~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/ipv4/udp.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  4  *              operating system.  INET is implemented using the  BSD Socket
  5  *              interface as the means of communication with the user level.
  6  *
  7  *              The User Datagram Protocol (UDP).
  8  *
  9  * Authors:     Ross Biro
 10  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 12  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 13  *              Hirokazu Takahashi, <taka@valinux.co.jp>
 14  *
 15  * Fixes:
 16  *              Alan Cox        :       verify_area() calls
 17  *              Alan Cox        :       stopped close while in use off icmp
 18  *                                      messages. Not a fix but a botch that
 19  *                                      for udp at least is 'valid'.
 20  *              Alan Cox        :       Fixed icmp handling properly
 21  *              Alan Cox        :       Correct error for oversized datagrams
 22  *              Alan Cox        :       Tidied select() semantics.
 23  *              Alan Cox        :       udp_err() fixed properly, also now
 24  *                                      select and read wake correctly on errors
 25  *              Alan Cox        :       udp_send verify_area moved to avoid mem leak
 26  *              Alan Cox        :       UDP can count its memory
 27  *              Alan Cox        :       send to an unknown connection causes
 28  *                                      an ECONNREFUSED off the icmp, but
 29  *                                      does NOT close.
 30  *              Alan Cox        :       Switched to new sk_buff handlers. No more backlog!
 31  *              Alan Cox        :       Using generic datagram code. Even smaller and the PEEK
 32  *                                      bug no longer crashes it.
 33  *              Fred Van Kempen :       Net2e support for sk->broadcast.
 34  *              Alan Cox        :       Uses skb_free_datagram
 35  *              Alan Cox        :       Added get/set sockopt support.
 36  *              Alan Cox        :       Broadcasting without option set returns EACCES.
 37  *              Alan Cox        :       No wakeup calls. Instead we now use the callbacks.
 38  *              Alan Cox        :       Use ip_tos and ip_ttl
 39  *              Alan Cox        :       SNMP Mibs
 40  *              Alan Cox        :       MSG_DONTROUTE, and 0.0.0.0 support.
 41  *              Matt Dillon     :       UDP length checks.
 42  *              Alan Cox        :       Smarter af_inet used properly.
 43  *              Alan Cox        :       Use new kernel side addressing.
 44  *              Alan Cox        :       Incorrect return on truncated datagram receive.
 45  *      Arnt Gulbrandsen        :       New udp_send and stuff
 46  *              Alan Cox        :       Cache last socket
 47  *              Alan Cox        :       Route cache
 48  *              Jon Peatfield   :       Minor efficiency fix to sendto().
 49  *              Mike Shaver     :       RFC1122 checks.
 50  *              Alan Cox        :       Nonblocking error fix.
 51  *      Willy Konynenberg       :       Transparent proxying support.
 52  *              Mike McLagan    :       Routing by source
 53  *              David S. Miller :       New socket lookup architecture.
 54  *                                      Last socket cache retained as it
 55  *                                      does have a high hit rate.
 56  *              Olaf Kirch      :       Don't linearise iovec on sendmsg.
 57  *              Andi Kleen      :       Some cleanups, cache destination entry
 58  *                                      for connect.
 59  *      Vitaly E. Lavrov        :       Transparent proxy revived after year coma.
 60  *              Melvin Smith    :       Check msg_name not msg_namelen in sendto(),
 61  *                                      return ENOTCONN for unconnected sockets (POSIX)
 62  *              Janos Farkas    :       don't deliver multi/broadcasts to a different
 63  *                                      bound-to-device socket
 64  *      Hirokazu Takahashi      :       HW checksumming for outgoing UDP
 65  *                                      datagrams.
 66  *      Hirokazu Takahashi      :       sendfile() on UDP works now.
 67  *              Arnaldo C. Melo :       convert /proc/net/udp to seq_file
 68  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
 69  *      Alexey Kuznetsov:               allow both IPv4 and IPv6 sockets to bind
 70  *                                      a single port at the same time.
 71  *      Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
 72  *      James Chapman           :       Add L2TP encapsulation type.
 73  */
 74 
 75 #define pr_fmt(fmt) "UDP: " fmt
 76 
 77 #include <linux/bpf-cgroup.h>
 78 #include <linux/uaccess.h>
 79 #include <asm/ioctls.h>
 80 #include <linux/memblock.h>
 81 #include <linux/highmem.h>
 82 #include <linux/types.h>
 83 #include <linux/fcntl.h>
 84 #include <linux/module.h>
 85 #include <linux/socket.h>
 86 #include <linux/sockios.h>
 87 #include <linux/igmp.h>
 88 #include <linux/inetdevice.h>
 89 #include <linux/in.h>
 90 #include <linux/errno.h>
 91 #include <linux/timer.h>
 92 #include <linux/mm.h>
 93 #include <linux/inet.h>
 94 #include <linux/netdevice.h>
 95 #include <linux/slab.h>
 96 #include <net/tcp_states.h>
 97 #include <linux/skbuff.h>
 98 #include <linux/proc_fs.h>
 99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #if IS_ENABLED(CONFIG_IPV6)
119 #include <net/ipv6_stubs.h>
120 #endif
121 
122 struct udp_table udp_table __read_mostly;
123 EXPORT_SYMBOL(udp_table);
124 
125 long sysctl_udp_mem[3] __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_mem);
127 
128 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129 EXPORT_SYMBOL(udp_memory_allocated);
130 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132 
133 #define MAX_UDP_PORTS 65536
134 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135 
136 static struct udp_table *udp_get_table_prot(struct sock *sk)
137 {
138         return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139 }
140 
141 static int udp_lib_lport_inuse(struct net *net, __u16 num,
142                                const struct udp_hslot *hslot,
143                                unsigned long *bitmap,
144                                struct sock *sk, unsigned int log)
145 {
146         struct sock *sk2;
147         kuid_t uid = sock_i_uid(sk);
148 
149         sk_for_each(sk2, &hslot->head) {
150                 if (net_eq(sock_net(sk2), net) &&
151                     sk2 != sk &&
152                     (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153                     (!sk2->sk_reuse || !sk->sk_reuse) &&
154                     (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155                      sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156                     inet_rcv_saddr_equal(sk, sk2, true)) {
157                         if (sk2->sk_reuseport && sk->sk_reuseport &&
158                             !rcu_access_pointer(sk->sk_reuseport_cb) &&
159                             uid_eq(uid, sock_i_uid(sk2))) {
160                                 if (!bitmap)
161                                         return 0;
162                         } else {
163                                 if (!bitmap)
164                                         return 1;
165                                 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
166                                           bitmap);
167                         }
168                 }
169         }
170         return 0;
171 }
172 
173 /*
174  * Note: we still hold spinlock of primary hash chain, so no other writer
175  * can insert/delete a socket with local_port == num
176  */
177 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178                                 struct udp_hslot *hslot2,
179                                 struct sock *sk)
180 {
181         struct sock *sk2;
182         kuid_t uid = sock_i_uid(sk);
183         int res = 0;
184 
185         spin_lock(&hslot2->lock);
186         udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187                 if (net_eq(sock_net(sk2), net) &&
188                     sk2 != sk &&
189                     (udp_sk(sk2)->udp_port_hash == num) &&
190                     (!sk2->sk_reuse || !sk->sk_reuse) &&
191                     (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192                      sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193                     inet_rcv_saddr_equal(sk, sk2, true)) {
194                         if (sk2->sk_reuseport && sk->sk_reuseport &&
195                             !rcu_access_pointer(sk->sk_reuseport_cb) &&
196                             uid_eq(uid, sock_i_uid(sk2))) {
197                                 res = 0;
198                         } else {
199                                 res = 1;
200                         }
201                         break;
202                 }
203         }
204         spin_unlock(&hslot2->lock);
205         return res;
206 }
207 
208 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209 {
210         struct net *net = sock_net(sk);
211         kuid_t uid = sock_i_uid(sk);
212         struct sock *sk2;
213 
214         sk_for_each(sk2, &hslot->head) {
215                 if (net_eq(sock_net(sk2), net) &&
216                     sk2 != sk &&
217                     sk2->sk_family == sk->sk_family &&
218                     ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219                     (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220                     (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221                     sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222                     inet_rcv_saddr_equal(sk, sk2, false)) {
223                         return reuseport_add_sock(sk, sk2,
224                                                   inet_rcv_saddr_any(sk));
225                 }
226         }
227 
228         return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229 }
230 
231 /**
232  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233  *
234  *  @sk:          socket struct in question
235  *  @snum:        port number to look up
236  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237  *                   with NULL address
238  */
239 int udp_lib_get_port(struct sock *sk, unsigned short snum,
240                      unsigned int hash2_nulladdr)
241 {
242         struct udp_table *udptable = udp_get_table_prot(sk);
243         struct udp_hslot *hslot, *hslot2;
244         struct net *net = sock_net(sk);
245         int error = -EADDRINUSE;
246 
247         if (!snum) {
248                 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249                 unsigned short first, last;
250                 int low, high, remaining;
251                 unsigned int rand;
252 
253                 inet_sk_get_local_port_range(sk, &low, &high);
254                 remaining = (high - low) + 1;
255 
256                 rand = get_random_u32();
257                 first = reciprocal_scale(rand, remaining) + low;
258                 /*
259                  * force rand to be an odd multiple of UDP_HTABLE_SIZE
260                  */
261                 rand = (rand | 1) * (udptable->mask + 1);
262                 last = first + udptable->mask + 1;
263                 do {
264                         hslot = udp_hashslot(udptable, net, first);
265                         bitmap_zero(bitmap, PORTS_PER_CHAIN);
266                         spin_lock_bh(&hslot->lock);
267                         udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268                                             udptable->log);
269 
270                         snum = first;
271                         /*
272                          * Iterate on all possible values of snum for this hash.
273                          * Using steps of an odd multiple of UDP_HTABLE_SIZE
274                          * give us randomization and full range coverage.
275                          */
276                         do {
277                                 if (low <= snum && snum <= high &&
278                                     !test_bit(snum >> udptable->log, bitmap) &&
279                                     !inet_is_local_reserved_port(net, snum))
280                                         goto found;
281                                 snum += rand;
282                         } while (snum != first);
283                         spin_unlock_bh(&hslot->lock);
284                         cond_resched();
285                 } while (++first != last);
286                 goto fail;
287         } else {
288                 hslot = udp_hashslot(udptable, net, snum);
289                 spin_lock_bh(&hslot->lock);
290                 if (hslot->count > 10) {
291                         int exist;
292                         unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293 
294                         slot2          &= udptable->mask;
295                         hash2_nulladdr &= udptable->mask;
296 
297                         hslot2 = udp_hashslot2(udptable, slot2);
298                         if (hslot->count < hslot2->count)
299                                 goto scan_primary_hash;
300 
301                         exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302                         if (!exist && (hash2_nulladdr != slot2)) {
303                                 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304                                 exist = udp_lib_lport_inuse2(net, snum, hslot2,
305                                                              sk);
306                         }
307                         if (exist)
308                                 goto fail_unlock;
309                         else
310                                 goto found;
311                 }
312 scan_primary_hash:
313                 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314                         goto fail_unlock;
315         }
316 found:
317         inet_sk(sk)->inet_num = snum;
318         udp_sk(sk)->udp_port_hash = snum;
319         udp_sk(sk)->udp_portaddr_hash ^= snum;
320         if (sk_unhashed(sk)) {
321                 if (sk->sk_reuseport &&
322                     udp_reuseport_add_sock(sk, hslot)) {
323                         inet_sk(sk)->inet_num = 0;
324                         udp_sk(sk)->udp_port_hash = 0;
325                         udp_sk(sk)->udp_portaddr_hash ^= snum;
326                         goto fail_unlock;
327                 }
328 
329                 sock_set_flag(sk, SOCK_RCU_FREE);
330 
331                 sk_add_node_rcu(sk, &hslot->head);
332                 hslot->count++;
333                 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334 
335                 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336                 spin_lock(&hslot2->lock);
337                 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338                     sk->sk_family == AF_INET6)
339                         hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340                                            &hslot2->head);
341                 else
342                         hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343                                            &hslot2->head);
344                 hslot2->count++;
345                 spin_unlock(&hslot2->lock);
346         }
347 
348         error = 0;
349 fail_unlock:
350         spin_unlock_bh(&hslot->lock);
351 fail:
352         return error;
353 }
354 EXPORT_SYMBOL(udp_lib_get_port);
355 
356 int udp_v4_get_port(struct sock *sk, unsigned short snum)
357 {
358         unsigned int hash2_nulladdr =
359                 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
360         unsigned int hash2_partial =
361                 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
362 
363         /* precompute partial secondary hash */
364         udp_sk(sk)->udp_portaddr_hash = hash2_partial;
365         return udp_lib_get_port(sk, snum, hash2_nulladdr);
366 }
367 
368 static int compute_score(struct sock *sk, struct net *net,
369                          __be32 saddr, __be16 sport,
370                          __be32 daddr, unsigned short hnum,
371                          int dif, int sdif)
372 {
373         int score;
374         struct inet_sock *inet;
375         bool dev_match;
376 
377         if (!net_eq(sock_net(sk), net) ||
378             udp_sk(sk)->udp_port_hash != hnum ||
379             ipv6_only_sock(sk))
380                 return -1;
381 
382         if (sk->sk_rcv_saddr != daddr)
383                 return -1;
384 
385         score = (sk->sk_family == PF_INET) ? 2 : 1;
386 
387         inet = inet_sk(sk);
388         if (inet->inet_daddr) {
389                 if (inet->inet_daddr != saddr)
390                         return -1;
391                 score += 4;
392         }
393 
394         if (inet->inet_dport) {
395                 if (inet->inet_dport != sport)
396                         return -1;
397                 score += 4;
398         }
399 
400         dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
401                                         dif, sdif);
402         if (!dev_match)
403                 return -1;
404         if (sk->sk_bound_dev_if)
405                 score += 4;
406 
407         if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
408                 score++;
409         return score;
410 }
411 
412 INDIRECT_CALLABLE_SCOPE
413 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
414                 const __be32 faddr, const __be16 fport)
415 {
416         net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417 
418         return __inet_ehashfn(laddr, lport, faddr, fport,
419                               udp_ehash_secret + net_hash_mix(net));
420 }
421 
422 /* called with rcu_read_lock() */
423 static struct sock *udp4_lib_lookup2(struct net *net,
424                                      __be32 saddr, __be16 sport,
425                                      __be32 daddr, unsigned int hnum,
426                                      int dif, int sdif,
427                                      struct udp_hslot *hslot2,
428                                      struct sk_buff *skb)
429 {
430         struct sock *sk, *result;
431         int score, badness;
432         bool need_rescore;
433 
434         result = NULL;
435         badness = 0;
436         udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
437                 need_rescore = false;
438 rescore:
439                 score = compute_score(need_rescore ? result : sk, net, saddr,
440                                       sport, daddr, hnum, dif, sdif);
441                 if (score > badness) {
442                         badness = score;
443 
444                         if (need_rescore)
445                                 continue;
446 
447                         if (sk->sk_state == TCP_ESTABLISHED) {
448                                 result = sk;
449                                 continue;
450                         }
451 
452                         result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
453                                                        saddr, sport, daddr, hnum, udp_ehashfn);
454                         if (!result) {
455                                 result = sk;
456                                 continue;
457                         }
458 
459                         /* Fall back to scoring if group has connections */
460                         if (!reuseport_has_conns(sk))
461                                 return result;
462 
463                         /* Reuseport logic returned an error, keep original score. */
464                         if (IS_ERR(result))
465                                 continue;
466 
467                         /* compute_score is too long of a function to be
468                          * inlined, and calling it again here yields
469                          * measureable overhead for some
470                          * workloads. Work around it by jumping
471                          * backwards to rescore 'result'.
