~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/ipv4/tcp_output.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  4  *              operating system.  INET is implemented using the  BSD Socket
  5  *              interface as the means of communication with the user level.
  6  *
  7  *              Implementation of the Transmission Control Protocol(TCP).
  8  *
  9  * Authors:     Ross Biro
 10  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Florian La Roche, <flla@stud.uni-sb.de>
 14  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
 16  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
 17  *              Matthew Dillon, <dillon@apollo.west.oic.com>
 18  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19  *              Jorge Cwik, <jorge@laser.satlink.net>
 20  */
 21 
 22 /*
 23  * Changes:     Pedro Roque     :       Retransmit queue handled by TCP.
 24  *                              :       Fragmentation on mtu decrease
 25  *                              :       Segment collapse on retransmit
 26  *                              :       AF independence
 27  *
 28  *              Linus Torvalds  :       send_delayed_ack
 29  *              David S. Miller :       Charge memory using the right skb
 30  *                                      during syn/ack processing.
 31  *              David S. Miller :       Output engine completely rewritten.
 32  *              Andrea Arcangeli:       SYNACK carry ts_recent in tsecr.
 33  *              Cacophonix Gaul :       draft-minshall-nagle-01
 34  *              J Hadi Salim    :       ECN support
 35  *
 36  */
 37 
 38 #define pr_fmt(fmt) "TCP: " fmt
 39 
 40 #include <net/tcp.h>
 41 #include <net/mptcp.h>
 42 #include <net/proto_memory.h>
 43 
 44 #include <linux/compiler.h>
 45 #include <linux/gfp.h>
 46 #include <linux/module.h>
 47 #include <linux/static_key.h>
 48 #include <linux/skbuff_ref.h>
 49 
 50 #include <trace/events/tcp.h>
 51 
 52 /* Refresh clocks of a TCP socket,
 53  * ensuring monotically increasing values.
 54  */
 55 void tcp_mstamp_refresh(struct tcp_sock *tp)
 56 {
 57         u64 val = tcp_clock_ns();
 58 
 59         tp->tcp_clock_cache = val;
 60         tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
 61 }
 62 
 63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
 64                            int push_one, gfp_t gfp);
 65 
 66 /* Account for new data that has been sent to the network. */
 67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
 68 {
 69         struct inet_connection_sock *icsk = inet_csk(sk);
 70         struct tcp_sock *tp = tcp_sk(sk);
 71         unsigned int prior_packets = tp->packets_out;
 72 
 73         WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
 74 
 75         __skb_unlink(skb, &sk->sk_write_queue);
 76         tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
 77 
 78         if (tp->highest_sack == NULL)
 79                 tp->highest_sack = skb;
 80 
 81         tp->packets_out += tcp_skb_pcount(skb);
 82         if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
 83                 tcp_rearm_rto(sk);
 84 
 85         NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
 86                       tcp_skb_pcount(skb));
 87         tcp_check_space(sk);
 88 }
 89 
 90 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
 91  * window scaling factor due to loss of precision.
 92  * If window has been shrunk, what should we make? It is not clear at all.
 93  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
 94  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
 95  * invalid. OK, let's make this for now:
 96  */
 97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
 98 {
 99         const struct tcp_sock *tp = tcp_sk(sk);
100 
101         if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
102             (tp->rx_opt.wscale_ok &&
103              ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104                 return tp->snd_nxt;
105         else
106                 return tcp_wnd_end(tp);
107 }
108 
109 /* Calculate mss to advertise in SYN segment.
110  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
111  *
112  * 1. It is independent of path mtu.
113  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
114  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
115  *    attached devices, because some buggy hosts are confused by
116  *    large MSS.
117  * 4. We do not make 3, we advertise MSS, calculated from first
118  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
119  *    This may be overridden via information stored in routing table.
120  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
121  *    probably even Jumbo".
122  */
123 static __u16 tcp_advertise_mss(struct sock *sk)
124 {
125         struct tcp_sock *tp = tcp_sk(sk);
126         const struct dst_entry *dst = __sk_dst_get(sk);
127         int mss = tp->advmss;
128 
129         if (dst) {
130                 unsigned int metric = dst_metric_advmss(dst);
131 
132                 if (metric < mss) {
133                         mss = metric;
134                         tp->advmss = mss;
135                 }
136         }
137 
138         return (__u16)mss;
139 }
140 
141 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
142  * This is the first part of cwnd validation mechanism.
143  */
144 void tcp_cwnd_restart(struct sock *sk, s32 delta)
145 {
146         struct tcp_sock *tp = tcp_sk(sk);
147         u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
148         u32 cwnd = tcp_snd_cwnd(tp);
149 
150         tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
151 
152         tp->snd_ssthresh = tcp_current_ssthresh(sk);
153         restart_cwnd = min(restart_cwnd, cwnd);
154 
155         while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
156                 cwnd >>= 1;
157         tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
158         tp->snd_cwnd_stamp = tcp_jiffies32;
159         tp->snd_cwnd_used = 0;
160 }
161 
162 /* Congestion state accounting after a packet has been sent. */
163 static void tcp_event_data_sent(struct tcp_sock *tp,
164                                 struct sock *sk)
165 {
166         struct inet_connection_sock *icsk = inet_csk(sk);
167         const u32 now = tcp_jiffies32;
168 
169         if (tcp_packets_in_flight(tp) == 0)
170                 tcp_ca_event(sk, CA_EVENT_TX_START);
171 
172         tp->lsndtime = now;
173 
174         /* If it is a reply for ato after last received
175          * packet, increase pingpong count.
176          */
177         if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
178                 inet_csk_inc_pingpong_cnt(sk);
179 }
180 
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
183 {
184         struct tcp_sock *tp = tcp_sk(sk);
185 
186         if (unlikely(tp->compressed_ack)) {
187                 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188                               tp->compressed_ack);
189                 tp->compressed_ack = 0;
190                 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191                         __sock_put(sk);
192         }
193 
194         if (unlikely(rcv_nxt != tp->rcv_nxt))
195                 return;  /* Special ACK sent by DCTCP to reflect ECN */
196         tcp_dec_quickack_mode(sk);
197         inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199 
200 /* Determine a window scaling and initial window to offer.
201  * Based on the assumption that the given amount of space
202  * will be offered. Store the results in the tp structure.
203  * NOTE: for smooth operation initial space offering should
204  * be a multiple of mss if possible. We assume here that mss >= 1.
205  * This MUST be enforced by all callers.
206  */
207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208                                __u32 *rcv_wnd, __u32 *__window_clamp,
209                                int wscale_ok, __u8 *rcv_wscale,
210                                __u32 init_rcv_wnd)
211 {
212         unsigned int space = (__space < 0 ? 0 : __space);
213         u32 window_clamp = READ_ONCE(*__window_clamp);
214 
215         /* If no clamp set the clamp to the max possible scaled window */
216         if (window_clamp == 0)
217                 window_clamp = (U16_MAX << TCP_MAX_WSCALE);
218         space = min(window_clamp, space);
219 
220         /* Quantize space offering to a multiple of mss if possible. */
221         if (space > mss)
222                 space = rounddown(space, mss);
223 
224         /* NOTE: offering an initial window larger than 32767
225          * will break some buggy TCP stacks. If the admin tells us
226          * it is likely we could be speaking with such a buggy stack
227          * we will truncate our initial window offering to 32K-1
228          * unless the remote has sent us a window scaling option,
229          * which we interpret as a sign the remote TCP is not
230          * misinterpreting the window field as a signed quantity.
231          */
232         if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
233                 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234         else
235                 (*rcv_wnd) = space;
236 
237         if (init_rcv_wnd)
238                 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 
240         *rcv_wscale = 0;
241         if (wscale_ok) {
242                 /* Set window scaling on max possible window */
243                 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
244                 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
245                 space = min_t(u32, space, window_clamp);
246                 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
247                                       0, TCP_MAX_WSCALE);
248         }
249         /* Set the clamp no higher than max representable value */
250         WRITE_ONCE(*__window_clamp,
251                    min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
252 }
253 EXPORT_SYMBOL(tcp_select_initial_window);
254 
255 /* Chose a new window to advertise, update state in tcp_sock for the
256  * socket, and return result with RFC1323 scaling applied.  The return
257  * value can be stuffed directly into th->window for an outgoing
258  * frame.
259  */
260 static u16 tcp_select_window(struct sock *sk)
261 {
262         struct tcp_sock *tp = tcp_sk(sk);
263         struct net *net = sock_net(sk);
264         u32 old_win = tp->rcv_wnd;
265         u32 cur_win, new_win;
266 
267         /* Make the window 0 if we failed to queue the data because we
268          * are out of memory. The window is temporary, so we don't store
269          * it on the socket.
270          */
271         if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
272                 return 0;
273 
274         cur_win = tcp_receive_window(tp);
275         new_win = __tcp_select_window(sk);
276         if (new_win < cur_win) {
277                 /* Danger Will Robinson!
278                  * Don't update rcv_wup/rcv_wnd here or else
279                  * we will not be able to advertise a zero
280                  * window in time.  --DaveM
281                  *
282                  * Relax Will Robinson.
283                  */
284                 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
285                         /* Never shrink the offered window */
286                         if (new_win == 0)
287                                 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
288                         new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
289                 }
290         }
291 
292         tp->rcv_wnd = new_win;
293         tp->rcv_wup = tp->rcv_nxt;
294 
295         /* Make sure we do not exceed the maximum possible
296          * scaled window.
297          */
298         if (!tp->rx_opt.rcv_wscale &&
299             READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
300                 new_win = min(new_win, MAX_TCP_WINDOW);
301         else
302                 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303 
304         /* RFC1323 scaling applied */
305         new_win >>= tp->rx_opt.rcv_wscale;
306 
307         /* If we advertise zero window, disable fast path. */
308         if (new_win == 0) {
309                 tp->pred_flags = 0;
310                 if (old_win)
311                         NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
312         } else if (old_win == 0) {
313                 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
314         }
315 
316         return new_win;
317 }
318 
319 /* Packet ECN state for a SYN-ACK */
320 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
321 {
322         const struct tcp_sock *tp = tcp_sk(sk);
323 
324         TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
325         if (!(tp->ecn_flags & TCP_ECN_OK))
326                 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
327         else if (tcp_ca_needs_ecn(sk) ||
328                  tcp_bpf_ca_needs_ecn(sk))
329                 INET_ECN_xmit(sk);
330 }
331 
332 /* Packet ECN state for a SYN.  */
333 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
337         bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
338                 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
339 
340         if (!use_ecn) {
341                 const struct dst_entry *dst = __sk_dst_get(sk);
342 
343                 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
344                         use_ecn = true;
345         }
346 
347         tp->ecn_flags = 0;
348 
349         if (use_ecn) {
350                 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
351                 tp->ecn_flags = TCP_ECN_OK;
352                 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
353                         INET_ECN_xmit(sk);
354         }
355 }
356 
357 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
358 {
359         if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
360                 /* tp->ecn_flags are cleared at a later point in time when
361                  * SYN ACK is ultimatively being received.
362                  */
363                 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
364 }
365 
366 static void
367 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
368 {
369         if (inet_rsk(req)->ecn_ok)
370                 th->ece = 1;
371 }
372 
373 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
374  * be sent.
375  */
376 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
377                          struct tcphdr *th, int tcp_header_len)
378 {
379         struct tcp_sock *tp = tcp_sk(sk);
380 
381         if (tp->ecn_flags & TCP_ECN_OK) {
382                 /* Not-retransmitted data segment: set ECT and inject CWR. */
383                 if (skb->len != tcp_header_len &&
384                     !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
385                         INET_ECN_xmit(sk);
386                         if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
387                                 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
388                                 th->cwr = 1;
389                                 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
390                         }
391                 } else if (!tcp_ca_needs_ecn(sk)) {
392                         /* ACK or retransmitted segment: clear ECT|CE */
393                         INET_ECN_dontxmit(sk);
394                 }
395                 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
396                         th->ece = 1;
397         }
398 }
399 
400 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
401  * auto increment end seqno.
402  */
403 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
404 {
405         skb->ip_summed = CHECKSUM_PARTIAL;
406 
407         TCP_SKB_CB(skb)->tcp_flags = flags;
408 
409         tcp_skb_pcount_set(skb, 1);
410 
411         TCP_SKB_CB(skb)->seq = seq;
412         if (flags & (TCPHDR_SYN | TCPHDR_FIN))
413                 seq++;
414         TCP_SKB_CB(skb)->end_seq = seq;
415 }
416 
417 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
418 {
419         return tp->snd_una != tp->snd_up;
420 }
421 
422 #define OPTION_SACK_ADVERTISE   BIT(0)
423 #define OPTION_TS               BIT(1)
424 #define OPTION_MD5              BIT(2)
425 #define OPTION_WSCALE           BIT(3)
426 #define OPTION_FAST_OPEN_COOKIE BIT(8)
427 #define OPTION_SMC              BIT(9)
428 #define OPTION_MPTCP            BIT(10)
429 #define OPTION_AO               BIT(11)
430 
431 static void smc_options_write(__be32 *ptr, u16 *options)
432 {
433 #if IS_ENABLED(CONFIG_SMC)
434         if (static_branch_unlikely(&tcp_have_smc)) {
435                 if (unlikely(OPTION_SMC & *options)) {
436                         *ptr++ = htonl((TCPOPT_NOP  << 24) |
437                                        (TCPOPT_NOP  << 16) |
438                                        (TCPOPT_EXP <<  8) |
439                                        (TCPOLEN_EXP_SMC_BASE));
440                         *ptr++ = htonl(TCPOPT_SMC_MAGIC);
441                 }
442         }
443 #endif
444 }
445 
446 struct tcp_out_options {
447         u16 options;            /* bit field of OPTION_* */
448         u16 mss;                /* 0 to disable */
449         u8 ws;                  /* window scale, 0 to disable */
450         u8 num_sack_blocks;     /* number of SACK blocks to include */
451         u8 hash_size;           /* bytes in hash_location */
452         u8 bpf_opt_len;         /* length of BPF hdr option */
453         __u8 *hash_location;    /* temporary pointer, overloaded */
454         __u32 tsval, tsecr;     /* need to include OPTION_TS */
455         struct tcp_fastopen_cookie *fastopen_cookie;    /* Fast open cookie */
456         struct mptcp_out_options mptcp;
457 };
458 
459 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
460                                 struct tcp_sock *tp,
461                                 struct tcp_out_options *opts)
462 {
463 #if IS_ENABLED(CONFIG_MPTCP)
464         if (unlikely(OPTION_MPTCP & opts->options))
465                 mptcp_write_options(th, ptr, tp, &opts->mptcp);
466 #endif
467 }
468 
469 #ifdef CONFIG_CGROUP_BPF
470 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
471                                         enum tcp_synack_type synack_type)
472 {
473         if (unlikely(!skb))
474                 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
475 
476         if (unlikely(synack_type == TCP_SYNACK_COOKIE))
477                 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
478 
479         return 0;
480 }
481 
482 /* req, syn_skb and synack_type are used when writing synack */
483 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
484                                   struct request_sock *req,
485                                   struct sk_buff *syn_skb,
486                                   enum tcp_synack_type synack_type,
487                                   struct tcp_out_options *opts,
488                                   unsigned int *remaining)
489 {
490         struct bpf_sock_ops_kern sock_ops;
491         int err;
492 
493         if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
494                                            BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
495             !*remaining)
496                 return;
497 
498         /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
499 
500         /* init sock_ops */
501         memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
502 
503         sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
504 
505         if (req) {
506                 /* The listen "sk" cannot be passed here because
507                  * it is not locked.  It would not make too much
508                  * sense to do bpf_setsockopt(listen_sk) based
509                  * on individual connection request also.
510                  *
511                  * Thus, "req" is passed here and the cgroup-bpf-progs
512                  * of the listen "sk" will be run.
513                  *
514                  * "req" is also used here for fastopen even the "sk" here is
515                  * a fullsock "child" sk.  It is to keep the behavior
516                  * consistent between fastopen and non-fastopen on
517                  * the bpf programming side.
518                  */
519                 sock_ops.sk = (struct sock *)req;
520                 sock_ops.syn_skb = syn_skb;
521         } else {
522                 sock_owned_by_me(sk);
523 
524                 sock_ops.is_fullsock = 1;
525                 sock_ops.sk = sk;
526         }
527 
528         sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
529         sock_ops.remaining_opt_len = *remaining;
530         /* tcp_current_mss() does not pass a skb */
531         if (skb)
532                 bpf_skops_init_skb(&sock_ops, skb, 0);
533 
534         err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
535 
536         if (err || sock_ops.remaining_opt_len == *remaining)
537                 return;
538 
539         opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
540         /* round up to 4 bytes */
541         opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
542 
543         *remaining -= opts->bpf_opt_len;
544 }
545 
546 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
547                                     struct request_sock *req,
548                                     struct sk_buff *syn_skb,
549                                     enum tcp_synack_type synack_type,
550                                     struct tcp_out_options *opts)
551 {
552         u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
553         struct bpf_sock_ops_kern sock_ops;
554         int err;
555 
556         if (likely(!max_opt_len))
557                 return;
558 
559         memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
560 
561         sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
562 
563         if (req) {
564                 sock_ops.sk = (struct sock *)req;
565                 sock_ops.syn_skb = syn_skb;
566         } else {
567                 sock_owned_by_me(sk);
568 
569                 sock_ops.is_fullsock = 1;
570                 sock_ops.sk = sk;
571         }
572 
573         sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
574         sock_ops.remaining_opt_len = max_opt_len;
575         first_opt_off = tcp_hdrlen(skb) - max_opt_len;
576         bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
577 
578         err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
579 
580         if (err)
581                 nr_written = 0;
582         else
583                 nr_written = max_opt_len - sock_ops.remaining_opt_len;
584 
585         if (nr_written < max_opt_len)
586                 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
587                        max_opt_len - nr_written);
588 }
589 #else
590 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
591                                   struct request_sock *req,
592                                   struct sk_buff *syn_skb,
593                                   enum tcp_synack_type synack_type,
594                                   struct tcp_out_options *opts,
595                                   unsigned int *remaining)
596 {
597 }
598 
599 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
600                                     struct request_sock *req,
601                                     struct sk_buff *syn_skb,
602                                     enum tcp_synack_type synack_type,
603                                     struct tcp_out_options *opts)
604 {
605 }
606 #endif
607 
608 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
609                                       const struct tcp_request_sock *tcprsk,
610                                       struct tcp_out_options *opts,
611                                       struct tcp_key *key, __be32 *ptr)
612 {
613 #ifdef CONFIG_TCP_AO
614         u8 maclen = tcp_ao_maclen(key->ao_key);
615 
616         if (tcprsk) {
617                 u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
618 
619                 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
620                                (tcprsk->ao_keyid << 8) |
621                                (tcprsk->ao_rcv_next));
622         } else {
623                 struct tcp_ao_key *rnext_key;
624                 struct tcp_ao_info *ao_info;
625 
626                 ao_info = rcu_dereference_check(tp->ao_info,
627                         lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
628                 rnext_key = READ_ONCE(ao_info->rnext_key);
629                 if (WARN_ON_ONCE(!rnext_key))
630                         return ptr;
631                 *ptr++ = htonl((TCPOPT_AO << 24) |
632                                (tcp_ao_len(key->ao_key) << 16) |
633                                (key->ao_key->sndid << 8) |
634                                (rnext_key->rcvid));
635         }
636         opts->hash_location = (__u8 *)ptr;
637         ptr += maclen / sizeof(*ptr);
638         if (unlikely(maclen % sizeof(*ptr))) {
639                 memset(ptr, TCPOPT_NOP, sizeof(*ptr));
640                 ptr++;
641         }
642 #endif
643         return ptr;
644 }
645 
646 /* Write previously computed TCP options to the packet.
