~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/ipv4/tcp_minisocks.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  4  *              operating system.  INET is implemented using the  BSD Socket
  5  *              interface as the means of communication with the user level.
  6  *
  7  *              Implementation of the Transmission Control Protocol(TCP).
  8  *
  9  * Authors:     Ross Biro
 10  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Florian La Roche, <flla@stud.uni-sb.de>
 14  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
 16  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
 17  *              Matthew Dillon, <dillon@apollo.west.oic.com>
 18  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19  *              Jorge Cwik, <jorge@laser.satlink.net>
 20  */
 21 
 22 #include <net/tcp.h>
 23 #include <net/xfrm.h>
 24 #include <net/busy_poll.h>
 25 #include <net/rstreason.h>
 26 
 27 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 28 {
 29         if (seq == s_win)
 30                 return true;
 31         if (after(end_seq, s_win) && before(seq, e_win))
 32                 return true;
 33         return seq == e_win && seq == end_seq;
 34 }
 35 
 36 static enum tcp_tw_status
 37 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 38                                   const struct sk_buff *skb, int mib_idx)
 39 {
 40         struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 41 
 42         if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 43                                   &tcptw->tw_last_oow_ack_time)) {
 44                 /* Send ACK. Note, we do not put the bucket,
 45                  * it will be released by caller.
 46                  */
 47                 return TCP_TW_ACK;
 48         }
 49 
 50         /* We are rate-limiting, so just release the tw sock and drop skb. */
 51         inet_twsk_put(tw);
 52         return TCP_TW_SUCCESS;
 53 }
 54 
 55 static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq)
 56 {
 57 #ifdef CONFIG_TCP_AO
 58         struct tcp_ao_info *ao;
 59 
 60         ao = rcu_dereference(tcptw->ao_info);
 61         if (unlikely(ao && seq < tcptw->tw_rcv_nxt))
 62                 WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
 63 #endif
 64         tcptw->tw_rcv_nxt = seq;
 65 }
 66 
 67 /*
 68  * * Main purpose of TIME-WAIT state is to close connection gracefully,
 69  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 70  *   (and, probably, tail of data) and one or more our ACKs are lost.
 71  * * What is TIME-WAIT timeout? It is associated with maximal packet
 72  *   lifetime in the internet, which results in wrong conclusion, that
 73  *   it is set to catch "old duplicate segments" wandering out of their path.
 74  *   It is not quite correct. This timeout is calculated so that it exceeds
 75  *   maximal retransmission timeout enough to allow to lose one (or more)
 76  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 77  * * When TIME-WAIT socket receives RST, it means that another end
 78  *   finally closed and we are allowed to kill TIME-WAIT too.
 79  * * Second purpose of TIME-WAIT is catching old duplicate segments.
 80  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 81  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 82  * * If we invented some more clever way to catch duplicates
 83  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 84  *
 85  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 86  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 87  * from the very beginning.
 88  *
 89  * NOTE. With recycling (and later with fin-wait-2) TW bucket
 90  * is _not_ stateless. It means, that strictly speaking we must
 91  * spinlock it. I do not want! Well, probability of misbehaviour
 92  * is ridiculously low and, seems, we could use some mb() tricks
 93  * to avoid misread sequence numbers, states etc.  --ANK
 94  *
 95  * We don't need to initialize tmp_out.sack_ok as we don't use the results
 96  */
 97 enum tcp_tw_status
 98 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 99                            const struct tcphdr *th, u32 *tw_isn)
100 {
101         struct tcp_options_received tmp_opt;
102         struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
103         bool paws_reject = false;
104         int ts_recent_stamp;
105 
106         tmp_opt.saw_tstamp = 0;
107         ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
108         if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
109                 tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
110 
111                 if (tmp_opt.saw_tstamp) {
112                         if (tmp_opt.rcv_tsecr)
113                                 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
114                         tmp_opt.ts_recent       = READ_ONCE(tcptw->tw_ts_recent);
115                         tmp_opt.ts_recent_stamp = ts_recent_stamp;
116                         paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
117                 }
118         }
119 
120         if (tw->tw_substate == TCP_FIN_WAIT2) {
121                 /* Just repeat all the checks of tcp_rcv_state_process() */
122 
123                 /* Out of window, send ACK */
124                 if (paws_reject ||
125                     !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
126                                    tcptw->tw_rcv_nxt,
127                                    tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
128                         return tcp_timewait_check_oow_rate_limit(
129                                 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
130 
131                 if (th->rst)
132                         goto kill;
133 
134                 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
135                         return TCP_TW_RST;
136 
137                 /* Dup ACK? */
138                 if (!th->ack ||
139                     !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
140                     TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
141                         inet_twsk_put(tw);
142                         return TCP_TW_SUCCESS;
143                 }
144 
145                 /* New data or FIN. If new data arrive after half-duplex close,
146                  * reset.