472                          */
473                         need_rescore = true;
474                         goto rescore;
475                 }
476         }
477         return result;
478 }
479 
480 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
481  * harder than this. -DaveM
482  */
483 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
484                 __be16 sport, __be32 daddr, __be16 dport, int dif,
485                 int sdif, struct udp_table *udptable, struct sk_buff *skb)
486 {
487         unsigned short hnum = ntohs(dport);
488         unsigned int hash2, slot2;
489         struct udp_hslot *hslot2;
490         struct sock *result, *sk;
491 
492         hash2 = ipv4_portaddr_hash(net, daddr, hnum);
493         slot2 = hash2 & udptable->mask;
494         hslot2 = &udptable->hash2[slot2];
495 
496         /* Lookup connected or non-wildcard socket */
497         result = udp4_lib_lookup2(net, saddr, sport,
498                                   daddr, hnum, dif, sdif,
499                                   hslot2, skb);
500         if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
501                 goto done;
502 
503         /* Lookup redirect from BPF */
504         if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
505             udptable == net->ipv4.udp_table) {
506                 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
507                                                saddr, sport, daddr, hnum, dif,
508                                                udp_ehashfn);
509                 if (sk) {
510                         result = sk;
511                         goto done;
512                 }
513         }
514 
515         /* Got non-wildcard socket or error on first lookup */
516         if (result)
517                 goto done;
518 
519         /* Lookup wildcard sockets */
520         hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
521         slot2 = hash2 & udptable->mask;
522         hslot2 = &udptable->hash2[slot2];
523 
524         result = udp4_lib_lookup2(net, saddr, sport,
525                                   htonl(INADDR_ANY), hnum, dif, sdif,
526                                   hslot2, skb);
527 done:
528         if (IS_ERR(result))
529                 return NULL;
530         return result;
531 }
532 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
533 
534 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
535                                                  __be16 sport, __be16 dport,
536                                                  struct udp_table *udptable)
537 {
538         const struct iphdr *iph = ip_hdr(skb);
539 
540         return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
541                                  iph->daddr, dport, inet_iif(skb),
542                                  inet_sdif(skb), udptable, skb);
543 }
544 
545 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
546                                  __be16 sport, __be16 dport)
547 {
548         const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
549         const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
550         struct net *net = dev_net(skb->dev);
551         int iif, sdif;
552 
553         inet_get_iif_sdif(skb, &iif, &sdif);
554 
555         return __udp4_lib_lookup(net, iph->saddr, sport,
556                                  iph->daddr, dport, iif,
557                                  sdif, net->ipv4.udp_table, NULL);
558 }
559 
560 /* Must be called under rcu_read_lock().
561  * Does increment socket refcount.
562  */
563 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
564 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
565                              __be32 daddr, __be16 dport, int dif)
566 {
567         struct sock *sk;
568 
569         sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
570                                dif, 0, net->ipv4.udp_table, NULL);
571         if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
572                 sk = NULL;
573         return sk;
574 }
575 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
576 #endif
577 
578 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
579                                        __be16 loc_port, __be32 loc_addr,
580                                        __be16 rmt_port, __be32 rmt_addr,
581                                        int dif, int sdif, unsigned short hnum)
582 {
583         const struct inet_sock *inet = inet_sk(sk);
584 
585         if (!net_eq(sock_net(sk), net) ||
586             udp_sk(sk)->udp_port_hash != hnum ||
587             (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
588             (inet->inet_dport != rmt_port && inet->inet_dport) ||
589             (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
590             ipv6_only_sock(sk) ||
591             !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
592                 return false;
593         if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
594                 return false;
595         return true;
596 }
597 
598 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
599 EXPORT_SYMBOL(udp_encap_needed_key);
600 
601 #if IS_ENABLED(CONFIG_IPV6)
602 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
603 EXPORT_SYMBOL(udpv6_encap_needed_key);
604 #endif
605 
606 void udp_encap_enable(void)
607 {
608         static_branch_inc(&udp_encap_needed_key);
609 }
610 EXPORT_SYMBOL(udp_encap_enable);
611 
612 void udp_encap_disable(void)
613 {
614         static_branch_dec(&udp_encap_needed_key);
615 }
616 EXPORT_SYMBOL(udp_encap_disable);
617 
618 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
619  * through error handlers in encapsulations looking for a match.
620  */
621 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
622 {
623         int i;
624 
625         for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
626                 int (*handler)(struct sk_buff *skb, u32 info);
627                 const struct ip_tunnel_encap_ops *encap;
628 
629                 encap = rcu_dereference(iptun_encaps[i]);
630                 if (!encap)
631                         continue;
632                 handler = encap->err_handler;
633                 if (handler && !handler(skb, info))
634                         return 0;
635         }
636 
637         return -ENOENT;
638 }
639 
640 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
641  * reversing source and destination port: this will match tunnels that force the
642  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
643  * lwtunnels might actually break this assumption by being configured with
644  * different destination ports on endpoints, in this case we won't be able to
645  * trace ICMP messages back to them.
646  *
647  * If this doesn't match any socket, probe tunnels with arbitrary destination
648  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
649  * we've sent packets to won't necessarily match the local destination port.
650  *
651  * Then ask the tunnel implementation to match the error against a valid
652  * association.
653  *
654  * Return an error if we can't find a match, the socket if we need further
655  * processing, zero otherwise.
656  */
657 static struct sock *__udp4_lib_err_encap(struct net *net,
658                                          const struct iphdr *iph,
659                                          struct udphdr *uh,
660                                          struct udp_table *udptable,
661                                          struct sock *sk,
662                                          struct sk_buff *skb, u32 info)
663 {
664         int (*lookup)(struct sock *sk, struct sk_buff *skb);
665         int network_offset, transport_offset;
666         struct udp_sock *up;
667 
668         network_offset = skb_network_offset(skb);
669         transport_offset = skb_transport_offset(skb);
670 
671         /* Network header needs to point to the outer IPv4 header inside ICMP */
672         skb_reset_network_header(skb);
673 
674         /* Transport header needs to point to the UDP header */
675         skb_set_transport_header(skb, iph->ihl << 2);
676 
677         if (sk) {
678                 up = udp_sk(sk);
679 
680                 lookup = READ_ONCE(up->encap_err_lookup);
681                 if (lookup && lookup(sk, skb))
682                         sk = NULL;
683 
684                 goto out;
685         }
686 
687         sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
688                                iph->saddr, uh->dest, skb->dev->ifindex, 0,
689                                udptable, NULL);
690         if (sk) {
691                 up = udp_sk(sk);
692 
693                 lookup = READ_ONCE(up->encap_err_lookup);
694                 if (!lookup || lookup(sk, skb))
695                         sk = NULL;
696         }
697 
698 out:
699         if (!sk)
700                 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
701 
702         skb_set_transport_header(skb, transport_offset);
703         skb_set_network_header(skb, network_offset);
704 
705         return sk;
706 }
707 
708 /*
709  * This routine is called by the ICMP module when it gets some
710  * sort of error condition.  If err < 0 then the socket should
711  * be closed and the error returned to the user.  If err > 0
712  * it's just the icmp type << 8 | icmp code.
713  * Header points to the ip header of the error packet. We move
714  * on past this. Then (as it used to claim before adjustment)
715  * header points to the first 8 bytes of the udp header.  We need
716  * to find the appropriate port.
717  */
718 
719 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
720 {
721         struct inet_sock *inet;
722         const struct iphdr *iph = (const struct iphdr *)skb->data;
723         struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
724         const int type = icmp_hdr(skb)->type;
725         const int code = icmp_hdr(skb)->code;
726         bool tunnel = false;
727         struct sock *sk;
728         int harderr;
729         int err;
730         struct net *net = dev_net(skb->dev);
731 
732         sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
733                                iph->saddr, uh->source, skb->dev->ifindex,
734                                inet_sdif(skb), udptable, NULL);
735 
736         if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
737                 /* No socket for error: try tunnels before discarding */
738                 if (static_branch_unlikely(&udp_encap_needed_key)) {
739                         sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
740                                                   info);
741                         if (!sk)
742                                 return 0;
743                 } else
744                         sk = ERR_PTR(-ENOENT);
745 
746                 if (IS_ERR(sk)) {
747                         __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
748                         return PTR_ERR(sk);
749                 }
750 
751                 tunnel = true;
752         }
753 
754         err = 0;
755         harderr = 0;
756         inet = inet_sk(sk);
757 
758         switch (type) {
759         default:
760         case ICMP_TIME_EXCEEDED:
761                 err = EHOSTUNREACH;
762                 break;
763         case ICMP_SOURCE_QUENCH:
764                 goto out;
765         case ICMP_PARAMETERPROB:
766                 err = EPROTO;
767                 harderr = 1;
768                 break;
769         case ICMP_DEST_UNREACH:
770                 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
771                         ipv4_sk_update_pmtu(skb, sk, info);
772                         if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
773                                 err = EMSGSIZE;
774                                 harderr = 1;
775                                 break;
776                         }
777                         goto out;
778                 }
779                 err = EHOSTUNREACH;
780                 if (code <= NR_ICMP_UNREACH) {
781                         harderr = icmp_err_convert[code].fatal;
782                         err = icmp_err_convert[code].errno;
783                 }
784                 break;
785         case ICMP_REDIRECT:
786                 ipv4_sk_redirect(skb, sk);
787                 goto out;
788         }
789 
790         /*
791          *      RFC1122: OK.  Passes ICMP errors back to application, as per
792          *      4.1.3.3.
793          */
794         if (tunnel) {
795                 /* ...not for tunnels though: we don't have a sending socket */
796                 if (udp_sk(sk)->encap_err_rcv)
797                         udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
798                                                   (u8 *)(uh+1));
799                 goto out;
800         }
801         if (!inet_test_bit(RECVERR, sk)) {
802                 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
803                         goto out;
804         } else
805                 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
806 
807         sk->sk_err = err;
808         sk_error_report(sk);
809 out:
810         return 0;
811 }
812 
813 int udp_err(struct sk_buff *skb, u32 info)
814 {
815         return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
816 }
817 
818 /*
819  * Throw away all pending data and cancel the corking. Socket is locked.
820  */
821 void udp_flush_pending_frames(struct sock *sk)
822 {
823         struct udp_sock *up = udp_sk(sk);
824 
825         if (up->pending) {
826                 up->len = 0;
827                 WRITE_ONCE(up->pending, 0);
828                 ip_flush_pending_frames(sk);
829         }
830 }
831 EXPORT_SYMBOL(udp_flush_pending_frames);
832 
833 /**
834  *      udp4_hwcsum  -  handle outgoing HW checksumming
835  *      @skb:   sk_buff containing the filled-in UDP header
836  *              (checksum field must be zeroed out)
837  *      @src:   source IP address
838  *      @dst:   destination IP address
839  */
840 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
841 {
842         struct udphdr *uh = udp_hdr(skb);
843         int offset = skb_transport_offset(skb);
844         int len = skb->len - offset;
845         int hlen = len;
846         __wsum csum = 0;
847 
848         if (!skb_has_frag_list(skb)) {
849                 /*
850                  * Only one fragment on the socket.
851                  */
852                 skb->csum_start = skb_transport_header(skb) - skb->head;
853                 skb->csum_offset = offsetof(struct udphdr, check);
854                 uh->check = ~csum_tcpudp_magic(src, dst, len,
855                                                IPPROTO_UDP, 0);
856         } else {
857                 struct sk_buff *frags;
858 
859                 /*
860                  * HW-checksum won't work as there are two or more
861                  * fragments on the socket so that all csums of sk_buffs
862                  * should be together
863                  */
864                 skb_walk_frags(skb, frags) {
865                         csum = csum_add(csum, frags->csum);
866                         hlen -= frags->len;
867                 }
868 
869                 csum = skb_checksum(skb, offset, hlen, csum);
870                 skb->ip_summed = CHECKSUM_NONE;
871 
872                 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
873                 if (uh->check == 0)
874                         uh->check = CSUM_MANGLED_0;
875         }
876 }
877 EXPORT_SYMBOL_GPL(udp4_hwcsum);
878 
879 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
880  * for the simple case like when setting the checksum for a UDP tunnel.