647  *
648  * Beware: Something in the Internet is very sensitive to the ordering of
649  * TCP options, we learned this through the hard way, so be careful here.
650  * Luckily we can at least blame others for their non-compliance but from
651  * inter-operability perspective it seems that we're somewhat stuck with
652  * the ordering which we have been using if we want to keep working with
653  * those broken things (not that it currently hurts anybody as there isn't
654  * particular reason why the ordering would need to be changed).
655  *
656  * At least SACK_PERM as the first option is known to lead to a disaster
657  * (but it may well be that other scenarios fail similarly).
658  */
659 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
660                               const struct tcp_request_sock *tcprsk,
661                               struct tcp_out_options *opts,
662                               struct tcp_key *key)
663 {
664         __be32 *ptr = (__be32 *)(th + 1);
665         u16 options = opts->options;    /* mungable copy */
666 
667         if (tcp_key_is_md5(key)) {
668                 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
669                                (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
670                 /* overload cookie hash location */
671                 opts->hash_location = (__u8 *)ptr;
672                 ptr += 4;
673         } else if (tcp_key_is_ao(key)) {
674                 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
675         }
676         if (unlikely(opts->mss)) {
677                 *ptr++ = htonl((TCPOPT_MSS << 24) |
678                                (TCPOLEN_MSS << 16) |
679                                opts->mss);
680         }
681 
682         if (likely(OPTION_TS & options)) {
683                 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
684                         *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
685                                        (TCPOLEN_SACK_PERM << 16) |
686                                        (TCPOPT_TIMESTAMP << 8) |
687                                        TCPOLEN_TIMESTAMP);
688                         options &= ~OPTION_SACK_ADVERTISE;
689                 } else {
690                         *ptr++ = htonl((TCPOPT_NOP << 24) |
691                                        (TCPOPT_NOP << 16) |
692                                        (TCPOPT_TIMESTAMP << 8) |
693                                        TCPOLEN_TIMESTAMP);
694                 }
695                 *ptr++ = htonl(opts->tsval);
696                 *ptr++ = htonl(opts->tsecr);
697         }
698 
699         if (unlikely(OPTION_SACK_ADVERTISE & options)) {
700                 *ptr++ = htonl((TCPOPT_NOP << 24) |
701                                (TCPOPT_NOP << 16) |
702                                (TCPOPT_SACK_PERM << 8) |
703                                TCPOLEN_SACK_PERM);
704         }
705 
706         if (unlikely(OPTION_WSCALE & options)) {
707                 *ptr++ = htonl((TCPOPT_NOP << 24) |
708                                (TCPOPT_WINDOW << 16) |
709                                (TCPOLEN_WINDOW << 8) |
710                                opts->ws);
711         }
712 
713         if (unlikely(opts->num_sack_blocks)) {
714                 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
715                         tp->duplicate_sack : tp->selective_acks;
716                 int this_sack;
717 
718                 *ptr++ = htonl((TCPOPT_NOP  << 24) |
719                                (TCPOPT_NOP  << 16) |
720                                (TCPOPT_SACK <<  8) |
721                                (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
722                                                      TCPOLEN_SACK_PERBLOCK)));
723 
724                 for (this_sack = 0; this_sack < opts->num_sack_blocks;
725                      ++this_sack) {
726                         *ptr++ = htonl(sp[this_sack].start_seq);
727                         *ptr++ = htonl(sp[this_sack].end_seq);
728                 }
729 
730                 tp->rx_opt.dsack = 0;
731         }
732 
733         if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
734                 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
735                 u8 *p = (u8 *)ptr;
736                 u32 len; /* Fast Open option length */
737 
738                 if (foc->exp) {
739                         len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
740                         *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
741                                      TCPOPT_FASTOPEN_MAGIC);
742                         p += TCPOLEN_EXP_FASTOPEN_BASE;
743                 } else {
744                         len = TCPOLEN_FASTOPEN_BASE + foc->len;
745                         *p++ = TCPOPT_FASTOPEN;
746                         *p++ = len;
747                 }
748 
749                 memcpy(p, foc->val, foc->len);
750                 if ((len & 3) == 2) {
751                         p[foc->len] = TCPOPT_NOP;
752                         p[foc->len + 1] = TCPOPT_NOP;
753                 }
754                 ptr += (len + 3) >> 2;
755         }
756 
757         smc_options_write(ptr, &options);
758 
759         mptcp_options_write(th, ptr, tp, opts);
760 }
761 
762 static void smc_set_option(const struct tcp_sock *tp,
763                            struct tcp_out_options *opts,
764                            unsigned int *remaining)
765 {
766 #if IS_ENABLED(CONFIG_SMC)
767         if (static_branch_unlikely(&tcp_have_smc)) {
768                 if (tp->syn_smc) {
769                         if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
770                                 opts->options |= OPTION_SMC;
771                                 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
772                         }
773                 }
774         }
775 #endif
776 }
777 
778 static void smc_set_option_cond(const struct tcp_sock *tp,
779                                 const struct inet_request_sock *ireq,
780                                 struct tcp_out_options *opts,
781                                 unsigned int *remaining)
782 {
783 #if IS_ENABLED(CONFIG_SMC)
784         if (static_branch_unlikely(&tcp_have_smc)) {
785                 if (tp->syn_smc && ireq->smc_ok) {
786                         if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
787                                 opts->options |= OPTION_SMC;
788                                 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
789                         }
790                 }
791         }
792 #endif
793 }
794 
795 static void mptcp_set_option_cond(const struct request_sock *req,
796                                   struct tcp_out_options *opts,
797                                   unsigned int *remaining)
798 {
799         if (rsk_is_mptcp(req)) {
800                 unsigned int size;
801 
802                 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
803                         if (*remaining >= size) {
804                                 opts->options |= OPTION_MPTCP;
805                                 *remaining -= size;
806                         }
807                 }
808         }
809 }
810 
811 /* Compute TCP options for SYN packets. This is not the final
812  * network wire format yet.
813  */
814 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
815                                 struct tcp_out_options *opts,
816                                 struct tcp_key *key)
817 {
818         struct tcp_sock *tp = tcp_sk(sk);
819         unsigned int remaining = MAX_TCP_OPTION_SPACE;
820         struct tcp_fastopen_request *fastopen = tp->fastopen_req;
821         bool timestamps;
822 
823         /* Better than switch (key.type) as it has static branches */
824         if (tcp_key_is_md5(key)) {
825                 timestamps = false;
826                 opts->options |= OPTION_MD5;
827                 remaining -= TCPOLEN_MD5SIG_ALIGNED;
828         } else {
829                 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
830                 if (tcp_key_is_ao(key)) {
831                         opts->options |= OPTION_AO;
832                         remaining -= tcp_ao_len_aligned(key->ao_key);
833                 }
834         }
835 
836         /* We always get an MSS option.  The option bytes which will be seen in
837          * normal data packets should timestamps be used, must be in the MSS
838          * advertised.  But we subtract them from tp->mss_cache so that
839          * calculations in tcp_sendmsg are simpler etc.  So account for this
840          * fact here if necessary.  If we don't do this correctly, as a
841          * receiver we won't recognize data packets as being full sized when we
842          * should, and thus we won't abide by the delayed ACK rules correctly.
843          * SACKs don't matter, we never delay an ACK when we have any of those
844          * going out.  */
845         opts->mss = tcp_advertise_mss(sk);
846         remaining -= TCPOLEN_MSS_ALIGNED;
847 
848         if (likely(timestamps)) {
849                 opts->options |= OPTION_TS;
850                 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
851                 opts->tsecr = tp->rx_opt.ts_recent;
852                 remaining -= TCPOLEN_TSTAMP_ALIGNED;
853         }
854         if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
855                 opts->ws = tp->rx_opt.rcv_wscale;
856                 opts->options |= OPTION_WSCALE;
857                 remaining -= TCPOLEN_WSCALE_ALIGNED;
858         }
859         if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
860                 opts->options |= OPTION_SACK_ADVERTISE;
861                 if (unlikely(!(OPTION_TS & opts->options)))
862                         remaining -= TCPOLEN_SACKPERM_ALIGNED;
863         }
864 
865         if (fastopen && fastopen->cookie.len >= 0) {
866                 u32 need = fastopen->cookie.len;
867 
868                 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
869                                                TCPOLEN_FASTOPEN_BASE;
870                 need = (need + 3) & ~3U;  /* Align to 32 bits */
871                 if (remaining >= need) {
872                         opts->options |= OPTION_FAST_OPEN_COOKIE;
873                         opts->fastopen_cookie = &fastopen->cookie;
874                         remaining -= need;
875                         tp->syn_fastopen = 1;
876                         tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
877                 }
878         }
879 
880         smc_set_option(tp, opts, &remaining);
881 
882         if (sk_is_mptcp(sk)) {
883                 unsigned int size;
884 
885                 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
886                         opts->options |= OPTION_MPTCP;
887                         remaining -= size;
888                 }
889         }
890 
891         bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
892 
893         return MAX_TCP_OPTION_SPACE - remaining;
894 }
895 
896 /* Set up TCP options for SYN-ACKs. */
897 static unsigned int tcp_synack_options(const struct sock *sk,
898                                        struct request_sock *req,
899                                        unsigned int mss, struct sk_buff *skb,
900                                        struct tcp_out_options *opts,
901                                        const struct tcp_key *key,
902                                        struct tcp_fastopen_cookie *foc,
903                                        enum tcp_synack_type synack_type,
904                                        struct sk_buff *syn_skb)
905 {
906         struct inet_request_sock *ireq = inet_rsk(req);
907         unsigned int remaining = MAX_TCP_OPTION_SPACE;
908 
909         if (tcp_key_is_md5(key)) {
910                 opts->options |= OPTION_MD5;
911                 remaining -= TCPOLEN_MD5SIG_ALIGNED;
912 
913                 /* We can't fit any SACK blocks in a packet with MD5 + TS
914                  * options. There was discussion about disabling SACK
915                  * rather than TS in order to fit in better with old,
916                  * buggy kernels, but that was deemed to be unnecessary.
917                  */
918                 if (synack_type != TCP_SYNACK_COOKIE)
919                         ireq->tstamp_ok &= !ireq->sack_ok;
920         } else if (tcp_key_is_ao(key)) {
921                 opts->options |= OPTION_AO;
922                 remaining -= tcp_ao_len_aligned(key->ao_key);
923                 ireq->tstamp_ok &= !ireq->sack_ok;
924         }
925 
926         /* We always send an MSS option. */
927         opts->mss = mss;
928         remaining -= TCPOLEN_MSS_ALIGNED;
929 
930         if (likely(ireq->wscale_ok)) {
931                 opts->ws = ireq->rcv_wscale;
932                 opts->options |= OPTION_WSCALE;
933                 remaining -= TCPOLEN_WSCALE_ALIGNED;
934         }
935         if (likely(ireq->tstamp_ok)) {
936                 opts->options |= OPTION_TS;
937                 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
938                               tcp_rsk(req)->ts_off;
939                 opts->tsecr = READ_ONCE(req->ts_recent);
940                 remaining -= TCPOLEN_TSTAMP_ALIGNED;
941         }
942         if (likely(ireq->sack_ok)) {
943                 opts->options |= OPTION_SACK_ADVERTISE;
944                 if (unlikely(!ireq->tstamp_ok))
945                         remaining -= TCPOLEN_SACKPERM_ALIGNED;
946         }
947         if (foc != NULL && foc->len >= 0) {
948                 u32 need = foc->len;
949 
950                 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
951                                    TCPOLEN_FASTOPEN_BASE;
952                 need = (need + 3) & ~3U;  /* Align to 32 bits */
953                 if (remaining >= need) {
954                         opts->options |= OPTION_FAST_OPEN_COOKIE;
955                         opts->fastopen_cookie = foc;
956                         remaining -= need;
957                 }
958         }
959 
960         mptcp_set_option_cond(req, opts, &remaining);
961 
962         smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
963 
964         bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
965                               synack_type, opts, &remaining);
966 
967         return MAX_TCP_OPTION_SPACE - remaining;
968 }
969 
970 /* Compute TCP options for ESTABLISHED sockets. This is not the
971  * final wire format yet.
972  */
973 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
974                                         struct tcp_out_options *opts,
975                                         struct tcp_key *key)
976 {
977         struct tcp_sock *tp = tcp_sk(sk);
978         unsigned int size = 0;
979         unsigned int eff_sacks;
980 
981         opts->options = 0;
982 
983         /* Better than switch (key.type) as it has static branches */
984         if (tcp_key_is_md5(key)) {
985                 opts->options |= OPTION_MD5;
986                 size += TCPOLEN_MD5SIG_ALIGNED;
987         } else if (tcp_key_is_ao(key)) {
988                 opts->options |= OPTION_AO;
989                 size += tcp_ao_len_aligned(key->ao_key);
990         }
991 
992         if (likely(tp->rx_opt.tstamp_ok)) {
993                 opts->options |= OPTION_TS;
994                 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
995                                 tp->tsoffset : 0;
996                 opts->tsecr = tp->rx_opt.ts_recent;
997                 size += TCPOLEN_TSTAMP_ALIGNED;
998         }
999 
1000         /* MPTCP options have precedence over SACK for the limited TCP
1001          * option space because a MPTCP connection would be forced to
1002          * fall back to regular TCP if a required multipath option is
1003          * missing. SACK still gets a chance to use whatever space is
1004          * left.
1005          */
1006         if (sk_is_mptcp(sk)) {
1007                 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1008                 unsigned int opt_size = 0;
1009 
1010                 if (mptcp_established_options(sk, skb, &opt_size, remaining,
1011                                               &opts->mptcp)) {
1012                         opts->options |= OPTION_MPTCP;
1013                         size += opt_size;
1014                 }
1015         }
1016 
1017         eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1018         if (unlikely(eff_sacks)) {
1019                 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1020                 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1021                                          TCPOLEN_SACK_PERBLOCK))
1022                         return size;
1023 
1024                 opts->num_sack_blocks =
1025                         min_t(unsigned int, eff_sacks,
1026                               (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1027                               TCPOLEN_SACK_PERBLOCK);
1028 
1029                 size += TCPOLEN_SACK_BASE_ALIGNED +
1030                         opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1031         }
1032 
1033         if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1034                                             BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1035                 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1036 
1037                 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1038 
1039                 size = MAX_TCP_OPTION_SPACE - remaining;
1040         }
1041 
1042         return size;
1043 }
1044 
1045 
1046 /* TCP SMALL QUEUES (TSQ)
1047  *
1048  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1049  * to reduce RTT and bufferbloat.
1050  * We do this using a special skb destructor (tcp_wfree).
1051  *
1052  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1053  * needs to be reallocated in a driver.
1054  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1055  *
1056  * Since transmit from skb destructor is forbidden, we use a tasklet
1057  * to process all sockets that eventually need to send more skbs.
1058  * We use one tasklet per cpu, with its own queue of sockets.
1059  */
1060 struct tsq_tasklet {
1061         struct tasklet_struct   tasklet;
1062         struct list_head        head; /* queue of tcp sockets */
1063 };
1064 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1065 
1066 static void tcp_tsq_write(struct sock *sk)
1067 {
1068         if ((1 << sk->sk_state) &
1069             (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1070              TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1071                 struct tcp_sock *tp = tcp_sk(sk);
1072 
1073                 if (tp->lost_out > tp->retrans_out &&
1074                     tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1075                         tcp_mstamp_refresh(tp);
1076                         tcp_xmit_retransmit_queue(sk);
1077                 }
1078 
1079                 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1080                                0, GFP_ATOMIC);
1081         }
1082 }
1083 
1084 static void tcp_tsq_handler(struct sock *sk)
1085 {
1086         bh_lock_sock(sk);
1087         if (!sock_owned_by_user(sk))
1088                 tcp_tsq_write(sk);
1089         else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1090                 sock_hold(sk);
1091         bh_unlock_sock(sk);
1092 }
1093 /*
1094  * One tasklet per cpu tries to send more skbs.
