 4508 static inline enum skb_drop_reason 4509 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4510 const void *saddr, const void *daddr, 4511 int family, int l3index, const __u8 *hash_location) 4512 { 4513 return SKB_NOT_DROPPED_YET; 4514 } 4515 4516 #endif 4517 4518 /* Called with rcu_read_lock() */ 4519 enum skb_drop_reason 4520 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 4521 const struct sk_buff *skb, 4522 const void *saddr, const void *daddr, 4523 int family, int dif, int sdif) 4524 { 4525 const struct tcphdr *th = tcp_hdr(skb); 4526 const struct tcp_ao_hdr *aoh; 4527 const __u8 *md5_location; 4528 int l3index; 4529 4530 /* Invalid option or two times meet any of auth options */ 4531 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 4532 trace_tcp_hash_bad_header(sk, skb); 4533 return SKB_DROP_REASON_TCP_AUTH_HDR; 4534 } 4535 4536 if (req) { 4537 if (tcp_rsk_used_ao(req) != !!aoh) { 4538 u8 keyid, rnext, maclen; 4539 4540 if (aoh) { 4541 keyid = aoh->keyid; 4542 rnext = aoh->rnext_keyid; 4543 maclen = tcp_ao_hdr_maclen(aoh); 4544 } else { 4545 keyid = rnext = maclen = 0; 4546 } 4547 4548 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 4549 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen); 4550 return SKB_DROP_REASON_TCP_AOFAILURE; 4551 } 4552 } 4553 4554 /* sdif set, means packet ingressed via a device 4555 * in an L3 domain and dif is set to the l3mdev 4556 */ 4557 l3index = sdif ? dif : 0; 4558 4559 /* Fast path: unsigned segments */ 4560 if (likely(!md5_location && !aoh)) { 4561 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 4562 * for the remote peer. On TCP-AO established connection 4563 * the last key is impossible to remove, so there's 4564 * always at least one current_key. 4565 */ 4566 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 4567 trace_tcp_hash_ao_required(sk, skb); 4568 return SKB_DROP_REASON_TCP_AONOTFOUND; 4569 } 4570 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 4571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4572 trace_tcp_hash_md5_required(sk, skb); 4573 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4574 } 4575 return SKB_NOT_DROPPED_YET; 4576 } 4577 4578 if (aoh) 4579 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 4580 4581 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 4582 l3index, md5_location); 4583 } 4584 EXPORT_SYMBOL_GPL(tcp_inbound_hash); 4585 4586 void tcp_done(struct sock *sk) 4587 { 4588 struct request_sock *req; 4589 4590 /* We might be called with a new socket, after 4591 * inet_csk_prepare_forced_close() has been called 4592 * so we can not use lockdep_sock_is_held(sk) 4593 */ 4594 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4595 4596 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4597 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4598 4599 tcp_set_state(sk, TCP_CLOSE); 4600 tcp_clear_xmit_timers(sk); 4601 if (req) 4602 reqsk_fastopen_remove(sk, req, false); 4603 4604 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4605 4606 if (!sock_flag(sk, SOCK_DEAD)) 4607 sk->sk_state_change(sk); 4608 else 4609 inet_csk_destroy_sock(sk); 4610 } 4611 EXPORT_SYMBOL_GPL(tcp_done); 4612 4613 int tcp_abort(struct sock *sk, int err) 4614 { 4615 int state = inet_sk_state_load(sk); 4616 4617 if (state == TCP_NEW_SYN_RECV) { 4618 struct request_sock *req = inet_reqsk(sk); 4619 4620 local_bh_disable(); 4621 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4622 local_bh_enable(); 4623 return 0; 4624 } 4625 if (state == TCP_TIME_WAIT) { 4626 struct inet_timewait_sock *tw = inet_twsk(sk); 4627 4628 refcount_inc(&tw->tw_refcnt); 4629 local_bh_disable(); 4630 inet_twsk_deschedule_put(tw); 4631 local_bh_enable(); 4632 return 0; 4633 } 4634 4635 /* BPF context ensures sock locking. */ 4636 if (!has_current_bpf_ctx()) 4637 /* Don't race with userspace socket closes such as tcp_close. */ 4638 lock_sock(sk); 4639 4640 /* Avoid closing the same socket twice. */ 4641 if (sk->sk_state == TCP_CLOSE) { 4642 if (!has_current_bpf_ctx()) 4643 release_sock(sk); 4644 return -ENOENT; 4645 } 4646 4647 if (sk->sk_state == TCP_LISTEN) { 4648 tcp_set_state(sk, TCP_CLOSE); 4649 inet_csk_listen_stop(sk); 4650 } 4651 4652 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4653 local_bh_disable(); 4654 bh_lock_sock(sk); 4655 4656 if (tcp_need_reset(sk->sk_state)) 4657 tcp_send_active_reset(sk, GFP_ATOMIC, 4658 SK_RST_REASON_NOT_SPECIFIED); 4659 tcp_done_with_error(sk, err); 4660 4661 bh_unlock_sock(sk); 4662 local_bh_enable(); 4663 if (!has_current_bpf_ctx()) 4664 release_sock(sk); 4665 return 0; 4666 } 4667 EXPORT_SYMBOL_GPL(tcp_abort); 4668 4669 extern struct tcp_congestion_ops tcp_reno; 4670 4671 static __initdata unsigned long thash_entries; 4672 static int __init set_thash_entries(char *str) 4673 { 4674 ssize_t ret; 4675 4676 if (!str) 4677 return 0; 4678 4679 ret = kstrtoul(str, 0, &thash_entries); 4680 if (ret) 4681 return 0; 4682 4683 return 1; 4684 } 4685 __setup("thash_entries=", set_thash_entries); 4686 4687 static void __init tcp_init_mem(void) 4688 { 4689 unsigned long limit = nr_free_buffer_pages() / 16; 4690 4691 limit = max(limit, 128UL); 4692 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4693 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4694 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4695 } 4696 4697 static void __init tcp_struct_check(void) 4698 { 4699 /* TX read-mostly hotpath cache lines */ 4700 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window); 4701 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh); 4702 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering); 4703 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat); 4704 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs); 4705 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint); 4706 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint); 4707 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40); 4708 4709 /* TXRX read-mostly hotpath cache lines */ 4710 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset); 4711 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd); 4712 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache); 4713 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd); 4714 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out); 4715 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out); 4716 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out); 4717 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio); 4718 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32); 4719 4720 /* RX read-mostly hotpath cache lines */ 4721 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq); 4722 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp); 4723 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1); 4724 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq); 4725 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us); 4726 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out); 4727 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss); 4728 