881  */
882 void udp_set_csum(bool nocheck, struct sk_buff *skb,
883                   __be32 saddr, __be32 daddr, int len)
884 {
885         struct udphdr *uh = udp_hdr(skb);
886 
887         if (nocheck) {
888                 uh->check = 0;
889         } else if (skb_is_gso(skb)) {
890                 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
891         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
892                 uh->check = 0;
893                 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
894                 if (uh->check == 0)
895                         uh->check = CSUM_MANGLED_0;
896         } else {
897                 skb->ip_summed = CHECKSUM_PARTIAL;
898                 skb->csum_start = skb_transport_header(skb) - skb->head;
899                 skb->csum_offset = offsetof(struct udphdr, check);
900                 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
901         }
902 }
903 EXPORT_SYMBOL(udp_set_csum);
904 
905 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
906                         struct inet_cork *cork)
907 {
908         struct sock *sk = skb->sk;
909         struct inet_sock *inet = inet_sk(sk);
910         struct udphdr *uh;
911         int err;
912         int is_udplite = IS_UDPLITE(sk);
913         int offset = skb_transport_offset(skb);
914         int len = skb->len - offset;
915         int datalen = len - sizeof(*uh);
916         __wsum csum = 0;
917 
918         /*
919          * Create a UDP header
920          */
921         uh = udp_hdr(skb);
922         uh->source = inet->inet_sport;
923         uh->dest = fl4->fl4_dport;
924         uh->len = htons(len);
925         uh->check = 0;
926 
927         if (cork->gso_size) {
928                 const int hlen = skb_network_header_len(skb) +
929                                  sizeof(struct udphdr);
930 
931                 if (hlen + cork->gso_size > cork->fragsize) {
932                         kfree_skb(skb);
933                         return -EINVAL;
934                 }
935                 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
936                         kfree_skb(skb);
937                         return -EINVAL;
938                 }
939                 if (sk->sk_no_check_tx) {
940                         kfree_skb(skb);
941                         return -EINVAL;
942                 }
943                 if (is_udplite || dst_xfrm(skb_dst(skb))) {
944                         kfree_skb(skb);
945                         return -EIO;
946                 }
947 
948                 if (datalen > cork->gso_size) {
949                         skb_shinfo(skb)->gso_size = cork->gso_size;
950                         skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
951                         skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
952                                                                  cork->gso_size);
953                 }
954                 goto csum_partial;
955         }
956 
957         if (is_udplite)                                  /*     UDP-Lite      */
958                 csum = udplite_csum(skb);
959 
960         else if (sk->sk_no_check_tx) {                   /* UDP csum off */
961 
962                 skb->ip_summed = CHECKSUM_NONE;
963                 goto send;
964 
965         } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
966 csum_partial:
967 
968                 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
969                 goto send;
970 
971         } else
972                 csum = udp_csum(skb);
973 
974         /* add protocol-dependent pseudo-header */
975         uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
976                                       sk->sk_protocol, csum);
977         if (uh->check == 0)
978                 uh->check = CSUM_MANGLED_0;
979 
980 send:
981         err = ip_send_skb(sock_net(sk), skb);
982         if (err) {
983                 if (err == -ENOBUFS &&
984                     !inet_test_bit(RECVERR, sk)) {
985                         UDP_INC_STATS(sock_net(sk),
986                                       UDP_MIB_SNDBUFERRORS, is_udplite);
987                         err = 0;
988                 }
989         } else
990                 UDP_INC_STATS(sock_net(sk),
991                               UDP_MIB_OUTDATAGRAMS, is_udplite);
992         return err;
993 }
994 
995 /*
996  * Push out all pending data as one UDP datagram. Socket is locked.
997  */
998 int udp_push_pending_frames(struct sock *sk)
999 {
1000         struct udp_sock  *up = udp_sk(sk);
1001         struct inet_sock *inet = inet_sk(sk);
1002         struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1003         struct sk_buff *skb;
1004         int err = 0;
1005 
1006         skb = ip_finish_skb(sk, fl4);
1007         if (!skb)
1008                 goto out;
1009 
1010         err = udp_send_skb(skb, fl4, &inet->cork.base);
1011 
1012 out:
1013         up->len = 0;
1014         WRITE_ONCE(up->pending, 0);
1015         return err;
1016 }
1017 EXPORT_SYMBOL(udp_push_pending_frames);
1018 
1019 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1020 {
1021         switch (cmsg->cmsg_type) {
1022         case UDP_SEGMENT:
1023                 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1024                         return -EINVAL;
1025                 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1026                 return 0;
1027         default:
1028                 return -EINVAL;
1029         }
1030 }
1031 
1032 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1033 {
1034         struct cmsghdr *cmsg;
1035         bool need_ip = false;
1036         int err;
1037 
1038         for_each_cmsghdr(cmsg, msg) {
1039                 if (!CMSG_OK(msg, cmsg))
1040                         return -EINVAL;
1041 
1042                 if (cmsg->cmsg_level != SOL_UDP) {
1043                         need_ip = true;
1044                         continue;
1045                 }
1046 
1047                 err = __udp_cmsg_send(cmsg, gso_size);
1048                 if (err)
1049                         return err;
1050         }
1051 
1052         return need_ip;
1053 }
1054 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1055 
1056 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1057 {
1058         struct inet_sock *inet = inet_sk(sk);
1059         struct udp_sock *up = udp_sk(sk);
1060         DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1061         struct flowi4 fl4_stack;
1062         struct flowi4 *fl4;
1063         int ulen = len;
1064         struct ipcm_cookie ipc;
1065         struct rtable *rt = NULL;
1066         int free = 0;
1067         int connected = 0;
1068         __be32 daddr, faddr, saddr;
1069         u8 tos, scope;
1070         __be16 dport;
1071         int err, is_udplite = IS_UDPLITE(sk);
1072         int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1073         int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1074         struct sk_buff *skb;
1075         struct ip_options_data opt_copy;
1076         int uc_index;
1077 
1078         if (len > 0xFFFF)
1079                 return -EMSGSIZE;
1080 
1081         /*
1082          *      Check the flags.
1083          */
1084 
1085         if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1086                 return -EOPNOTSUPP;
1087 
1088         getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1089 
1090         fl4 = &inet->cork.fl.u.ip4;
1091         if (READ_ONCE(up->pending)) {
1092                 /*
1093                  * There are pending frames.
1094                  * The socket lock must be held while it's corked.
1095                  */
1096                 lock_sock(sk);
1097                 if (likely(up->pending)) {
1098                         if (unlikely(up->pending != AF_INET)) {
1099                                 release_sock(sk);
1100                                 return -EINVAL;
1101                         }
1102                         goto do_append_data;
1103                 }
1104                 release_sock(sk);
1105         }
1106         ulen += sizeof(struct udphdr);
1107 
1108         /*
1109          *      Get and verify the address.
1110          */
1111         if (usin) {
1112                 if (msg->msg_namelen < sizeof(*usin))
1113                         return -EINVAL;
1114                 if (usin->sin_family != AF_INET) {
1115                         if (usin->sin_family != AF_UNSPEC)
1116                                 return -EAFNOSUPPORT;
1117                 }
1118 
1119                 daddr = usin->sin_addr.s_addr;
1120                 dport = usin->sin_port;
1121                 if (dport == 0)
1122                         return -EINVAL;
1123         } else {
1124                 if (sk->sk_state != TCP_ESTABLISHED)
1125                         return -EDESTADDRREQ;
1126                 daddr = inet->inet_daddr;
1127                 dport = inet->inet_dport;
1128                 /* Open fast path for connected socket.
1129                    Route will not be used, if at least one option is set.
1130                  */
1131                 connected = 1;
1132         }
1133 
1134         ipcm_init_sk(&ipc, inet);
1135         ipc.gso_size = READ_ONCE(up->gso_size);
1136 
1137         if (msg->msg_controllen) {
1138                 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1139                 if (err > 0) {
1140                         err = ip_cmsg_send(sk, msg, &ipc,
1141                                            sk->sk_family == AF_INET6);
1142                         connected = 0;
1143                 }
1144                 if (unlikely(err < 0)) {
1145                         kfree(ipc.opt);
1146                         return err;
1147                 }
1148                 if (ipc.opt)
1149                         free = 1;
1150         }
1151         if (!ipc.opt) {
1152                 struct ip_options_rcu *inet_opt;
1153 
1154                 rcu_read_lock();
1155                 inet_opt = rcu_dereference(inet->inet_opt);
1156                 if (inet_opt) {
1157                         memcpy(&opt_copy, inet_opt,
1158                                sizeof(*inet_opt) + inet_opt->opt.optlen);
1159                         ipc.opt = &opt_copy.opt;
1160                 }
1161                 rcu_read_unlock();
1162         }
1163 
1164         if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1165                 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1166                                             (struct sockaddr *)usin,
1167                                             &msg->msg_namelen,
1168                                             &ipc.addr);
1169                 if (err)
1170                         goto out_free;
1171                 if (usin) {
1172                         if (usin->sin_port == 0) {
1173                                 /* BPF program set invalid port. Reject it. */
1174                                 err = -EINVAL;
1175                                 goto out_free;
1176                         }
1177                         daddr = usin->sin_addr.s_addr;
1178                         dport = usin->sin_port;
1179                 }
1180         }
1181 
1182         saddr = ipc.addr;
1183         ipc.addr = faddr = daddr;
1184 
1185         if (ipc.opt && ipc.opt->opt.srr) {
1186                 if (!daddr) {
1187                         err = -EINVAL;
1188                         goto out_free;
1189                 }
1190                 faddr = ipc.opt->opt.faddr;
1191                 connected = 0;
1192         }
1193         tos = get_rttos(&ipc, inet);
1194         scope = ip_sendmsg_scope(inet, &ipc, msg);
1195         if (scope == RT_SCOPE_LINK)
1196                 connected = 0;
1197 
1198         uc_index = READ_ONCE(inet->uc_index);
1199         if (ipv4_is_multicast(daddr)) {
1200                 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1201                         ipc.oif = READ_ONCE(inet->mc_index);
1202                 if (!saddr)
1203                         saddr = READ_ONCE(inet->mc_addr);
1204                 connected = 0;
1205         } else if (!ipc.oif) {
1206                 ipc.oif = uc_index;
1207         } else if (ipv4_is_lbcast(daddr) && uc_index) {
1208                 /* oif is set, packet is to local broadcast and
1209                  * uc_index is set. oif is most likely set
1210                  * by sk_bound_dev_if. If uc_index != oif check if the
1211                  * oif is an L3 master and uc_index is an L3 slave.
1212                  * If so, we want to allow the send using the uc_index.
1213                  */
1214                 if (ipc.oif != uc_index &&
1215                     ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1216                                                               uc_index)) {
1217                         ipc.oif = uc_index;
1218                 }
1219         }
1220 
1221         if (connected)
1222                 rt = dst_rtable(sk_dst_check(sk, 0));
1223 
1224         if (!rt) {
1225                 struct net *net = sock_net(sk);
1226                 __u8 flow_flags = inet_sk_flowi_flags(sk);
1227 
1228                 fl4 = &fl4_stack;
1229 
1230                 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1231                                    sk->sk_protocol, flow_flags, faddr, saddr,
1232                                    dport, inet->inet_sport, sk->sk_uid);
1233 
1234                 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1235                 rt = ip_route_output_flow(net, fl4, sk);
1236                 if (IS_ERR(rt)) {
1237                         err = PTR_ERR(rt);
1238                         rt = NULL;
1239                         if (err == -ENETUNREACH)
1240                                 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1241                         goto out;
1242                 }
1243 
1244                 err = -EACCES;
1245                 if ((rt->rt_flags & RTCF_BROADCAST) &&
1246                     !sock_flag(sk, SOCK_BROADCAST))
1247                         goto out;
1248                 if (connected)
1249                         sk_dst_set(sk, dst_clone(&rt->dst));
1250         }
1251 
1252         if (msg->msg_flags&MSG_CONFIRM)
1253                 goto do_confirm;
1254 back_from_confirm:
1255 
1256         saddr = fl4->saddr;
1257         if (!ipc.addr)
1258                 daddr = ipc.addr = fl4->daddr;
1259 
1260         /* Lockless fast path for the non-corking case. */
1261         if (!corkreq) {
1262                 struct inet_cork cork;
1263 
1264                 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1265                                   sizeof(struct udphdr), &ipc, &rt,
1266                                   &cork, msg->msg_flags);
1267                 err = PTR_ERR(skb);
1268                 if (!IS_ERR_OR_NULL(skb))
1269                         err = udp_send_skb(skb, fl4, &cork);
1270                 goto out;
1271         }
1272 
1273         lock_sock(sk);
1274         if (unlikely(up->pending)) {
1275                 /* The socket is already corked while preparing it. */
1276                 /* ... which is an evident application bug. --ANK */
1277                 release_sock(sk);
1278 
1279                 net_dbg_ratelimited("socket already corked\n");
1280                 err = -EINVAL;
1281                 goto out;
1282         }
1283         /*
1284          *      Now cork the socket to pend data.
1285          */
1286         fl4 = &inet->cork.fl.u.ip4;
1287         fl4->daddr = daddr;
1288         fl4->saddr = saddr;
1289         fl4->fl4_dport = dport;
1290         fl4->fl4_sport = inet->inet_sport;
1291         WRITE_ONCE(up->pending, AF_INET);
1292 
1293 do_append_data:
1294         up->len += ulen;
1295         err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1296                              sizeof(struct udphdr), &ipc, &rt,
1297                              corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1298         if (err)
1299                 udp_flush_pending_frames(sk);
1300         else if (!corkreq)
1301                 err = udp_push_pending_frames(sk);
1302         else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1303                 WRITE_ONCE(up->pending, 0);
1304         release_sock(sk);
1305 
1306 out:
1307         ip_rt_put(rt);
1308 out_free:
1309         if (free)
1310                 kfree(ipc.opt);
1311         if (!err)
1312                 return len;
1313         /*
1314          * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1315          * ENOBUFS might not be good (it's not tunable per se), but otherwise
1316          * we don't have a good statistic (IpOutDiscards but it can be too many
1317          * things).  We could add another new stat but at least for now that
1318          * seems like overkill.
1319          */
1320         if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1321                 UDP_INC_STATS(sock_net(sk),
1322                               UDP_MIB_SNDBUFERRORS, is_udplite);
1323         }
1324         return err;
1325 
1326 do_confirm:
1327         if (msg->msg_flags & MSG_PROBE)
1328                 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1329         if (!(msg->msg_flags&MSG_PROBE) || len)
1330                 goto back_from_confirm;
1331         err = 0;
1332         goto out;
1333 }
1334 EXPORT_SYMBOL(udp_sendmsg);
1335 
1336 void udp_splice_eof(struct socket *sock)
1337 {
1338         struct sock *sk = sock->sk;
1339         struct udp_sock *up = udp_sk(sk);
1340 
1341         if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1342                 return;
1343 
1344         lock_sock(sk);
1345         if (up->pending && !udp_test_bit(CORK, sk))
1346                 udp_push_pending_frames(sk);
1347         release_sock(sk);
1348 }
1349 EXPORT_SYMBOL_GPL(udp_splice_eof);
1350 
1351 #define UDP_SKB_IS_STATELESS 0x80000000
1352 
1353 /* all head states (dst, sk, nf conntrack) except skb extensions are
1354  * cleared by udp_rcv().
1355  *
1356  * We need to preserve secpath, if present, to eventually process
1357  * IP_CMSG_PASSSEC at recvmsg() time.
1358  *
1359  * Other extensions can be cleared.
1360  */
1361 static bool udp_try_make_stateless(struct sk_buff *skb)
1362 {
1363         if (!skb_has_extensions(skb))
1364                 return true;
1365 
1366         if (!secpath_exists(skb)) {
1367                 skb_ext_reset(skb);
1368                 return true;
1369         }
1370 
1371         return false;
1372 }
1373 
1374 static void udp_set_dev_scratch(struct sk_buff *skb)
1375 {
1376         struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1377 
1378         BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1379         scratch->_tsize_state = skb->truesize;
1380 #if BITS_PER_LONG == 64
1381         scratch->len = skb->len;
1382         scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1383         scratch->is_linear = !skb_is_nonlinear(skb);
1384 #endif
1385         if (udp_try_make_stateless(skb))
1386                 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1387 }
1388 
1389 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1390 {
1391         /* We come here after udp_lib_checksum_complete() returned 0.