1095  * We run in tasklet context but need to disable irqs when
1096  * transferring tsq->head because tcp_wfree() might
1097  * interrupt us (non NAPI drivers)
1098  */
1099 static void tcp_tasklet_func(struct tasklet_struct *t)
1100 {
1101         struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1102         LIST_HEAD(list);
1103         unsigned long flags;
1104         struct list_head *q, *n;
1105         struct tcp_sock *tp;
1106         struct sock *sk;
1107 
1108         local_irq_save(flags);
1109         list_splice_init(&tsq->head, &list);
1110         local_irq_restore(flags);
1111 
1112         list_for_each_safe(q, n, &list) {
1113                 tp = list_entry(q, struct tcp_sock, tsq_node);
1114                 list_del(&tp->tsq_node);
1115 
1116                 sk = (struct sock *)tp;
1117                 smp_mb__before_atomic();
1118                 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1119 
1120                 tcp_tsq_handler(sk);
1121                 sk_free(sk);
1122         }
1123 }
1124 
1125 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |           \
1126                           TCPF_WRITE_TIMER_DEFERRED |   \
1127                           TCPF_DELACK_TIMER_DEFERRED |  \
1128                           TCPF_MTU_REDUCED_DEFERRED |   \
1129                           TCPF_ACK_DEFERRED)
1130 /**
1131  * tcp_release_cb - tcp release_sock() callback
1132  * @sk: socket
1133  *
1134  * called from release_sock() to perform protocol dependent
1135  * actions before socket release.
1136  */
1137 void tcp_release_cb(struct sock *sk)
1138 {
1139         unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1140         unsigned long nflags;
1141 
1142         /* perform an atomic operation only if at least one flag is set */
1143         do {
1144                 if (!(flags & TCP_DEFERRED_ALL))
1145                         return;
1146                 nflags = flags & ~TCP_DEFERRED_ALL;
1147         } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1148 
1149         if (flags & TCPF_TSQ_DEFERRED) {
1150                 tcp_tsq_write(sk);
1151                 __sock_put(sk);
1152         }
1153 
1154         if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1155                 tcp_write_timer_handler(sk);
1156                 __sock_put(sk);
1157         }
1158         if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1159                 tcp_delack_timer_handler(sk);
1160                 __sock_put(sk);
1161         }
1162         if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1163                 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1164                 __sock_put(sk);
1165         }
1166         if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1167                 tcp_send_ack(sk);
1168 }
1169 EXPORT_SYMBOL(tcp_release_cb);
1170 
1171 void __init tcp_tasklet_init(void)
1172 {
1173         int i;
1174 
1175         for_each_possible_cpu(i) {
1176                 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1177 
1178                 INIT_LIST_HEAD(&tsq->head);
1179                 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1180         }
1181 }
1182 
1183 /*
1184  * Write buffer destructor automatically called from kfree_skb.
1185  * We can't xmit new skbs from this context, as we might already
1186  * hold qdisc lock.
1187  */
1188 void tcp_wfree(struct sk_buff *skb)
1189 {
1190         struct sock *sk = skb->sk;
1191         struct tcp_sock *tp = tcp_sk(sk);
1192         unsigned long flags, nval, oval;
1193         struct tsq_tasklet *tsq;
1194         bool empty;
1195 
1196         /* Keep one reference on sk_wmem_alloc.
1197          * Will be released by sk_free() from here or tcp_tasklet_func()
1198          */
1199         WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1200 
1201         /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1202          * Wait until our queues (qdisc + devices) are drained.
1203          * This gives :
1204          * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1205          * - chance for incoming ACK (processed by another cpu maybe)
1206          *   to migrate this flow (skb->ooo_okay will be eventually set)
1207          */
1208         if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1209                 goto out;
1210 
1211         oval = smp_load_acquire(&sk->sk_tsq_flags);
1212         do {
1213                 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1214                         goto out;
1215 
1216                 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1217         } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1218 
1219         /* queue this socket to tasklet queue */
1220         local_irq_save(flags);
1221         tsq = this_cpu_ptr(&tsq_tasklet);
1222         empty = list_empty(&tsq->head);
1223         list_add(&tp->tsq_node, &tsq->head);
1224         if (empty)
1225                 tasklet_schedule(&tsq->tasklet);
1226         local_irq_restore(flags);
1227         return;
1228 out:
1229         sk_free(sk);
1230 }
1231 
1232 /* Note: Called under soft irq.
1233  * We can call TCP stack right away, unless socket is owned by user.
1234  */
1235 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1236 {
1237         struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1238         struct sock *sk = (struct sock *)tp;
1239 
1240         tcp_tsq_handler(sk);
1241         sock_put(sk);
1242 
1243         return HRTIMER_NORESTART;
1244 }
1245 
1246 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1247                                       u64 prior_wstamp)
1248 {
1249         struct tcp_sock *tp = tcp_sk(sk);
1250 
1251         if (sk->sk_pacing_status != SK_PACING_NONE) {
1252                 unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1253 
1254                 /* Original sch_fq does not pace first 10 MSS
1255                  * Note that tp->data_segs_out overflows after 2^32 packets,
1256                  * this is a minor annoyance.
1257                  */
1258                 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1259                         u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1260                         u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1261 
1262                         /* take into account OS jitter */
1263                         len_ns -= min_t(u64, len_ns / 2, credit);
1264                         tp->tcp_wstamp_ns += len_ns;
1265                 }
1266         }
1267         list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1268 }
1269 
1270 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1271 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1272 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1273 
1274 /* This routine actually transmits TCP packets queued in by
1275  * tcp_do_sendmsg().  This is used by both the initial
1276  * transmission and possible later retransmissions.
1277  * All SKB's seen here are completely headerless.  It is our
1278  * job to build the TCP header, and pass the packet down to
1279  * IP so it can do the same plus pass the packet off to the
1280  * device.
1281  *
1282  * We are working here with either a clone of the original
1283  * SKB, or a fresh unique copy made by the retransmit engine.
1284  */
1285 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1286                               int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1287 {
1288         const struct inet_connection_sock *icsk = inet_csk(sk);
1289         struct inet_sock *inet;
1290         struct tcp_sock *tp;
1291         struct tcp_skb_cb *tcb;
1292         struct tcp_out_options opts;
1293         unsigned int tcp_options_size, tcp_header_size;
1294         struct sk_buff *oskb = NULL;
1295         struct tcp_key key;
1296         struct tcphdr *th;
1297         u64 prior_wstamp;
1298         int err;
1299 
1300         BUG_ON(!skb || !tcp_skb_pcount(skb));
1301         tp = tcp_sk(sk);
1302         prior_wstamp = tp->tcp_wstamp_ns;
1303         tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1304         skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1305         if (clone_it) {
1306                 oskb = skb;
1307 
1308                 tcp_skb_tsorted_save(oskb) {
1309                         if (unlikely(skb_cloned(oskb)))
1310                                 skb = pskb_copy(oskb, gfp_mask);
1311                         else
1312                                 skb = skb_clone(oskb, gfp_mask);
1313                 } tcp_skb_tsorted_restore(oskb);
1314 
1315                 if (unlikely(!skb))
1316                         return -ENOBUFS;
1317                 /* retransmit skbs might have a non zero value in skb->dev
1318                  * because skb->dev is aliased with skb->rbnode.rb_left
1319                  */
1320                 skb->dev = NULL;
1321         }
1322 
1323         inet = inet_sk(sk);
1324         tcb = TCP_SKB_CB(skb);
1325         memset(&opts, 0, sizeof(opts));
1326 
1327         tcp_get_current_key(sk, &key);
1328         if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1329                 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1330         } else {
1331                 tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1332                 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1333                  * at receiver : This slightly improve GRO performance.
1334                  * Note that we do not force the PSH flag for non GSO packets,
1335                  * because they might be sent under high congestion events,
1336                  * and in this case it is better to delay the delivery of 1-MSS
1337                  * packets and thus the corresponding ACK packet that would
1338                  * release the following packet.
1339                  */
1340                 if (tcp_skb_pcount(skb) > 1)
1341                         tcb->tcp_flags |= TCPHDR_PSH;
1342         }
1343         tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1344 
1345         /* We set skb->ooo_okay to one if this packet can select
1346          * a different TX queue than prior packets of this flow,
1347          * to avoid self inflicted reorders.
1348          * The 'other' queue decision is based on current cpu number
1349          * if XPS is enabled, or sk->sk_txhash otherwise.
1350          * We can switch to another (and better) queue if:
1351          * 1) No packet with payload is in qdisc/device queues.
1352          *    Delays in TX completion can defeat the test
1353          *    even if packets were already sent.
1354          * 2) Or rtx queue is empty.
1355          *    This mitigates above case if ACK packets for
1356          *    all prior packets were already processed.
1357          */
1358         skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1359                         tcp_rtx_queue_empty(sk);
1360 
1361         /* If we had to use memory reserve to allocate this skb,
1362          * this might cause drops if packet is looped back :
1363          * Other socket might not have SOCK_MEMALLOC.
1364          * Packets not looped back do not care about pfmemalloc.
1365          */
1366         skb->pfmemalloc = 0;
1367 
1368         skb_push(skb, tcp_header_size);
1369         skb_reset_transport_header(skb);
1370 
1371         skb_orphan(skb);
1372         skb->sk = sk;
1373         skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1374         refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1375 
1376         skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1377 
1378         /* Build TCP header and checksum it. */
1379         th = (struct tcphdr *)skb->data;
1380         th->source              = inet->inet_sport;
1381         th->dest                = inet->inet_dport;
1382         th->seq                 = htonl(tcb->seq);
1383         th->ack_seq             = htonl(rcv_nxt);
1384         *(((__be16 *)th) + 6)   = htons(((tcp_header_size >> 2) << 12) |
1385                                         tcb->tcp_flags);
1386 
1387         th->check               = 0;
1388         th->urg_ptr             = 0;
1389 
1390         /* The urg_mode check is necessary during a below snd_una win probe */
1391         if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1392                 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1393                         th->urg_ptr = htons(tp->snd_up - tcb->seq);
1394                         th->urg = 1;
1395                 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1396                         th->urg_ptr = htons(0xFFFF);
1397                         th->urg = 1;
1398                 }
1399         }
1400 
1401         skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1402         if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1403                 th->window      = htons(tcp_select_window(sk));
1404                 tcp_ecn_send(sk, skb, th, tcp_header_size);
1405         } else {
1406                 /* RFC1323: The window in SYN & SYN/ACK segments
1407                  * is never scaled.
1408                  */
1409                 th->window      = htons(min(tp->rcv_wnd, 65535U));
1410         }
1411 
1412         tcp_options_write(th, tp, NULL, &opts, &key);
1413 
1414         if (tcp_key_is_md5(&key)) {
1415 #ifdef CONFIG_TCP_MD5SIG
1416                 /* Calculate the MD5 hash, as we have all we need now */
1417                 sk_gso_disable(sk);
1418                 tp->af_specific->calc_md5_hash(opts.hash_location,
1419                                                key.md5_key, sk, skb);
1420 #endif
1421         } else if (tcp_key_is_ao(&key)) {
1422                 int err;
1423 
1424                 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1425                                           opts.hash_location);
1426                 if (err) {
1427                         kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1428                         return -ENOMEM;
1429                 }
1430         }
1431 
1432         /* BPF prog is the last one writing header option */
1433         bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1434 
1435         INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1436                            tcp_v6_send_check, tcp_v4_send_check,
1437                            sk, skb);
1438 
1439         if (likely(tcb->tcp_flags & TCPHDR_ACK))
1440                 tcp_event_ack_sent(sk, rcv_nxt);
1441 
1442         if (skb->len != tcp_header_size) {
1443                 tcp_event_data_sent(tp, sk);
1444                 tp->data_segs_out += tcp_skb_pcount(skb);
1445                 tp->bytes_sent += skb->len - tcp_header_size;
1446         }
1447 
1448         if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1449                 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1450                               tcp_skb_pcount(skb));
1451 
1452         tp->segs_out += tcp_skb_pcount(skb);
1453         skb_set_hash_from_sk(skb, sk);
1454         /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1455         skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1456         skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1457 
1458         /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1459 
1460         /* Cleanup our debris for IP stacks */
1461         memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1462                                sizeof(struct inet6_skb_parm)));
1463 
1464         tcp_add_tx_delay(skb, tp);
1465 
1466         err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1467                                  inet6_csk_xmit, ip_queue_xmit,
1468                                  sk, skb, &inet->cork.fl);
1469 
1470         if (unlikely(err > 0)) {
1471                 tcp_enter_cwr(sk);
1472                 err = net_xmit_eval(err);
1473         }
1474         if (!err && oskb) {
1475                 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1476                 tcp_rate_skb_sent(sk, oskb);
1477         }
1478         return err;
1479 }
1480 
1481 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1482                             gfp_t gfp_mask)
1483 {
1484         return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1485                                   tcp_sk(sk)->rcv_nxt);
1486 }
1487 
1488 /* This routine just queues the buffer for sending.
1489  *
1490  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1491  * otherwise socket can stall.
1492  */
1493 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1494 {
1495         struct tcp_sock *tp = tcp_sk(sk);
1496 
1497         /* Advance write_seq and place onto the write_queue. */
1498         WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1499         __skb_header_release(skb);
1500         tcp_add_write_queue_tail(sk, skb);
1501         sk_wmem_queued_add(sk, skb->truesize);
1502         sk_mem_charge(sk, skb->truesize);
1503 }
1504 
1505 /* Initialize TSO segments for a packet. */
1506 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1507 {
1508         int tso_segs;
1509 
1510         if (skb->len <= mss_now) {
1511                 /* Avoid the costly divide in the normal
1512                  * non-TSO case.
1513                  */
1514                 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1515                 tcp_skb_pcount_set(skb, 1);
1516                 return 1;
1517         }
1518         TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1519         tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1520         tcp_skb_pcount_set(skb, tso_segs);
1521         return tso_segs;
1522 }
1523 
1524 /* Pcount in the middle of the write queue got changed, we need to do various
1525  * tweaks to fix counters
1526  */
1527 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1528 {
1529         struct tcp_sock *tp = tcp_sk(sk);
1530 
1531         tp->packets_out -= decr;
1532 
1533         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1534                 tp->sacked_out -= decr;
1535         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1536                 tp->retrans_out -= decr;
1537         if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1538                 tp->lost_out -= decr;
1539 
1540         /* Reno case is special. Sigh... */
1541         if (tcp_is_reno(tp) && decr > 0)
1542                 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1543 
1544         if (tp->lost_skb_hint &&
1545             before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1546             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1547                 tp->lost_cnt_hint -= decr;
1548 
1549         tcp_verify_left_out(tp);
1550 }
1551 
1552 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1553 {
1554         return TCP_SKB_CB(skb)->txstamp_ack ||
1555                 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1556 }
1557 
1558 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1559 {
1560         struct skb_shared_info *shinfo = skb_shinfo(skb);
1561 
1562         if (unlikely(tcp_has_tx_tstamp(skb)) &&
1563             !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1564                 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1565                 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1566 
1567                 shinfo->tx_flags &= ~tsflags;
1568                 shinfo2->tx_flags |= tsflags;
1569                 swap(shinfo->tskey, shinfo2->tskey);
1570                 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1571                 TCP_SKB_CB(skb)->txstamp_ack = 0;
1572         }
1573 }
1574 
1575 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1576 {
1577         TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1578         TCP_SKB_CB(skb)->eor = 0;
1579 }
1580 
1581 /* Insert buff after skb on the write or rtx queue of sk.  */
1582 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1583                                          struct sk_buff *buff,
1584                                          struct sock *sk,
1585                                          enum tcp_queue tcp_queue)
1586 {
1587         if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1588                 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1589         else
1590                 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1591 }
1592 
1593 /* Function to create two new TCP segments.  Shrinks the given segment
1594  * to the specified size and appends a new segment with the rest of the
1595  * packet to the list.  This won't be called frequently, I hope.
1596  * Remember, these are still headerless SKBs at this point.
1597  */
1598 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1599                  struct sk_buff *skb, u32 len,
1600                  unsigned int mss_now, gfp_t gfp)
1601 {
1602         struct tcp_sock *tp = tcp_sk(sk);
1603         struct sk_buff *buff;
1604         int old_factor;
1605         long limit;
1606         int nlen;
1607         u8 flags;
1608 
1609         if (WARN_ON(len > skb->len))
1610                 return -EINVAL;
1611 
1612         DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1613 
1614         /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1615          * We need some allowance to not penalize applications setting small
1616          * SO_SNDBUF values.
1617          * Also allow first and last skb in retransmit queue to be split.
1618          */
1619         limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1620         if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1621                      tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1622                      skb != tcp_rtx_queue_head(sk) &&
1623                      skb != tcp_rtx_queue_tail(sk))) {
1624                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1625                 return -ENOMEM;
1626         }
1627 
1628         if (skb_unclone_keeptruesize(skb, gfp))
1629                 return -ENOMEM;
1630 
1631         /* Get a new skb... force flag on. */
1632         buff = tcp_stream_alloc_skb(sk, gfp, true);
1633         if (!buff)
1634                 return -ENOMEM; /* We'll just try again later. */
1635         skb_copy_decrypted(buff, skb);
1636         mptcp_skb_ext_copy(buff, skb);
1637 
1638         sk_wmem_queued_add(sk, buff->truesize);
1639         sk_mem_charge(sk, buff->truesize);
1640         nlen = skb->len - len;
1641         buff->truesize += nlen;
1642         skb->truesize -= nlen;
1643 
1644         /* Correct the sequence numbers. */
1645         TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1646         TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1647         TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1648 
1649         /* PSH and FIN should only be set in the second packet. */
1650         flags = TCP_SKB_CB(skb)->tcp_flags;
1651         TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1652         TCP_SKB_CB(buff)->tcp_flags = flags;
1653         TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1654         tcp_skb_fragment_eor(skb, buff);
1655 
1656         skb_split(skb, buff, len);
1657 
1658         skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1659         tcp_fragment_tstamp(skb, buff);
1660 
1661         old_factor = tcp_skb_pcount(skb);
1662 
1663         /* Fix up tso_factor for both original and new SKB.  */
1664         tcp_set_skb_tso_segs(skb, mss_now);
1665         tcp_set_skb_tso_segs(buff, mss_now);
1666 
1667         /* Update delivered info for the new segment */
1668         TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1669 
1670         /* If this packet has been sent out already, we must
1671          * adjust the various packet counters.
