~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/mac80211/rc80211_minstrel_ht.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
  4  * Copyright (C) 2019-2022 Intel Corporation
  5  */
  6 #include <linux/netdevice.h>
  7 #include <linux/types.h>
  8 #include <linux/skbuff.h>
  9 #include <linux/debugfs.h>
 10 #include <linux/random.h>
 11 #include <linux/moduleparam.h>
 12 #include <linux/ieee80211.h>
 13 #include <linux/minmax.h>
 14 #include <net/mac80211.h>
 15 #include "rate.h"
 16 #include "sta_info.h"
 17 #include "rc80211_minstrel_ht.h"
 18 
 19 #define AVG_AMPDU_SIZE  16
 20 #define AVG_PKT_SIZE    1200
 21 
 22 /* Number of bits for an average sized packet */
 23 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
 24 
 25 /* Number of symbols for a packet with (bps) bits per symbol */
 26 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
 27 
 28 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
 29 #define MCS_SYMBOL_TIME(sgi, syms)                                      \
 30         (sgi ?                                                          \
 31           ((syms) * 18000 + 4000) / 5 : /* syms * 3.6 us */             \
 32           ((syms) * 1000) << 2          /* syms * 4 us */               \
 33         )
 34 
 35 /* Transmit duration for the raw data part of an average sized packet */
 36 #define MCS_DURATION(streams, sgi, bps) \
 37         (MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
 38 
 39 #define BW_20                   0
 40 #define BW_40                   1
 41 #define BW_80                   2
 42 
 43 /*
 44  * Define group sort order: HT40 -> SGI -> #streams
 45  */
 46 #define GROUP_IDX(_streams, _sgi, _ht40)        \
 47         MINSTREL_HT_GROUP_0 +                   \
 48         MINSTREL_MAX_STREAMS * 2 * _ht40 +      \
 49         MINSTREL_MAX_STREAMS * _sgi +   \
 50         _streams - 1
 51 
 52 #define _MAX(a, b) (((a)>(b))?(a):(b))
 53 
 54 #define GROUP_SHIFT(duration)                                           \
 55         _MAX(0, 16 - __builtin_clz(duration))
 56 
 57 /* MCS rate information for an MCS group */
 58 #define __MCS_GROUP(_streams, _sgi, _ht40, _s)                          \
 59         [GROUP_IDX(_streams, _sgi, _ht40)] = {                          \
 60         .streams = _streams,                                            \
 61         .shift = _s,                                                    \
 62         .bw = _ht40,                                                    \
 63         .flags =                                                        \
 64                 IEEE80211_TX_RC_MCS |                                   \
 65                 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |                 \
 66                 (_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),             \
 67         .duration = {                                                   \
 68                 MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s,    \
 69                 MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s,   \
 70                 MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s,   \
 71                 MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s,  \
 72                 MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s,  \
 73                 MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s,  \
 74                 MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s,  \
 75                 MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s   \
 76         }                                                               \
 77 }
 78 
 79 #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40)                          \
 80         GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26))
 81 
 82 #define MCS_GROUP(_streams, _sgi, _ht40)                                \
 83         __MCS_GROUP(_streams, _sgi, _ht40,                              \
 84                     MCS_GROUP_SHIFT(_streams, _sgi, _ht40))
 85 
 86 #define VHT_GROUP_IDX(_streams, _sgi, _bw)                              \
 87         (MINSTREL_VHT_GROUP_0 +                                         \
 88          MINSTREL_MAX_STREAMS * 2 * (_bw) +                             \
 89          MINSTREL_MAX_STREAMS * (_sgi) +                                \
 90          (_streams) - 1)
 91 
 92 #define BW2VBPS(_bw, r3, r2, r1)                                        \
 93         (_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
 94 
 95 #define __VHT_GROUP(_streams, _sgi, _bw, _s)                            \
 96         [VHT_GROUP_IDX(_streams, _sgi, _bw)] = {                        \
 97         .streams = _streams,                                            \
 98         .shift = _s,                                                    \
 99         .bw = _bw,                                                      \
100         .flags =                                                        \
101                 IEEE80211_TX_RC_VHT_MCS |                               \
102                 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |                 \
103                 (_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :          \
104                  _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),      \
105         .duration = {                                                   \
