~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/ipv4/tcp_input.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  4  *              operating system.  INET is implemented using the  BSD Socket
  5  *              interface as the means of communication with the user level.
  6  *
  7  *              Implementation of the Transmission Control Protocol(TCP).
  8  *
  9  * Authors:     Ross Biro
 10  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Florian La Roche, <flla@stud.uni-sb.de>
 14  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
 16  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
 17  *              Matthew Dillon, <dillon@apollo.west.oic.com>
 18  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19  *              Jorge Cwik, <jorge@laser.satlink.net>
 20  */
 21 
 22 /*
 23  * Changes:
 24  *              Pedro Roque     :       Fast Retransmit/Recovery.
 25  *                                      Two receive queues.
 26  *                                      Retransmit queue handled by TCP.
 27  *                                      Better retransmit timer handling.
 28  *                                      New congestion avoidance.
 29  *                                      Header prediction.
 30  *                                      Variable renaming.
 31  *
 32  *              Eric            :       Fast Retransmit.
 33  *              Randy Scott     :       MSS option defines.
 34  *              Eric Schenk     :       Fixes to slow start algorithm.
 35  *              Eric Schenk     :       Yet another double ACK bug.
 36  *              Eric Schenk     :       Delayed ACK bug fixes.
 37  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
 38  *              David S. Miller :       Don't allow zero congestion window.
 39  *              Eric Schenk     :       Fix retransmitter so that it sends
 40  *                                      next packet on ack of previous packet.
 41  *              Andi Kleen      :       Moved open_request checking here
 42  *                                      and process RSTs for open_requests.
 43  *              Andi Kleen      :       Better prune_queue, and other fixes.
 44  *              Andrey Savochkin:       Fix RTT measurements in the presence of
 45  *                                      timestamps.
 46  *              Andrey Savochkin:       Check sequence numbers correctly when
 47  *                                      removing SACKs due to in sequence incoming
 48  *                                      data segments.
 49  *              Andi Kleen:             Make sure we never ack data there is not
 50  *                                      enough room for. Also make this condition
 51  *                                      a fatal error if it might still happen.
 52  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
 53  *                                      connections with MSS<min(MTU,ann. MSS)
 54  *                                      work without delayed acks.
 55  *              Andi Kleen:             Process packets with PSH set in the
 56  *                                      fast path.
 57  *              J Hadi Salim:           ECN support
 58  *              Andrei Gurtov,
 59  *              Pasi Sarolahti,
 60  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
 61  *                                      engine. Lots of bugs are found.
 62  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
 63  */
 64 
 65 #define pr_fmt(fmt) "TCP: " fmt
 66 
 67 #include <linux/mm.h>
 68 #include <linux/slab.h>
 69 #include <linux/module.h>
 70 #include <linux/sysctl.h>
 71 #include <linux/kernel.h>
 72 #include <linux/prefetch.h>
 73 #include <net/dst.h>
 74 #include <net/tcp.h>
 75 #include <net/proto_memory.h>
 76 #include <net/inet_common.h>
 77 #include <linux/ipsec.h>
 78 #include <asm/unaligned.h>
 79 #include <linux/errqueue.h>
 80 #include <trace/events/tcp.h>
 81 #include <linux/jump_label_ratelimit.h>
 82 #include <net/busy_poll.h>
 83 #include <net/mptcp.h>
 84 
 85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
 86 
 87 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
 88 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
 89 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
 90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
 91 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
 92 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
 93 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
 94 #define FLAG_LOST_RETRANS       0x80 /* This ACK marks some retransmission lost */
 95 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
 96 #define FLAG_ORIG_SACK_ACKED    0x200 /* Never retransmitted data are (s)acked  */
 97 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 98 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
 99 #define FLAG_SET_XMIT_TIMER     0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK   0x8000 /* do not call tcp_send_challenge_ack()  */
103 #define FLAG_ACK_MAYBE_DELAYED  0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP          0x20000 /* DSACK for tail loss probe */
105 
106 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113 
114 #define REXMIT_NONE     0 /* no loss recovery to do */
115 #define REXMIT_LOST     1 /* retransmit packets marked lost */
116 #define REXMIT_NEW      2 /* FRTO-style transmit of unsent/new packets */
117 
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120 
121 void clean_acked_data_enable(struct inet_connection_sock *icsk,
122                              void (*cad)(struct sock *sk, u32 ack_seq))
123 {
124         icsk->icsk_clean_acked = cad;
125         static_branch_deferred_inc(&clean_acked_data_enabled);
126 }
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128 
129 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 {
131         static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132         icsk->icsk_clean_acked = NULL;
133 }
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135 
136 void clean_acked_data_flush(void)
137 {
138         static_key_deferred_flush(&clean_acked_data_enabled);
139 }
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #endif
142 
143 #ifdef CONFIG_CGROUP_BPF
144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 {
146         bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147                 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148                                        BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149         bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150                                                     BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151         struct bpf_sock_ops_kern sock_ops;
152 
153         if (likely(!unknown_opt && !parse_all_opt))
154                 return;
155 
156         /* The skb will be handled in the
157          * bpf_skops_established() or
158          * bpf_skops_write_hdr_opt().
159          */
160         switch (sk->sk_state) {
161         case TCP_SYN_RECV:
162         case TCP_SYN_SENT:
163         case TCP_LISTEN:
164                 return;
165         }
166 
167         sock_owned_by_me(sk);
168 
169         memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170         sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171         sock_ops.is_fullsock = 1;
172         sock_ops.sk = sk;
173         bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174 
175         BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 }
177 
178 static void bpf_skops_established(struct sock *sk, int bpf_op,
179                                   struct sk_buff *skb)
180 {
181         struct bpf_sock_ops_kern sock_ops;
182 
183         sock_owned_by_me(sk);
184 
185         memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186         sock_ops.op = bpf_op;
187         sock_ops.is_fullsock = 1;
188         sock_ops.sk = sk;
189         /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190         if (skb)
191                 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192 
193         BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194 }
195 #else
196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197 {
198 }
199 
200 static void bpf_skops_established(struct sock *sk, int bpf_op,
201                                   struct sk_buff *skb)
202 {
203 }
204 #endif
205 
206 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
207                                     unsigned int len)
208 {
209         struct net_device *dev;
210 
211         rcu_read_lock();
212         dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
213         if (!dev || len >= READ_ONCE(dev->mtu))
214                 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
215                         dev ? dev->name : "Unknown driver");
216         rcu_read_unlock();
217 }
218 
219 /* Adapt the MSS value used to make delayed ack decision to the
220  * real world.
221  */
222 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
223 {
224         struct inet_connection_sock *icsk = inet_csk(sk);
225         const unsigned int lss = icsk->icsk_ack.last_seg_size;
226         unsigned int len;
227 
228         icsk->icsk_ack.last_seg_size = 0;
229 
230         /* skb->len may jitter because of SACKs, even if peer
231          * sends good full-sized frames.
232          */
233         len = skb_shinfo(skb)->gso_size ? : skb->len;
234         if (len >= icsk->icsk_ack.rcv_mss) {
235                 /* Note: divides are still a bit expensive.
236                  * For the moment, only adjust scaling_ratio
237                  * when we update icsk_ack.rcv_mss.
238                  */
239                 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
240                         u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
241                         u8 old_ratio = tcp_sk(sk)->scaling_ratio;
242 
243                         do_div(val, skb->truesize);
244                         tcp_sk(sk)->scaling_ratio = val ? val : 1;
245 
246                         if (old_ratio != tcp_sk(sk)->scaling_ratio)
247                                 WRITE_ONCE(tcp_sk(sk)->window_clamp,
248                                            tcp_win_from_space(sk, sk->sk_rcvbuf));
249                 }
250                 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
251                                                tcp_sk(sk)->advmss);
252                 /* Account for possibly-removed options */
253                 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
254                                 tcp_gro_dev_warn, sk, skb, len);
255                 /* If the skb has a len of exactly 1*MSS and has the PSH bit
256                  * set then it is likely the end of an application write. So
257                  * more data may not be arriving soon, and yet the data sender
258                  * may be waiting for an ACK if cwnd-bound or using TX zero
259                  * copy. So we set ICSK_ACK_PUSHED here so that
260                  * tcp_cleanup_rbuf() will send an ACK immediately if the app
261                  * reads all of the data and is not ping-pong. If len > MSS
262                  * then this logic does not matter (and does not hurt) because
263                  * tcp_cleanup_rbuf() will always ACK immediately if the app
264                  * reads data and there is more than an MSS of unACKed data.
265                  */
266                 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
267                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
268         } else {
269                 /* Otherwise, we make more careful check taking into account,
270                  * that SACKs block is variable.
271                  *
272                  * "len" is invariant segment length, including TCP header.
273                  */
274                 len += skb->data - skb_transport_header(skb);
275                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
276                     /* If PSH is not set, packet should be
277                      * full sized, provided peer TCP is not badly broken.
278                      * This observation (if it is correct 8)) allows
279                      * to handle super-low mtu links fairly.
280                      */
281                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
282                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
283                         /* Subtract also invariant (if peer is RFC compliant),
284                          * tcp header plus fixed timestamp option length.
285                          * Resulting "len" is MSS free of SACK jitter.
286                          */
287                         len -= tcp_sk(sk)->tcp_header_len;
288                         icsk->icsk_ack.last_seg_size = len;
289                         if (len == lss) {
290                                 icsk->icsk_ack.rcv_mss = len;
291                                 return;
292                         }
293                 }
294                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
295                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
296                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
297         }
298 }
299 
300 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
301 {
302         struct inet_connection_sock *icsk = inet_csk(sk);
303         unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
304 
305         if (quickacks == 0)
306                 quickacks = 2;
307         quickacks = min(quickacks, max_quickacks);
308         if (quickacks > icsk->icsk_ack.quick)
309                 icsk->icsk_ack.quick = quickacks;
310 }
311 
312 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
313 {
314         struct inet_connection_sock *icsk = inet_csk(sk);
315 
316         tcp_incr_quickack(sk, max_quickacks);
317         inet_csk_exit_pingpong_mode(sk);
318         icsk->icsk_ack.ato = TCP_ATO_MIN;
319 }
320 
321 /* Send ACKs quickly, if "quick" count is not exhausted
322  * and the session is not interactive.
323  */
324 
325 static bool tcp_in_quickack_mode(struct sock *sk)
326 {
327         const struct inet_connection_sock *icsk = inet_csk(sk);
328         const struct dst_entry *dst = __sk_dst_get(sk);
329 
330         return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
331                 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
332 }
333 
334 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
335 {
336         if (tp->ecn_flags & TCP_ECN_OK)
337                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
338 }
339 
340 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
341 {
342         if (tcp_hdr(skb)->cwr) {
343                 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
344 
345                 /* If the sender is telling us it has entered CWR, then its
346                  * cwnd may be very low (even just 1 packet), so we should ACK
347                  * immediately.
348                  */
349                 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
350                         inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
351         }
352 }
353 
354 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
355 {
356         tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
357 }
358 
359 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
360 {
361         struct tcp_sock *tp = tcp_sk(sk);
362 
363         switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
364         case INET_ECN_NOT_ECT:
365                 /* Funny extension: if ECT is not set on a segment,
366                  * and we already seen ECT on a previous segment,
367                  * it is probably a retransmit.
368                  */
369                 if (tp->ecn_flags & TCP_ECN_SEEN)
370                         tcp_enter_quickack_mode(sk, 2);
371                 break;
372         case INET_ECN_CE:
373                 if (tcp_ca_needs_ecn(sk))
374                         tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
375 
376                 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
377                         /* Better not delay acks, sender can have a very low cwnd */
378                         tcp_enter_quickack_mode(sk, 2);
379                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
380                 }
381                 tp->ecn_flags |= TCP_ECN_SEEN;
382                 break;
383         default:
384                 if (tcp_ca_needs_ecn(sk))
385                         tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
386                 tp->ecn_flags |= TCP_ECN_SEEN;
387                 break;
388         }
389 }
390 
391 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
392 {
393         if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
394                 __tcp_ecn_check_ce(sk, skb);
395 }
396 
397 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
398 {
399         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
400                 tp->ecn_flags &= ~TCP_ECN_OK;
401 }
402 
403 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
404 {
405         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
406                 tp->ecn_flags &= ~TCP_ECN_OK;
407 }
408 
409 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
410 {
411         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
412                 return true;
413         return false;
414 }
415 
416 /* Buffer size and advertised window tuning.
417  *
418  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
419  */
420 
421 static void tcp_sndbuf_expand(struct sock *sk)
422 {
423         const struct tcp_sock *tp = tcp_sk(sk);
424         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
425         int sndmem, per_mss;
426         u32 nr_segs;
427 
428         /* Worst case is non GSO/TSO : each frame consumes one skb
429          * and skb->head is kmalloced using power of two area of memory
430          */
431         per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
432                   MAX_TCP_HEADER +
433                   SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
434 
435         per_mss = roundup_pow_of_two(per_mss) +
436                   SKB_DATA_ALIGN(sizeof(struct sk_buff));
437 
438         nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
439         nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
440 
441         /* Fast Recovery (RFC 5681 3.2) :
442          * Cubic needs 1.7 factor, rounded to 2 to include
443          * extra cushion (application might react slowly to EPOLLOUT)
444          */
445         sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
446         sndmem *= nr_segs * per_mss;
447 
448         if (sk->sk_sndbuf < sndmem)
449                 WRITE_ONCE(sk->sk_sndbuf,
450                            min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
451 }
452 
453 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
454  *
455  * All tcp_full_space() is split to two parts: "network" buffer, allocated
456  * forward and advertised in receiver window (tp->rcv_wnd) and
457  * "application buffer", required to isolate scheduling/application
458  * latencies from network.
459  * window_clamp is maximal advertised window. It can be less than
460  * tcp_full_space(), in this case tcp_full_space() - window_clamp
461  * is reserved for "application" buffer. The less window_clamp is
462  * the smoother our behaviour from viewpoint of network, but the lower
463  * throughput and the higher sensitivity of the connection to losses. 8)
464  *
465  * rcv_ssthresh is more strict window_clamp used at "slow start"
466  * phase to predict further behaviour of this connection.
467  * It is used for two goals:
468  * - to enforce header prediction at sender, even when application
469  *   requires some significant "application buffer". It is check #1.
470  * - to prevent pruning of receive queue because of misprediction
471  *   of receiver window. Check #2.
472  *
473  * The scheme does not work when sender sends good segments opening
474  * window and then starts to feed us spaghetti. But it should work
475  * in common situations. Otherwise, we have to rely on queue collapsing.
476  */
477 
478 /* Slow part of check#2. */
479 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
480                              unsigned int skbtruesize)
481 {
482         const struct tcp_sock *tp = tcp_sk(sk);
483         /* Optimize this! */
484         int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
485         int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
486 
487         while (tp->rcv_ssthresh <= window) {
488                 if (truesize <= skb->len)
489                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
490 
491                 truesize >>= 1;
492                 window >>= 1;
493         }
494         return 0;
495 }
496 
497 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
498  * can play nice with us, as sk_buff and skb->head might be either
499  * freed or shared with up to MAX_SKB_FRAGS segments.
500  * Only give a boost to drivers using page frag(s) to hold the frame(s),
501  * and if no payload was pulled in skb->head before reaching us.
502  */
503 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
504 {
505         u32 truesize = skb->truesize;
506 
507         if (adjust && !skb_headlen(skb)) {
508                 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
509                 /* paranoid check, some drivers might be buggy */
510                 if (unlikely((int)truesize < (int)skb->len))
511                         truesize = skb->truesize;
512         }
513         return truesize;
514 }
515 
516 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
517                             bool adjust)
518 {
519         struct tcp_sock *tp = tcp_sk(sk);
520         int room;
521 
522         room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
523 
524         if (room <= 0)
525                 return;
526 
527         /* Check #1 */
528         if (!tcp_under_memory_pressure(sk)) {
529                 unsigned int truesize = truesize_adjust(adjust, skb);
530                 int incr;
531 
532                 /* Check #2. Increase window, if skb with such overhead
533                  * will fit to rcvbuf in future.
534                  */
535                 if (tcp_win_from_space(sk, truesize) <= skb->len)
536                         incr = 2 * tp->advmss;
537                 else
538                         incr = __tcp_grow_window(sk, skb, truesize);
539 
540                 if (incr) {
541                         incr = max_t(int, incr, 2 * skb->len);
542                         tp->rcv_ssthresh += min(room, incr);
543                         inet_csk(sk)->icsk_ack.quick |= 1;
544                 }
545         } else {
546                 /* Under pressure:
547                  * Adjust rcv_ssthresh according to reserved mem
548                  */
549                 tcp_adjust_rcv_ssthresh(sk);
550         }
551 }
552 
553 /* 3. Try to fixup all. It is made immediately after connection enters
554  *    established state.
555  */
556 static void tcp_init_buffer_space(struct sock *sk)
557 {
558         int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
559         struct tcp_sock *tp = tcp_sk(sk);
560         int maxwin;
561 
562         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
563                 tcp_sndbuf_expand(sk);
564 
565         tcp_mstamp_refresh(tp);
566         tp->rcvq_space.time = tp->tcp_mstamp;
567         tp->rcvq_space.seq = tp->copied_seq;
568 
569         maxwin = tcp_full_space(sk);
570 
571         if (tp->window_clamp >= maxwin) {
572                 WRITE_ONCE(tp->window_clamp, maxwin);
573 
574                 if (tcp_app_win && maxwin > 4 * tp->advmss)
575                         WRITE_ONCE(tp->window_clamp,
576                                    max(maxwin - (maxwin >> tcp_app_win),
577                                        4 * tp->advmss));
578         }
579 
580         /* Force reservation of one segment. */
581         if (tcp_app_win &&
582             tp->window_clamp > 2 * tp->advmss &&
583             tp->window_clamp + tp->advmss > maxwin)
584                 WRITE_ONCE(tp->window_clamp,
585                            max(2 * tp->advmss, maxwin - tp->advmss));
586 
587         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
588         tp->snd_cwnd_stamp = tcp_jiffies32;
589         tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
590                                     (u32)TCP_INIT_CWND * tp->advmss);
591 }
592 
593 /* 4. Recalculate window clamp after socket hit its memory bounds. */
594 static void tcp_clamp_window(struct sock *sk)
595 {
596         struct tcp_sock *tp = tcp_sk(sk);
597         struct inet_connection_sock *icsk = inet_csk(sk);
598         struct net *net = sock_net(sk);
599         int rmem2;
600 
601         icsk->icsk_ack.quick = 0;
602         rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
603 
604         if (sk->sk_rcvbuf < rmem2 &&
605             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
606             !tcp_under_memory_pressure(sk) &&
607             sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
608                 WRITE_ONCE(sk->sk_rcvbuf,
609                            min(atomic_read(&sk->sk_rmem_alloc), rmem2));
610         }
611         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
612                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
613 }
614 
615 /* Initialize RCV_MSS value.
616  * RCV_MSS is an our guess about MSS used by the peer.
617  * We haven't any direct information about the MSS.
618  * It's better to underestimate the RCV_MSS rather than overestimate.
619  * Overestimations make us ACKing less frequently than needed.
620  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
621  */
622 void tcp_initialize_rcv_mss(struct sock *sk)
623 {
624         const struct tcp_sock *tp = tcp_sk(sk);
625         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
626 
627         hint = min(hint, tp->rcv_wnd / 2);
628         hint = min(hint, TCP_MSS_DEFAULT);
629         hint = max(hint, TCP_MIN_MSS);
630 
631         inet_csk(sk)->icsk_ack.rcv_mss = hint;
632 }
633 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
634 
635 /* Receiver "autotuning" code.
636  *
637  * The algorithm for RTT estimation w/o timestamps is based on
638  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
639  * <https://public.lanl.gov/radiant/pubs.html#DRS>
640  *
641  * More detail on this code can be found at
642  * <http://staff.psc.edu/jheffner/>,
643  * though this reference is out of date.  A new paper
644  * is pending.
645  */
646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
647 {
648         u32 new_sample = tp->rcv_rtt_est.rtt_us;
649         long m = sample;
650 
651         if (new_sample != 0) {
652                 /* If we sample in larger samples in the non-timestamp
653                  * case, we could grossly overestimate the RTT especially
654                  * with chatty applications or bulk transfer apps which
655                  * are stalled on filesystem I/O.
656                  *
657                  * Also, since we are only going for a minimum in the
658                  * non-timestamp case, we do not smooth things out
659                  * else with timestamps disabled convergence takes too
660                  * long.
661                  */
662                 if (!win_dep) {
663                         m -= (new_sample >> 3);
664                         new_sample += m;
665                 } else {
666                         m <<= 3;
667                         if (m < new_sample)
668                                 new_sample = m;
669                 }
670         } else {
671                 /* No previous measure. */
672                 new_sample = m << 3;
673         }
674 
675         tp->rcv_rtt_est.rtt_us = new_sample;
676 }
677 
678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
679 {
680         u32 delta_us;
681 
682         if (tp->rcv_rtt_est.time == 0)
683                 goto new_measure;
684         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
685                 return;
686         delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
687         if (!delta_us)
688                 delta_us = 1;
689         tcp_rcv_rtt_update(tp, delta_us, 1);
690 
691 new_measure:
692         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
693         tp->rcv_rtt_est.time = tp->tcp_mstamp;
694 }
695 
696 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
697 {
698         u32 delta, delta_us;
699 
700         delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
701         if (tp->tcp_usec_ts)
702                 return delta;
703 
704         if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
705                 if (!delta)
706                         delta = 1;
707                 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
708                 return delta_us;
709         }
710         return -1;
711 }
712 
713 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
714                                           const struct sk_buff *skb)
715 {
716         struct tcp_sock *tp = tcp_sk(sk);
717 
718         if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
719                 return;
720         tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
721 
722         if (TCP_SKB_CB(skb)->end_seq -
723             TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
724                 s32 delta = tcp_rtt_tsopt_us(tp);
725 
726                 if (delta >= 0)
727                         tcp_rcv_rtt_update(tp, delta, 0);
728         }
729 }
730 
731 /*
732  * This function should be called every time data is copied to user space.
733  * It calculates the appropriate TCP receive buffer space.
734  */
735 void tcp_rcv_space_adjust(struct sock *sk)
736 {
737         struct tcp_sock *tp = tcp_sk(sk);
738         u32 copied;
739         int time;
740 
741         trace_tcp_rcv_space_adjust(sk);
742 
743         tcp_mstamp_refresh(tp);
744         time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
745         if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
746                 return;
747 
748         /* Number of bytes copied to user in last RTT */
749         copied = tp->copied_seq - tp->rcvq_space.seq;
750         if (copied <= tp->rcvq_space.space)
751                 goto new_measure;
752 
753         /* A bit of theory :
754          * copied = bytes received in previous RTT, our base window
755          * To cope with packet losses, we need a 2x factor
756          * To cope with slow start, and sender growing its cwin by 100 %
757          * every RTT, we need a 4x factor, because the ACK we are sending
758          * now is for the next RTT, not the current one :
759          * <prev RTT . ><current RTT .. ><next RTT .... >
760          */
761 
762         if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
763             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
764                 u64 rcvwin, grow;
765                 int rcvbuf;
766 
767                 /* minimal window to cope with packet losses, assuming
768                  * steady state. Add some cushion because of small variations.
769                  */
770                 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
771 
772                 /* Accommodate for sender rate increase (eg. slow start) */
773                 grow = rcvwin * (copied - tp->rcvq_space.space);
774                 do_div(grow, tp->rcvq_space.space);
775                 rcvwin += (grow << 1);
776 
777                 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
778                                READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
779                 if (rcvbuf > sk->sk_rcvbuf) {
780                         WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
781 
782                         /* Make the window clamp follow along.  */
783                         WRITE_ONCE(tp->window_clamp,
784                                    tcp_win_from_space(sk, rcvbuf));
785                 }
786         }
787         tp->rcvq_space.space = copied;
788 
789 new_measure:
790         tp->rcvq_space.seq = tp->copied_seq;
791         tp->rcvq_space.time = tp->tcp_mstamp;
792 }
793 
794 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
795 {
796 #if IS_ENABLED(CONFIG_IPV6)
797         struct inet_connection_sock *icsk = inet_csk(sk);
798 
799         if (skb->protocol == htons(ETH_P_IPV6))
800                 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
801 #endif
802 }
803 
804 /* There is something which you must keep in mind when you analyze the
805  * behavior of the tp->ato delayed ack timeout interval.  When a
806  * connection starts up, we want to ack as quickly as possible.  The
807  * problem is that "good" TCP's do slow start at the beginning of data
808  * transmission.  The means that until we send the first few ACK's the
809  * sender will sit on his end and only queue most of his data, because
810  * he can only send snd_cwnd unacked packets at any given time.  For
811  * each ACK we send, he increments snd_cwnd and transmits more of his
812  * queue.  -DaveM
813  */
814 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
815 {
816         struct tcp_sock *tp = tcp_sk(sk);
817         struct inet_connection_sock *icsk = inet_csk(sk);
818         u32 now;
819 
820         inet_csk_schedule_ack(sk);
821 
822         tcp_measure_rcv_mss(sk, skb);
823 
824         tcp_rcv_rtt_measure(tp);
825 
826         now = tcp_jiffies32;
827 
828         if (!icsk->icsk_ack.ato) {
829                 /* The _first_ data packet received, initialize
830                  * delayed ACK engine.
831                  */
832                 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
833                 icsk->icsk_ack.ato = TCP_ATO_MIN;
834         } else {
835                 int m = now - icsk->icsk_ack.lrcvtime;
836 
837                 if (m <= TCP_ATO_MIN / 2) {
838                         /* The fastest case is the first. */
839                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
840                 } else if (m < icsk->icsk_ack.ato) {
841                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
842                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
843                                 icsk->icsk_ack.ato = icsk->icsk_rto;
844                 } else if (m > icsk->icsk_rto) {
845                         /* Too long gap. Apparently sender failed to
846                          * restart window, so that we send ACKs quickly.
847                          */
848                         tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
849                 }
850         }
851         icsk->icsk_ack.lrcvtime = now;
852         tcp_save_lrcv_flowlabel(sk, skb);
853 
854         tcp_ecn_check_ce(sk, skb);
855 
856         if (skb->len >= 128)
857                 tcp_grow_window(sk, skb, true);
858 }
859 
860 /* Called to compute a smoothed rtt estimate. The data fed to this
861  * routine either comes from timestamps, or from segments that were
862  * known _not_ to have been retransmitted [see Karn/Partridge
863  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
864  * piece by Van Jacobson.
865  * NOTE: the next three routines used to be one big routine.
866  * To save cycles in the RFC 1323 implementation it was better to break
867  * it up into three procedures. -- erics
868  */
869 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
870 {
871         struct tcp_sock *tp = tcp_sk(sk);
872         long m = mrtt_us; /* RTT */
873         u32 srtt = tp->srtt_us;
874 
875         /*      The following amusing code comes from Jacobson's
876          *      article in SIGCOMM '88.  Note that rtt and mdev
877          *      are scaled versions of rtt and mean deviation.
878          *      This is designed to be as fast as possible
879          *      m stands for "measurement".
880          *
881          *      On a 1990 paper the rto value is changed to:
882          *      RTO = rtt + 4 * mdev
883          *
884          * Funny. This algorithm seems to be very broken.
885          * These formulae increase RTO, when it should be decreased, increase
886          * too slowly, when it should be increased quickly, decrease too quickly
887          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
888          * does not matter how to _calculate_ it. Seems, it was trap
889          * that VJ failed to avoid. 8)
890          */
891         if (srtt != 0) {
892                 m -= (srtt >> 3);       /* m is now error in rtt est */
893                 srtt += m;              /* rtt = 7/8 rtt + 1/8 new */
894                 if (m < 0) {
895                         m = -m;         /* m is now abs(error) */
896                         m -= (tp->mdev_us >> 2);   /* similar update on mdev */
897                         /* This is similar to one of Eifel findings.
898                          * Eifel blocks mdev updates when rtt decreases.
899                          * This solution is a bit different: we use finer gain
900                          * for mdev in this case (alpha*beta).
901                          * Like Eifel it also prevents growth of rto,
902                          * but also it limits too fast rto decreases,
903                          * happening in pure Eifel.
904                          */
905                         if (m > 0)
906                                 m >>= 3;
907                 } else {
908                         m -= (tp->mdev_us >> 2);   /* similar update on mdev */
909                 }
910                 tp->mdev_us += m;               /* mdev = 3/4 mdev + 1/4 new */
911                 if (tp->mdev_us > tp->mdev_max_us) {
912                         tp->mdev_max_us = tp->mdev_us;
913                         if (tp->mdev_max_us > tp->rttvar_us)
914                                 tp->rttvar_us = tp->mdev_max_us;
915                 }
916                 if (after(tp->snd_una, tp->rtt_seq)) {
917                         if (tp->mdev_max_us < tp->rttvar_us)
918                                 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
919                         tp->rtt_seq = tp->snd_nxt;
920                         tp->mdev_max_us = tcp_rto_min_us(sk);
921 
922                         tcp_bpf_rtt(sk, mrtt_us, srtt);
923                 }
924         } else {
925                 /* no previous measure. */
926                 srtt = m << 3;          /* take the measured time to be rtt */
927                 tp->mdev_us = m << 1;   /* make sure rto = 3*rtt */
928                 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
929                 tp->mdev_max_us = tp->rttvar_us;
930                 tp->rtt_seq = tp->snd_nxt;
931 
932                 tcp_bpf_rtt(sk, mrtt_us, srtt);
933         }
934         tp->srtt_us = max(1U, srtt);
935 }
936 
937 static void tcp_update_pacing_rate(struct sock *sk)
938 {
939         const struct tcp_sock *tp = tcp_sk(sk);
940         u64 rate;
941 
942         /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
943         rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
944 
945         /* current rate is (cwnd * mss) / srtt
946          * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
947          * In Congestion Avoidance phase, set it to 120 % the current rate.