1672          */
1673         if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1674                 int diff = old_factor - tcp_skb_pcount(skb) -
1675                         tcp_skb_pcount(buff);
1676 
1677                 if (diff)
1678                         tcp_adjust_pcount(sk, skb, diff);
1679         }
1680 
1681         /* Link BUFF into the send queue. */
1682         __skb_header_release(buff);
1683         tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1684         if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1685                 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1686 
1687         return 0;
1688 }
1689 
1690 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1691  * data is not copied, but immediately discarded.
1692  */
1693 static int __pskb_trim_head(struct sk_buff *skb, int len)
1694 {
1695         struct skb_shared_info *shinfo;
1696         int i, k, eat;
1697 
1698         DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1699         eat = len;
1700         k = 0;
1701         shinfo = skb_shinfo(skb);
1702         for (i = 0; i < shinfo->nr_frags; i++) {
1703                 int size = skb_frag_size(&shinfo->frags[i]);
1704 
1705                 if (size <= eat) {
1706                         skb_frag_unref(skb, i);
1707                         eat -= size;
1708                 } else {
1709                         shinfo->frags[k] = shinfo->frags[i];
1710                         if (eat) {
1711                                 skb_frag_off_add(&shinfo->frags[k], eat);
1712                                 skb_frag_size_sub(&shinfo->frags[k], eat);
1713                                 eat = 0;
1714                         }
1715                         k++;
1716                 }
1717         }
1718         shinfo->nr_frags = k;
1719 
1720         skb->data_len -= len;
1721         skb->len = skb->data_len;
1722         return len;
1723 }
1724 
1725 /* Remove acked data from a packet in the transmit queue. */
1726 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1727 {
1728         u32 delta_truesize;
1729 
1730         if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1731                 return -ENOMEM;
1732 
1733         delta_truesize = __pskb_trim_head(skb, len);
1734 
1735         TCP_SKB_CB(skb)->seq += len;
1736 
1737         skb->truesize      -= delta_truesize;
1738         sk_wmem_queued_add(sk, -delta_truesize);
1739         if (!skb_zcopy_pure(skb))
1740                 sk_mem_uncharge(sk, delta_truesize);
1741 
1742         /* Any change of skb->len requires recalculation of tso factor. */
1743         if (tcp_skb_pcount(skb) > 1)
1744                 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1745 
1746         return 0;
1747 }
1748 
1749 /* Calculate MSS not accounting any TCP options.  */
1750 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1751 {
1752         const struct tcp_sock *tp = tcp_sk(sk);
1753         const struct inet_connection_sock *icsk = inet_csk(sk);
1754         int mss_now;
1755 
1756         /* Calculate base mss without TCP options:
1757            It is MMS_S - sizeof(tcphdr) of rfc1122
1758          */
1759         mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1760 
1761         /* Clamp it (mss_clamp does not include tcp options) */
1762         if (mss_now > tp->rx_opt.mss_clamp)
1763                 mss_now = tp->rx_opt.mss_clamp;
1764 
1765         /* Now subtract optional transport overhead */
1766         mss_now -= icsk->icsk_ext_hdr_len;
1767 
1768         /* Then reserve room for full set of TCP options and 8 bytes of data */
1769         mss_now = max(mss_now,
1770                       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1771         return mss_now;
1772 }
1773 
1774 /* Calculate MSS. Not accounting for SACKs here.  */
1775 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1776 {
1777         /* Subtract TCP options size, not including SACKs */
1778         return __tcp_mtu_to_mss(sk, pmtu) -
1779                (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1780 }
1781 EXPORT_SYMBOL(tcp_mtu_to_mss);
1782 
1783 /* Inverse of above */
1784 int tcp_mss_to_mtu(struct sock *sk, int mss)
1785 {
1786         const struct tcp_sock *tp = tcp_sk(sk);
1787         const struct inet_connection_sock *icsk = inet_csk(sk);
1788 
1789         return mss +
1790               tp->tcp_header_len +
1791               icsk->icsk_ext_hdr_len +
1792               icsk->icsk_af_ops->net_header_len;
1793 }
1794 EXPORT_SYMBOL(tcp_mss_to_mtu);
1795 
1796 /* MTU probing init per socket */
1797 void tcp_mtup_init(struct sock *sk)
1798 {
1799         struct tcp_sock *tp = tcp_sk(sk);
1800         struct inet_connection_sock *icsk = inet_csk(sk);
1801         struct net *net = sock_net(sk);
1802 
1803         icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1804         icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1805                                icsk->icsk_af_ops->net_header_len;
1806         icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1807         icsk->icsk_mtup.probe_size = 0;
1808         if (icsk->icsk_mtup.enabled)
1809                 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1810 }
1811 EXPORT_SYMBOL(tcp_mtup_init);
1812 
1813 /* This function synchronize snd mss to current pmtu/exthdr set.
1814 
1815    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1816    for TCP options, but includes only bare TCP header.
1817 
1818    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1819    It is minimum of user_mss and mss received with SYN.
1820    It also does not include TCP options.
1821 
1822    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1823 
1824    tp->mss_cache is current effective sending mss, including
1825    all tcp options except for SACKs. It is evaluated,
1826    taking into account current pmtu, but never exceeds
1827    tp->rx_opt.mss_clamp.
1828 
1829    NOTE1. rfc1122 clearly states that advertised MSS
1830    DOES NOT include either tcp or ip options.
1831 
1832    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1833    are READ ONLY outside this function.         --ANK (980731)
1834  */
1835 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1836 {
1837         struct tcp_sock *tp = tcp_sk(sk);
1838         struct inet_connection_sock *icsk = inet_csk(sk);
1839         int mss_now;
1840 
1841         if (icsk->icsk_mtup.search_high > pmtu)
1842                 icsk->icsk_mtup.search_high = pmtu;
1843 
1844         mss_now = tcp_mtu_to_mss(sk, pmtu);
1845         mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1846 
1847         /* And store cached results */
1848         icsk->icsk_pmtu_cookie = pmtu;
1849         if (icsk->icsk_mtup.enabled)
1850                 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1851         tp->mss_cache = mss_now;
1852 
1853         return mss_now;
1854 }
1855 EXPORT_SYMBOL(tcp_sync_mss);
1856 
1857 /* Compute the current effective MSS, taking SACKs and IP options,
1858  * and even PMTU discovery events into account.
1859  */
1860 unsigned int tcp_current_mss(struct sock *sk)
1861 {
1862         const struct tcp_sock *tp = tcp_sk(sk);
1863         const struct dst_entry *dst = __sk_dst_get(sk);
1864         u32 mss_now;
1865         unsigned int header_len;
1866         struct tcp_out_options opts;
1867         struct tcp_key key;
1868 
1869         mss_now = tp->mss_cache;
1870 
1871         if (dst) {
1872                 u32 mtu = dst_mtu(dst);
1873                 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1874                         mss_now = tcp_sync_mss(sk, mtu);
1875         }
1876         tcp_get_current_key(sk, &key);
1877         header_len = tcp_established_options(sk, NULL, &opts, &key) +
1878                      sizeof(struct tcphdr);
1879         /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1880          * some common options. If this is an odd packet (because we have SACK
1881          * blocks etc) then our calculated header_len will be different, and
1882          * we have to adjust mss_now correspondingly */
1883         if (header_len != tp->tcp_header_len) {
1884                 int delta = (int) header_len - tp->tcp_header_len;
1885                 mss_now -= delta;
1886         }
1887 
1888         return mss_now;
1889 }
1890 
1891 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1892  * As additional protections, we do not touch cwnd in retransmission phases,
1893  * and if application hit its sndbuf limit recently.
1894  */
1895 static void tcp_cwnd_application_limited(struct sock *sk)
1896 {
1897         struct tcp_sock *tp = tcp_sk(sk);
1898 
1899         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1900             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1901                 /* Limited by application or receiver window. */
1902                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1903                 u32 win_used = max(tp->snd_cwnd_used, init_win);
1904                 if (win_used < tcp_snd_cwnd(tp)) {
1905                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
1906                         tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1907                 }
1908                 tp->snd_cwnd_used = 0;
1909         }
1910         tp->snd_cwnd_stamp = tcp_jiffies32;
1911 }
1912 
1913 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1914 {
1915         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1916         struct tcp_sock *tp = tcp_sk(sk);
1917 
1918         /* Track the strongest available signal of the degree to which the cwnd
1919          * is fully utilized. If cwnd-limited then remember that fact for the
1920          * current window. If not cwnd-limited then track the maximum number of
1921          * outstanding packets in the current window. (If cwnd-limited then we
1922          * chose to not update tp->max_packets_out to avoid an extra else
1923          * clause with no functional impact.)
1924          */
1925         if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1926             is_cwnd_limited ||
1927             (!tp->is_cwnd_limited &&
1928              tp->packets_out > tp->max_packets_out)) {
1929                 tp->is_cwnd_limited = is_cwnd_limited;
1930                 tp->max_packets_out = tp->packets_out;
1931                 tp->cwnd_usage_seq = tp->snd_nxt;
1932         }
1933 
1934         if (tcp_is_cwnd_limited(sk)) {
1935                 /* Network is feed fully. */
1936                 tp->snd_cwnd_used = 0;
1937                 tp->snd_cwnd_stamp = tcp_jiffies32;
1938         } else {
1939                 /* Network starves. */
1940                 if (tp->packets_out > tp->snd_cwnd_used)
1941                         tp->snd_cwnd_used = tp->packets_out;
1942 
1943                 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1944                     (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1945                     !ca_ops->cong_control)
1946                         tcp_cwnd_application_limited(sk);
1947 
1948                 /* The following conditions together indicate the starvation
1949                  * is caused by insufficient sender buffer:
1950                  * 1) just sent some data (see tcp_write_xmit)
1951                  * 2) not cwnd limited (this else condition)
1952                  * 3) no more data to send (tcp_write_queue_empty())
1953                  * 4) application is hitting buffer limit (SOCK_NOSPACE)
1954                  */
1955                 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1956                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1957                     (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1958                         tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1959         }
1960 }
1961 
1962 /* Minshall's variant of the Nagle send check. */
1963 static bool tcp_minshall_check(const struct tcp_sock *tp)
1964 {
1965         return after(tp->snd_sml, tp->snd_una) &&
1966                 !after(tp->snd_sml, tp->snd_nxt);
1967 }
1968 
1969 /* Update snd_sml if this skb is under mss
1970  * Note that a TSO packet might end with a sub-mss segment
1971  * The test is really :
1972  * if ((skb->len % mss) != 0)
1973  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1974  * But we can avoid doing the divide again given we already have
1975  *  skb_pcount = skb->len / mss_now
1976  */
1977 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1978                                 const struct sk_buff *skb)
1979 {
1980         if (skb->len < tcp_skb_pcount(skb) * mss_now)
1981                 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1982 }
1983 
1984 /* Return false, if packet can be sent now without violation Nagle's rules:
1985  * 1. It is full sized. (provided by caller in %partial bool)
1986  * 2. Or it contains FIN. (already checked by caller)
1987  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1988  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1989  *    With Minshall's modification: all sent small packets are ACKed.
1990  */
1991 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1992                             int nonagle)
1993 {
1994         return partial &&
1995                 ((nonagle & TCP_NAGLE_CORK) ||
1996                  (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1997 }
1998 
1999 /* Return how many segs we'd like on a TSO packet,
2000  * depending on current pacing rate, and how close the peer is.
2001  *
2002  * Rationale is:
2003  * - For close peers, we rather send bigger packets to reduce
2004  *   cpu costs, because occasional losses will be repaired fast.
2005  * - For long distance/rtt flows, we would like to get ACK clocking
2006  *   with 1 ACK per ms.
2007  *
2008  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2009  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2010  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2011  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2012  */
2013 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2014                             int min_tso_segs)
2015 {
2016         unsigned long bytes;
2017         u32 r;
2018 
2019         bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2020 
2021         r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2022         if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2023                 bytes += sk->sk_gso_max_size >> r;
2024 
2025         bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2026 
2027         return max_t(u32, bytes / mss_now, min_tso_segs);
2028 }
2029 
2030 /* Return the number of segments we want in the skb we are transmitting.
2031  * See if congestion control module wants to decide; otherwise, autosize.
2032  */
2033 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2034 {
2035         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2036         u32 min_tso, tso_segs;
2037 
2038         min_tso = ca_ops->min_tso_segs ?
2039                         ca_ops->min_tso_segs(sk) :
2040                         READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2041 
2042         tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2043         return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2044 }
2045 
2046 /* Returns the portion of skb which can be sent right away */
2047 static unsigned int tcp_mss_split_point(const struct sock *sk,
2048                                         const struct sk_buff *skb,
2049                                         unsigned int mss_now,
2050                                         unsigned int max_segs,
2051                                         int nonagle)
2052 {
2053         const struct tcp_sock *tp = tcp_sk(sk);
2054         u32 partial, needed, window, max_len;
2055 
2056         window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2057         max_len = mss_now * max_segs;
2058 
2059         if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2060                 return max_len;
2061 
2062         needed = min(skb->len, window);
2063 
2064         if (max_len <= needed)
2065                 return max_len;
2066 
2067         partial = needed % mss_now;
2068         /* If last segment is not a full MSS, check if Nagle rules allow us
2069          * to include this last segment in this skb.
2070          * Otherwise, we'll split the skb at last MSS boundary
2071          */
2072         if (tcp_nagle_check(partial != 0, tp, nonagle))
2073                 return needed - partial;
2074 
2075         return needed;
2076 }
2077 
2078 /* Can at least one segment of SKB be sent right now, according to the
2079  * congestion window rules?  If so, return how many segments are allowed.
2080  */
2081 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2082 {
2083         u32 in_flight, cwnd, halfcwnd;
2084 
2085         in_flight = tcp_packets_in_flight(tp);
2086         cwnd = tcp_snd_cwnd(tp);
2087         if (in_flight >= cwnd)
2088                 return 0;
2089 
2090         /* For better scheduling, ensure we have at least
2091          * 2 GSO packets in flight.
2092          */
2093         halfcwnd = max(cwnd >> 1, 1U);
2094         return min(halfcwnd, cwnd - in_flight);
2095 }
2096 
2097 /* Initialize TSO state of a skb.
2098  * This must be invoked the first time we consider transmitting
2099  * SKB onto the wire.
2100  */
2101 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2102 {
2103         int tso_segs = tcp_skb_pcount(skb);
2104 
2105         if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2106                 return tcp_set_skb_tso_segs(skb, mss_now);
2107 
2108         return tso_segs;
2109 }
2110 
2111 
2112 /* Return true if the Nagle test allows this packet to be
2113  * sent now.
2114  */
2115 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2116                                   unsigned int cur_mss, int nonagle)
2117 {
2118         /* Nagle rule does not apply to frames, which sit in the middle of the
2119          * write_queue (they have no chances to get new data).
2120          *
2121          * This is implemented in the callers, where they modify the 'nonagle'
2122          * argument based upon the location of SKB in the send queue.
2123          */
2124         if (nonagle & TCP_NAGLE_PUSH)
2125                 return true;
2126 
2127         /* Don't use the nagle rule for urgent data (or for the final FIN). */
2128         if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2129                 return true;
2130 
2131         if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2132                 return true;
2133 
2134         return false;
2135 }
2136 
2137 /* Does at least the first segment of SKB fit into the send window? */
2138 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2139                              const struct sk_buff *skb,
2140                              unsigned int cur_mss)
2141 {
2142         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2143 
2144         if (skb->len > cur_mss)
2145                 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2146 
2147         return !after(end_seq, tcp_wnd_end(tp));
2148 }
2149 
2150 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2151  * which is put after SKB on the list.  It is very much like
2152  * tcp_fragment() except that it may make several kinds of assumptions
2153  * in order to speed up the splitting operation.  In particular, we
2154  * know that all the data is in scatter-gather pages, and that the
2155  * packet has never been sent out before (and thus is not cloned).
2156  */
2157 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2158                         unsigned int mss_now, gfp_t gfp)
2159 {
2160         int nlen = skb->len - len;
2161         struct sk_buff *buff;
2162         u8 flags;
2163 
2164         /* All of a TSO frame must be composed of paged data.  */
2165         DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2166 
2167         buff = tcp_stream_alloc_skb(sk, gfp, true);
2168         if (unlikely(!buff))
2169                 return -ENOMEM;
2170         skb_copy_decrypted(buff, skb);
2171         mptcp_skb_ext_copy(buff, skb);
2172 
2173         sk_wmem_queued_add(sk, buff->truesize);
2174         sk_mem_charge(sk, buff->truesize);
2175         buff->truesize += nlen;
2176         skb->truesize -= nlen;
2177 
2178         /* Correct the sequence numbers. */
2179         TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2180         TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2181         TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2182 
2183         /* PSH and FIN should only be set in the second packet. */
2184         flags = TCP_SKB_CB(skb)->tcp_flags;
2185         TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2186         TCP_SKB_CB(buff)->tcp_flags = flags;
2187 
2188         tcp_skb_fragment_eor(skb, buff);
2189 
2190         skb_split(skb, buff, len);
2191         tcp_fragment_tstamp(skb, buff);
2192 
2193         /* Fix up tso_factor for both original and new SKB.  */
2194         tcp_set_skb_tso_segs(skb, mss_now);
2195         tcp_set_skb_tso_segs(buff, mss_now);
2196 
2197         /* Link BUFF into the send queue. */
2198         __skb_header_release(buff);
2199         tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2200 
2201         return 0;
2202 }
2203 
2204 /* Try to defer sending, if possible, in order to minimize the amount
2205  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2206  *
2207  * This algorithm is from John Heffner.