1392          * This means that __skb_checksum_complete() might have
1393          * set skb->csum_valid to 1.
1394          * On 64bit platforms, we can set csum_unnecessary
1395          * to true, but only if the skb is not shared.
1396          */
1397 #if BITS_PER_LONG == 64
1398         if (!skb_shared(skb))
1399                 udp_skb_scratch(skb)->csum_unnecessary = true;
1400 #endif
1401 }
1402 
1403 static int udp_skb_truesize(struct sk_buff *skb)
1404 {
1405         return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1406 }
1407 
1408 static bool udp_skb_has_head_state(struct sk_buff *skb)
1409 {
1410         return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1411 }
1412 
1413 /* fully reclaim rmem/fwd memory allocated for skb */
1414 static void udp_rmem_release(struct sock *sk, int size, int partial,
1415                              bool rx_queue_lock_held)
1416 {
1417         struct udp_sock *up = udp_sk(sk);
1418         struct sk_buff_head *sk_queue;
1419         int amt;
1420 
1421         if (likely(partial)) {
1422                 up->forward_deficit += size;
1423                 size = up->forward_deficit;
1424                 if (size < READ_ONCE(up->forward_threshold) &&
1425                     !skb_queue_empty(&up->reader_queue))
1426                         return;
1427         } else {
1428                 size += up->forward_deficit;
1429         }
1430         up->forward_deficit = 0;
1431 
1432         /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1433          * if the called don't held it already
1434          */
1435         sk_queue = &sk->sk_receive_queue;
1436         if (!rx_queue_lock_held)
1437                 spin_lock(&sk_queue->lock);
1438 
1439 
1440         sk_forward_alloc_add(sk, size);
1441         amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1442         sk_forward_alloc_add(sk, -amt);
1443 
1444         if (amt)
1445                 __sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1446 
1447         atomic_sub(size, &sk->sk_rmem_alloc);
1448 
1449         /* this can save us from acquiring the rx queue lock on next receive */
1450         skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1451 
1452         if (!rx_queue_lock_held)
1453                 spin_unlock(&sk_queue->lock);
1454 }
1455 
1456 /* Note: called with reader_queue.lock held.
1457  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1458  * This avoids a cache line miss while receive_queue lock is held.
1459  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1460  */
1461 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1462 {
1463         prefetch(&skb->data);
1464         udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1465 }
1466 EXPORT_SYMBOL(udp_skb_destructor);
1467 
1468 /* as above, but the caller held the rx queue lock, too */
1469 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1470 {
1471         prefetch(&skb->data);
1472         udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1473 }
1474 
1475 /* Idea of busylocks is to let producers grab an extra spinlock
1476  * to relieve pressure on the receive_queue spinlock shared by consumer.
1477  * Under flood, this means that only one producer can be in line
1478  * trying to acquire the receive_queue spinlock.
1479  * These busylock can be allocated on a per cpu manner, instead of a
1480  * per socket one (that would consume a cache line per socket)
1481  */
1482 static int udp_busylocks_log __read_mostly;
1483 static spinlock_t *udp_busylocks __read_mostly;
1484 
1485 static spinlock_t *busylock_acquire(void *ptr)
1486 {
1487         spinlock_t *busy;
1488 
1489         busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1490         spin_lock(busy);
1491         return busy;
1492 }
1493 
1494 static void busylock_release(spinlock_t *busy)
1495 {
1496         if (busy)
1497                 spin_unlock(busy);
1498 }
1499 
1500 static int udp_rmem_schedule(struct sock *sk, int size)
1501 {
1502         int delta;
1503 
1504         delta = size - sk->sk_forward_alloc;
1505         if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1506                 return -ENOBUFS;
1507 
1508         return 0;
1509 }
1510 
1511 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1512 {
1513         struct sk_buff_head *list = &sk->sk_receive_queue;
1514         int rmem, err = -ENOMEM;
1515         spinlock_t *busy = NULL;
1516         bool becomes_readable;
1517         int size, rcvbuf;
1518 
1519         /* Immediately drop when the receive queue is full.
1520          * Always allow at least one packet.
1521          */
1522         rmem = atomic_read(&sk->sk_rmem_alloc);
1523         rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1524         if (rmem > rcvbuf)
1525                 goto drop;
1526 
1527         /* Under mem pressure, it might be helpful to help udp_recvmsg()
1528          * having linear skbs :
1529          * - Reduce memory overhead and thus increase receive queue capacity
1530          * - Less cache line misses at copyout() time
1531          * - Less work at consume_skb() (less alien page frag freeing)
1532          */
1533         if (rmem > (rcvbuf >> 1)) {
1534                 skb_condense(skb);
1535 
1536                 busy = busylock_acquire(sk);
1537         }
1538         size = skb->truesize;
1539         udp_set_dev_scratch(skb);
1540 
1541         atomic_add(size, &sk->sk_rmem_alloc);
1542 
1543         spin_lock(&list->lock);
1544         err = udp_rmem_schedule(sk, size);
1545         if (err) {
1546                 spin_unlock(&list->lock);
1547                 goto uncharge_drop;
1548         }
1549 
1550         sk_forward_alloc_add(sk, -size);
1551 
1552         /* no need to setup a destructor, we will explicitly release the
1553          * forward allocated memory on dequeue
1554          */
1555         sock_skb_set_dropcount(sk, skb);
1556 
1557         becomes_readable = skb_queue_empty(list);
1558         __skb_queue_tail(list, skb);
1559         spin_unlock(&list->lock);
1560 
1561         if (!sock_flag(sk, SOCK_DEAD)) {
1562                 if (becomes_readable ||
1563                     sk->sk_data_ready != sock_def_readable ||
1564                     READ_ONCE(sk->sk_peek_off) >= 0)
1565                         INDIRECT_CALL_1(sk->sk_data_ready,
1566                                         sock_def_readable, sk);
1567                 else
1568                         sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN);
1569         }
1570         busylock_release(busy);
1571         return 0;
1572 
1573 uncharge_drop:
1574         atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1575 
1576 drop:
1577         atomic_inc(&sk->sk_drops);
1578         busylock_release(busy);
1579         return err;
1580 }
1581 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1582 
1583 void udp_destruct_common(struct sock *sk)
1584 {
1585         /* reclaim completely the forward allocated memory */
1586         struct udp_sock *up = udp_sk(sk);
1587         unsigned int total = 0;
1588         struct sk_buff *skb;
1589 
1590         skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1591         while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1592                 total += skb->truesize;
1593                 kfree_skb(skb);
1594         }
1595         udp_rmem_release(sk, total, 0, true);
1596 }
1597 EXPORT_SYMBOL_GPL(udp_destruct_common);
1598 
1599 static void udp_destruct_sock(struct sock *sk)
1600 {
1601         udp_destruct_common(sk);
1602         inet_sock_destruct(sk);
1603 }
1604 
1605 int udp_init_sock(struct sock *sk)
1606 {
1607         udp_lib_init_sock(sk);
1608         sk->sk_destruct = udp_destruct_sock;
1609         set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1610         return 0;
1611 }
1612 
1613 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1614 {
1615         if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1616                 sk_peek_offset_bwd(sk, len);
1617 
1618         if (!skb_unref(skb))
1619                 return;
1620 
1621         /* In the more common cases we cleared the head states previously,
1622          * see __udp_queue_rcv_skb().
1623          */
1624         if (unlikely(udp_skb_has_head_state(skb)))
1625                 skb_release_head_state(skb);
1626         __consume_stateless_skb(skb);
1627 }
1628 EXPORT_SYMBOL_GPL(skb_consume_udp);
1629 
1630 static struct sk_buff *__first_packet_length(struct sock *sk,
1631                                              struct sk_buff_head *rcvq,
1632                                              int *total)
1633 {
1634         struct sk_buff *skb;
1635 
1636         while ((skb = skb_peek(rcvq)) != NULL) {
1637                 if (udp_lib_checksum_complete(skb)) {
1638                         __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1639                                         IS_UDPLITE(sk));
1640                         __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1641                                         IS_UDPLITE(sk));
1642                         atomic_inc(&sk->sk_drops);
1643                         __skb_unlink(skb, rcvq);
1644                         *total += skb->truesize;
1645                         kfree_skb(skb);
1646                 } else {
1647                         udp_skb_csum_unnecessary_set(skb);
1648                         break;
1649                 }
1650         }
1651         return skb;
1652 }
1653 
1654 /**
1655  *      first_packet_length     - return length of first packet in receive queue
1656  *      @sk: socket
1657  *
1658  *      Drops all bad checksum frames, until a valid one is found.
1659  *      Returns the length of found skb, or -1 if none is found.
1660  */
1661 static int first_packet_length(struct sock *sk)
1662 {
1663         struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1664         struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1665         struct sk_buff *skb;
1666         int total = 0;
1667         int res;
1668 
1669         spin_lock_bh(&rcvq->lock);
1670         skb = __first_packet_length(sk, rcvq, &total);
1671         if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1672                 spin_lock(&sk_queue->lock);
1673                 skb_queue_splice_tail_init(sk_queue, rcvq);
1674                 spin_unlock(&sk_queue->lock);
1675 
1676                 skb = __first_packet_length(sk, rcvq, &total);
1677         }
1678         res = skb ? skb->len : -1;
1679         if (total)
1680                 udp_rmem_release(sk, total, 1, false);
1681         spin_unlock_bh(&rcvq->lock);
1682         return res;
1683 }
1684 
1685 /*
1686  *      IOCTL requests applicable to the UDP protocol
1687  */
1688 
1689 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1690 {
1691         switch (cmd) {
1692         case SIOCOUTQ:
1693         {
1694                 *karg = sk_wmem_alloc_get(sk);
1695                 return 0;
1696         }
1697 
1698         case SIOCINQ:
1699         {
1700                 *karg = max_t(int, 0, first_packet_length(sk));
1701                 return 0;
1702         }
1703 
1704         default:
1705                 return -ENOIOCTLCMD;
1706         }
1707 
1708         return 0;
1709 }
1710 EXPORT_SYMBOL(udp_ioctl);
1711 
1712 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1713                                int *off, int *err)
1714 {
1715         struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1716         struct sk_buff_head *queue;
1717         struct sk_buff *last;
1718         long timeo;
1719         int error;
1720 
1721         queue = &udp_sk(sk)->reader_queue;
1722         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1723         do {
1724                 struct sk_buff *skb;
1725 
1726                 error = sock_error(sk);
1727                 if (error)
1728                         break;
1729 
1730                 error = -EAGAIN;
1731                 do {
1732                         spin_lock_bh(&queue->lock);
1733                         skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1734                                                         err, &last);
1735                         if (skb) {
1736                                 if (!(flags & MSG_PEEK))
1737                                         udp_skb_destructor(sk, skb);
1738                                 spin_unlock_bh(&queue->lock);
1739                                 return skb;
1740                         }
1741 
1742                         if (skb_queue_empty_lockless(sk_queue)) {
1743                                 spin_unlock_bh(&queue->lock);
1744                                 goto busy_check;
1745                         }
1746 
1747                         /* refill the reader queue and walk it again
1748                          * keep both queues locked to avoid re-acquiring
1749                          * the sk_receive_queue lock if fwd memory scheduling
1750                          * is needed.
1751                          */
1752                         spin_lock(&sk_queue->lock);
1753                         skb_queue_splice_tail_init(sk_queue, queue);
1754 
1755                         skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1756                                                         err, &last);
1757                         if (skb && !(flags & MSG_PEEK))
1758                                 udp_skb_dtor_locked(sk, skb);
1759                         spin_unlock(&sk_queue->lock);
1760                         spin_unlock_bh(&queue->lock);
1761                         if (skb)
1762                                 return skb;
1763 
1764 busy_check:
1765                         if (!sk_can_busy_loop(sk))
1766                                 break;
1767 
1768                         sk_busy_loop(sk, flags & MSG_DONTWAIT);
1769                 } while (!skb_queue_empty_lockless(sk_queue));
1770 
1771                 /* sk_queue is empty, reader_queue may contain peeked packets */
1772         } while (timeo &&
1773                  !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1774                                               &error, &timeo,
1775                                               (struct sk_buff *)sk_queue));
1776 
1777         *err = error;
1778         return NULL;
1779 }
1780 EXPORT_SYMBOL(__skb_recv_udp);
1781 
1782 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1783 {
1784         struct sk_buff *skb;
1785         int err;
1786 
1787 try_again:
1788         skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1789         if (!skb)
1790                 return err;
1791 
1792         if (udp_lib_checksum_complete(skb)) {
1793                 int is_udplite = IS_UDPLITE(sk);
1794                 struct net *net = sock_net(sk);
1795 
1796                 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1797                 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1798                 atomic_inc(&sk->sk_drops);
1799                 kfree_skb(skb);
1800                 goto try_again;
1801         }
1802 
1803         WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1804         return recv_actor(sk, skb);
1805 }
1806 EXPORT_SYMBOL(udp_read_skb);
1807 
1808 /*
1809  *      This should be easy, if there is something there we
1810  *      return it, otherwise we block.
1811  */
1812 
1813 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1814                 int *addr_len)
1815 {
1816         struct inet_sock *inet = inet_sk(sk);
1817         DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1818         struct sk_buff *skb;
1819         unsigned int ulen, copied;
1820         int off, err, peeking = flags & MSG_PEEK;
1821         int is_udplite = IS_UDPLITE(sk);
1822         bool checksum_valid = false;
1823 
1824         if (flags & MSG_ERRQUEUE)
1825                 return ip_recv_error(sk, msg, len, addr_len);
1826 
1827 try_again:
1828         off = sk_peek_offset(sk, flags);
1829         skb = __skb_recv_udp(sk, flags, &off, &err);
1830         if (!skb)
1831                 return err;
1832         if (ccs_socket_post_recvmsg_permission(sk, skb, flags))
1833                 return -EAGAIN; /* Hope less harmful than -EPERM. */
1834 
1835         ulen = udp_skb_len(skb);
1836         copied = len;
1837         if (copied > ulen - off)
1838                 copied = ulen - off;
1839         else if (copied < ulen)
1840                 msg->msg_flags |= MSG_TRUNC;
1841 
1842         /*
1843          * If checksum is needed at all, try to do it while copying the
1844          * data.  If the data is truncated, or if we only want a partial
1845          * coverage checksum (UDP-Lite), do it before the copy.