106                 MCS_DURATION(_streams, _sgi,                            \
107                              BW2VBPS(_bw,  117,  54,  26)) >> _s,       \
108                 MCS_DURATION(_streams, _sgi,                            \
109                              BW2VBPS(_bw,  234, 108,  52)) >> _s,       \
110                 MCS_DURATION(_streams, _sgi,                            \
111                              BW2VBPS(_bw,  351, 162,  78)) >> _s,       \
112                 MCS_DURATION(_streams, _sgi,                            \
113                              BW2VBPS(_bw,  468, 216, 104)) >> _s,       \
114                 MCS_DURATION(_streams, _sgi,                            \
115                              BW2VBPS(_bw,  702, 324, 156)) >> _s,       \
116                 MCS_DURATION(_streams, _sgi,                            \
117                              BW2VBPS(_bw,  936, 432, 208)) >> _s,       \
118                 MCS_DURATION(_streams, _sgi,                            \
119                              BW2VBPS(_bw, 1053, 486, 234)) >> _s,       \
120                 MCS_DURATION(_streams, _sgi,                            \
121                              BW2VBPS(_bw, 1170, 540, 260)) >> _s,       \
122                 MCS_DURATION(_streams, _sgi,                            \
123                              BW2VBPS(_bw, 1404, 648, 312)) >> _s,       \
124                 MCS_DURATION(_streams, _sgi,                            \
125                              BW2VBPS(_bw, 1560, 720, 346)) >> _s        \
126         }                                                               \
127 }
128 
129 #define VHT_GROUP_SHIFT(_streams, _sgi, _bw)                            \
130         GROUP_SHIFT(MCS_DURATION(_streams, _sgi,                        \
131                                  BW2VBPS(_bw,  117,  54,  26)))
132 
133 #define VHT_GROUP(_streams, _sgi, _bw)                                  \
134         __VHT_GROUP(_streams, _sgi, _bw,                                \
135                     VHT_GROUP_SHIFT(_streams, _sgi, _bw))
136 
137 #define CCK_DURATION(_bitrate, _short)                  \
138         (1000 * (10 /* SIFS */ +                        \
139          (_short ? 72 + 24 : 144 + 48) +                \
140          (8 * (AVG_PKT_SIZE + 4) * 10) / (_bitrate)))
141 
142 #define CCK_DURATION_LIST(_short, _s)                   \
143         CCK_DURATION(10, _short) >> _s,                 \
144         CCK_DURATION(20, _short) >> _s,                 \
145         CCK_DURATION(55, _short) >> _s,                 \
146         CCK_DURATION(110, _short) >> _s
147 
148 #define __CCK_GROUP(_s)                                 \
149         [MINSTREL_CCK_GROUP] = {                        \
150                 .streams = 1,                           \
151                 .flags = 0,                             \
152                 .shift = _s,                            \
153                 .duration = {                           \
154                         CCK_DURATION_LIST(false, _s),   \
155                         CCK_DURATION_LIST(true, _s)     \
156                 }                                       \
157         }
158 
159 #define CCK_GROUP_SHIFT                                 \
160         GROUP_SHIFT(CCK_DURATION(10, false))
161 
162 #define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT)
163 
164 #define OFDM_DURATION(_bitrate)                         \
165         (1000 * (16 /* SIFS + signal ext */ +           \
166          16 /* T_PREAMBLE */ +                          \
167          4 /* T_SIGNAL */ +                             \
168          4 * (((16 + 80 * (AVG_PKT_SIZE + 4) + 6) /     \
169               ((_bitrate) * 4)))))
170 
171 #define OFDM_DURATION_LIST(_s)                          \
172         OFDM_DURATION(60) >> _s,                        \
173         OFDM_DURATION(90) >> _s,                        \
174         OFDM_DURATION(120) >> _s,                       \
175         OFDM_DURATION(180) >> _s,                       \
176         OFDM_DURATION(240) >> _s,                       \
177         OFDM_DURATION(360) >> _s,                       \
178         OFDM_DURATION(480) >> _s,                       \
179         OFDM_DURATION(540) >> _s
180 
181 #define __OFDM_GROUP(_s)                                \
182         [MINSTREL_OFDM_GROUP] = {                       \
183                 .streams = 1,                           \
184                 .flags = 0,                             \
185                 .shift = _s,                            \
186                 .duration = {                           \
187                         OFDM_DURATION_LIST(_s),         \
188                 }                                       \
189         }
190 
191 #define OFDM_GROUP_SHIFT                                \
192         GROUP_SHIFT(OFDM_DURATION(60))
193 
194 #define OFDM_GROUP __OFDM_GROUP(OFDM_GROUP_SHIFT)
195 
196 
197 static bool minstrel_vht_only = true;
198 module_param(minstrel_vht_only, bool, 0644);
199 MODULE_PARM_DESC(minstrel_vht_only,
200                  "Use only VHT rates when VHT is supported by sta.");
201 
202 /*
203  * To enable sufficiently targeted rate sampling, MCS rates are divided into
204  * groups, based on the number of streams and flags (HT40, SGI) that they
205  * use.