2208  */
2209 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2210                                  bool *is_cwnd_limited,
2211                                  bool *is_rwnd_limited,
2212                                  u32 max_segs)
2213 {
2214         const struct inet_connection_sock *icsk = inet_csk(sk);
2215         u32 send_win, cong_win, limit, in_flight;
2216         struct tcp_sock *tp = tcp_sk(sk);
2217         struct sk_buff *head;
2218         int win_divisor;
2219         s64 delta;
2220 
2221         if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2222                 goto send_now;
2223 
2224         /* Avoid bursty behavior by allowing defer
2225          * only if the last write was recent (1 ms).
2226          * Note that tp->tcp_wstamp_ns can be in the future if we have
2227          * packets waiting in a qdisc or device for EDT delivery.
2228          */
2229         delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2230         if (delta > 0)
2231                 goto send_now;
2232 
2233         in_flight = tcp_packets_in_flight(tp);
2234 
2235         BUG_ON(tcp_skb_pcount(skb) <= 1);
2236         BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2237 
2238         send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2239 
2240         /* From in_flight test above, we know that cwnd > in_flight.  */
2241         cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2242 
2243         limit = min(send_win, cong_win);
2244 
2245         /* If a full-sized TSO skb can be sent, do it. */
2246         if (limit >= max_segs * tp->mss_cache)
2247                 goto send_now;
2248 
2249         /* Middle in queue won't get any more data, full sendable already? */
2250         if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2251                 goto send_now;
2252 
2253         win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2254         if (win_divisor) {
2255                 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2256 
2257                 /* If at least some fraction of a window is available,
2258                  * just use it.
2259                  */
2260                 chunk /= win_divisor;
2261                 if (limit >= chunk)
2262                         goto send_now;
2263         } else {
2264                 /* Different approach, try not to defer past a single
2265                  * ACK.  Receiver should ACK every other full sized
2266                  * frame, so if we have space for more than 3 frames
2267                  * then send now.
2268                  */
2269                 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2270                         goto send_now;
2271         }
2272 
2273         /* TODO : use tsorted_sent_queue ? */
2274         head = tcp_rtx_queue_head(sk);
2275         if (!head)
2276                 goto send_now;
2277         delta = tp->tcp_clock_cache - head->tstamp;
2278         /* If next ACK is likely to come too late (half srtt), do not defer */
2279         if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2280                 goto send_now;
2281 
2282         /* Ok, it looks like it is advisable to defer.
2283          * Three cases are tracked :
2284          * 1) We are cwnd-limited
2285          * 2) We are rwnd-limited
2286          * 3) We are application limited.
2287          */
2288         if (cong_win < send_win) {
2289                 if (cong_win <= skb->len) {
2290                         *is_cwnd_limited = true;
2291                         return true;
2292                 }
2293         } else {
2294                 if (send_win <= skb->len) {
2295                         *is_rwnd_limited = true;
2296                         return true;
2297                 }
2298         }
2299 
2300         /* If this packet won't get more data, do not wait. */
2301         if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2302             TCP_SKB_CB(skb)->eor)
2303                 goto send_now;
2304 
2305         return true;
2306 
2307 send_now:
2308         return false;
2309 }
2310 
2311 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2312 {
2313         struct inet_connection_sock *icsk = inet_csk(sk);
2314         struct tcp_sock *tp = tcp_sk(sk);
2315         struct net *net = sock_net(sk);
2316         u32 interval;
2317         s32 delta;
2318 
2319         interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2320         delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2321         if (unlikely(delta >= interval * HZ)) {
2322                 int mss = tcp_current_mss(sk);
2323 
2324                 /* Update current search range */
2325                 icsk->icsk_mtup.probe_size = 0;
2326                 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2327                         sizeof(struct tcphdr) +
2328                         icsk->icsk_af_ops->net_header_len;
2329                 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2330 
2331                 /* Update probe time stamp */
2332                 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2333         }
2334 }
2335 
2336 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2337 {
2338         struct sk_buff *skb, *next;
2339 
2340         skb = tcp_send_head(sk);
2341         tcp_for_write_queue_from_safe(skb, next, sk) {
2342                 if (len <= skb->len)
2343                         break;
2344 
2345                 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2346                         return false;
2347 
2348                 len -= skb->len;
2349         }
2350 
2351         return true;
2352 }
2353 
2354 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2355                              int probe_size)
2356 {
2357         skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2358         int i, todo, len = 0, nr_frags = 0;
2359         const struct sk_buff *skb;
2360 
2361         if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2362                 return -ENOMEM;
2363 
2364         skb_queue_walk(&sk->sk_write_queue, skb) {
2365                 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2366 
2367                 if (skb_headlen(skb))
2368                         return -EINVAL;
2369 
2370                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2371                         if (len >= probe_size)
2372                                 goto commit;
2373                         todo = min_t(int, skb_frag_size(fragfrom),
2374                                      probe_size - len);
2375                         len += todo;
2376                         if (lastfrag &&
2377                             skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2378                             skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2379                                                       skb_frag_size(lastfrag)) {
2380                                 skb_frag_size_add(lastfrag, todo);
2381                                 continue;
2382                         }
2383                         if (unlikely(nr_frags == MAX_SKB_FRAGS))
2384                                 return -E2BIG;
2385                         skb_frag_page_copy(fragto, fragfrom);
2386                         skb_frag_off_copy(fragto, fragfrom);
2387                         skb_frag_size_set(fragto, todo);
2388                         nr_frags++;
2389                         lastfrag = fragto++;
2390                 }
2391         }
2392 commit:
2393         WARN_ON_ONCE(len != probe_size);
2394         for (i = 0; i < nr_frags; i++)
2395                 skb_frag_ref(to, i);
2396 
2397         skb_shinfo(to)->nr_frags = nr_frags;
2398         to->truesize += probe_size;
2399         to->len += probe_size;
2400         to->data_len += probe_size;
2401         __skb_header_release(to);
2402         return 0;
2403 }
2404 
2405 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2406  * all its payload was moved to another one (dst).
2407  * Make sure to transfer tcp_flags, eor, and tstamp.
2408  */
2409 static void tcp_eat_one_skb(struct sock *sk,
2410                             struct sk_buff *dst,
2411                             struct sk_buff *src)
2412 {
2413         TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2414         TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2415         tcp_skb_collapse_tstamp(dst, src);
2416         tcp_unlink_write_queue(src, sk);
2417         tcp_wmem_free_skb(sk, src);
2418 }
2419 
2420 /* Create a new MTU probe if we are ready.
2421  * MTU probe is regularly attempting to increase the path MTU by
2422  * deliberately sending larger packets.  This discovers routing
2423  * changes resulting in larger path MTUs.
2424  *
2425  * Returns 0 if we should wait to probe (no cwnd available),
2426  *         1 if a probe was sent,
2427  *         -1 otherwise
2428  */
2429 static int tcp_mtu_probe(struct sock *sk)
2430 {
2431         struct inet_connection_sock *icsk = inet_csk(sk);
2432         struct tcp_sock *tp = tcp_sk(sk);
2433         struct sk_buff *skb, *nskb, *next;
2434         struct net *net = sock_net(sk);
2435         int probe_size;
2436         int size_needed;
2437         int copy, len;
2438         int mss_now;
2439         int interval;
2440 
2441         /* Not currently probing/verifying,
2442          * not in recovery,
2443          * have enough cwnd, and
2444          * not SACKing (the variable headers throw things off)
2445          */
2446         if (likely(!icsk->icsk_mtup.enabled ||
2447                    icsk->icsk_mtup.probe_size ||
2448                    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2449                    tcp_snd_cwnd(tp) < 11 ||
2450                    tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2451                 return -1;
2452 
2453         /* Use binary search for probe_size between tcp_mss_base,
2454          * and current mss_clamp. if (search_high - search_low)
2455          * smaller than a threshold, backoff from probing.
2456          */
2457         mss_now = tcp_current_mss(sk);
2458         probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2459                                     icsk->icsk_mtup.search_low) >> 1);
2460         size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2461         interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2462         /* When misfortune happens, we are reprobing actively,
2463          * and then reprobe timer has expired. We stick with current
2464          * probing process by not resetting search range to its orignal.
2465          */
2466         if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2467             interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2468                 /* Check whether enough time has elaplased for
2469                  * another round of probing.
2470                  */
2471                 tcp_mtu_check_reprobe(sk);
2472                 return -1;
2473         }
2474 
2475         /* Have enough data in the send queue to probe? */
2476         if (tp->write_seq - tp->snd_nxt < size_needed)
2477                 return -1;
2478 
2479         if (tp->snd_wnd < size_needed)
2480                 return -1;
2481         if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2482                 return 0;
2483 
2484         /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2485         if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2486                 if (!tcp_packets_in_flight(tp))
2487                         return -1;
2488                 else
2489                         return 0;
2490         }
2491 
2492         if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2493                 return -1;
2494 
2495         /* We're allowed to probe.  Build it now. */
2496         nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2497         if (!nskb)
2498                 return -1;
2499 
2500         /* build the payload, and be prepared to abort if this fails. */
2501         if (tcp_clone_payload(sk, nskb, probe_size)) {
2502                 tcp_skb_tsorted_anchor_cleanup(nskb);
2503                 consume_skb(nskb);
2504                 return -1;
2505         }
2506         sk_wmem_queued_add(sk, nskb->truesize);
2507         sk_mem_charge(sk, nskb->truesize);
2508 
2509         skb = tcp_send_head(sk);
2510         skb_copy_decrypted(nskb, skb);
2511         mptcp_skb_ext_copy(nskb, skb);
2512 
2513         TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2514         TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2515         TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2516 
2517         tcp_insert_write_queue_before(nskb, skb, sk);
2518         tcp_highest_sack_replace(sk, skb, nskb);
2519 
2520         len = 0;
2521         tcp_for_write_queue_from_safe(skb, next, sk) {
2522                 copy = min_t(int, skb->len, probe_size - len);
2523 
2524                 if (skb->len <= copy) {
2525                         tcp_eat_one_skb(sk, nskb, skb);
2526                 } else {
2527                         TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2528                                                    ~(TCPHDR_FIN|TCPHDR_PSH);
2529                         __pskb_trim_head(skb, copy);
2530                         tcp_set_skb_tso_segs(skb, mss_now);
2531                         TCP_SKB_CB(skb)->seq += copy;
2532                 }
2533 
2534                 len += copy;
2535 
2536                 if (len >= probe_size)
2537                         break;
2538         }
2539         tcp_init_tso_segs(nskb, nskb->len);
2540 
2541         /* We're ready to send.  If this fails, the probe will
2542          * be resegmented into mss-sized pieces by tcp_write_xmit().
2543          */
2544         if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2545                 /* Decrement cwnd here because we are sending
2546                  * effectively two packets. */
2547                 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2548                 tcp_event_new_data_sent(sk, nskb);
2549 
2550                 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2551                 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2552                 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2553 
2554                 return 1;
2555         }
2556 
2557         return -1;
2558 }
2559 
2560 static bool tcp_pacing_check(struct sock *sk)
2561 {
2562         struct tcp_sock *tp = tcp_sk(sk);
2563 
2564         if (!tcp_needs_internal_pacing(sk))
2565                 return false;
2566 
2567         if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2568                 return false;
2569 
2570         if (!hrtimer_is_queued(&tp->pacing_timer)) {
2571                 hrtimer_start(&tp->pacing_timer,
2572                               ns_to_ktime(tp->tcp_wstamp_ns),
2573                               HRTIMER_MODE_ABS_PINNED_SOFT);
2574                 sock_hold(sk);
2575         }
2576         return true;
2577 }
2578 
2579 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2580 {
2581         const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2582 
2583         /* No skb in the rtx queue. */
2584         if (!node)
2585                 return true;
2586 
2587         /* Only one skb in rtx queue. */
2588         return !node->rb_left && !node->rb_right;
2589 }
2590 
2591 /* TCP Small Queues :
2592  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2593  * (These limits are doubled for retransmits)
2594  * This allows for :
2595  *  - better RTT estimation and ACK scheduling
2596  *  - faster recovery
2597  *  - high rates
2598  * Alas, some drivers / subsystems require a fair amount
2599  * of queued bytes to ensure line rate.
2600  * One example is wifi aggregation (802.11 AMPDU)
2601  */
2602 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2603                                   unsigned int factor)
2604 {
2605         unsigned long limit;
2606 
2607         limit = max_t(unsigned long,
2608                       2 * skb->truesize,
2609                       READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2610         if (sk->sk_pacing_status == SK_PACING_NONE)
2611                 limit = min_t(unsigned long, limit,
2612                               READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2613         limit <<= factor;
2614 
2615         if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2616             tcp_sk(sk)->tcp_tx_delay) {
2617                 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2618                                   tcp_sk(sk)->tcp_tx_delay;
2619 
2620                 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2621                  * approximate our needs assuming an ~100% skb->truesize overhead.
2622                  * USEC_PER_SEC is approximated by 2^20.
2623                  * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2624                  */
2625                 extra_bytes >>= (20 - 1);
2626                 limit += extra_bytes;
2627         }
2628         if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2629                 /* Always send skb if rtx queue is empty or has one skb.
2630                  * No need to wait for TX completion to call us back,
2631                  * after softirq/tasklet schedule.
2632                  * This helps when TX completions are delayed too much.
2633                  */
2634                 if (tcp_rtx_queue_empty_or_single_skb(sk))
2635                         return false;
2636 
2637                 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2638                 /* It is possible TX completion already happened
2639                  * before we set TSQ_THROTTLED, so we must
2640                  * test again the condition.
2641                  */
2642                 smp_mb__after_atomic();
2643                 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2644                         return true;
2645         }
2646         return false;
2647 }
2648 
2649 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2650 {
2651         const u32 now = tcp_jiffies32;
2652         enum tcp_chrono old = tp->chrono_type;
2653 
2654         if (old > TCP_CHRONO_UNSPEC)
2655                 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2656         tp->chrono_start = now;
2657         tp->chrono_type = new;
2658 }
2659 
2660 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2661 {
2662         struct tcp_sock *tp = tcp_sk(sk);
2663 
2664         /* If there are multiple conditions worthy of tracking in a
2665          * chronograph then the highest priority enum takes precedence
2666          * over the other conditions. So that if something "more interesting"
2667          * starts happening, stop the previous chrono and start a new one.
2668          */
2669         if (type > tp->chrono_type)
2670                 tcp_chrono_set(tp, type);
2671 }
2672 
2673 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2674 {
2675         struct tcp_sock *tp = tcp_sk(sk);
2676 
2677 
2678         /* There are multiple conditions worthy of tracking in a
2679          * chronograph, so that the highest priority enum takes
2680          * precedence over the other conditions (see tcp_chrono_start).
2681          * If a condition stops, we only stop chrono tracking if
2682          * it's the "most interesting" or current chrono we are
2683          * tracking and starts busy chrono if we have pending data.
2684          */
2685         if (tcp_rtx_and_write_queues_empty(sk))
2686                 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2687         else if (type == tp->chrono_type)
2688                 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2689 }
2690 
2691 /* First skb in the write queue is smaller than ideal packet size.
2692  * Check if we can move payload from the second skb in the queue.
2693  */
2694 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2695 {
2696         struct sk_buff *next_skb = skb->next;
2697         unsigned int nlen;
2698 
2699         if (tcp_skb_is_last(sk, skb))
2700                 return;
2701 
2702         if (!tcp_skb_can_collapse(skb, next_skb))
2703                 return;
2704 
2705         nlen = min_t(u32, amount, next_skb->len);
2706         if (!nlen || !skb_shift(skb, next_skb, nlen))
2707                 return;
2708 
2709         TCP_SKB_CB(skb)->end_seq += nlen;
2710         TCP_SKB_CB(next_skb)->seq += nlen;
2711 
2712         if (!next_skb->len) {
2713                 /* In case FIN is set, we need to update end_seq */
2714                 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2715 
2716                 tcp_eat_one_skb(sk, skb, next_skb);
2717         }
2718 }
2719 
2720 /* This routine writes packets to the network.  It advances the
2721  * send_head.  This happens as incoming acks open up the remote
2722  * window for us.
2723  *
2724  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2725  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2726  * account rare use of URG, this is not a big flaw.
2727  *
2728  * Send at most one packet when push_one > 0. Temporarily ignore
2729  * cwnd limit to force at most one packet out when push_one == 2.
2730 
2731  * Returns true, if no segments are in flight and we have queued segments,
2732  * but cannot send anything now because of SWS or another problem.
2733  */
2734 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2735                            int push_one, gfp_t gfp)
2736 {
2737         struct tcp_sock *tp = tcp_sk(sk);
2738         struct sk_buff *skb;
2739         unsigned int tso_segs, sent_pkts;
2740         u32 cwnd_quota, max_segs;
2741         int result;
2742         bool is_cwnd_limited = false, is_rwnd_limited = false;
2743 
2744         sent_pkts = 0;
2745 
2746         tcp_mstamp_refresh(tp);
2747         if (!push_one) {
2748                 /* Do MTU probing. */
2749                 result = tcp_mtu_probe(sk);
2750                 if (!result) {
2751                         return false;
2752                 } else if (result > 0) {
2753                         sent_pkts = 1;
2754                 }
2755         }
2756 
2757         max_segs = tcp_tso_segs(sk, mss_now);
2758         while ((skb = tcp_send_head(sk))) {
2759                 unsigned int limit;
2760                 int missing_bytes;
2761 
2762                 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2763                         /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2764                         tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2765                         skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2766                         list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2767                         tcp_init_tso_segs(skb, mss_now);
2768                         goto repair; /* Skip network transmission */
2769                 }
2770 
2771                 if (tcp_pacing_check(sk))
2772                         break;
2773 
2774                 cwnd_quota = tcp_cwnd_test(tp);
2775                 if (!cwnd_quota) {
2776                         if (push_one == 2)
2777                                 /* Force out a loss probe pkt. */
2778                                 cwnd_quota = 1;
2779                         else
2780                                 break;
2781                 }
2782                 cwnd_quota = min(cwnd_quota, max_segs);
2783                 missing_bytes = cwnd_quota * mss_now - skb->len;
2784                 if (missing_bytes > 0)
2785                         tcp_grow_skb(sk, skb, missing_bytes);
2786 
2787                 tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2788 
2789                 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2790                         is_rwnd_limited = true;
2791                         break;
2792                 }
2793 
2794                 if (tso_segs == 1) {
2795                         if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2796                                                      (tcp_skb_is_last(sk, skb) ?