1846          */
1847 
1848         if (copied < ulen || peeking ||
1849             (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1850                 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1851                                 !__udp_lib_checksum_complete(skb);
1852                 if (!checksum_valid)
1853                         goto csum_copy_err;
1854         }
1855 
1856         if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1857                 if (udp_skb_is_linear(skb))
1858                         err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1859                 else
1860                         err = skb_copy_datagram_msg(skb, off, msg, copied);
1861         } else {
1862                 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1863 
1864                 if (err == -EINVAL)
1865                         goto csum_copy_err;
1866         }
1867 
1868         if (unlikely(err)) {
1869                 if (!peeking) {
1870                         atomic_inc(&sk->sk_drops);
1871                         UDP_INC_STATS(sock_net(sk),
1872                                       UDP_MIB_INERRORS, is_udplite);
1873                 }
1874                 kfree_skb(skb);
1875                 return err;
1876         }
1877 
1878         if (!peeking)
1879                 UDP_INC_STATS(sock_net(sk),
1880                               UDP_MIB_INDATAGRAMS, is_udplite);
1881 
1882         sock_recv_cmsgs(msg, sk, skb);
1883 
1884         /* Copy the address. */
1885         if (sin) {
1886                 sin->sin_family = AF_INET;
1887                 sin->sin_port = udp_hdr(skb)->source;
1888                 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1889                 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1890                 *addr_len = sizeof(*sin);
1891 
1892                 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1893                                                       (struct sockaddr *)sin,
1894                                                       addr_len);
1895         }
1896 
1897         if (udp_test_bit(GRO_ENABLED, sk))
1898                 udp_cmsg_recv(msg, sk, skb);
1899 
1900         if (inet_cmsg_flags(inet))
1901                 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1902 
1903         err = copied;
1904         if (flags & MSG_TRUNC)
1905                 err = ulen;
1906 
1907         skb_consume_udp(sk, skb, peeking ? -err : err);
1908         return err;
1909 
1910 csum_copy_err:
1911         if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1912                                  udp_skb_destructor)) {
1913                 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1914                 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1915         }
1916         kfree_skb(skb);
1917 
1918         /* starting over for a new packet, but check if we need to yield */
1919         cond_resched();
1920         msg->msg_flags &= ~MSG_TRUNC;
1921         goto try_again;
1922 }
1923 
1924 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1925 {
1926         /* This check is replicated from __ip4_datagram_connect() and
1927          * intended to prevent BPF program called below from accessing bytes
1928          * that are out of the bound specified by user in addr_len.
1929          */
1930         if (addr_len < sizeof(struct sockaddr_in))
1931                 return -EINVAL;
1932 
1933         return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1934 }
1935 EXPORT_SYMBOL(udp_pre_connect);
1936 
1937 int __udp_disconnect(struct sock *sk, int flags)
1938 {
1939         struct inet_sock *inet = inet_sk(sk);
1940         /*
1941          *      1003.1g - break association.
1942          */
1943 
1944         sk->sk_state = TCP_CLOSE;
1945         inet->inet_daddr = 0;
1946         inet->inet_dport = 0;
1947         sock_rps_reset_rxhash(sk);
1948         sk->sk_bound_dev_if = 0;
1949         if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1950                 inet_reset_saddr(sk);
1951                 if (sk->sk_prot->rehash &&
1952                     (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1953                         sk->sk_prot->rehash(sk);
1954         }
1955 
1956         if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1957                 sk->sk_prot->unhash(sk);
1958                 inet->inet_sport = 0;
1959         }
1960         sk_dst_reset(sk);
1961         return 0;
1962 }
1963 EXPORT_SYMBOL(__udp_disconnect);
1964 
1965 int udp_disconnect(struct sock *sk, int flags)
1966 {
1967         lock_sock(sk);
1968         __udp_disconnect(sk, flags);
1969         release_sock(sk);
1970         return 0;
1971 }
1972 EXPORT_SYMBOL(udp_disconnect);
1973 
1974 void udp_lib_unhash(struct sock *sk)
1975 {
1976         if (sk_hashed(sk)) {
1977                 struct udp_table *udptable = udp_get_table_prot(sk);
1978                 struct udp_hslot *hslot, *hslot2;
1979 
1980                 hslot  = udp_hashslot(udptable, sock_net(sk),
1981                                       udp_sk(sk)->udp_port_hash);
1982                 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1983 
1984                 spin_lock_bh(&hslot->lock);
1985                 if (rcu_access_pointer(sk->sk_reuseport_cb))
1986                         reuseport_detach_sock(sk);
1987                 if (sk_del_node_init_rcu(sk)) {
1988                         hslot->count--;
1989                         inet_sk(sk)->inet_num = 0;
1990                         sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1991 
1992                         spin_lock(&hslot2->lock);
1993                         hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1994                         hslot2->count--;
1995                         spin_unlock(&hslot2->lock);
1996                 }
1997                 spin_unlock_bh(&hslot->lock);
1998         }
1999 }
2000 EXPORT_SYMBOL(udp_lib_unhash);
2001 
2002 /*
2003  * inet_rcv_saddr was changed, we must rehash secondary hash
2004  */
2005 void udp_lib_rehash(struct sock *sk, u16 newhash)
2006 {
2007         if (sk_hashed(sk)) {
2008                 struct udp_table *udptable = udp_get_table_prot(sk);
2009                 struct udp_hslot *hslot, *hslot2, *nhslot2;
2010 
2011                 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2012                 nhslot2 = udp_hashslot2(udptable, newhash);
2013                 udp_sk(sk)->udp_portaddr_hash = newhash;
2014 
2015                 if (hslot2 != nhslot2 ||
2016                     rcu_access_pointer(sk->sk_reuseport_cb)) {
2017                         hslot = udp_hashslot(udptable, sock_net(sk),
2018                                              udp_sk(sk)->udp_port_hash);
2019                         /* we must lock primary chain too */
2020                         spin_lock_bh(&hslot->lock);
2021                         if (rcu_access_pointer(sk->sk_reuseport_cb))
2022                                 reuseport_detach_sock(sk);
2023 
2024                         if (hslot2 != nhslot2) {
2025                                 spin_lock(&hslot2->lock);
2026                                 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2027                                 hslot2->count--;
2028                                 spin_unlock(&hslot2->lock);
2029 
2030                                 spin_lock(&nhslot2->lock);
2031                                 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2032                                                          &nhslot2->head);
2033                                 nhslot2->count++;
2034                                 spin_unlock(&nhslot2->lock);
2035                         }
2036 
2037                         spin_unlock_bh(&hslot->lock);
2038                 }
2039         }
2040 }
2041 EXPORT_SYMBOL(udp_lib_rehash);
2042 
2043 void udp_v4_rehash(struct sock *sk)
2044 {
2045         u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2046                                           inet_sk(sk)->inet_rcv_saddr,
2047                                           inet_sk(sk)->inet_num);
2048         udp_lib_rehash(sk, new_hash);
2049 }
2050 
2051 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2052 {
2053         int rc;
2054 
2055         if (inet_sk(sk)->inet_daddr) {
2056                 sock_rps_save_rxhash(sk, skb);
2057                 sk_mark_napi_id(sk, skb);
2058                 sk_incoming_cpu_update(sk);
2059         } else {
2060                 sk_mark_napi_id_once(sk, skb);
2061         }
2062 
2063         rc = __udp_enqueue_schedule_skb(sk, skb);
2064         if (rc < 0) {
2065                 int is_udplite = IS_UDPLITE(sk);
2066                 int drop_reason;
2067 
2068                 /* Note that an ENOMEM error is charged twice */
2069                 if (rc == -ENOMEM) {
2070                         UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2071                                         is_udplite);
2072                         drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2073                 } else {
2074                         UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2075                                       is_udplite);
2076                         drop_reason = SKB_DROP_REASON_PROTO_MEM;
2077                 }
2078                 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2079                 trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2080                 sk_skb_reason_drop(sk, skb, drop_reason);
2081                 return -1;
2082         }
2083 
2084         return 0;
2085 }
2086 
2087 /* returns:
2088  *  -1: error
2089  *   0: success
2090  *  >0: "udp encap" protocol resubmission
2091  *
2092  * Note that in the success and error cases, the skb is assumed to
2093  * have either been requeued or freed.
2094  */
2095 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2096 {
2097         int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2098         struct udp_sock *up = udp_sk(sk);
2099         int is_udplite = IS_UDPLITE(sk);
2100 
2101         /*
2102          *      Charge it to the socket, dropping if the queue is full.
2103          */
2104         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2105                 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2106                 goto drop;
2107         }
2108         nf_reset_ct(skb);
2109 
2110         if (static_branch_unlikely(&udp_encap_needed_key) &&
2111             READ_ONCE(up->encap_type)) {
2112                 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2113 
2114                 /*
2115                  * This is an encapsulation socket so pass the skb to
2116                  * the socket's udp_encap_rcv() hook. Otherwise, just
2117                  * fall through and pass this up the UDP socket.
2118                  * up->encap_rcv() returns the following value:
2119                  * =0 if skb was successfully passed to the encap
2120                  *    handler or was discarded by it.
2121                  * >0 if skb should be passed on to UDP.
2122                  * <0 if skb should be resubmitted as proto -N
2123                  */
2124 
2125                 /* if we're overly short, let UDP handle it */
2126                 encap_rcv = READ_ONCE(up->encap_rcv);
2127                 if (encap_rcv) {
2128                         int ret;
2129 
2130                         /* Verify checksum before giving to encap */
2131                         if (udp_lib_checksum_complete(skb))
2132                                 goto csum_error;
2133 
2134                         ret = encap_rcv(sk, skb);
2135                         if (ret <= 0) {
2136                                 __UDP_INC_STATS(sock_net(sk),
2137                                                 UDP_MIB_INDATAGRAMS,
2138                                                 is_udplite);
2139                                 return -ret;
2140                         }
2141                 }
2142 
2143                 /* FALLTHROUGH -- it's a UDP Packet */
2144         }
2145 
2146         /*
2147          *      UDP-Lite specific tests, ignored on UDP sockets
2148          */
2149         if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2150                 u16 pcrlen = READ_ONCE(up->pcrlen);
2151 
2152                 /*
2153                  * MIB statistics other than incrementing the error count are
2154                  * disabled for the following two types of errors: these depend
2155                  * on the application settings, not on the functioning of the
2156                  * protocol stack as such.
2157                  *
2158                  * RFC 3828 here recommends (sec 3.3): "There should also be a
2159                  * way ... to ... at least let the receiving application block
2160                  * delivery of packets with coverage values less than a value
2161                  * provided by the application."
2162                  */
2163                 if (pcrlen == 0) {          /* full coverage was set  */
2164                         net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2165                                             UDP_SKB_CB(skb)->cscov, skb->len);
2166                         goto drop;
2167                 }
2168                 /* The next case involves violating the min. coverage requested
2169                  * by the receiver. This is subtle: if receiver wants x and x is
2170                  * greater than the buffersize/MTU then receiver will complain
2171                  * that it wants x while sender emits packets of smaller size y.
2172                  * Therefore the above ...()->partial_cov statement is essential.
2173                  */
2174                 if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2175                         net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2176                                             UDP_SKB_CB(skb)->cscov, pcrlen);
2177                         goto drop;
2178                 }
2179         }
2180 
2181         prefetch(&sk->sk_rmem_alloc);
2182         if (rcu_access_pointer(sk->sk_filter) &&
2183             udp_lib_checksum_complete(skb))
2184                         goto csum_error;
2185 
2186         if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2187                 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2188                 goto drop;
2189         }
2190 
2191         udp_csum_pull_header(skb);
2192 
2193         ipv4_pktinfo_prepare(sk, skb, true);
2194         return __udp_queue_rcv_skb(sk, skb);
2195 
2196 csum_error:
2197         drop_reason = SKB_DROP_REASON_UDP_CSUM;
2198         __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2199 drop:
2200         __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2201         atomic_inc(&sk->sk_drops);
2202         sk_skb_reason_drop(sk, skb, drop_reason);
2203         return -1;
2204 }
2205 
2206 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2207 {
2208         struct sk_buff *next, *segs;
2209         int ret;
2210 
2211         if (likely(!udp_unexpected_gso(sk, skb)))
2212                 return udp_queue_rcv_one_skb(sk, skb);
2213 
2214         BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2215         __skb_push(skb, -skb_mac_offset(skb));
2216         segs = udp_rcv_segment(sk, skb, true);
2217         skb_list_walk_safe(segs, skb, next) {
2218                 __skb_pull(skb, skb_transport_offset(skb));
2219 
2220                 udp_post_segment_fix_csum(skb);
2221                 ret = udp_queue_rcv_one_skb(sk, skb);
2222                 if (ret > 0)
2223                         ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2224         }
2225         return 0;
2226 }
2227 
2228 /* For TCP sockets, sk_rx_dst is protected by socket lock
2229  * For UDP, we use xchg() to guard against concurrent changes.
2230  */
2231 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2232 {
2233         struct dst_entry *old;
2234 
2235         if (dst_hold_safe(dst)) {
2236                 old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2237                 dst_release(old);
2238                 return old != dst;
2239         }
2240         return false;
2241 }
2242 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2243 
2244 /*
2245  *      Multicasts and broadcasts go to each listener.
2246  *
2247  *      Note: called only from the BH handler context.
2248  */
2249 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2250                                     struct udphdr  *uh,
2251                                     __be32 saddr, __be32 daddr,
2252                                     struct udp_table *udptable,
2253                                     int proto)
2254 {
2255         struct sock *sk, *first = NULL;
2256         unsigned short hnum = ntohs(uh->dest);
2257         struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2258         unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2259         unsigned int offset = offsetof(typeof(*sk), sk_node);
2260         int dif = skb->dev->ifindex;
2261         int sdif = inet_sdif(skb);
2262         struct hlist_node *node;
2263         struct sk_buff *nskb;
2264 
2265         if (use_hash2) {
2266                 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2267                             udptable->mask;
2268                 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2269 start_lookup:
2270                 hslot = &udptable->hash2[hash2];
2271                 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2272         }
2273 
2274         sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2275                 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2276                                          uh->source, saddr, dif, sdif, hnum))
2277                         continue;
2278 
2279                 if (!first) {
2280                         first = sk;
2281                         continue;
2282                 }
2283                 nskb = skb_clone(skb, GFP_ATOMIC);
2284 
2285                 if (unlikely(!nskb)) {
2286                         atomic_inc(&sk->sk_drops);
2287                         __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2288                                         IS_UDPLITE(sk));
2289                         __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2290                                         IS_UDPLITE(sk));
2291                         continue;
2292                 }
2293                 if (udp_queue_rcv_skb(sk, nskb) > 0)
2294                         consume_skb(nskb);
2295         }
2296 
2297         /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2298         if (use_hash2 && hash2 != hash2_any) {
2299                 hash2 = hash2_any;
2300                 goto start_lookup;
2301         }
2302 
2303         if (first) {
2304                 if (udp_queue_rcv_skb(first, skb) > 0)
2305                         consume_skb(skb);
2306         } else {
2307                 kfree_skb(skb);
2308                 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2309                                 proto == IPPROTO_UDPLITE);
2310         }
2311         return 0;
2312 }
2313 
2314 /* Initialize UDP checksum. If exited with zero value (success),
2315  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2316  * Otherwise, csum completion requires checksumming packet body,
2317  * including udp header and folding it to skb->csum.
