~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/ipv4/tcp_rate.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 #include <net/tcp.h>
  3 
  4 /* The bandwidth estimator estimates the rate at which the network
  5  * can currently deliver outbound data packets for this flow. At a high
  6  * level, it operates by taking a delivery rate sample for each ACK.
  7  *
  8  * A rate sample records the rate at which the network delivered packets
  9  * for this flow, calculated over the time interval between the transmission
 10  * of a data packet and the acknowledgment of that packet.
 11  *
 12  * Specifically, over the interval between each transmit and corresponding ACK,
 13  * the estimator generates a delivery rate sample. Typically it uses the rate
 14  * at which packets were acknowledged. However, the approach of using only the
 15  * acknowledgment rate faces a challenge under the prevalent ACK decimation or
 16  * compression: packets can temporarily appear to be delivered much quicker
 17  * than the bottleneck rate. Since it is physically impossible to do that in a
 18  * sustained fashion, when the estimator notices that the ACK rate is faster
 19  * than the transmit rate, it uses the latter:
 20  *
 21  *    send_rate = #pkts_delivered/(last_snd_time - first_snd_time)
 22  *    ack_rate  = #pkts_delivered/(last_ack_time - first_ack_time)
 23  *    bw = min(send_rate, ack_rate)
 24  *
 25  * Notice the estimator essentially estimates the goodput, not always the
 26  * network bottleneck link rate when the sending or receiving is limited by
 27  * other factors like applications or receiver window limits.  The estimator
 28  * deliberately avoids using the inter-packet spacing approach because that
 29  * approach requires a large number of samples and sophisticated filtering.
 30  *
 31  * TCP flows can often be application-limited in request/response workloads.
 32  * The estimator marks a bandwidth sample as application-limited if there
 33  * was some moment during the sampled window of packets when there was no data
 34  * ready to send in the write queue.
 35  */
 36 
 37 /* Snapshot the current delivery information in the skb, to generate
 38  * a rate sample later when the skb is (s)acked in tcp_rate_skb_delivered().
 39  */
 40 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb)
 41 {
 42         struct tcp_sock *tp = tcp_sk(sk);
 43 
 44          /* In general we need to start delivery rate samples from the
 45           * time we received the most recent ACK, to ensure we include
 46           * the full time the network needs to deliver all in-flight
 47           * packets. If there are no packets in flight yet, then we
 48           * know that any ACKs after now indicate that the network was
 49           * able to deliver those packets completely in the sampling
 50           * interval between now and the next ACK.
 51           *
 52           * Note that we use packets_out instead of tcp_packets_in_flight(tp)
 53           * because the latter is a guess based on RTO and loss-marking
 54           * heuristics. We don't want spurious RTOs or loss markings to cause
 55           * a spuriously small time interval, causing a spuriously high
 56           * bandwidth estimate.
 57           */
 58         if (!tp->packets_out) {
 59                 u64 tstamp_us = tcp_skb_timestamp_us(skb);
 60 
 61                 tp->first_tx_mstamp  = tstamp_us;
 62                 tp->delivered_mstamp = tstamp_us;
 63         }
 64 
 65         TCP_SKB_CB(skb)->tx.first_tx_mstamp     = tp->first_tx_mstamp;
 66         TCP_SKB_CB(skb)->tx.delivered_mstamp    = tp->delivered_mstamp;
 67         TCP_SKB_CB(skb)->tx.delivered           = tp->delivered;
 68         TCP_SKB_CB(skb)->tx.delivered_ce        = tp->delivered_ce;
 69         TCP_SKB_CB(skb)->tx.is_app_limited      = tp->app_limited ? 1 : 0;
 70 }
 71 
 72 /* When an skb is sacked or acked, we fill in the rate sample with the (prior)
 73  * delivery information when the skb was last transmitted.
 74  *
 75  * If an ACK (s)acks multiple skbs (e.g., stretched-acks), this function is
 76  * called multiple times. We favor the information from the most recently
 77  * sent skb, i.e., the skb with the most recently sent time and the highest
 78  * sequence.
 79  */
 80 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
 81                             struct rate_sample *rs)
 82 {
 83         struct tcp_sock *tp = tcp_sk(sk);
 84         struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
 85         u64 tx_tstamp;
 86 
 87         if (!scb->tx.delivered_mstamp)
 88                 return;
 89 
 90         tx_tstamp = tcp_skb_timestamp_us(skb);
 91         if (!rs->prior_delivered ||
 92             tcp_skb_sent_after(tx_tstamp, tp->first_tx_mstamp,
 93                                scb->end_seq, rs->last_end_seq)) {
 94                 rs->prior_delivered_ce  = scb->tx.delivered_ce;
 95                 rs->prior_delivered  = scb->tx.delivered;
 96                 rs->prior_mstamp     = scb->tx.delivered_mstamp;
 97                 rs->is_app_limited   = scb->tx.is_app_limited;
 98                 rs->is_retrans       = scb->sacked & TCPCB_RETRANS;
 99                 rs->last_end_seq     = scb->end_seq;
100 
101                 /* Record send time of most recently ACKed packet: */
102                 tp->first_tx_mstamp  = tx_tstamp;
103                 /* Find the duration of the "send phase" of this window: */
104                 rs->interval_us = tcp_stamp_us_delta(tp->first_tx_mstamp,
105                                                      scb->tx.first_tx_mstamp);
106 
107         }
108         /* Mark off the skb delivered once it's sacked to avoid being
109          * used again when it's cumulatively acked. For acked packets
110          * we don't need to reset since it'll be freed soon.