206  *
207  * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
208  * BW -> SGI -> #streams
209  */
210 const struct mcs_group minstrel_mcs_groups[] = {
211         MCS_GROUP(1, 0, BW_20),
212         MCS_GROUP(2, 0, BW_20),
213         MCS_GROUP(3, 0, BW_20),
214         MCS_GROUP(4, 0, BW_20),
215 
216         MCS_GROUP(1, 1, BW_20),
217         MCS_GROUP(2, 1, BW_20),
218         MCS_GROUP(3, 1, BW_20),
219         MCS_GROUP(4, 1, BW_20),
220 
221         MCS_GROUP(1, 0, BW_40),
222         MCS_GROUP(2, 0, BW_40),
223         MCS_GROUP(3, 0, BW_40),
224         MCS_GROUP(4, 0, BW_40),
225 
226         MCS_GROUP(1, 1, BW_40),
227         MCS_GROUP(2, 1, BW_40),
228         MCS_GROUP(3, 1, BW_40),
229         MCS_GROUP(4, 1, BW_40),
230 
231         CCK_GROUP,
232         OFDM_GROUP,
233 
234         VHT_GROUP(1, 0, BW_20),
235         VHT_GROUP(2, 0, BW_20),
236         VHT_GROUP(3, 0, BW_20),
237         VHT_GROUP(4, 0, BW_20),
238 
239         VHT_GROUP(1, 1, BW_20),
240         VHT_GROUP(2, 1, BW_20),
241         VHT_GROUP(3, 1, BW_20),
242         VHT_GROUP(4, 1, BW_20),
243 
244         VHT_GROUP(1, 0, BW_40),
245         VHT_GROUP(2, 0, BW_40),
246         VHT_GROUP(3, 0, BW_40),
247         VHT_GROUP(4, 0, BW_40),
248 
249         VHT_GROUP(1, 1, BW_40),
250         VHT_GROUP(2, 1, BW_40),
251         VHT_GROUP(3, 1, BW_40),
252         VHT_GROUP(4, 1, BW_40),
253 
254         VHT_GROUP(1, 0, BW_80),
255         VHT_GROUP(2, 0, BW_80),
256         VHT_GROUP(3, 0, BW_80),
257         VHT_GROUP(4, 0, BW_80),
258 
259         VHT_GROUP(1, 1, BW_80),
260         VHT_GROUP(2, 1, BW_80),
261         VHT_GROUP(3, 1, BW_80),
262         VHT_GROUP(4, 1, BW_80),
263 };
264 
265 const s16 minstrel_cck_bitrates[4] = { 10, 20, 55, 110 };
266 const s16 minstrel_ofdm_bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
267 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
268 static const u8 minstrel_sample_seq[] = {
269         MINSTREL_SAMPLE_TYPE_INC,
270         MINSTREL_SAMPLE_TYPE_JUMP,
271         MINSTREL_SAMPLE_TYPE_INC,
272         MINSTREL_SAMPLE_TYPE_JUMP,
273         MINSTREL_SAMPLE_TYPE_INC,
274         MINSTREL_SAMPLE_TYPE_SLOW,
275 };
276 
277 static void
278 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
279 
280 /*
281  * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
282  * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
283  *
284  * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
285  */
286 static u16
287 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
288 {
289         u16 mask = 0;
290 
291         if (bw == BW_20) {
292                 if (nss != 3 && nss != 6)
293                         mask = BIT(9);
294         } else if (bw == BW_80) {
295                 if (nss == 3 || nss == 7)
296                         mask = BIT(6);
297                 else if (nss == 6)
298                         mask = BIT(9);
299         } else {
300                 WARN_ON(bw != BW_40);
301         }
302 
303         switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
304         case IEEE80211_VHT_MCS_SUPPORT_0_7:
305                 mask |= 0x300;
306                 break;
307         case IEEE80211_VHT_MCS_SUPPORT_0_8:
308                 mask |= 0x200;
309                 break;
310         case IEEE80211_VHT_MCS_SUPPORT_0_9:
311                 break;
312         default:
313                 mask = 0x3ff;
314         }
315 