948          *
949          * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
950          *       If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
951          *       end of slow start and should slow down.
952          */
953         if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
954                 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
955         else
956                 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
957 
958         rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
959 
960         if (likely(tp->srtt_us))
961                 do_div(rate, tp->srtt_us);
962 
963         /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
964          * without any lock. We want to make sure compiler wont store
965          * intermediate values in this location.
966          */
967         WRITE_ONCE(sk->sk_pacing_rate,
968                    min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
969 }
970 
971 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
972  * routine referred to above.
973  */
974 static void tcp_set_rto(struct sock *sk)
975 {
976         const struct tcp_sock *tp = tcp_sk(sk);
977         /* Old crap is replaced with new one. 8)
978          *
979          * More seriously:
980          * 1. If rtt variance happened to be less 50msec, it is hallucination.
981          *    It cannot be less due to utterly erratic ACK generation made
982          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
983          *    to do with delayed acks, because at cwnd>2 true delack timeout
984          *    is invisible. Actually, Linux-2.4 also generates erratic
985          *    ACKs in some circumstances.
986          */
987         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
988 
989         /* 2. Fixups made earlier cannot be right.
990          *    If we do not estimate RTO correctly without them,
991          *    all the algo is pure shit and should be replaced
992          *    with correct one. It is exactly, which we pretend to do.
993          */
994 
995         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
996          * guarantees that rto is higher.
997          */
998         tcp_bound_rto(sk);
999 }
1000 
1001 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1002 {
1003         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1004 
1005         if (!cwnd)
1006                 cwnd = TCP_INIT_CWND;
1007         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1008 }
1009 
1010 struct tcp_sacktag_state {
1011         /* Timestamps for earliest and latest never-retransmitted segment
1012          * that was SACKed. RTO needs the earliest RTT to stay conservative,
1013          * but congestion control should still get an accurate delay signal.
1014          */
1015         u64     first_sackt;
1016         u64     last_sackt;
1017         u32     reord;
1018         u32     sack_delivered;
1019         int     flag;
1020         unsigned int mss_now;
1021         struct rate_sample *rate;
1022 };
1023 
1024 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1025  * and spurious retransmission information if this DSACK is unlikely caused by
1026  * sender's action:
1027  * - DSACKed sequence range is larger than maximum receiver's window.
1028  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1029  */
1030 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1031                           u32 end_seq, struct tcp_sacktag_state *state)
1032 {
1033         u32 seq_len, dup_segs = 1;
1034 
1035         if (!before(start_seq, end_seq))
1036                 return 0;
1037 
1038         seq_len = end_seq - start_seq;
1039         /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1040         if (seq_len > tp->max_window)
1041                 return 0;
1042         if (seq_len > tp->mss_cache)
1043                 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1044         else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1045                 state->flag |= FLAG_DSACK_TLP;
1046 
1047         tp->dsack_dups += dup_segs;
1048         /* Skip the DSACK if dup segs weren't retransmitted by sender */
1049         if (tp->dsack_dups > tp->total_retrans)
1050                 return 0;
1051 
1052         tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1053         /* We increase the RACK ordering window in rounds where we receive
1054          * DSACKs that may have been due to reordering causing RACK to trigger
1055          * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1056          * without having seen reordering, or that match TLP probes (TLP
1057          * is timer-driven, not triggered by RACK).
1058          */
1059         if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1060                 tp->rack.dsack_seen = 1;
1061 
1062         state->flag |= FLAG_DSACKING_ACK;
1063         /* A spurious retransmission is delivered */
1064         state->sack_delivered += dup_segs;
1065 
1066         return dup_segs;
1067 }
1068 
1069 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1070  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1071  * distance is approximated in full-mss packet distance ("reordering").
1072  */
1073 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1074                                       const int ts)
1075 {
1076         struct tcp_sock *tp = tcp_sk(sk);
1077         const u32 mss = tp->mss_cache;
1078         u32 fack, metric;
1079 
1080         fack = tcp_highest_sack_seq(tp);
1081         if (!before(low_seq, fack))
1082                 return;
1083 
1084         metric = fack - low_seq;
1085         if ((metric > tp->reordering * mss) && mss) {
1086 #if FASTRETRANS_DEBUG > 1
1087                 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1088                          tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1089                          tp->reordering,
1090                          0,
1091                          tp->sacked_out,
1092                          tp->undo_marker ? tp->undo_retrans : 0);
1093 #endif
1094                 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1095                                        READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1096         }
1097 
1098         /* This exciting event is worth to be remembered. 8) */
1099         tp->reord_seen++;
1100         NET_INC_STATS(sock_net(sk),
1101                       ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1102 }
1103 
1104  /* This must be called before lost_out or retrans_out are updated
1105   * on a new loss, because we want to know if all skbs previously
1106   * known to be lost have already been retransmitted, indicating
1107   * that this newly lost skb is our next skb to retransmit.
1108   */
1109 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1110 {
1111         if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1112             (tp->retransmit_skb_hint &&
1113              before(TCP_SKB_CB(skb)->seq,
1114                     TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1115                 tp->retransmit_skb_hint = skb;
1116 }
1117 
1118 /* Sum the number of packets on the wire we have marked as lost, and
1119  * notify the congestion control module that the given skb was marked lost.
1120  */
1121 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1122 {
1123         tp->lost += tcp_skb_pcount(skb);
1124 }
1125 
1126 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1127 {
1128         __u8 sacked = TCP_SKB_CB(skb)->sacked;
1129         struct tcp_sock *tp = tcp_sk(sk);
1130 
1131         if (sacked & TCPCB_SACKED_ACKED)
1132                 return;
1133 
1134         tcp_verify_retransmit_hint(tp, skb);
1135         if (sacked & TCPCB_LOST) {
1136                 if (sacked & TCPCB_SACKED_RETRANS) {
1137                         /* Account for retransmits that are lost again */
1138                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1139                         tp->retrans_out -= tcp_skb_pcount(skb);
1140                         NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1141                                       tcp_skb_pcount(skb));
1142                         tcp_notify_skb_loss_event(tp, skb);
1143                 }
1144         } else {
1145                 tp->lost_out += tcp_skb_pcount(skb);
1146                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1147                 tcp_notify_skb_loss_event(tp, skb);
1148         }
1149 }
1150 
1151 /* Updates the delivered and delivered_ce counts */
1152 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1153                                 bool ece_ack)
1154 {
1155         tp->delivered += delivered;
1156         if (ece_ack)
1157                 tp->delivered_ce += delivered;
1158 }
1159 
1160 /* This procedure tags the retransmission queue when SACKs arrive.
1161  *
1162  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1163  * Packets in queue with these bits set are counted in variables
1164  * sacked_out, retrans_out and lost_out, correspondingly.
1165  *
1166  * Valid combinations are:
1167  * Tag  InFlight        Description
1168  * 0    1               - orig segment is in flight.
1169  * S    0               - nothing flies, orig reached receiver.
1170  * L    0               - nothing flies, orig lost by net.
1171  * R    2               - both orig and retransmit are in flight.
1172  * L|R  1               - orig is lost, retransmit is in flight.
1173  * S|R  1               - orig reached receiver, retrans is still in flight.
1174  * (L|S|R is logically valid, it could occur when L|R is sacked,
1175  *  but it is equivalent to plain S and code short-circuits it to S.
1176  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1177  *
1178  * These 6 states form finite state machine, controlled by the following events:
1179  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1180  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1181  * 3. Loss detection event of two flavors:
1182  *      A. Scoreboard estimator decided the packet is lost.
1183  *         A'. Reno "three dupacks" marks head of queue lost.
1184  *      B. SACK arrives sacking SND.NXT at the moment, when the
1185  *         segment was retransmitted.
1186  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1187  *
1188  * It is pleasant to note, that state diagram turns out to be commutative,
1189  * so that we are allowed not to be bothered by order of our actions,
1190  * when multiple events arrive simultaneously. (see the function below).
1191  *
1192  * Reordering detection.
1193  * --------------------
1194  * Reordering metric is maximal distance, which a packet can be displaced
1195  * in packet stream. With SACKs we can estimate it:
1196  *
1197  * 1. SACK fills old hole and the corresponding segment was not
1198  *    ever retransmitted -> reordering. Alas, we cannot use it
1199  *    when segment was retransmitted.
1200  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1201  *    for retransmitted and already SACKed segment -> reordering..
1202  * Both of these heuristics are not used in Loss state, when we cannot
1203  * account for retransmits accurately.
1204  *
1205  * SACK block validation.
1206  * ----------------------
1207  *
1208  * SACK block range validation checks that the received SACK block fits to
1209  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1210  * Note that SND.UNA is not included to the range though being valid because
1211  * it means that the receiver is rather inconsistent with itself reporting
1212  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1213  * perfectly valid, however, in light of RFC2018 which explicitly states
1214  * that "SACK block MUST reflect the newest segment.  Even if the newest
1215  * segment is going to be discarded ...", not that it looks very clever
1216  * in case of head skb. Due to potentional receiver driven attacks, we
1217  * choose to avoid immediate execution of a walk in write queue due to
1218  * reneging and defer head skb's loss recovery to standard loss recovery
1219  * procedure that will eventually trigger (nothing forbids us doing this).
1220  *
1221  * Implements also blockage to start_seq wrap-around. Problem lies in the
1222  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1223  * there's no guarantee that it will be before snd_nxt (n). The problem
1224  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1225  * wrap (s_w):
1226  *
1227  *         <- outs wnd ->                          <- wrapzone ->
1228  *         u     e      n                         u_w   e_w  s n_w
1229  *         |     |      |                          |     |   |  |
1230  * |<------------+------+----- TCP seqno space --------------+---------->|
1231  * ...-- <2^31 ->|                                           |<--------...
1232  * ...---- >2^31 ------>|                                    |<--------...
1233  *
1234  * Current code wouldn't be vulnerable but it's better still to discard such
1235  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1236  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1237  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1238  * equal to the ideal case (infinite seqno space without wrap caused issues).
1239  *
1240  * With D-SACK the lower bound is extended to cover sequence space below
1241  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1242  * again, D-SACK block must not to go across snd_una (for the same reason as
1243  * for the normal SACK blocks, explained above). But there all simplicity
1244  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1245  * fully below undo_marker they do not affect behavior in anyway and can
1246  * therefore be safely ignored. In rare cases (which are more or less
1247  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1248  * fragmentation and packet reordering past skb's retransmission. To consider
1249  * them correctly, the acceptable range must be extended even more though
1250  * the exact amount is rather hard to quantify. However, tp->max_window can
1251  * be used as an exaggerated estimate.
1252  */
1253 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1254                                    u32 start_seq, u32 end_seq)
1255 {
1256         /* Too far in future, or reversed (interpretation is ambiguous) */
1257         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1258                 return false;
1259 
1260         /* Nasty start_seq wrap-around check (see comments above) */
1261         if (!before(start_seq, tp->snd_nxt))
1262                 return false;
1263 
1264         /* In outstanding window? ...This is valid exit for D-SACKs too.
1265          * start_seq == snd_una is non-sensical (see comments above)
1266          */
1267         if (after(start_seq, tp->snd_una))
1268                 return true;
1269 
1270         if (!is_dsack || !tp->undo_marker)
1271                 return false;
1272 
1273         /* ...Then it's D-SACK, and must reside below snd_una completely */
1274         if (after(end_seq, tp->snd_una))
1275                 return false;
1276 
1277         if (!before(start_seq, tp->undo_marker))
1278                 return true;
1279 
1280         /* Too old */
1281         if (!after(end_seq, tp->undo_marker))
1282                 return false;
1283 
1284         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1285          *   start_seq < undo_marker and end_seq >= undo_marker.
1286          */
1287         return !before(start_seq, end_seq - tp->max_window);
1288 }
1289 
1290 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1291                             struct tcp_sack_block_wire *sp, int num_sacks,
1292                             u32 prior_snd_una, struct tcp_sacktag_state *state)
1293 {
1294         struct tcp_sock *tp = tcp_sk(sk);
1295         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1296         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1297         u32 dup_segs;
1298 
1299         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1300                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1301         } else if (num_sacks > 1) {
1302                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1303                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1304 
1305                 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1306                         return false;
1307                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1308         } else {
1309                 return false;
1310         }
1311 
1312         dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1313         if (!dup_segs) {        /* Skip dubious DSACK */
1314                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1315                 return false;
1316         }
1317 
1318         NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1319 
1320         /* D-SACK for already forgotten data... Do dumb counting. */
1321         if (tp->undo_marker && tp->undo_retrans > 0 &&
1322             !after(end_seq_0, prior_snd_una) &&
1323             after(end_seq_0, tp->undo_marker))
1324                 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1325 
1326         return true;
1327 }
1328 
1329 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1330  * the incoming SACK may not exactly match but we can find smaller MSS
1331  * aligned portion of it that matches. Therefore we might need to fragment
1332  * which may fail and creates some hassle (caller must handle error case
1333  * returns).
1334  *
1335  * FIXME: this could be merged to shift decision code
1336  */
1337 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1338                                   u32 start_seq, u32 end_seq)
1339 {
1340         int err;
1341         bool in_sack;
1342         unsigned int pkt_len;
1343         unsigned int mss;
1344 
1345         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1346                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1347 
1348         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1349             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1350                 mss = tcp_skb_mss(skb);
1351                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1352 
1353                 if (!in_sack) {
1354                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1355                         if (pkt_len < mss)
1356                                 pkt_len = mss;
1357                 } else {
1358                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1359                         if (pkt_len < mss)
1360                                 return -EINVAL;
1361                 }
1362 
1363                 /* Round if necessary so that SACKs cover only full MSSes
1364                  * and/or the remaining small portion (if present)
1365                  */
1366                 if (pkt_len > mss) {
1367                         unsigned int new_len = (pkt_len / mss) * mss;
1368                         if (!in_sack && new_len < pkt_len)
1369                                 new_len += mss;
1370                         pkt_len = new_len;
1371                 }
1372 
1373                 if (pkt_len >= skb->len && !in_sack)
1374                         return 0;
1375 
1376                 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1377                                    pkt_len, mss, GFP_ATOMIC);
1378                 if (err < 0)
1379                         return err;
1380         }
1381 
1382         return in_sack;
1383 }
1384 
1385 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1386 static u8 tcp_sacktag_one(struct sock *sk,
1387                           struct tcp_sacktag_state *state, u8 sacked,
1388                           u32 start_seq, u32 end_seq,
1389                           int dup_sack, int pcount,
1390                           u64 xmit_time)
1391 {
1392         struct tcp_sock *tp = tcp_sk(sk);
1393 
1394         /* Account D-SACK for retransmitted packet. */
1395         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1396                 if (tp->undo_marker && tp->undo_retrans > 0 &&
1397                     after(end_seq, tp->undo_marker))
1398                         tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1399                 if ((sacked & TCPCB_SACKED_ACKED) &&
1400                     before(start_seq, state->reord))
1401                                 state->reord = start_seq;
1402         }
1403 
1404         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1405         if (!after(end_seq, tp->snd_una))
1406                 return sacked;
1407 
1408         if (!(sacked & TCPCB_SACKED_ACKED)) {
1409                 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1410 
1411                 if (sacked & TCPCB_SACKED_RETRANS) {
1412                         /* If the segment is not tagged as lost,
1413                          * we do not clear RETRANS, believing
1414                          * that retransmission is still in flight.
1415                          */
1416                         if (sacked & TCPCB_LOST) {
1417                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1418                                 tp->lost_out -= pcount;
1419                                 tp->retrans_out -= pcount;
1420                         }
1421                 } else {
1422                         if (!(sacked & TCPCB_RETRANS)) {
1423                                 /* New sack for not retransmitted frame,
1424                                  * which was in hole. It is reordering.
1425                                  */
1426                                 if (before(start_seq,
1427                                            tcp_highest_sack_seq(tp)) &&
1428                                     before(start_seq, state->reord))
1429                                         state->reord = start_seq;
1430 
1431                                 if (!after(end_seq, tp->high_seq))
1432                                         state->flag |= FLAG_ORIG_SACK_ACKED;
1433                                 if (state->first_sackt == 0)
1434                                         state->first_sackt = xmit_time;
1435                                 state->last_sackt = xmit_time;
1436                         }
1437 
1438                         if (sacked & TCPCB_LOST) {
1439                                 sacked &= ~TCPCB_LOST;
1440                                 tp->lost_out -= pcount;
1441                         }
1442                 }
1443 
1444                 sacked |= TCPCB_SACKED_ACKED;
1445                 state->flag |= FLAG_DATA_SACKED;
1446                 tp->sacked_out += pcount;
1447                 /* Out-of-order packets delivered */
1448                 state->sack_delivered += pcount;
1449 
1450                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1451                 if (tp->lost_skb_hint &&
1452                     before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1453                         tp->lost_cnt_hint += pcount;
1454         }
1455 
1456         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1457          * frames and clear it. undo_retrans is decreased above, L|R frames
1458          * are accounted above as well.
1459          */
1460         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1461                 sacked &= ~TCPCB_SACKED_RETRANS;
1462                 tp->retrans_out -= pcount;
1463         }
1464 
1465         return sacked;
1466 }
1467 
1468 /* Shift newly-SACKed bytes from this skb to the immediately previous
1469  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1470  */
1471 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1472                             struct sk_buff *skb,
1473                             struct tcp_sacktag_state *state,
1474                             unsigned int pcount, int shifted, int mss,
1475                             bool dup_sack)
1476 {
1477         struct tcp_sock *tp = tcp_sk(sk);
1478         u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1479         u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1480 
1481         BUG_ON(!pcount);
1482 
1483         /* Adjust counters and hints for the newly sacked sequence
1484          * range but discard the return value since prev is already
1485          * marked. We must tag the range first because the seq
1486          * advancement below implicitly advances
1487          * tcp_highest_sack_seq() when skb is highest_sack.
1488          */
1489         tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1490                         start_seq, end_seq, dup_sack, pcount,
1491                         tcp_skb_timestamp_us(skb));
1492         tcp_rate_skb_delivered(sk, skb, state->rate);
1493 
1494         if (skb == tp->lost_skb_hint)
1495                 tp->lost_cnt_hint += pcount;
1496 
1497         TCP_SKB_CB(prev)->end_seq += shifted;
1498         TCP_SKB_CB(skb)->seq += shifted;
1499 
1500         tcp_skb_pcount_add(prev, pcount);
1501         WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1502         tcp_skb_pcount_add(skb, -pcount);
1503 
1504         /* When we're adding to gso_segs == 1, gso_size will be zero,
1505          * in theory this shouldn't be necessary but as long as DSACK
1506          * code can come after this skb later on it's better to keep
1507          * setting gso_size to something.
1508          */
1509         if (!TCP_SKB_CB(prev)->tcp_gso_size)
1510                 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1511 
1512         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1513         if (tcp_skb_pcount(skb) <= 1)
1514                 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1515 
1516         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1517         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1518 
1519         if (skb->len > 0) {
1520                 BUG_ON(!tcp_skb_pcount(skb));
1521                 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1522                 return false;
1523         }
1524 
1525         /* Whole SKB was eaten :-) */
1526 
1527         if (skb == tp->retransmit_skb_hint)
1528                 tp->retransmit_skb_hint = prev;
1529         if (skb == tp->lost_skb_hint) {
1530                 tp->lost_skb_hint = prev;
1531                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1532         }
1533 
1534         TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1535         TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1536         if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1537                 TCP_SKB_CB(prev)->end_seq++;
1538 
1539         if (skb == tcp_highest_sack(sk))
1540                 tcp_advance_highest_sack(sk, skb);
1541 
1542         tcp_skb_collapse_tstamp(prev, skb);
1543         if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1544                 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1545 
1546         tcp_rtx_queue_unlink_and_free(skb, sk);
1547 
1548         NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1549 
1550         return true;
1551 }
1552 
1553 /* I wish gso_size would have a bit more sane initialization than
1554  * something-or-zero which complicates things
1555  */
1556 static int tcp_skb_seglen(const struct sk_buff *skb)
1557 {
1558         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1559 }
1560 
1561 /* Shifting pages past head area doesn't work */
1562 static int skb_can_shift(const struct sk_buff *skb)
1563 {
1564         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1565 }
1566 
1567 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1568                   int pcount, int shiftlen)
1569 {
1570         /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1571          * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1572          * to make sure not storing more than 65535 * 8 bytes per skb,
1573          * even if current MSS is bigger.
1574          */
1575         if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1576                 return 0;
1577         if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1578                 return 0;
1579         return skb_shift(to, from, shiftlen);
1580 }
1581 
1582 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1583  * skb.
1584  */
1585 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1586                                           struct tcp_sacktag_state *state,
1587                                           u32 start_seq, u32 end_seq,
1588                                           bool dup_sack)
1589 {
1590         struct tcp_sock *tp = tcp_sk(sk);
1591         struct sk_buff *prev;
1592         int mss;
1593         int pcount = 0;
1594         int len;
1595         int in_sack;
1596 
1597         /* Normally R but no L won't result in plain S */
1598         if (!dup_sack &&
1599             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1600                 goto fallback;
1601         if (!skb_can_shift(skb))
1602                 goto fallback;
1603         /* This frame is about to be dropped (was ACKed). */
1604         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1605                 goto fallback;
1606 
1607         /* Can only happen with delayed DSACK + discard craziness */
1608         prev = skb_rb_prev(skb);
1609         if (!prev)
1610                 goto fallback;
1611 
1612         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1613                 goto fallback;
1614 
1615         if (!tcp_skb_can_collapse(prev, skb))
1616                 goto fallback;
1617 
1618         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1619                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1620 
1621         if (in_sack) {
1622                 len = skb->len;
1623                 pcount = tcp_skb_pcount(skb);
1624                 mss = tcp_skb_seglen(skb);
1625 
1626                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1627                  * drop this restriction as unnecessary
1628                  */
1629                 if (mss != tcp_skb_seglen(prev))
1630                         goto fallback;
1631         } else {
1632                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1633                         goto noop;
1634                 /* CHECKME: This is non-MSS split case only?, this will
1635                  * cause skipped skbs due to advancing loop btw, original
1636                  * has that feature too
1637                  */
1638                 if (tcp_skb_pcount(skb) <= 1)
1639                         goto noop;
1640 
1641                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1642                 if (!in_sack) {
1643                         /* TODO: head merge to next could be attempted here
1644                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1645                          * though it might not be worth of the additional hassle
1646                          *
1647                          * ...we can probably just fallback to what was done
1648                          * previously. We could try merging non-SACKed ones
1649                          * as well but it probably isn't going to buy off
1650                          * because later SACKs might again split them, and
1651                          * it would make skb timestamp tracking considerably
1652                          * harder problem.
1653                          */
1654                         goto fallback;
1655                 }
1656 
1657                 len = end_seq - TCP_SKB_CB(skb)->seq;
1658                 BUG_ON(len < 0);
1659                 BUG_ON(len > skb->len);
1660 
1661                 /* MSS boundaries should be honoured or else pcount will
1662                  * severely break even though it makes things bit trickier.
1663                  * Optimize common case to avoid most of the divides
1664                  */
1665                 mss = tcp_skb_mss(skb);
1666 
1667                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1668                  * drop this restriction as unnecessary
1669                  */
1670                 if (mss != tcp_skb_seglen(prev))
1671                         goto fallback;
1672 
1673                 if (len == mss) {
1674                         pcount = 1;
1675                 } else if (len < mss) {
1676                         goto noop;
1677                 } else {
1678                         pcount = len / mss;
1679                         len = pcount * mss;
1680                 }
1681         }
1682 
1683         /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1684         if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1685                 goto fallback;
1686 
1687         if (!tcp_skb_shift(prev, skb, pcount, len))
1688                 goto fallback;
1689         if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1690                 goto out;
1691 
1692         /* Hole filled allows collapsing with the next as well, this is very
1693          * useful when hole on every nth skb pattern happens
1694          */
1695         skb = skb_rb_next(prev);
1696         if (!skb)
1697                 goto out;
1698 
1699         if (!skb_can_shift(skb) ||
1700             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1701             (mss != tcp_skb_seglen(skb)))
1702                 goto out;
1703 
1704         if (!tcp_skb_can_collapse(prev, skb))
1705                 goto out;
1706         len = skb->len;
1707         pcount = tcp_skb_pcount(skb);
1708         if (tcp_skb_shift(prev, skb, pcount, len))
1709                 tcp_shifted_skb(sk, prev, skb, state, pcount,
1710                                 len, mss, 0);
1711 
1712 out:
1713         return prev;
1714 
1715 noop:
1716         return skb;
1717 
1718 fallback:
1719         NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1720         return NULL;
1721 }
1722 
1723 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1724                                         struct tcp_sack_block *next_dup,
1725                                         struct tcp_sacktag_state *state,
1726                                         u32 start_seq, u32 end_seq,
1727                                         bool dup_sack_in)
1728 {
1729         struct tcp_sock *tp = tcp_sk(sk);
1730         struct sk_buff *tmp;
1731 
1732         skb_rbtree_walk_from(skb) {
1733                 int in_sack = 0;
1734                 bool dup_sack = dup_sack_in;
1735 
1736                 /* queue is in-order => we can short-circuit the walk early */
1737                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1738                         break;
1739 
1740                 if (next_dup  &&
1741                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1742                         in_sack = tcp_match_skb_to_sack(sk, skb,
1743                                                         next_dup->start_seq,
1744                                                         next_dup->end_seq);
1745                         if (in_sack > 0)
1746                                 dup_sack = true;
1747                 }
1748 
1749                 /* skb reference here is a bit tricky to get right, since
1750                  * shifting can eat and free both this skb and the next,
1751                  * so not even _safe variant of the loop is enough.
1752                  */
1753                 if (in_sack <= 0) {
1754                         tmp = tcp_shift_skb_data(sk, skb, state,
1755                                                  start_seq, end_seq, dup_sack);
1756                         if (tmp) {
1757                                 if (tmp != skb) {
1758                                         skb = tmp;
1759                                         continue;
1760                                 }
1761 
1762                                 in_sack = 0;
1763                         } else {
1764                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1765                                                                 start_seq,
1766                                                                 end_seq);
1767                         }
1768                 }
1769 
1770                 if (unlikely(in_sack < 0))
1771                         break;
1772 
1773                 if (in_sack) {
1774                         TCP_SKB_CB(skb)->sacked =
1775                                 tcp_sacktag_one(sk,
1776                                                 state,
1777                                                 TCP_SKB_CB(skb)->sacked,
1778                                                 TCP_SKB_CB(skb)->seq,
1779                                                 TCP_SKB_CB(skb)->end_seq,
1780                                                 dup_sack,
1781                                                 tcp_skb_pcount(skb),
1782                                                 tcp_skb_timestamp_us(skb));
1783                         tcp_rate_skb_delivered(sk, skb, state->rate);
1784                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1785                                 list_del_init(&skb->tcp_tsorted_anchor);
1786 
1787                         if (!before(TCP_SKB_CB(skb)->seq,
1788                                     tcp_highest_sack_seq(tp)))
1789                                 tcp_advance_highest_sack(sk, skb);
1790                 }
1791         }
1792         return skb;
1793 }
1794 
1795 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1796 {
1797         struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1798         struct sk_buff *skb;
1799 
1800         while (*p) {
1801                 parent = *p;
1802                 skb = rb_to_skb(parent);
1803                 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1804                         p = &parent->rb_left;
1805                         continue;
1806                 }
1807                 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1808                         p = &parent->rb_right;
1809                         continue;
1810                 }
1811                 return skb;
1812         }
1813         return NULL;
1814 }
1815 
1816 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1817                                         u32 skip_to_seq)
1818 {
1819         if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1820                 return skb;
1821 
1822         return tcp_sacktag_bsearch(sk, skip_to_seq);
1823 }
1824 
1825 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1826                                                 struct sock *sk,
1827                                                 struct tcp_sack_block *next_dup,
1828                                                 struct tcp_sacktag_state *state,
1829                                                 u32 skip_to_seq)
1830 {
1831         if (!next_dup)
1832                 return skb;
1833 
1834         if (before(next_dup->start_seq, skip_to_seq)) {
1835                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1836                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1837                                        next_dup->start_seq, next_dup->end_seq,
1838                                        1);
1839         }
1840 
1841         return skb;
1842 }
1843 
1844 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1845 {
1846         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1847 }
1848 
1849 static int
1850 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1851                         u32 prior_snd_una, struct tcp_sacktag_state *state)
1852 {
1853         struct tcp_sock *tp = tcp_sk(sk);
1854         const unsigned char *ptr = (skb_transport_header(ack_skb) +
1855                                     TCP_SKB_CB(ack_skb)->sacked);
1856         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1857         struct tcp_sack_block sp[TCP_NUM_SACKS];
1858         struct tcp_sack_block *cache;
1859         struct sk_buff *skb;
1860         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1861         int used_sacks;
1862         bool found_dup_sack = false;
1863         int i, j;
1864         int first_sack_index;
1865 
1866         state->flag = 0;
1867         state->reord = tp->snd_nxt;
1868 
1869         if (!tp->sacked_out)
1870                 tcp_highest_sack_reset(sk);
1871 
1872         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1873                                          num_sacks, prior_snd_una, state);
1874 
1875         /* Eliminate too old ACKs, but take into
1876          * account more or less fresh ones, they can
1877          * contain valid SACK info.
