1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/proto_memory.h> 76 #include <net/inet_common.h> 77 #include <linux/ipsec.h> 78 #include <asm/unaligned.h> 79 #include <linux/errqueue.h> 80 #include <trace/events/tcp.h> 81 #include <linux/jump_label_ratelimit.h> 82 #include <net/busy_poll.h> 83 #include <net/mptcp.h> 84 85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 86 87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 93 #define FLAG_ECE 0x40 /* ECE in this ACK */ 94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 105 106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 110 111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 113 114 #define REXMIT_NONE 0 /* no loss recovery to do */ 115 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 116 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 117 118 #if IS_ENABLED(CONFIG_TLS_DEVICE) 119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 120 121 void clean_acked_data_enable(struct inet_connection_sock *icsk, 122 void (*cad)(struct sock *sk, u32 ack_seq)) 123 { 124 icsk->icsk_clean_acked = cad; 125 static_branch_deferred_inc(&clean_acked_data_enabled); 126 } 127 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 128 129 void clean_acked_data_disable(struct inet_connection_sock *icsk) 130 { 131 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 132 icsk->icsk_clean_acked = NULL; 133 } 134 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 135 136 void clean_acked_data_flush(void) 137 { 138 static_key_deferred_flush(&clean_acked_data_enabled); 139 } 140 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 141 #endif 142 143 #ifdef CONFIG_CGROUP_BPF 144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 145 { 146 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 147 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 148 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 149 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 150 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 151 struct bpf_sock_ops_kern sock_ops; 152 153 if (likely(!unknown_opt && !parse_all_opt)) 154 return; 155 156 /* The skb will be handled in the 157 * bpf_skops_established() or 158 * bpf_skops_write_hdr_opt(). 159 */ 160 switch (sk->sk_state) { 161 case TCP_SYN_RECV: 162 case TCP_SYN_SENT: 163 case TCP_LISTEN: 164 return; 165 } 166 167 sock_owned_by_me(sk); 168 169 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 170 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 171 sock_ops.is_fullsock = 1; 172 sock_ops.sk = sk; 173 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 174 175 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 176 } 177 178 static void bpf_skops_established(struct sock *sk, int bpf_op, 179 struct sk_buff *skb) 180 { 181 struct bpf_sock_ops_kern sock_ops; 182 183 sock_owned_by_me(sk); 184 185 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 186 sock_ops.op = bpf_op; 187 sock_ops.is_fullsock = 1; 188 sock_ops.sk = sk; 189 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 190 if (skb) 191 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 192 193 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 194 } 195 #else 196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 197 { 198 } 199 200 static void bpf_skops_established(struct sock *sk, int bpf_op, 201 struct sk_buff *skb) 202 { 203 } 204 #endif 205 206 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 207 unsigned int len) 208 { 209 struct net_device *dev; 210 211 rcu_read_lock(); 212 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 213 if (!dev || len >= READ_ONCE(dev->mtu)) 214 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 215 dev ? dev->name : "Unknown driver"); 216 rcu_read_unlock(); 217 } 218 219 /* Adapt the MSS value used to make delayed ack decision to the 220 * real world. 221 */ 222 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 223 { 224 struct inet_connection_sock *icsk = inet_csk(sk); 225 const unsigned int lss = icsk->icsk_ack.last_seg_size; 226 unsigned int len; 227 228 icsk->icsk_ack.last_seg_size = 0; 229 230 /* skb->len may jitter because of SACKs, even if peer 231 * sends good full-sized frames. 232 */ 233 len = skb_shinfo(skb)->gso_size ? : skb->len; 234 if (len >= icsk->icsk_ack.rcv_mss) { 235 /* Note: divides are still a bit expensive. 236 * For the moment, only adjust scaling_ratio 237 * when we update icsk_ack.rcv_mss. 238 */ 239 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 240 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 241 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 242 243 do_div(val, skb->truesize); 244 tcp_sk(sk)->scaling_ratio = val ? val : 1; 245 246 if (old_ratio != tcp_sk(sk)->scaling_ratio) 247 WRITE_ONCE(tcp_sk(sk)->window_clamp, 248 tcp_win_from_space(sk, sk->sk_rcvbuf)); 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 254 tcp_gro_dev_warn, sk, skb, len); 255 /* If the skb has a len of exactly 1*MSS and has the PSH bit 256 * set then it is likely the end of an application write. So 257 * more data may not be arriving soon, and yet the data sender 258 * may be waiting for an ACK if cwnd-bound or using TX zero 259 * copy. So we set ICSK_ACK_PUSHED here so that 260 * tcp_cleanup_rbuf() will send an ACK immediately if the app 261 * reads all of the data and is not ping-pong. If len > MSS 262 * then this logic does not matter (and does not hurt) because 263 * tcp_cleanup_rbuf() will always ACK immediately if the app 264 * reads data and there is more than an MSS of unACKed data. 265 */ 266 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 267 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 268 } else { 269 /* Otherwise, we make more careful check taking into account, 270 * that SACKs block is variable. 271 * 272 * "len" is invariant segment length, including TCP header. 273 */ 274 len += skb->data - skb_transport_header(skb); 275 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 276 /* If PSH is not set, packet should be 277 * full sized, provided peer TCP is not badly broken. 278 * This observation (if it is correct 8)) allows 279 * to handle super-low mtu links fairly. 280 */ 281 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 282 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 283 /* Subtract also invariant (if peer is RFC compliant), 284 * tcp header plus fixed timestamp option length. 285 * Resulting "len" is MSS free of SACK jitter. 286 */ 287 len -= tcp_sk(sk)->tcp_header_len; 288 icsk->icsk_ack.last_seg_size = len; 289 if (len == lss) { 290 icsk->icsk_ack.rcv_mss = len; 291 return; 292 } 293 } 294 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 295 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 297 } 298 } 299 300 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 301 { 302 struct inet_connection_sock *icsk = inet_csk(sk); 303 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 304 305 if (quickacks == 0) 306 quickacks = 2; 307 quickacks = min(quickacks, max_quickacks); 308 if (quickacks > icsk->icsk_ack.quick) 309 icsk->icsk_ack.quick = quickacks; 310 } 311 312 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 313 { 314 struct inet_connection_sock *icsk = inet_csk(sk); 315 316 tcp_incr_quickack(sk, max_quickacks); 317 inet_csk_exit_pingpong_mode(sk); 318 icsk->icsk_ack.ato = TCP_ATO_MIN; 319 } 320 321 /* Send ACKs quickly, if "quick" count is not exhausted 322 * and the session is not interactive. 323 */ 324 325 static bool tcp_in_quickack_mode(struct sock *sk) 326 { 327 const struct inet_connection_sock *icsk = inet_csk(sk); 328 const struct dst_entry *dst = __sk_dst_get(sk); 329 330 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 331 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 332 } 333 334 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 335 { 336 if (tp->ecn_flags & TCP_ECN_OK) 337 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 338 } 339 340 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 341 { 342 if (tcp_hdr(skb)->cwr) { 343 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 344 345 /* If the sender is telling us it has entered CWR, then its 346 * cwnd may be very low (even just 1 packet), so we should ACK 347 * immediately. 348 */ 349 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 350 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 351 } 352 } 353 354 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 355 { 356 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 357 } 358 359 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 360 { 361 struct tcp_sock *tp = tcp_sk(sk); 362 363 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 364 case INET_ECN_NOT_ECT: 365 /* Funny extension: if ECT is not set on a segment, 366 * and we already seen ECT on a previous segment, 367 * it is probably a retransmit. 368 */ 369 if (tp->ecn_flags & TCP_ECN_SEEN) 370 tcp_enter_quickack_mode(sk, 2); 371 break; 372 case INET_ECN_CE: 373 if (tcp_ca_needs_ecn(sk)) 374 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 375 376 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 377 /* Better not delay acks, sender can have a very low cwnd */ 378 tcp_enter_quickack_mode(sk, 2); 379 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 380 } 381 tp->ecn_flags |= TCP_ECN_SEEN; 382 break; 383 default: 384 if (tcp_ca_needs_ecn(sk)) 385 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 386 tp->ecn_flags |= TCP_ECN_SEEN; 387 break; 388 } 389 } 390 391 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 392 { 393 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 394 __tcp_ecn_check_ce(sk, skb); 395 } 396 397 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 398 { 399 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 400 tp->ecn_flags &= ~TCP_ECN_OK; 401 } 402 403 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 404 { 405 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 406 tp->ecn_flags &= ~TCP_ECN_OK; 407 } 408 409 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 410 { 411 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 412 return true; 413 return false; 414 } 415 416 /* Buffer size and advertised window tuning. 417 * 418 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 419 */ 420 421 static void tcp_sndbuf_expand(struct sock *sk) 422 { 423 const struct tcp_sock *tp = tcp_sk(sk); 424 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 425 int sndmem, per_mss; 426 u32 nr_segs; 427 428 /* Worst case is non GSO/TSO : each frame consumes one skb 429 * and skb->head is kmalloced using power of two area of memory 430 */ 431 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 432 MAX_TCP_HEADER + 433 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 434 435 per_mss = roundup_pow_of_two(per_mss) + 436 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 437 438 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 439 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 440 441 /* Fast Recovery (RFC 5681 3.2) : 442 * Cubic needs 1.7 factor, rounded to 2 to include 443 * extra cushion (application might react slowly to EPOLLOUT) 444 */ 445 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 446 sndmem *= nr_segs * per_mss; 447 448 if (sk->sk_sndbuf < sndmem) 449 WRITE_ONCE(sk->sk_sndbuf, 450 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 451 } 452 453 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 454 * 455 * All tcp_full_space() is split to two parts: "network" buffer, allocated 456 * forward and advertised in receiver window (tp->rcv_wnd) and 457 * "application buffer", required to isolate scheduling/application 458 * latencies from network. 459 * window_clamp is maximal advertised window. It can be less than 460 * tcp_full_space(), in this case tcp_full_space() - window_clamp 461 * is reserved for "application" buffer. The less window_clamp is 462 * the smoother our behaviour from viewpoint of network, but the lower 463 * throughput and the higher sensitivity of the connection to losses. 8) 464 * 465 * rcv_ssthresh is more strict window_clamp used at "slow start" 466 * phase to predict further behaviour of this connection. 467 * It is used for two goals: 468 * - to enforce header prediction at sender, even when application 469 * requires some significant "application buffer". It is check #1. 470 * - to prevent pruning of receive queue because of misprediction 471 * of receiver window. Check #2. 472 * 473 * The scheme does not work when sender sends good segments opening 474 * window and then starts to feed us spaghetti. But it should work 475 * in common situations. Otherwise, we have to rely on queue collapsing. 476 */ 477 478 /* Slow part of check#2. */ 479 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 480 unsigned int skbtruesize) 481 { 482 const struct tcp_sock *tp = tcp_sk(sk); 483 /* Optimize this! */ 484 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 485 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 486 487 while (tp->rcv_ssthresh <= window) { 488 if (truesize <= skb->len) 489 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 490 491 truesize >>= 1; 492 window >>= 1; 493 } 494 return 0; 495 } 496 497 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 498 * can play nice with us, as sk_buff and skb->head might be either 499 * freed or shared with up to MAX_SKB_FRAGS segments. 500 * Only give a boost to drivers using page frag(s) to hold the frame(s), 501 * and if no payload was pulled in skb->head before reaching us. 502 */ 503 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 504 { 505 u32 truesize = skb->truesize; 506 507 if (adjust && !skb_headlen(skb)) { 508 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 509 /* paranoid check, some drivers might be buggy */ 510 if (unlikely((int)truesize < (int)skb->len)) 511 truesize = skb->truesize; 512 } 513 return truesize; 514 } 515 516 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 517 bool adjust) 518 { 519 struct tcp_sock *tp = tcp_sk(sk); 520 int room; 521 522 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 523 524 if (room <= 0) 525 return; 526 527 /* Check #1 */ 528 if (!tcp_under_memory_pressure(sk)) { 529 unsigned int truesize = truesize_adjust(adjust, skb); 530 int incr; 531 532 /* Check #2. Increase window, if skb with such overhead 533 * will fit to rcvbuf in future. 534 */ 535 if (tcp_win_from_space(sk, truesize) <= skb->len) 536 incr = 2 * tp->advmss; 537 else 538 incr = __tcp_grow_window(sk, skb, truesize); 539 540 if (incr) { 541 incr = max_t(int, incr, 2 * skb->len); 542 tp->rcv_ssthresh += min(room, incr); 543 inet_csk(sk)->icsk_ack.quick |= 1; 544 } 545 } else { 546 /* Under pressure: 547 * Adjust rcv_ssthresh according to reserved mem 548 */ 549 tcp_adjust_rcv_ssthresh(sk); 550 } 551 } 552 553 /* 3. Try to fixup all. It is made immediately after connection enters 554 * established state. 555 */ 556 static void tcp_init_buffer_space(struct sock *sk) 557 { 558 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 559 struct tcp_sock *tp = tcp_sk(sk); 560 int maxwin; 561 562 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 563 tcp_sndbuf_expand(sk); 564 565 tcp_mstamp_refresh(tp); 566 tp->rcvq_space.time = tp->tcp_mstamp; 567 tp->rcvq_space.seq = tp->copied_seq; 568 569 maxwin = tcp_full_space(sk); 570 571 if (tp->window_clamp >= maxwin) { 572 WRITE_ONCE(tp->window_clamp, maxwin); 573 574 if (tcp_app_win && maxwin > 4 * tp->advmss) 575 WRITE_ONCE(tp->window_clamp, 576 max(maxwin - (maxwin >> tcp_app_win), 577 4 * tp->advmss)); 578 } 579 580 /* Force reservation of one segment. */ 581 if (tcp_app_win && 582 tp->window_clamp > 2 * tp->advmss && 583 tp->window_clamp + tp->advmss > maxwin) 584 WRITE_ONCE(tp->window_clamp, 585 max(2 * tp->advmss, maxwin - tp->advmss)); 586 587 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 588 tp->snd_cwnd_stamp = tcp_jiffies32; 589 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 590 (u32)TCP_INIT_CWND * tp->advmss); 591 } 592 593 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 594 static void tcp_clamp_window(struct sock *sk) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 struct inet_connection_sock *icsk = inet_csk(sk); 598 struct net *net = sock_net(sk); 599 int rmem2; 600 601 icsk->icsk_ack.quick = 0; 602 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 603 604 if (sk->sk_rcvbuf < rmem2 && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 606 !tcp_under_memory_pressure(sk) && 607 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 608 WRITE_ONCE(sk->sk_rcvbuf, 609 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 610 } 611 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 612 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 613 } 614 615 /* Initialize RCV_MSS value. 616 * RCV_MSS is an our guess about MSS used by the peer. 617 * We haven't any direct information about the MSS. 618 * It's better to underestimate the RCV_MSS rather than overestimate. 619 * Overestimations make us ACKing less frequently than needed. 620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 621 */ 622 void tcp_initialize_rcv_mss(struct sock *sk) 623 { 624 const struct tcp_sock *tp = tcp_sk(sk); 625 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 626 627 hint = min(hint, tp->rcv_wnd / 2); 628 hint = min(hint, TCP_MSS_DEFAULT); 629 hint = max(hint, TCP_MIN_MSS); 630 631 inet_csk(sk)->icsk_ack.rcv_mss = hint; 632 } 633 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 634 635 /* Receiver "autotuning" code. 636 * 637 * The algorithm for RTT estimation w/o timestamps is based on 638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 639 * <https://public.lanl.gov/radiant/pubs.html#DRS> 640 * 641 * More detail on this code can be found at 642 * <http://staff.psc.edu/jheffner/>, 643 * though this reference is out of date. A new paper 644 * is pending. 645 */ 646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 647 { 648 u32 new_sample = tp->rcv_rtt_est.rtt_us; 649 long m = sample; 650 651 if (new_sample != 0) { 652 /* If we sample in larger samples in the non-timestamp 653 * case, we could grossly overestimate the RTT especially 654 * with chatty applications or bulk transfer apps which 655 * are stalled on filesystem I/O. 656 * 657 * Also, since we are only going for a minimum in the 658 * non-timestamp case, we do not smooth things out 659 * else with timestamps disabled convergence takes too 660 * long. 661 */ 662 if (!win_dep) { 663 m -= (new_sample >> 3); 664 new_sample += m; 665 } else { 666 m <<= 3; 667 if (m < new_sample) 668 new_sample = m; 669 } 670 } else { 671 /* No previous measure. */ 672 new_sample = m << 3; 673 } 674 675 tp->rcv_rtt_est.rtt_us = new_sample; 676 } 677 678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 679 { 680 u32 delta_us; 681 682 if (tp->rcv_rtt_est.time == 0) 683 goto new_measure; 684 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 685 return; 686 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 687 if (!delta_us) 688 delta_us = 1; 689 tcp_rcv_rtt_update(tp, delta_us, 1); 690 691 new_measure: 692 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 693 tp->rcv_rtt_est.time = tp->tcp_mstamp; 694 } 695 696 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp) 697 { 698 u32 delta, delta_us; 699 700 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 701 if (tp->tcp_usec_ts) 702 return delta; 703 704 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 705 if (!delta) 706 delta = 1; 707 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 708 return delta_us; 709 } 710 return -1; 711 } 712 713 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 714 const struct sk_buff *skb) 715 { 716 struct tcp_sock *tp = tcp_sk(sk); 717 718 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 719 return; 720 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 721 722 if (TCP_SKB_CB(skb)->end_seq - 723 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 724 s32 delta = tcp_rtt_tsopt_us(tp); 725 726 if (delta >= 0) 727 tcp_rcv_rtt_update(tp, delta, 0); 728 } 729 } 730 731 /* 732 * This function should be called every time data is copied to user space. 733 * It calculates the appropriate TCP receive buffer space. 734 */ 735 void tcp_rcv_space_adjust(struct sock *sk) 736 { 737 struct tcp_sock *tp = tcp_sk(sk); 738 u32 copied; 739 int time; 740 741 trace_tcp_rcv_space_adjust(sk); 742 743 tcp_mstamp_refresh(tp); 744 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 745 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 746 return; 747 748 /* Number of bytes copied to user in last RTT */ 749 copied = tp->copied_seq - tp->rcvq_space.seq; 750 if (copied <= tp->rcvq_space.space) 751 goto new_measure; 752 753 /* A bit of theory : 754 * copied = bytes received in previous RTT, our base window 755 * To cope with packet losses, we need a 2x factor 756 * To cope with slow start, and sender growing its cwin by 100 % 757 * every RTT, we need a 4x factor, because the ACK we are sending 758 * now is for the next RTT, not the current one : 759 * <prev RTT . ><current RTT .. ><next RTT .... > 760 */ 761 762 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 763 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 764 u64 rcvwin, grow; 765 int rcvbuf; 766 767 /* minimal window to cope with packet losses, assuming 768 * steady state. Add some cushion because of small variations. 769 */ 770 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 771 772 /* Accommodate for sender rate increase (eg. slow start) */ 773 grow = rcvwin * (copied - tp->rcvq_space.space); 774 do_div(grow, tp->rcvq_space.space); 775 rcvwin += (grow << 1); 776 777 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 778 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 779 if (rcvbuf > sk->sk_rcvbuf) { 780 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 781 782 /* Make the window clamp follow along. */ 783 WRITE_ONCE(tp->window_clamp, 784 tcp_win_from_space(sk, rcvbuf)); 785 } 786 } 787 tp->rcvq_space.space = copied; 788 789 new_measure: 790 tp->rcvq_space.seq = tp->copied_seq; 791 tp->rcvq_space.time = tp->tcp_mstamp; 792 } 793 794 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 795 { 796 #if IS_ENABLED(CONFIG_IPV6) 797 struct inet_connection_sock *icsk = inet_csk(sk); 798 799 if (skb->protocol == htons(ETH_P_IPV6)) 800 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 801 #endif 802 } 803 804 /* There is something which you must keep in mind when you analyze the 805 * behavior of the tp->ato delayed ack timeout interval. When a 806 * connection starts up, we want to ack as quickly as possible. The 807 * problem is that "good" TCP's do slow start at the beginning of data 808 * transmission. The means that until we send the first few ACK's the 809 * sender will sit on his end and only queue most of his data, because 810 * he can only send snd_cwnd unacked packets at any given time. For 811 * each ACK we send, he increments snd_cwnd and transmits more of his 812 * queue. -DaveM 813 */ 814 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 815 { 816 struct tcp_sock *tp = tcp_sk(sk); 817 struct inet_connection_sock *icsk = inet_csk(sk); 818 u32 now; 819 820 inet_csk_schedule_ack(sk); 821 822 tcp_measure_rcv_mss(sk, skb); 823 824 tcp_rcv_rtt_measure(tp); 825 826 now = tcp_jiffies32; 827 828 if (!icsk->icsk_ack.ato) { 829 /* The _first_ data packet received, initialize 830 * delayed ACK engine. 831 */ 832 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 833 icsk->icsk_ack.ato = TCP_ATO_MIN; 834 } else { 835 int m = now - icsk->icsk_ack.lrcvtime; 836 837 if (m <= TCP_ATO_MIN / 2) { 838 /* The fastest case is the first. */ 839 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 840 } else if (m < icsk->icsk_ack.ato) { 841 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 842 if (icsk->icsk_ack.ato > icsk->icsk_rto) 843 icsk->icsk_ack.ato = icsk->icsk_rto; 844 } else if (m > icsk->icsk_rto) { 845 /* Too long gap. Apparently sender failed to 846 * restart window, so that we send ACKs quickly. 847 */ 848 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 849 } 850 } 851 icsk->icsk_ack.lrcvtime = now; 852 tcp_save_lrcv_flowlabel(sk, skb); 853 854 tcp_ecn_check_ce(sk, skb); 855 856 if (skb->len >= 128) 857 tcp_grow_window(sk, skb, true); 858 } 859 860 /* Called to compute a smoothed rtt estimate. The data fed to this 861 * routine either comes from timestamps, or from segments that were 862 * known _not_ to have been retransmitted [see Karn/Partridge 863 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 864 * piece by Van Jacobson. 865 * NOTE: the next three routines used to be one big routine. 866 * To save cycles in the RFC 1323 implementation it was better to break 867 * it up into three procedures. -- erics 868 */ 869 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 870 { 871 struct tcp_sock *tp = tcp_sk(sk); 872 long m = mrtt_us; /* RTT */ 873 u32 srtt = tp->srtt_us; 874 875 /* The following amusing code comes from Jacobson's 876 * article in SIGCOMM '88. Note that rtt and mdev 877 * are scaled versions of rtt and mean deviation. 878 * This is designed to be as fast as possible 879 * m stands for "measurement". 880 * 881 * On a 1990 paper the rto value is changed to: 882 * RTO = rtt + 4 * mdev 883 * 884 * Funny. This algorithm seems to be very broken. 885 * These formulae increase RTO, when it should be decreased, increase 886 * too slowly, when it should be increased quickly, decrease too quickly 887 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 888 * does not matter how to _calculate_ it. Seems, it was trap 889 * that VJ failed to avoid. 8) 890 */ 891 if (srtt != 0) { 892 m -= (srtt >> 3); /* m is now error in rtt est */ 893 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 894 if (m < 0) { 895 m = -m; /* m is now abs(error) */ 896 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 897 /* This is similar to one of Eifel findings. 898 * Eifel blocks mdev updates when rtt decreases. 899 * This solution is a bit different: we use finer gain 900 * for mdev in this case (alpha*beta). 901 * Like Eifel it also prevents growth of rto, 902 * but also it limits too fast rto decreases, 903 * happening in pure Eifel. 904 */ 905 if (m > 0) 906 m >>= 3; 907 } else { 908 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 909 } 910 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 911 if (tp->mdev_us > tp->mdev_max_us) { 912 tp->mdev_max_us = tp->mdev_us; 913 if (tp->mdev_max_us > tp->rttvar_us) 914 tp->rttvar_us = tp->mdev_max_us; 915 } 916 if (after(tp->snd_una, tp->rtt_seq)) { 917 if (tp->mdev_max_us < tp->rttvar_us) 918 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 919 tp->rtt_seq = tp->snd_nxt; 920 tp->mdev_max_us = tcp_rto_min_us(sk); 921 922 tcp_bpf_rtt(sk, mrtt_us, srtt); 923 } 924 } else { 925 /* no previous measure. */ 926 srtt = m << 3; /* take the measured time to be rtt */ 927 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 928 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 929 tp->mdev_max_us = tp->rttvar_us; 930 tp->rtt_seq = tp->snd_nxt; 931 932 tcp_bpf_rtt(sk, mrtt_us, srtt); 933 } 934 tp->srtt_us = max(1U, srtt); 935 } 936 937 static void tcp_update_pacing_rate(struct sock *sk) 938 { 939 const struct tcp_sock *tp = tcp_sk(sk); 940 u64 rate; 941 942 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 943 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 944 945 /* current rate is (cwnd * mss) / srtt 946 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 947 * In Congestion Avoidance phase, set it to 120 % the current rate. 948 * 949 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 950 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 951 * end of slow start and should slow down. 952 */ 953 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 954 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 955 else 956 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 957 958 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 959 960 if (likely(tp->srtt_us)) 961 do_div(rate, tp->srtt_us); 962 963 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 964 * without any lock. We want to make sure compiler wont store 965 * intermediate values in this location. 966 */ 967 WRITE_ONCE(sk->sk_pacing_rate, 968 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 969 } 970 971 /* Calculate rto without backoff. This is the second half of Van Jacobson's 972 * routine referred to above. 973 */ 974 static void tcp_set_rto(struct sock *sk) 975 { 976 const struct tcp_sock *tp = tcp_sk(sk); 977 /* Old crap is replaced with new one. 8) 978 * 979 * More seriously: 980 * 1. If rtt variance happened to be less 50msec, it is hallucination. 