147                  */
148                 if (!th->fin ||
149                     TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
150                         return TCP_TW_RST;
151 
152                 /* FIN arrived, enter true time-wait state. */
153                 tw->tw_substate   = TCP_TIME_WAIT;
154                 twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq);
155 
156                 if (tmp_opt.saw_tstamp) {
157                         WRITE_ONCE(tcptw->tw_ts_recent_stamp,
158                                   ktime_get_seconds());
159                         WRITE_ONCE(tcptw->tw_ts_recent,
160                                    tmp_opt.rcv_tsval);
161                 }
162 
163                 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
164                 return TCP_TW_ACK;
165         }
166 
167         /*
168          *      Now real TIME-WAIT state.
169          *
170          *      RFC 1122:
171          *      "When a connection is [...] on TIME-WAIT state [...]
172          *      [a TCP] MAY accept a new SYN from the remote TCP to
173          *      reopen the connection directly, if it:
174          *
175          *      (1)  assigns its initial sequence number for the new
176          *      connection to be larger than the largest sequence
177          *      number it used on the previous connection incarnation,
178          *      and
179          *
180          *      (2)  returns to TIME-WAIT state if the SYN turns out
181          *      to be an old duplicate".
182          */
183 
184         if (!paws_reject &&
185             (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
186              (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
187                 /* In window segment, it may be only reset or bare ack. */
188 
189                 if (th->rst) {
190                         /* This is TIME_WAIT assassination, in two flavors.
191                          * Oh well... nobody has a sufficient solution to this
192                          * protocol bug yet.
193                          */
194                         if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
195 kill:
196                                 inet_twsk_deschedule_put(tw);
197                                 return TCP_TW_SUCCESS;
198                         }
199                 } else {
200                         inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
201                 }
202 
203                 if (tmp_opt.saw_tstamp) {
204                         WRITE_ONCE(tcptw->tw_ts_recent,
205                                    tmp_opt.rcv_tsval);
206                         WRITE_ONCE(tcptw->tw_ts_recent_stamp,
207                                    ktime_get_seconds());
208                 }
209 
210                 inet_twsk_put(tw);
211                 return TCP_TW_SUCCESS;
212         }
213 
214         /* Out of window segment.
215 
216            All the segments are ACKed immediately.
217 
218            The only exception is new SYN. We accept it, if it is
219            not old duplicate and we are not in danger to be killed
220            by delayed old duplicates. RFC check is that it has
221            newer sequence number works at rates <40Mbit/sec.
222            However, if paws works, it is reliable AND even more,
223            we even may relax silly seq space cutoff.
224 
225            RED-PEN: we violate main RFC requirement, if this SYN will appear
226            old duplicate (i.e. we receive RST in reply to SYN-ACK),
227            we must return socket to time-wait state. It is not good,
228            but not fatal yet.
229          */
230 
231         if (th->syn && !th->rst && !th->ack && !paws_reject &&
232             (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
233              (tmp_opt.saw_tstamp &&
234               (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
235                 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
236                 if (isn == 0)
237                         isn++;
238                 *tw_isn = isn;
239                 return TCP_TW_SYN;
240         }
241 
242         if (paws_reject)
243                 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
244 
245         if (!th->rst) {
246                 /* In this case we must reset the TIMEWAIT timer.