1878          */
1879         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1880                 return 0;
1881 
1882         if (!tp->packets_out)
1883                 goto out;
1884 
1885         used_sacks = 0;
1886         first_sack_index = 0;
1887         for (i = 0; i < num_sacks; i++) {
1888                 bool dup_sack = !i && found_dup_sack;
1889 
1890                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1891                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1892 
1893                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1894                                             sp[used_sacks].start_seq,
1895                                             sp[used_sacks].end_seq)) {
1896                         int mib_idx;
1897 
1898                         if (dup_sack) {
1899                                 if (!tp->undo_marker)
1900                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1901                                 else
1902                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1903                         } else {
1904                                 /* Don't count olds caused by ACK reordering */
1905                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1906                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1907                                         continue;
1908                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1909                         }
1910 
1911                         NET_INC_STATS(sock_net(sk), mib_idx);
1912                         if (i == 0)
1913                                 first_sack_index = -1;
1914                         continue;
1915                 }
1916 
1917                 /* Ignore very old stuff early */
1918                 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1919                         if (i == 0)
1920                                 first_sack_index = -1;
1921                         continue;
1922                 }
1923 
1924                 used_sacks++;
1925         }
1926 
1927         /* order SACK blocks to allow in order walk of the retrans queue */
1928         for (i = used_sacks - 1; i > 0; i--) {
1929                 for (j = 0; j < i; j++) {
1930                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1931                                 swap(sp[j], sp[j + 1]);
1932 
1933                                 /* Track where the first SACK block goes to */
1934                                 if (j == first_sack_index)
1935                                         first_sack_index = j + 1;
1936                         }
1937                 }
1938         }
1939 
1940         state->mss_now = tcp_current_mss(sk);
1941         skb = NULL;
1942         i = 0;
1943 
1944         if (!tp->sacked_out) {
1945                 /* It's already past, so skip checking against it */
1946                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1947         } else {
1948                 cache = tp->recv_sack_cache;
1949                 /* Skip empty blocks in at head of the cache */
1950                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1951                        !cache->end_seq)
1952                         cache++;
1953         }
1954 
1955         while (i < used_sacks) {
1956                 u32 start_seq = sp[i].start_seq;
1957                 u32 end_seq = sp[i].end_seq;
1958                 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1959                 struct tcp_sack_block *next_dup = NULL;
1960 
1961                 if (found_dup_sack && ((i + 1) == first_sack_index))
1962                         next_dup = &sp[i + 1];
1963 
1964                 /* Skip too early cached blocks */
1965                 while (tcp_sack_cache_ok(tp, cache) &&
1966                        !before(start_seq, cache->end_seq))
1967                         cache++;
1968 
1969                 /* Can skip some work by looking recv_sack_cache? */
1970                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1971                     after(end_seq, cache->start_seq)) {
1972 
1973                         /* Head todo? */
1974                         if (before(start_seq, cache->start_seq)) {
1975                                 skb = tcp_sacktag_skip(skb, sk, start_seq);
1976                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1977                                                        state,
1978                                                        start_seq,
1979                                                        cache->start_seq,
1980                                                        dup_sack);
1981                         }
1982 
1983                         /* Rest of the block already fully processed? */
1984                         if (!after(end_seq, cache->end_seq))
1985                                 goto advance_sp;
1986 
1987                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1988                                                        state,
1989                                                        cache->end_seq);
1990 
1991                         /* ...tail remains todo... */
1992                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1993                                 /* ...but better entrypoint exists! */
1994                                 skb = tcp_highest_sack(sk);
1995                                 if (!skb)
1996                                         break;
1997                                 cache++;
1998                                 goto walk;
1999                         }
2000 
2001                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2002                         /* Check overlap against next cached too (past this one already) */
2003                         cache++;
2004                         continue;
2005                 }
2006 
2007                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2008                         skb = tcp_highest_sack(sk);
2009                         if (!skb)
2010                                 break;
2011                 }
2012                 skb = tcp_sacktag_skip(skb, sk, start_seq);
2013 
2014 walk:
2015                 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2016                                        start_seq, end_seq, dup_sack);
2017 
2018 advance_sp:
2019                 i++;
2020         }
2021 
2022         /* Clear the head of the cache sack blocks so we can skip it next time */
2023         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2024                 tp->recv_sack_cache[i].start_seq = 0;
2025                 tp->recv_sack_cache[i].end_seq = 0;
2026         }
2027         for (j = 0; j < used_sacks; j++)
2028                 tp->recv_sack_cache[i++] = sp[j];
2029 
2030         if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2031                 tcp_check_sack_reordering(sk, state->reord, 0);
2032 
2033         tcp_verify_left_out(tp);
2034 out:
2035 
2036 #if FASTRETRANS_DEBUG > 0
2037         WARN_ON((int)tp->sacked_out < 0);
2038         WARN_ON((int)tp->lost_out < 0);
2039         WARN_ON((int)tp->retrans_out < 0);
2040         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2041 #endif
2042         return state->flag;
2043 }
2044 
2045 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2046  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2047  */
2048 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2049 {
2050         u32 holes;
2051 
2052         holes = max(tp->lost_out, 1U);
2053         holes = min(holes, tp->packets_out);
2054 
2055         if ((tp->sacked_out + holes) > tp->packets_out) {
2056                 tp->sacked_out = tp->packets_out - holes;
2057                 return true;
2058         }
2059         return false;
2060 }
2061 
2062 /* If we receive more dupacks than we expected counting segments
2063  * in assumption of absent reordering, interpret this as reordering.
2064  * The only another reason could be bug in receiver TCP.
2065  */
2066 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2067 {
2068         struct tcp_sock *tp = tcp_sk(sk);
2069 
2070         if (!tcp_limit_reno_sacked(tp))
2071                 return;
2072 
2073         tp->reordering = min_t(u32, tp->packets_out + addend,
2074                                READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2075         tp->reord_seen++;
2076         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2077 }
2078 
2079 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2080 
2081 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2082 {
2083         if (num_dupack) {
2084                 struct tcp_sock *tp = tcp_sk(sk);
2085                 u32 prior_sacked = tp->sacked_out;
2086                 s32 delivered;
2087 
2088                 tp->sacked_out += num_dupack;
2089                 tcp_check_reno_reordering(sk, 0);
2090                 delivered = tp->sacked_out - prior_sacked;
2091                 if (delivered > 0)
2092                         tcp_count_delivered(tp, delivered, ece_ack);
2093                 tcp_verify_left_out(tp);
2094         }
2095 }
2096 
2097 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2098 
2099 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2100 {
2101         struct tcp_sock *tp = tcp_sk(sk);
2102 
2103         if (acked > 0) {
2104                 /* One ACK acked hole. The rest eat duplicate ACKs. */
2105                 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2106                                     ece_ack);
2107                 if (acked - 1 >= tp->sacked_out)
2108                         tp->sacked_out = 0;
2109                 else
2110                         tp->sacked_out -= acked - 1;
2111         }
2112         tcp_check_reno_reordering(sk, acked);
2113         tcp_verify_left_out(tp);
2114 }
2115 
2116 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2117 {
2118         tp->sacked_out = 0;
2119 }
2120 
2121 void tcp_clear_retrans(struct tcp_sock *tp)
2122 {
2123         tp->retrans_out = 0;
2124         tp->lost_out = 0;
2125         tp->undo_marker = 0;
2126         tp->undo_retrans = -1;
2127         tp->sacked_out = 0;
2128         tp->rto_stamp = 0;
2129         tp->total_rto = 0;
2130         tp->total_rto_recoveries = 0;
2131         tp->total_rto_time = 0;
2132 }
2133 
2134 static inline void tcp_init_undo(struct tcp_sock *tp)
2135 {
2136         tp->undo_marker = tp->snd_una;
2137 
2138         /* Retransmission still in flight may cause DSACKs later. */
2139         /* First, account for regular retransmits in flight: */
2140         tp->undo_retrans = tp->retrans_out;
2141         /* Next, account for TLP retransmits in flight: */
2142         if (tp->tlp_high_seq && tp->tlp_retrans)
2143                 tp->undo_retrans++;
2144         /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2145         if (!tp->undo_retrans)
2146                 tp->undo_retrans = -1;
2147 }
2148 
2149 static bool tcp_is_rack(const struct sock *sk)
2150 {
2151         return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2152                 TCP_RACK_LOSS_DETECTION;
2153 }
2154 
2155 /* If we detect SACK reneging, forget all SACK information
2156  * and reset tags completely, otherwise preserve SACKs. If receiver
2157  * dropped its ofo queue, we will know this due to reneging detection.
2158  */
2159 static void tcp_timeout_mark_lost(struct sock *sk)
2160 {
2161         struct tcp_sock *tp = tcp_sk(sk);
2162         struct sk_buff *skb, *head;
2163         bool is_reneg;                  /* is receiver reneging on SACKs? */
2164 
2165         head = tcp_rtx_queue_head(sk);
2166         is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2167         if (is_reneg) {
2168                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2169                 tp->sacked_out = 0;
2170                 /* Mark SACK reneging until we recover from this loss event. */
2171                 tp->is_sack_reneg = 1;
2172         } else if (tcp_is_reno(tp)) {
2173                 tcp_reset_reno_sack(tp);
2174         }
2175 
2176         skb = head;
2177         skb_rbtree_walk_from(skb) {
2178                 if (is_reneg)
2179                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2180                 else if (tcp_is_rack(sk) && skb != head &&
2181                          tcp_rack_skb_timeout(tp, skb, 0) > 0)
2182                         continue; /* Don't mark recently sent ones lost yet */
2183                 tcp_mark_skb_lost(sk, skb);
2184         }
2185         tcp_verify_left_out(tp);
2186         tcp_clear_all_retrans_hints(tp);
2187 }
2188 
2189 /* Enter Loss state. */
2190 void tcp_enter_loss(struct sock *sk)
2191 {
2192         const struct inet_connection_sock *icsk = inet_csk(sk);
2193         struct tcp_sock *tp = tcp_sk(sk);
2194         struct net *net = sock_net(sk);
2195         bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2196         u8 reordering;
2197 
2198         tcp_timeout_mark_lost(sk);
2199 
2200         /* Reduce ssthresh if it has not yet been made inside this window. */
2201         if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2202             !after(tp->high_seq, tp->snd_una) ||
2203             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2204                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2205                 tp->prior_cwnd = tcp_snd_cwnd(tp);
2206                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2207                 tcp_ca_event(sk, CA_EVENT_LOSS);
2208                 tcp_init_undo(tp);
2209         }
2210         tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2211         tp->snd_cwnd_cnt   = 0;
2212         tp->snd_cwnd_stamp = tcp_jiffies32;
2213 
2214         /* Timeout in disordered state after receiving substantial DUPACKs
2215          * suggests that the degree of reordering is over-estimated.
2216          */
2217         reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2218         if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2219             tp->sacked_out >= reordering)
2220                 tp->reordering = min_t(unsigned int, tp->reordering,
2221                                        reordering);
2222 
2223         tcp_set_ca_state(sk, TCP_CA_Loss);
2224         tp->high_seq = tp->snd_nxt;
2225         tp->tlp_high_seq = 0;
2226         tcp_ecn_queue_cwr(tp);
2227 
2228         /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2229          * loss recovery is underway except recurring timeout(s) on
2230          * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2231          */
2232         tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2233                    (new_recovery || icsk->icsk_retransmits) &&
2234                    !inet_csk(sk)->icsk_mtup.probe_size;
2235 }
2236 
2237 /* If ACK arrived pointing to a remembered SACK, it means that our
2238  * remembered SACKs do not reflect real state of receiver i.e.
2239  * receiver _host_ is heavily congested (or buggy).
2240  *
2241  * To avoid big spurious retransmission bursts due to transient SACK
2242  * scoreboard oddities that look like reneging, we give the receiver a
2243  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2244  * restore sanity to the SACK scoreboard. If the apparent reneging
2245  * persists until this RTO then we'll clear the SACK scoreboard.
2246  */
2247 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2248 {
2249         if (*ack_flag & FLAG_SACK_RENEGING &&
2250             *ack_flag & FLAG_SND_UNA_ADVANCED) {
2251                 struct tcp_sock *tp = tcp_sk(sk);
2252                 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2253                                           msecs_to_jiffies(10));
2254 
2255                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2256                                           delay, TCP_RTO_MAX);
2257                 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2258                 return true;
2259         }
2260         return false;
2261 }
2262 
2263 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2264  * counter when SACK is enabled (without SACK, sacked_out is used for
2265  * that purpose).
2266  *
2267  * With reordering, holes may still be in flight, so RFC3517 recovery
2268  * uses pure sacked_out (total number of SACKed segments) even though
2269  * it violates the RFC that uses duplicate ACKs, often these are equal
2270  * but when e.g. out-of-window ACKs or packet duplication occurs,
2271  * they differ. Since neither occurs due to loss, TCP should really
2272  * ignore them.
2273  */
2274 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2275 {
2276         return tp->sacked_out + 1;
2277 }
2278 
2279 /* Linux NewReno/SACK/ECN state machine.
2280  * --------------------------------------
2281  *
2282  * "Open"       Normal state, no dubious events, fast path.
2283  * "Disorder"   In all the respects it is "Open",
2284  *              but requires a bit more attention. It is entered when
2285  *              we see some SACKs or dupacks. It is split of "Open"
2286  *              mainly to move some processing from fast path to slow one.
2287  * "CWR"        CWND was reduced due to some Congestion Notification event.
2288  *              It can be ECN, ICMP source quench, local device congestion.
2289  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2290  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2291  *
2292  * tcp_fastretrans_alert() is entered:
2293  * - each incoming ACK, if state is not "Open"
2294  * - when arrived ACK is unusual, namely:
2295  *      * SACK
2296  *      * Duplicate ACK.
2297  *      * ECN ECE.
2298  *
2299  * Counting packets in flight is pretty simple.
2300  *
2301  *      in_flight = packets_out - left_out + retrans_out
2302  *
2303  *      packets_out is SND.NXT-SND.UNA counted in packets.
2304  *
2305  *      retrans_out is number of retransmitted segments.
2306  *
2307  *      left_out is number of segments left network, but not ACKed yet.
2308  *
2309  *              left_out = sacked_out + lost_out
2310  *
2311  *     sacked_out: Packets, which arrived to receiver out of order
2312  *                 and hence not ACKed. With SACKs this number is simply
2313  *                 amount of SACKed data. Even without SACKs
2314  *                 it is easy to give pretty reliable estimate of this number,
2315  *                 counting duplicate ACKs.
2316  *
2317  *       lost_out: Packets lost by network. TCP has no explicit
2318  *                 "loss notification" feedback from network (for now).
2319  *                 It means that this number can be only _guessed_.
2320  *                 Actually, it is the heuristics to predict lossage that
2321  *                 distinguishes different algorithms.
2322  *
2323  *      F.e. after RTO, when all the queue is considered as lost,
2324  *      lost_out = packets_out and in_flight = retrans_out.
2325  *
2326  *              Essentially, we have now a few algorithms detecting
2327  *              lost packets.
2328  *
2329  *              If the receiver supports SACK:
2330  *
2331  *              RFC6675/3517: It is the conventional algorithm. A packet is
2332  *              considered lost if the number of higher sequence packets
2333  *              SACKed is greater than or equal the DUPACK thoreshold
2334  *              (reordering). This is implemented in tcp_mark_head_lost and
2335  *              tcp_update_scoreboard.
2336  *
2337  *              RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2338  *              (2017-) that checks timing instead of counting DUPACKs.
2339  *              Essentially a packet is considered lost if it's not S/ACKed
2340  *              after RTT + reordering_window, where both metrics are
2341  *              dynamically measured and adjusted. This is implemented in
2342  *              tcp_rack_mark_lost.
2343  *
2344  *              If the receiver does not support SACK:
2345  *
2346  *              NewReno (RFC6582): in Recovery we assume that one segment
2347  *              is lost (classic Reno). While we are in Recovery and
2348  *              a partial ACK arrives, we assume that one more packet
2349  *              is lost (NewReno). This heuristics are the same in NewReno
2350  *              and SACK.
2351  *
2352  * Really tricky (and requiring careful tuning) part of algorithm
2353  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2354  * The first determines the moment _when_ we should reduce CWND and,
2355  * hence, slow down forward transmission. In fact, it determines the moment
2356  * when we decide that hole is caused by loss, rather than by a reorder.
2357  *
2358  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2359  * holes, caused by lost packets.
2360  *
2361  * And the most logically complicated part of algorithm is undo
2362  * heuristics. We detect false retransmits due to both too early
2363  * fast retransmit (reordering) and underestimated RTO, analyzing
2364  * timestamps and D-SACKs. When we detect that some segments were
2365  * retransmitted by mistake and CWND reduction was wrong, we undo
2366  * window reduction and abort recovery phase. This logic is hidden
2367  * inside several functions named tcp_try_undo_<something>.
2368  */
2369 
2370 /* This function decides, when we should leave Disordered state
2371  * and enter Recovery phase, reducing congestion window.
2372  *
2373  * Main question: may we further continue forward transmission
2374  * with the same cwnd?
2375  */
2376 static bool tcp_time_to_recover(struct sock *sk, int flag)
2377 {
2378         struct tcp_sock *tp = tcp_sk(sk);
2379 
2380         /* Trick#1: The loss is proven. */
2381         if (tp->lost_out)
2382                 return true;
2383 
2384         /* Not-A-Trick#2 : Classic rule... */
2385         if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2386                 return true;
2387 
2388         return false;
2389 }
2390 
2391 /* Detect loss in event "A" above by marking head of queue up as lost.
2392  * For RFC3517 SACK, a segment is considered lost if it
2393  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2394  * the maximum SACKed segments to pass before reaching this limit.
2395  */
2396 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2397 {
2398         struct tcp_sock *tp = tcp_sk(sk);
2399         struct sk_buff *skb;
2400         int cnt;
2401         /* Use SACK to deduce losses of new sequences sent during recovery */
2402         const u32 loss_high = tp->snd_nxt;
2403 
2404         WARN_ON(packets > tp->packets_out);
2405         skb = tp->lost_skb_hint;
2406         if (skb) {
2407                 /* Head already handled? */
2408                 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2409                         return;
2410                 cnt = tp->lost_cnt_hint;
2411         } else {
2412                 skb = tcp_rtx_queue_head(sk);
2413                 cnt = 0;
2414         }
2415 
2416         skb_rbtree_walk_from(skb) {
2417                 /* TODO: do this better */
2418                 /* this is not the most efficient way to do this... */
2419                 tp->lost_skb_hint = skb;
2420                 tp->lost_cnt_hint = cnt;
2421 
2422                 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2423                         break;
2424 
2425                 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2426                         cnt += tcp_skb_pcount(skb);
2427 
2428                 if (cnt > packets)
2429                         break;
2430 
2431                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2432                         tcp_mark_skb_lost(sk, skb);
2433 
2434                 if (mark_head)
2435                         break;
2436         }
2437         tcp_verify_left_out(tp);
2438 }
2439 
2440 /* Account newly detected lost packet(s) */
2441 
2442 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2443 {
2444         struct tcp_sock *tp = tcp_sk(sk);
2445 
2446         if (tcp_is_sack(tp)) {
2447                 int sacked_upto = tp->sacked_out - tp->reordering;
2448                 if (sacked_upto >= 0)
2449                         tcp_mark_head_lost(sk, sacked_upto, 0);
2450                 else if (fast_rexmit)
2451                         tcp_mark_head_lost(sk, 1, 1);
2452         }
2453 }
2454 
2455 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2456 {
2457         return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2458                before(tp->rx_opt.rcv_tsecr, when);
2459 }
2460 
2461 /* skb is spurious retransmitted if the returned timestamp echo
2462  * reply is prior to the skb transmission time
2463  */
2464 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2465                                      const struct sk_buff *skb)
2466 {
2467         return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2468                tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2469 }
2470 
2471 /* Nothing was retransmitted or returned timestamp is less
2472  * than timestamp of the first retransmission.
2473  */
2474 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2475 {
2476         const struct sock *sk = (const struct sock *)tp;
2477 
2478         if (tp->retrans_stamp &&
2479             tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2480                 return true;  /* got echoed TS before first retransmission */
2481 
2482         /* Check if nothing was retransmitted (retrans_stamp==0), which may
2483          * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2484          * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2485          * retrans_stamp even if we had retransmitted the SYN.
2486          */
2487         if (!tp->retrans_stamp &&          /* no record of a retransmit/SYN? */
2488             sk->sk_state != TCP_SYN_SENT)  /* not the FLAG_SYN_ACKED case? */
2489                 return true;  /* nothing was retransmitted */
2490 
2491         return false;
2492 }
2493 
2494 /* Undo procedures. */
2495 
2496 /* We can clear retrans_stamp when there are no retransmissions in the
2497  * window. It would seem that it is trivially available for us in
2498  * tp->retrans_out, however, that kind of assumptions doesn't consider
2499  * what will happen if errors occur when sending retransmission for the
2500  * second time. ...It could the that such segment has only
2501  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2502  * the head skb is enough except for some reneging corner cases that
2503  * are not worth the effort.
2504  *
2505  * Main reason for all this complexity is the fact that connection dying
2506  * time now depends on the validity of the retrans_stamp, in particular,
2507  * that successive retransmissions of a segment must not advance
2508  * retrans_stamp under any conditions.
2509  */
2510 static bool tcp_any_retrans_done(const struct sock *sk)
2511 {
2512         const struct tcp_sock *tp = tcp_sk(sk);
2513         struct sk_buff *skb;
2514 
2515         if (tp->retrans_out)
2516                 return true;
2517 
2518         skb = tcp_rtx_queue_head(sk);
2519         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2520                 return true;
2521 
2522         return false;
2523 }
2524 
2525 /* If loss recovery is finished and there are no retransmits out in the
2526  * network, then we clear retrans_stamp so that upon the next loss recovery
2527  * retransmits_timed_out() and timestamp-undo are using the correct value.
2528  */
2529 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2530 {
2531         if (!tcp_any_retrans_done(sk))
2532                 tcp_sk(sk)->retrans_stamp = 0;
2533 }
2534 
2535 static void DBGUNDO(struct sock *sk, const char *msg)
2536 {
2537 #if FASTRETRANS_DEBUG > 1
2538         struct tcp_sock *tp = tcp_sk(sk);
2539         struct inet_sock *inet = inet_sk(sk);
2540 
2541         if (sk->sk_family == AF_INET) {
2542                 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2543                          msg,
2544                          &inet->inet_daddr, ntohs(inet->inet_dport),
2545                          tcp_snd_cwnd(tp), tcp_left_out(tp),
2546                          tp->snd_ssthresh, tp->prior_ssthresh,
2547                          tp->packets_out);
2548         }
2549 #if IS_ENABLED(CONFIG_IPV6)
2550         else if (sk->sk_family == AF_INET6) {
2551                 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2552                          msg,
2553                          &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2554                          tcp_snd_cwnd(tp), tcp_left_out(tp),
2555                          tp->snd_ssthresh, tp->prior_ssthresh,
2556                          tp->packets_out);
2557         }
2558 #endif
2559 #endif
2560 }
2561 
2562 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2563 {
2564         struct tcp_sock *tp = tcp_sk(sk);
2565 
2566         if (unmark_loss) {
2567                 struct sk_buff *skb;
2568 
2569                 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2570                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2571                 }
2572                 tp->lost_out = 0;
2573                 tcp_clear_all_retrans_hints(tp);
2574         }
2575 
2576         if (tp->prior_ssthresh) {
2577                 const struct inet_connection_sock *icsk = inet_csk(sk);
2578 
2579                 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2580 
2581                 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2582                         tp->snd_ssthresh = tp->prior_ssthresh;
2583                         tcp_ecn_withdraw_cwr(tp);
2584                 }
2585         }
2586         tp->snd_cwnd_stamp = tcp_jiffies32;
2587         tp->undo_marker = 0;
2588         tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2589 }
2590 
2591 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2592 {
2593         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2594 }
2595 
2596 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2597 {
2598         struct tcp_sock *tp = tcp_sk(sk);
2599 
2600         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2601                 /* Hold old state until something *above* high_seq
2602                  * is ACKed. For Reno it is MUST to prevent false
2603                  * fast retransmits (RFC2582). SACK TCP is safe. */
2604                 if (!tcp_any_retrans_done(sk))
2605                         tp->retrans_stamp = 0;
2606                 return true;
2607         }
2608         return false;
2609 }
2610 
2611 /* People celebrate: "We love our President!" */
2612 static bool tcp_try_undo_recovery(struct sock *sk)
2613 {
2614         struct tcp_sock *tp = tcp_sk(sk);
2615 
2616         if (tcp_may_undo(tp)) {
2617                 int mib_idx;
2618 
2619                 /* Happy end! We did not retransmit anything
2620                  * or our original transmission succeeded.
2621                  */
2622                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2623                 tcp_undo_cwnd_reduction(sk, false);
2624                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2625                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2626                 else
2627                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2628 
2629                 NET_INC_STATS(sock_net(sk), mib_idx);
2630         } else if (tp->rack.reo_wnd_persist) {
2631                 tp->rack.reo_wnd_persist--;
2632         }
2633         if (tcp_is_non_sack_preventing_reopen(sk))
2634                 return true;
2635         tcp_set_ca_state(sk, TCP_CA_Open);
2636         tp->is_sack_reneg = 0;
2637         return false;
2638 }
2639 
2640 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2641 static bool tcp_try_undo_dsack(struct sock *sk)
2642 {
2643         struct tcp_sock *tp = tcp_sk(sk);
2644 
2645         if (tp->undo_marker && !tp->undo_retrans) {
2646                 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2647                                                tp->rack.reo_wnd_persist + 1);
2648                 DBGUNDO(sk, "D-SACK");
2649                 tcp_undo_cwnd_reduction(sk, false);
2650                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2651                 return true;
2652         }
2653         return false;
2654 }
2655 
2656 /* Undo during loss recovery after partial ACK or using F-RTO. */
2657 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2658 {
2659         struct tcp_sock *tp = tcp_sk(sk);
2660 
2661         if (frto_undo || tcp_may_undo(tp)) {
2662                 tcp_undo_cwnd_reduction(sk, true);
2663 
2664                 DBGUNDO(sk, "partial loss");
2665                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2666                 if (frto_undo)
2667                         NET_INC_STATS(sock_net(sk),
2668                                         LINUX_MIB_TCPSPURIOUSRTOS);
2669                 inet_csk(sk)->icsk_retransmits = 0;
2670                 if (tcp_is_non_sack_preventing_reopen(sk))
2671                         return true;
2672                 if (frto_undo || tcp_is_sack(tp)) {
2673                         tcp_set_ca_state(sk, TCP_CA_Open);
2674                         tp->is_sack_reneg = 0;
2675                 }
2676                 return true;
2677         }
2678         return false;
2679 }
2680 
2681 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2682  * It computes the number of packets to send (sndcnt) based on packets newly
2683  * delivered:
2684  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2685  *      cwnd reductions across a full RTT.
2686  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2687  *      But when SND_UNA is acked without further losses,
2688  *      slow starts cwnd up to ssthresh to speed up the recovery.
2689  */
2690 static void tcp_init_cwnd_reduction(struct sock *sk)
2691 {
2692         struct tcp_sock *tp = tcp_sk(sk);
2693 
2694         tp->high_seq = tp->snd_nxt;
2695         tp->tlp_high_seq = 0;
2696         tp->snd_cwnd_cnt = 0;
2697         tp->prior_cwnd = tcp_snd_cwnd(tp);
2698         tp->prr_delivered = 0;
2699         tp->prr_out = 0;
2700         tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2701         tcp_ecn_queue_cwr(tp);
2702 }
2703 
2704 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2705 {
2706         struct tcp_sock *tp = tcp_sk(sk);
2707         int sndcnt = 0;
2708         int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2709 
2710         if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2711                 return;
2712 
2713         tp->prr_delivered += newly_acked_sacked;
2714         if (delta < 0) {
2715                 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2716                                tp->prior_cwnd - 1;
2717                 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2718         } else {
2719                 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2720                                newly_acked_sacked);
2721                 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2722                         sndcnt++;
2723                 sndcnt = min(delta, sndcnt);
2724         }
2725         /* Force a fast retransmit upon entering fast recovery */
2726         sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2727         tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2728 }
2729 
2730 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2731 {
2732         struct tcp_sock *tp = tcp_sk(sk);
2733 
2734         if (inet_csk(sk)->icsk_ca_ops->cong_control)
2735                 return;
2736 
2737         /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2738         if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2739             (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2740                 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2741                 tp->snd_cwnd_stamp = tcp_jiffies32;
2742         }
2743         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2744 }
2745 
2746 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2747 void tcp_enter_cwr(struct sock *sk)
2748 {
2749         struct tcp_sock *tp = tcp_sk(sk);
2750 
2751         tp->prior_ssthresh = 0;
2752         if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2753                 tp->undo_marker = 0;
2754                 tcp_init_cwnd_reduction(sk);
2755                 tcp_set_ca_state(sk, TCP_CA_CWR);
2756         }
2757 }
2758 EXPORT_SYMBOL(tcp_enter_cwr);
2759 
2760 static void tcp_try_keep_open(struct sock *sk)
2761 {
2762         struct tcp_sock *tp = tcp_sk(sk);
2763         int state = TCP_CA_Open;
2764 
2765         if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2766                 state = TCP_CA_Disorder;
2767 
2768         if (inet_csk(sk)->icsk_ca_state != state) {
2769                 tcp_set_ca_state(sk, state);
2770                 tp->high_seq = tp->snd_nxt;
2771         }
2772 }
2773 
2774 static void tcp_try_to_open(struct sock *sk, int flag)
2775 {
2776         struct tcp_sock *tp = tcp_sk(sk);
2777 
2778         tcp_verify_left_out(tp);
2779 
2780         if (!tcp_any_retrans_done(sk))
2781                 tp->retrans_stamp = 0;
2782 
2783         if (flag & FLAG_ECE)
2784                 tcp_enter_cwr(sk);
2785 
2786         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2787                 tcp_try_keep_open(sk);
2788         }
2789 }
2790 
2791 static void tcp_mtup_probe_failed(struct sock *sk)
2792 {
2793         struct inet_connection_sock *icsk = inet_csk(sk);
2794 
2795         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2796         icsk->icsk_mtup.probe_size = 0;
2797         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2798 }
2799 
2800 static void tcp_mtup_probe_success(struct sock *sk)
2801 {
2802         struct tcp_sock *tp = tcp_sk(sk);
2803         struct inet_connection_sock *icsk = inet_csk(sk);
2804         u64 val;
2805 
2806         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2807 
2808         val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2809         do_div(val, icsk->icsk_mtup.probe_size);
2810         DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2811         tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2812 
2813         tp->snd_cwnd_cnt = 0;
2814         tp->snd_cwnd_stamp = tcp_jiffies32;
2815         tp->snd_ssthresh = tcp_current_ssthresh(sk);
2816 
2817         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2818         icsk->icsk_mtup.probe_size = 0;
2819         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2820         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2821 }
2822 
2823 /* Sometimes we deduce that packets have been dropped due to reasons other than
2824  * congestion, like path MTU reductions or failed client TFO attempts. In these
2825  * cases we call this function to retransmit as many packets as cwnd allows,
2826  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2827  * non-zero value (and may do so in a later calling context due to TSQ), we
2828  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2829  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2830  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2831  * prematurely).