981 * It cannot be less due to utterly erratic ACK generation made 982 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 983 * to do with delayed acks, because at cwnd>2 true delack timeout 984 * is invisible. Actually, Linux-2.4 also generates erratic 985 * ACKs in some circumstances. 986 */ 987 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 988 989 /* 2. Fixups made earlier cannot be right. 990 * If we do not estimate RTO correctly without them, 991 * all the algo is pure shit and should be replaced 992 * with correct one. It is exactly, which we pretend to do. 993 */ 994 995 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 996 * guarantees that rto is higher. 997 */ 998 tcp_bound_rto(sk); 999 } 1000 1001 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1002 { 1003 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1004 1005 if (!cwnd) 1006 cwnd = TCP_INIT_CWND; 1007 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1008 } 1009 1010 struct tcp_sacktag_state { 1011 /* Timestamps for earliest and latest never-retransmitted segment 1012 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1013 * but congestion control should still get an accurate delay signal. 1014 */ 1015 u64 first_sackt; 1016 u64 last_sackt; 1017 u32 reord; 1018 u32 sack_delivered; 1019 int flag; 1020 unsigned int mss_now; 1021 struct rate_sample *rate; 1022 }; 1023 1024 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1025 * and spurious retransmission information if this DSACK is unlikely caused by 1026 * sender's action: 1027 * - DSACKed sequence range is larger than maximum receiver's window. 1028 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1029 */ 1030 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1031 u32 end_seq, struct tcp_sacktag_state *state) 1032 { 1033 u32 seq_len, dup_segs = 1; 1034 1035 if (!before(start_seq, end_seq)) 1036 return 0; 1037 1038 seq_len = end_seq - start_seq; 1039 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1040 if (seq_len > tp->max_window) 1041 return 0; 1042 if (seq_len > tp->mss_cache) 1043 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1044 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1045 state->flag |= FLAG_DSACK_TLP; 1046 1047 tp->dsack_dups += dup_segs; 1048 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1049 if (tp->dsack_dups > tp->total_retrans) 1050 return 0; 1051 1052 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1053 /* We increase the RACK ordering window in rounds where we receive 1054 * DSACKs that may have been due to reordering causing RACK to trigger 1055 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1056 * without having seen reordering, or that match TLP probes (TLP 1057 * is timer-driven, not triggered by RACK). 1058 */ 1059 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1060 tp->rack.dsack_seen = 1; 1061 1062 state->flag |= FLAG_DSACKING_ACK; 1063 /* A spurious retransmission is delivered */ 1064 state->sack_delivered += dup_segs; 1065 1066 return dup_segs; 1067 } 1068 1069 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1070 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1071 * distance is approximated in full-mss packet distance ("reordering"). 1072 */ 1073 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1074 const int ts) 1075 { 1076 struct tcp_sock *tp = tcp_sk(sk); 1077 const u32 mss = tp->mss_cache; 1078 u32 fack, metric; 1079 1080 fack = tcp_highest_sack_seq(tp); 1081 if (!before(low_seq, fack)) 1082 return; 1083 1084 metric = fack - low_seq; 1085 if ((metric > tp->reordering * mss) && mss) { 1086 #if FASTRETRANS_DEBUG > 1 1087 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1088 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1089 tp->reordering, 1090 0, 1091 tp->sacked_out, 1092 tp->undo_marker ? tp->undo_retrans : 0); 1093 #endif 1094 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1095 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1096 } 1097 1098 /* This exciting event is worth to be remembered. 8) */ 1099 tp->reord_seen++; 1100 NET_INC_STATS(sock_net(sk), 1101 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1102 } 1103 1104 /* This must be called before lost_out or retrans_out are updated 1105 * on a new loss, because we want to know if all skbs previously 1106 * known to be lost have already been retransmitted, indicating 1107 * that this newly lost skb is our next skb to retransmit. 1108 */ 1109 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1110 { 1111 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1112 (tp->retransmit_skb_hint && 1113 before(TCP_SKB_CB(skb)->seq, 1114 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1115 tp->retransmit_skb_hint = skb; 1116 } 1117 1118 /* Sum the number of packets on the wire we have marked as lost, and 1119 * notify the congestion control module that the given skb was marked lost. 1120 */ 1121 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1122 { 1123 tp->lost += tcp_skb_pcount(skb); 1124 } 1125 1126 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1127 { 1128 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1129 struct tcp_sock *tp = tcp_sk(sk); 1130 1131 if (sacked & TCPCB_SACKED_ACKED) 1132 return; 1133 1134 tcp_verify_retransmit_hint(tp, skb); 1135 if (sacked & TCPCB_LOST) { 1136 if (sacked & TCPCB_SACKED_RETRANS) { 1137 /* Account for retransmits that are lost again */ 1138 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1139 tp->retrans_out -= tcp_skb_pcount(skb); 1140 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1141 tcp_skb_pcount(skb)); 1142 tcp_notify_skb_loss_event(tp, skb); 1143 } 1144 } else { 1145 tp->lost_out += tcp_skb_pcount(skb); 1146 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1147 tcp_notify_skb_loss_event(tp, skb); 1148 } 1149 } 1150 1151 /* Updates the delivered and delivered_ce counts */ 1152 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1153 bool ece_ack) 1154 { 1155 tp->delivered += delivered; 1156 if (ece_ack) 1157 tp->delivered_ce += delivered; 1158 } 1159 1160 /* This procedure tags the retransmission queue when SACKs arrive. 1161 * 1162 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1163 * Packets in queue with these bits set are counted in variables 1164 * sacked_out, retrans_out and lost_out, correspondingly. 1165 * 1166 * Valid combinations are: 1167 * Tag InFlight Description 1168 * 0 1 - orig segment is in flight. 1169 * S 0 - nothing flies, orig reached receiver. 1170 * L 0 - nothing flies, orig lost by net. 1171 * R 2 - both orig and retransmit are in flight. 1172 * L|R 1 - orig is lost, retransmit is in flight. 1173 * S|R 1 - orig reached receiver, retrans is still in flight. 1174 * (L|S|R is logically valid, it could occur when L|R is sacked, 1175 * but it is equivalent to plain S and code short-circuits it to S. 1176 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1177 * 1178 * These 6 states form finite state machine, controlled by the following events: 1179 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1180 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1181 * 3. Loss detection event of two flavors: 1182 * A. Scoreboard estimator decided the packet is lost. 1183 * A'. Reno "three dupacks" marks head of queue lost. 1184 * B. SACK arrives sacking SND.NXT at the moment, when the 1185 * segment was retransmitted. 1186 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1187 * 1188 * It is pleasant to note, that state diagram turns out to be commutative, 1189 * so that we are allowed not to be bothered by order of our actions, 1190 * when multiple events arrive simultaneously. (see the function below). 1191 * 1192 * Reordering detection. 1193 * -------------------- 1194 * Reordering metric is maximal distance, which a packet can be displaced 1195 * in packet stream. With SACKs we can estimate it: 1196 * 1197 * 1. SACK fills old hole and the corresponding segment was not 1198 * ever retransmitted -> reordering. Alas, we cannot use it 1199 * when segment was retransmitted. 1200 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1201 * for retransmitted and already SACKed segment -> reordering.. 1202 * Both of these heuristics are not used in Loss state, when we cannot 1203 * account for retransmits accurately. 1204 * 1205 * SACK block validation. 1206 * ---------------------- 1207 * 1208 * SACK block range validation checks that the received SACK block fits to 1209 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1210 * Note that SND.UNA is not included to the range though being valid because 1211 * it means that the receiver is rather inconsistent with itself reporting 1212 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1213 * perfectly valid, however, in light of RFC2018 which explicitly states 1214 * that "SACK block MUST reflect the newest segment. Even if the newest 1215 * segment is going to be discarded ...", not that it looks very clever 1216 * in case of head skb. Due to potentional receiver driven attacks, we 1217 * choose to avoid immediate execution of a walk in write queue due to 1218 * reneging and defer head skb's loss recovery to standard loss recovery 1219 * procedure that will eventually trigger (nothing forbids us doing this). 1220 * 1221 * Implements also blockage to start_seq wrap-around. Problem lies in the 1222 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1223 * there's no guarantee that it will be before snd_nxt (n). The problem 1224 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1225 * wrap (s_w): 1226 * 1227 * <- outs wnd -> <- wrapzone -> 1228 * u e n u_w e_w s n_w 1229 * | | | | | | | 1230 * |<------------+------+----- TCP seqno space --------------+---------->| 1231 * ...-- <2^31 ->| |<--------... 1232 * ...---- >2^31 ------>| |<--------... 1233 * 1234 * Current code wouldn't be vulnerable but it's better still to discard such 1235 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1236 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1237 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1238 * equal to the ideal case (infinite seqno space without wrap caused issues). 1239 * 1240 * With D-SACK the lower bound is extended to cover sequence space below 1241 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1242 * again, D-SACK block must not to go across snd_una (for the same reason as 1243 * for the normal SACK blocks, explained above). But there all simplicity 1244 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1245 * fully below undo_marker they do not affect behavior in anyway and can 1246 * therefore be safely ignored. In rare cases (which are more or less 1247 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1248 * fragmentation and packet reordering past skb's retransmission. To consider 1249 * them correctly, the acceptable range must be extended even more though 1250 * the exact amount is rather hard to quantify. However, tp->max_window can 1251 * be used as an exaggerated estimate. 1252 */ 1253 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1254 u32 start_seq, u32 end_seq) 1255 { 1256 /* Too far in future, or reversed (interpretation is ambiguous) */ 1257 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1258 return false; 1259 1260 /* Nasty start_seq wrap-around check (see comments above) */ 1261 if (!before(start_seq, tp->snd_nxt)) 1262 return false; 1263 1264 /* In outstanding window? ...This is valid exit for D-SACKs too. 1265 * start_seq == snd_una is non-sensical (see comments above) 1266 */ 1267 if (after(start_seq, tp->snd_una)) 1268 return true; 1269 1270 if (!is_dsack || !tp->undo_marker) 1271 return false; 1272 1273 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1274 if (after(end_seq, tp->snd_una)) 1275 return false; 1276 1277 if (!before(start_seq, tp->undo_marker)) 1278 return true; 1279 1280 /* Too old */ 1281 if (!after(end_seq, tp->undo_marker)) 1282 return false; 1283 1284 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1285 * start_seq < undo_marker and end_seq >= undo_marker. 1286 */ 1287 return !before(start_seq, end_seq - tp->max_window); 1288 } 1289 1290 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1291 struct tcp_sack_block_wire *sp, int num_sacks, 1292 u32 prior_snd_una, struct tcp_sacktag_state *state) 1293 { 1294 struct tcp_sock *tp = tcp_sk(sk); 1295 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1296 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1297 u32 dup_segs; 1298 1299 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1301 } else if (num_sacks > 1) { 1302 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1303 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1304 1305 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1306 return false; 1307 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1308 } else { 1309 return false; 1310 } 1311 1312 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1313 if (!dup_segs) { /* Skip dubious DSACK */ 1314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1315 return false; 1316 } 1317 1318 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1319 1320 /* D-SACK for already forgotten data... Do dumb counting. */ 1321 if (tp->undo_marker && tp->undo_retrans > 0 && 1322 !after(end_seq_0, prior_snd_una) && 1323 after(end_seq_0, tp->undo_marker)) 1324 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1325 1326 return true; 1327 } 1328 1329 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1330 * the incoming SACK may not exactly match but we can find smaller MSS 1331 * aligned portion of it that matches. Therefore we might need to fragment 1332 * which may fail and creates some hassle (caller must handle error case 1333 * returns). 1334 * 1335 * FIXME: this could be merged to shift decision code 1336 */ 1337 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1338 u32 start_seq, u32 end_seq) 1339 { 1340 int err; 1341 bool in_sack; 1342 unsigned int pkt_len; 1343 unsigned int mss; 1344 1345 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1346 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1347 1348 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1349 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1350 mss = tcp_skb_mss(skb); 1351 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1352 1353 if (!in_sack) { 1354 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1355 if (pkt_len < mss) 1356 pkt_len = mss; 1357 } else { 1358 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1359 if (pkt_len < mss) 1360 return -EINVAL; 1361 } 1362 1363 /* Round if necessary so that SACKs cover only full MSSes 1364 * and/or the remaining small portion (if present) 1365 */ 1366 if (pkt_len > mss) { 1367 unsigned int new_len = (pkt_len / mss) * mss; 1368 if (!in_sack && new_len < pkt_len) 1369 new_len += mss; 1370 pkt_len = new_len; 1371 } 1372 1373 if (pkt_len >= skb->len && !in_sack) 1374 return 0; 1375 1376 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1377 pkt_len, mss, GFP_ATOMIC); 1378 if (err < 0) 1379 return err; 1380 } 1381 1382 return in_sack; 1383 } 1384 1385 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1386 static u8 tcp_sacktag_one(struct sock *sk, 1387 struct tcp_sacktag_state *state, u8 sacked, 1388 u32 start_seq, u32 end_seq, 1389 int dup_sack, int pcount, 1390 u64 xmit_time) 1391 { 1392 struct tcp_sock *tp = tcp_sk(sk); 1393 1394 /* Account D-SACK for retransmitted packet. */ 1395 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1396 if (tp->undo_marker && tp->undo_retrans > 0 && 1397 after(end_seq, tp->undo_marker)) 1398 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1399 if ((sacked & TCPCB_SACKED_ACKED) && 1400 before(start_seq, state->reord)) 1401 state->reord = start_seq; 1402 } 1403 1404 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1405 if (!after(end_seq, tp->snd_una)) 1406 return sacked; 1407 1408 if (!(sacked & TCPCB_SACKED_ACKED)) { 1409 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1410 1411 if (sacked & TCPCB_SACKED_RETRANS) { 1412 /* If the segment is not tagged as lost, 1413 * we do not clear RETRANS, believing 1414 * that retransmission is still in flight. 1415 */ 1416 if (sacked & TCPCB_LOST) { 1417 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1418 tp->lost_out -= pcount; 1419 tp->retrans_out -= pcount; 1420 } 1421 } else { 1422 if (!(sacked & TCPCB_RETRANS)) { 1423 /* New sack for not retransmitted frame, 1424 * which was in hole. It is reordering. 1425 */ 1426 if (before(start_seq, 1427 tcp_highest_sack_seq(tp)) && 1428 before(start_seq, state->reord)) 1429 state->reord = start_seq; 1430 1431 if (!after(end_seq, tp->high_seq)) 1432 state->flag |= FLAG_ORIG_SACK_ACKED; 1433 if (state->first_sackt == 0) 1434 state->first_sackt = xmit_time; 1435 state->last_sackt = xmit_time; 1436 } 1437 1438 if (sacked & TCPCB_LOST) { 1439 sacked &= ~TCPCB_LOST; 1440 tp->lost_out -= pcount; 1441 } 1442 } 1443 1444 sacked |= TCPCB_SACKED_ACKED; 1445 state->flag |= FLAG_DATA_SACKED; 1446 tp->sacked_out += pcount; 1447 /* Out-of-order packets delivered */ 1448 state->sack_delivered += pcount; 1449 1450 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1451 if (tp->lost_skb_hint && 1452 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1453 tp->lost_cnt_hint += pcount; 1454 } 1455 1456 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1457 * frames and clear it. undo_retrans is decreased above, L|R frames 1458 * are accounted above as well. 1459 */ 1460 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1461 sacked &= ~TCPCB_SACKED_RETRANS; 1462 tp->retrans_out -= pcount; 1463 } 1464 1465 return sacked; 1466 } 1467 1468 /* Shift newly-SACKed bytes from this skb to the immediately previous 1469 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1470 */ 1471 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1472 struct sk_buff *skb, 1473 struct tcp_sacktag_state *state, 1474 unsigned int pcount, int shifted, int mss, 1475 bool dup_sack) 1476 { 1477 struct tcp_sock *tp = tcp_sk(sk); 1478 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1479 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1480 1481 BUG_ON(!pcount); 1482 1483 /* Adjust counters and hints for the newly sacked sequence 1484 * range but discard the return value since prev is already 1485 * marked. We must tag the range first because the seq 1486 * advancement below implicitly advances 1487 * tcp_highest_sack_seq() when skb is highest_sack. 1488 */ 1489 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1490 start_seq, end_seq, dup_sack, pcount, 1491 tcp_skb_timestamp_us(skb)); 1492 tcp_rate_skb_delivered(sk, skb, state->rate); 1493 1494 if (skb == tp->lost_skb_hint) 1495 tp->lost_cnt_hint += pcount; 1496 1497 TCP_SKB_CB(prev)->end_seq += shifted; 1498 TCP_SKB_CB(skb)->seq += shifted; 1499 1500 tcp_skb_pcount_add(prev, pcount); 1501 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1502 tcp_skb_pcount_add(skb, -pcount); 1503 1504 /* When we're adding to gso_segs == 1, gso_size will be zero, 1505 * in theory this shouldn't be necessary but as long as DSACK 1506 * code can come after this skb later on it's better to keep 1507 * setting gso_size to something. 1508 */ 1509 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1510 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1511 1512 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1513 if (tcp_skb_pcount(skb) <= 1) 1514 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1515 1516 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1517 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1518 1519 if (skb->len > 0) { 1520 BUG_ON(!tcp_skb_pcount(skb)); 1521 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1522 return false; 1523 } 1524 1525 /* Whole SKB was eaten :-) */ 1526 1527 if (skb == tp->retransmit_skb_hint) 1528 tp->retransmit_skb_hint = prev; 1529 if (skb == tp->lost_skb_hint) { 1530 tp->lost_skb_hint = prev; 1531 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1532 } 1533 1534 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1535 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1536 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1537 TCP_SKB_CB(prev)->end_seq++; 1538 1539 if (skb == tcp_highest_sack(sk)) 1540 tcp_advance_highest_sack(sk, skb); 1541 1542 tcp_skb_collapse_tstamp(prev, skb); 1543 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1544 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1545 1546 tcp_rtx_queue_unlink_and_free(skb, sk); 1547 1548 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1549 1550 return true; 1551 } 1552 1553 /* I wish gso_size would have a bit more sane initialization than 1554 * something-or-zero which complicates things 1555 */ 1556 static int tcp_skb_seglen(const struct sk_buff *skb) 1557 { 1558 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1559 } 1560 1561 /* Shifting pages past head area doesn't work */ 1562 static int skb_can_shift(const struct sk_buff *skb) 1563 { 1564 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1565 } 1566 1567 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1568 int pcount, int shiftlen) 1569 { 1570 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1571 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1572 * to make sure not storing more than 65535 * 8 bytes per skb, 1573 * even if current MSS is bigger. 1574 */ 1575 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1576 return 0; 1577 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1578 return 0; 1579 return skb_shift(to, from, shiftlen); 1580 } 1581 1582 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1583 * skb. 1584 */ 1585 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1586 struct tcp_sacktag_state *state, 1587 u32 start_seq, u32 end_seq, 1588 bool dup_sack) 1589 { 1590 struct tcp_sock *tp = tcp_sk(sk); 1591 struct sk_buff *prev; 1592 int mss; 1593 int pcount = 0; 1594 int len; 1595 int in_sack; 1596 1597 /* Normally R but no L won't result in plain S */ 1598 if (!dup_sack && 1599 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1600 goto fallback; 1601 if (!skb_can_shift(skb)) 1602 goto fallback; 1603 /* This frame is about to be dropped (was ACKed). */ 1604 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1605 goto fallback; 1606 1607 /* Can only happen with delayed DSACK + discard craziness */ 1608 prev = skb_rb_prev(skb); 1609 if (!prev) 1610 goto fallback; 1611 1612 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1613 goto fallback; 1614 1615 if (!tcp_skb_can_collapse(prev, skb)) 1616 goto fallback; 1617 1618 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1619 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1620 1621 if (in_sack) { 1622 len = skb->len; 1623 pcount = tcp_skb_pcount(skb); 1624 mss = tcp_skb_seglen(skb); 1625 1626 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1627 * drop this restriction as unnecessary 1628 */ 1629 if (mss != tcp_skb_seglen(prev)) 1630 goto fallback; 1631 } else { 1632 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1633 goto noop; 1634 /* CHECKME: This is non-MSS split case only?, this will 1635 * cause skipped skbs due to advancing loop btw, original 1636 * has that feature too 1637 */ 1638 if (tcp_skb_pcount(skb) <= 1) 1639 goto noop; 1640 1641 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1642 if (!in_sack) { 1643 /* TODO: head merge to next could be attempted here 1644 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1645 * though it might not be worth of the additional hassle 1646 * 1647 * ...we can probably just fallback to what was done 1648 * previously. We could try merging non-SACKed ones 1649 * as well but it probably isn't going to buy off 1650 * because later SACKs might again split them, and 1651 * it would make skb timestamp tracking considerably 1652 * harder problem. 1653 */ 1654 goto fallback; 1655 } 1656 1657 len = end_seq - TCP_SKB_CB(skb)->seq; 1658 BUG_ON(len < 0); 1659 BUG_ON(len > skb->len); 1660 1661 /* MSS boundaries should be honoured or else pcount will 1662 * severely break even though it makes things bit trickier. 1663 * Optimize common case to avoid most of the divides 1664 */ 1665 mss = tcp_skb_mss(skb); 1666 1667 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1668 * drop this restriction as unnecessary 1669 */ 1670 if (mss != tcp_skb_seglen(prev)) 1671 goto fallback; 1672 1673 if (len == mss) { 1674 pcount = 1; 1675 } else if (len < mss) { 1676 goto noop; 1677 } else { 1678 pcount = len / mss; 1679 len = pcount * mss; 1680 } 1681 } 1682 1683 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1684 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1685 goto fallback; 1686 1687 if (!tcp_skb_shift(prev, skb, pcount, len)) 1688 goto fallback; 1689 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1690 goto out; 1691 1692 /* Hole filled allows collapsing with the next as well, this is very 1693 * useful when hole on every nth skb pattern happens 1694 */ 1695 skb = skb_rb_next(prev); 1696 if (!skb) 1697 goto out; 1698 1699 if (!skb_can_shift(skb) || 1700 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1701 (mss != tcp_skb_seglen(skb))) 1702 goto out; 1703 1704 if (!tcp_skb_can_collapse(prev, skb)) 1705 goto out; 1706 len = skb->len; 1707 pcount = tcp_skb_pcount(skb); 1708 if (tcp_skb_shift(prev, skb, pcount, len)) 1709 tcp_shifted_skb(sk, prev, skb, state, pcount, 1710 len, mss, 0); 1711 1712 out: 1713 return prev; 1714 1715 noop: 1716 return skb; 1717 1718 fallback: 1719 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1720 return NULL; 1721 } 1722 1723 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1724 struct tcp_sack_block *next_dup, 1725 struct tcp_sacktag_state *state, 1726 u32 start_seq, u32 end_seq, 1727 bool dup_sack_in) 1728 { 1729 struct tcp_sock *tp = tcp_sk(sk); 1730 struct sk_buff *tmp; 1731 1732 skb_rbtree_walk_from(skb) { 1733 int in_sack = 0; 1734 bool dup_sack = dup_sack_in; 1735 1736 /* queue is in-order => we can short-circuit the walk early */ 1737 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1738 break; 1739 1740 if (next_dup && 1741 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1742 in_sack = tcp_match_skb_to_sack(sk, skb, 1743 next_dup->start_seq, 1744 next_dup->end_seq); 1745 if (in_sack > 0) 1746 dup_sack = true; 1747 } 1748 1749 /* skb reference here is a bit tricky to get right, since 1750 * shifting can eat and free both this skb and the next, 1751 * so not even _safe variant of the loop is enough. 