2797                                                       nonagle : TCP_NAGLE_PUSH))))
2798                                 break;
2799                 } else {
2800                         if (!push_one &&
2801                             tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2802                                                  &is_rwnd_limited, max_segs))
2803                                 break;
2804                 }
2805 
2806                 limit = mss_now;
2807                 if (tso_segs > 1 && !tcp_urg_mode(tp))
2808                         limit = tcp_mss_split_point(sk, skb, mss_now,
2809                                                     cwnd_quota,
2810                                                     nonagle);
2811 
2812                 if (skb->len > limit &&
2813                     unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2814                         break;
2815 
2816                 if (tcp_small_queue_check(sk, skb, 0))
2817                         break;
2818 
2819                 /* Argh, we hit an empty skb(), presumably a thread
2820                  * is sleeping in sendmsg()/sk_stream_wait_memory().
2821                  * We do not want to send a pure-ack packet and have
2822                  * a strange looking rtx queue with empty packet(s).
2823                  */
2824                 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2825                         break;
2826 
2827                 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2828                         break;
2829 
2830 repair:
2831                 /* Advance the send_head.  This one is sent out.
2832                  * This call will increment packets_out.
2833                  */
2834                 tcp_event_new_data_sent(sk, skb);
2835 
2836                 tcp_minshall_update(tp, mss_now, skb);
2837                 sent_pkts += tcp_skb_pcount(skb);
2838 
2839                 if (push_one)
2840                         break;
2841         }
2842 
2843         if (is_rwnd_limited)
2844                 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2845         else
2846                 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2847 
2848         is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2849         if (likely(sent_pkts || is_cwnd_limited))
2850                 tcp_cwnd_validate(sk, is_cwnd_limited);
2851 
2852         if (likely(sent_pkts)) {
2853                 if (tcp_in_cwnd_reduction(sk))
2854                         tp->prr_out += sent_pkts;
2855 
2856                 /* Send one loss probe per tail loss episode. */
2857                 if (push_one != 2)
2858                         tcp_schedule_loss_probe(sk, false);
2859                 return false;
2860         }
2861         return !tp->packets_out && !tcp_write_queue_empty(sk);
2862 }
2863 
2864 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2865 {
2866         struct inet_connection_sock *icsk = inet_csk(sk);
2867         struct tcp_sock *tp = tcp_sk(sk);
2868         u32 timeout, timeout_us, rto_delta_us;
2869         int early_retrans;
2870 
2871         /* Don't do any loss probe on a Fast Open connection before 3WHS
2872          * finishes.
2873          */
2874         if (rcu_access_pointer(tp->fastopen_rsk))
2875                 return false;
2876 
2877         early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2878         /* Schedule a loss probe in 2*RTT for SACK capable connections
2879          * not in loss recovery, that are either limited by cwnd or application.
2880          */
2881         if ((early_retrans != 3 && early_retrans != 4) ||
2882             !tp->packets_out || !tcp_is_sack(tp) ||
2883             (icsk->icsk_ca_state != TCP_CA_Open &&
2884              icsk->icsk_ca_state != TCP_CA_CWR))
2885                 return false;
2886 
2887         /* Probe timeout is 2*rtt. Add minimum RTO to account
2888          * for delayed ack when there's one outstanding packet. If no RTT
2889          * sample is available then probe after TCP_TIMEOUT_INIT.
2890          */
2891         if (tp->srtt_us) {
2892                 timeout_us = tp->srtt_us >> 2;
2893                 if (tp->packets_out == 1)
2894                         timeout_us += tcp_rto_min_us(sk);
2895                 else
2896                         timeout_us += TCP_TIMEOUT_MIN_US;
2897                 timeout = usecs_to_jiffies(timeout_us);
2898         } else {
2899                 timeout = TCP_TIMEOUT_INIT;
2900         }
2901 
2902         /* If the RTO formula yields an earlier time, then use that time. */
2903         rto_delta_us = advancing_rto ?
2904                         jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2905                         tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2906         if (rto_delta_us > 0)
2907                 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2908 
2909         tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2910         return true;
2911 }
2912 
2913 /* Thanks to skb fast clones, we can detect if a prior transmit of
2914  * a packet is still in a qdisc or driver queue.
2915  * In this case, there is very little point doing a retransmit !
2916  */
2917 static bool skb_still_in_host_queue(struct sock *sk,
2918                                     const struct sk_buff *skb)
2919 {
2920         if (unlikely(skb_fclone_busy(sk, skb))) {
2921                 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2922                 smp_mb__after_atomic();
2923                 if (skb_fclone_busy(sk, skb)) {
2924                         NET_INC_STATS(sock_net(sk),
2925                                       LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2926                         return true;
2927                 }
2928         }
2929         return false;
2930 }
2931 
2932 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2933  * retransmit the last segment.
2934  */
2935 void tcp_send_loss_probe(struct sock *sk)
2936 {
2937         struct tcp_sock *tp = tcp_sk(sk);
2938         struct sk_buff *skb;
2939         int pcount;
2940         int mss = tcp_current_mss(sk);
2941 
2942         /* At most one outstanding TLP */
2943         if (tp->tlp_high_seq)
2944                 goto rearm_timer;
2945 
2946         tp->tlp_retrans = 0;
2947         skb = tcp_send_head(sk);
2948         if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2949                 pcount = tp->packets_out;
2950                 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2951                 if (tp->packets_out > pcount)
2952                         goto probe_sent;
2953                 goto rearm_timer;
2954         }
2955         skb = skb_rb_last(&sk->tcp_rtx_queue);
2956         if (unlikely(!skb)) {
2957                 WARN_ONCE(tp->packets_out,
2958                           "invalid inflight: %u state %u cwnd %u mss %d\n",
2959                           tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2960                 inet_csk(sk)->icsk_pending = 0;
2961                 return;
2962         }
2963 
2964         if (skb_still_in_host_queue(sk, skb))
2965                 goto rearm_timer;
2966 
2967         pcount = tcp_skb_pcount(skb);
2968         if (WARN_ON(!pcount))
2969                 goto rearm_timer;
2970 
2971         if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2972                 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2973                                           (pcount - 1) * mss, mss,
2974                                           GFP_ATOMIC)))
2975                         goto rearm_timer;
2976                 skb = skb_rb_next(skb);
2977         }
2978 
2979         if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2980                 goto rearm_timer;
2981 
2982         if (__tcp_retransmit_skb(sk, skb, 1))
2983                 goto rearm_timer;
2984 
2985         tp->tlp_retrans = 1;
2986 
2987 probe_sent:
2988         /* Record snd_nxt for loss detection. */
2989         tp->tlp_high_seq = tp->snd_nxt;
2990 
2991         NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2992         /* Reset s.t. tcp_rearm_rto will restart timer from now */
2993         inet_csk(sk)->icsk_pending = 0;
2994 rearm_timer:
2995         tcp_rearm_rto(sk);
2996 }
2997 
2998 /* Push out any pending frames which were held back due to
2999  * TCP_CORK or attempt at coalescing tiny packets.
3000  * The socket must be locked by the caller.
3001  */
3002 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3003                                int nonagle)
3004 {
3005         /* If we are closed, the bytes will have to remain here.
3006          * In time closedown will finish, we empty the write queue and
3007          * all will be happy.
3008          */
3009         if (unlikely(sk->sk_state == TCP_CLOSE))
3010                 return;
3011 
3012         if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3013                            sk_gfp_mask(sk, GFP_ATOMIC)))
3014                 tcp_check_probe_timer(sk);
3015 }
3016 
3017 /* Send _single_ skb sitting at the send head. This function requires
3018  * true push pending frames to setup probe timer etc.
3019  */
3020 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3021 {
3022         struct sk_buff *skb = tcp_send_head(sk);
3023 
3024         BUG_ON(!skb || skb->len < mss_now);
3025 
3026         tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3027 }
3028 
3029 /* This function returns the amount that we can raise the
3030  * usable window based on the following constraints
3031  *
3032  * 1. The window can never be shrunk once it is offered (RFC 793)
3033  * 2. We limit memory per socket
3034  *
3035  * RFC 1122:
3036  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3037  *  RECV.NEXT + RCV.WIN fixed until:
3038  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3039  *
3040  * i.e. don't raise the right edge of the window until you can raise
3041  * it at least MSS bytes.
3042  *
3043  * Unfortunately, the recommended algorithm breaks header prediction,
3044  * since header prediction assumes th->window stays fixed.
3045  *
3046  * Strictly speaking, keeping th->window fixed violates the receiver
3047  * side SWS prevention criteria. The problem is that under this rule
3048  * a stream of single byte packets will cause the right side of the
3049  * window to always advance by a single byte.
3050  *
3051  * Of course, if the sender implements sender side SWS prevention
3052  * then this will not be a problem.
3053  *
3054  * BSD seems to make the following compromise:
3055  *
3056  *      If the free space is less than the 1/4 of the maximum
3057  *      space available and the free space is less than 1/2 mss,
3058  *      then set the window to 0.
3059  *      [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3060  *      Otherwise, just prevent the window from shrinking
3061  *      and from being larger than the largest representable value.
3062  *
3063  * This prevents incremental opening of the window in the regime
3064  * where TCP is limited by the speed of the reader side taking
3065  * data out of the TCP receive queue. It does nothing about
3066  * those cases where the window is constrained on the sender side
3067  * because the pipeline is full.
3068  *
3069  * BSD also seems to "accidentally" limit itself to windows that are a
3070  * multiple of MSS, at least until the free space gets quite small.
3071  * This would appear to be a side effect of the mbuf implementation.
3072  * Combining these two algorithms results in the observed behavior
3073  * of having a fixed window size at almost all times.
3074  *
3075  * Below we obtain similar behavior by forcing the offered window to
3076  * a multiple of the mss when it is feasible to do so.
3077  *
3078  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3079  * Regular options like TIMESTAMP are taken into account.
3080  */
3081 u32 __tcp_select_window(struct sock *sk)
3082 {
3083         struct inet_connection_sock *icsk = inet_csk(sk);
3084         struct tcp_sock *tp = tcp_sk(sk);
3085         struct net *net = sock_net(sk);
3086         /* MSS for the peer's data.  Previous versions used mss_clamp
3087          * here.  I don't know if the value based on our guesses
3088          * of peer's MSS is better for the performance.  It's more correct
3089          * but may be worse for the performance because of rcv_mss
3090          * fluctuations.  --SAW  1998/11/1
3091          */
3092         int mss = icsk->icsk_ack.rcv_mss;
3093         int free_space = tcp_space(sk);
3094         int allowed_space = tcp_full_space(sk);
3095         int full_space, window;
3096 
3097         if (sk_is_mptcp(sk))
3098                 mptcp_space(sk, &free_space, &allowed_space);
3099 
3100         full_space = min_t(int, tp->window_clamp, allowed_space);
3101 
3102         if (unlikely(mss > full_space)) {
3103                 mss = full_space;
3104                 if (mss <= 0)
3105                         return 0;
3106         }
3107 
3108         /* Only allow window shrink if the sysctl is enabled and we have
3109          * a non-zero scaling factor in effect.
3110          */
3111         if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3112                 goto shrink_window_allowed;
3113 
3114         /* do not allow window to shrink */
3115 
3116         if (free_space < (full_space >> 1)) {
3117                 icsk->icsk_ack.quick = 0;
3118 
3119                 if (tcp_under_memory_pressure(sk))
3120                         tcp_adjust_rcv_ssthresh(sk);
3121 
3122                 /* free_space might become our new window, make sure we don't
3123                  * increase it due to wscale.
3124                  */
3125                 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3126 
3127                 /* if free space is less than mss estimate, or is below 1/16th
3128                  * of the maximum allowed, try to move to zero-window, else
3129                  * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3130                  * new incoming data is dropped due to memory limits.
3131                  * With large window, mss test triggers way too late in order
3132                  * to announce zero window in time before rmem limit kicks in.
3133                  */
3134                 if (free_space < (allowed_space >> 4) || free_space < mss)
3135                         return 0;
3136         }
3137 
3138         if (free_space > tp->rcv_ssthresh)
3139                 free_space = tp->rcv_ssthresh;
3140 
3141         /* Don't do rounding if we are using window scaling, since the
3142          * scaled window will not line up with the MSS boundary anyway.
3143          */
3144         if (tp->rx_opt.rcv_wscale) {
3145                 window = free_space;
3146 
3147                 /* Advertise enough space so that it won't get scaled away.
3148                  * Import case: prevent zero window announcement if
3149                  * 1<<rcv_wscale > mss.
3150                  */
3151                 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3152         } else {
3153                 window = tp->rcv_wnd;
3154                 /* Get the largest window that is a nice multiple of mss.
3155                  * Window clamp already applied above.
3156                  * If our current window offering is within 1 mss of the
3157                  * free space we just keep it. This prevents the divide
3158                  * and multiply from happening most of the time.
3159                  * We also don't do any window rounding when the free space
3160                  * is too small.
3161                  */
3162                 if (window <= free_space - mss || window > free_space)
3163                         window = rounddown(free_space, mss);
3164                 else if (mss == full_space &&
3165                          free_space > window + (full_space >> 1))
3166                         window = free_space;
3167         }
3168 
3169         return window;
3170 
3171 shrink_window_allowed:
3172         /* new window should always be an exact multiple of scaling factor */
3173         free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3174 
3175         if (free_space < (full_space >> 1)) {
3176                 icsk->icsk_ack.quick = 0;
3177 
3178                 if (tcp_under_memory_pressure(sk))
3179                         tcp_adjust_rcv_ssthresh(sk);
3180 
3181                 /* if free space is too low, return a zero window */
3182                 if (free_space < (allowed_space >> 4) || free_space < mss ||
3183                         free_space < (1 << tp->rx_opt.rcv_wscale))
3184                         return 0;
3185         }
3186 
3187         if (free_space > tp->rcv_ssthresh) {
3188                 free_space = tp->rcv_ssthresh;
3189                 /* new window should always be an exact multiple of scaling factor
3190                  *
3191                  * For this case, we ALIGN "up" (increase free_space) because
3192                  * we know free_space is not zero here, it has been reduced from
3193                  * the memory-based limit, and rcv_ssthresh is not a hard limit
3194                  * (unlike sk_rcvbuf).
3195                  */
3196                 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3197         }
3198 
3199         return free_space;
3200 }
3201 
3202 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3203                              const struct sk_buff *next_skb)
3204 {
3205         if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3206                 const struct skb_shared_info *next_shinfo =
3207                         skb_shinfo(next_skb);
3208                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3209 
3210                 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3211                 shinfo->tskey = next_shinfo->tskey;
3212                 TCP_SKB_CB(skb)->txstamp_ack |=
3213                         TCP_SKB_CB(next_skb)->txstamp_ack;
3214         }
3215 }
3216 
3217 /* Collapses two adjacent SKB's during retransmission. */
3218 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3219 {
3220         struct tcp_sock *tp = tcp_sk(sk);
3221         struct sk_buff *next_skb = skb_rb_next(skb);
3222         int next_skb_size;
3223 
3224         next_skb_size = next_skb->len;
3225 
3226         BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3227 
3228         if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3229                 return false;
3230 
3231         tcp_highest_sack_replace(sk, next_skb, skb);
3232 
3233         /* Update sequence range on original skb. */
3234         TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3235 
3236         /* Merge over control information. This moves PSH/FIN etc. over */
3237         TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3238 
3239         /* All done, get rid of second SKB and account for it so
3240          * packet counting does not break.
3241          */
3242         TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3243         TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3244 
3245         /* changed transmit queue under us so clear hints */
3246         tcp_clear_retrans_hints_partial(tp);
3247         if (next_skb == tp->retransmit_skb_hint)
3248                 tp->retransmit_skb_hint = skb;
3249 
3250         tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3251 
3252         tcp_skb_collapse_tstamp(skb, next_skb);
3253 
3254         tcp_rtx_queue_unlink_and_free(next_skb, sk);
3255         return true;
3256 }
3257 
3258 /* Check if coalescing SKBs is legal. */
3259 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3260 {
3261         if (tcp_skb_pcount(skb) > 1)
3262                 return false;
3263         if (skb_cloned(skb))
3264                 return false;
3265         /* Some heuristics for collapsing over SACK'd could be invented */
3266         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3267                 return false;
3268 
3269         return true;
3270 }
3271 
3272 /* Collapse packets in the retransmit queue to make to create
3273  * less packets on the wire. This is only done on retransmission.
3274  */
3275 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3276                                      int space)
3277 {
3278         struct tcp_sock *tp = tcp_sk(sk);
3279         struct sk_buff *skb = to, *tmp;
3280         bool first = true;
3281 
3282         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3283                 return;
3284         if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3285                 return;
3286 
3287         skb_rbtree_walk_from_safe(skb, tmp) {
3288                 if (!tcp_can_collapse(sk, skb))
3289                         break;
3290 
3291                 if (!tcp_skb_can_collapse(to, skb))
3292                         break;
3293 
3294                 space -= skb->len;
3295 
3296                 if (first) {
3297                         first = false;
3298                         continue;
3299                 }
3300 
3301                 if (space < 0)
3302                         break;
3303 
3304                 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3305                         break;
3306 
3307                 if (!tcp_collapse_retrans(sk, to))
3308                         break;
3309         }
3310 }
3311 
3312 /* This retransmits one SKB.  Policy decisions and retransmit queue
3313  * state updates are done by the caller.  Returns non-zero if an
3314  * error occurred which prevented the send.