2832  */
2833 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2834 {
2835         const struct inet_connection_sock *icsk = inet_csk(sk);
2836         struct tcp_sock *tp = tcp_sk(sk);
2837 
2838         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2839                 tp->high_seq = tp->snd_nxt;
2840                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2841                 tp->prior_ssthresh = 0;
2842                 tp->undo_marker = 0;
2843                 tcp_set_ca_state(sk, TCP_CA_Loss);
2844         }
2845         tcp_xmit_retransmit_queue(sk);
2846 }
2847 
2848 /* Do a simple retransmit without using the backoff mechanisms in
2849  * tcp_timer. This is used for path mtu discovery.
2850  * The socket is already locked here.
2851  */
2852 void tcp_simple_retransmit(struct sock *sk)
2853 {
2854         struct tcp_sock *tp = tcp_sk(sk);
2855         struct sk_buff *skb;
2856         int mss;
2857 
2858         /* A fastopen SYN request is stored as two separate packets within
2859          * the retransmit queue, this is done by tcp_send_syn_data().
2860          * As a result simply checking the MSS of the frames in the queue
2861          * will not work for the SYN packet.
2862          *
2863          * Us being here is an indication of a path MTU issue so we can
2864          * assume that the fastopen SYN was lost and just mark all the
2865          * frames in the retransmit queue as lost. We will use an MSS of
2866          * -1 to mark all frames as lost, otherwise compute the current MSS.
2867          */
2868         if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2869                 mss = -1;
2870         else
2871                 mss = tcp_current_mss(sk);
2872 
2873         skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2874                 if (tcp_skb_seglen(skb) > mss)
2875                         tcp_mark_skb_lost(sk, skb);
2876         }
2877 
2878         tcp_clear_retrans_hints_partial(tp);
2879 
2880         if (!tp->lost_out)
2881                 return;
2882 
2883         if (tcp_is_reno(tp))
2884                 tcp_limit_reno_sacked(tp);
2885 
2886         tcp_verify_left_out(tp);
2887 
2888         /* Don't muck with the congestion window here.
2889          * Reason is that we do not increase amount of _data_
2890          * in network, but units changed and effective
2891          * cwnd/ssthresh really reduced now.
2892          */
2893         tcp_non_congestion_loss_retransmit(sk);
2894 }
2895 EXPORT_SYMBOL(tcp_simple_retransmit);
2896 
2897 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2898 {
2899         struct tcp_sock *tp = tcp_sk(sk);
2900         int mib_idx;
2901 
2902         /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2903         tcp_retrans_stamp_cleanup(sk);
2904 
2905         if (tcp_is_reno(tp))
2906                 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2907         else
2908                 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2909 
2910         NET_INC_STATS(sock_net(sk), mib_idx);
2911 
2912         tp->prior_ssthresh = 0;
2913         tcp_init_undo(tp);
2914 
2915         if (!tcp_in_cwnd_reduction(sk)) {
2916                 if (!ece_ack)
2917                         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2918                 tcp_init_cwnd_reduction(sk);
2919         }
2920         tcp_set_ca_state(sk, TCP_CA_Recovery);
2921 }
2922 
2923 static void tcp_update_rto_time(struct tcp_sock *tp)
2924 {
2925         if (tp->rto_stamp) {
2926                 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2927                 tp->rto_stamp = 0;
2928         }
2929 }
2930 
2931 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2932  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2933  */
2934 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2935                              int *rexmit)
2936 {
2937         struct tcp_sock *tp = tcp_sk(sk);
2938         bool recovered = !before(tp->snd_una, tp->high_seq);
2939 
2940         if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2941             tcp_try_undo_loss(sk, false))
2942                 return;
2943 
2944         if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2945                 /* Step 3.b. A timeout is spurious if not all data are
2946                  * lost, i.e., never-retransmitted data are (s)acked.
2947                  */
2948                 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2949                     tcp_try_undo_loss(sk, true))
2950                         return;
2951 
2952                 if (after(tp->snd_nxt, tp->high_seq)) {
2953                         if (flag & FLAG_DATA_SACKED || num_dupack)
2954                                 tp->frto = 0; /* Step 3.a. loss was real */
2955                 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2956                         tp->high_seq = tp->snd_nxt;
2957                         /* Step 2.b. Try send new data (but deferred until cwnd
2958                          * is updated in tcp_ack()). Otherwise fall back to
2959                          * the conventional recovery.
2960                          */
2961                         if (!tcp_write_queue_empty(sk) &&
2962                             after(tcp_wnd_end(tp), tp->snd_nxt)) {
2963                                 *rexmit = REXMIT_NEW;
2964                                 return;
2965                         }
2966                         tp->frto = 0;
2967                 }
2968         }
2969 
2970         if (recovered) {
2971                 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2972                 tcp_try_undo_recovery(sk);
2973                 return;
2974         }
2975         if (tcp_is_reno(tp)) {
2976                 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2977                  * delivered. Lower inflight to clock out (re)transmissions.
2978                  */
2979                 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2980                         tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2981                 else if (flag & FLAG_SND_UNA_ADVANCED)
2982                         tcp_reset_reno_sack(tp);
2983         }
2984         *rexmit = REXMIT_LOST;
2985 }
2986 
2987 static bool tcp_force_fast_retransmit(struct sock *sk)
2988 {
2989         struct tcp_sock *tp = tcp_sk(sk);
2990 
2991         return after(tcp_highest_sack_seq(tp),
2992                      tp->snd_una + tp->reordering * tp->mss_cache);
2993 }
2994 
2995 /* Undo during fast recovery after partial ACK. */
2996 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2997                                  bool *do_lost)
2998 {
2999         struct tcp_sock *tp = tcp_sk(sk);
3000 
3001         if (tp->undo_marker && tcp_packet_delayed(tp)) {
3002                 /* Plain luck! Hole if filled with delayed
3003                  * packet, rather than with a retransmit. Check reordering.
3004                  */
3005                 tcp_check_sack_reordering(sk, prior_snd_una, 1);
3006 
3007                 /* We are getting evidence that the reordering degree is higher
3008                  * than we realized. If there are no retransmits out then we
3009                  * can undo. Otherwise we clock out new packets but do not
3010                  * mark more packets lost or retransmit more.
3011                  */
3012                 if (tp->retrans_out)
3013                         return true;
3014 
3015                 if (!tcp_any_retrans_done(sk))
3016                         tp->retrans_stamp = 0;
3017 
3018                 DBGUNDO(sk, "partial recovery");
3019                 tcp_undo_cwnd_reduction(sk, true);
3020                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3021                 tcp_try_keep_open(sk);
3022         } else {
3023                 /* Partial ACK arrived. Force fast retransmit. */
3024                 *do_lost = tcp_force_fast_retransmit(sk);
3025         }
3026         return false;
3027 }
3028 
3029 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3030 {
3031         struct tcp_sock *tp = tcp_sk(sk);
3032 
3033         if (tcp_rtx_queue_empty(sk))
3034                 return;
3035 
3036         if (unlikely(tcp_is_reno(tp))) {
3037                 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3038         } else if (tcp_is_rack(sk)) {
3039                 u32 prior_retrans = tp->retrans_out;
3040 
3041                 if (tcp_rack_mark_lost(sk))
3042                         *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3043                 if (prior_retrans > tp->retrans_out)
3044                         *ack_flag |= FLAG_LOST_RETRANS;
3045         }
3046 }
3047 
3048 /* Process an event, which can update packets-in-flight not trivially.
3049  * Main goal of this function is to calculate new estimate for left_out,
3050  * taking into account both packets sitting in receiver's buffer and
3051  * packets lost by network.
3052  *
3053  * Besides that it updates the congestion state when packet loss or ECN
3054  * is detected. But it does not reduce the cwnd, it is done by the
3055  * congestion control later.
3056  *
3057  * It does _not_ decide what to send, it is made in function
3058  * tcp_xmit_retransmit_queue().
3059  */
3060 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3061                                   int num_dupack, int *ack_flag, int *rexmit)
3062 {
3063         struct inet_connection_sock *icsk = inet_csk(sk);
3064         struct tcp_sock *tp = tcp_sk(sk);
3065         int fast_rexmit = 0, flag = *ack_flag;
3066         bool ece_ack = flag & FLAG_ECE;
3067         bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3068                                       tcp_force_fast_retransmit(sk));
3069 
3070         if (!tp->packets_out && tp->sacked_out)
3071                 tp->sacked_out = 0;
3072 
3073         /* Now state machine starts.
3074          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3075         if (ece_ack)
3076                 tp->prior_ssthresh = 0;
3077 
3078         /* B. In all the states check for reneging SACKs. */
3079         if (tcp_check_sack_reneging(sk, ack_flag))
3080                 return;
3081 
3082         /* C. Check consistency of the current state. */
3083         tcp_verify_left_out(tp);
3084 
3085         /* D. Check state exit conditions. State can be terminated
3086          *    when high_seq is ACKed. */
3087         if (icsk->icsk_ca_state == TCP_CA_Open) {
3088                 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3089                 tp->retrans_stamp = 0;
3090         } else if (!before(tp->snd_una, tp->high_seq)) {
3091                 switch (icsk->icsk_ca_state) {
3092                 case TCP_CA_CWR:
3093                         /* CWR is to be held something *above* high_seq
3094                          * is ACKed for CWR bit to reach receiver. */
3095                         if (tp->snd_una != tp->high_seq) {
3096                                 tcp_end_cwnd_reduction(sk);
3097                                 tcp_set_ca_state(sk, TCP_CA_Open);
3098                         }
3099                         break;
3100 
3101                 case TCP_CA_Recovery:
3102                         if (tcp_is_reno(tp))
3103                                 tcp_reset_reno_sack(tp);
3104                         if (tcp_try_undo_recovery(sk))
3105                                 return;
3106                         tcp_end_cwnd_reduction(sk);
3107                         break;
3108                 }
3109         }
3110 
3111         /* E. Process state. */
3112         switch (icsk->icsk_ca_state) {
3113         case TCP_CA_Recovery:
3114                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3115                         if (tcp_is_reno(tp))
3116                                 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3117                 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3118                         return;
3119 
3120                 if (tcp_try_undo_dsack(sk))
3121                         tcp_try_to_open(sk, flag);
3122 
3123                 tcp_identify_packet_loss(sk, ack_flag);
3124                 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3125                         if (!tcp_time_to_recover(sk, flag))
3126                                 return;
3127                         /* Undo reverts the recovery state. If loss is evident,
3128                          * starts a new recovery (e.g. reordering then loss);
3129                          */
3130                         tcp_enter_recovery(sk, ece_ack);
3131                 }
3132                 break;
3133         case TCP_CA_Loss:
3134                 tcp_process_loss(sk, flag, num_dupack, rexmit);
3135                 if (icsk->icsk_ca_state != TCP_CA_Loss)
3136                         tcp_update_rto_time(tp);
3137                 tcp_identify_packet_loss(sk, ack_flag);
3138                 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3139                       (*ack_flag & FLAG_LOST_RETRANS)))
3140                         return;
3141                 /* Change state if cwnd is undone or retransmits are lost */
3142                 fallthrough;
3143         default:
3144                 if (tcp_is_reno(tp)) {
3145                         if (flag & FLAG_SND_UNA_ADVANCED)
3146                                 tcp_reset_reno_sack(tp);
3147                         tcp_add_reno_sack(sk, num_dupack, ece_ack);
3148                 }
3149 
3150                 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3151                         tcp_try_undo_dsack(sk);
3152 
3153                 tcp_identify_packet_loss(sk, ack_flag);
3154                 if (!tcp_time_to_recover(sk, flag)) {
3155                         tcp_try_to_open(sk, flag);
3156                         return;
3157                 }
3158 
3159                 /* MTU probe failure: don't reduce cwnd */
3160                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3161                     icsk->icsk_mtup.probe_size &&
3162                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3163                         tcp_mtup_probe_failed(sk);
3164                         /* Restores the reduction we did in tcp_mtup_probe() */
3165                         tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3166                         tcp_simple_retransmit(sk);
3167                         return;
3168                 }
3169 
3170                 /* Otherwise enter Recovery state */
3171                 tcp_enter_recovery(sk, ece_ack);
3172                 fast_rexmit = 1;
3173         }
3174 
3175         if (!tcp_is_rack(sk) && do_lost)
3176                 tcp_update_scoreboard(sk, fast_rexmit);
3177         *rexmit = REXMIT_LOST;
3178 }
3179 
3180 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3181 {
3182         u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3183         struct tcp_sock *tp = tcp_sk(sk);
3184 
3185         if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3186                 /* If the remote keeps returning delayed ACKs, eventually
3187                  * the min filter would pick it up and overestimate the
3188                  * prop. delay when it expires. Skip suspected delayed ACKs.
3189                  */
3190                 return;
3191         }
3192         minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3193                            rtt_us ? : jiffies_to_usecs(1));
3194 }
3195 
3196 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3197                                long seq_rtt_us, long sack_rtt_us,
3198                                long ca_rtt_us, struct rate_sample *rs)
3199 {
3200         const struct tcp_sock *tp = tcp_sk(sk);
3201 
3202         /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3203          * broken middle-boxes or peers may corrupt TS-ECR fields. But
3204          * Karn's algorithm forbids taking RTT if some retransmitted data
3205          * is acked (RFC6298).
3206          */
3207         if (seq_rtt_us < 0)
3208                 seq_rtt_us = sack_rtt_us;
3209 
3210         /* RTTM Rule: A TSecr value received in a segment is used to
3211          * update the averaged RTT measurement only if the segment
3212          * acknowledges some new data, i.e., only if it advances the
3213          * left edge of the send window.
3214          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3215          */
3216         if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3217             tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3218                 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3219 
3220         rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3221         if (seq_rtt_us < 0)
3222                 return false;
3223 
3224         /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3225          * always taken together with ACK, SACK, or TS-opts. Any negative
3226          * values will be skipped with the seq_rtt_us < 0 check above.
3227          */
3228         tcp_update_rtt_min(sk, ca_rtt_us, flag);
3229         tcp_rtt_estimator(sk, seq_rtt_us);
3230         tcp_set_rto(sk);
3231 
3232         /* RFC6298: only reset backoff on valid RTT measurement. */
3233         inet_csk(sk)->icsk_backoff = 0;
3234         return true;
3235 }
3236 
3237 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3238 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3239 {
3240         struct rate_sample rs;
3241         long rtt_us = -1L;
3242 
3243         if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3244                 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3245 
3246         tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3247 }
3248 
3249 
3250 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3251 {
3252         const struct inet_connection_sock *icsk = inet_csk(sk);
3253 
3254         icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3255         tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3256 }
3257 
3258 /* Restart timer after forward progress on connection.
3259  * RFC2988 recommends to restart timer to now+rto.
3260  */
3261 void tcp_rearm_rto(struct sock *sk)
3262 {
3263         const struct inet_connection_sock *icsk = inet_csk(sk);
3264         struct tcp_sock *tp = tcp_sk(sk);
3265 
3266         /* If the retrans timer is currently being used by Fast Open
3267          * for SYN-ACK retrans purpose, stay put.
3268          */
3269         if (rcu_access_pointer(tp->fastopen_rsk))
3270                 return;
3271 
3272         if (!tp->packets_out) {
3273                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3274         } else {
3275                 u32 rto = inet_csk(sk)->icsk_rto;
3276                 /* Offset the time elapsed after installing regular RTO */
3277                 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3278                     icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3279                         s64 delta_us = tcp_rto_delta_us(sk);
3280                         /* delta_us may not be positive if the socket is locked
3281                          * when the retrans timer fires and is rescheduled.
3282                          */
3283                         rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3284                 }
3285                 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3286                                      TCP_RTO_MAX);
3287         }
3288 }
3289 
3290 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3291 static void tcp_set_xmit_timer(struct sock *sk)
3292 {
3293         if (!tcp_schedule_loss_probe(sk, true))
3294                 tcp_rearm_rto(sk);
3295 }
3296 
3297 /* If we get here, the whole TSO packet has not been acked. */
3298 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3299 {
3300         struct tcp_sock *tp = tcp_sk(sk);
3301         u32 packets_acked;
3302 
3303         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3304 
3305         packets_acked = tcp_skb_pcount(skb);
3306         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3307                 return 0;
3308         packets_acked -= tcp_skb_pcount(skb);
3309 
3310         if (packets_acked) {
3311                 BUG_ON(tcp_skb_pcount(skb) == 0);
3312                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3313         }
3314 
3315         return packets_acked;
3316 }
3317 
3318 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3319                            const struct sk_buff *ack_skb, u32 prior_snd_una)
3320 {
3321         const struct skb_shared_info *shinfo;
3322 
3323         /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3324         if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3325                 return;
3326 
3327         shinfo = skb_shinfo(skb);
3328         if (!before(shinfo->tskey, prior_snd_una) &&
3329             before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3330                 tcp_skb_tsorted_save(skb) {
3331                         __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3332                 } tcp_skb_tsorted_restore(skb);
3333         }
3334 }
3335 
3336 /* Remove acknowledged frames from the retransmission queue. If our packet
3337  * is before the ack sequence we can discard it as it's confirmed to have
3338  * arrived at the other end.
3339  */
3340 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3341                                u32 prior_fack, u32 prior_snd_una,
3342                                struct tcp_sacktag_state *sack, bool ece_ack)
3343 {
3344         const struct inet_connection_sock *icsk = inet_csk(sk);
3345         u64 first_ackt, last_ackt;
3346         struct tcp_sock *tp = tcp_sk(sk);
3347         u32 prior_sacked = tp->sacked_out;
3348         u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3349         struct sk_buff *skb, *next;
3350         bool fully_acked = true;
3351         long sack_rtt_us = -1L;
3352         long seq_rtt_us = -1L;
3353         long ca_rtt_us = -1L;
3354         u32 pkts_acked = 0;
3355         bool rtt_update;
3356         int flag = 0;
3357 
3358         first_ackt = 0;
3359 
3360         for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3361                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3362                 const u32 start_seq = scb->seq;
3363                 u8 sacked = scb->sacked;
3364                 u32 acked_pcount;
3365 
3366                 /* Determine how many packets and what bytes were acked, tso and else */
3367                 if (after(scb->end_seq, tp->snd_una)) {
3368                         if (tcp_skb_pcount(skb) == 1 ||
3369                             !after(tp->snd_una, scb->seq))
3370                                 break;
3371 
3372                         acked_pcount = tcp_tso_acked(sk, skb);
3373                         if (!acked_pcount)
3374                                 break;
3375                         fully_acked = false;
3376                 } else {
3377                         acked_pcount = tcp_skb_pcount(skb);
3378                 }
3379 
3380                 if (unlikely(sacked & TCPCB_RETRANS)) {
3381                         if (sacked & TCPCB_SACKED_RETRANS)
3382                                 tp->retrans_out -= acked_pcount;
3383                         flag |= FLAG_RETRANS_DATA_ACKED;
3384                 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3385                         last_ackt = tcp_skb_timestamp_us(skb);
3386                         WARN_ON_ONCE(last_ackt == 0);
3387                         if (!first_ackt)
3388                                 first_ackt = last_ackt;
3389 
3390                         if (before(start_seq, reord))
3391                                 reord = start_seq;
3392                         if (!after(scb->end_seq, tp->high_seq))
3393                                 flag |= FLAG_ORIG_SACK_ACKED;
3394                 }
3395 
3396                 if (sacked & TCPCB_SACKED_ACKED) {
3397                         tp->sacked_out -= acked_pcount;
3398                 } else if (tcp_is_sack(tp)) {
3399                         tcp_count_delivered(tp, acked_pcount, ece_ack);
3400                         if (!tcp_skb_spurious_retrans(tp, skb))
3401                                 tcp_rack_advance(tp, sacked, scb->end_seq,
3402                                                  tcp_skb_timestamp_us(skb));
3403                 }
3404                 if (sacked & TCPCB_LOST)
3405                         tp->lost_out -= acked_pcount;
3406 
3407                 tp->packets_out -= acked_pcount;
3408                 pkts_acked += acked_pcount;
3409                 tcp_rate_skb_delivered(sk, skb, sack->rate);
3410 
3411                 /* Initial outgoing SYN's get put onto the write_queue
3412                  * just like anything else we transmit.  It is not
3413                  * true data, and if we misinform our callers that
3414                  * this ACK acks real data, we will erroneously exit
3415                  * connection startup slow start one packet too
3416                  * quickly.  This is severely frowned upon behavior.
3417                  */
3418                 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3419                         flag |= FLAG_DATA_ACKED;
3420                 } else {
3421                         flag |= FLAG_SYN_ACKED;
3422                         tp->retrans_stamp = 0;
3423                 }
3424 
3425                 if (!fully_acked)
3426                         break;
3427 
3428                 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3429 
3430                 next = skb_rb_next(skb);
3431                 if (unlikely(skb == tp->retransmit_skb_hint))
3432                         tp->retransmit_skb_hint = NULL;
3433                 if (unlikely(skb == tp->lost_skb_hint))
3434                         tp->lost_skb_hint = NULL;
3435                 tcp_highest_sack_replace(sk, skb, next);
3436                 tcp_rtx_queue_unlink_and_free(skb, sk);
3437         }
3438 
3439         if (!skb)
3440                 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3441 
3442         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3443                 tp->snd_up = tp->snd_una;
3444 
3445         if (skb) {
3446                 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3447                 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3448                         flag |= FLAG_SACK_RENEGING;
3449         }
3450 
3451         if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3452                 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3453                 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3454 
3455                 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3456                     (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3457                     sack->rate->prior_delivered + 1 == tp->delivered &&
3458                     !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3459                         /* Conservatively mark a delayed ACK. It's typically
3460                          * from a lone runt packet over the round trip to
3461                          * a receiver w/o out-of-order or CE events.
3462                          */
3463                         flag |= FLAG_ACK_MAYBE_DELAYED;
3464                 }
3465         }
3466         if (sack->first_sackt) {
3467                 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3468                 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3469         }
3470         rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3471                                         ca_rtt_us, sack->rate);
3472 
3473         if (flag & FLAG_ACKED) {
3474                 flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3475                 if (unlikely(icsk->icsk_mtup.probe_size &&
3476                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3477                         tcp_mtup_probe_success(sk);
3478                 }
3479 
3480                 if (tcp_is_reno(tp)) {
3481                         tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3482 
3483                         /* If any of the cumulatively ACKed segments was
3484                          * retransmitted, non-SACK case cannot confirm that
3485                          * progress was due to original transmission due to
3486                          * lack of TCPCB_SACKED_ACKED bits even if some of
3487                          * the packets may have been never retransmitted.
3488                          */
3489                         if (flag & FLAG_RETRANS_DATA_ACKED)
3490                                 flag &= ~FLAG_ORIG_SACK_ACKED;
3491                 } else {
3492                         int delta;
3493 
3494                         /* Non-retransmitted hole got filled? That's reordering */
3495                         if (before(reord, prior_fack))
3496                                 tcp_check_sack_reordering(sk, reord, 0);
3497 
3498                         delta = prior_sacked - tp->sacked_out;
3499                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3500                 }
3501         } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3502                    sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3503                                                     tcp_skb_timestamp_us(skb))) {
3504                 /* Do not re-arm RTO if the sack RTT is measured from data sent
3505                  * after when the head was last (re)transmitted. Otherwise the
3506                  * timeout may continue to extend in loss recovery.
3507                  */
3508                 flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3509         }
3510 
3511         if (icsk->icsk_ca_ops->pkts_acked) {
3512                 struct ack_sample sample = { .pkts_acked = pkts_acked,
3513                                              .rtt_us = sack->rate->rtt_us };
3514 
3515                 sample.in_flight = tp->mss_cache *
3516                         (tp->delivered - sack->rate->prior_delivered);
3517                 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3518         }
3519 
3520 #if FASTRETRANS_DEBUG > 0
3521         WARN_ON((int)tp->sacked_out < 0);
3522         WARN_ON((int)tp->lost_out < 0);
3523         WARN_ON((int)tp->retrans_out < 0);
3524         if (!tp->packets_out && tcp_is_sack(tp)) {
3525                 icsk = inet_csk(sk);
3526                 if (tp->lost_out) {
3527                         pr_debug("Leak l=%u %d\n",
3528                                  tp->lost_out, icsk->icsk_ca_state);
3529                         tp->lost_out = 0;
3530                 }
3531                 if (tp->sacked_out) {
3532                         pr_debug("Leak s=%u %d\n",
3533                                  tp->sacked_out, icsk->icsk_ca_state);
3534                         tp->sacked_out = 0;
3535                 }
3536                 if (tp->retrans_out) {
3537                         pr_debug("Leak r=%u %d\n",
3538                                  tp->retrans_out, icsk->icsk_ca_state);
3539                         tp->retrans_out = 0;
3540                 }
3541         }
3542 #endif
3543         return flag;
3544 }
3545 
3546 static void tcp_ack_probe(struct sock *sk)
3547 {
3548         struct inet_connection_sock *icsk = inet_csk(sk);
3549         struct sk_buff *head = tcp_send_head(sk);
3550         const struct tcp_sock *tp = tcp_sk(sk);
3551 
3552         /* Was it a usable window open? */
3553         if (!head)
3554                 return;
3555         if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3556                 icsk->icsk_backoff = 0;
3557                 icsk->icsk_probes_tstamp = 0;
3558                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3559                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3560                  * This function is not for random using!
3561                  */
3562         } else {
3563                 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3564 
3565                 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3566                 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3567         }
3568 }
3569 
3570 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3571 {
3572         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3573                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3574 }
3575 
3576 /* Decide wheather to run the increase function of congestion control. */
3577 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3578 {
3579         /* If reordering is high then always grow cwnd whenever data is
3580          * delivered regardless of its ordering. Otherwise stay conservative
3581          * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3582          * new SACK or ECE mark may first advance cwnd here and later reduce
3583          * cwnd in tcp_fastretrans_alert() based on more states.
3584          */
3585         if (tcp_sk(sk)->reordering >
3586             READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3587                 return flag & FLAG_FORWARD_PROGRESS;
3588 
3589         return flag & FLAG_DATA_ACKED;
3590 }
3591 
3592 /* The "ultimate" congestion control function that aims to replace the rigid
3593  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3594  * It's called toward the end of processing an ACK with precise rate
3595  * information. All transmission or retransmission are delayed afterwards.
3596  */
3597 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3598                              int flag, const struct rate_sample *rs)
3599 {
3600         const struct inet_connection_sock *icsk = inet_csk(sk);
3601 
3602         if (icsk->icsk_ca_ops->cong_control) {
3603                 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3604                 return;
3605         }
3606 
3607         if (tcp_in_cwnd_reduction(sk)) {
3608                 /* Reduce cwnd if state mandates */
3609                 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3610         } else if (tcp_may_raise_cwnd(sk, flag)) {
3611                 /* Advance cwnd if state allows */
3612                 tcp_cong_avoid(sk, ack, acked_sacked);
3613         }
3614         tcp_update_pacing_rate(sk);
3615 }
3616 
3617 /* Check that window update is acceptable.
3618  * The function assumes that snd_una<=ack<=snd_next.