1752 */ 1753 if (in_sack <= 0) { 1754 tmp = tcp_shift_skb_data(sk, skb, state, 1755 start_seq, end_seq, dup_sack); 1756 if (tmp) { 1757 if (tmp != skb) { 1758 skb = tmp; 1759 continue; 1760 } 1761 1762 in_sack = 0; 1763 } else { 1764 in_sack = tcp_match_skb_to_sack(sk, skb, 1765 start_seq, 1766 end_seq); 1767 } 1768 } 1769 1770 if (unlikely(in_sack < 0)) 1771 break; 1772 1773 if (in_sack) { 1774 TCP_SKB_CB(skb)->sacked = 1775 tcp_sacktag_one(sk, 1776 state, 1777 TCP_SKB_CB(skb)->sacked, 1778 TCP_SKB_CB(skb)->seq, 1779 TCP_SKB_CB(skb)->end_seq, 1780 dup_sack, 1781 tcp_skb_pcount(skb), 1782 tcp_skb_timestamp_us(skb)); 1783 tcp_rate_skb_delivered(sk, skb, state->rate); 1784 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1785 list_del_init(&skb->tcp_tsorted_anchor); 1786 1787 if (!before(TCP_SKB_CB(skb)->seq, 1788 tcp_highest_sack_seq(tp))) 1789 tcp_advance_highest_sack(sk, skb); 1790 } 1791 } 1792 return skb; 1793 } 1794 1795 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1796 { 1797 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1798 struct sk_buff *skb; 1799 1800 while (*p) { 1801 parent = *p; 1802 skb = rb_to_skb(parent); 1803 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1804 p = &parent->rb_left; 1805 continue; 1806 } 1807 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1808 p = &parent->rb_right; 1809 continue; 1810 } 1811 return skb; 1812 } 1813 return NULL; 1814 } 1815 1816 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1817 u32 skip_to_seq) 1818 { 1819 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1820 return skb; 1821 1822 return tcp_sacktag_bsearch(sk, skip_to_seq); 1823 } 1824 1825 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1826 struct sock *sk, 1827 struct tcp_sack_block *next_dup, 1828 struct tcp_sacktag_state *state, 1829 u32 skip_to_seq) 1830 { 1831 if (!next_dup) 1832 return skb; 1833 1834 if (before(next_dup->start_seq, skip_to_seq)) { 1835 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1836 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1837 next_dup->start_seq, next_dup->end_seq, 1838 1); 1839 } 1840 1841 return skb; 1842 } 1843 1844 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1845 { 1846 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1847 } 1848 1849 static int 1850 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1851 u32 prior_snd_una, struct tcp_sacktag_state *state) 1852 { 1853 struct tcp_sock *tp = tcp_sk(sk); 1854 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1855 TCP_SKB_CB(ack_skb)->sacked); 1856 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1857 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1858 struct tcp_sack_block *cache; 1859 struct sk_buff *skb; 1860 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1861 int used_sacks; 1862 bool found_dup_sack = false; 1863 int i, j; 1864 int first_sack_index; 1865 1866 state->flag = 0; 1867 state->reord = tp->snd_nxt; 1868 1869 if (!tp->sacked_out) 1870 tcp_highest_sack_reset(sk); 1871 1872 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1873 num_sacks, prior_snd_una, state); 1874 1875 /* Eliminate too old ACKs, but take into 1876 * account more or less fresh ones, they can 1877 * contain valid SACK info. 1878 */ 1879 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1880 return 0; 1881 1882 if (!tp->packets_out) 1883 goto out; 1884 1885 used_sacks = 0; 1886 first_sack_index = 0; 1887 for (i = 0; i < num_sacks; i++) { 1888 bool dup_sack = !i && found_dup_sack; 1889 1890 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1891 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1892 1893 if (!tcp_is_sackblock_valid(tp, dup_sack, 1894 sp[used_sacks].start_seq, 1895 sp[used_sacks].end_seq)) { 1896 int mib_idx; 1897 1898 if (dup_sack) { 1899 if (!tp->undo_marker) 1900 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1901 else 1902 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1903 } else { 1904 /* Don't count olds caused by ACK reordering */ 1905 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1906 !after(sp[used_sacks].end_seq, tp->snd_una)) 1907 continue; 1908 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1909 } 1910 1911 NET_INC_STATS(sock_net(sk), mib_idx); 1912 if (i == 0) 1913 first_sack_index = -1; 1914 continue; 1915 } 1916 1917 /* Ignore very old stuff early */ 1918 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1919 if (i == 0) 1920 first_sack_index = -1; 1921 continue; 1922 } 1923 1924 used_sacks++; 1925 } 1926 1927 /* order SACK blocks to allow in order walk of the retrans queue */ 1928 for (i = used_sacks - 1; i > 0; i--) { 1929 for (j = 0; j < i; j++) { 1930 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1931 swap(sp[j], sp[j + 1]); 1932 1933 /* Track where the first SACK block goes to */ 1934 if (j == first_sack_index) 1935 first_sack_index = j + 1; 1936 } 1937 } 1938 } 1939 1940 state->mss_now = tcp_current_mss(sk); 1941 skb = NULL; 1942 i = 0; 1943 1944 if (!tp->sacked_out) { 1945 /* It's already past, so skip checking against it */ 1946 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1947 } else { 1948 cache = tp->recv_sack_cache; 1949 /* Skip empty blocks in at head of the cache */ 1950 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1951 !cache->end_seq) 1952 cache++; 1953 } 1954 1955 while (i < used_sacks) { 1956 u32 start_seq = sp[i].start_seq; 1957 u32 end_seq = sp[i].end_seq; 1958 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1959 struct tcp_sack_block *next_dup = NULL; 1960 1961 if (found_dup_sack && ((i + 1) == first_sack_index)) 1962 next_dup = &sp[i + 1]; 1963 1964 /* Skip too early cached blocks */ 1965 while (tcp_sack_cache_ok(tp, cache) && 1966 !before(start_seq, cache->end_seq)) 1967 cache++; 1968 1969 /* Can skip some work by looking recv_sack_cache? */ 1970 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1971 after(end_seq, cache->start_seq)) { 1972 1973 /* Head todo? */ 1974 if (before(start_seq, cache->start_seq)) { 1975 skb = tcp_sacktag_skip(skb, sk, start_seq); 1976 skb = tcp_sacktag_walk(skb, sk, next_dup, 1977 state, 1978 start_seq, 1979 cache->start_seq, 1980 dup_sack); 1981 } 1982 1983 /* Rest of the block already fully processed? */ 1984 if (!after(end_seq, cache->end_seq)) 1985 goto advance_sp; 1986 1987 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1988 state, 1989 cache->end_seq); 1990 1991 /* ...tail remains todo... */ 1992 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1993 /* ...but better entrypoint exists! */ 1994 skb = tcp_highest_sack(sk); 1995 if (!skb) 1996 break; 1997 cache++; 1998 goto walk; 1999 } 2000 2001 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2002 /* Check overlap against next cached too (past this one already) */ 2003 cache++; 2004 continue; 2005 } 2006 2007 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2008 skb = tcp_highest_sack(sk); 2009 if (!skb) 2010 break; 2011 } 2012 skb = tcp_sacktag_skip(skb, sk, start_seq); 2013 2014 walk: 2015 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2016 start_seq, end_seq, dup_sack); 2017 2018 advance_sp: 2019 i++; 2020 } 2021 2022 /* Clear the head of the cache sack blocks so we can skip it next time */ 2023 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2024 tp->recv_sack_cache[i].start_seq = 0; 2025 tp->recv_sack_cache[i].end_seq = 0; 2026 } 2027 for (j = 0; j < used_sacks; j++) 2028 tp->recv_sack_cache[i++] = sp[j]; 2029 2030 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2031 tcp_check_sack_reordering(sk, state->reord, 0); 2032 2033 tcp_verify_left_out(tp); 2034 out: 2035 2036 #if FASTRETRANS_DEBUG > 0 2037 WARN_ON((int)tp->sacked_out < 0); 2038 WARN_ON((int)tp->lost_out < 0); 2039 WARN_ON((int)tp->retrans_out < 0); 2040 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2041 #endif 2042 return state->flag; 2043 } 2044 2045 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2046 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2047 */ 2048 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2049 { 2050 u32 holes; 2051 2052 holes = max(tp->lost_out, 1U); 2053 holes = min(holes, tp->packets_out); 2054 2055 if ((tp->sacked_out + holes) > tp->packets_out) { 2056 tp->sacked_out = tp->packets_out - holes; 2057 return true; 2058 } 2059 return false; 2060 } 2061 2062 /* If we receive more dupacks than we expected counting segments 2063 * in assumption of absent reordering, interpret this as reordering. 2064 * The only another reason could be bug in receiver TCP. 2065 */ 2066 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2067 { 2068 struct tcp_sock *tp = tcp_sk(sk); 2069 2070 if (!tcp_limit_reno_sacked(tp)) 2071 return; 2072 2073 tp->reordering = min_t(u32, tp->packets_out + addend, 2074 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2075 tp->reord_seen++; 2076 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2077 } 2078 2079 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2080 2081 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2082 { 2083 if (num_dupack) { 2084 struct tcp_sock *tp = tcp_sk(sk); 2085 u32 prior_sacked = tp->sacked_out; 2086 s32 delivered; 2087 2088 tp->sacked_out += num_dupack; 2089 tcp_check_reno_reordering(sk, 0); 2090 delivered = tp->sacked_out - prior_sacked; 2091 if (delivered > 0) 2092 tcp_count_delivered(tp, delivered, ece_ack); 2093 tcp_verify_left_out(tp); 2094 } 2095 } 2096 2097 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2098 2099 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2100 { 2101 struct tcp_sock *tp = tcp_sk(sk); 2102 2103 if (acked > 0) { 2104 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2105 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2106 ece_ack); 2107 if (acked - 1 >= tp->sacked_out) 2108 tp->sacked_out = 0; 2109 else 2110 tp->sacked_out -= acked - 1; 2111 } 2112 tcp_check_reno_reordering(sk, acked); 2113 tcp_verify_left_out(tp); 2114 } 2115 2116 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2117 { 2118 tp->sacked_out = 0; 2119 } 2120 2121 void tcp_clear_retrans(struct tcp_sock *tp) 2122 { 2123 tp->retrans_out = 0; 2124 tp->lost_out = 0; 2125 tp->undo_marker = 0; 2126 tp->undo_retrans = -1; 2127 tp->sacked_out = 0; 2128 tp->rto_stamp = 0; 2129 tp->total_rto = 0; 2130 tp->total_rto_recoveries = 0; 2131 tp->total_rto_time = 0; 2132 } 2133 2134 static inline void tcp_init_undo(struct tcp_sock *tp) 2135 { 2136 tp->undo_marker = tp->snd_una; 2137 2138 /* Retransmission still in flight may cause DSACKs later. */ 2139 /* First, account for regular retransmits in flight: */ 2140 tp->undo_retrans = tp->retrans_out; 2141 /* Next, account for TLP retransmits in flight: */ 2142 if (tp->tlp_high_seq && tp->tlp_retrans) 2143 tp->undo_retrans++; 2144 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2145 if (!tp->undo_retrans) 2146 tp->undo_retrans = -1; 2147 } 2148 2149 static bool tcp_is_rack(const struct sock *sk) 2150 { 2151 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2152 TCP_RACK_LOSS_DETECTION; 2153 } 2154 2155 /* If we detect SACK reneging, forget all SACK information 2156 * and reset tags completely, otherwise preserve SACKs. If receiver 2157 * dropped its ofo queue, we will know this due to reneging detection. 2158 */ 2159 static void tcp_timeout_mark_lost(struct sock *sk) 2160 { 2161 struct tcp_sock *tp = tcp_sk(sk); 2162 struct sk_buff *skb, *head; 2163 bool is_reneg; /* is receiver reneging on SACKs? */ 2164 2165 head = tcp_rtx_queue_head(sk); 2166 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2167 if (is_reneg) { 2168 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2169 tp->sacked_out = 0; 2170 /* Mark SACK reneging until we recover from this loss event. */ 2171 tp->is_sack_reneg = 1; 2172 } else if (tcp_is_reno(tp)) { 2173 tcp_reset_reno_sack(tp); 2174 } 2175 2176 skb = head; 2177 skb_rbtree_walk_from(skb) { 2178 if (is_reneg) 2179 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2180 else if (tcp_is_rack(sk) && skb != head && 2181 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2182 continue; /* Don't mark recently sent ones lost yet */ 2183 tcp_mark_skb_lost(sk, skb); 2184 } 2185 tcp_verify_left_out(tp); 2186 tcp_clear_all_retrans_hints(tp); 2187 } 2188 2189 /* Enter Loss state. */ 2190 void tcp_enter_loss(struct sock *sk) 2191 { 2192 const struct inet_connection_sock *icsk = inet_csk(sk); 2193 struct tcp_sock *tp = tcp_sk(sk); 2194 struct net *net = sock_net(sk); 2195 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2196 u8 reordering; 2197 2198 tcp_timeout_mark_lost(sk); 2199 2200 /* Reduce ssthresh if it has not yet been made inside this window. */ 2201 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2202 !after(tp->high_seq, tp->snd_una) || 2203 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2204 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2205 tp->prior_cwnd = tcp_snd_cwnd(tp); 2206 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2207 tcp_ca_event(sk, CA_EVENT_LOSS); 2208 tcp_init_undo(tp); 2209 } 2210 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2211 tp->snd_cwnd_cnt = 0; 2212 tp->snd_cwnd_stamp = tcp_jiffies32; 2213 2214 /* Timeout in disordered state after receiving substantial DUPACKs 2215 * suggests that the degree of reordering is over-estimated. 2216 */ 2217 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2218 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2219 tp->sacked_out >= reordering) 2220 tp->reordering = min_t(unsigned int, tp->reordering, 2221 reordering); 2222 2223 tcp_set_ca_state(sk, TCP_CA_Loss); 2224 tp->high_seq = tp->snd_nxt; 2225 tp->tlp_high_seq = 0; 2226 tcp_ecn_queue_cwr(tp); 2227 2228 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2229 * loss recovery is underway except recurring timeout(s) on 2230 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2231 */ 2232 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2233 (new_recovery || icsk->icsk_retransmits) && 2234 !inet_csk(sk)->icsk_mtup.probe_size; 2235 } 2236 2237 /* If ACK arrived pointing to a remembered SACK, it means that our 2238 * remembered SACKs do not reflect real state of receiver i.e. 2239 * receiver _host_ is heavily congested (or buggy). 2240 * 2241 * To avoid big spurious retransmission bursts due to transient SACK 2242 * scoreboard oddities that look like reneging, we give the receiver a 2243 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2244 * restore sanity to the SACK scoreboard. If the apparent reneging 2245 * persists until this RTO then we'll clear the SACK scoreboard. 2246 */ 2247 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2248 { 2249 if (*ack_flag & FLAG_SACK_RENEGING && 2250 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2251 struct tcp_sock *tp = tcp_sk(sk); 2252 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2253 msecs_to_jiffies(10)); 2254 2255 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2256 delay, TCP_RTO_MAX); 2257 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2258 return true; 2259 } 2260 return false; 2261 } 2262 2263 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2264 * counter when SACK is enabled (without SACK, sacked_out is used for 2265 * that purpose). 2266 * 2267 * With reordering, holes may still be in flight, so RFC3517 recovery 2268 * uses pure sacked_out (total number of SACKed segments) even though 2269 * it violates the RFC that uses duplicate ACKs, often these are equal 2270 * but when e.g. out-of-window ACKs or packet duplication occurs, 2271 * they differ. Since neither occurs due to loss, TCP should really 2272 * ignore them. 2273 */ 2274 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2275 { 2276 return tp->sacked_out + 1; 2277 } 2278 2279 /* Linux NewReno/SACK/ECN state machine. 2280 * -------------------------------------- 2281 * 2282 * "Open" Normal state, no dubious events, fast path. 2283 * "Disorder" In all the respects it is "Open", 2284 * but requires a bit more attention. It is entered when 2285 * we see some SACKs or dupacks. It is split of "Open" 2286 * mainly to move some processing from fast path to slow one. 2287 * "CWR" CWND was reduced due to some Congestion Notification event. 2288 * It can be ECN, ICMP source quench, local device congestion. 2289 * "Recovery" CWND was reduced, we are fast-retransmitting. 2290 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2291 * 2292 * tcp_fastretrans_alert() is entered: 2293 * - each incoming ACK, if state is not "Open" 2294 * - when arrived ACK is unusual, namely: 2295 * * SACK 2296 * * Duplicate ACK. 2297 * * ECN ECE. 2298 * 2299 * Counting packets in flight is pretty simple. 2300 * 2301 * in_flight = packets_out - left_out + retrans_out 2302 * 2303 * packets_out is SND.NXT-SND.UNA counted in packets. 2304 * 2305 * retrans_out is number of retransmitted segments. 2306 * 2307 * left_out is number of segments left network, but not ACKed yet. 2308 * 2309 * left_out = sacked_out + lost_out 2310 * 2311 * sacked_out: Packets, which arrived to receiver out of order 2312 * and hence not ACKed. With SACKs this number is simply 2313 * amount of SACKed data. Even without SACKs 2314 * it is easy to give pretty reliable estimate of this number, 2315 * counting duplicate ACKs. 2316 * 2317 * lost_out: Packets lost by network. TCP has no explicit 2318 * "loss notification" feedback from network (for now). 2319 * It means that this number can be only _guessed_. 2320 * Actually, it is the heuristics to predict lossage that 2321 * distinguishes different algorithms. 2322 * 2323 * F.e. after RTO, when all the queue is considered as lost, 2324 * lost_out = packets_out and in_flight = retrans_out. 2325 * 2326 * Essentially, we have now a few algorithms detecting 2327 * lost packets. 2328 * 2329 * If the receiver supports SACK: 2330 * 2331 * RFC6675/3517: It is the conventional algorithm. A packet is 2332 * considered lost if the number of higher sequence packets 2333 * SACKed is greater than or equal the DUPACK thoreshold 2334 * (reordering). This is implemented in tcp_mark_head_lost and 2335 * tcp_update_scoreboard. 2336 * 2337 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2338 * (2017-) that checks timing instead of counting DUPACKs. 2339 * Essentially a packet is considered lost if it's not S/ACKed 2340 * after RTT + reordering_window, where both metrics are 2341 * dynamically measured and adjusted. This is implemented in 2342 * tcp_rack_mark_lost. 2343 * 2344 * If the receiver does not support SACK: 2345 * 2346 * NewReno (RFC6582): in Recovery we assume that one segment 2347 * is lost (classic Reno). While we are in Recovery and 2348 * a partial ACK arrives, we assume that one more packet 2349 * is lost (NewReno). This heuristics are the same in NewReno 2350 * and SACK. 2351 * 2352 * Really tricky (and requiring careful tuning) part of algorithm 2353 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2354 * The first determines the moment _when_ we should reduce CWND and, 2355 * hence, slow down forward transmission. In fact, it determines the moment 2356 * when we decide that hole is caused by loss, rather than by a reorder. 2357 * 2358 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2359 * holes, caused by lost packets. 2360 * 2361 * And the most logically complicated part of algorithm is undo 2362 * heuristics. We detect false retransmits due to both too early 2363 * fast retransmit (reordering) and underestimated RTO, analyzing 2364 * timestamps and D-SACKs. When we detect that some segments were 2365 * retransmitted by mistake and CWND reduction was wrong, we undo 2366 * window reduction and abort recovery phase. This logic is hidden 2367 * inside several functions named tcp_try_undo_<something>. 2368 */ 2369 2370 /* This function decides, when we should leave Disordered state 2371 * and enter Recovery phase, reducing congestion window. 2372 * 2373 * Main question: may we further continue forward transmission 2374 * with the same cwnd? 2375 */ 2376 static bool tcp_time_to_recover(struct sock *sk, int flag) 2377 { 2378 struct tcp_sock *tp = tcp_sk(sk); 2379 2380 /* Trick#1: The loss is proven. */ 2381 if (tp->lost_out) 2382 return true; 2383 2384 /* Not-A-Trick#2 : Classic rule... */ 2385 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2386 return true; 2387 2388 return false; 2389 } 2390 2391 /* Detect loss in event "A" above by marking head of queue up as lost. 2392 * For RFC3517 SACK, a segment is considered lost if it 2393 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2394 * the maximum SACKed segments to pass before reaching this limit. 2395 */ 2396 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2397 { 2398 struct tcp_sock *tp = tcp_sk(sk); 2399 struct sk_buff *skb; 2400 int cnt; 2401 /* Use SACK to deduce losses of new sequences sent during recovery */ 2402 const u32 loss_high = tp->snd_nxt; 2403 2404 WARN_ON(packets > tp->packets_out); 2405 skb = tp->lost_skb_hint; 2406 if (skb) { 2407 /* Head already handled? */ 2408 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2409 return; 2410 cnt = tp->lost_cnt_hint; 2411 } else { 2412 skb = tcp_rtx_queue_head(sk); 2413 cnt = 0; 2414 } 2415 2416 skb_rbtree_walk_from(skb) { 2417 /* TODO: do this better */ 2418 /* this is not the most efficient way to do this... */ 2419 tp->lost_skb_hint = skb; 2420 tp->lost_cnt_hint = cnt; 2421 2422 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2423 break; 2424 2425 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2426 cnt += tcp_skb_pcount(skb); 2427 2428 if (cnt > packets) 2429 break; 2430 2431 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2432 tcp_mark_skb_lost(sk, skb); 2433 2434 if (mark_head) 2435 break; 2436 } 2437 tcp_verify_left_out(tp); 2438 } 2439 2440 /* Account newly detected lost packet(s) */ 2441 2442 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2443 { 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 2446 if (tcp_is_sack(tp)) { 2447 int sacked_upto = tp->sacked_out - tp->reordering; 2448 if (sacked_upto >= 0) 2449 tcp_mark_head_lost(sk, sacked_upto, 0); 2450 else if (fast_rexmit) 2451 tcp_mark_head_lost(sk, 1, 1); 2452 } 2453 } 2454 2455 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2456 { 2457 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2458 before(tp->rx_opt.rcv_tsecr, when); 2459 } 2460 2461 /* skb is spurious retransmitted if the returned timestamp echo 2462 * reply is prior to the skb transmission time 2463 */ 2464 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2465 const struct sk_buff *skb) 2466 { 2467 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2468 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2469 } 2470 2471 /* Nothing was retransmitted or returned timestamp is less 2472 * than timestamp of the first retransmission. 2473 */ 2474 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2475 { 2476 const struct sock *sk = (const struct sock *)tp; 2477 2478 if (tp->retrans_stamp && 2479 tcp_tsopt_ecr_before(tp, tp->retrans_stamp)) 2480 return true; /* got echoed TS before first retransmission */ 2481 2482 /* Check if nothing was retransmitted (retrans_stamp==0), which may 2483 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp 2484 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear 2485 * retrans_stamp even if we had retransmitted the SYN. 2486 */ 2487 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */ 2488 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */ 2489 return true; /* nothing was retransmitted */ 2490 2491 return false; 2492 } 2493 2494 /* Undo procedures. */ 2495 2496 /* We can clear retrans_stamp when there are no retransmissions in the 2497 * window. It would seem that it is trivially available for us in 2498 * tp->retrans_out, however, that kind of assumptions doesn't consider 2499 * what will happen if errors occur when sending retransmission for the 2500 * second time. ...It could the that such segment has only 2501 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2502 * the head skb is enough except for some reneging corner cases that 2503 * are not worth the effort. 2504 * 2505 * Main reason for all this complexity is the fact that connection dying 2506 * time now depends on the validity of the retrans_stamp, in particular, 2507 * that successive retransmissions of a segment must not advance 2508 * retrans_stamp under any conditions. 2509 */ 2510 static bool tcp_any_retrans_done(const struct sock *sk) 2511 { 2512 const struct tcp_sock *tp = tcp_sk(sk); 2513 struct sk_buff *skb; 2514 2515 if (tp->retrans_out) 2516 return true; 2517 2518 skb = tcp_rtx_queue_head(sk); 2519 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2520 return true; 2521 2522 return false; 2523 } 2524 2525 /* If loss recovery is finished and there are no retransmits out in the 2526 * network, then we clear retrans_stamp so that upon the next loss recovery 2527 * retransmits_timed_out() and timestamp-undo are using the correct value. 2528 */ 2529 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2530 { 2531 if (!tcp_any_retrans_done(sk)) 2532 tcp_sk(sk)->retrans_stamp = 0; 2533 } 2534 2535 static void DBGUNDO(struct sock *sk, const char *msg) 2536 { 2537 #if FASTRETRANS_DEBUG > 1 2538 struct tcp_sock *tp = tcp_sk(sk); 2539 struct inet_sock *inet = inet_sk(sk); 2540 2541 if (sk->sk_family == AF_INET) { 2542 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2543 msg, 2544 &inet->inet_daddr, ntohs(inet->inet_dport), 2545 tcp_snd_cwnd(tp), tcp_left_out(tp), 2546 tp->snd_ssthresh, tp->prior_ssthresh, 2547 tp->packets_out); 2548 } 2549 #if IS_ENABLED(CONFIG_IPV6) 2550 else if (sk->sk_family == AF_INET6) { 2551 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2552 msg, 2553 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2554 tcp_snd_cwnd(tp), tcp_left_out(tp), 2555 tp->snd_ssthresh, tp->prior_ssthresh, 2556 tp->packets_out); 2557 } 2558 #endif 2559 #endif 2560 } 2561 2562 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2563 { 2564 struct tcp_sock *tp = tcp_sk(sk); 2565 2566 if (unmark_loss) { 2567 struct sk_buff *skb; 2568 2569 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2570 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2571 } 2572 tp->lost_out = 0; 2573 tcp_clear_all_retrans_hints(tp); 2574 } 2575 2576 if (tp->prior_ssthresh) { 2577 const struct inet_connection_sock *icsk = inet_csk(sk); 2578 2579 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2580 2581 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2582 tp->snd_ssthresh = tp->prior_ssthresh; 2583 tcp_ecn_withdraw_cwr(tp); 2584 } 2585 } 2586 tp->snd_cwnd_stamp = tcp_jiffies32; 2587 tp->undo_marker = 0; 2588 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2589 } 2590 2591 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2592 { 2593 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2594 } 2595 2596 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2597 { 2598 struct tcp_sock *tp = tcp_sk(sk); 2599 2600 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2601 /* Hold old state until something *above* high_seq 2602 * is ACKed. For Reno it is MUST to prevent false 2603 * fast retransmits (RFC2582). SACK TCP is safe. */ 2604 if (!tcp_any_retrans_done(sk)) 2605 tp->retrans_stamp = 0; 2606 return true; 2607 } 2608 return false; 2609 } 2610 2611 /* People celebrate: "We love our President!" */ 2612 static bool tcp_try_undo_recovery(struct sock *sk) 2613 { 2614 struct tcp_sock *tp = tcp_sk(sk); 2615 2616 if (tcp_may_undo(tp)) { 2617 int mib_idx; 2618 2619 /* Happy end! We did not retransmit anything 2620 * or our original transmission succeeded. 2621 */ 2622 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2623 tcp_undo_cwnd_reduction(sk, false); 2624 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2625 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2626 else 2627 mib_idx = LINUX_MIB_TCPFULLUNDO; 2628 2629 NET_INC_STATS(sock_net(sk), mib_idx); 2630 } else if (tp->rack.reo_wnd_persist) { 2631 tp->rack.reo_wnd_persist--; 2632 } 2633 if (tcp_is_non_sack_preventing_reopen(sk)) 2634 return true; 2635 tcp_set_ca_state(sk, TCP_CA_Open); 2636 tp->is_sack_reneg = 0; 2637 return false; 2638 } 2639 2640 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2641 static bool tcp_try_undo_dsack(struct sock *sk) 2642 { 2643 struct tcp_sock *tp = tcp_sk(sk); 2644 2645 if (tp->undo_marker && !tp->undo_retrans) { 2646 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2647 tp->rack.reo_wnd_persist + 1); 2648 DBGUNDO(sk, "D-SACK"); 2649 tcp_undo_cwnd_reduction(sk, false); 2650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2651 return true; 2652 } 2653 return false; 2654 } 2655 2656 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2657 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2658 { 2659 struct tcp_sock *tp = tcp_sk(sk); 2660 2661 if (frto_undo || tcp_may_undo(tp)) { 2662 tcp_undo_cwnd_reduction(sk, true); 2663 2664 DBGUNDO(sk, "partial loss"); 2665 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2666 if (frto_undo) 2667 NET_INC_STATS(sock_net(sk), 2668 LINUX_MIB_TCPSPURIOUSRTOS); 2669 inet_csk(sk)->icsk_retransmits = 0; 2670 if (tcp_is_non_sack_preventing_reopen(sk)) 2671 return true; 2672 if (frto_undo || tcp_is_sack(tp)) { 2673 tcp_set_ca_state(sk, TCP_CA_Open); 2674 tp->is_sack_reneg = 0; 2675 } 2676 return true; 2677 } 2678 return false; 2679 } 2680 2681 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2682 * It computes the number of packets to send (sndcnt) based on packets newly 2683 * delivered: 2684 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2685 * cwnd reductions across a full RTT. 2686 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2687 * But when SND_UNA is acked without further losses, 2688 * slow starts cwnd up to ssthresh to speed up the recovery. 