247                  *
248                  * If it is ACKless SYN it may be both old duplicate
249                  * and new good SYN with random sequence number <rcv_nxt.
250                  * Do not reschedule in the last case.
251                  */
252                 if (paws_reject || th->ack)
253                         inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
254 
255                 return tcp_timewait_check_oow_rate_limit(
256                         tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
257         }
258         inet_twsk_put(tw);
259         return TCP_TW_SUCCESS;
260 }
261 EXPORT_SYMBOL(tcp_timewait_state_process);
262 
263 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
264 {
265 #ifdef CONFIG_TCP_MD5SIG
266         const struct tcp_sock *tp = tcp_sk(sk);
267         struct tcp_md5sig_key *key;
268 
269         /*
270          * The timewait bucket does not have the key DB from the
271          * sock structure. We just make a quick copy of the
272          * md5 key being used (if indeed we are using one)
273          * so the timewait ack generating code has the key.
274          */
275         tcptw->tw_md5_key = NULL;
276         if (!static_branch_unlikely(&tcp_md5_needed.key))
277                 return;
278 
279         key = tp->af_specific->md5_lookup(sk, sk);
280         if (key) {
281                 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
282                 if (!tcptw->tw_md5_key)
283                         return;
284                 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
285                         goto out_free;
286                 tcp_md5_add_sigpool();
287         }
288         return;
289 out_free:
290         WARN_ON_ONCE(1);
291         kfree(tcptw->tw_md5_key);
292         tcptw->tw_md5_key = NULL;
293 #endif
294 }
295 
296 /*
297  * Move a socket to time-wait or dead fin-wait-2 state.
298  */
299 void tcp_time_wait(struct sock *sk, int state, int timeo)
300 {
301         const struct inet_connection_sock *icsk = inet_csk(sk);
302         struct tcp_sock *tp = tcp_sk(sk);
303         struct net *net = sock_net(sk);
304         struct inet_timewait_sock *tw;
305 
306         tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
307 
308         if (tw) {
309                 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
310                 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
311 
312                 tw->tw_transparent      = inet_test_bit(TRANSPARENT, sk);
313                 tw->tw_mark             = sk->sk_mark;
314                 tw->tw_priority         = READ_ONCE(sk->sk_priority);
315                 tw->tw_rcv_wscale       = tp->rx_opt.rcv_wscale;
316                 tcptw->tw_rcv_nxt       = tp->rcv_nxt;
317                 tcptw->tw_snd_nxt       = tp->snd_nxt;
318                 tcptw->tw_rcv_wnd       = tcp_receive_window(tp);
319                 tcptw->tw_ts_recent     = tp->rx_opt.ts_recent;
320                 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
321                 tcptw->tw_ts_offset     = tp->tsoffset;
322                 tw->tw_usec_ts          = tp->tcp_usec_ts;
323                 tcptw->tw_last_oow_ack_time = 0;
324                 tcptw->tw_tx_delay      = tp->tcp_tx_delay;
325                 tw->tw_txhash           = sk->sk_txhash;
326 #if IS_ENABLED(CONFIG_IPV6)
327                 if (tw->tw_family == PF_INET6) {
328                         struct ipv6_pinfo *np = inet6_sk(sk);
329 
330                         tw->tw_v6_daddr = sk->sk_v6_daddr;
331                         tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
332                         tw->tw_tclass = np->tclass;
333                         tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
334                         tw->tw_ipv6only = sk->sk_ipv6only;
335                 }
336 #endif
337 
338                 tcp_time_wait_init(sk, tcptw);
339                 tcp_ao_time_wait(tcptw, tp);
340 
341                 /* Get the TIME_WAIT timeout firing. */
342                 if (timeo < rto)
343                         timeo = rto;
344 
345                 if (state == TCP_TIME_WAIT)
346                         timeo = TCP_TIMEWAIT_LEN;
347 
348                 /* Linkage updates.
349                  * Note that access to tw after this point is illegal.