3619  */
3620 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3621                                         const u32 ack, const u32 ack_seq,
3622                                         const u32 nwin)
3623 {
3624         return  after(ack, tp->snd_una) ||
3625                 after(ack_seq, tp->snd_wl1) ||
3626                 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3627 }
3628 
3629 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3630 {
3631 #ifdef CONFIG_TCP_AO
3632         struct tcp_ao_info *ao;
3633 
3634         if (!static_branch_unlikely(&tcp_ao_needed.key))
3635                 return;
3636 
3637         ao = rcu_dereference_protected(tp->ao_info,
3638                                        lockdep_sock_is_held((struct sock *)tp));
3639         if (ao && ack < tp->snd_una) {
3640                 ao->snd_sne++;
3641                 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3642         }
3643 #endif
3644 }
3645 
3646 /* If we update tp->snd_una, also update tp->bytes_acked */
3647 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3648 {
3649         u32 delta = ack - tp->snd_una;
3650 
3651         sock_owned_by_me((struct sock *)tp);
3652         tp->bytes_acked += delta;
3653         tcp_snd_sne_update(tp, ack);
3654         tp->snd_una = ack;
3655 }
3656 
3657 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3658 {
3659 #ifdef CONFIG_TCP_AO
3660         struct tcp_ao_info *ao;
3661 
3662         if (!static_branch_unlikely(&tcp_ao_needed.key))
3663                 return;
3664 
3665         ao = rcu_dereference_protected(tp->ao_info,
3666                                        lockdep_sock_is_held((struct sock *)tp));
3667         if (ao && seq < tp->rcv_nxt) {
3668                 ao->rcv_sne++;
3669                 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3670         }
3671 #endif
3672 }
3673 
3674 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3675 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3676 {
3677         u32 delta = seq - tp->rcv_nxt;
3678 
3679         sock_owned_by_me((struct sock *)tp);
3680         tp->bytes_received += delta;
3681         tcp_rcv_sne_update(tp, seq);
3682         WRITE_ONCE(tp->rcv_nxt, seq);
3683 }
3684 
3685 /* Update our send window.
3686  *
3687  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3688  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3689  */
3690 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3691                                  u32 ack_seq)
3692 {
3693         struct tcp_sock *tp = tcp_sk(sk);
3694         int flag = 0;
3695         u32 nwin = ntohs(tcp_hdr(skb)->window);
3696 
3697         if (likely(!tcp_hdr(skb)->syn))
3698                 nwin <<= tp->rx_opt.snd_wscale;
3699 
3700         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3701                 flag |= FLAG_WIN_UPDATE;
3702                 tcp_update_wl(tp, ack_seq);
3703 
3704                 if (tp->snd_wnd != nwin) {
3705                         tp->snd_wnd = nwin;
3706 
3707                         /* Note, it is the only place, where
3708                          * fast path is recovered for sending TCP.
3709                          */
3710                         tp->pred_flags = 0;
3711                         tcp_fast_path_check(sk);
3712 
3713                         if (!tcp_write_queue_empty(sk))
3714                                 tcp_slow_start_after_idle_check(sk);
3715 
3716                         if (nwin > tp->max_window) {
3717                                 tp->max_window = nwin;
3718                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3719                         }
3720                 }
3721         }
3722 
3723         tcp_snd_una_update(tp, ack);
3724 
3725         return flag;
3726 }
3727 
3728 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3729                                    u32 *last_oow_ack_time)
3730 {
3731         /* Paired with the WRITE_ONCE() in this function. */
3732         u32 val = READ_ONCE(*last_oow_ack_time);
3733 
3734         if (val) {
3735                 s32 elapsed = (s32)(tcp_jiffies32 - val);
3736 
3737                 if (0 <= elapsed &&
3738                     elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3739                         NET_INC_STATS(net, mib_idx);
3740                         return true;    /* rate-limited: don't send yet! */
3741                 }
3742         }
3743 
3744         /* Paired with the prior READ_ONCE() and with itself,
3745          * as we might be lockless.
3746          */
3747         WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3748 
3749         return false;   /* not rate-limited: go ahead, send dupack now! */
3750 }
3751 
3752 /* Return true if we're currently rate-limiting out-of-window ACKs and
3753  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3754  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3755  * attacks that send repeated SYNs or ACKs for the same connection. To
3756  * do this, we do not send a duplicate SYNACK or ACK if the remote
3757  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3758  */
3759 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3760                           int mib_idx, u32 *last_oow_ack_time)
3761 {
3762         /* Data packets without SYNs are not likely part of an ACK loop. */
3763         if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3764             !tcp_hdr(skb)->syn)
3765                 return false;
3766 
3767         return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3768 }
3769 
3770 /* RFC 5961 7 [ACK Throttling] */
3771 static void tcp_send_challenge_ack(struct sock *sk)
3772 {
3773         struct tcp_sock *tp = tcp_sk(sk);
3774         struct net *net = sock_net(sk);
3775         u32 count, now, ack_limit;
3776 
3777         /* First check our per-socket dupack rate limit. */
3778         if (__tcp_oow_rate_limited(net,
3779                                    LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3780                                    &tp->last_oow_ack_time))
3781                 return;
3782 
3783         ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3784         if (ack_limit == INT_MAX)
3785                 goto send_ack;
3786 
3787         /* Then check host-wide RFC 5961 rate limit. */
3788         now = jiffies / HZ;
3789         if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3790                 u32 half = (ack_limit + 1) >> 1;
3791 
3792                 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3793                 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3794                            get_random_u32_inclusive(half, ack_limit + half - 1));
3795         }
3796         count = READ_ONCE(net->ipv4.tcp_challenge_count);
3797         if (count > 0) {
3798                 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3799 send_ack:
3800                 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3801                 tcp_send_ack(sk);
3802         }
3803 }
3804 
3805 static void tcp_store_ts_recent(struct tcp_sock *tp)
3806 {
3807         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3808         tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3809 }
3810 
3811 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3812 {
3813         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3814                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3815                  * extra check below makes sure this can only happen
3816                  * for pure ACK frames.  -DaveM
3817                  *
3818                  * Not only, also it occurs for expired timestamps.
3819                  */
3820 
3821                 if (tcp_paws_check(&tp->rx_opt, 0))
3822                         tcp_store_ts_recent(tp);
3823         }
3824 }
3825 
3826 /* This routine deals with acks during a TLP episode and ends an episode by
3827  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3828  */
3829 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3830 {
3831         struct tcp_sock *tp = tcp_sk(sk);
3832 
3833         if (before(ack, tp->tlp_high_seq))
3834                 return;
3835 
3836         if (!tp->tlp_retrans) {
3837                 /* TLP of new data has been acknowledged */
3838                 tp->tlp_high_seq = 0;
3839         } else if (flag & FLAG_DSACK_TLP) {
3840                 /* This DSACK means original and TLP probe arrived; no loss */
3841                 tp->tlp_high_seq = 0;
3842         } else if (after(ack, tp->tlp_high_seq)) {
3843                 /* ACK advances: there was a loss, so reduce cwnd. Reset
3844                  * tlp_high_seq in tcp_init_cwnd_reduction()
3845                  */
3846                 tcp_init_cwnd_reduction(sk);
3847                 tcp_set_ca_state(sk, TCP_CA_CWR);
3848                 tcp_end_cwnd_reduction(sk);
3849                 tcp_try_keep_open(sk);
3850                 NET_INC_STATS(sock_net(sk),
3851                                 LINUX_MIB_TCPLOSSPROBERECOVERY);
3852         } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3853                              FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3854                 /* Pure dupack: original and TLP probe arrived; no loss */
3855                 tp->tlp_high_seq = 0;
3856         }
3857 }
3858 
3859 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3860 {
3861         const struct inet_connection_sock *icsk = inet_csk(sk);
3862 
3863         if (icsk->icsk_ca_ops->in_ack_event)
3864                 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3865 }
3866 
3867 /* Congestion control has updated the cwnd already. So if we're in
3868  * loss recovery then now we do any new sends (for FRTO) or
3869  * retransmits (for CA_Loss or CA_recovery) that make sense.
3870  */
3871 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3872 {
3873         struct tcp_sock *tp = tcp_sk(sk);
3874 
3875         if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3876                 return;
3877 
3878         if (unlikely(rexmit == REXMIT_NEW)) {
3879                 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3880                                           TCP_NAGLE_OFF);
3881                 if (after(tp->snd_nxt, tp->high_seq))
3882                         return;
3883                 tp->frto = 0;
3884         }
3885         tcp_xmit_retransmit_queue(sk);
3886 }
3887 
3888 /* Returns the number of packets newly acked or sacked by the current ACK */
3889 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3890 {
3891         const struct net *net = sock_net(sk);
3892         struct tcp_sock *tp = tcp_sk(sk);
3893         u32 delivered;
3894 
3895         delivered = tp->delivered - prior_delivered;
3896         NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3897         if (flag & FLAG_ECE)
3898                 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3899 
3900         return delivered;
3901 }
3902 
3903 /* This routine deals with incoming acks, but not outgoing ones. */
3904 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3905 {
3906         struct inet_connection_sock *icsk = inet_csk(sk);
3907         struct tcp_sock *tp = tcp_sk(sk);
3908         struct tcp_sacktag_state sack_state;
3909         struct rate_sample rs = { .prior_delivered = 0 };
3910         u32 prior_snd_una = tp->snd_una;
3911         bool is_sack_reneg = tp->is_sack_reneg;
3912         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3913         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3914         int num_dupack = 0;
3915         int prior_packets = tp->packets_out;
3916         u32 delivered = tp->delivered;
3917         u32 lost = tp->lost;
3918         int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3919         u32 prior_fack;
3920 
3921         sack_state.first_sackt = 0;
3922         sack_state.rate = &rs;
3923         sack_state.sack_delivered = 0;
3924 
3925         /* We very likely will need to access rtx queue. */
3926         prefetch(sk->tcp_rtx_queue.rb_node);
3927 
3928         /* If the ack is older than previous acks
3929          * then we can probably ignore it.
3930          */
3931         if (before(ack, prior_snd_una)) {
3932                 u32 max_window;
3933 
3934                 /* do not accept ACK for bytes we never sent. */
3935                 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3936                 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3937                 if (before(ack, prior_snd_una - max_window)) {
3938                         if (!(flag & FLAG_NO_CHALLENGE_ACK))
3939                                 tcp_send_challenge_ack(sk);
3940                         return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3941                 }
3942                 goto old_ack;
3943         }
3944 
3945         /* If the ack includes data we haven't sent yet, discard
3946          * this segment (RFC793 Section 3.9).
3947          */
3948         if (after(ack, tp->snd_nxt))
3949                 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3950 
3951         if (after(ack, prior_snd_una)) {
3952                 flag |= FLAG_SND_UNA_ADVANCED;
3953                 icsk->icsk_retransmits = 0;
3954 
3955 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3956                 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3957                         if (icsk->icsk_clean_acked)
3958                                 icsk->icsk_clean_acked(sk, ack);
3959 #endif
3960         }
3961 
3962         prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3963         rs.prior_in_flight = tcp_packets_in_flight(tp);
3964 
3965         /* ts_recent update must be made after we are sure that the packet
3966          * is in window.
3967          */
3968         if (flag & FLAG_UPDATE_TS_RECENT)
3969                 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3970 
3971         if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3972             FLAG_SND_UNA_ADVANCED) {
3973                 /* Window is constant, pure forward advance.
3974                  * No more checks are required.
3975                  * Note, we use the fact that SND.UNA>=SND.WL2.
3976                  */
3977                 tcp_update_wl(tp, ack_seq);
3978                 tcp_snd_una_update(tp, ack);
3979                 flag |= FLAG_WIN_UPDATE;
3980 
3981                 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3982 
3983                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3984         } else {
3985                 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3986 
3987                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3988                         flag |= FLAG_DATA;
3989                 else
3990                         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3991 
3992                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3993 
3994                 if (TCP_SKB_CB(skb)->sacked)
3995                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3996                                                         &sack_state);
3997 
3998                 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3999                         flag |= FLAG_ECE;
4000                         ack_ev_flags |= CA_ACK_ECE;
4001                 }
4002 
4003                 if (sack_state.sack_delivered)
4004                         tcp_count_delivered(tp, sack_state.sack_delivered,
4005                                             flag & FLAG_ECE);
4006 
4007                 if (flag & FLAG_WIN_UPDATE)
4008                         ack_ev_flags |= CA_ACK_WIN_UPDATE;
4009 
4010                 tcp_in_ack_event(sk, ack_ev_flags);
4011         }
4012 
4013         /* This is a deviation from RFC3168 since it states that:
4014          * "When the TCP data sender is ready to set the CWR bit after reducing
4015          * the congestion window, it SHOULD set the CWR bit only on the first
4016          * new data packet that it transmits."
4017          * We accept CWR on pure ACKs to be more robust
4018          * with widely-deployed TCP implementations that do this.
4019          */
4020         tcp_ecn_accept_cwr(sk, skb);
4021 
4022         /* We passed data and got it acked, remove any soft error
4023          * log. Something worked...
4024          */
4025         WRITE_ONCE(sk->sk_err_soft, 0);
4026         icsk->icsk_probes_out = 0;
4027         tp->rcv_tstamp = tcp_jiffies32;
4028         if (!prior_packets)
4029                 goto no_queue;
4030 
4031         /* See if we can take anything off of the retransmit queue. */
4032         flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4033                                     &sack_state, flag & FLAG_ECE);
4034 
4035         tcp_rack_update_reo_wnd(sk, &rs);
4036 
4037         if (tp->tlp_high_seq)
4038                 tcp_process_tlp_ack(sk, ack, flag);
4039 
4040         if (tcp_ack_is_dubious(sk, flag)) {
4041                 if (!(flag & (FLAG_SND_UNA_ADVANCED |
4042                               FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4043                         num_dupack = 1;
4044                         /* Consider if pure acks were aggregated in tcp_add_backlog() */
4045                         if (!(flag & FLAG_DATA))
4046                                 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4047                 }
4048                 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4049                                       &rexmit);
4050         }
4051 
4052         /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4053         if (flag & FLAG_SET_XMIT_TIMER)
4054                 tcp_set_xmit_timer(sk);
4055 
4056         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4057                 sk_dst_confirm(sk);
4058 
4059         delivered = tcp_newly_delivered(sk, delivered, flag);
4060         lost = tp->lost - lost;                 /* freshly marked lost */
4061         rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4062         tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4063         tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4064         tcp_xmit_recovery(sk, rexmit);
4065         return 1;
4066 
4067 no_queue:
4068         /* If data was DSACKed, see if we can undo a cwnd reduction. */
4069         if (flag & FLAG_DSACKING_ACK) {
4070                 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4071                                       &rexmit);
4072                 tcp_newly_delivered(sk, delivered, flag);
4073         }
4074         /* If this ack opens up a zero window, clear backoff.  It was
4075          * being used to time the probes, and is probably far higher than
4076          * it needs to be for normal retransmission.
4077          */
4078         tcp_ack_probe(sk);
4079 
4080         if (tp->tlp_high_seq)
4081                 tcp_process_tlp_ack(sk, ack, flag);
4082         return 1;
4083 
4084 old_ack:
4085         /* If data was SACKed, tag it and see if we should send more data.
4086          * If data was DSACKed, see if we can undo a cwnd reduction.
4087          */
4088         if (TCP_SKB_CB(skb)->sacked) {
4089                 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4090                                                 &sack_state);
4091                 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4092                                       &rexmit);
4093                 tcp_newly_delivered(sk, delivered, flag);
4094                 tcp_xmit_recovery(sk, rexmit);
4095         }
4096 
4097         return 0;
4098 }
4099 
4100 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4101                                       bool syn, struct tcp_fastopen_cookie *foc,
4102                                       bool exp_opt)
4103 {
4104         /* Valid only in SYN or SYN-ACK with an even length.  */
4105         if (!foc || !syn || len < 0 || (len & 1))
4106                 return;
4107 
4108         if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4109             len <= TCP_FASTOPEN_COOKIE_MAX)
4110                 memcpy(foc->val, cookie, len);
4111         else if (len != 0)
4112                 len = -1;
4113         foc->len = len;
4114         foc->exp = exp_opt;
4115 }
4116 
4117 static bool smc_parse_options(const struct tcphdr *th,
4118                               struct tcp_options_received *opt_rx,
4119                               const unsigned char *ptr,
4120                               int opsize)
4121 {
4122 #if IS_ENABLED(CONFIG_SMC)
4123         if (static_branch_unlikely(&tcp_have_smc)) {
4124                 if (th->syn && !(opsize & 1) &&
4125                     opsize >= TCPOLEN_EXP_SMC_BASE &&
4126                     get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4127                         opt_rx->smc_ok = 1;
4128                         return true;
4129                 }
4130         }
4131 #endif
4132         return false;
4133 }
4134 
4135 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4136  * value on success.
4137  */
4138 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4139 {
4140         const unsigned char *ptr = (const unsigned char *)(th + 1);
4141         int length = (th->doff * 4) - sizeof(struct tcphdr);
4142         u16 mss = 0;
4143 
4144         while (length > 0) {
4145                 int opcode = *ptr++;
4146                 int opsize;
4147 
4148                 switch (opcode) {
4149                 case TCPOPT_EOL:
4150                         return mss;
4151                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
4152                         length--;
4153                         continue;
4154                 default:
4155                         if (length < 2)
4156                                 return mss;
4157                         opsize = *ptr++;
4158                         if (opsize < 2) /* "silly options" */
4159                                 return mss;
4160                         if (opsize > length)
4161                                 return mss;     /* fail on partial options */
4162                         if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4163                                 u16 in_mss = get_unaligned_be16(ptr);
4164 
4165                                 if (in_mss) {
4166                                         if (user_mss && user_mss < in_mss)
4167                                                 in_mss = user_mss;
4168                                         mss = in_mss;
4169                                 }
4170                         }
4171                         ptr += opsize - 2;
4172                         length -= opsize;
4173                 }
4174         }
4175         return mss;
4176 }
4177 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4178 
4179 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4180  * But, this can also be called on packets in the established flow when
4181  * the fast version below fails.
4182  */
4183 void tcp_parse_options(const struct net *net,
4184                        const struct sk_buff *skb,
4185                        struct tcp_options_received *opt_rx, int estab,
4186                        struct tcp_fastopen_cookie *foc)
4187 {
4188         const unsigned char *ptr;
4189         const struct tcphdr *th = tcp_hdr(skb);
4190         int length = (th->doff * 4) - sizeof(struct tcphdr);
4191 
4192         ptr = (const unsigned char *)(th + 1);
4193         opt_rx->saw_tstamp = 0;
4194         opt_rx->saw_unknown = 0;
4195 
4196         while (length > 0) {
4197                 int opcode = *ptr++;
4198                 int opsize;
4199 
4200                 switch (opcode) {
4201                 case TCPOPT_EOL:
4202                         return;
4203                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
4204                         length--;
4205                         continue;
4206                 default:
4207                         if (length < 2)
4208                                 return;
4209                         opsize = *ptr++;
4210                         if (opsize < 2) /* "silly options" */
4211                                 return;
4212                         if (opsize > length)
4213                                 return; /* don't parse partial options */
4214                         switch (opcode) {
4215                         case TCPOPT_MSS:
4216                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4217                                         u16 in_mss = get_unaligned_be16(ptr);
4218                                         if (in_mss) {
4219                                                 if (opt_rx->user_mss &&
4220                                                     opt_rx->user_mss < in_mss)
4221                                                         in_mss = opt_rx->user_mss;
4222                                                 opt_rx->mss_clamp = in_mss;
4223                                         }
4224                                 }
4225                                 break;
4226                         case TCPOPT_WINDOW:
4227                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
4228                                     !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4229                                         __u8 snd_wscale = *(__u8 *)ptr;
4230                                         opt_rx->wscale_ok = 1;
4231                                         if (snd_wscale > TCP_MAX_WSCALE) {
4232                                                 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4233                                                                      __func__,
4234                                                                      snd_wscale,
4235                                                                      TCP_MAX_WSCALE);
4236                                                 snd_wscale = TCP_MAX_WSCALE;
4237                                         }
4238                                         opt_rx->snd_wscale = snd_wscale;
4239                                 }
4240                                 break;
4241                         case TCPOPT_TIMESTAMP:
4242                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
4243                                     ((estab && opt_rx->tstamp_ok) ||
4244                                      (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4245                                         opt_rx->saw_tstamp = 1;
4246                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4247                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4248                                 }
4249                                 break;
4250                         case TCPOPT_SACK_PERM:
4251                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4252                                     !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4253                                         opt_rx->sack_ok = TCP_SACK_SEEN;
4254                                         tcp_sack_reset(opt_rx);
4255                                 }
4256                                 break;
4257 
4258                         case TCPOPT_SACK:
4259                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4260                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4261                                    opt_rx->sack_ok) {
4262                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4263                                 }
4264                                 break;
4265 #ifdef CONFIG_TCP_MD5SIG
4266                         case TCPOPT_MD5SIG:
4267                                 /* The MD5 Hash has already been
4268                                  * checked (see tcp_v{4,6}_rcv()).
4269                                  */
4270                                 break;
4271 #endif
4272 #ifdef CONFIG_TCP_AO
4273                         case TCPOPT_AO:
4274                                 /* TCP AO has already been checked
4275                                  * (see tcp_inbound_ao_hash()).
4276                                  */
4277                                 break;
4278 #endif
4279                         case TCPOPT_FASTOPEN:
4280                                 tcp_parse_fastopen_option(
4281                                         opsize - TCPOLEN_FASTOPEN_BASE,
4282                                         ptr, th->syn, foc, false);
4283                                 break;
4284 
4285                         case TCPOPT_EXP:
4286                                 /* Fast Open option shares code 254 using a
4287                                  * 16 bits magic number.
4288                                  */
4289                                 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4290                                     get_unaligned_be16(ptr) ==
4291                                     TCPOPT_FASTOPEN_MAGIC) {
4292                                         tcp_parse_fastopen_option(opsize -
4293                                                 TCPOLEN_EXP_FASTOPEN_BASE,
4294                                                 ptr + 2, th->syn, foc, true);
4295                                         break;
4296                                 }
4297 
4298                                 if (smc_parse_options(th, opt_rx, ptr, opsize))
4299                                         break;
4300 
4301                                 opt_rx->saw_unknown = 1;
4302                                 break;
4303 
4304                         default:
4305                                 opt_rx->saw_unknown = 1;
4306                         }
4307                         ptr += opsize-2;
4308                         length -= opsize;
4309                 }
4310         }
4311 }
4312 EXPORT_SYMBOL(tcp_parse_options);
4313 
4314 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4315 {
4316         const __be32 *ptr = (const __be32 *)(th + 1);
4317 
4318         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4319                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4320                 tp->rx_opt.saw_tstamp = 1;
4321                 ++ptr;
4322                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4323                 ++ptr;
4324                 if (*ptr)
4325                         tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4326                 else
4327                         tp->rx_opt.rcv_tsecr = 0;
4328                 return true;
4329         }
4330         return false;
4331 }
4332 
4333 /* Fast parse options. This hopes to only see timestamps.
4334  * If it is wrong it falls back on tcp_parse_options().
4335  */
4336 static bool tcp_fast_parse_options(const struct net *net,
4337                                    const struct sk_buff *skb,
4338                                    const struct tcphdr *th, struct tcp_sock *tp)
4339 {
4340         /* In the spirit of fast parsing, compare doff directly to constant
4341          * values.  Because equality is used, short doff can be ignored here.
4342          */
4343         if (th->doff == (sizeof(*th) / 4)) {
4344                 tp->rx_opt.saw_tstamp = 0;
4345                 return false;
4346         } else if (tp->rx_opt.tstamp_ok &&
4347                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4348                 if (tcp_parse_aligned_timestamp(tp, th))
4349                         return true;
4350         }
4351 
4352         tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4353         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4354                 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4355 
4356         return true;
4357 }
4358 
4359 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4360 /*
4361  * Parse Signature options
4362  */
4363 int tcp_do_parse_auth_options(const struct tcphdr *th,
4364                               const u8 **md5_hash, const u8 **ao_hash)
4365 {
4366         int length = (th->doff << 2) - sizeof(*th);
4367         const u8 *ptr = (const u8 *)(th + 1);
4368         unsigned int minlen = TCPOLEN_MD5SIG;
4369 
4370         if (IS_ENABLED(CONFIG_TCP_AO))
4371                 minlen = sizeof(struct tcp_ao_hdr) + 1;
4372 
4373         *md5_hash = NULL;
4374         *ao_hash = NULL;
4375 
4376         /* If not enough data remaining, we can short cut */
4377         while (length >= minlen) {
4378                 int opcode = *ptr++;
4379                 int opsize;
4380 
4381                 switch (opcode) {
4382                 case TCPOPT_EOL:
4383                         return 0;
4384                 case TCPOPT_NOP:
4385                         length--;
4386                         continue;
4387                 default:
4388                         opsize = *ptr++;
4389                         if (opsize < 2 || opsize > length)
4390                                 return -EINVAL;
4391                         if (opcode == TCPOPT_MD5SIG) {
4392                                 if (opsize != TCPOLEN_MD5SIG)
4393                                         return -EINVAL;
4394                                 if (unlikely(*md5_hash || *ao_hash))
4395                                         return -EEXIST;
4396                                 *md5_hash = ptr;
4397                         } else if (opcode == TCPOPT_AO) {
4398                                 if (opsize <= sizeof(struct tcp_ao_hdr))
4399                                         return -EINVAL;
4400                                 if (unlikely(*md5_hash || *ao_hash))
4401                                         return -EEXIST;
4402                                 *ao_hash = ptr;
4403                         }
4404                 }
4405                 ptr += opsize - 2;
4406                 length -= opsize;
4407         }
4408         return 0;
4409 }
4410 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4411 #endif
4412 
4413 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4414  *
4415  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4416  * it can pass through stack. So, the following predicate verifies that
4417  * this segment is not used for anything but congestion avoidance or
4418  * fast retransmit. Moreover, we even are able to eliminate most of such
4419  * second order effects, if we apply some small "replay" window (~RTO)
4420  * to timestamp space.
4421  *
4422  * All these measures still do not guarantee that we reject wrapped ACKs
4423  * on networks with high bandwidth, when sequence space is recycled fastly,
4424  * but it guarantees that such events will be very rare and do not affect
4425  * connection seriously. This doesn't look nice, but alas, PAWS is really
4426  * buggy extension.
4427  *
4428  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4429  * states that events when retransmit arrives after original data are rare.
4430  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4431  * the biggest problem on large power networks even with minor reordering.
4432  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4433  * up to bandwidth of 18Gigabit/sec. 8) ]
4434  */
4435 
4436 /* Estimates max number of increments of remote peer TSval in
4437  * a replay window (based on our current RTO estimation).
4438  */
4439 static u32 tcp_tsval_replay(const struct sock *sk)
4440 {
4441         /* If we use usec TS resolution,
4442          * then expect the remote peer to use the same resolution.
4443          */
4444         if (tcp_sk(sk)->tcp_usec_ts)
4445                 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4446 
4447         /* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4448          * We know that some OS (including old linux) can use 1200 Hz.
4449          */
4450         return inet_csk(sk)->icsk_rto * 1200 / HZ;
4451 }
4452 
4453 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4454 {
4455         const struct tcp_sock *tp = tcp_sk(sk);
4456         const struct tcphdr *th = tcp_hdr(skb);
4457         u32 seq = TCP_SKB_CB(skb)->seq;
4458         u32 ack = TCP_SKB_CB(skb)->ack_seq;
4459 
4460         return  /* 1. Pure ACK with correct sequence number. */
4461                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4462 
4463                 /* 2. ... and duplicate ACK. */
4464                 ack == tp->snd_una &&
4465 
4466                 /* 3. ... and does not update window. */
4467                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4468 
4469                 /* 4. ... and sits in replay window. */
4470                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4471                 tcp_tsval_replay(sk);
4472 }
4473 
4474 static inline bool tcp_paws_discard(const struct sock *sk,
4475                                    const struct sk_buff *skb)
4476 {
4477         const struct tcp_sock *tp = tcp_sk(sk);
4478 
4479         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4480                !tcp_disordered_ack(sk, skb);
4481 }
4482 
4483 /* Check segment sequence number for validity.
4484  *
4485  * Segment controls are considered valid, if the segment
4486  * fits to the window after truncation to the window. Acceptability
4487  * of data (and SYN, FIN, of course) is checked separately.
4488  * See tcp_data_queue(), for example.
4489  *
4490  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4491  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4492  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4493  * (borrowed from freebsd)
4494  */
4495 
4496 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4497                                          u32 seq, u32 end_seq)
4498 {
4499         if (before(end_seq, tp->rcv_wup))
4500                 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4501 
4502         if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4503                 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4504 
4505         return SKB_NOT_DROPPED_YET;
4506 }
4507 
4508 
4509 void tcp_done_with_error(struct sock *sk, int err)
4510 {
4511         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4512         WRITE_ONCE(sk->sk_err, err);
4513         smp_wmb();
4514 
4515         tcp_write_queue_purge(sk);
4516         tcp_done(sk);
4517 
4518         if (!sock_flag(sk, SOCK_DEAD))
4519                 sk_error_report(sk);
4520 }
4521 EXPORT_SYMBOL(tcp_done_with_error);
4522 
4523 /* When we get a reset we do this. */
4524 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4525 {
4526         int err;
4527 
4528         trace_tcp_receive_reset(sk);
4529 
4530         /* mptcp can't tell us to ignore reset pkts,
4531          * so just ignore the return value of mptcp_incoming_options().
4532          */
4533         if (sk_is_mptcp(sk))
4534                 mptcp_incoming_options(sk, skb);
4535 
4536         /* We want the right error as BSD sees it (and indeed as we do). */
4537         switch (sk->sk_state) {
4538         case TCP_SYN_SENT:
4539                 err = ECONNREFUSED;
4540                 break;
4541         case TCP_CLOSE_WAIT:
4542                 err = EPIPE;
4543                 break;
4544         case TCP_CLOSE:
4545                 return;
4546         default:
4547                 err = ECONNRESET;
4548         }
4549         tcp_done_with_error(sk, err);
4550 }
4551 
4552 /*
4553  *      Process the FIN bit. This now behaves as it is supposed to work
4554  *      and the FIN takes effect when it is validly part of sequence
4555  *      space. Not before when we get holes.