2689 */ 2690 static void tcp_init_cwnd_reduction(struct sock *sk) 2691 { 2692 struct tcp_sock *tp = tcp_sk(sk); 2693 2694 tp->high_seq = tp->snd_nxt; 2695 tp->tlp_high_seq = 0; 2696 tp->snd_cwnd_cnt = 0; 2697 tp->prior_cwnd = tcp_snd_cwnd(tp); 2698 tp->prr_delivered = 0; 2699 tp->prr_out = 0; 2700 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2701 tcp_ecn_queue_cwr(tp); 2702 } 2703 2704 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2705 { 2706 struct tcp_sock *tp = tcp_sk(sk); 2707 int sndcnt = 0; 2708 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2709 2710 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2711 return; 2712 2713 tp->prr_delivered += newly_acked_sacked; 2714 if (delta < 0) { 2715 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2716 tp->prior_cwnd - 1; 2717 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2718 } else { 2719 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2720 newly_acked_sacked); 2721 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2722 sndcnt++; 2723 sndcnt = min(delta, sndcnt); 2724 } 2725 /* Force a fast retransmit upon entering fast recovery */ 2726 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2727 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2728 } 2729 2730 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2731 { 2732 struct tcp_sock *tp = tcp_sk(sk); 2733 2734 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2735 return; 2736 2737 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2738 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2739 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2740 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2741 tp->snd_cwnd_stamp = tcp_jiffies32; 2742 } 2743 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2744 } 2745 2746 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2747 void tcp_enter_cwr(struct sock *sk) 2748 { 2749 struct tcp_sock *tp = tcp_sk(sk); 2750 2751 tp->prior_ssthresh = 0; 2752 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2753 tp->undo_marker = 0; 2754 tcp_init_cwnd_reduction(sk); 2755 tcp_set_ca_state(sk, TCP_CA_CWR); 2756 } 2757 } 2758 EXPORT_SYMBOL(tcp_enter_cwr); 2759 2760 static void tcp_try_keep_open(struct sock *sk) 2761 { 2762 struct tcp_sock *tp = tcp_sk(sk); 2763 int state = TCP_CA_Open; 2764 2765 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2766 state = TCP_CA_Disorder; 2767 2768 if (inet_csk(sk)->icsk_ca_state != state) { 2769 tcp_set_ca_state(sk, state); 2770 tp->high_seq = tp->snd_nxt; 2771 } 2772 } 2773 2774 static void tcp_try_to_open(struct sock *sk, int flag) 2775 { 2776 struct tcp_sock *tp = tcp_sk(sk); 2777 2778 tcp_verify_left_out(tp); 2779 2780 if (!tcp_any_retrans_done(sk)) 2781 tp->retrans_stamp = 0; 2782 2783 if (flag & FLAG_ECE) 2784 tcp_enter_cwr(sk); 2785 2786 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2787 tcp_try_keep_open(sk); 2788 } 2789 } 2790 2791 static void tcp_mtup_probe_failed(struct sock *sk) 2792 { 2793 struct inet_connection_sock *icsk = inet_csk(sk); 2794 2795 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2796 icsk->icsk_mtup.probe_size = 0; 2797 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2798 } 2799 2800 static void tcp_mtup_probe_success(struct sock *sk) 2801 { 2802 struct tcp_sock *tp = tcp_sk(sk); 2803 struct inet_connection_sock *icsk = inet_csk(sk); 2804 u64 val; 2805 2806 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2807 2808 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2809 do_div(val, icsk->icsk_mtup.probe_size); 2810 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2811 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2812 2813 tp->snd_cwnd_cnt = 0; 2814 tp->snd_cwnd_stamp = tcp_jiffies32; 2815 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2816 2817 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2818 icsk->icsk_mtup.probe_size = 0; 2819 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2820 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2821 } 2822 2823 /* Sometimes we deduce that packets have been dropped due to reasons other than 2824 * congestion, like path MTU reductions or failed client TFO attempts. In these 2825 * cases we call this function to retransmit as many packets as cwnd allows, 2826 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2827 * non-zero value (and may do so in a later calling context due to TSQ), we 2828 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2829 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2830 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2831 * prematurely). 2832 */ 2833 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2834 { 2835 const struct inet_connection_sock *icsk = inet_csk(sk); 2836 struct tcp_sock *tp = tcp_sk(sk); 2837 2838 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2839 tp->high_seq = tp->snd_nxt; 2840 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2841 tp->prior_ssthresh = 0; 2842 tp->undo_marker = 0; 2843 tcp_set_ca_state(sk, TCP_CA_Loss); 2844 } 2845 tcp_xmit_retransmit_queue(sk); 2846 } 2847 2848 /* Do a simple retransmit without using the backoff mechanisms in 2849 * tcp_timer. This is used for path mtu discovery. 2850 * The socket is already locked here. 2851 */ 2852 void tcp_simple_retransmit(struct sock *sk) 2853 { 2854 struct tcp_sock *tp = tcp_sk(sk); 2855 struct sk_buff *skb; 2856 int mss; 2857 2858 /* A fastopen SYN request is stored as two separate packets within 2859 * the retransmit queue, this is done by tcp_send_syn_data(). 2860 * As a result simply checking the MSS of the frames in the queue 2861 * will not work for the SYN packet. 2862 * 2863 * Us being here is an indication of a path MTU issue so we can 2864 * assume that the fastopen SYN was lost and just mark all the 2865 * frames in the retransmit queue as lost. We will use an MSS of 2866 * -1 to mark all frames as lost, otherwise compute the current MSS. 2867 */ 2868 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2869 mss = -1; 2870 else 2871 mss = tcp_current_mss(sk); 2872 2873 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2874 if (tcp_skb_seglen(skb) > mss) 2875 tcp_mark_skb_lost(sk, skb); 2876 } 2877 2878 tcp_clear_retrans_hints_partial(tp); 2879 2880 if (!tp->lost_out) 2881 return; 2882 2883 if (tcp_is_reno(tp)) 2884 tcp_limit_reno_sacked(tp); 2885 2886 tcp_verify_left_out(tp); 2887 2888 /* Don't muck with the congestion window here. 2889 * Reason is that we do not increase amount of _data_ 2890 * in network, but units changed and effective 2891 * cwnd/ssthresh really reduced now. 2892 */ 2893 tcp_non_congestion_loss_retransmit(sk); 2894 } 2895 EXPORT_SYMBOL(tcp_simple_retransmit); 2896 2897 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2898 { 2899 struct tcp_sock *tp = tcp_sk(sk); 2900 int mib_idx; 2901 2902 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2903 tcp_retrans_stamp_cleanup(sk); 2904 2905 if (tcp_is_reno(tp)) 2906 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2907 else 2908 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2909 2910 NET_INC_STATS(sock_net(sk), mib_idx); 2911 2912 tp->prior_ssthresh = 0; 2913 tcp_init_undo(tp); 2914 2915 if (!tcp_in_cwnd_reduction(sk)) { 2916 if (!ece_ack) 2917 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2918 tcp_init_cwnd_reduction(sk); 2919 } 2920 tcp_set_ca_state(sk, TCP_CA_Recovery); 2921 } 2922 2923 static void tcp_update_rto_time(struct tcp_sock *tp) 2924 { 2925 if (tp->rto_stamp) { 2926 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2927 tp->rto_stamp = 0; 2928 } 2929 } 2930 2931 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2932 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2933 */ 2934 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2935 int *rexmit) 2936 { 2937 struct tcp_sock *tp = tcp_sk(sk); 2938 bool recovered = !before(tp->snd_una, tp->high_seq); 2939 2940 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2941 tcp_try_undo_loss(sk, false)) 2942 return; 2943 2944 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2945 /* Step 3.b. A timeout is spurious if not all data are 2946 * lost, i.e., never-retransmitted data are (s)acked. 2947 */ 2948 if ((flag & FLAG_ORIG_SACK_ACKED) && 2949 tcp_try_undo_loss(sk, true)) 2950 return; 2951 2952 if (after(tp->snd_nxt, tp->high_seq)) { 2953 if (flag & FLAG_DATA_SACKED || num_dupack) 2954 tp->frto = 0; /* Step 3.a. loss was real */ 2955 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2956 tp->high_seq = tp->snd_nxt; 2957 /* Step 2.b. Try send new data (but deferred until cwnd 2958 * is updated in tcp_ack()). Otherwise fall back to 2959 * the conventional recovery. 2960 */ 2961 if (!tcp_write_queue_empty(sk) && 2962 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2963 *rexmit = REXMIT_NEW; 2964 return; 2965 } 2966 tp->frto = 0; 2967 } 2968 } 2969 2970 if (recovered) { 2971 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2972 tcp_try_undo_recovery(sk); 2973 return; 2974 } 2975 if (tcp_is_reno(tp)) { 2976 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2977 * delivered. Lower inflight to clock out (re)transmissions. 2978 */ 2979 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2980 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2981 else if (flag & FLAG_SND_UNA_ADVANCED) 2982 tcp_reset_reno_sack(tp); 2983 } 2984 *rexmit = REXMIT_LOST; 2985 } 2986 2987 static bool tcp_force_fast_retransmit(struct sock *sk) 2988 { 2989 struct tcp_sock *tp = tcp_sk(sk); 2990 2991 return after(tcp_highest_sack_seq(tp), 2992 tp->snd_una + tp->reordering * tp->mss_cache); 2993 } 2994 2995 /* Undo during fast recovery after partial ACK. */ 2996 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2997 bool *do_lost) 2998 { 2999 struct tcp_sock *tp = tcp_sk(sk); 3000 3001 if (tp->undo_marker && tcp_packet_delayed(tp)) { 3002 /* Plain luck! Hole if filled with delayed 3003 * packet, rather than with a retransmit. Check reordering. 3004 */ 3005 tcp_check_sack_reordering(sk, prior_snd_una, 1); 3006 3007 /* We are getting evidence that the reordering degree is higher 3008 * than we realized. If there are no retransmits out then we 3009 * can undo. Otherwise we clock out new packets but do not 3010 * mark more packets lost or retransmit more. 3011 */ 3012 if (tp->retrans_out) 3013 return true; 3014 3015 if (!tcp_any_retrans_done(sk)) 3016 tp->retrans_stamp = 0; 3017 3018 DBGUNDO(sk, "partial recovery"); 3019 tcp_undo_cwnd_reduction(sk, true); 3020 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 3021 tcp_try_keep_open(sk); 3022 } else { 3023 /* Partial ACK arrived. Force fast retransmit. */ 3024 *do_lost = tcp_force_fast_retransmit(sk); 3025 } 3026 return false; 3027 } 3028 3029 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 3030 { 3031 struct tcp_sock *tp = tcp_sk(sk); 3032 3033 if (tcp_rtx_queue_empty(sk)) 3034 return; 3035 3036 if (unlikely(tcp_is_reno(tp))) { 3037 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3038 } else if (tcp_is_rack(sk)) { 3039 u32 prior_retrans = tp->retrans_out; 3040 3041 if (tcp_rack_mark_lost(sk)) 3042 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3043 if (prior_retrans > tp->retrans_out) 3044 *ack_flag |= FLAG_LOST_RETRANS; 3045 } 3046 } 3047 3048 /* Process an event, which can update packets-in-flight not trivially. 3049 * Main goal of this function is to calculate new estimate for left_out, 3050 * taking into account both packets sitting in receiver's buffer and 3051 * packets lost by network. 3052 * 3053 * Besides that it updates the congestion state when packet loss or ECN 3054 * is detected. But it does not reduce the cwnd, it is done by the 3055 * congestion control later. 3056 * 3057 * It does _not_ decide what to send, it is made in function 3058 * tcp_xmit_retransmit_queue(). 3059 */ 3060 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3061 int num_dupack, int *ack_flag, int *rexmit) 3062 { 3063 struct inet_connection_sock *icsk = inet_csk(sk); 3064 struct tcp_sock *tp = tcp_sk(sk); 3065 int fast_rexmit = 0, flag = *ack_flag; 3066 bool ece_ack = flag & FLAG_ECE; 3067 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3068 tcp_force_fast_retransmit(sk)); 3069 3070 if (!tp->packets_out && tp->sacked_out) 3071 tp->sacked_out = 0; 3072 3073 /* Now state machine starts. 3074 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3075 if (ece_ack) 3076 tp->prior_ssthresh = 0; 3077 3078 /* B. In all the states check for reneging SACKs. */ 3079 if (tcp_check_sack_reneging(sk, ack_flag)) 3080 return; 3081 3082 /* C. Check consistency of the current state. */ 3083 tcp_verify_left_out(tp); 3084 3085 /* D. Check state exit conditions. State can be terminated 3086 * when high_seq is ACKed. */ 3087 if (icsk->icsk_ca_state == TCP_CA_Open) { 3088 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3089 tp->retrans_stamp = 0; 3090 } else if (!before(tp->snd_una, tp->high_seq)) { 3091 switch (icsk->icsk_ca_state) { 3092 case TCP_CA_CWR: 3093 /* CWR is to be held something *above* high_seq 3094 * is ACKed for CWR bit to reach receiver. */ 3095 if (tp->snd_una != tp->high_seq) { 3096 tcp_end_cwnd_reduction(sk); 3097 tcp_set_ca_state(sk, TCP_CA_Open); 3098 } 3099 break; 3100 3101 case TCP_CA_Recovery: 3102 if (tcp_is_reno(tp)) 3103 tcp_reset_reno_sack(tp); 3104 if (tcp_try_undo_recovery(sk)) 3105 return; 3106 tcp_end_cwnd_reduction(sk); 3107 break; 3108 } 3109 } 3110 3111 /* E. Process state. */ 3112 switch (icsk->icsk_ca_state) { 3113 case TCP_CA_Recovery: 3114 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3115 if (tcp_is_reno(tp)) 3116 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3117 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3118 return; 3119 3120 if (tcp_try_undo_dsack(sk)) 3121 tcp_try_to_open(sk, flag); 3122 3123 tcp_identify_packet_loss(sk, ack_flag); 3124 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3125 if (!tcp_time_to_recover(sk, flag)) 3126 return; 3127 /* Undo reverts the recovery state. If loss is evident, 3128 * starts a new recovery (e.g. reordering then loss); 3129 */ 3130 tcp_enter_recovery(sk, ece_ack); 3131 } 3132 break; 3133 case TCP_CA_Loss: 3134 tcp_process_loss(sk, flag, num_dupack, rexmit); 3135 if (icsk->icsk_ca_state != TCP_CA_Loss) 3136 tcp_update_rto_time(tp); 3137 tcp_identify_packet_loss(sk, ack_flag); 3138 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3139 (*ack_flag & FLAG_LOST_RETRANS))) 3140 return; 3141 /* Change state if cwnd is undone or retransmits are lost */ 3142 fallthrough; 3143 default: 3144 if (tcp_is_reno(tp)) { 3145 if (flag & FLAG_SND_UNA_ADVANCED) 3146 tcp_reset_reno_sack(tp); 3147 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3148 } 3149 3150 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3151 tcp_try_undo_dsack(sk); 3152 3153 tcp_identify_packet_loss(sk, ack_flag); 3154 if (!tcp_time_to_recover(sk, flag)) { 3155 tcp_try_to_open(sk, flag); 3156 return; 3157 } 3158 3159 /* MTU probe failure: don't reduce cwnd */ 3160 if (icsk->icsk_ca_state < TCP_CA_CWR && 3161 icsk->icsk_mtup.probe_size && 3162 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3163 tcp_mtup_probe_failed(sk); 3164 /* Restores the reduction we did in tcp_mtup_probe() */ 3165 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3166 tcp_simple_retransmit(sk); 3167 return; 3168 } 3169 3170 /* Otherwise enter Recovery state */ 3171 tcp_enter_recovery(sk, ece_ack); 3172 fast_rexmit = 1; 3173 } 3174 3175 if (!tcp_is_rack(sk) && do_lost) 3176 tcp_update_scoreboard(sk, fast_rexmit); 3177 *rexmit = REXMIT_LOST; 3178 } 3179 3180 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3181 { 3182 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3183 struct tcp_sock *tp = tcp_sk(sk); 3184 3185 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3186 /* If the remote keeps returning delayed ACKs, eventually 3187 * the min filter would pick it up and overestimate the 3188 * prop. delay when it expires. Skip suspected delayed ACKs. 3189 */ 3190 return; 3191 } 3192 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3193 rtt_us ? : jiffies_to_usecs(1)); 3194 } 3195 3196 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3197 long seq_rtt_us, long sack_rtt_us, 3198 long ca_rtt_us, struct rate_sample *rs) 3199 { 3200 const struct tcp_sock *tp = tcp_sk(sk); 3201 3202 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3203 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3204 * Karn's algorithm forbids taking RTT if some retransmitted data 3205 * is acked (RFC6298). 3206 */ 3207 if (seq_rtt_us < 0) 3208 seq_rtt_us = sack_rtt_us; 3209 3210 /* RTTM Rule: A TSecr value received in a segment is used to 3211 * update the averaged RTT measurement only if the segment 3212 * acknowledges some new data, i.e., only if it advances the 3213 * left edge of the send window. 3214 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3215 */ 3216 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3217 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3218 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp); 3219 3220 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3221 if (seq_rtt_us < 0) 3222 return false; 3223 3224 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3225 * always taken together with ACK, SACK, or TS-opts. Any negative 3226 * values will be skipped with the seq_rtt_us < 0 check above. 3227 */ 3228 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3229 tcp_rtt_estimator(sk, seq_rtt_us); 3230 tcp_set_rto(sk); 3231 3232 /* RFC6298: only reset backoff on valid RTT measurement. */ 3233 inet_csk(sk)->icsk_backoff = 0; 3234 return true; 3235 } 3236 3237 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3238 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3239 { 3240 struct rate_sample rs; 3241 long rtt_us = -1L; 3242 3243 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3244 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3245 3246 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3247 } 3248 3249 3250 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3251 { 3252 const struct inet_connection_sock *icsk = inet_csk(sk); 3253 3254 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3255 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3256 } 3257 3258 /* Restart timer after forward progress on connection. 3259 * RFC2988 recommends to restart timer to now+rto. 3260 */ 3261 void tcp_rearm_rto(struct sock *sk) 3262 { 3263 const struct inet_connection_sock *icsk = inet_csk(sk); 3264 struct tcp_sock *tp = tcp_sk(sk); 3265 3266 /* If the retrans timer is currently being used by Fast Open 3267 * for SYN-ACK retrans purpose, stay put. 3268 */ 3269 if (rcu_access_pointer(tp->fastopen_rsk)) 3270 return; 3271 3272 if (!tp->packets_out) { 3273 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3274 } else { 3275 u32 rto = inet_csk(sk)->icsk_rto; 3276 /* Offset the time elapsed after installing regular RTO */ 3277 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3278 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3279 s64 delta_us = tcp_rto_delta_us(sk); 3280 /* delta_us may not be positive if the socket is locked 3281 * when the retrans timer fires and is rescheduled. 3282 */ 3283 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3284 } 3285 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3286 TCP_RTO_MAX); 3287 } 3288 } 3289 3290 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3291 static void tcp_set_xmit_timer(struct sock *sk) 3292 { 3293 if (!tcp_schedule_loss_probe(sk, true)) 3294 tcp_rearm_rto(sk); 3295 } 3296 3297 /* If we get here, the whole TSO packet has not been acked. */ 3298 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3299 { 3300 struct tcp_sock *tp = tcp_sk(sk); 3301 u32 packets_acked; 3302 3303 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3304 3305 packets_acked = tcp_skb_pcount(skb); 3306 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3307 return 0; 3308 packets_acked -= tcp_skb_pcount(skb); 3309 3310 if (packets_acked) { 3311 BUG_ON(tcp_skb_pcount(skb) == 0); 3312 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3313 } 3314 3315 return packets_acked; 3316 } 3317 3318 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3319 const struct sk_buff *ack_skb, u32 prior_snd_una) 3320 { 3321 const struct skb_shared_info *shinfo; 3322 3323 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3324 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3325 return; 3326 3327 shinfo = skb_shinfo(skb); 3328 if (!before(shinfo->tskey, prior_snd_una) && 3329 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3330 tcp_skb_tsorted_save(skb) { 3331 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3332 } tcp_skb_tsorted_restore(skb); 3333 } 3334 } 3335 3336 /* Remove acknowledged frames from the retransmission queue. If our packet 3337 * is before the ack sequence we can discard it as it's confirmed to have 3338 * arrived at the other end. 3339 */ 3340 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3341 u32 prior_fack, u32 prior_snd_una, 3342 struct tcp_sacktag_state *sack, bool ece_ack) 3343 { 3344 const struct inet_connection_sock *icsk = inet_csk(sk); 3345 u64 first_ackt, last_ackt; 3346 struct tcp_sock *tp = tcp_sk(sk); 3347 u32 prior_sacked = tp->sacked_out; 3348 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3349 struct sk_buff *skb, *next; 3350 bool fully_acked = true; 3351 long sack_rtt_us = -1L; 3352 long seq_rtt_us = -1L; 3353 long ca_rtt_us = -1L; 3354 u32 pkts_acked = 0; 3355 bool rtt_update; 3356 int flag = 0; 3357 3358 first_ackt = 0; 3359 3360 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3361 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3362 const u32 start_seq = scb->seq; 3363 u8 sacked = scb->sacked; 3364 u32 acked_pcount; 3365 3366 /* Determine how many packets and what bytes were acked, tso and else */ 3367 if (after(scb->end_seq, tp->snd_una)) { 3368 if (tcp_skb_pcount(skb) == 1 || 3369 !after(tp->snd_una, scb->seq)) 3370 break; 3371 3372 acked_pcount = tcp_tso_acked(sk, skb); 3373 if (!acked_pcount) 3374 break; 3375 fully_acked = false; 3376 } else { 3377 acked_pcount = tcp_skb_pcount(skb); 3378 } 3379 3380 if (unlikely(sacked & TCPCB_RETRANS)) { 3381 if (sacked & TCPCB_SACKED_RETRANS) 3382 tp->retrans_out -= acked_pcount; 3383 flag |= FLAG_RETRANS_DATA_ACKED; 3384 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3385 last_ackt = tcp_skb_timestamp_us(skb); 3386 WARN_ON_ONCE(last_ackt == 0); 3387 if (!first_ackt) 3388 first_ackt = last_ackt; 3389 3390 if (before(start_seq, reord)) 3391 reord = start_seq; 3392 if (!after(scb->end_seq, tp->high_seq)) 3393 flag |= FLAG_ORIG_SACK_ACKED; 3394 } 3395 3396 if (sacked & TCPCB_SACKED_ACKED) { 3397 tp->sacked_out -= acked_pcount; 3398 } else if (tcp_is_sack(tp)) { 3399 tcp_count_delivered(tp, acked_pcount, ece_ack); 3400 if (!tcp_skb_spurious_retrans(tp, skb)) 3401 tcp_rack_advance(tp, sacked, scb->end_seq, 3402 tcp_skb_timestamp_us(skb)); 3403 } 3404 if (sacked & TCPCB_LOST) 3405 tp->lost_out -= acked_pcount; 3406 3407 tp->packets_out -= acked_pcount; 3408 pkts_acked += acked_pcount; 3409 tcp_rate_skb_delivered(sk, skb, sack->rate); 3410 3411 /* Initial outgoing SYN's get put onto the write_queue 3412 * just like anything else we transmit. It is not 3413 * true data, and if we misinform our callers that 3414 * this ACK acks real data, we will erroneously exit 3415 * connection startup slow start one packet too 3416 * quickly. This is severely frowned upon behavior. 3417 */ 3418 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3419 flag |= FLAG_DATA_ACKED; 3420 } else { 3421 flag |= FLAG_SYN_ACKED; 3422 tp->retrans_stamp = 0; 3423 } 3424 3425 if (!fully_acked) 3426 break; 3427 3428 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3429 3430 next = skb_rb_next(skb); 3431 if (unlikely(skb == tp->retransmit_skb_hint)) 3432 tp->retransmit_skb_hint = NULL; 3433 if (unlikely(skb == tp->lost_skb_hint)) 3434 tp->lost_skb_hint = NULL; 3435 tcp_highest_sack_replace(sk, skb, next); 3436 tcp_rtx_queue_unlink_and_free(skb, sk); 3437 } 3438 3439 if (!skb) 3440 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3441 3442 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3443 tp->snd_up = tp->snd_una; 3444 3445 if (skb) { 3446 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3447 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3448 flag |= FLAG_SACK_RENEGING; 3449 } 3450 3451 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3452 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3453 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3454 3455 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3456 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3457 sack->rate->prior_delivered + 1 == tp->delivered && 3458 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3459 /* Conservatively mark a delayed ACK. It's typically 3460 * from a lone runt packet over the round trip to 3461 * a receiver w/o out-of-order or CE events. 3462 */ 3463 flag |= FLAG_ACK_MAYBE_DELAYED; 3464 } 3465 } 3466 if (sack->first_sackt) { 3467 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3468 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3469 } 3470 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3471 ca_rtt_us, sack->rate); 3472 3473 if (flag & FLAG_ACKED) { 3474 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3475 if (unlikely(icsk->icsk_mtup.probe_size && 3476 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3477 tcp_mtup_probe_success(sk); 3478 } 3479 3480 if (tcp_is_reno(tp)) { 3481 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3482 3483 /* If any of the cumulatively ACKed segments was 3484 * retransmitted, non-SACK case cannot confirm that 3485 * progress was due to original transmission due to 3486 * lack of TCPCB_SACKED_ACKED bits even if some of 3487 * the packets may have been never retransmitted. 3488 */ 3489 if (flag & FLAG_RETRANS_DATA_ACKED) 3490 flag &= ~FLAG_ORIG_SACK_ACKED; 3491 } else { 3492 int delta; 3493 3494 /* Non-retransmitted hole got filled? That's reordering */ 3495 if (before(reord, prior_fack)) 3496 tcp_check_sack_reordering(sk, reord, 0); 3497 3498 delta = prior_sacked - tp->sacked_out; 3499 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3500 } 3501 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3502 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3503 tcp_skb_timestamp_us(skb))) { 3504 /* Do not re-arm RTO if the sack RTT is measured from data sent 3505 * after when the head was last (re)transmitted. Otherwise the 3506 * timeout may continue to extend in loss recovery. 3507 */ 3508 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3509 } 3510 3511 if (icsk->icsk_ca_ops->pkts_acked) { 3512 struct ack_sample sample = { .pkts_acked = pkts_acked, 3513 .rtt_us = sack->rate->rtt_us }; 3514 3515 sample.in_flight = tp->mss_cache * 3516 (tp->delivered - sack->rate->prior_delivered); 3517 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3518 } 3519 3520 #if FASTRETRANS_DEBUG > 0 3521 WARN_ON((int)tp->sacked_out < 0); 3522 WARN_ON((int)tp->lost_out < 0); 3523 WARN_ON((int)tp->retrans_out < 0); 3524 if (!tp->packets_out && tcp_is_sack(tp)) { 3525 icsk = inet_csk(sk); 3526 if (tp->lost_out) { 3527 pr_debug("Leak l=%u %d\n", 3528 tp->lost_out, icsk->icsk_ca_state); 3529 tp->lost_out = 0; 3530 } 3531 if (tp->sacked_out) { 3532 pr_debug("Leak s=%u %d\n", 3533 tp->sacked_out, icsk->icsk_ca_state); 3534 tp->sacked_out = 0; 3535 } 3536 if (tp->retrans_out) { 3537 pr_debug("Leak r=%u %d\n", 3538 tp->retrans_out, icsk->icsk_ca_state); 3539 tp->retrans_out = 0; 3540 } 3541 } 3542 #endif 3543 return flag; 3544 } 3545 3546 static void tcp_ack_probe(struct sock *sk) 3547 { 3548 struct inet_connection_sock *icsk = inet_csk(sk); 3549 struct sk_buff *head = tcp_send_head(sk); 3550 const struct tcp_sock *tp = tcp_sk(sk); 3551 3552 /* Was it a usable window open? */ 3553 if (!head) 3554 return; 3555 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3556 icsk->icsk_backoff = 0; 3557 icsk->icsk_probes_tstamp = 0; 3558 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3559 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3560 * This function is not for random using! 3561 */ 3562 } else { 3563 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3564 3565 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3566 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3567 } 3568 } 3569 3570 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3571 { 3572 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3573 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3574 } 3575 3576 /* Decide wheather to run the increase function of congestion control. */ 3577 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3578 { 3579 /* If reordering is high then always grow cwnd whenever data is 3580 * delivered regardless of its ordering. Otherwise stay conservative 3581 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3582 * new SACK or ECE mark may first advance cwnd here and later reduce 3583 * cwnd in tcp_fastretrans_alert() based on more states. 3584 */ 3585 if (tcp_sk(sk)->reordering > 3586 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3587 return flag & FLAG_FORWARD_PROGRESS; 3588 3589 return flag & FLAG_DATA_ACKED; 3590 } 3591 3592 /* The "ultimate" congestion control function that aims to replace the rigid 3593 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3594 * It's called toward the end of processing an ACK with precise rate 3595 * information. All transmission or retransmission are delayed afterwards. 