2318  */
2319 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2320                                  int proto)
2321 {
2322         int err;
2323 
2324         UDP_SKB_CB(skb)->partial_cov = 0;
2325         UDP_SKB_CB(skb)->cscov = skb->len;
2326 
2327         if (proto == IPPROTO_UDPLITE) {
2328                 err = udplite_checksum_init(skb, uh);
2329                 if (err)
2330                         return err;
2331 
2332                 if (UDP_SKB_CB(skb)->partial_cov) {
2333                         skb->csum = inet_compute_pseudo(skb, proto);
2334                         return 0;
2335                 }
2336         }
2337 
2338         /* Note, we are only interested in != 0 or == 0, thus the
2339          * force to int.
2340          */
2341         err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2342                                                         inet_compute_pseudo);
2343         if (err)
2344                 return err;
2345 
2346         if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2347                 /* If SW calculated the value, we know it's bad */
2348                 if (skb->csum_complete_sw)
2349                         return 1;
2350 
2351                 /* HW says the value is bad. Let's validate that.
2352                  * skb->csum is no longer the full packet checksum,
2353                  * so don't treat it as such.
2354                  */
2355                 skb_checksum_complete_unset(skb);
2356         }
2357 
2358         return 0;
2359 }
2360 
2361 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2362  * return code conversion for ip layer consumption
2363  */
2364 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2365                                struct udphdr *uh)
2366 {
2367         int ret;
2368 
2369         if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2370                 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2371 
2372         ret = udp_queue_rcv_skb(sk, skb);
2373 
2374         /* a return value > 0 means to resubmit the input, but
2375          * it wants the return to be -protocol, or 0
2376          */
2377         if (ret > 0)
2378                 return -ret;
2379         return 0;
2380 }
2381 
2382 /*
2383  *      All we need to do is get the socket, and then do a checksum.
2384  */
2385 
2386 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2387                    int proto)
2388 {
2389         struct sock *sk = NULL;
2390         struct udphdr *uh;
2391         unsigned short ulen;
2392         struct rtable *rt = skb_rtable(skb);
2393         __be32 saddr, daddr;
2394         struct net *net = dev_net(skb->dev);
2395         bool refcounted;
2396         int drop_reason;
2397 
2398         drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2399 
2400         /*
2401          *  Validate the packet.
2402          */
2403         if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2404                 goto drop;              /* No space for header. */
2405 
2406         uh   = udp_hdr(skb);
2407         ulen = ntohs(uh->len);
2408         saddr = ip_hdr(skb)->saddr;
2409         daddr = ip_hdr(skb)->daddr;
2410 
2411         if (ulen > skb->len)
2412                 goto short_packet;
2413 
2414         if (proto == IPPROTO_UDP) {
2415                 /* UDP validates ulen. */
2416                 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2417                         goto short_packet;
2418                 uh = udp_hdr(skb);
2419         }
2420 
2421         if (udp4_csum_init(skb, uh, proto))
2422                 goto csum_error;
2423 
2424         sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2425                              &refcounted, udp_ehashfn);
2426         if (IS_ERR(sk))
2427                 goto no_sk;
2428 
2429         if (sk) {
2430                 struct dst_entry *dst = skb_dst(skb);
2431                 int ret;
2432 
2433                 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2434                         udp_sk_rx_dst_set(sk, dst);
2435 
2436                 ret = udp_unicast_rcv_skb(sk, skb, uh);
2437                 if (refcounted)
2438                         sock_put(sk);
2439                 return ret;
2440         }
2441 
2442         if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2443                 return __udp4_lib_mcast_deliver(net, skb, uh,
2444                                                 saddr, daddr, udptable, proto);
2445 
2446         sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2447         if (sk)
2448                 return udp_unicast_rcv_skb(sk, skb, uh);
2449 no_sk:
2450         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2451                 goto drop;
2452         nf_reset_ct(skb);
2453 
2454         /* No socket. Drop packet silently, if checksum is wrong */
2455         if (udp_lib_checksum_complete(skb))
2456                 goto csum_error;
2457 
2458         drop_reason = SKB_DROP_REASON_NO_SOCKET;
2459         __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2460         icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2461 
2462         /*
2463          * Hmm.  We got an UDP packet to a port to which we
2464          * don't wanna listen.  Ignore it.
2465          */
2466         sk_skb_reason_drop(sk, skb, drop_reason);
2467         return 0;
2468 
2469 short_packet:
2470         drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2471         net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2472                             proto == IPPROTO_UDPLITE ? "Lite" : "",
2473                             &saddr, ntohs(uh->source),
2474                             ulen, skb->len,
2475                             &daddr, ntohs(uh->dest));
2476         goto drop;
2477 
2478 csum_error:
2479         /*
2480          * RFC1122: OK.  Discards the bad packet silently (as far as
2481          * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2482          */
2483         drop_reason = SKB_DROP_REASON_UDP_CSUM;
2484         net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2485                             proto == IPPROTO_UDPLITE ? "Lite" : "",
2486                             &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2487                             ulen);
2488         __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2489 drop:
2490         __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2491         sk_skb_reason_drop(sk, skb, drop_reason);
2492         return 0;
2493 }
2494 
2495 /* We can only early demux multicast if there is a single matching socket.
2496  * If more than one socket found returns NULL
2497  */
2498 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2499                                                   __be16 loc_port, __be32 loc_addr,
2500                                                   __be16 rmt_port, __be32 rmt_addr,
2501                                                   int dif, int sdif)
2502 {
2503         struct udp_table *udptable = net->ipv4.udp_table;
2504         unsigned short hnum = ntohs(loc_port);
2505         struct sock *sk, *result;
2506         struct udp_hslot *hslot;
2507         unsigned int slot;
2508 
2509         slot = udp_hashfn(net, hnum, udptable->mask);
2510         hslot = &udptable->hash[slot];
2511 
2512         /* Do not bother scanning a too big list */
2513         if (hslot->count > 10)
2514                 return NULL;
2515 
2516         result = NULL;
2517         sk_for_each_rcu(sk, &hslot->head) {
2518                 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2519                                         rmt_port, rmt_addr, dif, sdif, hnum)) {
2520                         if (result)
2521                                 return NULL;
2522                         result = sk;
2523                 }
2524         }
2525 
2526         return result;
2527 }
2528 
2529 /* For unicast we should only early demux connected sockets or we can
2530  * break forwarding setups.  The chains here can be long so only check
2531  * if the first socket is an exact match and if not move on.
2532  */
2533 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2534                                             __be16 loc_port, __be32 loc_addr,
2535                                             __be16 rmt_port, __be32 rmt_addr,
2536                                             int dif, int sdif)
2537 {
2538         struct udp_table *udptable = net->ipv4.udp_table;
2539         INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2540         unsigned short hnum = ntohs(loc_port);
2541         unsigned int hash2, slot2;
2542         struct udp_hslot *hslot2;
2543         __portpair ports;
2544         struct sock *sk;
2545 
2546         hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2547         slot2 = hash2 & udptable->mask;
2548         hslot2 = &udptable->hash2[slot2];
2549         ports = INET_COMBINED_PORTS(rmt_port, hnum);
2550 
2551         udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2552                 if (inet_match(net, sk, acookie, ports, dif, sdif))
2553                         return sk;
2554                 /* Only check first socket in chain */
2555                 break;
2556         }
2557         return NULL;
2558 }
2559 
2560 int udp_v4_early_demux(struct sk_buff *skb)
2561 {
2562         struct net *net = dev_net(skb->dev);
2563         struct in_device *in_dev = NULL;
2564         const struct iphdr *iph;
2565         const struct udphdr *uh;
2566         struct sock *sk = NULL;
2567         struct dst_entry *dst;
2568         int dif = skb->dev->ifindex;
2569         int sdif = inet_sdif(skb);
2570         int ours;
2571 
2572         /* validate the packet */
2573         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2574                 return 0;
2575 
2576         iph = ip_hdr(skb);
2577         uh = udp_hdr(skb);
2578 
2579         if (skb->pkt_type == PACKET_MULTICAST) {
2580                 in_dev = __in_dev_get_rcu(skb->dev);
2581 
2582                 if (!in_dev)
2583                         return 0;
2584 
2585                 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2586                                        iph->protocol);
2587                 if (!ours)
2588                         return 0;
2589 
2590                 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2591                                                    uh->source, iph->saddr,
2592                                                    dif, sdif);
2593         } else if (skb->pkt_type == PACKET_HOST) {
2594                 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2595                                              uh->source, iph->saddr, dif, sdif);
2596         }
2597 
2598         if (!sk)
2599                 return 0;
2600 
2601         skb->sk = sk;
2602         DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2603         skb->destructor = sock_pfree;
2604         dst = rcu_dereference(sk->sk_rx_dst);
2605 
2606         if (dst)
2607                 dst = dst_check(dst, 0);
2608         if (dst) {
2609                 u32 itag = 0;
2610 
2611                 /* set noref for now.
2612                  * any place which wants to hold dst has to call
2613                  * dst_hold_safe()
2614                  */
2615                 skb_dst_set_noref(skb, dst);
2616 
2617                 /* for unconnected multicast sockets we need to validate
2618                  * the source on each packet
2619                  */
2620                 if (!inet_sk(sk)->inet_daddr && in_dev)
2621                         return ip_mc_validate_source(skb, iph->daddr,
2622                                                      iph->saddr,
2623                                                      iph->tos & IPTOS_RT_MASK,
2624                                                      skb->dev, in_dev, &itag);
2625         }
2626         return 0;
2627 }
2628 
2629 int udp_rcv(struct sk_buff *skb)
2630 {
2631         return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2632 }
2633 
2634 void udp_destroy_sock(struct sock *sk)
2635 {
2636         struct udp_sock *up = udp_sk(sk);
2637         bool slow = lock_sock_fast(sk);
2638 
2639         /* protects from races with udp_abort() */
2640         sock_set_flag(sk, SOCK_DEAD);
2641         udp_flush_pending_frames(sk);
2642         unlock_sock_fast(sk, slow);
2643         if (static_branch_unlikely(&udp_encap_needed_key)) {
2644                 if (up->encap_type) {
2645                         void (*encap_destroy)(struct sock *sk);
2646                         encap_destroy = READ_ONCE(up->encap_destroy);
2647                         if (encap_destroy)
2648                                 encap_destroy(sk);
2649                 }
2650                 if (udp_test_bit(ENCAP_ENABLED, sk))
2651                         static_branch_dec(&udp_encap_needed_key);
2652         }
2653 }
2654 
2655 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2656                                        struct sock *sk)
2657 {
2658 #ifdef CONFIG_XFRM
2659         if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2660                 if (family == AF_INET)
2661                         WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2662                 else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2663                         WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2664         }
2665 #endif
2666 }
2667 
2668 /*
2669  *      Socket option code for UDP
2670  */
2671 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2672                        sockptr_t optval, unsigned int optlen,
2673                        int (*push_pending_frames)(struct sock *))
2674 {
2675         struct udp_sock *up = udp_sk(sk);
2676         int val, valbool;
2677         int err = 0;
2678         int is_udplite = IS_UDPLITE(sk);
2679 
2680         if (level == SOL_SOCKET) {
2681                 err = sk_setsockopt(sk, level, optname, optval, optlen);
2682 
2683                 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2684                         sockopt_lock_sock(sk);
2685                         /* paired with READ_ONCE in udp_rmem_release() */
2686                         WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2687                         sockopt_release_sock(sk);
2688                 }
2689                 return err;
2690         }
2691 
2692         if (optlen < sizeof(int))
2693                 return -EINVAL;
2694 
2695         if (copy_from_sockptr(&val, optval, sizeof(val)))
2696                 return -EFAULT;
2697 
2698         valbool = val ? 1 : 0;
2699 
2700         switch (optname) {
2701         case UDP_CORK:
2702                 if (val != 0) {
2703                         udp_set_bit(CORK, sk);
2704                 } else {
2705                         udp_clear_bit(CORK, sk);
2706                         lock_sock(sk);
2707                         push_pending_frames(sk);
2708                         release_sock(sk);
2709                 }
2710                 break;
2711 
2712         case UDP_ENCAP:
2713                 switch (val) {
2714                 case 0:
2715 #ifdef CONFIG_XFRM
2716                 case UDP_ENCAP_ESPINUDP:
2717                         set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2718 #if IS_ENABLED(CONFIG_IPV6)
2719                         if (sk->sk_family == AF_INET6)
2720                                 WRITE_ONCE(up->encap_rcv,
2721                                            ipv6_stub->xfrm6_udp_encap_rcv);
2722                         else
2723 #endif
2724                                 WRITE_ONCE(up->encap_rcv,
2725                                            xfrm4_udp_encap_rcv);
2726 #endif
2727                         fallthrough;
2728                 case UDP_ENCAP_L2TPINUDP:
2729                         WRITE_ONCE(up->encap_type, val);
2730                         udp_tunnel_encap_enable(sk);
2731                         break;
2732                 default:
2733                         err = -ENOPROTOOPT;
2734                         break;
2735                 }
2736                 break;
2737 
2738         case UDP_NO_CHECK6_TX:
2739                 udp_set_no_check6_tx(sk, valbool);
2740                 break;
2741 
2742         case UDP_NO_CHECK6_RX:
2743                 udp_set_no_check6_rx(sk, valbool);
2744                 break;
2745 
2746         case UDP_SEGMENT:
2747                 if (val < 0 || val > USHRT_MAX)
2748                         return -EINVAL;
2749                 WRITE_ONCE(up->gso_size, val);
2750                 break;
2751 
2752         case UDP_GRO:
2753 
2754                 /* when enabling GRO, accept the related GSO packet type */
2755                 if (valbool)
2756                         udp_tunnel_encap_enable(sk);
2757                 udp_assign_bit(GRO_ENABLED, sk, valbool);
2758                 udp_assign_bit(ACCEPT_L4, sk, valbool);
2759                 set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2760                 break;
2761 
2762         /*
2763          *      UDP-Lite's partial checksum coverage (RFC 3828).
2764          */
2765         /* The sender sets actual checksum coverage length via this option.