316         return 0x3ff & ~mask;
317 }
318 
319 static bool
320 minstrel_ht_is_legacy_group(int group)
321 {
322         return group == MINSTREL_CCK_GROUP ||
323                group == MINSTREL_OFDM_GROUP;
324 }
325 
326 /*
327  * Look up an MCS group index based on mac80211 rate information
328  */
329 static int
330 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
331 {
332         return GROUP_IDX((rate->idx / 8) + 1,
333                          !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
334                          !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
335 }
336 
337 /*
338  * Look up an MCS group index based on new cfg80211 rate_info.
339  */
340 static int
341 minstrel_ht_ri_get_group_idx(struct rate_info *rate)
342 {
343         return GROUP_IDX((rate->mcs / 8) + 1,
344                          !!(rate->flags & RATE_INFO_FLAGS_SHORT_GI),
345                          !!(rate->bw & RATE_INFO_BW_40));
346 }
347 
348 static int
349 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
350 {
351         return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
352                              !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
353                              !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
354                              2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
355 }
356 
357 /*
358  * Look up an MCS group index based on new cfg80211 rate_info.
359  */
360 static int
361 minstrel_vht_ri_get_group_idx(struct rate_info *rate)
362 {
363         return VHT_GROUP_IDX(rate->nss,
364                              !!(rate->flags & RATE_INFO_FLAGS_SHORT_GI),
365                              !!(rate->bw & RATE_INFO_BW_40) +
366                              2*!!(rate->bw & RATE_INFO_BW_80));
367 }
368 
369 static struct minstrel_rate_stats *
370 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
371                       struct ieee80211_tx_rate *rate)
372 {
373         int group, idx;
374 
375         if (rate->flags & IEEE80211_TX_RC_MCS) {
376                 group = minstrel_ht_get_group_idx(rate);
377                 idx = rate->idx % 8;
378                 goto out;
379         }
380 
381         if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
382                 group = minstrel_vht_get_group_idx(rate);
383                 idx = ieee80211_rate_get_vht_mcs(rate);
384                 goto out;
385         }
386 
387         group = MINSTREL_CCK_GROUP;
388         for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) {
389                 if (!(mi->supported[group] & BIT(idx)))
390                         continue;
391 
392                 if (rate->idx != mp->cck_rates[idx])
393                         continue;
394 
395                 /* short preamble */
396                 if ((mi->supported[group] & BIT(idx + 4)) &&
397                     (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
398                         idx += 4;
399                 goto out;
400         }
401 
402         group = MINSTREL_OFDM_GROUP;
403         for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++)
404                 if (rate->idx == mp->ofdm_rates[mi->band][idx])
405                         goto out;
406 
407         idx = 0;
408 out:
409         return &mi->groups[group].rates[idx];
410 }
411 
412 /*
413  * Get the minstrel rate statistics for specified STA and rate info.