3596 */ 3597 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3598 int flag, const struct rate_sample *rs) 3599 { 3600 const struct inet_connection_sock *icsk = inet_csk(sk); 3601 3602 if (icsk->icsk_ca_ops->cong_control) { 3603 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3604 return; 3605 } 3606 3607 if (tcp_in_cwnd_reduction(sk)) { 3608 /* Reduce cwnd if state mandates */ 3609 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3610 } else if (tcp_may_raise_cwnd(sk, flag)) { 3611 /* Advance cwnd if state allows */ 3612 tcp_cong_avoid(sk, ack, acked_sacked); 3613 } 3614 tcp_update_pacing_rate(sk); 3615 } 3616 3617 /* Check that window update is acceptable. 3618 * The function assumes that snd_una<=ack<=snd_next. 3619 */ 3620 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3621 const u32 ack, const u32 ack_seq, 3622 const u32 nwin) 3623 { 3624 return after(ack, tp->snd_una) || 3625 after(ack_seq, tp->snd_wl1) || 3626 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3627 } 3628 3629 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3630 { 3631 #ifdef CONFIG_TCP_AO 3632 struct tcp_ao_info *ao; 3633 3634 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3635 return; 3636 3637 ao = rcu_dereference_protected(tp->ao_info, 3638 lockdep_sock_is_held((struct sock *)tp)); 3639 if (ao && ack < tp->snd_una) { 3640 ao->snd_sne++; 3641 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3642 } 3643 #endif 3644 } 3645 3646 /* If we update tp->snd_una, also update tp->bytes_acked */ 3647 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3648 { 3649 u32 delta = ack - tp->snd_una; 3650 3651 sock_owned_by_me((struct sock *)tp); 3652 tp->bytes_acked += delta; 3653 tcp_snd_sne_update(tp, ack); 3654 tp->snd_una = ack; 3655 } 3656 3657 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3658 { 3659 #ifdef CONFIG_TCP_AO 3660 struct tcp_ao_info *ao; 3661 3662 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3663 return; 3664 3665 ao = rcu_dereference_protected(tp->ao_info, 3666 lockdep_sock_is_held((struct sock *)tp)); 3667 if (ao && seq < tp->rcv_nxt) { 3668 ao->rcv_sne++; 3669 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3670 } 3671 #endif 3672 } 3673 3674 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3675 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3676 { 3677 u32 delta = seq - tp->rcv_nxt; 3678 3679 sock_owned_by_me((struct sock *)tp); 3680 tp->bytes_received += delta; 3681 tcp_rcv_sne_update(tp, seq); 3682 WRITE_ONCE(tp->rcv_nxt, seq); 3683 } 3684 3685 /* Update our send window. 3686 * 3687 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3688 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3689 */ 3690 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3691 u32 ack_seq) 3692 { 3693 struct tcp_sock *tp = tcp_sk(sk); 3694 int flag = 0; 3695 u32 nwin = ntohs(tcp_hdr(skb)->window); 3696 3697 if (likely(!tcp_hdr(skb)->syn)) 3698 nwin <<= tp->rx_opt.snd_wscale; 3699 3700 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3701 flag |= FLAG_WIN_UPDATE; 3702 tcp_update_wl(tp, ack_seq); 3703 3704 if (tp->snd_wnd != nwin) { 3705 tp->snd_wnd = nwin; 3706 3707 /* Note, it is the only place, where 3708 * fast path is recovered for sending TCP. 3709 */ 3710 tp->pred_flags = 0; 3711 tcp_fast_path_check(sk); 3712 3713 if (!tcp_write_queue_empty(sk)) 3714 tcp_slow_start_after_idle_check(sk); 3715 3716 if (nwin > tp->max_window) { 3717 tp->max_window = nwin; 3718 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3719 } 3720 } 3721 } 3722 3723 tcp_snd_una_update(tp, ack); 3724 3725 return flag; 3726 } 3727 3728 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3729 u32 *last_oow_ack_time) 3730 { 3731 /* Paired with the WRITE_ONCE() in this function. */ 3732 u32 val = READ_ONCE(*last_oow_ack_time); 3733 3734 if (val) { 3735 s32 elapsed = (s32)(tcp_jiffies32 - val); 3736 3737 if (0 <= elapsed && 3738 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3739 NET_INC_STATS(net, mib_idx); 3740 return true; /* rate-limited: don't send yet! */ 3741 } 3742 } 3743 3744 /* Paired with the prior READ_ONCE() and with itself, 3745 * as we might be lockless. 3746 */ 3747 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3748 3749 return false; /* not rate-limited: go ahead, send dupack now! */ 3750 } 3751 3752 /* Return true if we're currently rate-limiting out-of-window ACKs and 3753 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3754 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3755 * attacks that send repeated SYNs or ACKs for the same connection. To 3756 * do this, we do not send a duplicate SYNACK or ACK if the remote 3757 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3758 */ 3759 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3760 int mib_idx, u32 *last_oow_ack_time) 3761 { 3762 /* Data packets without SYNs are not likely part of an ACK loop. */ 3763 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3764 !tcp_hdr(skb)->syn) 3765 return false; 3766 3767 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3768 } 3769 3770 /* RFC 5961 7 [ACK Throttling] */ 3771 static void tcp_send_challenge_ack(struct sock *sk) 3772 { 3773 struct tcp_sock *tp = tcp_sk(sk); 3774 struct net *net = sock_net(sk); 3775 u32 count, now, ack_limit; 3776 3777 /* First check our per-socket dupack rate limit. */ 3778 if (__tcp_oow_rate_limited(net, 3779 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3780 &tp->last_oow_ack_time)) 3781 return; 3782 3783 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3784 if (ack_limit == INT_MAX) 3785 goto send_ack; 3786 3787 /* Then check host-wide RFC 5961 rate limit. */ 3788 now = jiffies / HZ; 3789 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3790 u32 half = (ack_limit + 1) >> 1; 3791 3792 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3793 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3794 get_random_u32_inclusive(half, ack_limit + half - 1)); 3795 } 3796 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3797 if (count > 0) { 3798 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3799 send_ack: 3800 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3801 tcp_send_ack(sk); 3802 } 3803 } 3804 3805 static void tcp_store_ts_recent(struct tcp_sock *tp) 3806 { 3807 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3808 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3809 } 3810 3811 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3812 { 3813 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3814 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3815 * extra check below makes sure this can only happen 3816 * for pure ACK frames. -DaveM 3817 * 3818 * Not only, also it occurs for expired timestamps. 3819 */ 3820 3821 if (tcp_paws_check(&tp->rx_opt, 0)) 3822 tcp_store_ts_recent(tp); 3823 } 3824 } 3825 3826 /* This routine deals with acks during a TLP episode and ends an episode by 3827 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3828 */ 3829 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3830 { 3831 struct tcp_sock *tp = tcp_sk(sk); 3832 3833 if (before(ack, tp->tlp_high_seq)) 3834 return; 3835 3836 if (!tp->tlp_retrans) { 3837 /* TLP of new data has been acknowledged */ 3838 tp->tlp_high_seq = 0; 3839 } else if (flag & FLAG_DSACK_TLP) { 3840 /* This DSACK means original and TLP probe arrived; no loss */ 3841 tp->tlp_high_seq = 0; 3842 } else if (after(ack, tp->tlp_high_seq)) { 3843 /* ACK advances: there was a loss, so reduce cwnd. Reset 3844 * tlp_high_seq in tcp_init_cwnd_reduction() 3845 */ 3846 tcp_init_cwnd_reduction(sk); 3847 tcp_set_ca_state(sk, TCP_CA_CWR); 3848 tcp_end_cwnd_reduction(sk); 3849 tcp_try_keep_open(sk); 3850 NET_INC_STATS(sock_net(sk), 3851 LINUX_MIB_TCPLOSSPROBERECOVERY); 3852 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3853 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3854 /* Pure dupack: original and TLP probe arrived; no loss */ 3855 tp->tlp_high_seq = 0; 3856 } 3857 } 3858 3859 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3860 { 3861 const struct inet_connection_sock *icsk = inet_csk(sk); 3862 3863 if (icsk->icsk_ca_ops->in_ack_event) 3864 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3865 } 3866 3867 /* Congestion control has updated the cwnd already. So if we're in 3868 * loss recovery then now we do any new sends (for FRTO) or 3869 * retransmits (for CA_Loss or CA_recovery) that make sense. 3870 */ 3871 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3872 { 3873 struct tcp_sock *tp = tcp_sk(sk); 3874 3875 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3876 return; 3877 3878 if (unlikely(rexmit == REXMIT_NEW)) { 3879 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3880 TCP_NAGLE_OFF); 3881 if (after(tp->snd_nxt, tp->high_seq)) 3882 return; 3883 tp->frto = 0; 3884 } 3885 tcp_xmit_retransmit_queue(sk); 3886 } 3887 3888 /* Returns the number of packets newly acked or sacked by the current ACK */ 3889 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3890 { 3891 const struct net *net = sock_net(sk); 3892 struct tcp_sock *tp = tcp_sk(sk); 3893 u32 delivered; 3894 3895 delivered = tp->delivered - prior_delivered; 3896 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3897 if (flag & FLAG_ECE) 3898 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3899 3900 return delivered; 3901 } 3902 3903 /* This routine deals with incoming acks, but not outgoing ones. */ 3904 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3905 { 3906 struct inet_connection_sock *icsk = inet_csk(sk); 3907 struct tcp_sock *tp = tcp_sk(sk); 3908 struct tcp_sacktag_state sack_state; 3909 struct rate_sample rs = { .prior_delivered = 0 }; 3910 u32 prior_snd_una = tp->snd_una; 3911 bool is_sack_reneg = tp->is_sack_reneg; 3912 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3913 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3914 int num_dupack = 0; 3915 int prior_packets = tp->packets_out; 3916 u32 delivered = tp->delivered; 3917 u32 lost = tp->lost; 3918 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3919 u32 prior_fack; 3920 3921 sack_state.first_sackt = 0; 3922 sack_state.rate = &rs; 3923 sack_state.sack_delivered = 0; 3924 3925 /* We very likely will need to access rtx queue. */ 3926 prefetch(sk->tcp_rtx_queue.rb_node); 3927 3928 /* If the ack is older than previous acks 3929 * then we can probably ignore it. 3930 */ 3931 if (before(ack, prior_snd_una)) { 3932 u32 max_window; 3933 3934 /* do not accept ACK for bytes we never sent. */ 3935 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3936 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3937 if (before(ack, prior_snd_una - max_window)) { 3938 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3939 tcp_send_challenge_ack(sk); 3940 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3941 } 3942 goto old_ack; 3943 } 3944 3945 /* If the ack includes data we haven't sent yet, discard 3946 * this segment (RFC793 Section 3.9). 3947 */ 3948 if (after(ack, tp->snd_nxt)) 3949 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3950 3951 if (after(ack, prior_snd_una)) { 3952 flag |= FLAG_SND_UNA_ADVANCED; 3953 icsk->icsk_retransmits = 0; 3954 3955 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3956 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3957 if (icsk->icsk_clean_acked) 3958 icsk->icsk_clean_acked(sk, ack); 3959 #endif 3960 } 3961 3962 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3963 rs.prior_in_flight = tcp_packets_in_flight(tp); 3964 3965 /* ts_recent update must be made after we are sure that the packet 3966 * is in window. 3967 */ 3968 if (flag & FLAG_UPDATE_TS_RECENT) 3969 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3970 3971 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3972 FLAG_SND_UNA_ADVANCED) { 3973 /* Window is constant, pure forward advance. 3974 * No more checks are required. 3975 * Note, we use the fact that SND.UNA>=SND.WL2. 3976 */ 3977 tcp_update_wl(tp, ack_seq); 3978 tcp_snd_una_update(tp, ack); 3979 flag |= FLAG_WIN_UPDATE; 3980 3981 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3982 3983 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3984 } else { 3985 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3986 3987 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3988 flag |= FLAG_DATA; 3989 else 3990 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3991 3992 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3993 3994 if (TCP_SKB_CB(skb)->sacked) 3995 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3996 &sack_state); 3997 3998 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3999 flag |= FLAG_ECE; 4000 ack_ev_flags |= CA_ACK_ECE; 4001 } 4002 4003 if (sack_state.sack_delivered) 4004 tcp_count_delivered(tp, sack_state.sack_delivered, 4005 flag & FLAG_ECE); 4006 4007 if (flag & FLAG_WIN_UPDATE) 4008 ack_ev_flags |= CA_ACK_WIN_UPDATE; 4009 4010 tcp_in_ack_event(sk, ack_ev_flags); 4011 } 4012 4013 /* This is a deviation from RFC3168 since it states that: 4014 * "When the TCP data sender is ready to set the CWR bit after reducing 4015 * the congestion window, it SHOULD set the CWR bit only on the first 4016 * new data packet that it transmits." 4017 * We accept CWR on pure ACKs to be more robust 4018 * with widely-deployed TCP implementations that do this. 4019 */ 4020 tcp_ecn_accept_cwr(sk, skb); 4021 4022 /* We passed data and got it acked, remove any soft error 4023 * log. Something worked... 4024 */ 4025 WRITE_ONCE(sk->sk_err_soft, 0); 4026 icsk->icsk_probes_out = 0; 4027 tp->rcv_tstamp = tcp_jiffies32; 4028 if (!prior_packets) 4029 goto no_queue; 4030 4031 /* See if we can take anything off of the retransmit queue. */ 4032 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 4033 &sack_state, flag & FLAG_ECE); 4034 4035 tcp_rack_update_reo_wnd(sk, &rs); 4036 4037 if (tp->tlp_high_seq) 4038 tcp_process_tlp_ack(sk, ack, flag); 4039 4040 if (tcp_ack_is_dubious(sk, flag)) { 4041 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4042 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4043 num_dupack = 1; 4044 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4045 if (!(flag & FLAG_DATA)) 4046 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4047 } 4048 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4049 &rexmit); 4050 } 4051 4052 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4053 if (flag & FLAG_SET_XMIT_TIMER) 4054 tcp_set_xmit_timer(sk); 4055 4056 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4057 sk_dst_confirm(sk); 4058 4059 delivered = tcp_newly_delivered(sk, delivered, flag); 4060 lost = tp->lost - lost; /* freshly marked lost */ 4061 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4062 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4063 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4064 tcp_xmit_recovery(sk, rexmit); 4065 return 1; 4066 4067 no_queue: 4068 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4069 if (flag & FLAG_DSACKING_ACK) { 4070 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4071 &rexmit); 4072 tcp_newly_delivered(sk, delivered, flag); 4073 } 4074 /* If this ack opens up a zero window, clear backoff. It was 4075 * being used to time the probes, and is probably far higher than 4076 * it needs to be for normal retransmission. 4077 */ 4078 tcp_ack_probe(sk); 4079 4080 if (tp->tlp_high_seq) 4081 tcp_process_tlp_ack(sk, ack, flag); 4082 return 1; 4083 4084 old_ack: 4085 /* If data was SACKed, tag it and see if we should send more data. 4086 * If data was DSACKed, see if we can undo a cwnd reduction. 4087 */ 4088 if (TCP_SKB_CB(skb)->sacked) { 4089 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4090 &sack_state); 4091 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4092 &rexmit); 4093 tcp_newly_delivered(sk, delivered, flag); 4094 tcp_xmit_recovery(sk, rexmit); 4095 } 4096 4097 return 0; 4098 } 4099 4100 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4101 bool syn, struct tcp_fastopen_cookie *foc, 4102 bool exp_opt) 4103 { 4104 /* Valid only in SYN or SYN-ACK with an even length. */ 4105 if (!foc || !syn || len < 0 || (len & 1)) 4106 return; 4107 4108 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4109 len <= TCP_FASTOPEN_COOKIE_MAX) 4110 memcpy(foc->val, cookie, len); 4111 else if (len != 0) 4112 len = -1; 4113 foc->len = len; 4114 foc->exp = exp_opt; 4115 } 4116 4117 static bool smc_parse_options(const struct tcphdr *th, 4118 struct tcp_options_received *opt_rx, 4119 const unsigned char *ptr, 4120 int opsize) 4121 { 4122 #if IS_ENABLED(CONFIG_SMC) 4123 if (static_branch_unlikely(&tcp_have_smc)) { 4124 if (th->syn && !(opsize & 1) && 4125 opsize >= TCPOLEN_EXP_SMC_BASE && 4126 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4127 opt_rx->smc_ok = 1; 4128 return true; 4129 } 4130 } 4131 #endif 4132 return false; 4133 } 4134 4135 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4136 * value on success. 4137 */ 4138 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4139 { 4140 const unsigned char *ptr = (const unsigned char *)(th + 1); 4141 int length = (th->doff * 4) - sizeof(struct tcphdr); 4142 u16 mss = 0; 4143 4144 while (length > 0) { 4145 int opcode = *ptr++; 4146 int opsize; 4147 4148 switch (opcode) { 4149 case TCPOPT_EOL: 4150 return mss; 4151 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4152 length--; 4153 continue; 4154 default: 4155 if (length < 2) 4156 return mss; 4157 opsize = *ptr++; 4158 if (opsize < 2) /* "silly options" */ 4159 return mss; 4160 if (opsize > length) 4161 return mss; /* fail on partial options */ 4162 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4163 u16 in_mss = get_unaligned_be16(ptr); 4164 4165 if (in_mss) { 4166 if (user_mss && user_mss < in_mss) 4167 in_mss = user_mss; 4168 mss = in_mss; 4169 } 4170 } 4171 ptr += opsize - 2; 4172 length -= opsize; 4173 } 4174 } 4175 return mss; 4176 } 4177 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4178 4179 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4180 * But, this can also be called on packets in the established flow when 4181 * the fast version below fails. 4182 */ 4183 void tcp_parse_options(const struct net *net, 4184 const struct sk_buff *skb, 4185 struct tcp_options_received *opt_rx, int estab, 4186 struct tcp_fastopen_cookie *foc) 4187 { 4188 const unsigned char *ptr; 4189 const struct tcphdr *th = tcp_hdr(skb); 4190 int length = (th->doff * 4) - sizeof(struct tcphdr); 4191 4192 ptr = (const unsigned char *)(th + 1); 4193 opt_rx->saw_tstamp = 0; 4194 opt_rx->saw_unknown = 0; 4195 4196 while (length > 0) { 4197 int opcode = *ptr++; 4198 int opsize; 4199 4200 switch (opcode) { 4201 case TCPOPT_EOL: 4202 return; 4203 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4204 length--; 4205 continue; 4206 default: 4207 if (length < 2) 4208 return; 4209 opsize = *ptr++; 4210 if (opsize < 2) /* "silly options" */ 4211 return; 4212 if (opsize > length) 4213 return; /* don't parse partial options */ 4214 switch (opcode) { 4215 case TCPOPT_MSS: 4216 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4217 u16 in_mss = get_unaligned_be16(ptr); 4218 if (in_mss) { 4219 if (opt_rx->user_mss && 4220 opt_rx->user_mss < in_mss) 4221 in_mss = opt_rx->user_mss; 4222 opt_rx->mss_clamp = in_mss; 4223 } 4224 } 4225 break; 4226 case TCPOPT_WINDOW: 4227 if (opsize == TCPOLEN_WINDOW && th->syn && 4228 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4229 __u8 snd_wscale = *(__u8 *)ptr; 4230 opt_rx->wscale_ok = 1; 4231 if (snd_wscale > TCP_MAX_WSCALE) { 4232 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4233 __func__, 4234 snd_wscale, 4235 TCP_MAX_WSCALE); 4236 snd_wscale = TCP_MAX_WSCALE; 4237 } 4238 opt_rx->snd_wscale = snd_wscale; 4239 } 4240 break; 4241 case TCPOPT_TIMESTAMP: 4242 if ((opsize == TCPOLEN_TIMESTAMP) && 4243 ((estab && opt_rx->tstamp_ok) || 4244 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4245 opt_rx->saw_tstamp = 1; 4246 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4247 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4248 } 4249 break; 4250 case TCPOPT_SACK_PERM: 4251 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4252 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4253 opt_rx->sack_ok = TCP_SACK_SEEN; 4254 tcp_sack_reset(opt_rx); 4255 } 4256 break; 4257 4258 case TCPOPT_SACK: 4259 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4260 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4261 opt_rx->sack_ok) { 4262 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4263 } 4264 break; 4265 #ifdef CONFIG_TCP_MD5SIG 4266 case TCPOPT_MD5SIG: 4267 /* The MD5 Hash has already been 4268 * checked (see tcp_v{4,6}_rcv()). 4269 */ 4270 break; 4271 #endif 4272 #ifdef CONFIG_TCP_AO 4273 case TCPOPT_AO: 4274 /* TCP AO has already been checked 4275 * (see tcp_inbound_ao_hash()). 4276 */ 4277 break; 4278 #endif 4279 case TCPOPT_FASTOPEN: 4280 tcp_parse_fastopen_option( 4281 opsize - TCPOLEN_FASTOPEN_BASE, 4282 ptr, th->syn, foc, false); 4283 break; 4284 4285 case TCPOPT_EXP: 4286 /* Fast Open option shares code 254 using a 4287 * 16 bits magic number. 4288 */ 4289 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4290 get_unaligned_be16(ptr) == 4291 TCPOPT_FASTOPEN_MAGIC) { 4292 tcp_parse_fastopen_option(opsize - 4293 TCPOLEN_EXP_FASTOPEN_BASE, 4294 ptr + 2, th->syn, foc, true); 4295 break; 4296 } 4297 4298 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4299 break; 4300 4301 opt_rx->saw_unknown = 1; 4302 break; 4303 4304 default: 4305 opt_rx->saw_unknown = 1; 4306 } 4307 ptr += opsize-2; 4308 length -= opsize; 4309 } 4310 } 4311 } 4312 EXPORT_SYMBOL(tcp_parse_options); 4313 4314 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4315 { 4316 const __be32 *ptr = (const __be32 *)(th + 1); 4317 4318 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4319 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4320 tp->rx_opt.saw_tstamp = 1; 4321 ++ptr; 4322 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4323 ++ptr; 4324 if (*ptr) 4325 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4326 else 4327 tp->rx_opt.rcv_tsecr = 0; 4328 return true; 4329 } 4330 return false; 4331 } 4332 4333 /* Fast parse options. This hopes to only see timestamps. 4334 * If it is wrong it falls back on tcp_parse_options(). 4335 */ 4336 static bool tcp_fast_parse_options(const struct net *net, 4337 const struct sk_buff *skb, 4338 const struct tcphdr *th, struct tcp_sock *tp) 4339 { 4340 /* In the spirit of fast parsing, compare doff directly to constant 4341 * values. Because equality is used, short doff can be ignored here. 4342 */ 4343 if (th->doff == (sizeof(*th) / 4)) { 4344 tp->rx_opt.saw_tstamp = 0; 4345 return false; 4346 } else if (tp->rx_opt.tstamp_ok && 4347 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4348 if (tcp_parse_aligned_timestamp(tp, th)) 4349 return true; 4350 } 4351 4352 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4353 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4354 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4355 4356 return true; 4357 } 4358 4359 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4360 /* 4361 * Parse Signature options 4362 */ 4363 int tcp_do_parse_auth_options(const struct tcphdr *th, 4364 const u8 **md5_hash, const u8 **ao_hash) 4365 { 4366 int length = (th->doff << 2) - sizeof(*th); 4367 const u8 *ptr = (const u8 *)(th + 1); 4368 unsigned int minlen = TCPOLEN_MD5SIG; 4369 4370 if (IS_ENABLED(CONFIG_TCP_AO)) 4371 minlen = sizeof(struct tcp_ao_hdr) + 1; 4372 4373 *md5_hash = NULL; 4374 *ao_hash = NULL; 4375 4376 /* If not enough data remaining, we can short cut */ 4377 while (length >= minlen) { 4378 int opcode = *ptr++; 4379 int opsize; 4380 4381 switch (opcode) { 4382 case TCPOPT_EOL: 4383 return 0; 4384 case TCPOPT_NOP: 4385 length--; 4386 continue; 4387 default: 4388 opsize = *ptr++; 4389 if (opsize < 2 || opsize > length) 4390 return -EINVAL; 4391 if (opcode == TCPOPT_MD5SIG) { 4392 if (opsize != TCPOLEN_MD5SIG) 4393 return -EINVAL; 4394 if (unlikely(*md5_hash || *ao_hash)) 4395 return -EEXIST; 4396 *md5_hash = ptr; 4397 } else if (opcode == TCPOPT_AO) { 4398 if (opsize <= sizeof(struct tcp_ao_hdr)) 4399 return -EINVAL; 4400 if (unlikely(*md5_hash || *ao_hash)) 4401 return -EEXIST; 4402 *ao_hash = ptr; 4403 } 4404 } 4405 ptr += opsize - 2; 4406 length -= opsize; 4407 } 4408 return 0; 4409 } 4410 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4411 #endif 4412 4413 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4414 * 4415 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4416 * it can pass through stack. So, the following predicate verifies that 4417 * this segment is not used for anything but congestion avoidance or 4418 * fast retransmit. Moreover, we even are able to eliminate most of such 4419 * second order effects, if we apply some small "replay" window (~RTO) 4420 * to timestamp space. 4421 * 4422 * All these measures still do not guarantee that we reject wrapped ACKs 4423 * on networks with high bandwidth, when sequence space is recycled fastly, 4424 * but it guarantees that such events will be very rare and do not affect 4425 * connection seriously. This doesn't look nice, but alas, PAWS is really 4426 * buggy extension. 4427 * 4428 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4429 * states that events when retransmit arrives after original data are rare. 4430 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4431 * the biggest problem on large power networks even with minor reordering. 4432 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4433 * up to bandwidth of 18Gigabit/sec. 8) ] 4434 */ 4435 4436 /* Estimates max number of increments of remote peer TSval in 4437 * a replay window (based on our current RTO estimation). 4438 */ 4439 static u32 tcp_tsval_replay(const struct sock *sk) 4440 { 4441 /* If we use usec TS resolution, 4442 * then expect the remote peer to use the same resolution. 4443 */ 4444 if (tcp_sk(sk)->tcp_usec_ts) 4445 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4446 4447 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4448 * We know that some OS (including old linux) can use 1200 Hz. 4449 */ 4450 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4451 } 4452 4453 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4454 { 4455 const struct tcp_sock *tp = tcp_sk(sk); 4456 const struct tcphdr *th = tcp_hdr(skb); 4457 u32 seq = TCP_SKB_CB(skb)->seq; 4458 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4459 4460 return /* 1. Pure ACK with correct sequence number. */ 4461 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4462 4463 /* 2. ... and duplicate ACK. */ 4464 ack == tp->snd_una && 4465 4466 /* 3. ... and does not update window. */ 4467 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4468 4469 /* 4. ... and sits in replay window. */ 4470 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= 4471 tcp_tsval_replay(sk); 4472 } 4473 4474 static inline bool tcp_paws_discard(const struct sock *sk, 4475 const struct sk_buff *skb) 4476 { 4477 const struct tcp_sock *tp = tcp_sk(sk); 4478 4479 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4480 !tcp_disordered_ack(sk, skb); 4481 } 4482 4483 /* Check segment sequence number for validity. 4484 * 4485 * Segment controls are considered valid, if the segment 4486 * fits to the window after truncation to the window. Acceptability 4487 * of data (and SYN, FIN, of course) is checked separately. 4488 * See tcp_data_queue(), for example. 4489 * 4490 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4491 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4492 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4493 * (borrowed from freebsd) 4494 */ 4495 4496 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4497 u32 seq, u32 end_seq) 4498 { 4499 if (before(end_seq, tp->rcv_wup)) 4500 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4501 4502 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4503 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4504 4505 return SKB_NOT_DROPPED_YET; 4506 } 4507 4508 4509 void tcp_done_with_error(struct sock *sk, int err) 4510 { 4511 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4512 WRITE_ONCE(sk->sk_err, err); 4513 smp_wmb(); 4514 4515 tcp_write_queue_purge(sk); 4516 tcp_done(sk); 4517 4518 if (!sock_flag(sk, SOCK_DEAD)) 4519 sk_error_report(sk); 4520 } 4521 EXPORT_SYMBOL(tcp_done_with_error); 4522 4523 /* When we get a reset we do this. */ 4524 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4525 { 4526 int err; 4527 4528 trace_tcp_receive_reset(sk); 4529 4530 /* mptcp can't tell us to ignore reset pkts, 4531 * so just ignore the return value of mptcp_incoming_options(). 