350                  */
351                 inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
352         } else {
353                 /* Sorry, if we're out of memory, just CLOSE this
354                  * socket up.  We've got bigger problems than
355                  * non-graceful socket closings.
356                  */
357                 NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
358         }
359 
360         tcp_update_metrics(sk);
361         tcp_done(sk);
362 }
363 EXPORT_SYMBOL(tcp_time_wait);
364 
365 #ifdef CONFIG_TCP_MD5SIG
366 static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
367 {
368         struct tcp_md5sig_key *key;
369 
370         key = container_of(head, struct tcp_md5sig_key, rcu);
371         kfree(key);
372         static_branch_slow_dec_deferred(&tcp_md5_needed);
373         tcp_md5_release_sigpool();
374 }
375 #endif
376 
377 void tcp_twsk_destructor(struct sock *sk)
378 {
379 #ifdef CONFIG_TCP_MD5SIG
380         if (static_branch_unlikely(&tcp_md5_needed.key)) {
381                 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
382 
383                 if (twsk->tw_md5_key)
384                         call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
385         }
386 #endif
387         tcp_ao_destroy_sock(sk, true);
388 }
389 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
390 
391 void tcp_twsk_purge(struct list_head *net_exit_list)
392 {
393         bool purged_once = false;
394         struct net *net;
395 
396         list_for_each_entry(net, net_exit_list, exit_list) {
397                 if (net->ipv4.tcp_death_row.hashinfo->pernet) {
398                         /* Even if tw_refcount == 1, we must clean up kernel reqsk */
399                         inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
400                 } else if (!purged_once) {
401                         inet_twsk_purge(&tcp_hashinfo);
402                         purged_once = true;
403                 }
404         }
405 }
406 
407 /* Warning : This function is called without sk_listener being locked.
408  * Be sure to read socket fields once, as their value could change under us.
409  */
410 void tcp_openreq_init_rwin(struct request_sock *req,
411                            const struct sock *sk_listener,
412                            const struct dst_entry *dst)
413 {
414         struct inet_request_sock *ireq = inet_rsk(req);
415         const struct tcp_sock *tp = tcp_sk(sk_listener);
416         int full_space = tcp_full_space(sk_listener);
417         u32 window_clamp;
418         __u8 rcv_wscale;
419         u32 rcv_wnd;
420         int mss;
421 
422         mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
423         window_clamp = READ_ONCE(tp->window_clamp);
424         /* Set this up on the first call only */
425         req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
426 
427         /* limit the window selection if the user enforce a smaller rx buffer */
428         if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
429             (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
430                 req->rsk_window_clamp = full_space;
431 
432         rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
433         if (rcv_wnd == 0)
434                 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
435         else if (full_space < rcv_wnd * mss)
436                 full_space = rcv_wnd * mss;
437 
438         /* tcp_full_space because it is guaranteed to be the first packet */
439         tcp_select_initial_window(sk_listener, full_space,
440                 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
441                 &req->rsk_rcv_wnd,
442                 &req->rsk_window_clamp,
443                 ireq->wscale_ok,
444                 &rcv_wscale,
445                 rcv_wnd);
446         ireq->rcv_wscale = rcv_wscale;
447 }
448 EXPORT_SYMBOL(tcp_openreq_init_rwin);
449 
450 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
451                                   const struct request_sock *req)
452 {
453         tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
454 }
455 
456 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
457 {
458         struct inet_connection_sock *icsk = inet_csk(sk);
459         u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
460         bool ca_got_dst = false;
461 
462         if (ca_key != TCP_CA_UNSPEC) {
463                 const struct tcp_congestion_ops *ca;
464 
465                 rcu_read_lock();
466                 ca = tcp_ca_find_key(ca_key);
467                 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
468                         icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
469                         icsk->icsk_ca_ops = ca;
470                         ca_got_dst = true;
471                 }
472                 rcu_read_unlock();
473         }
474 
475         /* If no valid choice made yet, assign current system default ca. */
476         if (!ca_got_dst &&
477             (!icsk->icsk_ca_setsockopt ||
478              !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
479                 tcp_assign_congestion_control(sk);
480 
481         tcp_set_ca_state(sk, TCP_CA_Open);
482 }
483 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
484 
485 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
486                                     struct request_sock *req,
487                                     struct tcp_sock *newtp)
488 {
489 #if IS_ENABLED(CONFIG_SMC)
490         struct inet_request_sock *ireq;
491 
492         if (static_branch_unlikely(&tcp_have_smc)) {
493                 ireq = inet_rsk(req);
494                 if (oldtp->syn_smc && !ireq->smc_ok)
495                         newtp->syn_smc = 0;
496         }
497 #endif
498 }
499 
500 /* This is not only more efficient than what we used to do, it eliminates
501  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
502  *
503  * Actually, we could lots of memory writes here. tp of listening
504  * socket contains all necessary default parameters.