4556  *
4557  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4558  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4559  *      TIME-WAIT)
4560  *
4561  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4562  *      close and we go into CLOSING (and later onto TIME-WAIT)
4563  *
4564  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4565  */
4566 void tcp_fin(struct sock *sk)
4567 {
4568         struct tcp_sock *tp = tcp_sk(sk);
4569 
4570         inet_csk_schedule_ack(sk);
4571 
4572         WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4573         sock_set_flag(sk, SOCK_DONE);
4574 
4575         switch (sk->sk_state) {
4576         case TCP_SYN_RECV:
4577         case TCP_ESTABLISHED:
4578                 /* Move to CLOSE_WAIT */
4579                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4580                 inet_csk_enter_pingpong_mode(sk);
4581                 break;
4582 
4583         case TCP_CLOSE_WAIT:
4584         case TCP_CLOSING:
4585                 /* Received a retransmission of the FIN, do
4586                  * nothing.
4587                  */
4588                 break;
4589         case TCP_LAST_ACK:
4590                 /* RFC793: Remain in the LAST-ACK state. */
4591                 break;
4592 
4593         case TCP_FIN_WAIT1:
4594                 /* This case occurs when a simultaneous close
4595                  * happens, we must ack the received FIN and
4596                  * enter the CLOSING state.
4597                  */
4598                 tcp_send_ack(sk);
4599                 tcp_set_state(sk, TCP_CLOSING);
4600                 break;
4601         case TCP_FIN_WAIT2:
4602                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4603                 tcp_send_ack(sk);
4604                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4605                 break;
4606         default:
4607                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4608                  * cases we should never reach this piece of code.
4609                  */
4610                 pr_err("%s: Impossible, sk->sk_state=%d\n",
4611                        __func__, sk->sk_state);
4612                 break;
4613         }
4614 
4615         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4616          * Probably, we should reset in this case. For now drop them.
4617          */
4618         skb_rbtree_purge(&tp->out_of_order_queue);
4619         if (tcp_is_sack(tp))
4620                 tcp_sack_reset(&tp->rx_opt);
4621 
4622         if (!sock_flag(sk, SOCK_DEAD)) {
4623                 sk->sk_state_change(sk);
4624 
4625                 /* Do not send POLL_HUP for half duplex close. */
4626                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4627                     sk->sk_state == TCP_CLOSE)
4628                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4629                 else
4630                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4631         }
4632 }
4633 
4634 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4635                                   u32 end_seq)
4636 {
4637         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4638                 if (before(seq, sp->start_seq))
4639                         sp->start_seq = seq;
4640                 if (after(end_seq, sp->end_seq))
4641                         sp->end_seq = end_seq;
4642                 return true;
4643         }
4644         return false;
4645 }
4646 
4647 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4648 {
4649         struct tcp_sock *tp = tcp_sk(sk);
4650 
4651         if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4652                 int mib_idx;
4653 
4654                 if (before(seq, tp->rcv_nxt))
4655                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4656                 else
4657                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4658 
4659                 NET_INC_STATS(sock_net(sk), mib_idx);
4660 
4661                 tp->rx_opt.dsack = 1;
4662                 tp->duplicate_sack[0].start_seq = seq;
4663                 tp->duplicate_sack[0].end_seq = end_seq;
4664         }
4665 }
4666 
4667 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4668 {
4669         struct tcp_sock *tp = tcp_sk(sk);
4670 
4671         if (!tp->rx_opt.dsack)
4672                 tcp_dsack_set(sk, seq, end_seq);
4673         else
4674                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4675 }
4676 
4677 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4678 {
4679         /* When the ACK path fails or drops most ACKs, the sender would
4680          * timeout and spuriously retransmit the same segment repeatedly.
4681          * If it seems our ACKs are not reaching the other side,
4682          * based on receiving a duplicate data segment with new flowlabel
4683          * (suggesting the sender suffered an RTO), and we are not already
4684          * repathing due to our own RTO, then rehash the socket to repath our
4685          * packets.
4686          */
4687 #if IS_ENABLED(CONFIG_IPV6)
4688         if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4689             skb->protocol == htons(ETH_P_IPV6) &&
4690             (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4691              ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4692             sk_rethink_txhash(sk))
4693                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4694 
4695         /* Save last flowlabel after a spurious retrans. */
4696         tcp_save_lrcv_flowlabel(sk, skb);
4697 #endif
4698 }
4699 
4700 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4701 {
4702         struct tcp_sock *tp = tcp_sk(sk);
4703 
4704         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4705             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4706                 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4707                 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4708 
4709                 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4710                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4711 
4712                         tcp_rcv_spurious_retrans(sk, skb);
4713                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4714                                 end_seq = tp->rcv_nxt;
4715                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4716                 }
4717         }
4718 
4719         tcp_send_ack(sk);
4720 }
4721 
4722 /* These routines update the SACK block as out-of-order packets arrive or
4723  * in-order packets close up the sequence space.
4724  */
4725 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4726 {
4727         int this_sack;
4728         struct tcp_sack_block *sp = &tp->selective_acks[0];
4729         struct tcp_sack_block *swalk = sp + 1;
4730 
4731         /* See if the recent change to the first SACK eats into
4732          * or hits the sequence space of other SACK blocks, if so coalesce.
4733          */
4734         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4735                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4736                         int i;
4737 
4738                         /* Zap SWALK, by moving every further SACK up by one slot.
4739                          * Decrease num_sacks.
4740                          */
4741                         tp->rx_opt.num_sacks--;
4742                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4743                                 sp[i] = sp[i + 1];
4744                         continue;
4745                 }
4746                 this_sack++;
4747                 swalk++;
4748         }
4749 }
4750 
4751 void tcp_sack_compress_send_ack(struct sock *sk)
4752 {
4753         struct tcp_sock *tp = tcp_sk(sk);
4754 
4755         if (!tp->compressed_ack)
4756                 return;
4757 
4758         if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4759                 __sock_put(sk);
4760 
4761         /* Since we have to send one ack finally,
4762          * substract one from tp->compressed_ack to keep
4763          * LINUX_MIB_TCPACKCOMPRESSED accurate.
4764          */
4765         NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4766                       tp->compressed_ack - 1);
4767 
4768         tp->compressed_ack = 0;
4769         tcp_send_ack(sk);
4770 }
4771 
4772 /* Reasonable amount of sack blocks included in TCP SACK option
4773  * The max is 4, but this becomes 3 if TCP timestamps are there.
4774  * Given that SACK packets might be lost, be conservative and use 2.
4775  */
4776 #define TCP_SACK_BLOCKS_EXPECTED 2
4777 
4778 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4779 {
4780         struct tcp_sock *tp = tcp_sk(sk);
4781         struct tcp_sack_block *sp = &tp->selective_acks[0];
4782         int cur_sacks = tp->rx_opt.num_sacks;
4783         int this_sack;
4784 
4785         if (!cur_sacks)
4786                 goto new_sack;
4787 
4788         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4789                 if (tcp_sack_extend(sp, seq, end_seq)) {
4790                         if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4791                                 tcp_sack_compress_send_ack(sk);
4792                         /* Rotate this_sack to the first one. */
4793                         for (; this_sack > 0; this_sack--, sp--)
4794                                 swap(*sp, *(sp - 1));
4795                         if (cur_sacks > 1)
4796                                 tcp_sack_maybe_coalesce(tp);
4797                         return;
4798                 }
4799         }
4800 
4801         if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4802                 tcp_sack_compress_send_ack(sk);
4803 
4804         /* Could not find an adjacent existing SACK, build a new one,
4805          * put it at the front, and shift everyone else down.  We
4806          * always know there is at least one SACK present already here.
4807          *
4808          * If the sack array is full, forget about the last one.
4809          */
4810         if (this_sack >= TCP_NUM_SACKS) {
4811                 this_sack--;
4812                 tp->rx_opt.num_sacks--;
4813                 sp--;
4814         }
4815         for (; this_sack > 0; this_sack--, sp--)
4816                 *sp = *(sp - 1);
4817 
4818 new_sack:
4819         /* Build the new head SACK, and we're done. */
4820         sp->start_seq = seq;
4821         sp->end_seq = end_seq;
4822         tp->rx_opt.num_sacks++;
4823 }
4824 
4825 /* RCV.NXT advances, some SACKs should be eaten. */
4826 
4827 static void tcp_sack_remove(struct tcp_sock *tp)
4828 {
4829         struct tcp_sack_block *sp = &tp->selective_acks[0];
4830         int num_sacks = tp->rx_opt.num_sacks;
4831         int this_sack;
4832 
4833         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4834         if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4835                 tp->rx_opt.num_sacks = 0;
4836                 return;
4837         }
4838 
4839         for (this_sack = 0; this_sack < num_sacks;) {
4840                 /* Check if the start of the sack is covered by RCV.NXT. */
4841                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4842                         int i;
4843 
4844                         /* RCV.NXT must cover all the block! */
4845                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4846 
4847                         /* Zap this SACK, by moving forward any other SACKS. */
4848                         for (i = this_sack+1; i < num_sacks; i++)
4849                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4850                         num_sacks--;
4851                         continue;
4852                 }
4853                 this_sack++;
4854                 sp++;
4855         }
4856         tp->rx_opt.num_sacks = num_sacks;
4857 }
4858 
4859 /**
4860  * tcp_try_coalesce - try to merge skb to prior one
4861  * @sk: socket
4862  * @to: prior buffer
4863  * @from: buffer to add in queue
4864  * @fragstolen: pointer to boolean
4865  *
4866  * Before queueing skb @from after @to, try to merge them
4867  * to reduce overall memory use and queue lengths, if cost is small.
4868  * Packets in ofo or receive queues can stay a long time.
4869  * Better try to coalesce them right now to avoid future collapses.
4870  * Returns true if caller should free @from instead of queueing it
4871  */
4872 static bool tcp_try_coalesce(struct sock *sk,
4873                              struct sk_buff *to,
4874                              struct sk_buff *from,
4875                              bool *fragstolen)
4876 {
4877         int delta;
4878 
4879         *fragstolen = false;
4880 
4881         /* Its possible this segment overlaps with prior segment in queue */
4882         if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4883                 return false;
4884 
4885         if (!tcp_skb_can_collapse_rx(to, from))
4886                 return false;
4887 
4888         if (!skb_try_coalesce(to, from, fragstolen, &delta))
4889                 return false;
4890 
4891         atomic_add(delta, &sk->sk_rmem_alloc);
4892         sk_mem_charge(sk, delta);
4893         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4894         TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4895         TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4896         TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4897 
4898         if (TCP_SKB_CB(from)->has_rxtstamp) {
4899                 TCP_SKB_CB(to)->has_rxtstamp = true;
4900                 to->tstamp = from->tstamp;
4901                 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4902         }
4903 
4904         return true;
4905 }
4906 
4907 static bool tcp_ooo_try_coalesce(struct sock *sk,
4908                              struct sk_buff *to,
4909                              struct sk_buff *from,
4910                              bool *fragstolen)
4911 {
4912         bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4913 
4914         /* In case tcp_drop_reason() is called later, update to->gso_segs */
4915         if (res) {
4916                 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4917                                max_t(u16, 1, skb_shinfo(from)->gso_segs);
4918 
4919                 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4920         }
4921         return res;
4922 }
4923 
4924 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4925                             enum skb_drop_reason reason)
4926 {
4927         sk_drops_add(sk, skb);
4928         sk_skb_reason_drop(sk, skb, reason);
4929 }
4930 
4931 /* This one checks to see if we can put data from the
4932  * out_of_order queue into the receive_queue.
4933  */
4934 static void tcp_ofo_queue(struct sock *sk)
4935 {
4936         struct tcp_sock *tp = tcp_sk(sk);
4937         __u32 dsack_high = tp->rcv_nxt;
4938         bool fin, fragstolen, eaten;
4939         struct sk_buff *skb, *tail;
4940         struct rb_node *p;
4941 
4942         p = rb_first(&tp->out_of_order_queue);
4943         while (p) {
4944                 skb = rb_to_skb(p);
4945                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4946                         break;
4947 
4948                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4949                         __u32 dsack = dsack_high;
4950                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4951                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4952                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4953                 }
4954                 p = rb_next(p);
4955                 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4956 
4957                 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4958                         tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4959                         continue;
4960                 }
4961 
4962                 tail = skb_peek_tail(&sk->sk_receive_queue);
4963                 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4964                 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4965                 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4966                 if (!eaten)
4967                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4968                 else
4969                         kfree_skb_partial(skb, fragstolen);
4970 
4971                 if (unlikely(fin)) {
4972                         tcp_fin(sk);
4973                         /* tcp_fin() purges tp->out_of_order_queue,
4974                          * so we must end this loop right now.
4975                          */
4976                         break;
4977                 }
4978         }
4979 }
4980 
4981 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4982 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4983 
4984 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4985                                  unsigned int size)
4986 {
4987         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4988             !sk_rmem_schedule(sk, skb, size)) {
4989 
4990                 if (tcp_prune_queue(sk, skb) < 0)
4991                         return -1;
4992 
4993                 while (!sk_rmem_schedule(sk, skb, size)) {
4994                         if (!tcp_prune_ofo_queue(sk, skb))
4995                                 return -1;
4996                 }
4997         }
4998         return 0;
4999 }
5000 
5001 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5002 {
5003         struct tcp_sock *tp = tcp_sk(sk);
5004         struct rb_node **p, *parent;
5005         struct sk_buff *skb1;
5006         u32 seq, end_seq;
5007         bool fragstolen;
5008 
5009         tcp_save_lrcv_flowlabel(sk, skb);
5010         tcp_ecn_check_ce(sk, skb);
5011 
5012         if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5013                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5014                 sk->sk_data_ready(sk);
5015                 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5016                 return;
5017         }
5018 
5019         /* Disable header prediction. */
5020         tp->pred_flags = 0;
5021         inet_csk_schedule_ack(sk);
5022 
5023         tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5024         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5025         seq = TCP_SKB_CB(skb)->seq;
5026         end_seq = TCP_SKB_CB(skb)->end_seq;
5027 
5028         p = &tp->out_of_order_queue.rb_node;
5029         if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5030                 /* Initial out of order segment, build 1 SACK. */
5031                 if (tcp_is_sack(tp)) {
5032                         tp->rx_opt.num_sacks = 1;
5033                         tp->selective_acks[0].start_seq = seq;
5034                         tp->selective_acks[0].end_seq = end_seq;
5035                 }
5036                 rb_link_node(&skb->rbnode, NULL, p);
5037                 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5038                 tp->ooo_last_skb = skb;
5039                 goto end;
5040         }
5041 
5042         /* In the typical case, we are adding an skb to the end of the list.
5043          * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5044          */
5045         if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5046                                  skb, &fragstolen)) {
5047 coalesce_done:
5048                 /* For non sack flows, do not grow window to force DUPACK
5049                  * and trigger fast retransmit.
5050                  */
5051                 if (tcp_is_sack(tp))
5052                         tcp_grow_window(sk, skb, true);
5053                 kfree_skb_partial(skb, fragstolen);
5054                 skb = NULL;
5055                 goto add_sack;
5056         }
5057         /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5058         if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5059                 parent = &tp->ooo_last_skb->rbnode;
5060                 p = &parent->rb_right;
5061                 goto insert;
5062         }
5063 
5064         /* Find place to insert this segment. Handle overlaps on the way. */
5065         parent = NULL;
5066         while (*p) {
5067                 parent = *p;
5068                 skb1 = rb_to_skb(parent);
5069                 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5070                         p = &parent->rb_left;
5071                         continue;
5072                 }
5073                 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5074                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5075                                 /* All the bits are present. Drop. */
5076                                 NET_INC_STATS(sock_net(sk),
5077                                               LINUX_MIB_TCPOFOMERGE);
5078                                 tcp_drop_reason(sk, skb,
5079                                                 SKB_DROP_REASON_TCP_OFOMERGE);
5080                                 skb = NULL;
5081                                 tcp_dsack_set(sk, seq, end_seq);
5082                                 goto add_sack;
5083                         }
5084                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5085                                 /* Partial overlap. */
5086                                 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5087                         } else {
5088                                 /* skb's seq == skb1's seq and skb covers skb1.
5089                                  * Replace skb1 with skb.
5090                                  */
5091                                 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5092                                                 &tp->out_of_order_queue);
5093                                 tcp_dsack_extend(sk,
5094                                                  TCP_SKB_CB(skb1)->seq,
5095                                                  TCP_SKB_CB(skb1)->end_seq);
5096                                 NET_INC_STATS(sock_net(sk),
5097                                               LINUX_MIB_TCPOFOMERGE);
5098                                 tcp_drop_reason(sk, skb1,
5099                                                 SKB_DROP_REASON_TCP_OFOMERGE);
5100                                 goto merge_right;
5101                         }
5102                 } else if (tcp_ooo_try_coalesce(sk, skb1,
5103                                                 skb, &fragstolen)) {
5104                         goto coalesce_done;
5105                 }
5106                 p = &parent->rb_right;
5107         }
5108 insert:
5109         /* Insert segment into RB tree. */
5110         rb_link_node(&skb->rbnode, parent, p);
5111         rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5112 
5113 merge_right:
5114         /* Remove other segments covered by skb. */
5115         while ((skb1 = skb_rb_next(skb)) != NULL) {
5116                 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5117                         break;
5118                 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5119                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5120                                          end_seq);
5121                         break;
5122                 }
5123                 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5124                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5125                                  TCP_SKB_CB(skb1)->end_seq);
5126                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5127                 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5128         }
5129         /* If there is no skb after us, we are the last_skb ! */
5130         if (!skb1)
5131                 tp->ooo_last_skb = skb;
5132 
5133 add_sack:
5134         if (tcp_is_sack(tp))
5135                 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5136 end:
5137         if (skb) {
5138                 /* For non sack flows, do not grow window to force DUPACK
5139                  * and trigger fast retransmit.
5140                  */
5141                 if (tcp_is_sack(tp))
5142                         tcp_grow_window(sk, skb, false);
5143                 skb_condense(skb);
5144                 skb_set_owner_r(skb, sk);
5145         }
5146 }
5147 
5148 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5149                                       bool *fragstolen)
5150 {
5151         int eaten;
5152         struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5153 
5154         eaten = (tail &&
5155                  tcp_try_coalesce(sk, tail,
5156                                   skb, fragstolen)) ? 1 : 0;
5157         tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5158         if (!eaten) {
5159                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5160                 skb_set_owner_r(skb, sk);
5161         }
5162         return eaten;
5163 }
5164 
5165 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5166 {
5167         struct sk_buff *skb;
5168         int err = -ENOMEM;
5169         int data_len = 0;
5170         bool fragstolen;
5171 
5172         if (size == 0)
5173                 return 0;
5174 
5175         if (size > PAGE_SIZE) {
5176                 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5177 
5178                 data_len = npages << PAGE_SHIFT;
5179                 size = data_len + (size & ~PAGE_MASK);
5180         }
5181         skb = alloc_skb_with_frags(size - data_len, data_len,
5182                                    PAGE_ALLOC_COSTLY_ORDER,
5183                                    &err, sk->sk_allocation);
5184         if (!skb)
5185                 goto err;
5186 
5187         skb_put(skb, size - data_len);
5188         skb->data_len = data_len;
5189         skb->len = size;
5190 
5191         if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5192                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5193                 goto err_free;
5194         }
5195 
5196         err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5197         if (err)
5198                 goto err_free;
5199 
5200         TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5201         TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5202         TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5203 
5204         if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5205                 WARN_ON_ONCE(fragstolen); /* should not happen */
5206                 __kfree_skb(skb);
5207         }
5208         return size;
5209 
5210 err_free:
5211         kfree_skb(skb);
5212 err:
5213         return err;
5214 
5215 }
5216 
5217 void tcp_data_ready(struct sock *sk)
5218 {
5219         if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5220                 sk->sk_data_ready(sk);
5221 }
5222 
5223 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5224 {
5225         struct tcp_sock *tp = tcp_sk(sk);
5226         enum skb_drop_reason reason;
5227         bool fragstolen;
5228         int eaten;
5229 
5230         /* If a subflow has been reset, the packet should not continue
5231          * to be processed, drop the packet.
5232          */
5233         if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5234                 __kfree_skb(skb);
5235                 return;
5236         }
5237 
5238         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5239                 __kfree_skb(skb);
5240                 return;
5241         }
5242         skb_dst_drop(skb);
5243         __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5244 
5245         reason = SKB_DROP_REASON_NOT_SPECIFIED;
5246         tp->rx_opt.dsack = 0;
5247 
5248         /*  Queue data for delivery to the user.
5249          *  Packets in sequence go to the receive queue.
5250          *  Out of sequence packets to the out_of_order_queue.
5251          */
5252         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5253                 if (tcp_receive_window(tp) == 0) {
5254                         /* Some stacks are known to send bare FIN packets
5255                          * in a loop even if we send RWIN 0 in our ACK.
5256                          * Accepting this FIN does not hurt memory pressure
5257                          * because the FIN flag will simply be merged to the
5258                          * receive queue tail skb in most cases.
5259                          */
5260                         if (!skb->len &&
5261                             (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5262                                 goto queue_and_out;
5263 
5264                         reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5265                         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5266                         goto out_of_window;
5267                 }
5268 
5269                 /* Ok. In sequence. In window. */
5270 queue_and_out:
5271                 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5272                         /* TODO: maybe ratelimit these WIN 0 ACK ? */
5273                         inet_csk(sk)->icsk_ack.pending |=
5274                                         (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5275                         inet_csk_schedule_ack(sk);
5276                         sk->sk_data_ready(sk);
5277 
5278                         if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5279                                 reason = SKB_DROP_REASON_PROTO_MEM;
5280                                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5281                                 goto drop;
5282                         }
5283                         sk_forced_mem_schedule(sk, skb->truesize);
5284                 }
5285 
5286                 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5287                 if (skb->len)
5288                         tcp_event_data_recv(sk, skb);
5289                 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5290                         tcp_fin(sk);
5291 
5292                 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5293                         tcp_ofo_queue(sk);
5294 
5295                         /* RFC5681. 4.2. SHOULD send immediate ACK, when
5296                          * gap in queue is filled.
5297                          */
5298                         if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5299                                 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5300                 }
5301 
5302                 if (tp->rx_opt.num_sacks)
5303                         tcp_sack_remove(tp);
5304 
5305                 tcp_fast_path_check(sk);
5306 
5307                 if (eaten > 0)
5308                         kfree_skb_partial(skb, fragstolen);
5309                 if (!sock_flag(sk, SOCK_DEAD))
5310                         tcp_data_ready(sk);
5311                 return;
5312         }
5313 
5314         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5315                 tcp_rcv_spurious_retrans(sk, skb);
5316                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
5317                 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5318                 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5319                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5320 
5321 out_of_window:
5322                 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5323                 inet_csk_schedule_ack(sk);
5324 drop:
5325                 tcp_drop_reason(sk, skb, reason);
5326                 return;
5327         }
5328 
5329         /* Out of window. F.e. zero window probe. */
5330         if (!before(TCP_SKB_CB(skb)->seq,
5331                     tp->rcv_nxt + tcp_receive_window(tp))) {
5332                 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5333                 goto out_of_window;
5334         }
5335 
5336         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5337                 /* Partial packet, seq < rcv_next < end_seq */
5338                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5339 
5340                 /* If window is closed, drop tail of packet. But after
5341                  * remembering D-SACK for its head made in previous line.
5342                  */
5343                 if (!tcp_receive_window(tp)) {
5344                         reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5345                         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5346                         goto out_of_window;
5347                 }
5348                 goto queue_and_out;
5349         }
5350 
5351         tcp_data_queue_ofo(sk, skb);
5352 }
5353 
5354 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5355 {
5356         if (list)
5357                 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5358 
5359         return skb_rb_next(skb);
5360 }
5361 
5362 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5363                                         struct sk_buff_head *list,
5364                                         struct rb_root *root)
5365 {
5366         struct sk_buff *next = tcp_skb_next(skb, list);
5367 
5368         if (list)
5369                 __skb_unlink(skb, list);
5370         else
5371                 rb_erase(&skb->rbnode, root);
5372 
5373         __kfree_skb(skb);
5374         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5375 
5376         return next;
5377 }
5378 
5379 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5380 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5381 {
5382         struct rb_node **p = &root->rb_node;
5383         struct rb_node *parent = NULL;
5384         struct sk_buff *skb1;
5385 
5386         while (*p) {
5387                 parent = *p;
5388                 skb1 = rb_to_skb(parent);
5389                 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5390                         p = &parent->rb_left;
5391                 else
5392                         p = &parent->rb_right;
5393         }
5394         rb_link_node(&skb->rbnode, parent, p);
5395         rb_insert_color(&skb->rbnode, root);
5396 }
5397 
5398 /* Collapse contiguous sequence of skbs head..tail with
5399  * sequence numbers start..end.
5400  *
5401  * If tail is NULL, this means until the end of the queue.
5402  *
5403  * Segments with FIN/SYN are not collapsed (only because this
5404  * simplifies code)
5405  */
5406 static void
5407 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5408              struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5409 {
5410         struct sk_buff *skb = head, *n;
5411         struct sk_buff_head tmp;
5412         bool end_of_skbs;
5413 
5414         /* First, check that queue is collapsible and find
5415          * the point where collapsing can be useful.
5416          */
5417 restart:
5418         for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5419                 n = tcp_skb_next(skb, list);
5420 
5421                 /* No new bits? It is possible on ofo queue. */
5422                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5423                         skb = tcp_collapse_one(sk, skb, list, root);
5424                         if (!skb)
5425                                 break;
5426                         goto restart;
5427                 }
5428 
5429                 /* The first skb to collapse is:
5430                  * - not SYN/FIN and
5431                  * - bloated or contains data before "start" or
5432                  *   overlaps to the next one and mptcp allow collapsing.
5433                  */
5434                 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5435                     (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5436                      before(TCP_SKB_CB(skb)->seq, start))) {
5437                         end_of_skbs = false;
5438                         break;
5439                 }
5440 
5441                 if (n && n != tail && tcp_skb_can_collapse_rx(skb, n) &&
5442                     TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5443                         end_of_skbs = false;
5444                         break;
5445                 }
5446 
5447                 /* Decided to skip this, advance start seq. */
5448                 start = TCP_SKB_CB(skb)->end_seq;
5449         }
5450         if (end_of_skbs ||
5451             (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5452                 return;
5453 
5454         __skb_queue_head_init(&tmp);
5455 
5456         while (before(start, end)) {
5457                 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5458                 struct sk_buff *nskb;
5459 
5460                 nskb = alloc_skb(copy, GFP_ATOMIC);
5461                 if (!nskb)
5462                         break;
5463 
5464                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5465                 skb_copy_decrypted(nskb, skb);
5466                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5467                 if (list)
5468                         __skb_queue_before(list, skb, nskb);
5469                 else
5470                         __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5471                 skb_set_owner_r(nskb, sk);
5472                 mptcp_skb_ext_move(nskb, skb);
5473 
5474                 /* Copy data, releasing collapsed skbs. */
5475                 while (copy > 0) {
5476                         int offset = start - TCP_SKB_CB(skb)->seq;
5477                         int size = TCP_SKB_CB(skb)->end_seq - start;
5478 
5479                         BUG_ON(offset < 0);
5480                         if (size > 0) {
5481                                 size = min(copy, size);
5482                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5483                                         BUG();
5484                                 TCP_SKB_CB(nskb)->end_seq += size;
5485                                 copy -= size;
5486                                 start += size;
5487                         }
5488                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5489                                 skb = tcp_collapse_one(sk, skb, list, root);
5490                                 if (!skb ||
5491                                     skb == tail ||
5492                                     !tcp_skb_can_collapse_rx(nskb, skb) ||
5493                                     (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5494                                         goto end;
5495                         }
5496                 }
5497         }
5498 end:
5499         skb_queue_walk_safe(&tmp, skb, n)
5500                 tcp_rbtree_insert(root, skb);
5501 }
5502 
5503 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5504  * and tcp_collapse() them until all the queue is collapsed.
5505  */
5506 static void tcp_collapse_ofo_queue(struct sock *sk)
5507 {
5508         struct tcp_sock *tp = tcp_sk(sk);
5509         u32 range_truesize, sum_tiny = 0;
5510         struct sk_buff *skb, *head;
5511         u32 start, end;
5512 
5513         skb = skb_rb_first(&tp->out_of_order_queue);
5514 new_range:
5515         if (!skb) {
5516                 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5517                 return;
5518         }
5519         start = TCP_SKB_CB(skb)->seq;
5520         end = TCP_SKB_CB(skb)->end_seq;
5521         range_truesize = skb->truesize;
5522 
5523         for (head = skb;;) {
5524                 skb = skb_rb_next(skb);
5525 
5526                 /* Range is terminated when we see a gap or when
5527                  * we are at the queue end.