4532 */ 4533 if (sk_is_mptcp(sk)) 4534 mptcp_incoming_options(sk, skb); 4535 4536 /* We want the right error as BSD sees it (and indeed as we do). */ 4537 switch (sk->sk_state) { 4538 case TCP_SYN_SENT: 4539 err = ECONNREFUSED; 4540 break; 4541 case TCP_CLOSE_WAIT: 4542 err = EPIPE; 4543 break; 4544 case TCP_CLOSE: 4545 return; 4546 default: 4547 err = ECONNRESET; 4548 } 4549 tcp_done_with_error(sk, err); 4550 } 4551 4552 /* 4553 * Process the FIN bit. This now behaves as it is supposed to work 4554 * and the FIN takes effect when it is validly part of sequence 4555 * space. Not before when we get holes. 4556 * 4557 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4558 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4559 * TIME-WAIT) 4560 * 4561 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4562 * close and we go into CLOSING (and later onto TIME-WAIT) 4563 * 4564 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4565 */ 4566 void tcp_fin(struct sock *sk) 4567 { 4568 struct tcp_sock *tp = tcp_sk(sk); 4569 4570 inet_csk_schedule_ack(sk); 4571 4572 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4573 sock_set_flag(sk, SOCK_DONE); 4574 4575 switch (sk->sk_state) { 4576 case TCP_SYN_RECV: 4577 case TCP_ESTABLISHED: 4578 /* Move to CLOSE_WAIT */ 4579 tcp_set_state(sk, TCP_CLOSE_WAIT); 4580 inet_csk_enter_pingpong_mode(sk); 4581 break; 4582 4583 case TCP_CLOSE_WAIT: 4584 case TCP_CLOSING: 4585 /* Received a retransmission of the FIN, do 4586 * nothing. 4587 */ 4588 break; 4589 case TCP_LAST_ACK: 4590 /* RFC793: Remain in the LAST-ACK state. */ 4591 break; 4592 4593 case TCP_FIN_WAIT1: 4594 /* This case occurs when a simultaneous close 4595 * happens, we must ack the received FIN and 4596 * enter the CLOSING state. 4597 */ 4598 tcp_send_ack(sk); 4599 tcp_set_state(sk, TCP_CLOSING); 4600 break; 4601 case TCP_FIN_WAIT2: 4602 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4603 tcp_send_ack(sk); 4604 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4605 break; 4606 default: 4607 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4608 * cases we should never reach this piece of code. 4609 */ 4610 pr_err("%s: Impossible, sk->sk_state=%d\n", 4611 __func__, sk->sk_state); 4612 break; 4613 } 4614 4615 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4616 * Probably, we should reset in this case. For now drop them. 4617 */ 4618 skb_rbtree_purge(&tp->out_of_order_queue); 4619 if (tcp_is_sack(tp)) 4620 tcp_sack_reset(&tp->rx_opt); 4621 4622 if (!sock_flag(sk, SOCK_DEAD)) { 4623 sk->sk_state_change(sk); 4624 4625 /* Do not send POLL_HUP for half duplex close. */ 4626 if (sk->sk_shutdown == SHUTDOWN_MASK || 4627 sk->sk_state == TCP_CLOSE) 4628 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4629 else 4630 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4631 } 4632 } 4633 4634 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4635 u32 end_seq) 4636 { 4637 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4638 if (before(seq, sp->start_seq)) 4639 sp->start_seq = seq; 4640 if (after(end_seq, sp->end_seq)) 4641 sp->end_seq = end_seq; 4642 return true; 4643 } 4644 return false; 4645 } 4646 4647 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4648 { 4649 struct tcp_sock *tp = tcp_sk(sk); 4650 4651 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4652 int mib_idx; 4653 4654 if (before(seq, tp->rcv_nxt)) 4655 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4656 else 4657 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4658 4659 NET_INC_STATS(sock_net(sk), mib_idx); 4660 4661 tp->rx_opt.dsack = 1; 4662 tp->duplicate_sack[0].start_seq = seq; 4663 tp->duplicate_sack[0].end_seq = end_seq; 4664 } 4665 } 4666 4667 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4668 { 4669 struct tcp_sock *tp = tcp_sk(sk); 4670 4671 if (!tp->rx_opt.dsack) 4672 tcp_dsack_set(sk, seq, end_seq); 4673 else 4674 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4675 } 4676 4677 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4678 { 4679 /* When the ACK path fails or drops most ACKs, the sender would 4680 * timeout and spuriously retransmit the same segment repeatedly. 4681 * If it seems our ACKs are not reaching the other side, 4682 * based on receiving a duplicate data segment with new flowlabel 4683 * (suggesting the sender suffered an RTO), and we are not already 4684 * repathing due to our own RTO, then rehash the socket to repath our 4685 * packets. 4686 */ 4687 #if IS_ENABLED(CONFIG_IPV6) 4688 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4689 skb->protocol == htons(ETH_P_IPV6) && 4690 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4691 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4692 sk_rethink_txhash(sk)) 4693 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4694 4695 /* Save last flowlabel after a spurious retrans. */ 4696 tcp_save_lrcv_flowlabel(sk, skb); 4697 #endif 4698 } 4699 4700 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4701 { 4702 struct tcp_sock *tp = tcp_sk(sk); 4703 4704 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4705 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4706 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4707 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4708 4709 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4710 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4711 4712 tcp_rcv_spurious_retrans(sk, skb); 4713 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4714 end_seq = tp->rcv_nxt; 4715 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4716 } 4717 } 4718 4719 tcp_send_ack(sk); 4720 } 4721 4722 /* These routines update the SACK block as out-of-order packets arrive or 4723 * in-order packets close up the sequence space. 4724 */ 4725 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4726 { 4727 int this_sack; 4728 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4729 struct tcp_sack_block *swalk = sp + 1; 4730 4731 /* See if the recent change to the first SACK eats into 4732 * or hits the sequence space of other SACK blocks, if so coalesce. 4733 */ 4734 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4735 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4736 int i; 4737 4738 /* Zap SWALK, by moving every further SACK up by one slot. 4739 * Decrease num_sacks. 4740 */ 4741 tp->rx_opt.num_sacks--; 4742 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4743 sp[i] = sp[i + 1]; 4744 continue; 4745 } 4746 this_sack++; 4747 swalk++; 4748 } 4749 } 4750 4751 void tcp_sack_compress_send_ack(struct sock *sk) 4752 { 4753 struct tcp_sock *tp = tcp_sk(sk); 4754 4755 if (!tp->compressed_ack) 4756 return; 4757 4758 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4759 __sock_put(sk); 4760 4761 /* Since we have to send one ack finally, 4762 * substract one from tp->compressed_ack to keep 4763 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4764 */ 4765 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4766 tp->compressed_ack - 1); 4767 4768 tp->compressed_ack = 0; 4769 tcp_send_ack(sk); 4770 } 4771 4772 /* Reasonable amount of sack blocks included in TCP SACK option 4773 * The max is 4, but this becomes 3 if TCP timestamps are there. 4774 * Given that SACK packets might be lost, be conservative and use 2. 4775 */ 4776 #define TCP_SACK_BLOCKS_EXPECTED 2 4777 4778 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4779 { 4780 struct tcp_sock *tp = tcp_sk(sk); 4781 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4782 int cur_sacks = tp->rx_opt.num_sacks; 4783 int this_sack; 4784 4785 if (!cur_sacks) 4786 goto new_sack; 4787 4788 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4789 if (tcp_sack_extend(sp, seq, end_seq)) { 4790 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4791 tcp_sack_compress_send_ack(sk); 4792 /* Rotate this_sack to the first one. */ 4793 for (; this_sack > 0; this_sack--, sp--) 4794 swap(*sp, *(sp - 1)); 4795 if (cur_sacks > 1) 4796 tcp_sack_maybe_coalesce(tp); 4797 return; 4798 } 4799 } 4800 4801 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4802 tcp_sack_compress_send_ack(sk); 4803 4804 /* Could not find an adjacent existing SACK, build a new one, 4805 * put it at the front, and shift everyone else down. We 4806 * always know there is at least one SACK present already here. 4807 * 4808 * If the sack array is full, forget about the last one. 4809 */ 4810 if (this_sack >= TCP_NUM_SACKS) { 4811 this_sack--; 4812 tp->rx_opt.num_sacks--; 4813 sp--; 4814 } 4815 for (; this_sack > 0; this_sack--, sp--) 4816 *sp = *(sp - 1); 4817 4818 new_sack: 4819 /* Build the new head SACK, and we're done. */ 4820 sp->start_seq = seq; 4821 sp->end_seq = end_seq; 4822 tp->rx_opt.num_sacks++; 4823 } 4824 4825 /* RCV.NXT advances, some SACKs should be eaten. */ 4826 4827 static void tcp_sack_remove(struct tcp_sock *tp) 4828 { 4829 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4830 int num_sacks = tp->rx_opt.num_sacks; 4831 int this_sack; 4832 4833 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4834 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4835 tp->rx_opt.num_sacks = 0; 4836 return; 4837 } 4838 4839 for (this_sack = 0; this_sack < num_sacks;) { 4840 /* Check if the start of the sack is covered by RCV.NXT. */ 4841 if (!before(tp->rcv_nxt, sp->start_seq)) { 4842 int i; 4843 4844 /* RCV.NXT must cover all the block! */ 4845 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4846 4847 /* Zap this SACK, by moving forward any other SACKS. */ 4848 for (i = this_sack+1; i < num_sacks; i++) 4849 tp->selective_acks[i-1] = tp->selective_acks[i]; 4850 num_sacks--; 4851 continue; 4852 } 4853 this_sack++; 4854 sp++; 4855 } 4856 tp->rx_opt.num_sacks = num_sacks; 4857 } 4858 4859 /** 4860 * tcp_try_coalesce - try to merge skb to prior one 4861 * @sk: socket 4862 * @to: prior buffer 4863 * @from: buffer to add in queue 4864 * @fragstolen: pointer to boolean 4865 * 4866 * Before queueing skb @from after @to, try to merge them 4867 * to reduce overall memory use and queue lengths, if cost is small. 4868 * Packets in ofo or receive queues can stay a long time. 4869 * Better try to coalesce them right now to avoid future collapses. 4870 * Returns true if caller should free @from instead of queueing it 4871 */ 4872 static bool tcp_try_coalesce(struct sock *sk, 4873 struct sk_buff *to, 4874 struct sk_buff *from, 4875 bool *fragstolen) 4876 { 4877 int delta; 4878 4879 *fragstolen = false; 4880 4881 /* Its possible this segment overlaps with prior segment in queue */ 4882 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4883 return false; 4884 4885 if (!tcp_skb_can_collapse_rx(to, from)) 4886 return false; 4887 4888 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4889 return false; 4890 4891 atomic_add(delta, &sk->sk_rmem_alloc); 4892 sk_mem_charge(sk, delta); 4893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4894 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4895 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4896 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4897 4898 if (TCP_SKB_CB(from)->has_rxtstamp) { 4899 TCP_SKB_CB(to)->has_rxtstamp = true; 4900 to->tstamp = from->tstamp; 4901 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4902 } 4903 4904 return true; 4905 } 4906 4907 static bool tcp_ooo_try_coalesce(struct sock *sk, 4908 struct sk_buff *to, 4909 struct sk_buff *from, 4910 bool *fragstolen) 4911 { 4912 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4913 4914 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4915 if (res) { 4916 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4917 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4918 4919 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4920 } 4921 return res; 4922 } 4923 4924 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4925 enum skb_drop_reason reason) 4926 { 4927 sk_drops_add(sk, skb); 4928 sk_skb_reason_drop(sk, skb, reason); 4929 } 4930 4931 /* This one checks to see if we can put data from the 4932 * out_of_order queue into the receive_queue. 4933 */ 4934 static void tcp_ofo_queue(struct sock *sk) 4935 { 4936 struct tcp_sock *tp = tcp_sk(sk); 4937 __u32 dsack_high = tp->rcv_nxt; 4938 bool fin, fragstolen, eaten; 4939 struct sk_buff *skb, *tail; 4940 struct rb_node *p; 4941 4942 p = rb_first(&tp->out_of_order_queue); 4943 while (p) { 4944 skb = rb_to_skb(p); 4945 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4946 break; 4947 4948 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4949 __u32 dsack = dsack_high; 4950 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4951 dsack_high = TCP_SKB_CB(skb)->end_seq; 4952 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4953 } 4954 p = rb_next(p); 4955 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4956 4957 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4958 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4959 continue; 4960 } 4961 4962 tail = skb_peek_tail(&sk->sk_receive_queue); 4963 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4964 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4965 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4966 if (!eaten) 4967 __skb_queue_tail(&sk->sk_receive_queue, skb); 4968 else 4969 kfree_skb_partial(skb, fragstolen); 4970 4971 if (unlikely(fin)) { 4972 tcp_fin(sk); 4973 /* tcp_fin() purges tp->out_of_order_queue, 4974 * so we must end this loop right now. 4975 */ 4976 break; 4977 } 4978 } 4979 } 4980 4981 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4982 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4983 4984 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4985 unsigned int size) 4986 { 4987 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4988 !sk_rmem_schedule(sk, skb, size)) { 4989 4990 if (tcp_prune_queue(sk, skb) < 0) 4991 return -1; 4992 4993 while (!sk_rmem_schedule(sk, skb, size)) { 4994 if (!tcp_prune_ofo_queue(sk, skb)) 4995 return -1; 4996 } 4997 } 4998 return 0; 4999 } 5000 5001 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 5002 { 5003 struct tcp_sock *tp = tcp_sk(sk); 5004 struct rb_node **p, *parent; 5005 struct sk_buff *skb1; 5006 u32 seq, end_seq; 5007 bool fragstolen; 5008 5009 tcp_save_lrcv_flowlabel(sk, skb); 5010 tcp_ecn_check_ce(sk, skb); 5011 5012 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 5013 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 5014 sk->sk_data_ready(sk); 5015 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 5016 return; 5017 } 5018 5019 /* Disable header prediction. */ 5020 tp->pred_flags = 0; 5021 inet_csk_schedule_ack(sk); 5022 5023 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 5024 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 5025 seq = TCP_SKB_CB(skb)->seq; 5026 end_seq = TCP_SKB_CB(skb)->end_seq; 5027 5028 p = &tp->out_of_order_queue.rb_node; 5029 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5030 /* Initial out of order segment, build 1 SACK. */ 5031 if (tcp_is_sack(tp)) { 5032 tp->rx_opt.num_sacks = 1; 5033 tp->selective_acks[0].start_seq = seq; 5034 tp->selective_acks[0].end_seq = end_seq; 5035 } 5036 rb_link_node(&skb->rbnode, NULL, p); 5037 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5038 tp->ooo_last_skb = skb; 5039 goto end; 5040 } 5041 5042 /* In the typical case, we are adding an skb to the end of the list. 5043 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 5044 */ 5045 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 5046 skb, &fragstolen)) { 5047 coalesce_done: 5048 /* For non sack flows, do not grow window to force DUPACK 5049 * and trigger fast retransmit. 5050 */ 5051 if (tcp_is_sack(tp)) 5052 tcp_grow_window(sk, skb, true); 5053 kfree_skb_partial(skb, fragstolen); 5054 skb = NULL; 5055 goto add_sack; 5056 } 5057 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 5058 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 5059 parent = &tp->ooo_last_skb->rbnode; 5060 p = &parent->rb_right; 5061 goto insert; 5062 } 5063 5064 /* Find place to insert this segment. Handle overlaps on the way. */ 5065 parent = NULL; 5066 while (*p) { 5067 parent = *p; 5068 skb1 = rb_to_skb(parent); 5069 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 5070 p = &parent->rb_left; 5071 continue; 5072 } 5073 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 5074 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5075 /* All the bits are present. Drop. */ 5076 NET_INC_STATS(sock_net(sk), 5077 LINUX_MIB_TCPOFOMERGE); 5078 tcp_drop_reason(sk, skb, 5079 SKB_DROP_REASON_TCP_OFOMERGE); 5080 skb = NULL; 5081 tcp_dsack_set(sk, seq, end_seq); 5082 goto add_sack; 5083 } 5084 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5085 /* Partial overlap. */ 5086 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5087 } else { 5088 /* skb's seq == skb1's seq and skb covers skb1. 5089 * Replace skb1 with skb. 5090 */ 5091 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5092 &tp->out_of_order_queue); 5093 tcp_dsack_extend(sk, 5094 TCP_SKB_CB(skb1)->seq, 5095 TCP_SKB_CB(skb1)->end_seq); 5096 NET_INC_STATS(sock_net(sk), 5097 LINUX_MIB_TCPOFOMERGE); 5098 tcp_drop_reason(sk, skb1, 5099 SKB_DROP_REASON_TCP_OFOMERGE); 5100 goto merge_right; 5101 } 5102 } else if (tcp_ooo_try_coalesce(sk, skb1, 5103 skb, &fragstolen)) { 5104 goto coalesce_done; 5105 } 5106 p = &parent->rb_right; 5107 } 5108 insert: 5109 /* Insert segment into RB tree. */ 5110 rb_link_node(&skb->rbnode, parent, p); 5111 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5112 5113 merge_right: 5114 /* Remove other segments covered by skb. */ 5115 while ((skb1 = skb_rb_next(skb)) != NULL) { 5116 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5117 break; 5118 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5119 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5120 end_seq); 5121 break; 5122 } 5123 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5124 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5125 TCP_SKB_CB(skb1)->end_seq); 5126 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5127 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5128 } 5129 /* If there is no skb after us, we are the last_skb ! */ 5130 if (!skb1) 5131 tp->ooo_last_skb = skb; 5132 5133 add_sack: 5134 if (tcp_is_sack(tp)) 5135 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5136 end: 5137 if (skb) { 5138 /* For non sack flows, do not grow window to force DUPACK 5139 * and trigger fast retransmit. 5140 */ 5141 if (tcp_is_sack(tp)) 5142 tcp_grow_window(sk, skb, false); 5143 skb_condense(skb); 5144 skb_set_owner_r(skb, sk); 5145 } 5146 } 5147 5148 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5149 bool *fragstolen) 5150 { 5151 int eaten; 5152 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5153 5154 eaten = (tail && 5155 tcp_try_coalesce(sk, tail, 5156 skb, fragstolen)) ? 1 : 0; 5157 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5158 if (!eaten) { 5159 __skb_queue_tail(&sk->sk_receive_queue, skb); 5160 skb_set_owner_r(skb, sk); 5161 } 5162 return eaten; 5163 } 5164 5165 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5166 { 5167 struct sk_buff *skb; 5168 int err = -ENOMEM; 5169 int data_len = 0; 5170 bool fragstolen; 5171 5172 if (size == 0) 5173 return 0; 5174 5175 if (size > PAGE_SIZE) { 5176 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5177 5178 data_len = npages << PAGE_SHIFT; 5179 size = data_len + (size & ~PAGE_MASK); 5180 } 5181 skb = alloc_skb_with_frags(size - data_len, data_len, 5182 PAGE_ALLOC_COSTLY_ORDER, 5183 &err, sk->sk_allocation); 5184 if (!skb) 5185 goto err; 5186 5187 skb_put(skb, size - data_len); 5188 skb->data_len = data_len; 5189 skb->len = size; 5190 5191 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5192 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5193 goto err_free; 5194 } 5195 5196 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5197 if (err) 5198 goto err_free; 5199 5200 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5201 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5202 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5203 5204 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5205 WARN_ON_ONCE(fragstolen); /* should not happen */ 5206 __kfree_skb(skb); 5207 } 5208 return size; 5209 5210 err_free: 5211 kfree_skb(skb); 5212 err: 5213 return err; 5214 5215 } 5216 5217 void tcp_data_ready(struct sock *sk) 5218 { 5219 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5220 sk->sk_data_ready(sk); 5221 } 5222 5223 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5224 { 5225 struct tcp_sock *tp = tcp_sk(sk); 5226 enum skb_drop_reason reason; 5227 bool fragstolen; 5228 int eaten; 5229 5230 /* If a subflow has been reset, the packet should not continue 5231 * to be processed, drop the packet. 5232 */ 5233 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5234 __kfree_skb(skb); 5235 return; 5236 } 5237 5238 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5239 __kfree_skb(skb); 5240 return; 5241 } 5242 skb_dst_drop(skb); 5243 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5244 5245 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5246 tp->rx_opt.dsack = 0; 5247 5248 /* Queue data for delivery to the user. 5249 * Packets in sequence go to the receive queue. 5250 * Out of sequence packets to the out_of_order_queue. 5251 */ 5252 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5253 if (tcp_receive_window(tp) == 0) { 5254 /* Some stacks are known to send bare FIN packets 5255 * in a loop even if we send RWIN 0 in our ACK. 5256 * Accepting this FIN does not hurt memory pressure 5257 * because the FIN flag will simply be merged to the 5258 * receive queue tail skb in most cases. 5259 */ 5260 if (!skb->len && 5261 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5262 goto queue_and_out; 5263 5264 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5265 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5266 goto out_of_window; 5267 } 5268 5269 /* Ok. In sequence. In window. */ 5270 queue_and_out: 5271 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5272 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5273 inet_csk(sk)->icsk_ack.pending |= 5274 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5275 inet_csk_schedule_ack(sk); 5276 sk->sk_data_ready(sk); 5277 5278 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5279 reason = SKB_DROP_REASON_PROTO_MEM; 5280 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5281 goto drop; 5282 } 5283 sk_forced_mem_schedule(sk, skb->truesize); 5284 } 5285 5286 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5287 if (skb->len) 5288 tcp_event_data_recv(sk, skb); 5289 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5290 tcp_fin(sk); 5291 5292 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5293 tcp_ofo_queue(sk); 5294 5295 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5296 * gap in queue is filled. 5297 */ 5298 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5299 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5300 } 5301 5302 if (tp->rx_opt.num_sacks) 5303 tcp_sack_remove(tp); 5304 5305 tcp_fast_path_check(sk); 5306 5307 if (eaten > 0) 5308 kfree_skb_partial(skb, fragstolen); 5309 if (!sock_flag(sk, SOCK_DEAD)) 5310 tcp_data_ready(sk); 5311 return; 5312 } 5313 5314 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5315 tcp_rcv_spurious_retrans(sk, skb); 5316 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5317 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5318 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5319 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5320 5321 out_of_window: 5322 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5323 inet_csk_schedule_ack(sk); 5324 drop: 5325 tcp_drop_reason(sk, skb, reason); 5326 return; 5327 } 5328 5329 /* Out of window. F.e. zero window probe. */ 5330 if (!before(TCP_SKB_CB(skb)->seq, 5331 tp->rcv_nxt + tcp_receive_window(tp))) { 5332 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5333 goto out_of_window; 5334 } 5335 5336 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5337 /* Partial packet, seq < rcv_next < end_seq */ 5338 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5339 5340 /* If window is closed, drop tail of packet. But after 5341 * remembering D-SACK for its head made in previous line. 5342 */ 5343 if (!tcp_receive_window(tp)) { 5344 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5345 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5346 goto out_of_window; 5347 } 5348 goto queue_and_out; 5349 } 5350 5351 tcp_data_queue_ofo(sk, skb); 5352 } 5353 5354 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5355 { 5356 if (list) 5357 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5358 5359 return skb_rb_next(skb); 5360 } 5361 5362 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5363 struct sk_buff_head *list, 5364 struct rb_root *root) 5365 { 5366 struct sk_buff *next = tcp_skb_next(skb, list); 5367 5368 if (list) 5369 __skb_unlink(skb, list); 5370 else 5371 rb_erase(&skb->rbnode, root); 5372 5373 __kfree_skb(skb); 5374 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5375 5376 return next; 5377 } 5378 5379 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5380 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5381 { 5382 struct rb_node **p = &root->rb_node; 5383 struct rb_node *parent = NULL; 5384 struct sk_buff *skb1; 5385 5386 while (*p) { 5387 parent = *p; 5388 skb1 = rb_to_skb(parent); 5389 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5390 p = &parent->rb_left; 5391 else 5392 p = &parent->rb_right; 5393 } 5394 rb_link_node(&skb->rbnode, parent, p); 5395 rb_insert_color(&skb->rbnode, root); 5396 } 5397 5398 /* Collapse contiguous sequence of skbs head..tail with 5399 * sequence numbers start..end. 5400 * 5401 * If tail is NULL, this means until the end of the queue. 5402 * 5403 * Segments with FIN/SYN are not collapsed (only because this 5404 * simplifies code) 5405 */ 5406 static void 5407 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5408 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5409 { 5410 struct sk_buff *skb = head, *n; 5411 struct sk_buff_head tmp; 5412 bool end_of_skbs; 5413 5414 /* First, check that queue is collapsible and find 5415 * the point where collapsing can be useful. 5416 */ 5417 restart: 5418 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5419 n = tcp_skb_next(skb, list); 5420 5421 /* No new bits? It is possible on ofo queue. */ 5422 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5423 skb = tcp_collapse_one(sk, skb, list, root); 5424 if (!skb) 5425 break; 5426 goto restart; 5427 } 5428 5429 /* The first skb to collapse is: 5430 * - not SYN/FIN and 5431 * - bloated or contains data before "start" or 5432 * overlaps to the next one and mptcp allow collapsing. 5433 */ 5434 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5435 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5436 before(TCP_SKB_CB(skb)->seq, start))) { 5437 end_of_skbs = false; 5438 break; 5439 } 5440 5441 if (n && n != tail && tcp_skb_can_collapse_rx(skb, n) && 5442 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5443 end_of_skbs = false; 5444 break; 5445 } 5446 5447 /* Decided to skip this, advance start seq. */ 5448 start = TCP_SKB_CB(skb)->end_seq; 5449 } 5450 if (end_of_skbs || 5451 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5452 return; 5453 5454 __skb_queue_head_init(&tmp); 5455 5456 while (before(start, end)) { 5457 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5458 struct sk_buff *nskb; 5459 5460 nskb = alloc_skb(copy, GFP_ATOMIC); 5461 if (!nskb) 5462 break; 5463 5464 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5465 skb_copy_decrypted(nskb, skb); 5466 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5467 if (list) 5468 __skb_queue_before(list, skb, nskb); 5469 else 5470 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5471 skb_set_owner_r(nskb, sk); 5472 mptcp_skb_ext_move(nskb, skb); 5473 5474 /* Copy data, releasing collapsed skbs. */ 5475 while (copy > 0) { 5476 int offset = start - TCP_SKB_CB(skb)->seq; 5477 int size = TCP_SKB_CB(skb)->end_seq - start; 5478 5479 BUG_ON(offset < 0); 5480 if (size > 0) { 5481 size = min(copy, size); 5482 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5483 BUG(); 5484 TCP_SKB_CB(nskb)->end_seq += size; 5485 copy -= size; 5486 start += size; 5487 } 5488 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5489 skb = tcp_collapse_one(sk, skb, list, root); 5490 if (!skb || 5491 skb == tail || 5492 !tcp_skb_can_collapse_rx(nskb, skb) || 5493 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5494 goto end; 5495 } 5496 } 5497 } 5498 end: 5499 skb_queue_walk_safe(&tmp, skb, n) 5500 tcp_rbtree_insert(root, skb); 5501 } 5502 5503 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5504 * and tcp_collapse() them until all the queue is collapsed. 