505  */
506 struct sock *tcp_create_openreq_child(const struct sock *sk,
507                                       struct request_sock *req,
508                                       struct sk_buff *skb)
509 {
510         struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
511         const struct inet_request_sock *ireq = inet_rsk(req);
512         struct tcp_request_sock *treq = tcp_rsk(req);
513         struct inet_connection_sock *newicsk;
514         const struct tcp_sock *oldtp;
515         struct tcp_sock *newtp;
516         u32 seq;
517 
518         if (!newsk)
519                 return NULL;
520 
521         newicsk = inet_csk(newsk);
522         newtp = tcp_sk(newsk);
523         oldtp = tcp_sk(sk);
524 
525         smc_check_reset_syn_req(oldtp, req, newtp);
526 
527         /* Now setup tcp_sock */
528         newtp->pred_flags = 0;
529 
530         seq = treq->rcv_isn + 1;
531         newtp->rcv_wup = seq;
532         WRITE_ONCE(newtp->copied_seq, seq);
533         WRITE_ONCE(newtp->rcv_nxt, seq);
534         newtp->segs_in = 1;
535 
536         seq = treq->snt_isn + 1;
537         newtp->snd_sml = newtp->snd_una = seq;
538         WRITE_ONCE(newtp->snd_nxt, seq);
539         newtp->snd_up = seq;
540 
541         INIT_LIST_HEAD(&newtp->tsq_node);
542         INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
543 
544         tcp_init_wl(newtp, treq->rcv_isn);
545 
546         minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
547         newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
548 
549         newtp->lsndtime = tcp_jiffies32;
550         newsk->sk_txhash = READ_ONCE(treq->txhash);
551         newtp->total_retrans = req->num_retrans;
552 
553         tcp_init_xmit_timers(newsk);
554         WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
555 
556         if (sock_flag(newsk, SOCK_KEEPOPEN))
557                 inet_csk_reset_keepalive_timer(newsk,
558                                                keepalive_time_when(newtp));
559 
560         newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
561         newtp->rx_opt.sack_ok = ireq->sack_ok;
562         newtp->window_clamp = req->rsk_window_clamp;
563         newtp->rcv_ssthresh = req->rsk_rcv_wnd;
564         newtp->rcv_wnd = req->rsk_rcv_wnd;
565         newtp->rx_opt.wscale_ok = ireq->wscale_ok;
566         if (newtp->rx_opt.wscale_ok) {
567                 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
568                 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
569         } else {
570                 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
571                 newtp->window_clamp = min(newtp->window_clamp, 65535U);
572         }
573         newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
574         newtp->max_window = newtp->snd_wnd;
575 
576         if (newtp->rx_opt.tstamp_ok) {
577                 newtp->tcp_usec_ts = treq->req_usec_ts;
578                 newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
579                 newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
580                 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
581         } else {
582                 newtp->tcp_usec_ts = 0;
583                 newtp->rx_opt.ts_recent_stamp = 0;
584                 newtp->tcp_header_len = sizeof(struct tcphdr);
585         }
586         if (req->num_timeout) {
587                 newtp->total_rto = req->num_timeout;
588                 newtp->undo_marker = treq->snt_isn;
589                 if (newtp->tcp_usec_ts) {
590                         newtp->retrans_stamp = treq->snt_synack;
591                         newtp->total_rto_time = (u32)(tcp_clock_us() -
592                                                       newtp->retrans_stamp) / USEC_PER_MSEC;
593                 } else {
594                         newtp->retrans_stamp = div_u64(treq->snt_synack,
595                                                        USEC_PER_SEC / TCP_TS_HZ);
596                         newtp->total_rto_time = tcp_clock_ms() -
597                                                 newtp->retrans_stamp;
598                 }
599                 newtp->total_rto_recoveries = 1;
600         }
601         newtp->tsoffset = treq->ts_off;
602 #ifdef CONFIG_TCP_MD5SIG