111          */
112         if (scb->sacked & TCPCB_SACKED_ACKED)
113                 scb->tx.delivered_mstamp = 0;
114 }
115 
116 /* Update the connection delivery information and generate a rate sample. */
117 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
118                   bool is_sack_reneg, struct rate_sample *rs)
119 {
120         struct tcp_sock *tp = tcp_sk(sk);
121         u32 snd_us, ack_us;
122 
123         /* Clear app limited if bubble is acked and gone. */
124         if (tp->app_limited && after(tp->delivered, tp->app_limited))
125                 tp->app_limited = 0;
126 
127         /* TODO: there are multiple places throughout tcp_ack() to get
128          * current time. Refactor the code using a new "tcp_acktag_state"
129          * to carry current time, flags, stats like "tcp_sacktag_state".
130          */
131         if (delivered)
132                 tp->delivered_mstamp = tp->tcp_mstamp;
133 
134         rs->acked_sacked = delivered;   /* freshly ACKed or SACKed */
135         rs->losses = lost;              /* freshly marked lost */
136         /* Return an invalid sample if no timing information is available or
137          * in recovery from loss with SACK reneging. Rate samples taken during
138          * a SACK reneging event may overestimate bw by including packets that
139          * were SACKed before the reneg.
140          */
141         if (!rs->prior_mstamp || is_sack_reneg) {
142                 rs->delivered = -1;
143                 rs->interval_us = -1;
144                 return;
145         }
146         rs->delivered   = tp->delivered - rs->prior_delivered;
147 
148         rs->delivered_ce = tp->delivered_ce - rs->prior_delivered_ce;
149         /* delivered_ce occupies less than 32 bits in the skb control block */
150         rs->delivered_ce &= TCPCB_DELIVERED_CE_MASK;
151 
152         /* Model sending data and receiving ACKs as separate pipeline phases
153          * for a window. Usually the ACK phase is longer, but with ACK
154          * compression the send phase can be longer. To be safe we use the
155          * longer phase.
156          */
157         snd_us = rs->interval_us;                               /* send phase */
158         ack_us = tcp_stamp_us_delta(tp->tcp_mstamp,
159                                     rs->prior_mstamp); /* ack phase */
160         rs->interval_us = max(snd_us, ack_us);
161 
162         /* Record both segment send and ack receive intervals */
163         rs->snd_interval_us = snd_us;
164         rs->rcv_interval_us = ack_us;
165 
166         /* Normally we expect interval_us >= min-rtt.
167          * Note that rate may still be over-estimated when a spuriously
168          * retransmistted skb was first (s)acked because "interval_us"
169          * is under-estimated (up to an RTT). However continuously
170          * measuring the delivery rate during loss recovery is crucial
171          * for connections suffer heavy or prolonged losses.
172          */
173         if (unlikely(rs->interval_us < tcp_min_rtt(tp))) {
174                 if (!rs->is_retrans)
175                         pr_debug("tcp rate: %ld %d %u %u %u\n",
176                                  rs->interval_us, rs->delivered,
177                                  inet_csk(sk)->icsk_ca_state,
178                                  tp->rx_opt.sack_ok, tcp_min_rtt(tp));
179                 rs->interval_us = -1;
180                 return;
181         }
182 
183         /* Record the last non-app-limited or the highest app-limited bw */
184         if (!rs->is_app_limited ||
185             ((u64)rs->delivered * tp->rate_interval_us >=
186              (u64)tp->rate_delivered * rs->interval_us)) {
187                 tp->rate_delivered = rs->delivered;
188                 tp->rate_interval_us = rs->interval_us;
189                 tp->rate_app_limited = rs->is_app_limited;
190         }
191 }
192 
193 /* If a gap is detected between sends, mark the socket application-limited. */
194 void tcp_rate_check_app_limited(struct sock *sk)
195 {
196         struct tcp_sock *tp = tcp_sk(sk);
197 
198         if (/* We have less than one packet to send. */
199             tp->write_seq - tp->snd_nxt < tp->mss_cache &&
200             /* Nothing in sending host's qdisc queues or NIC tx queue. */
201             sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) &&
202             /* We are not limited by CWND. */
203             tcp_packets_in_flight(tp) < tcp_snd_cwnd(tp) &&
204             /* All lost packets have been retransmitted. */
205             tp->lost_out <= tp->retrans_out)
206                 tp->app_limited =
207                         (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
208 }
209 EXPORT_SYMBOL_GPL(tcp_rate_check_app_limited);
210 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php