5528                  */
5529                 if (!skb ||
5530                     after(TCP_SKB_CB(skb)->seq, end) ||
5531                     before(TCP_SKB_CB(skb)->end_seq, start)) {
5532                         /* Do not attempt collapsing tiny skbs */
5533                         if (range_truesize != head->truesize ||
5534                             end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5535                                 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5536                                              head, skb, start, end);
5537                         } else {
5538                                 sum_tiny += range_truesize;
5539                                 if (sum_tiny > sk->sk_rcvbuf >> 3)
5540                                         return;
5541                         }
5542                         goto new_range;
5543                 }
5544 
5545                 range_truesize += skb->truesize;
5546                 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5547                         start = TCP_SKB_CB(skb)->seq;
5548                 if (after(TCP_SKB_CB(skb)->end_seq, end))
5549                         end = TCP_SKB_CB(skb)->end_seq;
5550         }
5551 }
5552 
5553 /*
5554  * Clean the out-of-order queue to make room.
5555  * We drop high sequences packets to :
5556  * 1) Let a chance for holes to be filled.
5557  *    This means we do not drop packets from ooo queue if their sequence
5558  *    is before incoming packet sequence.
5559  * 2) not add too big latencies if thousands of packets sit there.
5560  *    (But if application shrinks SO_RCVBUF, we could still end up
5561  *     freeing whole queue here)
5562  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5563  *
5564  * Return true if queue has shrunk.
5565  */
5566 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5567 {
5568         struct tcp_sock *tp = tcp_sk(sk);
5569         struct rb_node *node, *prev;
5570         bool pruned = false;
5571         int goal;
5572 
5573         if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5574                 return false;
5575 
5576         goal = sk->sk_rcvbuf >> 3;
5577         node = &tp->ooo_last_skb->rbnode;
5578 
5579         do {
5580                 struct sk_buff *skb = rb_to_skb(node);
5581 
5582                 /* If incoming skb would land last in ofo queue, stop pruning. */
5583                 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5584                         break;
5585                 pruned = true;
5586                 prev = rb_prev(node);
5587                 rb_erase(node, &tp->out_of_order_queue);
5588                 goal -= skb->truesize;
5589                 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5590                 tp->ooo_last_skb = rb_to_skb(prev);
5591                 if (!prev || goal <= 0) {
5592                         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5593                             !tcp_under_memory_pressure(sk))
5594                                 break;
5595                         goal = sk->sk_rcvbuf >> 3;
5596                 }
5597                 node = prev;
5598         } while (node);
5599 
5600         if (pruned) {
5601                 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5602                 /* Reset SACK state.  A conforming SACK implementation will
5603                  * do the same at a timeout based retransmit.  When a connection
5604                  * is in a sad state like this, we care only about integrity
5605                  * of the connection not performance.
5606                  */
5607                 if (tp->rx_opt.sack_ok)
5608                         tcp_sack_reset(&tp->rx_opt);
5609         }
5610         return pruned;
5611 }
5612 
5613 /* Reduce allocated memory if we can, trying to get
5614  * the socket within its memory limits again.
5615  *
5616  * Return less than zero if we should start dropping frames
5617  * until the socket owning process reads some of the data
5618  * to stabilize the situation.
5619  */
5620 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5621 {
5622         struct tcp_sock *tp = tcp_sk(sk);
5623 
5624         NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5625 
5626         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5627                 tcp_clamp_window(sk);
5628         else if (tcp_under_memory_pressure(sk))
5629                 tcp_adjust_rcv_ssthresh(sk);
5630 
5631         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5632                 return 0;
5633 
5634         tcp_collapse_ofo_queue(sk);
5635         if (!skb_queue_empty(&sk->sk_receive_queue))
5636                 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5637                              skb_peek(&sk->sk_receive_queue),
5638                              NULL,
5639                              tp->copied_seq, tp->rcv_nxt);
5640 
5641         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5642                 return 0;
5643 
5644         /* Collapsing did not help, destructive actions follow.
5645          * This must not ever occur. */
5646 
5647         tcp_prune_ofo_queue(sk, in_skb);
5648 
5649         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5650                 return 0;
5651 
5652         /* If we are really being abused, tell the caller to silently
5653          * drop receive data on the floor.  It will get retransmitted
5654          * and hopefully then we'll have sufficient space.
5655          */
5656         NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5657 
5658         /* Massive buffer overcommit. */
5659         tp->pred_flags = 0;
5660         return -1;
5661 }
5662 
5663 static bool tcp_should_expand_sndbuf(struct sock *sk)
5664 {
5665         const struct tcp_sock *tp = tcp_sk(sk);
5666 
5667         /* If the user specified a specific send buffer setting, do
5668          * not modify it.
5669          */
5670         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5671                 return false;
5672 
5673         /* If we are under global TCP memory pressure, do not expand.  */
5674         if (tcp_under_memory_pressure(sk)) {
5675                 int unused_mem = sk_unused_reserved_mem(sk);
5676 
5677                 /* Adjust sndbuf according to reserved mem. But make sure
5678                  * it never goes below SOCK_MIN_SNDBUF.
5679                  * See sk_stream_moderate_sndbuf() for more details.
5680                  */
5681                 if (unused_mem > SOCK_MIN_SNDBUF)
5682                         WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5683 
5684                 return false;
5685         }
5686 
5687         /* If we are under soft global TCP memory pressure, do not expand.  */
5688         if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5689                 return false;
5690 
5691         /* If we filled the congestion window, do not expand.  */
5692         if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5693                 return false;
5694 
5695         return true;
5696 }
5697 
5698 static void tcp_new_space(struct sock *sk)
5699 {
5700         struct tcp_sock *tp = tcp_sk(sk);
5701 
5702         if (tcp_should_expand_sndbuf(sk)) {
5703                 tcp_sndbuf_expand(sk);
5704                 tp->snd_cwnd_stamp = tcp_jiffies32;
5705         }
5706 
5707         INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5708 }
5709 
5710 /* Caller made space either from:
5711  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5712  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5713  *
5714  * We might be able to generate EPOLLOUT to the application if:
5715  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5716  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5717  *    small enough that tcp_stream_memory_free() decides it
5718  *    is time to generate EPOLLOUT.
5719  */
5720 void tcp_check_space(struct sock *sk)
5721 {
5722         /* pairs with tcp_poll() */
5723         smp_mb();
5724         if (sk->sk_socket &&
5725             test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5726                 tcp_new_space(sk);
5727                 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5728                         tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5729         }
5730 }
5731 
5732 static inline void tcp_data_snd_check(struct sock *sk)
5733 {
5734         tcp_push_pending_frames(sk);
5735         tcp_check_space(sk);
5736 }
5737 
5738 /*
5739  * Check if sending an ack is needed.
5740  */
5741 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5742 {
5743         struct tcp_sock *tp = tcp_sk(sk);
5744         unsigned long rtt, delay;
5745 
5746             /* More than one full frame received... */
5747         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5748              /* ... and right edge of window advances far enough.
5749               * (tcp_recvmsg() will send ACK otherwise).
5750               * If application uses SO_RCVLOWAT, we want send ack now if
5751               * we have not received enough bytes to satisfy the condition.
5752               */
5753             (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5754              __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5755             /* We ACK each frame or... */
5756             tcp_in_quickack_mode(sk) ||
5757             /* Protocol state mandates a one-time immediate ACK */
5758             inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5759                 /* If we are running from __release_sock() in user context,
5760                  * Defer the ack until tcp_release_cb().
5761                  */
5762                 if (sock_owned_by_user_nocheck(sk) &&
5763                     READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5764                         set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5765                         return;
5766                 }
5767 send_now:
5768                 tcp_send_ack(sk);
5769                 return;
5770         }
5771 
5772         if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5773                 tcp_send_delayed_ack(sk);
5774                 return;
5775         }
5776 
5777         if (!tcp_is_sack(tp) ||
5778             tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5779                 goto send_now;
5780 
5781         if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5782                 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5783                 tp->dup_ack_counter = 0;
5784         }
5785         if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5786                 tp->dup_ack_counter++;
5787                 goto send_now;
5788         }
5789         tp->compressed_ack++;
5790         if (hrtimer_is_queued(&tp->compressed_ack_timer))
5791                 return;
5792 
5793         /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5794 
5795         rtt = tp->rcv_rtt_est.rtt_us;
5796         if (tp->srtt_us && tp->srtt_us < rtt)
5797                 rtt = tp->srtt_us;
5798 
5799         delay = min_t(unsigned long,
5800                       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5801                       rtt * (NSEC_PER_USEC >> 3)/20);
5802         sock_hold(sk);
5803         hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5804                                READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5805                                HRTIMER_MODE_REL_PINNED_SOFT);
5806 }
5807 
5808 static inline void tcp_ack_snd_check(struct sock *sk)
5809 {
5810         if (!inet_csk_ack_scheduled(sk)) {
5811                 /* We sent a data segment already. */
5812                 return;
5813         }
5814         __tcp_ack_snd_check(sk, 1);
5815 }
5816 
5817 /*
5818  *      This routine is only called when we have urgent data
5819  *      signaled. Its the 'slow' part of tcp_urg. It could be
5820  *      moved inline now as tcp_urg is only called from one
5821  *      place. We handle URGent data wrong. We have to - as
5822  *      BSD still doesn't use the correction from RFC961.
5823  *      For 1003.1g we should support a new option TCP_STDURG to permit
5824  *      either form (or just set the sysctl tcp_stdurg).
5825  */
5826 
5827 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5828 {
5829         struct tcp_sock *tp = tcp_sk(sk);
5830         u32 ptr = ntohs(th->urg_ptr);
5831 
5832         if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5833                 ptr--;
5834         ptr += ntohl(th->seq);
5835 
5836         /* Ignore urgent data that we've already seen and read. */
5837         if (after(tp->copied_seq, ptr))
5838                 return;
5839 
5840         /* Do not replay urg ptr.
5841          *
5842          * NOTE: interesting situation not covered by specs.
5843          * Misbehaving sender may send urg ptr, pointing to segment,
5844          * which we already have in ofo queue. We are not able to fetch
5845          * such data and will stay in TCP_URG_NOTYET until will be eaten
5846          * by recvmsg(). Seems, we are not obliged to handle such wicked
5847          * situations. But it is worth to think about possibility of some
5848          * DoSes using some hypothetical application level deadlock.
5849          */
5850         if (before(ptr, tp->rcv_nxt))
5851                 return;
5852 
5853         /* Do we already have a newer (or duplicate) urgent pointer? */
5854         if (tp->urg_data && !after(ptr, tp->urg_seq))
5855                 return;
5856 
5857         /* Tell the world about our new urgent pointer. */
5858         sk_send_sigurg(sk);
5859 
5860         /* We may be adding urgent data when the last byte read was
5861          * urgent. To do this requires some care. We cannot just ignore
5862          * tp->copied_seq since we would read the last urgent byte again
5863          * as data, nor can we alter copied_seq until this data arrives
5864          * or we break the semantics of SIOCATMARK (and thus sockatmark())
5865          *
5866          * NOTE. Double Dutch. Rendering to plain English: author of comment
5867          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5868          * and expect that both A and B disappear from stream. This is _wrong_.
5869          * Though this happens in BSD with high probability, this is occasional.
5870          * Any application relying on this is buggy. Note also, that fix "works"
5871          * only in this artificial test. Insert some normal data between A and B and we will
5872          * decline of BSD again. Verdict: it is better to remove to trap
5873          * buggy users.
5874          */
5875         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5876             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5877                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5878                 tp->copied_seq++;
5879                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5880                         __skb_unlink(skb, &sk->sk_receive_queue);
5881                         __kfree_skb(skb);
5882                 }
5883         }
5884 
5885         WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5886         WRITE_ONCE(tp->urg_seq, ptr);
5887 
5888         /* Disable header prediction. */
5889         tp->pred_flags = 0;
5890 }
5891 
5892 /* This is the 'fast' part of urgent handling. */
5893 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5894 {
5895         struct tcp_sock *tp = tcp_sk(sk);
5896 
5897         /* Check if we get a new urgent pointer - normally not. */
5898         if (unlikely(th->urg))
5899                 tcp_check_urg(sk, th);
5900 
5901         /* Do we wait for any urgent data? - normally not... */
5902         if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5903                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5904                           th->syn;
5905 
5906                 /* Is the urgent pointer pointing into this packet? */
5907                 if (ptr < skb->len) {
5908                         u8 tmp;
5909                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5910                                 BUG();
5911                         WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5912                         if (!sock_flag(sk, SOCK_DEAD))
5913                                 sk->sk_data_ready(sk);
5914                 }
5915         }
5916 }
5917 
5918 /* Accept RST for rcv_nxt - 1 after a FIN.
5919  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5920  * FIN is sent followed by a RST packet. The RST is sent with the same
5921  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5922  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5923  * ACKs on the closed socket. In addition middleboxes can drop either the
5924  * challenge ACK or a subsequent RST.
5925  */
5926 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5927 {
5928         const struct tcp_sock *tp = tcp_sk(sk);
5929 
5930         return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5931                         (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5932                                                TCPF_CLOSING));
5933 }
5934 
5935 /* Does PAWS and seqno based validation of an incoming segment, flags will
5936  * play significant role here.
5937  */
5938 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5939                                   const struct tcphdr *th, int syn_inerr)
5940 {
5941         struct tcp_sock *tp = tcp_sk(sk);
5942         SKB_DR(reason);
5943 
5944         /* RFC1323: H1. Apply PAWS check first. */
5945         if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5946             tp->rx_opt.saw_tstamp &&
5947             tcp_paws_discard(sk, skb)) {
5948                 if (!th->rst) {
5949                         if (unlikely(th->syn))
5950                                 goto syn_challenge;
5951                         NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5952                         if (!tcp_oow_rate_limited(sock_net(sk), skb,
5953                                                   LINUX_MIB_TCPACKSKIPPEDPAWS,
5954                                                   &tp->last_oow_ack_time))
5955                                 tcp_send_dupack(sk, skb);
5956                         SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5957                         goto discard;
5958                 }
5959                 /* Reset is accepted even if it did not pass PAWS. */
5960         }
5961 
5962         /* Step 1: check sequence number */
5963         reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5964         if (reason) {
5965                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5966                  * (RST) segments are validated by checking their SEQ-fields."
5967                  * And page 69: "If an incoming segment is not acceptable,
5968                  * an acknowledgment should be sent in reply (unless the RST
5969                  * bit is set, if so drop the segment and return)".
5970                  */
5971                 if (!th->rst) {
5972                         if (th->syn)
5973                                 goto syn_challenge;
5974                         if (!tcp_oow_rate_limited(sock_net(sk), skb,
5975                                                   LINUX_MIB_TCPACKSKIPPEDSEQ,
5976                                                   &tp->last_oow_ack_time))
5977                                 tcp_send_dupack(sk, skb);
5978                 } else if (tcp_reset_check(sk, skb)) {
5979                         goto reset;
5980                 }
5981                 goto discard;
5982         }
5983 
5984         /* Step 2: check RST bit */
5985         if (th->rst) {
5986                 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5987                  * FIN and SACK too if available):
5988                  * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5989                  * the right-most SACK block,
5990                  * then
5991                  *     RESET the connection
5992                  * else
5993                  *     Send a challenge ACK
5994                  */
5995                 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5996                     tcp_reset_check(sk, skb))
5997                         goto reset;
5998 
5999                 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6000                         struct tcp_sack_block *sp = &tp->selective_acks[0];
6001                         int max_sack = sp[0].end_seq;
6002                         int this_sack;
6003 
6004                         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6005                              ++this_sack) {
6006                                 max_sack = after(sp[this_sack].end_seq,
6007                                                  max_sack) ?
6008                                         sp[this_sack].end_seq : max_sack;
6009                         }
6010 
6011                         if (TCP_SKB_CB(skb)->seq == max_sack)
6012                                 goto reset;
6013                 }
6014 
6015                 /* Disable TFO if RST is out-of-order
6016                  * and no data has been received
6017                  * for current active TFO socket
6018                  */
6019                 if (tp->syn_fastopen && !tp->data_segs_in &&
6020                     sk->sk_state == TCP_ESTABLISHED)
6021                         tcp_fastopen_active_disable(sk);
6022                 tcp_send_challenge_ack(sk);
6023                 SKB_DR_SET(reason, TCP_RESET);
6024                 goto discard;
6025         }
6026 
6027         /* step 3: check security and precedence [ignored] */
6028 
6029         /* step 4: Check for a SYN
6030          * RFC 5961 4.2 : Send a challenge ack
6031          */
6032         if (th->syn) {
6033                 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6034                     TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6035                     TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6036                     TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6037                         goto pass;
6038 syn_challenge:
6039                 if (syn_inerr)
6040                         TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6041                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6042                 tcp_send_challenge_ack(sk);
6043                 SKB_DR_SET(reason, TCP_INVALID_SYN);
6044                 goto discard;
6045         }
6046 
6047 pass:
6048         bpf_skops_parse_hdr(sk, skb);
6049 
6050         return true;
6051 
6052 discard:
6053         tcp_drop_reason(sk, skb, reason);
6054         return false;
6055 
6056 reset:
6057         tcp_reset(sk, skb);
6058         __kfree_skb(skb);
6059         return false;
6060 }
6061 
6062 /*
6063  *      TCP receive function for the ESTABLISHED state.
6064  *
6065  *      It is split into a fast path and a slow path. The fast path is
6066  *      disabled when:
6067  *      - A zero window was announced from us - zero window probing
6068  *        is only handled properly in the slow path.
6069  *      - Out of order segments arrived.
6070  *      - Urgent data is expected.
6071  *      - There is no buffer space left
6072  *      - Unexpected TCP flags/window values/header lengths are received
6073  *        (detected by checking the TCP header against pred_flags)
6074  *      - Data is sent in both directions. Fast path only supports pure senders
6075  *        or pure receivers (this means either the sequence number or the ack
6076  *        value must stay constant)
6077  *      - Unexpected TCP option.
6078  *
6079  *      When these conditions are not satisfied it drops into a standard
6080  *      receive procedure patterned after RFC793 to handle all cases.
6081  *      The first three cases are guaranteed by proper pred_flags setting,
6082  *      the rest is checked inline. Fast processing is turned on in
6083  *      tcp_data_queue when everything is OK.
6084  */
6085 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6086 {
6087         enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6088         const struct tcphdr *th = (const struct tcphdr *)skb->data;
6089         struct tcp_sock *tp = tcp_sk(sk);
6090         unsigned int len = skb->len;
6091 
6092         /* TCP congestion window tracking */
6093         trace_tcp_probe(sk, skb);
6094 
6095         tcp_mstamp_refresh(tp);
6096         if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6097                 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6098         /*
6099          *      Header prediction.
6100          *      The code loosely follows the one in the famous
6101          *      "30 instruction TCP receive" Van Jacobson mail.
6102          *
6103          *      Van's trick is to deposit buffers into socket queue
6104          *      on a device interrupt, to call tcp_recv function
6105          *      on the receive process context and checksum and copy
6106          *      the buffer to user space. smart...
6107          *
6108          *      Our current scheme is not silly either but we take the
6109          *      extra cost of the net_bh soft interrupt processing...
6110          *      We do checksum and copy also but from device to kernel.
6111          */
6112 
6113         tp->rx_opt.saw_tstamp = 0;
6114 
6115         /*      pred_flags is 0xS?10 << 16 + snd_wnd
6116          *      if header_prediction is to be made
6117          *      'S' will always be tp->tcp_header_len >> 2
6118          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6119          *  turn it off (when there are holes in the receive
6120          *       space for instance)
6121          *      PSH flag is ignored.
6122          */
6123 
6124         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6125             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6126             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6127                 int tcp_header_len = tp->tcp_header_len;
6128 
6129                 /* Timestamp header prediction: tcp_header_len
6130                  * is automatically equal to th->doff*4 due to pred_flags
6131                  * match.
6132                  */
6133 
6134                 /* Check timestamp */
6135                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6136                         /* No? Slow path! */
6137                         if (!tcp_parse_aligned_timestamp(tp, th))
6138                                 goto slow_path;
6139 
6140                         /* If PAWS failed, check it more carefully in slow path */
6141                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6142                                 goto slow_path;
6143 
6144                         /* DO NOT update ts_recent here, if checksum fails
6145                          * and timestamp was corrupted part, it will result
6146                          * in a hung connection since we will drop all
6147                          * future packets due to the PAWS test.
6148                          */
6149                 }
6150 
6151                 if (len <= tcp_header_len) {
6152                         /* Bulk data transfer: sender */
6153                         if (len == tcp_header_len) {
6154                                 /* Predicted packet is in window by definition.
6155                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6156                                  * Hence, check seq<=rcv_wup reduces to:
6157                                  */
6158                                 if (tcp_header_len ==
6159                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6160                                     tp->rcv_nxt == tp->rcv_wup)
6161                                         tcp_store_ts_recent(tp);
6162 
6163                                 /* We know that such packets are checksummed
6164                                  * on entry.
6165                                  */
6166                                 tcp_ack(sk, skb, 0);
6167                                 __kfree_skb(skb);
6168                                 tcp_data_snd_check(sk);
6169                                 /* When receiving pure ack in fast path, update
6170                                  * last ts ecr directly instead of calling
6171                                  * tcp_rcv_rtt_measure_ts()
6172                                  */
6173                                 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6174                                 return;
6175                         } else { /* Header too small */
6176                                 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6177                                 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6178                                 goto discard;
6179                         }
6180                 } else {
6181                         int eaten = 0;
6182                         bool fragstolen = false;
6183 
6184                         if (tcp_checksum_complete(skb))
6185                                 goto csum_error;
6186 
6187                         if ((int)skb->truesize > sk->sk_forward_alloc)
6188                                 goto step5;
6189 
6190                         /* Predicted packet is in window by definition.
6191                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6192                          * Hence, check seq<=rcv_wup reduces to:
6193                          */
6194                         if (tcp_header_len ==
6195                             (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6196                             tp->rcv_nxt == tp->rcv_wup)
6197                                 tcp_store_ts_recent(tp);
6198 
6199                         tcp_rcv_rtt_measure_ts(sk, skb);
6200 
6201                         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6202 
6203                         /* Bulk data transfer: receiver */
6204                         skb_dst_drop(skb);
6205                         __skb_pull(skb, tcp_header_len);
6206                         eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6207 
6208                         tcp_event_data_recv(sk, skb);
6209 
6210                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6211                                 /* Well, only one small jumplet in fast path... */
6212                                 tcp_ack(sk, skb, FLAG_DATA);
6213                                 tcp_data_snd_check(sk);
6214                                 if (!inet_csk_ack_scheduled(sk))
6215                                         goto no_ack;
6216                         } else {
6217                                 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6218                         }
6219 
6220                         __tcp_ack_snd_check(sk, 0);
6221 no_ack:
6222                         if (eaten)
6223                                 kfree_skb_partial(skb, fragstolen);
6224                         tcp_data_ready(sk);
6225                         return;
6226                 }
6227         }
6228 
6229 slow_path:
6230         if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6231                 goto csum_error;
6232 
6233         if (!th->ack && !th->rst && !th->syn) {
6234                 reason = SKB_DROP_REASON_TCP_FLAGS;
6235                 goto discard;
6236         }
6237 
6238         /*
6239          *      Standard slow path.
6240          */
6241 
6242         if (!tcp_validate_incoming(sk, skb, th, 1))
6243                 return;
6244 
6245 step5:
6246         reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6247         if ((int)reason < 0) {
6248                 reason = -reason;
6249                 goto discard;
6250         }
6251         tcp_rcv_rtt_measure_ts(sk, skb);
6252 
6253         /* Process urgent data. */
6254         tcp_urg(sk, skb, th);
6255 
6256         /* step 7: process the segment text */
6257         tcp_data_queue(sk, skb);
6258 
6259         tcp_data_snd_check(sk);
6260         tcp_ack_snd_check(sk);
6261         return;
6262 
6263 csum_error:
6264         reason = SKB_DROP_REASON_TCP_CSUM;
6265         trace_tcp_bad_csum(skb);
6266         TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6267         TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6268 
6269 discard:
6270         tcp_drop_reason(sk, skb, reason);
6271 }
6272 EXPORT_SYMBOL(tcp_rcv_established);
6273 
6274 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6275 {
6276         struct inet_connection_sock *icsk = inet_csk(sk);
6277         struct tcp_sock *tp = tcp_sk(sk);
6278 
6279         tcp_mtup_init(sk);
6280         icsk->icsk_af_ops->rebuild_header(sk);
6281         tcp_init_metrics(sk);
6282 
6283         /* Initialize the congestion window to start the transfer.
6284          * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6285          * retransmitted. In light of RFC6298 more aggressive 1sec
6286          * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6287          * retransmission has occurred.
6288          */
6289         if (tp->total_retrans > 1 && tp->undo_marker)
6290                 tcp_snd_cwnd_set(tp, 1);
6291         else
6292                 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6293         tp->snd_cwnd_stamp = tcp_jiffies32;
6294 
6295         bpf_skops_established(sk, bpf_op, skb);
6296         /* Initialize congestion control unless BPF initialized it already: */
6297         if (!icsk->icsk_ca_initialized)
6298                 tcp_init_congestion_control(sk);
6299         tcp_init_buffer_space(sk);
6300 }
6301 
6302 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6303 {
6304         struct tcp_sock *tp = tcp_sk(sk);
6305         struct inet_connection_sock *icsk = inet_csk(sk);
6306 
6307         tcp_ao_finish_connect(sk, skb);
6308         tcp_set_state(sk, TCP_ESTABLISHED);
6309         icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6310 
6311         if (skb) {
6312                 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6313                 security_inet_conn_established(sk, skb);
6314                 sk_mark_napi_id(sk, skb);
6315         }
6316 
6317         tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6318 
6319         /* Prevent spurious tcp_cwnd_restart() on first data
6320          * packet.
6321          */
6322         tp->lsndtime = tcp_jiffies32;
6323 
6324         if (sock_flag(sk, SOCK_KEEPOPEN))
6325                 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6326 
6327         if (!tp->rx_opt.snd_wscale)
6328                 __tcp_fast_path_on(tp, tp->snd_wnd);
6329         else
6330                 tp->pred_flags = 0;
6331 }
6332 
6333 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6334                                     struct tcp_fastopen_cookie *cookie)
6335 {
6336         struct tcp_sock *tp = tcp_sk(sk);
6337         struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6338         u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6339         bool syn_drop = false;
6340 
6341         if (mss == tp->rx_opt.user_mss) {
6342                 struct tcp_options_received opt;
6343 
6344                 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6345                 tcp_clear_options(&opt);
6346                 opt.user_mss = opt.mss_clamp = 0;
6347                 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6348                 mss = opt.mss_clamp;
6349         }
6350 
6351         if (!tp->syn_fastopen) {
6352                 /* Ignore an unsolicited cookie */
6353                 cookie->len = -1;
6354         } else if (tp->total_retrans) {
6355                 /* SYN timed out and the SYN-ACK neither has a cookie nor
6356                  * acknowledges data. Presumably the remote received only
6357                  * the retransmitted (regular) SYNs: either the original
6358                  * SYN-data or the corresponding SYN-ACK was dropped.
6359                  */
6360                 syn_drop = (cookie->len < 0 && data);
6361         } else if (cookie->len < 0 && !tp->syn_data) {
6362                 /* We requested a cookie but didn't get it. If we did not use
6363                  * the (old) exp opt format then try so next time (try_exp=1).
6364                  * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6365                  */
6366                 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6367         }
6368 
6369         tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6370 
6371         if (data) { /* Retransmit unacked data in SYN */
6372                 if (tp->total_retrans)
6373                         tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6374                 else
6375                         tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6376                 skb_rbtree_walk_from(data)
6377                          tcp_mark_skb_lost(sk, data);
6378                 tcp_non_congestion_loss_retransmit(sk);
6379                 NET_INC_STATS(sock_net(sk),
6380                                 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6381                 return true;
6382         }
6383         tp->syn_data_acked = tp->syn_data;
6384         if (tp->syn_data_acked) {
6385                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6386                 /* SYN-data is counted as two separate packets in tcp_ack() */
6387                 if (tp->delivered > 1)
6388                         --tp->delivered;
6389         }
6390 
6391         tcp_fastopen_add_skb(sk, synack);
6392 
6393         return false;
6394 }
6395 
6396 static void smc_check_reset_syn(struct tcp_sock *tp)
6397 {
6398 #if IS_ENABLED(CONFIG_SMC)
6399         if (static_branch_unlikely(&tcp_have_smc)) {
6400                 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6401                         tp->syn_smc = 0;
6402         }
6403 #endif
6404 }
6405 
6406 static void tcp_try_undo_spurious_syn(struct sock *sk)
6407 {
6408         struct tcp_sock *tp = tcp_sk(sk);
6409         u32 syn_stamp;
6410 
6411         /* undo_marker is set when SYN or SYNACK times out. The timeout is
6412          * spurious if the ACK's timestamp option echo value matches the
6413          * original SYN timestamp.
6414          */
6415         syn_stamp = tp->retrans_stamp;
6416         if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6417             syn_stamp == tp->rx_opt.rcv_tsecr)
6418                 tp->undo_marker = 0;
6419 }
6420 
6421 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6422                                          const struct tcphdr *th)
6423 {
6424         struct inet_connection_sock *icsk = inet_csk(sk);
6425         struct tcp_sock *tp = tcp_sk(sk);
6426         struct tcp_fastopen_cookie foc = { .len = -1 };
6427         int saved_clamp = tp->rx_opt.mss_clamp;
6428         bool fastopen_fail;
6429         SKB_DR(reason);
6430 
6431         tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6432         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6433                 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6434 
6435         if (th->ack) {
6436                 /* rfc793:
6437                  * "If the state is SYN-SENT then
6438                  *    first check the ACK bit
6439                  *      If the ACK bit is set
6440                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6441                  *        a reset (unless the RST bit is set, if so drop
6442                  *        the segment and return)"
6443                  */
6444                 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6445                     after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6446                         /* Previous FIN/ACK or RST/ACK might be ignored. */
6447                         if (icsk->icsk_retransmits == 0)
6448                                 inet_csk_reset_xmit_timer(sk,
6449                                                 ICSK_TIME_RETRANS,
6450                                                 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6451                         SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6452                         goto reset_and_undo;
6453                 }
6454 
6455                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6456                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6457                              tcp_time_stamp_ts(tp))) {
6458                         NET_INC_STATS(sock_net(sk),
6459                                         LINUX_MIB_PAWSACTIVEREJECTED);
6460                         SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6461                         goto reset_and_undo;
6462                 }
6463 
6464                 /* Now ACK is acceptable.