603         newtp->md5sig_info = NULL;      /*XXX*/
604 #endif
605 #ifdef CONFIG_TCP_AO
606         newtp->ao_info = NULL;
607 
608         if (tcp_rsk_used_ao(req)) {
609                 struct tcp_ao_key *ao_key;
610 
611                 ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
612                 if (ao_key)
613                         newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
614         }
615  #endif
616         if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
617                 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
618         newtp->rx_opt.mss_clamp = req->mss;
619         tcp_ecn_openreq_child(newtp, req);
620         newtp->fastopen_req = NULL;
621         RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
622 
623         newtp->bpf_chg_cc_inprogress = 0;
624         tcp_bpf_clone(sk, newsk);
625 
626         __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
627 
628         return newsk;
629 }
630 EXPORT_SYMBOL(tcp_create_openreq_child);
631 
632 /*
633  * Process an incoming packet for SYN_RECV sockets represented as a
634  * request_sock. Normally sk is the listener socket but for TFO it
635  * points to the child socket.
636  *
637  * XXX (TFO) - The current impl contains a special check for ack
638  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
639  *
640  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
641  *
642  * Note: If @fastopen is true, this can be called from process context.
643  *       Otherwise, this is from BH context.
644  */
645 
646 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
647                            struct request_sock *req,
648                            bool fastopen, bool *req_stolen)
649 {
650         struct tcp_options_received tmp_opt;
651         struct sock *child;
652         const struct tcphdr *th = tcp_hdr(skb);
653         __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
654         bool paws_reject = false;
655         bool own_req;
656 
657         tmp_opt.saw_tstamp = 0;
658         if (th->doff > (sizeof(struct tcphdr)>>2)) {
659                 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
660 
661                 if (tmp_opt.saw_tstamp) {
662                         tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
663                         if (tmp_opt.rcv_tsecr)
664                                 tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
665                         /* We do not store true stamp, but it is not required,
666                          * it can be estimated (approximately)
667                          * from another data.
668                          */
669                         tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
670                         paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
671                 }
672         }
673 
674         /* Check for pure retransmitted SYN. */
675         if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
676             flg == TCP_FLAG_SYN &&
677             !paws_reject) {
678                 /*
679                  * RFC793 draws (Incorrectly! It was fixed in RFC1122)
680                  * this case on figure 6 and figure 8, but formal
681                  * protocol description says NOTHING.
682                  * To be more exact, it says that we should send ACK,
683                  * because this segment (at least, if it has no data)
684                  * is out of window.
685                  *
686                  *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
687                  *  describe SYN-RECV state. All the description
688                  *  is wrong, we cannot believe to it and should
689                  *  rely only on common sense and implementation
690                  *  experience.
691                  *
692                  * Enforce "SYN-ACK" according to figure 8, figure 6
693                  * of RFC793, fixed by RFC1122.
694                  *
695                  * Note that even if there is new data in the SYN packet
696                  * they will be thrown away too.
697                  *
698                  * Reset timer after retransmitting SYNACK, similar to
699                  * the idea of fast retransmit in recovery.