2766          * The case coverage > packet length is handled by send module. */
2767         case UDPLITE_SEND_CSCOV:
2768                 if (!is_udplite)         /* Disable the option on UDP sockets */
2769                         return -ENOPROTOOPT;
2770                 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2771                         val = 8;
2772                 else if (val > USHRT_MAX)
2773                         val = USHRT_MAX;
2774                 WRITE_ONCE(up->pcslen, val);
2775                 udp_set_bit(UDPLITE_SEND_CC, sk);
2776                 break;
2777 
2778         /* The receiver specifies a minimum checksum coverage value. To make
2779          * sense, this should be set to at least 8 (as done below). If zero is
2780          * used, this again means full checksum coverage.                     */
2781         case UDPLITE_RECV_CSCOV:
2782                 if (!is_udplite)         /* Disable the option on UDP sockets */
2783                         return -ENOPROTOOPT;
2784                 if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2785                         val = 8;
2786                 else if (val > USHRT_MAX)
2787                         val = USHRT_MAX;
2788                 WRITE_ONCE(up->pcrlen, val);
2789                 udp_set_bit(UDPLITE_RECV_CC, sk);
2790                 break;
2791 
2792         default:
2793                 err = -ENOPROTOOPT;
2794                 break;
2795         }
2796 
2797         return err;
2798 }
2799 EXPORT_SYMBOL(udp_lib_setsockopt);
2800 
2801 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2802                    unsigned int optlen)
2803 {
2804         if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2805                 return udp_lib_setsockopt(sk, level, optname,
2806                                           optval, optlen,
2807                                           udp_push_pending_frames);
2808         return ip_setsockopt(sk, level, optname, optval, optlen);
2809 }
2810 
2811 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2812                        char __user *optval, int __user *optlen)
2813 {
2814         struct udp_sock *up = udp_sk(sk);
2815         int val, len;
2816 
2817         if (get_user(len, optlen))
2818                 return -EFAULT;
2819 
2820         if (len < 0)
2821                 return -EINVAL;
2822 
2823         len = min_t(unsigned int, len, sizeof(int));
2824 
2825         switch (optname) {
2826         case UDP_CORK:
2827                 val = udp_test_bit(CORK, sk);
2828                 break;
2829 
2830         case UDP_ENCAP:
2831                 val = READ_ONCE(up->encap_type);
2832                 break;
2833 
2834         case UDP_NO_CHECK6_TX:
2835                 val = udp_get_no_check6_tx(sk);
2836                 break;
2837 
2838         case UDP_NO_CHECK6_RX:
2839                 val = udp_get_no_check6_rx(sk);
2840                 break;
2841 
2842         case UDP_SEGMENT:
2843                 val = READ_ONCE(up->gso_size);
2844                 break;
2845 
2846         case UDP_GRO:
2847                 val = udp_test_bit(GRO_ENABLED, sk);
2848                 break;
2849 
2850         /* The following two cannot be changed on UDP sockets, the return is
2851          * always 0 (which corresponds to the full checksum coverage of UDP). */
2852         case UDPLITE_SEND_CSCOV:
2853                 val = READ_ONCE(up->pcslen);
2854                 break;
2855 
2856         case UDPLITE_RECV_CSCOV:
2857                 val = READ_ONCE(up->pcrlen);
2858                 break;
2859 
2860         default:
2861                 return -ENOPROTOOPT;
2862         }
2863 
2864         if (put_user(len, optlen))
2865                 return -EFAULT;
2866         if (copy_to_user(optval, &val, len))
2867                 return -EFAULT;
2868         return 0;
2869 }
2870 EXPORT_SYMBOL(udp_lib_getsockopt);
2871 
2872 int udp_getsockopt(struct sock *sk, int level, int optname,
2873                    char __user *optval, int __user *optlen)
2874 {
2875         if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2876                 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2877         return ip_getsockopt(sk, level, optname, optval, optlen);
2878 }
2879 
2880 /**
2881  *      udp_poll - wait for a UDP event.
2882  *      @file: - file struct
2883  *      @sock: - socket
2884  *      @wait: - poll table
2885  *
2886  *      This is same as datagram poll, except for the special case of
2887  *      blocking sockets. If application is using a blocking fd
2888  *      and a packet with checksum error is in the queue;
2889  *      then it could get return from select indicating data available
2890  *      but then block when reading it. Add special case code
2891  *      to work around these arguably broken applications.
2892  */
2893 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2894 {
2895         __poll_t mask = datagram_poll(file, sock, wait);
2896         struct sock *sk = sock->sk;
2897 
2898         if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2899                 mask |= EPOLLIN | EPOLLRDNORM;
2900 
2901         /* Check for false positives due to checksum errors */
2902         if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2903             !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2904                 mask &= ~(EPOLLIN | EPOLLRDNORM);
2905 
2906         /* psock ingress_msg queue should not contain any bad checksum frames */
2907         if (sk_is_readable(sk))
2908                 mask |= EPOLLIN | EPOLLRDNORM;
2909         return mask;
2910 
2911 }
2912 EXPORT_SYMBOL(udp_poll);
2913 
2914 int udp_abort(struct sock *sk, int err)
2915 {
2916         if (!has_current_bpf_ctx())
2917                 lock_sock(sk);
2918 
2919         /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2920          * with close()
2921          */
2922         if (sock_flag(sk, SOCK_DEAD))
2923                 goto out;
2924 
2925         sk->sk_err = err;
2926         sk_error_report(sk);
2927         __udp_disconnect(sk, 0);
2928 
2929 out:
2930         if (!has_current_bpf_ctx())
2931                 release_sock(sk);
2932 
2933         return 0;
2934 }
2935 EXPORT_SYMBOL_GPL(udp_abort);
2936 
2937 struct proto udp_prot = {
2938         .name                   = "UDP",
2939         .owner                  = THIS_MODULE,
2940         .close                  = udp_lib_close,
2941         .pre_connect            = udp_pre_connect,
2942         .connect                = ip4_datagram_connect,
2943         .disconnect             = udp_disconnect,
2944         .ioctl                  = udp_ioctl,
2945         .init                   = udp_init_sock,
2946         .destroy                = udp_destroy_sock,
2947         .setsockopt             = udp_setsockopt,
2948         .getsockopt             = udp_getsockopt,
2949         .sendmsg                = udp_sendmsg,
2950         .recvmsg                = udp_recvmsg,
2951         .splice_eof             = udp_splice_eof,
2952         .release_cb             = ip4_datagram_release_cb,
2953         .hash                   = udp_lib_hash,
2954         .unhash                 = udp_lib_unhash,
2955         .rehash                 = udp_v4_rehash,
2956         .get_port               = udp_v4_get_port,
2957         .put_port               = udp_lib_unhash,
2958 #ifdef CONFIG_BPF_SYSCALL
2959         .psock_update_sk_prot   = udp_bpf_update_proto,
2960 #endif
2961         .memory_allocated       = &udp_memory_allocated,
2962         .per_cpu_fw_alloc       = &udp_memory_per_cpu_fw_alloc,
2963 
2964         .sysctl_mem             = sysctl_udp_mem,
2965         .sysctl_wmem_offset     = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2966         .sysctl_rmem_offset     = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2967         .obj_size               = sizeof(struct udp_sock),
2968         .h.udp_table            = NULL,
2969         .diag_destroy           = udp_abort,
2970 };
2971 EXPORT_SYMBOL(udp_prot);
2972 
2973 /* ------------------------------------------------------------------------ */
2974 #ifdef CONFIG_PROC_FS
2975 
2976 static unsigned short seq_file_family(const struct seq_file *seq);
2977 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2978 {
2979         unsigned short family = seq_file_family(seq);
2980 
2981         /* AF_UNSPEC is used as a match all */
2982         return ((family == AF_UNSPEC || family == sk->sk_family) &&
2983                 net_eq(sock_net(sk), seq_file_net(seq)));
2984 }
2985 
2986 #ifdef CONFIG_BPF_SYSCALL
2987 static const struct seq_operations bpf_iter_udp_seq_ops;
2988 #endif
2989 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2990                                            struct net *net)
2991 {
2992         const struct udp_seq_afinfo *afinfo;
2993 
2994 #ifdef CONFIG_BPF_SYSCALL
2995         if (seq->op == &bpf_iter_udp_seq_ops)
2996                 return net->ipv4.udp_table;
2997 #endif
2998 
2999         afinfo = pde_data(file_inode(seq->file));
3000         return afinfo->udp_table ? : net->ipv4.udp_table;
3001 }
3002 
3003 static struct sock *udp_get_first(struct seq_file *seq, int start)
3004 {
3005         struct udp_iter_state *state = seq->private;
3006         struct net *net = seq_file_net(seq);
3007         struct udp_table *udptable;
3008         struct sock *sk;
3009 
3010         udptable = udp_get_table_seq(seq, net);
3011 
3012         for (state->bucket = start; state->bucket <= udptable->mask;
3013              ++state->bucket) {
3014                 struct udp_hslot *hslot = &udptable->hash[state->bucket];
3015 
3016                 if (hlist_empty(&hslot->head))
3017                         continue;
3018 
3019                 spin_lock_bh(&hslot->lock);
3020                 sk_for_each(sk, &hslot->head) {
3021                         if (seq_sk_match(seq, sk))
3022                                 goto found;
3023                 }
3024                 spin_unlock_bh(&hslot->lock);
3025         }
3026         sk = NULL;
3027 found:
3028         return sk;
3029 }
3030 
3031 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3032 {
3033         struct udp_iter_state *state = seq->private;
3034         struct net *net = seq_file_net(seq);
3035         struct udp_table *udptable;
3036 
3037         do {
3038                 sk = sk_next(sk);
3039         } while (sk && !seq_sk_match(seq, sk));
3040 
3041         if (!sk) {
3042                 udptable = udp_get_table_seq(seq, net);
3043 
3044                 if (state->bucket <= udptable->mask)
3045                         spin_unlock_bh(&udptable->hash[state->bucket].lock);
3046 
3047                 return udp_get_first(seq, state->bucket + 1);
3048         }
3049         return sk;
3050 }
3051 
3052 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3053 {
3054         struct sock *sk = udp_get_first(seq, 0);
3055 
3056         if (sk)
3057                 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3058                         --pos;
3059         return pos ? NULL : sk;
3060 }
3061 
3062 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3063 {
3064         struct udp_iter_state *state = seq->private;
3065         state->bucket = MAX_UDP_PORTS;
3066 
3067         return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3068 }
3069 EXPORT_SYMBOL(udp_seq_start);
3070 
3071 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3072 {
3073         struct sock *sk;
3074 
3075         if (v == SEQ_START_TOKEN)
3076                 sk = udp_get_idx(seq, 0);
3077         else
3078                 sk = udp_get_next(seq, v);
3079 
3080         ++*pos;
3081         return sk;
3082 }
3083 EXPORT_SYMBOL(udp_seq_next);
3084 
3085 void udp_seq_stop(struct seq_file *seq, void *v)
3086 {
3087         struct udp_iter_state *state = seq->private;
3088         struct udp_table *udptable;
3089 
3090         udptable = udp_get_table_seq(seq, seq_file_net(seq));
3091 
3092         if (state->bucket <= udptable->mask)
3093                 spin_unlock_bh(&udptable->hash[state->bucket].lock);
3094 }
3095 EXPORT_SYMBOL(udp_seq_stop);
3096 
3097 /* ------------------------------------------------------------------------ */
3098 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3099                 int bucket)
3100 {
3101         struct inet_sock *inet = inet_sk(sp);
3102         __be32 dest = inet->inet_daddr;
3103         __be32 src  = inet->inet_rcv_saddr;
3104         __u16 destp       = ntohs(inet->inet_dport);
3105         __u16 srcp        = ntohs(inet->inet_sport);
3106 
3107         seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3108                 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3109                 bucket, src, srcp, dest, destp, sp->sk_state,
3110                 sk_wmem_alloc_get(sp),
3111                 udp_rqueue_get(sp),
3112                 0, 0L, 0,
3113                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3114                 0, sock_i_ino(sp),
3115                 refcount_read(&sp->sk_refcnt), sp,
3116                 atomic_read(&sp->sk_drops));
3117 }
3118 
3119 int udp4_seq_show(struct seq_file *seq, void *v)
3120 {
3121         seq_setwidth(seq, 127);
3122         if (v == SEQ_START_TOKEN)
3123                 seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3124                            "rx_queue tr tm->when retrnsmt   uid  timeout "
3125                            "inode ref pointer drops");
3126         else {
3127                 struct udp_iter_state *state = seq->private;
3128 
3129                 udp4_format_sock(v, seq, state->bucket);
3130         }
3131         seq_pad(seq, '\n');
3132         return 0;
3133 }
3134 
3135 #ifdef CONFIG_BPF_SYSCALL
3136 struct bpf_iter__udp {
3137         __bpf_md_ptr(struct bpf_iter_meta *, meta);
3138         __bpf_md_ptr(struct udp_sock *, udp_sk);
3139         uid_t uid __aligned(8);
3140         int bucket __aligned(8);
3141 };
3142 
3143 struct bpf_udp_iter_state {
3144         struct udp_iter_state state;
3145         unsigned int cur_sk;
3146         unsigned int end_sk;
3147         unsigned int max_sk;
3148         int offset;
3149         struct sock **batch;
3150         bool st_bucket_done;
3151 };
3152 
3153 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3154                                       unsigned int new_batch_sz);
3155 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3156 {
3157         struct bpf_udp_iter_state *iter = seq->private;
3158         struct udp_iter_state *state = &iter->state;
3159         struct net *net = seq_file_net(seq);
3160         int resume_bucket, resume_offset;
3161         struct udp_table *udptable;
3162         unsigned int batch_sks = 0;
3163         bool resized = false;
3164         struct sock *sk;
3165 
3166         resume_bucket = state->bucket;
3167         resume_offset = iter->offset;
3168 
3169         /* The current batch is done, so advance the bucket. */
3170         if (iter->st_bucket_done)
3171                 state->bucket++;
3172 
3173         udptable = udp_get_table_seq(seq, net);
3174 
3175 again:
3176         /* New batch for the next bucket.
3177          * Iterate over the hash table to find a bucket with sockets matching
3178          * the iterator attributes, and return the first matching socket from
3179          * the bucket. The remaining matched sockets from the bucket are batched
3180          * before releasing the bucket lock. This allows BPF programs that are
3181          * called in seq_show to acquire the bucket lock if needed.
3182          */
3183         iter->cur_sk = 0;
3184         iter->end_sk = 0;
3185         iter->st_bucket_done = false;
3186         batch_sks = 0;
3187 
3188         for (; state->bucket <= udptable->mask; state->bucket++) {
3189                 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3190 
3191                 if (hlist_empty(&hslot2->head))
3192                         continue;
3193 
3194                 iter->offset = 0;
3195                 spin_lock_bh(&hslot2->lock);
3196                 udp_portaddr_for_each_entry(sk, &hslot2->head) {
3197                         if (seq_sk_match(seq, sk)) {
3198                                 /* Resume from the last iterated socket at the
3199                                  * offset in the bucket before iterator was stopped.