3315  */
3316 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3317 {
3318         struct inet_connection_sock *icsk = inet_csk(sk);
3319         struct tcp_sock *tp = tcp_sk(sk);
3320         unsigned int cur_mss;
3321         int diff, len, err;
3322         int avail_wnd;
3323 
3324         /* Inconclusive MTU probe */
3325         if (icsk->icsk_mtup.probe_size)
3326                 icsk->icsk_mtup.probe_size = 0;
3327 
3328         if (skb_still_in_host_queue(sk, skb))
3329                 return -EBUSY;
3330 
3331 start:
3332         if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3333                 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3334                         TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3335                         TCP_SKB_CB(skb)->seq++;
3336                         goto start;
3337                 }
3338                 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3339                         WARN_ON_ONCE(1);
3340                         return -EINVAL;
3341                 }
3342                 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3343                         return -ENOMEM;
3344         }
3345 
3346         if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3347                 return -EHOSTUNREACH; /* Routing failure or similar. */
3348 
3349         cur_mss = tcp_current_mss(sk);
3350         avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3351 
3352         /* If receiver has shrunk his window, and skb is out of
3353          * new window, do not retransmit it. The exception is the
3354          * case, when window is shrunk to zero. In this case
3355          * our retransmit of one segment serves as a zero window probe.
3356          */
3357         if (avail_wnd <= 0) {
3358                 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3359                         return -EAGAIN;
3360                 avail_wnd = cur_mss;
3361         }
3362 
3363         len = cur_mss * segs;
3364         if (len > avail_wnd) {
3365                 len = rounddown(avail_wnd, cur_mss);
3366                 if (!len)
3367                         len = avail_wnd;
3368         }
3369         if (skb->len > len) {
3370                 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3371                                  cur_mss, GFP_ATOMIC))
3372                         return -ENOMEM; /* We'll try again later. */
3373         } else {
3374                 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3375                         return -ENOMEM;
3376 
3377                 diff = tcp_skb_pcount(skb);
3378                 tcp_set_skb_tso_segs(skb, cur_mss);
3379                 diff -= tcp_skb_pcount(skb);
3380                 if (diff)
3381                         tcp_adjust_pcount(sk, skb, diff);
3382                 avail_wnd = min_t(int, avail_wnd, cur_mss);
3383                 if (skb->len < avail_wnd)
3384                         tcp_retrans_try_collapse(sk, skb, avail_wnd);
3385         }
3386 
3387         /* RFC3168, section 6.1.1.1. ECN fallback */
3388         if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3389                 tcp_ecn_clear_syn(sk, skb);
3390 
3391         /* Update global and local TCP statistics. */
3392         segs = tcp_skb_pcount(skb);
3393         TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3394         if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3395                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3396         tp->total_retrans += segs;
3397         tp->bytes_retrans += skb->len;
3398 
3399         /* make sure skb->data is aligned on arches that require it
3400          * and check if ack-trimming & collapsing extended the headroom
3401          * beyond what csum_start can cover.
3402          */
3403         if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3404                      skb_headroom(skb) >= 0xFFFF)) {
3405                 struct sk_buff *nskb;
3406 
3407                 tcp_skb_tsorted_save(skb) {
3408                         nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3409                         if (nskb) {
3410                                 nskb->dev = NULL;
3411                                 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3412                         } else {
3413                                 err = -ENOBUFS;
3414                         }
3415                 } tcp_skb_tsorted_restore(skb);
3416 
3417                 if (!err) {
3418                         tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3419                         tcp_rate_skb_sent(sk, skb);
3420                 }
3421         } else {
3422                 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3423         }
3424 
3425         if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3426                 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3427                                   TCP_SKB_CB(skb)->seq, segs, err);
3428 
3429         if (likely(!err)) {
3430                 trace_tcp_retransmit_skb(sk, skb);
3431         } else if (err != -EBUSY) {
3432                 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3433         }
3434 
3435         /* To avoid taking spuriously low RTT samples based on a timestamp
3436          * for a transmit that never happened, always mark EVER_RETRANS
3437          */
3438         TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3439 
3440         return err;
3441 }
3442 
3443 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3444 {
3445         struct tcp_sock *tp = tcp_sk(sk);
3446         int err = __tcp_retransmit_skb(sk, skb, segs);
3447 
3448         if (err == 0) {
3449 #if FASTRETRANS_DEBUG > 0
3450                 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3451                         net_dbg_ratelimited("retrans_out leaked\n");
3452                 }
3453 #endif
3454                 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3455                 tp->retrans_out += tcp_skb_pcount(skb);
3456         }
3457 
3458         /* Save stamp of the first (attempted) retransmit. */
3459         if (!tp->retrans_stamp)
3460                 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3461 
3462         if (tp->undo_retrans < 0)
3463                 tp->undo_retrans = 0;
3464         tp->undo_retrans += tcp_skb_pcount(skb);
3465         return err;
3466 }
3467 
3468 /* This gets called after a retransmit timeout, and the initially
3469  * retransmitted data is acknowledged.  It tries to continue
3470  * resending the rest of the retransmit queue, until either
3471  * we've sent it all or the congestion window limit is reached.
3472  */
3473 void tcp_xmit_retransmit_queue(struct sock *sk)
3474 {
3475         const struct inet_connection_sock *icsk = inet_csk(sk);
3476         struct sk_buff *skb, *rtx_head, *hole = NULL;
3477         struct tcp_sock *tp = tcp_sk(sk);
3478         bool rearm_timer = false;
3479         u32 max_segs;
3480         int mib_idx;
3481 
3482         if (!tp->packets_out)
3483                 return;
3484 
3485         rtx_head = tcp_rtx_queue_head(sk);
3486         skb = tp->retransmit_skb_hint ?: rtx_head;
3487         max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3488         skb_rbtree_walk_from(skb) {
3489                 __u8 sacked;
3490                 int segs;
3491 
3492                 if (tcp_pacing_check(sk))
3493                         break;
3494 
3495                 /* we could do better than to assign each time */
3496                 if (!hole)
3497                         tp->retransmit_skb_hint = skb;
3498 
3499                 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3500                 if (segs <= 0)
3501                         break;
3502                 sacked = TCP_SKB_CB(skb)->sacked;
3503                 /* In case tcp_shift_skb_data() have aggregated large skbs,
3504                  * we need to make sure not sending too bigs TSO packets
3505                  */
3506                 segs = min_t(int, segs, max_segs);
3507 
3508                 if (tp->retrans_out >= tp->lost_out) {
3509                         break;
3510                 } else if (!(sacked & TCPCB_LOST)) {
3511                         if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3512                                 hole = skb;
3513                         continue;
3514 
3515                 } else {
3516                         if (icsk->icsk_ca_state != TCP_CA_Loss)
3517                                 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3518                         else
3519                                 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3520                 }
3521 
3522                 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3523                         continue;
3524 
3525                 if (tcp_small_queue_check(sk, skb, 1))
3526                         break;
3527 
3528                 if (tcp_retransmit_skb(sk, skb, segs))
3529                         break;
3530 
3531                 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3532 
3533                 if (tcp_in_cwnd_reduction(sk))
3534                         tp->prr_out += tcp_skb_pcount(skb);
3535 
3536                 if (skb == rtx_head &&
3537                     icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3538                         rearm_timer = true;
3539 
3540         }
3541         if (rearm_timer)
3542                 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3543                                      inet_csk(sk)->icsk_rto,
3544                                      TCP_RTO_MAX);
3545 }
3546 
3547 /* We allow to exceed memory limits for FIN packets to expedite
3548  * connection tear down and (memory) recovery.
3549  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3550  * or even be forced to close flow without any FIN.
3551  * In general, we want to allow one skb per socket to avoid hangs
3552  * with edge trigger epoll()
3553  */
3554 void sk_forced_mem_schedule(struct sock *sk, int size)
3555 {
3556         int delta, amt;
3557 
3558         delta = size - sk->sk_forward_alloc;
3559         if (delta <= 0)
3560                 return;
3561         amt = sk_mem_pages(delta);
3562         sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3563         sk_memory_allocated_add(sk, amt);
3564 
3565         if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3566                 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3567                                         gfp_memcg_charge() | __GFP_NOFAIL);
3568 }
3569 
3570 /* Send a FIN. The caller locks the socket for us.
3571  * We should try to send a FIN packet really hard, but eventually give up.
3572  */
3573 void tcp_send_fin(struct sock *sk)
3574 {
3575         struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3576         struct tcp_sock *tp = tcp_sk(sk);
3577 
3578         /* Optimization, tack on the FIN if we have one skb in write queue and
3579          * this skb was not yet sent, or we are under memory pressure.
3580          * Note: in the latter case, FIN packet will be sent after a timeout,
3581          * as TCP stack thinks it has already been transmitted.
3582          */
3583         tskb = tail;
3584         if (!tskb && tcp_under_memory_pressure(sk))
3585                 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3586 
3587         if (tskb) {
3588                 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3589                 TCP_SKB_CB(tskb)->end_seq++;
3590                 tp->write_seq++;
3591                 if (!tail) {
3592                         /* This means tskb was already sent.
3593                          * Pretend we included the FIN on previous transmit.
3594                          * We need to set tp->snd_nxt to the value it would have
3595                          * if FIN had been sent. This is because retransmit path
3596                          * does not change tp->snd_nxt.
3597                          */
3598                         WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3599                         return;
3600                 }
3601         } else {
3602                 skb = alloc_skb_fclone(MAX_TCP_HEADER,
3603                                        sk_gfp_mask(sk, GFP_ATOMIC |
3604                                                        __GFP_NOWARN));
3605                 if (unlikely(!skb))
3606                         return;
3607 
3608                 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3609                 skb_reserve(skb, MAX_TCP_HEADER);
3610                 sk_forced_mem_schedule(sk, skb->truesize);
3611                 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3612                 tcp_init_nondata_skb(skb, tp->write_seq,
3613                                      TCPHDR_ACK | TCPHDR_FIN);
3614                 tcp_queue_skb(sk, skb);
3615         }
3616         __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3617 }
3618 
3619 /* We get here when a process closes a file descriptor (either due to
3620  * an explicit close() or as a byproduct of exit()'ing) and there
3621  * was unread data in the receive queue.  This behavior is recommended
3622  * by RFC 2525, section 2.17.  -DaveM
3623  */
3624 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3625                            enum sk_rst_reason reason)
3626 {
3627         struct sk_buff *skb;
3628 
3629         TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3630 
3631         /* NOTE: No TCP options attached and we never retransmit this. */
3632         skb = alloc_skb(MAX_TCP_HEADER, priority);
3633         if (!skb) {
3634                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3635                 return;
3636         }
3637 
3638         /* Reserve space for headers and prepare control bits. */
3639         skb_reserve(skb, MAX_TCP_HEADER);
3640         tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3641                              TCPHDR_ACK | TCPHDR_RST);
3642         tcp_mstamp_refresh(tcp_sk(sk));
3643         /* Send it off. */
3644         if (tcp_transmit_skb(sk, skb, 0, priority))
3645                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3646 
3647         /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3648          * skb here is different to the troublesome skb, so use NULL
3649          */
3650         trace_tcp_send_reset(sk, NULL, SK_RST_REASON_NOT_SPECIFIED);
3651 }
3652 
3653 /* Send a crossed SYN-ACK during socket establishment.
3654  * WARNING: This routine must only be called when we have already sent
3655  * a SYN packet that crossed the incoming SYN that caused this routine
3656  * to get called. If this assumption fails then the initial rcv_wnd
3657  * and rcv_wscale values will not be correct.
3658  */
3659 int tcp_send_synack(struct sock *sk)
3660 {
3661         struct sk_buff *skb;
3662 
3663         skb = tcp_rtx_queue_head(sk);
3664         if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3665                 pr_err("%s: wrong queue state\n", __func__);
3666                 return -EFAULT;
3667         }
3668         if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3669                 if (skb_cloned(skb)) {
3670                         struct sk_buff *nskb;
3671 
3672                         tcp_skb_tsorted_save(skb) {
3673                                 nskb = skb_copy(skb, GFP_ATOMIC);
3674                         } tcp_skb_tsorted_restore(skb);
3675                         if (!nskb)
3676                                 return -ENOMEM;
3677                         INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3678                         tcp_highest_sack_replace(sk, skb, nskb);
3679                         tcp_rtx_queue_unlink_and_free(skb, sk);
3680                         __skb_header_release(nskb);
3681                         tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3682                         sk_wmem_queued_add(sk, nskb->truesize);
3683                         sk_mem_charge(sk, nskb->truesize);
3684                         skb = nskb;
3685                 }
3686 
3687                 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3688                 tcp_ecn_send_synack(sk, skb);
3689         }
3690         return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3691 }
3692 
3693 /**
3694  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3695  * @sk: listener socket
3696  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3697  *       should not use it again.
3698  * @req: request_sock pointer
3699  * @foc: cookie for tcp fast open
3700  * @synack_type: Type of synack to prepare
3701  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3702  */
3703 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3704                                 struct request_sock *req,
3705                                 struct tcp_fastopen_cookie *foc,
3706                                 enum tcp_synack_type synack_type,
3707                                 struct sk_buff *syn_skb)
3708 {
3709         struct inet_request_sock *ireq = inet_rsk(req);
3710         const struct tcp_sock *tp = tcp_sk(sk);
3711         struct tcp_out_options opts;
3712         struct tcp_key key = {};
3713         struct sk_buff *skb;
3714         int tcp_header_size;
3715         struct tcphdr *th;
3716         int mss;
3717         u64 now;
3718 
3719         skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3720         if (unlikely(!skb)) {
3721                 dst_release(dst);
3722                 return NULL;
3723         }
3724         /* Reserve space for headers. */
3725         skb_reserve(skb, MAX_TCP_HEADER);
3726 
3727         switch (synack_type) {
3728         case TCP_SYNACK_NORMAL:
3729                 skb_set_owner_w(skb, req_to_sk(req));
3730                 break;
3731         case TCP_SYNACK_COOKIE:
3732                 /* Under synflood, we do not attach skb to a socket,
3733                  * to avoid false sharing.
3734                  */
3735                 break;
3736         case TCP_SYNACK_FASTOPEN:
3737                 /* sk is a const pointer, because we want to express multiple
3738                  * cpu might call us concurrently.
3739                  * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3740                  */
3741                 skb_set_owner_w(skb, (struct sock *)sk);
3742                 break;
3743         }
3744         skb_dst_set(skb, dst);
3745 
3746         mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3747 
3748         memset(&opts, 0, sizeof(opts));
3749         now = tcp_clock_ns();
3750 #ifdef CONFIG_SYN_COOKIES
3751         if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3752                 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3753                                       SKB_CLOCK_MONOTONIC);
3754         else
3755 #endif
3756         {
3757                 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3758                 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3759                         tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3760         }
3761 
3762 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3763         rcu_read_lock();
3764 #endif
3765         if (tcp_rsk_used_ao(req)) {
3766 #ifdef CONFIG_TCP_AO
3767                 struct tcp_ao_key *ao_key = NULL;
3768                 u8 keyid = tcp_rsk(req)->ao_keyid;
3769                 u8 rnext = tcp_rsk(req)->ao_rcv_next;
3770 
3771                 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3772                                                             keyid, -1);
3773                 /* If there is no matching key - avoid sending anything,
3774                  * especially usigned segments. It could try harder and lookup
3775                  * for another peer-matching key, but the peer has requested
3776                  * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3777                  */
3778                 if (unlikely(!ao_key)) {
3779                         trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3780                         rcu_read_unlock();
3781                         kfree_skb(skb);
3782                         net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3783                                              keyid);
3784                         return NULL;
3785                 }
3786                 key.ao_key = ao_key;
3787                 key.type = TCP_KEY_AO;
3788 #endif
3789         } else {
3790 #ifdef CONFIG_TCP_MD5SIG
3791                 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3792                                         req_to_sk(req));
3793                 if (key.md5_key)
3794                         key.type = TCP_KEY_MD5;
3795 #endif
3796         }
3797         skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3798         /* bpf program will be interested in the tcp_flags */
3799         TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3800         tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3801                                              &key, foc, synack_type, syn_skb)
3802                                         + sizeof(*th);
3803 
3804         skb_push(skb, tcp_header_size);
3805         skb_reset_transport_header(skb);
3806 
3807         th = (struct tcphdr *)skb->data;
3808         memset(th, 0, sizeof(struct tcphdr));
3809         th->syn = 1;
3810         th->ack = 1;
3811         tcp_ecn_make_synack(req, th);
3812         th->source = htons(ireq->ir_num);
3813         th->dest = ireq->ir_rmt_port;
3814         skb->mark = ireq->ir_mark;
3815         skb->ip_summed = CHECKSUM_PARTIAL;
3816         th->seq = htonl(tcp_rsk(req)->snt_isn);
3817         /* XXX data is queued and acked as is. No buffer/window check */
3818         th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3819 
3820         /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3821         th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3822         tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3823         th->doff = (tcp_header_size >> 2);
3824         TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3825 
3826         /* Okay, we have all we need - do the md5 hash if needed */
3827         if (tcp_key_is_md5(&key)) {
3828 #ifdef CONFIG_TCP_MD5SIG
3829                 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3830                                         key.md5_key, req_to_sk(req), skb);
3831 #endif
3832         } else if (tcp_key_is_ao(&key)) {
3833 #ifdef CONFIG_TCP_AO
3834                 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3835                                         key.ao_key, req, skb,
3836                                         opts.hash_location - (u8 *)th, 0);
3837 #endif
3838         }
3839 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3840         rcu_read_unlock();
3841 #endif
3842 
3843         bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3844                                 synack_type, &opts);
3845 
3846         skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3847         tcp_add_tx_delay(skb, tp);
3848 
3849         return skb;
3850 }
3851 EXPORT_SYMBOL(tcp_make_synack);
3852 
3853 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3854 {
3855         struct inet_connection_sock *icsk = inet_csk(sk);
3856         const struct tcp_congestion_ops *ca;
3857         u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3858 
3859         if (ca_key == TCP_CA_UNSPEC)
3860                 return;
3861 
3862         rcu_read_lock();
3863         ca = tcp_ca_find_key(ca_key);
3864         if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3865                 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3866                 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3867                 icsk->icsk_ca_ops = ca;
3868         }
3869         rcu_read_unlock();
3870 }
3871 
3872 /* Do all connect socket setups that can be done AF independent. */
3873 static void tcp_connect_init(struct sock *sk)
3874 {
3875         const struct dst_entry *dst = __sk_dst_get(sk);
3876         struct tcp_sock *tp = tcp_sk(sk);
3877         __u8 rcv_wscale;
3878         u32 rcv_wnd;
3879 
3880         /* We'll fix this up when we get a response from the other end.