700                  */
701                 if (!tcp_oow_rate_limited(sock_net(sk), skb,
702                                           LINUX_MIB_TCPACKSKIPPEDSYNRECV,
703                                           &tcp_rsk(req)->last_oow_ack_time) &&
704 
705                     !inet_rtx_syn_ack(sk, req)) {
706                         unsigned long expires = jiffies;
707 
708                         expires += reqsk_timeout(req, TCP_RTO_MAX);
709                         if (!fastopen)
710                                 mod_timer_pending(&req->rsk_timer, expires);
711                         else
712                                 req->rsk_timer.expires = expires;
713                 }
714                 return NULL;
715         }
716 
717         /* Further reproduces section "SEGMENT ARRIVES"
718            for state SYN-RECEIVED of RFC793.
719            It is broken, however, it does not work only
720            when SYNs are crossed.
721 
722            You would think that SYN crossing is impossible here, since
723            we should have a SYN_SENT socket (from connect()) on our end,
724            but this is not true if the crossed SYNs were sent to both
725            ends by a malicious third party.  We must defend against this,
726            and to do that we first verify the ACK (as per RFC793, page
727            36) and reset if it is invalid.  Is this a true full defense?
728            To convince ourselves, let us consider a way in which the ACK
729            test can still pass in this 'malicious crossed SYNs' case.
730            Malicious sender sends identical SYNs (and thus identical sequence
731            numbers) to both A and B:
732 
733                 A: gets SYN, seq=7
734                 B: gets SYN, seq=7
735 
736            By our good fortune, both A and B select the same initial
737            send sequence number of seven :-)
738 
739                 A: sends SYN|ACK, seq=7, ack_seq=8
740                 B: sends SYN|ACK, seq=7, ack_seq=8
741 
742            So we are now A eating this SYN|ACK, ACK test passes.  So
743            does sequence test, SYN is truncated, and thus we consider
744            it a bare ACK.
745 
746            If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
747            bare ACK.  Otherwise, we create an established connection.  Both
748            ends (listening sockets) accept the new incoming connection and try
749            to talk to each other. 8-)
750 
751            Note: This case is both harmless, and rare.  Possibility is about the
752            same as us discovering intelligent life on another plant tomorrow.
753 
754            But generally, we should (RFC lies!) to accept ACK
755            from SYNACK both here and in tcp_rcv_state_process().
756            tcp_rcv_state_process() does not, hence, we do not too.
757 
758            Note that the case is absolutely generic:
759            we cannot optimize anything here without
760            violating protocol. All the checks must be made
761            before attempt to create socket.
762          */
763 
764         /* RFC793 page 36: "If the connection is in any non-synchronized state ...
765          *                  and the incoming segment acknowledges something not yet
766          *                  sent (the segment carries an unacceptable ACK) ...
767          *                  a reset is sent."
768          *
769          * Invalid ACK: reset will be sent by listening socket.
770          * Note that the ACK validity check for a Fast Open socket is done
771          * elsewhere and is checked directly against the child socket rather
772          * than req because user data may have been sent out.
773          */
774         if ((flg & TCP_FLAG_ACK) && !fastopen &&
775             (TCP_SKB_CB(skb)->ack_seq !=
776              tcp_rsk(req)->snt_isn + 1))
777                 return sk;
778 
779         /* Also, it would be not so bad idea to check rcv_tsecr, which
780          * is essentially ACK extension and too early or too late values
781          * should cause reset in unsynchronized states.
782          */
783 
784         /* RFC793: "first check sequence number". */
785 
786         if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
787                                           TCP_SKB_CB(skb)->end_seq,
788                                           tcp_rsk(req)->rcv_nxt,
789                                           tcp_rsk(req)->rcv_nxt +
790                                           tcp_synack_window(req))) {
791                 /* Out of window: send ACK and drop. */
792                 if (!(flg & TCP_FLAG_RST) &&
793                     !tcp_oow_rate_limited(sock_net(sk), skb,
794                                           LINUX_MIB_TCPACKSKIPPEDSYNRECV,
795                                           &tcp_rsk(req)->last_oow_ack_time))
796                         req->rsk_ops->send_ack(sk, skb, req);
797                 if (paws_reject)
798                         NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
799                 return NULL;
800         }
801 
802         /* In sequence, PAWS is OK. */
803 
804         /* TODO: We probably should defer ts_recent change once
805          * we take ownership of @req.