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data); 4729 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost); 4730 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min); 4731 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue); 4732 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh); 4733 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69); 4734 4735 /* TX read-write hotpath cache lines */ 4736 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out); 4737 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out); 4738 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent); 4739 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml); 4740 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start); 4741 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat); 4742 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq); 4743 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq); 4744 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime); 4745 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us); 4746 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns); 4747 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq); 4748 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue); 4749 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack); 4750 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags); 4751 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89); 4752 4753 /* TXRX read-write hotpath cache lines */ 4754 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags); 4755 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache); 4756 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp); 4757 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt); 4758 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt); 4759 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una); 4760 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp); 4761 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us); 4762 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out); 4763 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up); 4764 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered); 4765 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce); 4766 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited); 4767 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd); 4768 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt); 4769 4770 /* 32bit arches with 8byte alignment on u64 fields might need padding 4771 * before tcp_clock_cache. 4772 */ 4773 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4); 4774 4775 /* RX read-write hotpath cache lines */ 4776 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received); 4777 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in); 4778 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in); 4779 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup); 4780 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out); 4781 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq); 4782 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered); 4783 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us); 4784 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr); 4785 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp); 4786 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp); 4787 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked); 4788 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est); 4789 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space); 4790 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99); 4791 } 4792 4793 void __init tcp_init(void) 4794 { 4795 int max_rshare, max_wshare, cnt; 4796 unsigned long limit; 4797 unsigned int i; 4798 4799 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4800 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4801 sizeof_field(struct sk_buff, cb)); 4802 4803 tcp_struct_check(); 4804 4805 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4806 4807 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4808 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4809 4810 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4811 thash_entries, 21, /* one slot per 2 MB*/ 4812 0, 64 * 1024); 4813 tcp_hashinfo.bind_bucket_cachep = 4814 kmem_cache_create("tcp_bind_bucket", 4815 sizeof(struct inet_bind_bucket), 0, 4816 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4817 SLAB_ACCOUNT, 4818 NULL); 4819 tcp_hashinfo.bind2_bucket_cachep = 4820 kmem_cache_create("tcp_bind2_bucket", 4821 sizeof(struct inet_bind2_bucket), 0, 4822 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4823 SLAB_ACCOUNT, 4824 NULL); 4825 4826 /* Size and allocate the main established and bind bucket 4827 * hash tables. 4828 * 4829 * The methodology is similar to that of the buffer cache. 4830 */ 4831 tcp_hashinfo.ehash = 4832 alloc_large_system_hash("TCP established", 4833 sizeof(struct inet_ehash_bucket), 4834 thash_entries, 4835 17, /* one slot per 128 KB of memory */ 4836 0, 4837 NULL, 4838 &tcp_hashinfo.ehash_mask, 4839 0, 4840 thash_entries ? 0 : 512 * 1024); 4841 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4842 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4843 4844 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4845 panic("TCP: failed to alloc ehash_locks"); 4846 tcp_hashinfo.bhash = 4847 alloc_large_system_hash("TCP bind", 4848 2 * sizeof(struct inet_bind_hashbucket), 4849 tcp_hashinfo.ehash_mask + 1, 4850 17, /* one slot per 128 KB of memory */ 4851 0, 4852 &tcp_hashinfo.bhash_size, 4853 NULL, 4854 0, 4855 64 * 1024); 4856 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4857 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4858 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4859 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4860 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4861 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4862 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4863 } 4864 4865 tcp_hashinfo.pernet = false; 4866 4867 cnt = tcp_hashinfo.ehash_mask + 1; 4868 sysctl_tcp_max_orphans = cnt / 2; 4869 4870 tcp_init_mem(); 4871 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4872 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4873 max_wshare = min(4UL*1024*1024, limit); 4874 max_rshare = min(6UL*1024*1024, limit); 4875 4876 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4877 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4878 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4879 4880 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4881 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4882 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4883 4884 pr_info("Hash tables configured (established %u bind %u)\n", 4885 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4886 4887 tcp_v4_init(); 4888 tcp_metrics_init(); 4889 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4890 tcp_tasklet_init(); 4891 mptcp_init(); 4892 } 4893
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.