3881          * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3882          */
3883         tp->tcp_header_len = sizeof(struct tcphdr);
3884         if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3885                 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3886 
3887         tcp_ao_connect_init(sk);
3888 
3889         /* If user gave his TCP_MAXSEG, record it to clamp */
3890         if (tp->rx_opt.user_mss)
3891                 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3892         tp->max_window = 0;
3893         tcp_mtup_init(sk);
3894         tcp_sync_mss(sk, dst_mtu(dst));
3895 
3896         tcp_ca_dst_init(sk, dst);
3897 
3898         if (!tp->window_clamp)
3899                 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3900         tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3901 
3902         tcp_initialize_rcv_mss(sk);
3903 
3904         /* limit the window selection if the user enforce a smaller rx buffer */
3905         if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3906             (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3907                 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3908 
3909         rcv_wnd = tcp_rwnd_init_bpf(sk);
3910         if (rcv_wnd == 0)
3911                 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3912 
3913         tcp_select_initial_window(sk, tcp_full_space(sk),
3914                                   tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3915                                   &tp->rcv_wnd,
3916                                   &tp->window_clamp,
3917                                   READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3918                                   &rcv_wscale,
3919                                   rcv_wnd);
3920 
3921         tp->rx_opt.rcv_wscale = rcv_wscale;
3922         tp->rcv_ssthresh = tp->rcv_wnd;
3923 
3924         WRITE_ONCE(sk->sk_err, 0);
3925         sock_reset_flag(sk, SOCK_DONE);
3926         tp->snd_wnd = 0;
3927         tcp_init_wl(tp, 0);
3928         tcp_write_queue_purge(sk);
3929         tp->snd_una = tp->write_seq;
3930         tp->snd_sml = tp->write_seq;
3931         tp->snd_up = tp->write_seq;
3932         WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3933 
3934         if (likely(!tp->repair))
3935                 tp->rcv_nxt = 0;
3936         else
3937                 tp->rcv_tstamp = tcp_jiffies32;
3938         tp->rcv_wup = tp->rcv_nxt;
3939         WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3940 
3941         inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3942         inet_csk(sk)->icsk_retransmits = 0;
3943         tcp_clear_retrans(tp);
3944 }
3945 
3946 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3947 {
3948         struct tcp_sock *tp = tcp_sk(sk);
3949         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3950 
3951         tcb->end_seq += skb->len;
3952         __skb_header_release(skb);
3953         sk_wmem_queued_add(sk, skb->truesize);
3954         sk_mem_charge(sk, skb->truesize);
3955         WRITE_ONCE(tp->write_seq, tcb->end_seq);
3956         tp->packets_out += tcp_skb_pcount(skb);
3957 }
3958 
3959 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3960  * queue a data-only packet after the regular SYN, such that regular SYNs
3961  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3962  * only the SYN sequence, the data are retransmitted in the first ACK.
3963  * If cookie is not cached or other error occurs, falls back to send a
3964  * regular SYN with Fast Open cookie request option.
3965  */
3966 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3967 {
3968         struct inet_connection_sock *icsk = inet_csk(sk);
3969         struct tcp_sock *tp = tcp_sk(sk);
3970         struct tcp_fastopen_request *fo = tp->fastopen_req;
3971         struct page_frag *pfrag = sk_page_frag(sk);
3972         struct sk_buff *syn_data;
3973         int space, err = 0;
3974 
3975         tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3976         if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3977                 goto fallback;
3978 
3979         /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3980          * user-MSS. Reserve maximum option space for middleboxes that add
3981          * private TCP options. The cost is reduced data space in SYN :(
3982          */
3983         tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3984         /* Sync mss_cache after updating the mss_clamp */
3985         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3986 
3987         space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3988                 MAX_TCP_OPTION_SPACE;
3989 
3990         space = min_t(size_t, space, fo->size);
3991 
3992         if (space &&
3993             !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3994                                   pfrag, sk->sk_allocation))
3995                 goto fallback;
3996         syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3997         if (!syn_data)
3998                 goto fallback;
3999         memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4000         if (space) {
4001                 space = min_t(size_t, space, pfrag->size - pfrag->offset);
4002                 space = tcp_wmem_schedule(sk, space);
4003         }
4004         if (space) {
4005                 space = copy_page_from_iter(pfrag->page, pfrag->offset,
4006                                             space, &fo->data->msg_iter);
4007                 if (unlikely(!space)) {
4008                         tcp_skb_tsorted_anchor_cleanup(syn_data);
4009                         kfree_skb(syn_data);
4010                         goto fallback;
4011                 }
4012                 skb_fill_page_desc(syn_data, 0, pfrag->page,
4013                                    pfrag->offset, space);
4014                 page_ref_inc(pfrag->page);
4015                 pfrag->offset += space;
4016                 skb_len_add(syn_data, space);
4017                 skb_zcopy_set(syn_data, fo->uarg, NULL);
4018         }
4019         /* No more data pending in inet_wait_for_connect() */
4020         if (space == fo->size)
4021                 fo->data = NULL;
4022         fo->copied = space;
4023 
4024         tcp_connect_queue_skb(sk, syn_data);
4025         if (syn_data->len)
4026                 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4027 
4028         err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4029 
4030         skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4031 
4032         /* Now full SYN+DATA was cloned and sent (or not),
4033          * remove the SYN from the original skb (syn_data)
4034          * we keep in write queue in case of a retransmit, as we
4035          * also have the SYN packet (with no data) in the same queue.
4036          */
4037         TCP_SKB_CB(syn_data)->seq++;
4038         TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4039         if (!err) {
4040                 tp->syn_data = (fo->copied > 0);
4041                 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4042                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4043                 goto done;
4044         }
4045 
4046         /* data was not sent, put it in write_queue */
4047         __skb_queue_tail(&sk->sk_write_queue, syn_data);
4048         tp->packets_out -= tcp_skb_pcount(syn_data);
4049 
4050 fallback:
4051         /* Send a regular SYN with Fast Open cookie request option */
4052         if (fo->cookie.len > 0)
4053                 fo->cookie.len = 0;
4054         err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4055         if (err)
4056                 tp->syn_fastopen = 0;
4057 done:
4058         fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4059         return err;
4060 }
4061 
4062 /* Build a SYN and send it off. */
4063 int tcp_connect(struct sock *sk)
4064 {
4065         struct tcp_sock *tp = tcp_sk(sk);
4066         struct sk_buff *buff;
4067         int err;
4068 
4069         tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4070 
4071 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4072         /* Has to be checked late, after setting daddr/saddr/ops.
4073          * Return error if the peer has both a md5 and a tcp-ao key
4074          * configured as this is ambiguous.
4075          */
4076         if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4077                                                lockdep_sock_is_held(sk)))) {
4078                 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4079                 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4080                 struct tcp_ao_info *ao_info;
4081 
4082                 ao_info = rcu_dereference_check(tp->ao_info,
4083                                                 lockdep_sock_is_held(sk));
4084                 if (ao_info) {
4085                         /* This is an extra check: tcp_ao_required() in
4086                          * tcp_v{4,6}_parse_md5_keys() should prevent adding
4087                          * md5 keys on ao_required socket.
4088                          */
4089                         needs_ao |= ao_info->ao_required;
4090                         WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4091                 }
4092                 if (needs_md5 && needs_ao)
4093                         return -EKEYREJECTED;
4094 
4095                 /* If we have a matching md5 key and no matching tcp-ao key
4096                  * then free up ao_info if allocated.
4097                  */
4098                 if (needs_md5) {
4099                         tcp_ao_destroy_sock(sk, false);
4100                 } else if (needs_ao) {
4101                         tcp_clear_md5_list(sk);
4102                         kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4103                                                   lockdep_sock_is_held(sk)));
4104                 }
4105         }
4106 #endif
4107 #ifdef CONFIG_TCP_AO
4108         if (unlikely(rcu_dereference_protected(tp->ao_info,
4109                                                lockdep_sock_is_held(sk)))) {
4110                 /* Don't allow connecting if ao is configured but no
4111                  * matching key is found.
4112                  */
4113                 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4114                         return -EKEYREJECTED;
4115         }
4116 #endif
4117 
4118         if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4119                 return -EHOSTUNREACH; /* Routing failure or similar. */
4120 
4121         tcp_connect_init(sk);
4122 
4123         if (unlikely(tp->repair)) {
4124                 tcp_finish_connect(sk, NULL);
4125                 return 0;
4126         }
4127 
4128         buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4129         if (unlikely(!buff))
4130                 return -ENOBUFS;
4131 
4132         tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4133         tcp_mstamp_refresh(tp);
4134         tp->retrans_stamp = tcp_time_stamp_ts(tp);
4135         tcp_connect_queue_skb(sk, buff);
4136         tcp_ecn_send_syn(sk, buff);
4137         tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4138 
4139         /* Send off SYN; include data in Fast Open. */
4140         err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4141               tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4142         if (err == -ECONNREFUSED)
4143                 return err;
4144 
4145         /* We change tp->snd_nxt after the tcp_transmit_skb() call
4146          * in order to make this packet get counted in tcpOutSegs.
4147          */
4148         WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4149         tp->pushed_seq = tp->write_seq;
4150         buff = tcp_send_head(sk);
4151         if (unlikely(buff)) {
4152                 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4153                 tp->pushed_seq  = TCP_SKB_CB(buff)->seq;
4154         }
4155         TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4156 
4157         /* Timer for repeating the SYN until an answer. */
4158         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4159                                   inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4160         return 0;
4161 }
4162 EXPORT_SYMBOL(tcp_connect);
4163 
4164 u32 tcp_delack_max(const struct sock *sk)
4165 {
4166         u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4167 
4168         return min(inet_csk(sk)->icsk_delack_max, delack_from_rto_min);
4169 }
4170 
4171 /* Send out a delayed ack, the caller does the policy checking
4172  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4173  * for details.
4174  */
4175 void tcp_send_delayed_ack(struct sock *sk)
4176 {
4177         struct inet_connection_sock *icsk = inet_csk(sk);
4178         int ato = icsk->icsk_ack.ato;
4179         unsigned long timeout;
4180 
4181         if (ato > TCP_DELACK_MIN) {
4182                 const struct tcp_sock *tp = tcp_sk(sk);
4183                 int max_ato = HZ / 2;
4184 
4185                 if (inet_csk_in_pingpong_mode(sk) ||
4186                     (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4187                         max_ato = TCP_DELACK_MAX;
4188 
4189                 /* Slow path, intersegment interval is "high". */
4190 
4191                 /* If some rtt estimate is known, use it to bound delayed ack.
4192                  * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4193                  * directly.
4194                  */
4195                 if (tp->srtt_us) {
4196                         int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4197                                         TCP_DELACK_MIN);
4198 
4199                         if (rtt < max_ato)
4200                                 max_ato = rtt;
4201                 }
4202 
4203                 ato = min(ato, max_ato);
4204         }
4205 
4206         ato = min_t(u32, ato, tcp_delack_max(sk));
4207 
4208         /* Stay within the limit we were given */
4209         timeout = jiffies + ato;
4210 
4211         /* Use new timeout only if there wasn't a older one earlier. */
4212         if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4213                 /* If delack timer is about to expire, send ACK now. */
4214                 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4215                         tcp_send_ack(sk);
4216                         return;
4217                 }
4218 
4219                 if (!time_before(timeout, icsk->icsk_ack.timeout))
4220                         timeout = icsk->icsk_ack.timeout;
4221         }
4222         icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4223         icsk->icsk_ack.timeout = timeout;
4224         sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4225 }
4226 
4227 /* This routine sends an ack and also updates the window. */
4228 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4229 {
4230         struct sk_buff *buff;
4231 
4232         /* If we have been reset, we may not send again. */
4233         if (sk->sk_state == TCP_CLOSE)
4234                 return;
4235 
4236         /* We are not putting this on the write queue, so
4237          * tcp_transmit_skb() will set the ownership to this
4238          * sock.
4239          */
4240         buff = alloc_skb(MAX_TCP_HEADER,
4241                          sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4242         if (unlikely(!buff)) {
4243                 struct inet_connection_sock *icsk = inet_csk(sk);
4244                 unsigned long delay;
4245 
4246                 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4247                 if (delay < TCP_RTO_MAX)
4248                         icsk->icsk_ack.retry++;
4249                 inet_csk_schedule_ack(sk);
4250                 icsk->icsk_ack.ato = TCP_ATO_MIN;
4251                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4252                 return;
4253         }
4254 
4255         /* Reserve space for headers and prepare control bits. */
4256         skb_reserve(buff, MAX_TCP_HEADER);
4257         tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4258 
4259         /* We do not want pure acks influencing TCP Small Queues or fq/pacing
4260          * too much.
4261          * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4262          */
4263         skb_set_tcp_pure_ack(buff);
4264 
4265         /* Send it off, this clears delayed acks for us. */
4266         __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4267 }
4268 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4269 
4270 void tcp_send_ack(struct sock *sk)
4271 {
4272         __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4273 }
4274 
4275 /* This routine sends a packet with an out of date sequence
4276  * number. It assumes the other end will try to ack it.
4277  *
4278  * Question: what should we make while urgent mode?
4279  * 4.4BSD forces sending single byte of data. We cannot send
4280  * out of window data, because we have SND.NXT==SND.MAX...
4281  *
4282  * Current solution: to send TWO zero-length segments in urgent mode:
4283  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4284  * out-of-date with SND.UNA-1 to probe window.
4285  */
4286 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4287 {
4288         struct tcp_sock *tp = tcp_sk(sk);
4289         struct sk_buff *skb;
4290 
4291         /* We don't queue it, tcp_transmit_skb() sets ownership. */
4292         skb = alloc_skb(MAX_TCP_HEADER,
4293                         sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4294         if (!skb)
4295                 return -1;
4296 
4297         /* Reserve space for headers and set control bits. */
4298         skb_reserve(skb, MAX_TCP_HEADER);
4299         /* Use a previous sequence.  This should cause the other
4300          * end to send an ack.  Don't queue or clone SKB, just
4301          * send it.
4302          */
4303         tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4304         NET_INC_STATS(sock_net(sk), mib);
4305         return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4306 }
4307 
4308 /* Called from setsockopt( ... TCP_REPAIR ) */
4309 void tcp_send_window_probe(struct sock *sk)
4310 {
4311         if (sk->sk_state == TCP_ESTABLISHED) {
4312                 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4313                 tcp_mstamp_refresh(tcp_sk(sk));
4314                 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4315         }
4316 }
4317 
4318 /* Initiate keepalive or window probe from timer. */
4319 int tcp_write_wakeup(struct sock *sk, int mib)
4320 {
4321         struct tcp_sock *tp = tcp_sk(sk);
4322         struct sk_buff *skb;
4323 
4324         if (sk->sk_state == TCP_CLOSE)
4325                 return -1;
4326 
4327         skb = tcp_send_head(sk);
4328         if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4329                 int err;
4330                 unsigned int mss = tcp_current_mss(sk);
4331                 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4332 
4333                 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4334                         tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4335 
4336                 /* We are probing the opening of a window
4337                  * but the window size is != 0
4338                  * must have been a result SWS avoidance ( sender )
4339                  */
4340                 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4341                     skb->len > mss) {
4342                         seg_size = min(seg_size, mss);
4343                         TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4344                         if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4345                                          skb, seg_size, mss, GFP_ATOMIC))
4346                                 return -1;
4347                 } else if (!tcp_skb_pcount(skb))
4348                         tcp_set_skb_tso_segs(skb, mss);
4349 
4350                 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4351                 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4352                 if (!err)
4353                         tcp_event_new_data_sent(sk, skb);
4354                 return err;
4355         } else {
4356                 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4357                         tcp_xmit_probe_skb(sk, 1, mib);
4358                 return tcp_xmit_probe_skb(sk, 0, mib);
4359         }
4360 }
4361 
4362 /* A window probe timeout has occurred.  If window is not closed send
4363  * a partial packet else a zero probe.
4364  */
4365 void tcp_send_probe0(struct sock *sk)
4366 {
4367         struct inet_connection_sock *icsk = inet_csk(sk);
4368         struct tcp_sock *tp = tcp_sk(sk);
4369         struct net *net = sock_net(sk);
4370         unsigned long timeout;
4371         int err;
4372 
4373         err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4374 
4375         if (tp->packets_out || tcp_write_queue_empty(sk)) {
4376                 /* Cancel probe timer, if it is not required. */
4377                 icsk->icsk_probes_out = 0;
4378                 icsk->icsk_backoff = 0;
4379                 icsk->icsk_probes_tstamp = 0;
4380                 return;
4381         }
4382 
4383         icsk->icsk_probes_out++;
4384         if (err <= 0) {
4385                 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4386                         icsk->icsk_backoff++;
4387                 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4388         } else {
4389                 /* If packet was not sent due to local congestion,
4390                  * Let senders fight for local resources conservatively.
4391                  */
4392                 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4393         }
4394 
4395         timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4396         tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4397 }
4398 
4399 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4400 {
4401         const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4402         struct flowi fl;
4403         int res;
4404 
4405         /* Paired with WRITE_ONCE() in sock_setsockopt() */
4406         if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4407                 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4408         res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4409                                   NULL);
4410         if (!res) {
4411                 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4412                 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4413                 if (unlikely(tcp_passive_fastopen(sk))) {
4414                         /* sk has const attribute because listeners are lockless.
4415                          * However in this case, we are dealing with a passive fastopen
4416                          * socket thus we can change total_retrans value.
4417                          */
4418                         tcp_sk_rw(sk)->total_retrans++;
4419                 }
4420                 trace_tcp_retransmit_synack(sk, req);
4421         }
4422         return res;
4423 }
4424 EXPORT_SYMBOL(tcp_rtx_synack);
4425 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php