806          */
807         if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
808                 WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
809 
810         if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
811                 /* Truncate SYN, it is out of window starting
812                    at tcp_rsk(req)->rcv_isn + 1. */
813                 flg &= ~TCP_FLAG_SYN;
814         }
815 
816         /* RFC793: "second check the RST bit" and
817          *         "fourth, check the SYN bit"
818          */
819         if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
820                 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
821                 goto embryonic_reset;
822         }
823 
824         /* ACK sequence verified above, just make sure ACK is
825          * set.  If ACK not set, just silently drop the packet.
826          *
827          * XXX (TFO) - if we ever allow "data after SYN", the
828          * following check needs to be removed.
829          */
830         if (!(flg & TCP_FLAG_ACK))
831                 return NULL;
832 
833         /* For Fast Open no more processing is needed (sk is the
834          * child socket).
835          */
836         if (fastopen)
837                 return sk;
838 
839         /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
840         if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
841             TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
842                 inet_rsk(req)->acked = 1;
843                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
844                 return NULL;
845         }
846 
847         /* OK, ACK is valid, create big socket and
848          * feed this segment to it. It will repeat all
849          * the tests. THIS SEGMENT MUST MOVE SOCKET TO
850          * ESTABLISHED STATE. If it will be dropped after
851          * socket is created, wait for troubles.
852          */
853         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
854                                                          req, &own_req);
855         if (!child)
856                 goto listen_overflow;
857 
858         if (own_req && rsk_drop_req(req)) {
859                 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
860                 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
861                 return child;
862         }
863 
864         sock_rps_save_rxhash(child, skb);
865         tcp_synack_rtt_meas(child, req);
866         *req_stolen = !own_req;
867         return inet_csk_complete_hashdance(sk, child, req, own_req);
868 
869 listen_overflow:
870         if (sk != req->rsk_listener)
871                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
872 
873         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
874                 inet_rsk(req)->acked = 1;
875                 return NULL;
876         }
877 
878 embryonic_reset:
879         if (!(flg & TCP_FLAG_RST)) {
880                 /* Received a bad SYN pkt - for TFO We try not to reset
881                  * the local connection unless it's really necessary to
882                  * avoid becoming vulnerable to outside attack aiming at
883                  * resetting legit local connections.
884                  */
885                 req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
886         } else if (fastopen) { /* received a valid RST pkt */
887                 reqsk_fastopen_remove(sk, req, true);
888                 tcp_reset(sk, skb);
889         }
890         if (!fastopen) {
891                 bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
892 
893                 if (unlinked)
894                         __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
895                 *req_stolen = !unlinked;
896         }
897         return NULL;
898 }
899 EXPORT_SYMBOL(tcp_check_req);
900 
901 /*
902  * Queue segment on the new socket if the new socket is active,
903  * otherwise we just shortcircuit this and continue with
904  * the new socket.
905  *
906  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
907  * when entering. But other states are possible due to a race condition
908  * where after __inet_lookup_established() fails but before the listener
909  * locked is obtained, other packets cause the same connection to
910  * be created.
911  */
912 
913 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
914                                        struct sk_buff *skb)
915         __releases(&((child)->sk_lock.slock))
916 {
917         enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
918         int state = child->sk_state;
919 
920         /* record sk_napi_id and sk_rx_queue_mapping of child. */
921         sk_mark_napi_id_set(child, skb);
922 
923         tcp_segs_in(tcp_sk(child), skb);
924         if (!sock_owned_by_user(child)) {
925                 reason = tcp_rcv_state_process(child, skb);
926                 /* Wakeup parent, send SIGIO */
927                 if (state == TCP_SYN_RECV && child->sk_state != state)
928                         parent->sk_data_ready(parent);
929         } else {
930                 /* Alas, it is possible again, because we do lookup
931                  * in main socket hash table and lock on listening
932                  * socket does not protect us more.
933                  */
934                 __sk_add_backlog(child, skb);
935         }
936 
937         bh_unlock_sock(child);
938         sock_put(child);
939         return reason;
940 }
941 EXPORT_SYMBOL(tcp_child_process);
942 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php