3200                                  */
3201                                 if (state->bucket == resume_bucket &&
3202                                     iter->offset < resume_offset) {
3203                                         ++iter->offset;
3204                                         continue;
3205                                 }
3206                                 if (iter->end_sk < iter->max_sk) {
3207                                         sock_hold(sk);
3208                                         iter->batch[iter->end_sk++] = sk;
3209                                 }
3210                                 batch_sks++;
3211                         }
3212                 }
3213                 spin_unlock_bh(&hslot2->lock);
3214 
3215                 if (iter->end_sk)
3216                         break;
3217         }
3218 
3219         /* All done: no batch made. */
3220         if (!iter->end_sk)
3221                 return NULL;
3222 
3223         if (iter->end_sk == batch_sks) {
3224                 /* Batching is done for the current bucket; return the first
3225                  * socket to be iterated from the batch.
3226                  */
3227                 iter->st_bucket_done = true;
3228                 goto done;
3229         }
3230         if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3231                 resized = true;
3232                 /* After allocating a larger batch, retry one more time to grab
3233                  * the whole bucket.
3234                  */
3235                 goto again;
3236         }
3237 done:
3238         return iter->batch[0];
3239 }
3240 
3241 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3242 {
3243         struct bpf_udp_iter_state *iter = seq->private;
3244         struct sock *sk;
3245 
3246         /* Whenever seq_next() is called, the iter->cur_sk is
3247          * done with seq_show(), so unref the iter->cur_sk.
3248          */
3249         if (iter->cur_sk < iter->end_sk) {
3250                 sock_put(iter->batch[iter->cur_sk++]);
3251                 ++iter->offset;
3252         }
3253 
3254         /* After updating iter->cur_sk, check if there are more sockets
3255          * available in the current bucket batch.
3256          */
3257         if (iter->cur_sk < iter->end_sk)
3258                 sk = iter->batch[iter->cur_sk];
3259         else
3260                 /* Prepare a new batch. */
3261                 sk = bpf_iter_udp_batch(seq);
3262 
3263         ++*pos;
3264         return sk;
3265 }
3266 
3267 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3268 {
3269         /* bpf iter does not support lseek, so it always
3270          * continue from where it was stop()-ped.
3271          */
3272         if (*pos)
3273                 return bpf_iter_udp_batch(seq);
3274 
3275         return SEQ_START_TOKEN;
3276 }
3277 
3278 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3279                              struct udp_sock *udp_sk, uid_t uid, int bucket)
3280 {
3281         struct bpf_iter__udp ctx;
3282 
3283         meta->seq_num--;  /* skip SEQ_START_TOKEN */
3284         ctx.meta = meta;
3285         ctx.udp_sk = udp_sk;
3286         ctx.uid = uid;
3287         ctx.bucket = bucket;
3288         return bpf_iter_run_prog(prog, &ctx);
3289 }
3290 
3291 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3292 {
3293         struct udp_iter_state *state = seq->private;
3294         struct bpf_iter_meta meta;
3295         struct bpf_prog *prog;
3296         struct sock *sk = v;
3297         uid_t uid;
3298         int ret;
3299 
3300         if (v == SEQ_START_TOKEN)
3301                 return 0;
3302 
3303         lock_sock(sk);
3304 
3305         if (unlikely(sk_unhashed(sk))) {
3306                 ret = SEQ_SKIP;
3307                 goto unlock;
3308         }
3309 
3310         uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3311         meta.seq = seq;
3312         prog = bpf_iter_get_info(&meta, false);
3313         ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3314 
3315 unlock:
3316         release_sock(sk);
3317         return ret;
3318 }
3319 
3320 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3321 {
3322         while (iter->cur_sk < iter->end_sk)
3323                 sock_put(iter->batch[iter->cur_sk++]);
3324 }
3325 
3326 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3327 {
3328         struct bpf_udp_iter_state *iter = seq->private;
3329         struct bpf_iter_meta meta;
3330         struct bpf_prog *prog;
3331 
3332         if (!v) {
3333                 meta.seq = seq;
3334                 prog = bpf_iter_get_info(&meta, true);
3335                 if (prog)
3336                         (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3337         }
3338 
3339         if (iter->cur_sk < iter->end_sk) {
3340                 bpf_iter_udp_put_batch(iter);
3341                 iter->st_bucket_done = false;
3342         }
3343 }
3344 
3345 static const struct seq_operations bpf_iter_udp_seq_ops = {
3346         .start          = bpf_iter_udp_seq_start,
3347         .next           = bpf_iter_udp_seq_next,
3348         .stop           = bpf_iter_udp_seq_stop,
3349         .show           = bpf_iter_udp_seq_show,
3350 };
3351 #endif
3352 
3353 static unsigned short seq_file_family(const struct seq_file *seq)
3354 {
3355         const struct udp_seq_afinfo *afinfo;
3356 
3357 #ifdef CONFIG_BPF_SYSCALL
3358         /* BPF iterator: bpf programs to filter sockets. */
3359         if (seq->op == &bpf_iter_udp_seq_ops)
3360                 return AF_UNSPEC;
3361 #endif
3362 
3363         /* Proc fs iterator */
3364         afinfo = pde_data(file_inode(seq->file));
3365         return afinfo->family;
3366 }
3367 
3368 const struct seq_operations udp_seq_ops = {
3369         .start          = udp_seq_start,
3370         .next           = udp_seq_next,
3371         .stop           = udp_seq_stop,
3372         .show           = udp4_seq_show,
3373 };
3374 EXPORT_SYMBOL(udp_seq_ops);
3375 
3376 static struct udp_seq_afinfo udp4_seq_afinfo = {
3377         .family         = AF_INET,
3378         .udp_table      = NULL,
3379 };
3380 
3381 static int __net_init udp4_proc_init_net(struct net *net)
3382 {
3383         if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3384                         sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3385                 return -ENOMEM;
3386         return 0;
3387 }
3388 
3389 static void __net_exit udp4_proc_exit_net(struct net *net)
3390 {
3391         remove_proc_entry("udp", net->proc_net);
3392 }
3393 
3394 static struct pernet_operations udp4_net_ops = {
3395         .init = udp4_proc_init_net,
3396         .exit = udp4_proc_exit_net,
3397 };
3398 
3399 int __init udp4_proc_init(void)
3400 {
3401         return register_pernet_subsys(&udp4_net_ops);
3402 }
3403 
3404 void udp4_proc_exit(void)
3405 {
3406         unregister_pernet_subsys(&udp4_net_ops);
3407 }
3408 #endif /* CONFIG_PROC_FS */
3409 
3410 static __initdata unsigned long uhash_entries;
3411 static int __init set_uhash_entries(char *str)
3412 {
3413         ssize_t ret;
3414 
3415         if (!str)
3416                 return 0;
3417 
3418         ret = kstrtoul(str, 0, &uhash_entries);
3419         if (ret)
3420                 return 0;
3421 
3422         if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3423                 uhash_entries = UDP_HTABLE_SIZE_MIN;
3424         return 1;
3425 }
3426 __setup("uhash_entries=", set_uhash_entries);
3427 
3428 void __init udp_table_init(struct udp_table *table, const char *name)
3429 {
3430         unsigned int i;
3431 
3432         table->hash = alloc_large_system_hash(name,
3433                                               2 * sizeof(struct udp_hslot),
3434                                               uhash_entries,
3435                                               21, /* one slot per 2 MB */
3436                                               0,
3437                                               &table->log,
3438                                               &table->mask,
3439                                               UDP_HTABLE_SIZE_MIN,
3440                                               UDP_HTABLE_SIZE_MAX);
3441 
3442         table->hash2 = table->hash + (table->mask + 1);
3443         for (i = 0; i <= table->mask; i++) {
3444                 INIT_HLIST_HEAD(&table->hash[i].head);
3445                 table->hash[i].count = 0;
3446                 spin_lock_init(&table->hash[i].lock);
3447         }
3448         for (i = 0; i <= table->mask; i++) {
3449                 INIT_HLIST_HEAD(&table->hash2[i].head);
3450                 table->hash2[i].count = 0;
3451                 spin_lock_init(&table->hash2[i].lock);
3452         }
3453 }
3454 
3455 u32 udp_flow_hashrnd(void)
3456 {
3457         static u32 hashrnd __read_mostly;
3458 
3459         net_get_random_once(&hashrnd, sizeof(hashrnd));
3460 
3461         return hashrnd;
3462 }
3463 EXPORT_SYMBOL(udp_flow_hashrnd);
3464 
3465 static void __net_init udp_sysctl_init(struct net *net)
3466 {
3467         net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3468         net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3469 
3470 #ifdef CONFIG_NET_L3_MASTER_DEV
3471         net->ipv4.sysctl_udp_l3mdev_accept = 0;
3472 #endif
3473 }
3474 
3475 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3476 {
3477         struct udp_table *udptable;
3478         int i;
3479 
3480         udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3481         if (!udptable)
3482                 goto out;
3483 
3484         udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3485                                       GFP_KERNEL_ACCOUNT);
3486         if (!udptable->hash)
3487                 goto free_table;
3488 
3489         udptable->hash2 = udptable->hash + hash_entries;
3490         udptable->mask = hash_entries - 1;
3491         udptable->log = ilog2(hash_entries);
3492 
3493         for (i = 0; i < hash_entries; i++) {
3494                 INIT_HLIST_HEAD(&udptable->hash[i].head);
3495                 udptable->hash[i].count = 0;
3496                 spin_lock_init(&udptable->hash[i].lock);
3497 
3498                 INIT_HLIST_HEAD(&udptable->hash2[i].head);
3499                 udptable->hash2[i].count = 0;
3500                 spin_lock_init(&udptable->hash2[i].lock);
3501         }
3502 
3503         return udptable;
3504 
3505 free_table:
3506         kfree(udptable);
3507 out:
3508         return NULL;
3509 }
3510 
3511 static void __net_exit udp_pernet_table_free(struct net *net)
3512 {
3513         struct udp_table *udptable = net->ipv4.udp_table;
3514 
3515         if (udptable == &udp_table)
3516                 return;
3517 
3518         kvfree(udptable->hash);
3519         kfree(udptable);
3520 }
3521 
3522 static void __net_init udp_set_table(struct net *net)
3523 {
3524         struct udp_table *udptable;
3525         unsigned int hash_entries;
3526         struct net *old_net;
3527 
3528         if (net_eq(net, &init_net))
3529                 goto fallback;
3530 
3531         old_net = current->nsproxy->net_ns;
3532         hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3533         if (!hash_entries)
3534                 goto fallback;
3535 
3536         /* Set min to keep the bitmap on stack in udp_lib_get_port() */
3537         if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3538                 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3539         else
3540                 hash_entries = roundup_pow_of_two(hash_entries);
3541 
3542         udptable = udp_pernet_table_alloc(hash_entries);
3543         if (udptable) {
3544                 net->ipv4.udp_table = udptable;
3545         } else {
3546                 pr_warn("Failed to allocate UDP hash table (entries: %u) "
3547                         "for a netns, fallback to the global one\n",
3548                         hash_entries);
3549 fallback:
3550                 net->ipv4.udp_table = &udp_table;
3551         }
3552 }
3553 
3554 static int __net_init udp_pernet_init(struct net *net)
3555 {
3556         udp_sysctl_init(net);
3557         udp_set_table(net);
3558 
3559         return 0;
3560 }
3561 
3562 static void __net_exit udp_pernet_exit(struct net *net)
3563 {
3564         udp_pernet_table_free(net);
3565 }
3566 
3567 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3568         .init   = udp_pernet_init,
3569         .exit   = udp_pernet_exit,
3570 };
3571 
3572 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3573 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3574                      struct udp_sock *udp_sk, uid_t uid, int bucket)
3575 
3576 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3577                                       unsigned int new_batch_sz)
3578 {
3579         struct sock **new_batch;
3580 
3581         new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3582                                    GFP_USER | __GFP_NOWARN);
3583         if (!new_batch)
3584                 return -ENOMEM;
3585 
3586         bpf_iter_udp_put_batch(iter);
3587         kvfree(iter->batch);
3588         iter->batch = new_batch;
3589         iter->max_sk = new_batch_sz;
3590 
3591         return 0;
3592 }
3593 
3594 #define INIT_BATCH_SZ 16
3595 
3596 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3597 {
3598         struct bpf_udp_iter_state *iter = priv_data;
3599         int ret;
3600 
3601         ret = bpf_iter_init_seq_net(priv_data, aux);
3602         if (ret)
3603                 return ret;
3604 
3605         ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3606         if (ret)
3607                 bpf_iter_fini_seq_net(priv_data);
3608 
3609         return ret;
3610 }
3611 
3612 static void bpf_iter_fini_udp(void *priv_data)
3613 {
3614         struct bpf_udp_iter_state *iter = priv_data;
3615 
3616         bpf_iter_fini_seq_net(priv_data);
3617         kvfree(iter->batch);
3618 }
3619 
3620 static const struct bpf_iter_seq_info udp_seq_info = {
3621         .seq_ops                = &bpf_iter_udp_seq_ops,
3622         .init_seq_private       = bpf_iter_init_udp,
3623         .fini_seq_private       = bpf_iter_fini_udp,
3624         .seq_priv_size          = sizeof(struct bpf_udp_iter_state),
3625 };
3626 
3627 static struct bpf_iter_reg udp_reg_info = {
3628         .target                 = "udp",
3629         .ctx_arg_info_size      = 1,
3630         .ctx_arg_info           = {
3631                 { offsetof(struct bpf_iter__udp, udp_sk),
3632                   PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3633         },
3634         .seq_info               = &udp_seq_info,
3635 };
3636 
3637 static void __init bpf_iter_register(void)
3638 {
3639         udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3640         if (bpf_iter_reg_target(&udp_reg_info))
3641                 pr_warn("Warning: could not register bpf iterator udp\n");
3642 }
3643 #endif
3644 
3645 void __init udp_init(void)
3646 {
3647         unsigned long limit;
3648         unsigned int i;
3649 
3650         udp_table_init(&udp_table, "UDP");
3651         limit = nr_free_buffer_pages() / 8;
3652         limit = max(limit, 128UL);
3653         sysctl_udp_mem[0] = limit / 4 * 3;
3654         sysctl_udp_mem[1] = limit;
3655         sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3656 
3657         /* 16 spinlocks per cpu */
3658         udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3659         udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3660                                 GFP_KERNEL);
3661         if (!udp_busylocks)
3662                 panic("UDP: failed to alloc udp_busylocks\n");
3663         for (i = 0; i < (1U << udp_busylocks_log); i++)
3664                 spin_lock_init(udp_busylocks + i);
3665 
3666         if (register_pernet_subsys(&udp_sysctl_ops))
3667                 panic("UDP: failed to init sysctl parameters.\n");
3668 
3669 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3670         bpf_iter_register();
3671 #endif
3672 }
3673 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php