5505 */ 5506 static void tcp_collapse_ofo_queue(struct sock *sk) 5507 { 5508 struct tcp_sock *tp = tcp_sk(sk); 5509 u32 range_truesize, sum_tiny = 0; 5510 struct sk_buff *skb, *head; 5511 u32 start, end; 5512 5513 skb = skb_rb_first(&tp->out_of_order_queue); 5514 new_range: 5515 if (!skb) { 5516 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5517 return; 5518 } 5519 start = TCP_SKB_CB(skb)->seq; 5520 end = TCP_SKB_CB(skb)->end_seq; 5521 range_truesize = skb->truesize; 5522 5523 for (head = skb;;) { 5524 skb = skb_rb_next(skb); 5525 5526 /* Range is terminated when we see a gap or when 5527 * we are at the queue end. 5528 */ 5529 if (!skb || 5530 after(TCP_SKB_CB(skb)->seq, end) || 5531 before(TCP_SKB_CB(skb)->end_seq, start)) { 5532 /* Do not attempt collapsing tiny skbs */ 5533 if (range_truesize != head->truesize || 5534 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5535 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5536 head, skb, start, end); 5537 } else { 5538 sum_tiny += range_truesize; 5539 if (sum_tiny > sk->sk_rcvbuf >> 3) 5540 return; 5541 } 5542 goto new_range; 5543 } 5544 5545 range_truesize += skb->truesize; 5546 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5547 start = TCP_SKB_CB(skb)->seq; 5548 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5549 end = TCP_SKB_CB(skb)->end_seq; 5550 } 5551 } 5552 5553 /* 5554 * Clean the out-of-order queue to make room. 5555 * We drop high sequences packets to : 5556 * 1) Let a chance for holes to be filled. 5557 * This means we do not drop packets from ooo queue if their sequence 5558 * is before incoming packet sequence. 5559 * 2) not add too big latencies if thousands of packets sit there. 5560 * (But if application shrinks SO_RCVBUF, we could still end up 5561 * freeing whole queue here) 5562 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5563 * 5564 * Return true if queue has shrunk. 5565 */ 5566 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5567 { 5568 struct tcp_sock *tp = tcp_sk(sk); 5569 struct rb_node *node, *prev; 5570 bool pruned = false; 5571 int goal; 5572 5573 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5574 return false; 5575 5576 goal = sk->sk_rcvbuf >> 3; 5577 node = &tp->ooo_last_skb->rbnode; 5578 5579 do { 5580 struct sk_buff *skb = rb_to_skb(node); 5581 5582 /* If incoming skb would land last in ofo queue, stop pruning. */ 5583 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5584 break; 5585 pruned = true; 5586 prev = rb_prev(node); 5587 rb_erase(node, &tp->out_of_order_queue); 5588 goal -= skb->truesize; 5589 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5590 tp->ooo_last_skb = rb_to_skb(prev); 5591 if (!prev || goal <= 0) { 5592 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5593 !tcp_under_memory_pressure(sk)) 5594 break; 5595 goal = sk->sk_rcvbuf >> 3; 5596 } 5597 node = prev; 5598 } while (node); 5599 5600 if (pruned) { 5601 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5602 /* Reset SACK state. A conforming SACK implementation will 5603 * do the same at a timeout based retransmit. When a connection 5604 * is in a sad state like this, we care only about integrity 5605 * of the connection not performance. 5606 */ 5607 if (tp->rx_opt.sack_ok) 5608 tcp_sack_reset(&tp->rx_opt); 5609 } 5610 return pruned; 5611 } 5612 5613 /* Reduce allocated memory if we can, trying to get 5614 * the socket within its memory limits again. 5615 * 5616 * Return less than zero if we should start dropping frames 5617 * until the socket owning process reads some of the data 5618 * to stabilize the situation. 5619 */ 5620 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5621 { 5622 struct tcp_sock *tp = tcp_sk(sk); 5623 5624 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5625 5626 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5627 tcp_clamp_window(sk); 5628 else if (tcp_under_memory_pressure(sk)) 5629 tcp_adjust_rcv_ssthresh(sk); 5630 5631 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5632 return 0; 5633 5634 tcp_collapse_ofo_queue(sk); 5635 if (!skb_queue_empty(&sk->sk_receive_queue)) 5636 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5637 skb_peek(&sk->sk_receive_queue), 5638 NULL, 5639 tp->copied_seq, tp->rcv_nxt); 5640 5641 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5642 return 0; 5643 5644 /* Collapsing did not help, destructive actions follow. 5645 * This must not ever occur. */ 5646 5647 tcp_prune_ofo_queue(sk, in_skb); 5648 5649 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5650 return 0; 5651 5652 /* If we are really being abused, tell the caller to silently 5653 * drop receive data on the floor. It will get retransmitted 5654 * and hopefully then we'll have sufficient space. 5655 */ 5656 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5657 5658 /* Massive buffer overcommit. */ 5659 tp->pred_flags = 0; 5660 return -1; 5661 } 5662 5663 static bool tcp_should_expand_sndbuf(struct sock *sk) 5664 { 5665 const struct tcp_sock *tp = tcp_sk(sk); 5666 5667 /* If the user specified a specific send buffer setting, do 5668 * not modify it. 5669 */ 5670 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5671 return false; 5672 5673 /* If we are under global TCP memory pressure, do not expand. */ 5674 if (tcp_under_memory_pressure(sk)) { 5675 int unused_mem = sk_unused_reserved_mem(sk); 5676 5677 /* Adjust sndbuf according to reserved mem. But make sure 5678 * it never goes below SOCK_MIN_SNDBUF. 5679 * See sk_stream_moderate_sndbuf() for more details. 5680 */ 5681 if (unused_mem > SOCK_MIN_SNDBUF) 5682 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5683 5684 return false; 5685 } 5686 5687 /* If we are under soft global TCP memory pressure, do not expand. */ 5688 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5689 return false; 5690 5691 /* If we filled the congestion window, do not expand. */ 5692 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5693 return false; 5694 5695 return true; 5696 } 5697 5698 static void tcp_new_space(struct sock *sk) 5699 { 5700 struct tcp_sock *tp = tcp_sk(sk); 5701 5702 if (tcp_should_expand_sndbuf(sk)) { 5703 tcp_sndbuf_expand(sk); 5704 tp->snd_cwnd_stamp = tcp_jiffies32; 5705 } 5706 5707 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5708 } 5709 5710 /* Caller made space either from: 5711 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5712 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5713 * 5714 * We might be able to generate EPOLLOUT to the application if: 5715 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5716 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5717 * small enough that tcp_stream_memory_free() decides it 5718 * is time to generate EPOLLOUT. 5719 */ 5720 void tcp_check_space(struct sock *sk) 5721 { 5722 /* pairs with tcp_poll() */ 5723 smp_mb(); 5724 if (sk->sk_socket && 5725 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5726 tcp_new_space(sk); 5727 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5728 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5729 } 5730 } 5731 5732 static inline void tcp_data_snd_check(struct sock *sk) 5733 { 5734 tcp_push_pending_frames(sk); 5735 tcp_check_space(sk); 5736 } 5737 5738 /* 5739 * Check if sending an ack is needed. 5740 */ 5741 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5742 { 5743 struct tcp_sock *tp = tcp_sk(sk); 5744 unsigned long rtt, delay; 5745 5746 /* More than one full frame received... */ 5747 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5748 /* ... and right edge of window advances far enough. 5749 * (tcp_recvmsg() will send ACK otherwise). 5750 * If application uses SO_RCVLOWAT, we want send ack now if 5751 * we have not received enough bytes to satisfy the condition. 5752 */ 5753 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5754 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5755 /* We ACK each frame or... */ 5756 tcp_in_quickack_mode(sk) || 5757 /* Protocol state mandates a one-time immediate ACK */ 5758 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5759 /* If we are running from __release_sock() in user context, 5760 * Defer the ack until tcp_release_cb(). 5761 */ 5762 if (sock_owned_by_user_nocheck(sk) && 5763 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5764 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5765 return; 5766 } 5767 send_now: 5768 tcp_send_ack(sk); 5769 return; 5770 } 5771 5772 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5773 tcp_send_delayed_ack(sk); 5774 return; 5775 } 5776 5777 if (!tcp_is_sack(tp) || 5778 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5779 goto send_now; 5780 5781 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5782 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5783 tp->dup_ack_counter = 0; 5784 } 5785 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5786 tp->dup_ack_counter++; 5787 goto send_now; 5788 } 5789 tp->compressed_ack++; 5790 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5791 return; 5792 5793 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5794 5795 rtt = tp->rcv_rtt_est.rtt_us; 5796 if (tp->srtt_us && tp->srtt_us < rtt) 5797 rtt = tp->srtt_us; 5798 5799 delay = min_t(unsigned long, 5800 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5801 rtt * (NSEC_PER_USEC >> 3)/20); 5802 sock_hold(sk); 5803 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5804 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5805 HRTIMER_MODE_REL_PINNED_SOFT); 5806 } 5807 5808 static inline void tcp_ack_snd_check(struct sock *sk) 5809 { 5810 if (!inet_csk_ack_scheduled(sk)) { 5811 /* We sent a data segment already. */ 5812 return; 5813 } 5814 __tcp_ack_snd_check(sk, 1); 5815 } 5816 5817 /* 5818 * This routine is only called when we have urgent data 5819 * signaled. Its the 'slow' part of tcp_urg. It could be 5820 * moved inline now as tcp_urg is only called from one 5821 * place. We handle URGent data wrong. We have to - as 5822 * BSD still doesn't use the correction from RFC961. 5823 * For 1003.1g we should support a new option TCP_STDURG to permit 5824 * either form (or just set the sysctl tcp_stdurg). 5825 */ 5826 5827 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5828 { 5829 struct tcp_sock *tp = tcp_sk(sk); 5830 u32 ptr = ntohs(th->urg_ptr); 5831 5832 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5833 ptr--; 5834 ptr += ntohl(th->seq); 5835 5836 /* Ignore urgent data that we've already seen and read. */ 5837 if (after(tp->copied_seq, ptr)) 5838 return; 5839 5840 /* Do not replay urg ptr. 5841 * 5842 * NOTE: interesting situation not covered by specs. 5843 * Misbehaving sender may send urg ptr, pointing to segment, 5844 * which we already have in ofo queue. We are not able to fetch 5845 * such data and will stay in TCP_URG_NOTYET until will be eaten 5846 * by recvmsg(). Seems, we are not obliged to handle such wicked 5847 * situations. But it is worth to think about possibility of some 5848 * DoSes using some hypothetical application level deadlock. 5849 */ 5850 if (before(ptr, tp->rcv_nxt)) 5851 return; 5852 5853 /* Do we already have a newer (or duplicate) urgent pointer? */ 5854 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5855 return; 5856 5857 /* Tell the world about our new urgent pointer. */ 5858 sk_send_sigurg(sk); 5859 5860 /* We may be adding urgent data when the last byte read was 5861 * urgent. To do this requires some care. We cannot just ignore 5862 * tp->copied_seq since we would read the last urgent byte again 5863 * as data, nor can we alter copied_seq until this data arrives 5864 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5865 * 5866 * NOTE. Double Dutch. Rendering to plain English: author of comment 5867 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5868 * and expect that both A and B disappear from stream. This is _wrong_. 5869 * Though this happens in BSD with high probability, this is occasional. 5870 * Any application relying on this is buggy. Note also, that fix "works" 5871 * only in this artificial test. Insert some normal data between A and B and we will 5872 * decline of BSD again. Verdict: it is better to remove to trap 5873 * buggy users. 5874 */ 5875 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5876 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5877 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5878 tp->copied_seq++; 5879 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5880 __skb_unlink(skb, &sk->sk_receive_queue); 5881 __kfree_skb(skb); 5882 } 5883 } 5884 5885 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5886 WRITE_ONCE(tp->urg_seq, ptr); 5887 5888 /* Disable header prediction. */ 5889 tp->pred_flags = 0; 5890 } 5891 5892 /* This is the 'fast' part of urgent handling. */ 5893 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5894 { 5895 struct tcp_sock *tp = tcp_sk(sk); 5896 5897 /* Check if we get a new urgent pointer - normally not. */ 5898 if (unlikely(th->urg)) 5899 tcp_check_urg(sk, th); 5900 5901 /* Do we wait for any urgent data? - normally not... */ 5902 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5903 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5904 th->syn; 5905 5906 /* Is the urgent pointer pointing into this packet? */ 5907 if (ptr < skb->len) { 5908 u8 tmp; 5909 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5910 BUG(); 5911 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5912 if (!sock_flag(sk, SOCK_DEAD)) 5913 sk->sk_data_ready(sk); 5914 } 5915 } 5916 } 5917 5918 /* Accept RST for rcv_nxt - 1 after a FIN. 5919 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5920 * FIN is sent followed by a RST packet. The RST is sent with the same 5921 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5922 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5923 * ACKs on the closed socket. In addition middleboxes can drop either the 5924 * challenge ACK or a subsequent RST. 5925 */ 5926 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5927 { 5928 const struct tcp_sock *tp = tcp_sk(sk); 5929 5930 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5931 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5932 TCPF_CLOSING)); 5933 } 5934 5935 /* Does PAWS and seqno based validation of an incoming segment, flags will 5936 * play significant role here. 5937 */ 5938 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5939 const struct tcphdr *th, int syn_inerr) 5940 { 5941 struct tcp_sock *tp = tcp_sk(sk); 5942 SKB_DR(reason); 5943 5944 /* RFC1323: H1. Apply PAWS check first. */ 5945 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5946 tp->rx_opt.saw_tstamp && 5947 tcp_paws_discard(sk, skb)) { 5948 if (!th->rst) { 5949 if (unlikely(th->syn)) 5950 goto syn_challenge; 5951 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5952 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5953 LINUX_MIB_TCPACKSKIPPEDPAWS, 5954 &tp->last_oow_ack_time)) 5955 tcp_send_dupack(sk, skb); 5956 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5957 goto discard; 5958 } 5959 /* Reset is accepted even if it did not pass PAWS. */ 5960 } 5961 5962 /* Step 1: check sequence number */ 5963 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5964 if (reason) { 5965 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5966 * (RST) segments are validated by checking their SEQ-fields." 5967 * And page 69: "If an incoming segment is not acceptable, 5968 * an acknowledgment should be sent in reply (unless the RST 5969 * bit is set, if so drop the segment and return)". 5970 */ 5971 if (!th->rst) { 5972 if (th->syn) 5973 goto syn_challenge; 5974 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5975 LINUX_MIB_TCPACKSKIPPEDSEQ, 5976 &tp->last_oow_ack_time)) 5977 tcp_send_dupack(sk, skb); 5978 } else if (tcp_reset_check(sk, skb)) { 5979 goto reset; 5980 } 5981 goto discard; 5982 } 5983 5984 /* Step 2: check RST bit */ 5985 if (th->rst) { 5986 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5987 * FIN and SACK too if available): 5988 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5989 * the right-most SACK block, 5990 * then 5991 * RESET the connection 5992 * else 5993 * Send a challenge ACK 5994 */ 5995 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5996 tcp_reset_check(sk, skb)) 5997 goto reset; 5998 5999 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 6000 struct tcp_sack_block *sp = &tp->selective_acks[0]; 6001 int max_sack = sp[0].end_seq; 6002 int this_sack; 6003 6004 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 6005 ++this_sack) { 6006 max_sack = after(sp[this_sack].end_seq, 6007 max_sack) ? 6008 sp[this_sack].end_seq : max_sack; 6009 } 6010 6011 if (TCP_SKB_CB(skb)->seq == max_sack) 6012 goto reset; 6013 } 6014 6015 /* Disable TFO if RST is out-of-order 6016 * and no data has been received 6017 * for current active TFO socket 6018 */ 6019 if (tp->syn_fastopen && !tp->data_segs_in && 6020 sk->sk_state == TCP_ESTABLISHED) 6021 tcp_fastopen_active_disable(sk); 6022 tcp_send_challenge_ack(sk); 6023 SKB_DR_SET(reason, TCP_RESET); 6024 goto discard; 6025 } 6026 6027 /* step 3: check security and precedence [ignored] */ 6028 6029 /* step 4: Check for a SYN 6030 * RFC 5961 4.2 : Send a challenge ack 6031 */ 6032 if (th->syn) { 6033 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 6034 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 6035 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 6036 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 6037 goto pass; 6038 syn_challenge: 6039 if (syn_inerr) 6040 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6041 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 6042 tcp_send_challenge_ack(sk); 6043 SKB_DR_SET(reason, TCP_INVALID_SYN); 6044 goto discard; 6045 } 6046 6047 pass: 6048 bpf_skops_parse_hdr(sk, skb); 6049 6050 return true; 6051 6052 discard: 6053 tcp_drop_reason(sk, skb, reason); 6054 return false; 6055 6056 reset: 6057 tcp_reset(sk, skb); 6058 __kfree_skb(skb); 6059 return false; 6060 } 6061 6062 /* 6063 * TCP receive function for the ESTABLISHED state. 6064 * 6065 * It is split into a fast path and a slow path. The fast path is 6066 * disabled when: 6067 * - A zero window was announced from us - zero window probing 6068 * is only handled properly in the slow path. 6069 * - Out of order segments arrived. 6070 * - Urgent data is expected. 6071 * - There is no buffer space left 6072 * - Unexpected TCP flags/window values/header lengths are received 6073 * (detected by checking the TCP header against pred_flags) 6074 * - Data is sent in both directions. Fast path only supports pure senders 6075 * or pure receivers (this means either the sequence number or the ack 6076 * value must stay constant) 6077 * - Unexpected TCP option. 6078 * 6079 * When these conditions are not satisfied it drops into a standard 6080 * receive procedure patterned after RFC793 to handle all cases. 6081 * The first three cases are guaranteed by proper pred_flags setting, 6082 * the rest is checked inline. Fast processing is turned on in 6083 * tcp_data_queue when everything is OK. 6084 */ 6085 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6086 { 6087 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6088 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6089 struct tcp_sock *tp = tcp_sk(sk); 6090 unsigned int len = skb->len; 6091 6092 /* TCP congestion window tracking */ 6093 trace_tcp_probe(sk, skb); 6094 6095 tcp_mstamp_refresh(tp); 6096 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6097 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6098 /* 6099 * Header prediction. 6100 * The code loosely follows the one in the famous 6101 * "30 instruction TCP receive" Van Jacobson mail. 6102 * 6103 * Van's trick is to deposit buffers into socket queue 6104 * on a device interrupt, to call tcp_recv function 6105 * on the receive process context and checksum and copy 6106 * the buffer to user space. smart... 6107 * 6108 * Our current scheme is not silly either but we take the 6109 * extra cost of the net_bh soft interrupt processing... 6110 * We do checksum and copy also but from device to kernel. 6111 */ 6112 6113 tp->rx_opt.saw_tstamp = 0; 6114 6115 /* pred_flags is 0xS?10 << 16 + snd_wnd 6116 * if header_prediction is to be made 6117 * 'S' will always be tp->tcp_header_len >> 2 6118 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6119 * turn it off (when there are holes in the receive 6120 * space for instance) 6121 * PSH flag is ignored. 6122 */ 6123 6124 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6125 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6126 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6127 int tcp_header_len = tp->tcp_header_len; 6128 6129 /* Timestamp header prediction: tcp_header_len 6130 * is automatically equal to th->doff*4 due to pred_flags 6131 * match. 6132 */ 6133 6134 /* Check timestamp */ 6135 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6136 /* No? Slow path! */ 6137 if (!tcp_parse_aligned_timestamp(tp, th)) 6138 goto slow_path; 6139 6140 /* If PAWS failed, check it more carefully in slow path */ 6141 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 6142 goto slow_path; 6143 6144 /* DO NOT update ts_recent here, if checksum fails 6145 * and timestamp was corrupted part, it will result 6146 * in a hung connection since we will drop all 6147 * future packets due to the PAWS test. 6148 */ 6149 } 6150 6151 if (len <= tcp_header_len) { 6152 /* Bulk data transfer: sender */ 6153 if (len == tcp_header_len) { 6154 /* Predicted packet is in window by definition. 6155 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6156 * Hence, check seq<=rcv_wup reduces to: 6157 */ 6158 if (tcp_header_len == 6159 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6160 tp->rcv_nxt == tp->rcv_wup) 6161 tcp_store_ts_recent(tp); 6162 6163 /* We know that such packets are checksummed 6164 * on entry. 6165 */ 6166 tcp_ack(sk, skb, 0); 6167 __kfree_skb(skb); 6168 tcp_data_snd_check(sk); 6169 /* When receiving pure ack in fast path, update 6170 * last ts ecr directly instead of calling 6171 * tcp_rcv_rtt_measure_ts() 6172 */ 6173 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6174 return; 6175 } else { /* Header too small */ 6176 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6177 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6178 goto discard; 6179 } 6180 } else { 6181 int eaten = 0; 6182 bool fragstolen = false; 6183 6184 if (tcp_checksum_complete(skb)) 6185 goto csum_error; 6186 6187 if ((int)skb->truesize > sk->sk_forward_alloc) 6188 goto step5; 6189 6190 /* Predicted packet is in window by definition. 6191 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6192 * Hence, check seq<=rcv_wup reduces to: 6193 */ 6194 if (tcp_header_len == 6195 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6196 tp->rcv_nxt == tp->rcv_wup) 6197 tcp_store_ts_recent(tp); 6198 6199 tcp_rcv_rtt_measure_ts(sk, skb); 6200 6201 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6202 6203 /* Bulk data transfer: receiver */ 6204 skb_dst_drop(skb); 6205 __skb_pull(skb, tcp_header_len); 6206 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6207 6208 tcp_event_data_recv(sk, skb); 6209 6210 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6211 /* Well, only one small jumplet in fast path... */ 6212 tcp_ack(sk, skb, FLAG_DATA); 6213 tcp_data_snd_check(sk); 6214 if (!inet_csk_ack_scheduled(sk)) 6215 goto no_ack; 6216 } else { 6217 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6218 } 6219 6220 __tcp_ack_snd_check(sk, 0); 6221 no_ack: 6222 if (eaten) 6223 kfree_skb_partial(skb, fragstolen); 6224 tcp_data_ready(sk); 6225 return; 6226 } 6227 } 6228 6229 slow_path: 6230 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6231 goto csum_error; 6232 6233 if (!th->ack && !th->rst && !th->syn) { 6234 reason = SKB_DROP_REASON_TCP_FLAGS; 6235 goto discard; 6236 } 6237 6238 /* 6239 * Standard slow path. 6240 */ 6241 6242 if (!tcp_validate_incoming(sk, skb, th, 1)) 6243 return; 6244 6245 step5: 6246 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6247 if ((int)reason < 0) { 6248 reason = -reason; 6249 goto discard; 6250 } 6251 tcp_rcv_rtt_measure_ts(sk, skb); 6252 6253 /* Process urgent data. */ 6254 tcp_urg(sk, skb, th); 6255 6256 /* step 7: process the segment text */ 6257 tcp_data_queue(sk, skb); 6258 6259 tcp_data_snd_check(sk); 6260 tcp_ack_snd_check(sk); 6261 return; 6262 6263 csum_error: 6264 reason = SKB_DROP_REASON_TCP_CSUM; 6265 trace_tcp_bad_csum(skb); 6266 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6267 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6268 6269 discard: 6270 tcp_drop_reason(sk, skb, reason); 6271 } 6272 EXPORT_SYMBOL(tcp_rcv_established); 6273 6274 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6275 { 6276 struct inet_connection_sock *icsk = inet_csk(sk); 6277 struct tcp_sock *tp = tcp_sk(sk); 6278 6279 tcp_mtup_init(sk); 6280 icsk->icsk_af_ops->rebuild_header(sk); 6281 tcp_init_metrics(sk); 6282 6283 /* Initialize the congestion window to start the transfer. 6284 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6285 * retransmitted. In light of RFC6298 more aggressive 1sec 6286 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6287 * retransmission has occurred. 6288 */ 6289 if (tp->total_retrans > 1 && tp->undo_marker) 6290 tcp_snd_cwnd_set(tp, 1); 6291 else 6292 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6293 tp->snd_cwnd_stamp = tcp_jiffies32; 6294 6295 bpf_skops_established(sk, bpf_op, skb); 6296 /* Initialize congestion control unless BPF initialized it already: */ 6297 if (!icsk->icsk_ca_initialized) 6298 tcp_init_congestion_control(sk); 6299 tcp_init_buffer_space(sk); 6300 } 6301 6302 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6303 { 6304 struct tcp_sock *tp = tcp_sk(sk); 6305 struct inet_connection_sock *icsk = inet_csk(sk); 6306 6307 tcp_ao_finish_connect(sk, skb); 6308 tcp_set_state(sk, TCP_ESTABLISHED); 6309 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6310 6311 if (skb) { 6312 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6313 security_inet_conn_established(sk, skb); 6314 sk_mark_napi_id(sk, skb); 6315 } 6316 6317 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6318 6319 /* Prevent spurious tcp_cwnd_restart() on first data 6320 * packet. 6321 */ 6322 tp->lsndtime = tcp_jiffies32; 6323 6324 if (sock_flag(sk, SOCK_KEEPOPEN)) 6325 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6326 6327 if (!tp->rx_opt.snd_wscale) 6328 __tcp_fast_path_on(tp, tp->snd_wnd); 6329 else 6330 tp->pred_flags = 0; 6331 } 6332 6333 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6334 struct tcp_fastopen_cookie *cookie) 6335 { 6336 struct tcp_sock *tp = tcp_sk(sk); 6337 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6338 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6339 bool syn_drop = false; 6340 6341 if (mss == tp->rx_opt.user_mss) { 6342 struct tcp_options_received opt; 6343 6344 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6345 tcp_clear_options(&opt); 6346 opt.user_mss = opt.mss_clamp = 0; 6347 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6348 mss = opt.mss_clamp; 6349 } 6350 6351 if (!tp->syn_fastopen) { 6352 /* Ignore an unsolicited cookie */ 6353 cookie->len = -1; 6354 } else if (tp->total_retrans) { 6355 /* SYN timed out and the SYN-ACK neither has a cookie nor 6356 * acknowledges data. Presumably the remote received only 6357 * the retransmitted (regular) SYNs: either the original 6358 * SYN-data or the corresponding SYN-ACK was dropped. 6359 */ 6360 syn_drop = (cookie->len < 0 && data); 6361 } else if (cookie->len < 0 && !tp->syn_data) { 6362 /* We requested a cookie but didn't get it. If we did not use 6363 * the (old) exp opt format then try so next time (try_exp=1). 6364 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6365 */ 6366 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6367 } 6368 6369 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6370 6371 if (data) { /* Retransmit unacked data in SYN */ 6372 if (tp->total_retrans) 6373 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6374 else 6375 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6376 skb_rbtree_walk_from(data) 6377 tcp_mark_skb_lost(sk, data); 6378 tcp_non_congestion_loss_retransmit(sk); 6379 NET_INC_STATS(sock_net(sk), 6380 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6381 return true; 6382 } 6383 tp->syn_data_acked = tp->syn_data; 6384 if (tp->syn_data_acked) { 6385 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6386 /* SYN-data is counted as two separate packets in tcp_ack() */ 6387 if (tp->delivered > 1) 6388 --tp->delivered; 6389 } 6390 6391 tcp_fastopen_add_skb(sk, synack); 6392 6393 return false; 6394 } 6395 6396 static void smc_check_reset_syn(struct tcp_sock *tp) 6397 { 6398 #if IS_ENABLED(CONFIG_SMC) 6399 if (static_branch_unlikely(&tcp_have_smc)) { 6400 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6401 tp->syn_smc = 0; 6402 } 6403 #endif 6404 } 6405 6406 static void tcp_try_undo_spurious_syn(struct sock *sk) 6407 { 6408 struct tcp_sock *tp = tcp_sk(sk); 6409 u32 syn_stamp; 6410 6411 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6412 * spurious if the ACK's timestamp option echo value matches the 6413 * original SYN timestamp. 