6465                  *
6466                  * "If the RST bit is set
6467                  *    If the ACK was acceptable then signal the user "error:
6468                  *    connection reset", drop the segment, enter CLOSED state,
6469                  *    delete TCB, and return."
6470                  */
6471 
6472                 if (th->rst) {
6473                         tcp_reset(sk, skb);
6474 consume:
6475                         __kfree_skb(skb);
6476                         return 0;
6477                 }
6478 
6479                 /* rfc793:
6480                  *   "fifth, if neither of the SYN or RST bits is set then
6481                  *    drop the segment and return."
6482                  *
6483                  *    See note below!
6484                  *                                        --ANK(990513)
6485                  */
6486                 if (!th->syn) {
6487                         SKB_DR_SET(reason, TCP_FLAGS);
6488                         goto discard_and_undo;
6489                 }
6490                 /* rfc793:
6491                  *   "If the SYN bit is on ...
6492                  *    are acceptable then ...
6493                  *    (our SYN has been ACKed), change the connection
6494                  *    state to ESTABLISHED..."
6495                  */
6496 
6497                 tcp_ecn_rcv_synack(tp, th);
6498 
6499                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6500                 tcp_try_undo_spurious_syn(sk);
6501                 tcp_ack(sk, skb, FLAG_SLOWPATH);
6502 
6503                 /* Ok.. it's good. Set up sequence numbers and
6504                  * move to established.
6505                  */
6506                 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6507                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6508 
6509                 /* RFC1323: The window in SYN & SYN/ACK segments is
6510                  * never scaled.
6511                  */
6512                 tp->snd_wnd = ntohs(th->window);
6513 
6514                 if (!tp->rx_opt.wscale_ok) {
6515                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6516                         WRITE_ONCE(tp->window_clamp,
6517                                    min(tp->window_clamp, 65535U));
6518                 }
6519 
6520                 if (tp->rx_opt.saw_tstamp) {
6521                         tp->rx_opt.tstamp_ok       = 1;
6522                         tp->tcp_header_len =
6523                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6524                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
6525                         tcp_store_ts_recent(tp);
6526                 } else {
6527                         tp->tcp_header_len = sizeof(struct tcphdr);
6528                 }
6529 
6530                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6531                 tcp_initialize_rcv_mss(sk);
6532 
6533                 /* Remember, tcp_poll() does not lock socket!
6534                  * Change state from SYN-SENT only after copied_seq
6535                  * is initialized. */
6536                 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6537 
6538                 smc_check_reset_syn(tp);
6539 
6540                 smp_mb();
6541 
6542                 tcp_finish_connect(sk, skb);
6543 
6544                 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6545                                 tcp_rcv_fastopen_synack(sk, skb, &foc);
6546 
6547                 if (!sock_flag(sk, SOCK_DEAD)) {
6548                         sk->sk_state_change(sk);
6549                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6550                 }
6551                 if (fastopen_fail)
6552                         return -1;
6553                 if (sk->sk_write_pending ||
6554                     READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6555                     inet_csk_in_pingpong_mode(sk)) {
6556                         /* Save one ACK. Data will be ready after
6557                          * several ticks, if write_pending is set.
6558                          *
6559                          * It may be deleted, but with this feature tcpdumps
6560                          * look so _wonderfully_ clever, that I was not able
6561                          * to stand against the temptation 8)     --ANK
6562                          */
6563                         inet_csk_schedule_ack(sk);
6564                         tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6565                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6566                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
6567                         goto consume;
6568                 }
6569                 tcp_send_ack(sk);
6570                 return -1;
6571         }
6572 
6573         /* No ACK in the segment */
6574 
6575         if (th->rst) {
6576                 /* rfc793:
6577                  * "If the RST bit is set
6578                  *
6579                  *      Otherwise (no ACK) drop the segment and return."
6580                  */
6581                 SKB_DR_SET(reason, TCP_RESET);
6582                 goto discard_and_undo;
6583         }
6584 
6585         /* PAWS check. */
6586         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6587             tcp_paws_reject(&tp->rx_opt, 0)) {
6588                 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6589                 goto discard_and_undo;
6590         }
6591         if (th->syn) {
6592                 /* We see SYN without ACK. It is attempt of
6593                  * simultaneous connect with crossed SYNs.
6594                  * Particularly, it can be connect to self.
6595                  */
6596 #ifdef CONFIG_TCP_AO
6597                 struct tcp_ao_info *ao;
6598 
6599                 ao = rcu_dereference_protected(tp->ao_info,
6600                                                lockdep_sock_is_held(sk));
6601                 if (ao) {
6602                         WRITE_ONCE(ao->risn, th->seq);
6603                         ao->rcv_sne = 0;
6604                 }
6605 #endif
6606                 tcp_set_state(sk, TCP_SYN_RECV);
6607 
6608                 if (tp->rx_opt.saw_tstamp) {
6609                         tp->rx_opt.tstamp_ok = 1;
6610                         tcp_store_ts_recent(tp);
6611                         tp->tcp_header_len =
6612                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6613                 } else {
6614                         tp->tcp_header_len = sizeof(struct tcphdr);
6615                 }
6616 
6617                 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6618                 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6619                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6620 
6621                 /* RFC1323: The window in SYN & SYN/ACK segments is
6622                  * never scaled.
6623                  */
6624                 tp->snd_wnd    = ntohs(th->window);
6625                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6626                 tp->max_window = tp->snd_wnd;
6627 
6628                 tcp_ecn_rcv_syn(tp, th);
6629 
6630                 tcp_mtup_init(sk);
6631                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6632                 tcp_initialize_rcv_mss(sk);
6633 
6634                 tcp_send_synack(sk);
6635 #if 0
6636                 /* Note, we could accept data and URG from this segment.
6637                  * There are no obstacles to make this (except that we must
6638                  * either change tcp_recvmsg() to prevent it from returning data
6639                  * before 3WHS completes per RFC793, or employ TCP Fast Open).
6640                  *
6641                  * However, if we ignore data in ACKless segments sometimes,
6642                  * we have no reasons to accept it sometimes.
6643                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
6644                  * is not flawless. So, discard packet for sanity.
6645                  * Uncomment this return to process the data.
6646                  */
6647                 return -1;
6648 #else
6649                 goto consume;
6650 #endif
6651         }
6652         /* "fifth, if neither of the SYN or RST bits is set then
6653          * drop the segment and return."
6654          */
6655 
6656 discard_and_undo:
6657         tcp_clear_options(&tp->rx_opt);
6658         tp->rx_opt.mss_clamp = saved_clamp;
6659         tcp_drop_reason(sk, skb, reason);
6660         return 0;
6661 
6662 reset_and_undo:
6663         tcp_clear_options(&tp->rx_opt);
6664         tp->rx_opt.mss_clamp = saved_clamp;
6665         /* we can reuse/return @reason to its caller to handle the exception */
6666         return reason;
6667 }
6668 
6669 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6670 {
6671         struct tcp_sock *tp = tcp_sk(sk);
6672         struct request_sock *req;
6673 
6674         /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6675          * undo. If peer SACKs triggered fast recovery, we can't undo here.
6676          */
6677         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6678                 tcp_try_undo_recovery(sk);
6679 
6680         tcp_update_rto_time(tp);
6681         inet_csk(sk)->icsk_retransmits = 0;
6682         /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6683          * retrans_stamp but don't enter CA_Loss, so in case that happened we
6684          * need to zero retrans_stamp here to prevent spurious
6685          * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6686          * to enter CA_Recovery then we need to leave retrans_stamp as it was
6687          * set entering CA_Recovery, for correct retransmits_timed_out() and
6688          * undo behavior.
6689          */
6690         tcp_retrans_stamp_cleanup(sk);
6691 
6692         /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6693          * we no longer need req so release it.
6694          */
6695         req = rcu_dereference_protected(tp->fastopen_rsk,
6696                                         lockdep_sock_is_held(sk));
6697         reqsk_fastopen_remove(sk, req, false);
6698 
6699         /* Re-arm the timer because data may have been sent out.
6700          * This is similar to the regular data transmission case
6701          * when new data has just been ack'ed.
6702          *
6703          * (TFO) - we could try to be more aggressive and
6704          * retransmitting any data sooner based on when they
6705          * are sent out.
6706          */
6707         tcp_rearm_rto(sk);
6708 }
6709 
6710 /*
6711  *      This function implements the receiving procedure of RFC 793 for
6712  *      all states except ESTABLISHED and TIME_WAIT.
6713  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6714  *      address independent.
6715  */
6716 
6717 enum skb_drop_reason
6718 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6719 {
6720         struct tcp_sock *tp = tcp_sk(sk);
6721         struct inet_connection_sock *icsk = inet_csk(sk);
6722         const struct tcphdr *th = tcp_hdr(skb);
6723         struct request_sock *req;
6724         int queued = 0;
6725         SKB_DR(reason);
6726 
6727         switch (sk->sk_state) {
6728         case TCP_CLOSE:
6729                 SKB_DR_SET(reason, TCP_CLOSE);
6730                 goto discard;
6731 
6732         case TCP_LISTEN:
6733                 if (th->ack)
6734                         return SKB_DROP_REASON_TCP_FLAGS;
6735 
6736                 if (th->rst) {
6737                         SKB_DR_SET(reason, TCP_RESET);
6738                         goto discard;
6739                 }
6740                 if (th->syn) {
6741                         if (th->fin) {
6742                                 SKB_DR_SET(reason, TCP_FLAGS);
6743                                 goto discard;
6744                         }
6745                         /* It is possible that we process SYN packets from backlog,
6746                          * so we need to make sure to disable BH and RCU right there.
6747                          */
6748                         rcu_read_lock();
6749                         local_bh_disable();
6750                         icsk->icsk_af_ops->conn_request(sk, skb);
6751                         local_bh_enable();
6752                         rcu_read_unlock();
6753 
6754                         consume_skb(skb);
6755                         return 0;
6756                 }
6757                 SKB_DR_SET(reason, TCP_FLAGS);
6758                 goto discard;
6759 
6760         case TCP_SYN_SENT:
6761                 tp->rx_opt.saw_tstamp = 0;
6762                 tcp_mstamp_refresh(tp);
6763                 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6764                 if (queued >= 0)
6765                         return queued;
6766 
6767                 /* Do step6 onward by hand. */
6768                 tcp_urg(sk, skb, th);
6769                 __kfree_skb(skb);
6770                 tcp_data_snd_check(sk);
6771                 return 0;
6772         }
6773 
6774         tcp_mstamp_refresh(tp);
6775         tp->rx_opt.saw_tstamp = 0;
6776         req = rcu_dereference_protected(tp->fastopen_rsk,
6777                                         lockdep_sock_is_held(sk));
6778         if (req) {
6779                 bool req_stolen;
6780 
6781                 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6782                     sk->sk_state != TCP_FIN_WAIT1);
6783 
6784                 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6785                         SKB_DR_SET(reason, TCP_FASTOPEN);
6786                         goto discard;
6787                 }
6788         }
6789 
6790         if (!th->ack && !th->rst && !th->syn) {
6791                 SKB_DR_SET(reason, TCP_FLAGS);
6792                 goto discard;
6793         }
6794         if (!tcp_validate_incoming(sk, skb, th, 0))
6795                 return 0;
6796 
6797         /* step 5: check the ACK field */
6798         reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6799                                   FLAG_UPDATE_TS_RECENT |
6800                                   FLAG_NO_CHALLENGE_ACK);
6801 
6802         if ((int)reason <= 0) {
6803                 if (sk->sk_state == TCP_SYN_RECV) {
6804                         /* send one RST */
6805                         if (!reason)
6806                                 return SKB_DROP_REASON_TCP_OLD_ACK;
6807                         return -reason;
6808                 }
6809                 /* accept old ack during closing */
6810                 if ((int)reason < 0) {
6811                         tcp_send_challenge_ack(sk);
6812                         reason = -reason;
6813                         goto discard;
6814                 }
6815         }
6816         SKB_DR_SET(reason, NOT_SPECIFIED);
6817         switch (sk->sk_state) {
6818         case TCP_SYN_RECV:
6819                 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6820                 if (!tp->srtt_us)
6821                         tcp_synack_rtt_meas(sk, req);
6822 
6823                 if (req) {
6824                         tcp_rcv_synrecv_state_fastopen(sk);
6825                 } else {
6826                         tcp_try_undo_spurious_syn(sk);
6827                         tp->retrans_stamp = 0;
6828                         tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6829                                           skb);
6830                         WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6831                 }
6832                 tcp_ao_established(sk);
6833                 smp_mb();
6834                 tcp_set_state(sk, TCP_ESTABLISHED);
6835                 sk->sk_state_change(sk);
6836 
6837                 /* Note, that this wakeup is only for marginal crossed SYN case.
6838                  * Passively open sockets are not waked up, because
6839                  * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6840                  */
6841                 if (sk->sk_socket)
6842                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6843 
6844                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6845                 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6846                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6847 
6848                 if (tp->rx_opt.tstamp_ok)
6849                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6850 
6851                 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6852                         tcp_update_pacing_rate(sk);
6853 
6854                 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6855                 tp->lsndtime = tcp_jiffies32;
6856 
6857                 tcp_initialize_rcv_mss(sk);
6858                 tcp_fast_path_on(tp);
6859                 if (sk->sk_shutdown & SEND_SHUTDOWN)
6860                         tcp_shutdown(sk, SEND_SHUTDOWN);
6861                 break;
6862 
6863         case TCP_FIN_WAIT1: {
6864                 int tmo;
6865 
6866                 if (req)
6867                         tcp_rcv_synrecv_state_fastopen(sk);
6868 
6869                 if (tp->snd_una != tp->write_seq)
6870                         break;
6871 
6872                 tcp_set_state(sk, TCP_FIN_WAIT2);
6873                 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6874 
6875                 sk_dst_confirm(sk);
6876 
6877                 if (!sock_flag(sk, SOCK_DEAD)) {
6878                         /* Wake up lingering close() */
6879                         sk->sk_state_change(sk);
6880                         break;
6881                 }
6882 
6883                 if (READ_ONCE(tp->linger2) < 0) {
6884                         tcp_done(sk);
6885                         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6886                         return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6887                 }
6888                 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6889                     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6890                         /* Receive out of order FIN after close() */
6891                         if (tp->syn_fastopen && th->fin)
6892                                 tcp_fastopen_active_disable(sk);
6893                         tcp_done(sk);
6894                         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6895                         return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6896                 }
6897 
6898                 tmo = tcp_fin_time(sk);
6899                 if (tmo > TCP_TIMEWAIT_LEN) {
6900                         inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6901                 } else if (th->fin || sock_owned_by_user(sk)) {
6902                         /* Bad case. We could lose such FIN otherwise.
6903                          * It is not a big problem, but it looks confusing
6904                          * and not so rare event. We still can lose it now,
6905                          * if it spins in bh_lock_sock(), but it is really
6906                          * marginal case.
6907                          */
6908                         inet_csk_reset_keepalive_timer(sk, tmo);
6909                 } else {
6910                         tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6911                         goto consume;
6912                 }
6913                 break;
6914         }
6915 
6916         case TCP_CLOSING:
6917                 if (tp->snd_una == tp->write_seq) {
6918                         tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6919                         goto consume;
6920                 }
6921                 break;
6922 
6923         case TCP_LAST_ACK:
6924                 if (tp->snd_una == tp->write_seq) {
6925                         tcp_update_metrics(sk);
6926                         tcp_done(sk);
6927                         goto consume;
6928                 }
6929                 break;
6930         }
6931 
6932         /* step 6: check the URG bit */
6933         tcp_urg(sk, skb, th);
6934 
6935         /* step 7: process the segment text */
6936         switch (sk->sk_state) {
6937         case TCP_CLOSE_WAIT:
6938         case TCP_CLOSING:
6939         case TCP_LAST_ACK:
6940                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6941                         /* If a subflow has been reset, the packet should not
6942                          * continue to be processed, drop the packet.
6943                          */
6944                         if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6945                                 goto discard;
6946                         break;
6947                 }
6948                 fallthrough;
6949         case TCP_FIN_WAIT1:
6950         case TCP_FIN_WAIT2:
6951                 /* RFC 793 says to queue data in these states,
6952                  * RFC 1122 says we MUST send a reset.
6953                  * BSD 4.4 also does reset.
6954                  */
6955                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6956                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6957                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6958                                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6959                                 tcp_reset(sk, skb);
6960                                 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6961                         }
6962                 }
6963                 fallthrough;
6964         case TCP_ESTABLISHED:
6965                 tcp_data_queue(sk, skb);
6966                 queued = 1;
6967                 break;
6968         }
6969 
6970         /* tcp_data could move socket to TIME-WAIT */
6971         if (sk->sk_state != TCP_CLOSE) {
6972                 tcp_data_snd_check(sk);
6973                 tcp_ack_snd_check(sk);
6974         }
6975 
6976         if (!queued) {
6977 discard:
6978                 tcp_drop_reason(sk, skb, reason);
6979         }
6980         return 0;
6981 
6982 consume:
6983         __kfree_skb(skb);
6984         return 0;
6985 }
6986 EXPORT_SYMBOL(tcp_rcv_state_process);
6987 
6988 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6989 {
6990         struct inet_request_sock *ireq = inet_rsk(req);
6991 
6992         if (family == AF_INET)
6993                 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6994                                     &ireq->ir_rmt_addr, port);
6995 #if IS_ENABLED(CONFIG_IPV6)
6996         else if (family == AF_INET6)
6997                 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6998                                     &ireq->ir_v6_rmt_addr, port);
6999 #endif
7000 }
7001 
7002 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7003  *
7004  * If we receive a SYN packet with these bits set, it means a
7005  * network is playing bad games with TOS bits. In order to
7006  * avoid possible false congestion notifications, we disable
7007  * TCP ECN negotiation.
7008  *
7009  * Exception: tcp_ca wants ECN. This is required for DCTCP
7010  * congestion control: Linux DCTCP asserts ECT on all packets,
7011  * including SYN, which is most optimal solution; however,
7012  * others, such as FreeBSD do not.
7013  *
7014  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7015  * set, indicating the use of a future TCP extension (such as AccECN). See
7016  * RFC8311 ยง4.3 which updates RFC3168 to allow the development of such
7017  * extensions.
7018  */
7019 static void tcp_ecn_create_request(struct request_sock *req,
7020                                    const struct sk_buff *skb,
7021                                    const struct sock *listen_sk,
7022                                    const struct dst_entry *dst)
7023 {
7024         const struct tcphdr *th = tcp_hdr(skb);
7025         const struct net *net = sock_net(listen_sk);
7026         bool th_ecn = th->ece && th->cwr;
7027         bool ect, ecn_ok;
7028         u32 ecn_ok_dst;
7029 
7030         if (!th_ecn)
7031                 return;
7032 
7033         ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7034         ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7035         ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7036 
7037         if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
7038             (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7039             tcp_bpf_ca_needs_ecn((struct sock *)req))
7040                 inet_rsk(req)->ecn_ok = 1;
7041 }
7042 
7043 static void tcp_openreq_init(struct request_sock *req,
7044                              const struct tcp_options_received *rx_opt,
7045                              struct sk_buff *skb, const struct sock *sk)
7046 {
7047         struct inet_request_sock *ireq = inet_rsk(req);
7048 
7049         req->rsk_rcv_wnd = 0;           /* So that tcp_send_synack() knows! */
7050         tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7051         tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7052         tcp_rsk(req)->snt_synack = 0;
7053         tcp_rsk(req)->last_oow_ack_time = 0;
7054         req->mss = rx_opt->mss_clamp;
7055         req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7056         ireq->tstamp_ok = rx_opt->tstamp_ok;
7057         ireq->sack_ok = rx_opt->sack_ok;
7058         ireq->snd_wscale = rx_opt->snd_wscale;
7059         ireq->wscale_ok = rx_opt->wscale_ok;
7060         ireq->acked = 0;
7061         ireq->ecn_ok = 0;
7062         ireq->ir_rmt_port = tcp_hdr(skb)->source;
7063         ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7064         ireq->ir_mark = inet_request_mark(sk, skb);
7065 #if IS_ENABLED(CONFIG_SMC)
7066         ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7067                         tcp_sk(sk)->smc_hs_congested(sk));
7068 #endif
7069 }
7070 
7071 /*
7072  * Return true if a syncookie should be sent
7073  */
7074 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7075 {
7076         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7077         const char *msg = "Dropping request";
7078         struct net *net = sock_net(sk);
7079         bool want_cookie = false;
7080         u8 syncookies;
7081 
7082         syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7083 
7084 #ifdef CONFIG_SYN_COOKIES
7085         if (syncookies) {
7086                 msg = "Sending cookies";
7087                 want_cookie = true;
7088                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7089         } else
7090 #endif
7091                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7092 
7093         if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7094             xchg(&queue->synflood_warned, 1) == 0) {
7095                 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7096                         net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7097                                         proto, inet6_rcv_saddr(sk),
7098                                         sk->sk_num, msg);
7099                 } else {
7100                         net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7101                                         proto, &sk->sk_rcv_saddr,
7102                                         sk->sk_num, msg);
7103                 }
7104         }
7105 
7106         return want_cookie;
7107 }
7108 
7109 static void tcp_reqsk_record_syn(const struct sock *sk,
7110                                  struct request_sock *req,
7111                                  const struct sk_buff *skb)
7112 {
7113         if (tcp_sk(sk)->save_syn) {
7114                 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7115                 struct saved_syn *saved_syn;
7116                 u32 mac_hdrlen;
7117                 void *base;
7118 
7119                 if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7120                         base = skb_mac_header(skb);
7121                         mac_hdrlen = skb_mac_header_len(skb);
7122                         len += mac_hdrlen;
7123                 } else {
7124                         base = skb_network_header(skb);
7125                         mac_hdrlen = 0;
7126                 }
7127 
7128                 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7129                                     GFP_ATOMIC);
7130                 if (saved_syn) {
7131                         saved_syn->mac_hdrlen = mac_hdrlen;
7132                         saved_syn->network_hdrlen = skb_network_header_len(skb);
7133                         saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7134                         memcpy(saved_syn->data, base, len);
7135                         req->saved_syn = saved_syn;
7136                 }
7137         }
7138 }
7139 
7140 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7141  * used for SYN cookie generation.
7142  */
7143 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7144                           const struct tcp_request_sock_ops *af_ops,
7145                           struct sock *sk, struct tcphdr *th)
7146 {
7147         struct tcp_sock *tp = tcp_sk(sk);
7148         u16 mss;
7149 
7150         if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7151             !inet_csk_reqsk_queue_is_full(sk))
7152                 return 0;
7153 
7154         if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7155                 return 0;
7156 
7157         if (sk_acceptq_is_full(sk)) {
7158                 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7159                 return 0;
7160         }
7161 
7162         mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7163         if (!mss)
7164                 mss = af_ops->mss_clamp;
7165 
7166         return mss;
7167 }
7168 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7169 
7170 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7171                      const struct tcp_request_sock_ops *af_ops,
7172                      struct sock *sk, struct sk_buff *skb)
7173 {
7174         struct tcp_fastopen_cookie foc = { .len = -1 };
7175         struct tcp_options_received tmp_opt;
7176         struct tcp_sock *tp = tcp_sk(sk);
7177         struct net *net = sock_net(sk);
7178         struct sock *fastopen_sk = NULL;
7179         struct request_sock *req;
7180         bool want_cookie = false;
7181         struct dst_entry *dst;
7182         struct flowi fl;
7183         u8 syncookies;
7184         u32 isn;
7185 
7186 #ifdef CONFIG_TCP_AO
7187         const struct tcp_ao_hdr *aoh;
7188 #endif
7189 
7190         isn = __this_cpu_read(tcp_tw_isn);
7191         if (isn) {
7192                 /* TW buckets are converted to open requests without
7193                  * limitations, they conserve resources and peer is
7194                  * evidently real one.
7195                  */
7196                 __this_cpu_write(tcp_tw_isn, 0);
7197         } else {
7198                 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7199 
7200                 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7201                         want_cookie = tcp_syn_flood_action(sk,
7202                                                            rsk_ops->slab_name);
7203                         if (!want_cookie)
7204                                 goto drop;
7205                 }
7206         }
7207 
7208         if (sk_acceptq_is_full(sk)) {
7209                 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7210                 goto drop;
7211         }
7212 
7213         req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7214         if (!req)
7215                 goto drop;
7216 
7217         req->syncookie = want_cookie;
7218         tcp_rsk(req)->af_specific = af_ops;
7219         tcp_rsk(req)->ts_off = 0;
7220         tcp_rsk(req)->req_usec_ts = false;
7221 #if IS_ENABLED(CONFIG_MPTCP)
7222         tcp_rsk(req)->is_mptcp = 0;
7223 #endif
7224 
7225         tcp_clear_options(&tmp_opt);
7226         tmp_opt.mss_clamp = af_ops->mss_clamp;
7227         tmp_opt.user_mss  = tp->rx_opt.user_mss;
7228         tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7229                           want_cookie ? NULL : &foc);
7230 
7231         if (want_cookie && !tmp_opt.saw_tstamp)
7232                 tcp_clear_options(&tmp_opt);
7233 
7234         if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7235                 tmp_opt.smc_ok = 0;
7236 
7237         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7238         tcp_openreq_init(req, &tmp_opt, skb, sk);
7239         inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7240 
7241         /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7242         inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7243 
7244         dst = af_ops->route_req(sk, skb, &fl, req, isn);
7245         if (!dst)
7246                 goto drop_and_free;
7247 
7248         if (tmp_opt.tstamp_ok) {
7249                 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7250                 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7251         }
7252         if (!want_cookie && !isn) {
7253                 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7254 
7255                 /* Kill the following clause, if you dislike this way. */
7256                 if (!syncookies &&
7257                     (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7258                      (max_syn_backlog >> 2)) &&
7259                     !tcp_peer_is_proven(req, dst)) {
7260                         /* Without syncookies last quarter of
7261                          * backlog is filled with destinations,
7262                          * proven to be alive.
7263                          * It means that we continue to communicate
7264                          * to destinations, already remembered
7265                          * to the moment of synflood.
7266                          */
7267                         pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7268                                     rsk_ops->family);
7269                         goto drop_and_release;
7270                 }
7271 
7272                 isn = af_ops->init_seq(skb);
7273         }
7274 
7275         tcp_ecn_create_request(req, skb, sk, dst);
7276 
7277         if (want_cookie) {
7278                 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7279                 if (!tmp_opt.tstamp_ok)
7280                         inet_rsk(req)->ecn_ok = 0;
7281         }
7282 
7283 #ifdef CONFIG_TCP_AO
7284         if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7285                 goto drop_and_release; /* Invalid TCP options */
7286         if (aoh) {
7287                 tcp_rsk(req)->used_tcp_ao = true;
7288                 tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7289                 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7290 
7291         } else {
7292                 tcp_rsk(req)->used_tcp_ao = false;
7293         }
7294 #endif
7295         tcp_rsk(req)->snt_isn = isn;
7296         tcp_rsk(req)->txhash = net_tx_rndhash();
7297         tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7298         tcp_openreq_init_rwin(req, sk, dst);
7299         sk_rx_queue_set(req_to_sk(req), skb);
7300         if (!want_cookie) {
7301                 tcp_reqsk_record_syn(sk, req, skb);
7302                 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7303         }
7304         if (fastopen_sk) {
7305                 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7306                                     &foc, TCP_SYNACK_FASTOPEN, skb);
7307                 /* Add the child socket directly into the accept queue */
7308                 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7309                         reqsk_fastopen_remove(fastopen_sk, req, false);
7310                         bh_unlock_sock(fastopen_sk);
7311                         sock_put(fastopen_sk);
7312                         goto drop_and_free;
7313                 }
7314                 sk->sk_data_ready(sk);
7315                 bh_unlock_sock(fastopen_sk);
7316                 sock_put(fastopen_sk);
7317         } else {
7318                 tcp_rsk(req)->tfo_listener = false;
7319                 if (!want_cookie) {
7320                         req->timeout = tcp_timeout_init((struct sock *)req);
7321                         if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7322                                                                     req->timeout))) {
7323                                 reqsk_free(req);
7324                                 return 0;
7325                         }
7326 
7327                 }
7328                 af_ops->send_synack(sk, dst, &fl, req, &foc,
7329                                     !want_cookie ? TCP_SYNACK_NORMAL :
7330                                                    TCP_SYNACK_COOKIE,
7331                                     skb);
7332                 if (want_cookie) {
7333                         reqsk_free(req);
7334                         return 0;
7335                 }
7336         }
7337         reqsk_put(req);
7338         return 0;
7339 
7340 drop_and_release:
7341         dst_release(dst);
7342 drop_and_free:
7343         __reqsk_free(req);
7344 drop:
7345         tcp_listendrop(sk);
7346         return 0;
7347 }
7348 EXPORT_SYMBOL(tcp_conn_request);
7349 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php