6414 */ 6415 syn_stamp = tp->retrans_stamp; 6416 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6417 syn_stamp == tp->rx_opt.rcv_tsecr) 6418 tp->undo_marker = 0; 6419 } 6420 6421 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6422 const struct tcphdr *th) 6423 { 6424 struct inet_connection_sock *icsk = inet_csk(sk); 6425 struct tcp_sock *tp = tcp_sk(sk); 6426 struct tcp_fastopen_cookie foc = { .len = -1 }; 6427 int saved_clamp = tp->rx_opt.mss_clamp; 6428 bool fastopen_fail; 6429 SKB_DR(reason); 6430 6431 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6432 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6433 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6434 6435 if (th->ack) { 6436 /* rfc793: 6437 * "If the state is SYN-SENT then 6438 * first check the ACK bit 6439 * If the ACK bit is set 6440 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6441 * a reset (unless the RST bit is set, if so drop 6442 * the segment and return)" 6443 */ 6444 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6445 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6446 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6447 if (icsk->icsk_retransmits == 0) 6448 inet_csk_reset_xmit_timer(sk, 6449 ICSK_TIME_RETRANS, 6450 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6451 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6452 goto reset_and_undo; 6453 } 6454 6455 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6456 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6457 tcp_time_stamp_ts(tp))) { 6458 NET_INC_STATS(sock_net(sk), 6459 LINUX_MIB_PAWSACTIVEREJECTED); 6460 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6461 goto reset_and_undo; 6462 } 6463 6464 /* Now ACK is acceptable. 6465 * 6466 * "If the RST bit is set 6467 * If the ACK was acceptable then signal the user "error: 6468 * connection reset", drop the segment, enter CLOSED state, 6469 * delete TCB, and return." 6470 */ 6471 6472 if (th->rst) { 6473 tcp_reset(sk, skb); 6474 consume: 6475 __kfree_skb(skb); 6476 return 0; 6477 } 6478 6479 /* rfc793: 6480 * "fifth, if neither of the SYN or RST bits is set then 6481 * drop the segment and return." 6482 * 6483 * See note below! 6484 * --ANK(990513) 6485 */ 6486 if (!th->syn) { 6487 SKB_DR_SET(reason, TCP_FLAGS); 6488 goto discard_and_undo; 6489 } 6490 /* rfc793: 6491 * "If the SYN bit is on ... 6492 * are acceptable then ... 6493 * (our SYN has been ACKed), change the connection 6494 * state to ESTABLISHED..." 6495 */ 6496 6497 tcp_ecn_rcv_synack(tp, th); 6498 6499 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6500 tcp_try_undo_spurious_syn(sk); 6501 tcp_ack(sk, skb, FLAG_SLOWPATH); 6502 6503 /* Ok.. it's good. Set up sequence numbers and 6504 * move to established. 6505 */ 6506 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6507 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6508 6509 /* RFC1323: The window in SYN & SYN/ACK segments is 6510 * never scaled. 6511 */ 6512 tp->snd_wnd = ntohs(th->window); 6513 6514 if (!tp->rx_opt.wscale_ok) { 6515 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6516 WRITE_ONCE(tp->window_clamp, 6517 min(tp->window_clamp, 65535U)); 6518 } 6519 6520 if (tp->rx_opt.saw_tstamp) { 6521 tp->rx_opt.tstamp_ok = 1; 6522 tp->tcp_header_len = 6523 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6524 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6525 tcp_store_ts_recent(tp); 6526 } else { 6527 tp->tcp_header_len = sizeof(struct tcphdr); 6528 } 6529 6530 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6531 tcp_initialize_rcv_mss(sk); 6532 6533 /* Remember, tcp_poll() does not lock socket! 6534 * Change state from SYN-SENT only after copied_seq 6535 * is initialized. */ 6536 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6537 6538 smc_check_reset_syn(tp); 6539 6540 smp_mb(); 6541 6542 tcp_finish_connect(sk, skb); 6543 6544 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6545 tcp_rcv_fastopen_synack(sk, skb, &foc); 6546 6547 if (!sock_flag(sk, SOCK_DEAD)) { 6548 sk->sk_state_change(sk); 6549 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6550 } 6551 if (fastopen_fail) 6552 return -1; 6553 if (sk->sk_write_pending || 6554 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6555 inet_csk_in_pingpong_mode(sk)) { 6556 /* Save one ACK. Data will be ready after 6557 * several ticks, if write_pending is set. 6558 * 6559 * It may be deleted, but with this feature tcpdumps 6560 * look so _wonderfully_ clever, that I was not able 6561 * to stand against the temptation 8) --ANK 6562 */ 6563 inet_csk_schedule_ack(sk); 6564 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6565 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6566 TCP_DELACK_MAX, TCP_RTO_MAX); 6567 goto consume; 6568 } 6569 tcp_send_ack(sk); 6570 return -1; 6571 } 6572 6573 /* No ACK in the segment */ 6574 6575 if (th->rst) { 6576 /* rfc793: 6577 * "If the RST bit is set 6578 * 6579 * Otherwise (no ACK) drop the segment and return." 6580 */ 6581 SKB_DR_SET(reason, TCP_RESET); 6582 goto discard_and_undo; 6583 } 6584 6585 /* PAWS check. */ 6586 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6587 tcp_paws_reject(&tp->rx_opt, 0)) { 6588 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6589 goto discard_and_undo; 6590 } 6591 if (th->syn) { 6592 /* We see SYN without ACK. It is attempt of 6593 * simultaneous connect with crossed SYNs. 6594 * Particularly, it can be connect to self. 6595 */ 6596 #ifdef CONFIG_TCP_AO 6597 struct tcp_ao_info *ao; 6598 6599 ao = rcu_dereference_protected(tp->ao_info, 6600 lockdep_sock_is_held(sk)); 6601 if (ao) { 6602 WRITE_ONCE(ao->risn, th->seq); 6603 ao->rcv_sne = 0; 6604 } 6605 #endif 6606 tcp_set_state(sk, TCP_SYN_RECV); 6607 6608 if (tp->rx_opt.saw_tstamp) { 6609 tp->rx_opt.tstamp_ok = 1; 6610 tcp_store_ts_recent(tp); 6611 tp->tcp_header_len = 6612 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6613 } else { 6614 tp->tcp_header_len = sizeof(struct tcphdr); 6615 } 6616 6617 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6618 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6619 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6620 6621 /* RFC1323: The window in SYN & SYN/ACK segments is 6622 * never scaled. 6623 */ 6624 tp->snd_wnd = ntohs(th->window); 6625 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6626 tp->max_window = tp->snd_wnd; 6627 6628 tcp_ecn_rcv_syn(tp, th); 6629 6630 tcp_mtup_init(sk); 6631 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6632 tcp_initialize_rcv_mss(sk); 6633 6634 tcp_send_synack(sk); 6635 #if 0 6636 /* Note, we could accept data and URG from this segment. 6637 * There are no obstacles to make this (except that we must 6638 * either change tcp_recvmsg() to prevent it from returning data 6639 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6640 * 6641 * However, if we ignore data in ACKless segments sometimes, 6642 * we have no reasons to accept it sometimes. 6643 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6644 * is not flawless. So, discard packet for sanity. 6645 * Uncomment this return to process the data. 6646 */ 6647 return -1; 6648 #else 6649 goto consume; 6650 #endif 6651 } 6652 /* "fifth, if neither of the SYN or RST bits is set then 6653 * drop the segment and return." 6654 */ 6655 6656 discard_and_undo: 6657 tcp_clear_options(&tp->rx_opt); 6658 tp->rx_opt.mss_clamp = saved_clamp; 6659 tcp_drop_reason(sk, skb, reason); 6660 return 0; 6661 6662 reset_and_undo: 6663 tcp_clear_options(&tp->rx_opt); 6664 tp->rx_opt.mss_clamp = saved_clamp; 6665 /* we can reuse/return @reason to its caller to handle the exception */ 6666 return reason; 6667 } 6668 6669 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6670 { 6671 struct tcp_sock *tp = tcp_sk(sk); 6672 struct request_sock *req; 6673 6674 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6675 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6676 */ 6677 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6678 tcp_try_undo_recovery(sk); 6679 6680 tcp_update_rto_time(tp); 6681 inet_csk(sk)->icsk_retransmits = 0; 6682 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6683 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6684 * need to zero retrans_stamp here to prevent spurious 6685 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6686 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6687 * set entering CA_Recovery, for correct retransmits_timed_out() and 6688 * undo behavior. 6689 */ 6690 tcp_retrans_stamp_cleanup(sk); 6691 6692 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6693 * we no longer need req so release it. 6694 */ 6695 req = rcu_dereference_protected(tp->fastopen_rsk, 6696 lockdep_sock_is_held(sk)); 6697 reqsk_fastopen_remove(sk, req, false); 6698 6699 /* Re-arm the timer because data may have been sent out. 6700 * This is similar to the regular data transmission case 6701 * when new data has just been ack'ed. 6702 * 6703 * (TFO) - we could try to be more aggressive and 6704 * retransmitting any data sooner based on when they 6705 * are sent out. 6706 */ 6707 tcp_rearm_rto(sk); 6708 } 6709 6710 /* 6711 * This function implements the receiving procedure of RFC 793 for 6712 * all states except ESTABLISHED and TIME_WAIT. 6713 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6714 * address independent. 6715 */ 6716 6717 enum skb_drop_reason 6718 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6719 { 6720 struct tcp_sock *tp = tcp_sk(sk); 6721 struct inet_connection_sock *icsk = inet_csk(sk); 6722 const struct tcphdr *th = tcp_hdr(skb); 6723 struct request_sock *req; 6724 int queued = 0; 6725 SKB_DR(reason); 6726 6727 switch (sk->sk_state) { 6728 case TCP_CLOSE: 6729 SKB_DR_SET(reason, TCP_CLOSE); 6730 goto discard; 6731 6732 case TCP_LISTEN: 6733 if (th->ack) 6734 return SKB_DROP_REASON_TCP_FLAGS; 6735 6736 if (th->rst) { 6737 SKB_DR_SET(reason, TCP_RESET); 6738 goto discard; 6739 } 6740 if (th->syn) { 6741 if (th->fin) { 6742 SKB_DR_SET(reason, TCP_FLAGS); 6743 goto discard; 6744 } 6745 /* It is possible that we process SYN packets from backlog, 6746 * so we need to make sure to disable BH and RCU right there. 6747 */ 6748 rcu_read_lock(); 6749 local_bh_disable(); 6750 icsk->icsk_af_ops->conn_request(sk, skb); 6751 local_bh_enable(); 6752 rcu_read_unlock(); 6753 6754 consume_skb(skb); 6755 return 0; 6756 } 6757 SKB_DR_SET(reason, TCP_FLAGS); 6758 goto discard; 6759 6760 case TCP_SYN_SENT: 6761 tp->rx_opt.saw_tstamp = 0; 6762 tcp_mstamp_refresh(tp); 6763 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6764 if (queued >= 0) 6765 return queued; 6766 6767 /* Do step6 onward by hand. */ 6768 tcp_urg(sk, skb, th); 6769 __kfree_skb(skb); 6770 tcp_data_snd_check(sk); 6771 return 0; 6772 } 6773 6774 tcp_mstamp_refresh(tp); 6775 tp->rx_opt.saw_tstamp = 0; 6776 req = rcu_dereference_protected(tp->fastopen_rsk, 6777 lockdep_sock_is_held(sk)); 6778 if (req) { 6779 bool req_stolen; 6780 6781 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6782 sk->sk_state != TCP_FIN_WAIT1); 6783 6784 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6785 SKB_DR_SET(reason, TCP_FASTOPEN); 6786 goto discard; 6787 } 6788 } 6789 6790 if (!th->ack && !th->rst && !th->syn) { 6791 SKB_DR_SET(reason, TCP_FLAGS); 6792 goto discard; 6793 } 6794 if (!tcp_validate_incoming(sk, skb, th, 0)) 6795 return 0; 6796 6797 /* step 5: check the ACK field */ 6798 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6799 FLAG_UPDATE_TS_RECENT | 6800 FLAG_NO_CHALLENGE_ACK); 6801 6802 if ((int)reason <= 0) { 6803 if (sk->sk_state == TCP_SYN_RECV) { 6804 /* send one RST */ 6805 if (!reason) 6806 return SKB_DROP_REASON_TCP_OLD_ACK; 6807 return -reason; 6808 } 6809 /* accept old ack during closing */ 6810 if ((int)reason < 0) { 6811 tcp_send_challenge_ack(sk); 6812 reason = -reason; 6813 goto discard; 6814 } 6815 } 6816 SKB_DR_SET(reason, NOT_SPECIFIED); 6817 switch (sk->sk_state) { 6818 case TCP_SYN_RECV: 6819 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6820 if (!tp->srtt_us) 6821 tcp_synack_rtt_meas(sk, req); 6822 6823 if (req) { 6824 tcp_rcv_synrecv_state_fastopen(sk); 6825 } else { 6826 tcp_try_undo_spurious_syn(sk); 6827 tp->retrans_stamp = 0; 6828 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6829 skb); 6830 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6831 } 6832 tcp_ao_established(sk); 6833 smp_mb(); 6834 tcp_set_state(sk, TCP_ESTABLISHED); 6835 sk->sk_state_change(sk); 6836 6837 /* Note, that this wakeup is only for marginal crossed SYN case. 6838 * Passively open sockets are not waked up, because 6839 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6840 */ 6841 if (sk->sk_socket) 6842 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6843 6844 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6845 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6846 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6847 6848 if (tp->rx_opt.tstamp_ok) 6849 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6850 6851 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6852 tcp_update_pacing_rate(sk); 6853 6854 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6855 tp->lsndtime = tcp_jiffies32; 6856 6857 tcp_initialize_rcv_mss(sk); 6858 tcp_fast_path_on(tp); 6859 if (sk->sk_shutdown & SEND_SHUTDOWN) 6860 tcp_shutdown(sk, SEND_SHUTDOWN); 6861 break; 6862 6863 case TCP_FIN_WAIT1: { 6864 int tmo; 6865 6866 if (req) 6867 tcp_rcv_synrecv_state_fastopen(sk); 6868 6869 if (tp->snd_una != tp->write_seq) 6870 break; 6871 6872 tcp_set_state(sk, TCP_FIN_WAIT2); 6873 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6874 6875 sk_dst_confirm(sk); 6876 6877 if (!sock_flag(sk, SOCK_DEAD)) { 6878 /* Wake up lingering close() */ 6879 sk->sk_state_change(sk); 6880 break; 6881 } 6882 6883 if (READ_ONCE(tp->linger2) < 0) { 6884 tcp_done(sk); 6885 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6886 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6887 } 6888 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6889 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6890 /* Receive out of order FIN after close() */ 6891 if (tp->syn_fastopen && th->fin) 6892 tcp_fastopen_active_disable(sk); 6893 tcp_done(sk); 6894 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6895 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6896 } 6897 6898 tmo = tcp_fin_time(sk); 6899 if (tmo > TCP_TIMEWAIT_LEN) { 6900 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6901 } else if (th->fin || sock_owned_by_user(sk)) { 6902 /* Bad case. We could lose such FIN otherwise. 6903 * It is not a big problem, but it looks confusing 6904 * and not so rare event. We still can lose it now, 6905 * if it spins in bh_lock_sock(), but it is really 6906 * marginal case. 6907 */ 6908 inet_csk_reset_keepalive_timer(sk, tmo); 6909 } else { 6910 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6911 goto consume; 6912 } 6913 break; 6914 } 6915 6916 case TCP_CLOSING: 6917 if (tp->snd_una == tp->write_seq) { 6918 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6919 goto consume; 6920 } 6921 break; 6922 6923 case TCP_LAST_ACK: 6924 if (tp->snd_una == tp->write_seq) { 6925 tcp_update_metrics(sk); 6926 tcp_done(sk); 6927 goto consume; 6928 } 6929 break; 6930 } 6931 6932 /* step 6: check the URG bit */ 6933 tcp_urg(sk, skb, th); 6934 6935 /* step 7: process the segment text */ 6936 switch (sk->sk_state) { 6937 case TCP_CLOSE_WAIT: 6938 case TCP_CLOSING: 6939 case TCP_LAST_ACK: 6940 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6941 /* If a subflow has been reset, the packet should not 6942 * continue to be processed, drop the packet. 6943 */ 6944 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6945 goto discard; 6946 break; 6947 } 6948 fallthrough; 6949 case TCP_FIN_WAIT1: 6950 case TCP_FIN_WAIT2: 6951 /* RFC 793 says to queue data in these states, 6952 * RFC 1122 says we MUST send a reset. 6953 * BSD 4.4 also does reset. 6954 */ 6955 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6956 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6957 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6958 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6959 tcp_reset(sk, skb); 6960 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6961 } 6962 } 6963 fallthrough; 6964 case TCP_ESTABLISHED: 6965 tcp_data_queue(sk, skb); 6966 queued = 1; 6967 break; 6968 } 6969 6970 /* tcp_data could move socket to TIME-WAIT */ 6971 if (sk->sk_state != TCP_CLOSE) { 6972 tcp_data_snd_check(sk); 6973 tcp_ack_snd_check(sk); 6974 } 6975 6976 if (!queued) { 6977 discard: 6978 tcp_drop_reason(sk, skb, reason); 6979 } 6980 return 0; 6981 6982 consume: 6983 __kfree_skb(skb); 6984 return 0; 6985 } 6986 EXPORT_SYMBOL(tcp_rcv_state_process); 6987 6988 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6989 { 6990 struct inet_request_sock *ireq = inet_rsk(req); 6991 6992 if (family == AF_INET) 6993 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6994 &ireq->ir_rmt_addr, port); 6995 #if IS_ENABLED(CONFIG_IPV6) 6996 else if (family == AF_INET6) 6997 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6998 &ireq->ir_v6_rmt_addr, port); 6999 #endif 7000 } 7001 7002 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 7003 * 7004 * If we receive a SYN packet with these bits set, it means a 7005 * network is playing bad games with TOS bits. In order to 7006 * avoid possible false congestion notifications, we disable 7007 * TCP ECN negotiation. 7008 * 7009 * Exception: tcp_ca wants ECN. This is required for DCTCP 7010 * congestion control: Linux DCTCP asserts ECT on all packets, 7011 * including SYN, which is most optimal solution; however, 7012 * others, such as FreeBSD do not. 7013 * 7014 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 7015 * set, indicating the use of a future TCP extension (such as AccECN). See 7016 * RFC8311 ยง4.3 which updates RFC3168 to allow the development of such 7017 * extensions. 7018 */ 7019 static void tcp_ecn_create_request(struct request_sock *req, 7020 const struct sk_buff *skb, 7021 const struct sock *listen_sk, 7022 const struct dst_entry *dst) 7023 { 7024 const struct tcphdr *th = tcp_hdr(skb); 7025 const struct net *net = sock_net(listen_sk); 7026 bool th_ecn = th->ece && th->cwr; 7027 bool ect, ecn_ok; 7028 u32 ecn_ok_dst; 7029 7030 if (!th_ecn) 7031 return; 7032 7033 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 7034 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 7035 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 7036 7037 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 7038 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 7039 tcp_bpf_ca_needs_ecn((struct sock *)req)) 7040 inet_rsk(req)->ecn_ok = 1; 7041 } 7042 7043 static void tcp_openreq_init(struct request_sock *req, 7044 const struct tcp_options_received *rx_opt, 7045 struct sk_buff *skb, const struct sock *sk) 7046 { 7047 struct inet_request_sock *ireq = inet_rsk(req); 7048 7049 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 7050 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 7051 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 7052 tcp_rsk(req)->snt_synack = 0; 7053 tcp_rsk(req)->last_oow_ack_time = 0; 7054 req->mss = rx_opt->mss_clamp; 7055 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 7056 ireq->tstamp_ok = rx_opt->tstamp_ok; 7057 ireq->sack_ok = rx_opt->sack_ok; 7058 ireq->snd_wscale = rx_opt->snd_wscale; 7059 ireq->wscale_ok = rx_opt->wscale_ok; 7060 ireq->acked = 0; 7061 ireq->ecn_ok = 0; 7062 ireq->ir_rmt_port = tcp_hdr(skb)->source; 7063 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 7064 ireq->ir_mark = inet_request_mark(sk, skb); 7065 #if IS_ENABLED(CONFIG_SMC) 7066 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 7067 tcp_sk(sk)->smc_hs_congested(sk)); 7068 #endif 7069 } 7070 7071 /* 7072 * Return true if a syncookie should be sent 7073 */ 7074 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7075 { 7076 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7077 const char *msg = "Dropping request"; 7078 struct net *net = sock_net(sk); 7079 bool want_cookie = false; 7080 u8 syncookies; 7081 7082 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7083 7084 #ifdef CONFIG_SYN_COOKIES 7085 if (syncookies) { 7086 msg = "Sending cookies"; 7087 want_cookie = true; 7088 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7089 } else 7090 #endif 7091 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7092 7093 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7094 xchg(&queue->synflood_warned, 1) == 0) { 7095 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7096 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7097 proto, inet6_rcv_saddr(sk), 7098 sk->sk_num, msg); 7099 } else { 7100 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7101 proto, &sk->sk_rcv_saddr, 7102 sk->sk_num, msg); 7103 } 7104 } 7105 7106 return want_cookie; 7107 } 7108 7109 static void tcp_reqsk_record_syn(const struct sock *sk, 7110 struct request_sock *req, 7111 const struct sk_buff *skb) 7112 { 7113 if (tcp_sk(sk)->save_syn) { 7114 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7115 struct saved_syn *saved_syn; 7116 u32 mac_hdrlen; 7117 void *base; 7118 7119 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7120 base = skb_mac_header(skb); 7121 mac_hdrlen = skb_mac_header_len(skb); 7122 len += mac_hdrlen; 7123 } else { 7124 base = skb_network_header(skb); 7125 mac_hdrlen = 0; 7126 } 7127 7128 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7129 GFP_ATOMIC); 7130 if (saved_syn) { 7131 saved_syn->mac_hdrlen = mac_hdrlen; 7132 saved_syn->network_hdrlen = skb_network_header_len(skb); 7133 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7134 memcpy(saved_syn->data, base, len); 7135 req->saved_syn = saved_syn; 7136 } 7137 } 7138 } 7139 7140 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7141 * used for SYN cookie generation. 7142 */ 7143 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7144 const struct tcp_request_sock_ops *af_ops, 7145 struct sock *sk, struct tcphdr *th) 7146 { 7147 struct tcp_sock *tp = tcp_sk(sk); 7148 u16 mss; 7149 7150 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7151 !inet_csk_reqsk_queue_is_full(sk)) 7152 return 0; 7153 7154 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7155 return 0; 7156 7157 if (sk_acceptq_is_full(sk)) { 7158 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7159 return 0; 7160 } 7161 7162 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7163 if (!mss) 7164 mss = af_ops->mss_clamp; 7165 7166 return mss; 7167 } 7168 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7169 7170 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7171 const struct tcp_request_sock_ops *af_ops, 7172 struct sock *sk, struct sk_buff *skb) 7173 { 7174 struct tcp_fastopen_cookie foc = { .len = -1 }; 7175 struct tcp_options_received tmp_opt; 7176 struct tcp_sock *tp = tcp_sk(sk); 7177 struct net *net = sock_net(sk); 7178 struct sock *fastopen_sk = NULL; 7179 struct request_sock *req; 7180 bool want_cookie = false; 7181 struct dst_entry *dst; 7182 struct flowi fl; 7183 u8 syncookies; 7184 u32 isn; 7185 7186 #ifdef CONFIG_TCP_AO 7187 const struct tcp_ao_hdr *aoh; 7188 #endif 7189 7190 isn = __this_cpu_read(tcp_tw_isn); 7191 if (isn) { 7192 /* TW buckets are converted to open requests without 7193 * limitations, they conserve resources and peer is 7194 * evidently real one. 7195 */ 7196 __this_cpu_write(tcp_tw_isn, 0); 7197 } else { 7198 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7199 7200 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7201 want_cookie = tcp_syn_flood_action(sk, 7202 rsk_ops->slab_name); 7203 if (!want_cookie) 7204 goto drop; 7205 } 7206 } 7207 7208 if (sk_acceptq_is_full(sk)) { 7209 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7210 goto drop; 7211 } 7212 7213 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7214 if (!req) 7215 goto drop; 7216 7217 req->syncookie = want_cookie; 7218 tcp_rsk(req)->af_specific = af_ops; 7219 tcp_rsk(req)->ts_off = 0; 7220 tcp_rsk(req)->req_usec_ts = false; 7221 #if IS_ENABLED(CONFIG_MPTCP) 7222 tcp_rsk(req)->is_mptcp = 0; 7223 #endif 7224 7225 tcp_clear_options(&tmp_opt); 7226 tmp_opt.mss_clamp = af_ops->mss_clamp; 7227 tmp_opt.user_mss = tp->rx_opt.user_mss; 7228 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7229 want_cookie ? NULL : &foc); 7230 7231 if (want_cookie && !tmp_opt.saw_tstamp) 7232 tcp_clear_options(&tmp_opt); 7233 7234 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7235 tmp_opt.smc_ok = 0; 7236 7237 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7238 tcp_openreq_init(req, &tmp_opt, skb, sk); 7239 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7240 7241 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7242 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7243 7244 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7245 if (!dst) 7246 goto drop_and_free; 7247 7248 if (tmp_opt.tstamp_ok) { 7249 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7250 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7251 } 7252 if (!want_cookie && !isn) { 7253 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7254 7255 /* Kill the following clause, if you dislike this way. */ 7256 if (!syncookies && 7257 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7258 (max_syn_backlog >> 2)) && 7259 !tcp_peer_is_proven(req, dst)) { 7260 /* Without syncookies last quarter of 7261 * backlog is filled with destinations, 7262 * proven to be alive. 7263 * It means that we continue to communicate 7264 * to destinations, already remembered 7265 * to the moment of synflood. 7266 */ 7267 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7268 rsk_ops->family); 7269 goto drop_and_release; 7270 } 7271 7272 isn = af_ops->init_seq(skb); 7273 } 7274 7275 tcp_ecn_create_request(req, skb, sk, dst); 7276 7277 if (want_cookie) { 7278 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7279 if (!tmp_opt.tstamp_ok) 7280 inet_rsk(req)->ecn_ok = 0; 7281 } 7282 7283 #ifdef CONFIG_TCP_AO 7284 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7285 goto drop_and_release; /* Invalid TCP options */ 7286 if (aoh) { 7287 tcp_rsk(req)->used_tcp_ao = true; 7288 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7289 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7290 7291 } else { 7292 tcp_rsk(req)->used_tcp_ao = false; 7293 } 7294 #endif 7295 tcp_rsk(req)->snt_isn = isn; 7296 tcp_rsk(req)->txhash = net_tx_rndhash(); 7297 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7298 tcp_openreq_init_rwin(req, sk, dst); 7299 sk_rx_queue_set(req_to_sk(req), skb); 7300 if (!want_cookie) { 7301 tcp_reqsk_record_syn(sk, req, skb); 7302 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7303 } 7304 if (fastopen_sk) { 7305 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7306 &foc, TCP_SYNACK_FASTOPEN, skb); 7307 /* Add the child socket directly into the accept queue */ 7308 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7309 reqsk_fastopen_remove(fastopen_sk, req, false); 7310 bh_unlock_sock(fastopen_sk); 7311 sock_put(fastopen_sk); 7312 goto drop_and_free; 7313 } 7314 sk->sk_data_ready(sk); 7315 bh_unlock_sock(fastopen_sk); 7316 sock_put(fastopen_sk); 7317 } else { 7318 tcp_rsk(req)->tfo_listener = false; 7319 if (!want_cookie) { 7320 req->timeout = tcp_timeout_init((struct sock *)req); 7321 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7322 req->timeout))) { 7323 reqsk_free(req); 7324 return 0; 7325 } 7326 7327 } 7328 af_ops->send_synack(sk, dst, &fl, req, &foc, 7329 !want_cookie ? TCP_SYNACK_NORMAL : 7330 TCP_SYNACK_COOKIE, 7331 skb); 7332 if (want_cookie) { 7333 reqsk_free(req); 7334 return 0; 7335 } 7336 } 7337 reqsk_put(req); 7338 return 0; 7339 7340 drop_and_release: 7341 dst_release(dst); 7342 drop_and_free: 7343 __reqsk_free(req); 7344 drop: 7345 tcp_listendrop(sk); 7346 return 0; 7347 } 7348 EXPORT_SYMBOL(tcp_conn_request); 7349
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.