414  */
415 static struct minstrel_rate_stats *
416 minstrel_ht_ri_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
417                           struct ieee80211_rate_status *rate_status)
418 {
419         int group, idx;
420         struct rate_info *rate = &rate_status->rate_idx;
421 
422         if (rate->flags & RATE_INFO_FLAGS_MCS) {
423                 group = minstrel_ht_ri_get_group_idx(rate);
424                 idx = rate->mcs % 8;
425                 goto out;
426         }
427 
428         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) {
429                 group = minstrel_vht_ri_get_group_idx(rate);
430                 idx = rate->mcs;
431                 goto out;
432         }
433 
434         group = MINSTREL_CCK_GROUP;
435         for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) {
436                 if (rate->legacy != minstrel_cck_bitrates[ mp->cck_rates[idx] ])
437                         continue;
438 
439                 /* short preamble */
440                 if ((mi->supported[group] & BIT(idx + 4)) &&
441                                                         mi->use_short_preamble)
442                         idx += 4;
443                 goto out;
444         }
445 
446         group = MINSTREL_OFDM_GROUP;
447         for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++)
448                 if (rate->legacy == minstrel_ofdm_bitrates[ mp->ofdm_rates[mi->band][idx] ])
449                         goto out;
450 
451         idx = 0;
452 out:
453         return &mi->groups[group].rates[idx];
454 }
455 
456 static inline struct minstrel_rate_stats *
457 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
458 {
459         return &mi->groups[MI_RATE_GROUP(index)].rates[MI_RATE_IDX(index)];
460 }
461 
462 static inline int minstrel_get_duration(int index)
463 {
464         const struct mcs_group *group = &minstrel_mcs_groups[MI_RATE_GROUP(index)];
465         unsigned int duration = group->duration[MI_RATE_IDX(index)];
466 
467         return duration << group->shift;
468 }
469 
470 static unsigned int
471 minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi)
472 {
473         int duration;
474 
475         if (mi->avg_ampdu_len)
476                 return MINSTREL_TRUNC(mi->avg_ampdu_len);
477 
478         if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(mi->max_tp_rate[0])))
479                 return 1;
480 
481         duration = minstrel_get_duration(mi->max_tp_rate[0]);
482 
483         if (duration > 400 * 1000)
484                 return 2;
485 
486         if (duration > 250 * 1000)
487                 return 4;
488 
489         if (duration > 150 * 1000)
490                 return 8;
491 
492         return 16;
493 }
494 
495 /*
496  * Return current throughput based on the average A-MPDU length, taking into
497  * account the expected number of retransmissions and their expected length
498  */
499 int
500 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
501                        int prob_avg)
502 {
503         unsigned int nsecs = 0, overhead = mi->overhead;
504         unsigned int ampdu_len = 1;
505 
506         /* do not account throughput if success prob is below 10% */
507         if (prob_avg < MINSTREL_FRAC(10, 100))
508                 return 0;
509 
510         if (minstrel_ht_is_legacy_group(group))
511                 overhead = mi->overhead_legacy;
512         else
513                 ampdu_len = minstrel_ht_avg_ampdu_len(mi);
514 
515         nsecs = 1000 * overhead / ampdu_len;
516         nsecs += minstrel_mcs_groups[group].duration[rate] <<
517                  minstrel_mcs_groups[group].shift;
518 
519         /*
520          * For the throughput calculation, limit the probability value to 90% to
521          * account for collision related packet error rate fluctuation
522          * (prob is scaled - see MINSTREL_FRAC above)
523          */
524         if (prob_avg > MINSTREL_FRAC(90, 100))
525                 prob_avg = MINSTREL_FRAC(90, 100);
526 
527         return MINSTREL_TRUNC(100 * ((prob_avg * 1000000) / nsecs));
528 }
529 
530 /*
531  * Find & sort topmost throughput rates
532  *
533  * If multiple rates provide equal throughput the sorting is based on their
534  * current success probability. Higher success probability is preferred among
535  * MCS groups, CCK rates do not provide aggregation and are therefore at last.
536  */
537 static void
538 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
539                                u16 *tp_list)
540 {
541         int cur_group, cur_idx, cur_tp_avg, cur_prob;
542         int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
543         int j = MAX_THR_RATES;
544 
545         cur_group = MI_RATE_GROUP(index);
546         cur_idx = MI_RATE_IDX(index);
547         cur_prob = mi->groups[cur_group].rates[cur_idx].prob_avg;
548         cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
549 
550         do {
551                 tmp_group = MI_RATE_GROUP(tp_list[j - 1]);
552                 tmp_idx = MI_RATE_IDX(tp_list[j - 1]);
553                 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
554                 tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
555                                                     tmp_prob);
556                 if (cur_tp_avg < tmp_tp_avg ||
557                     (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
558                         break;
559                 j--;
560         } while (j > 0);
561 
562         if (j < MAX_THR_RATES - 1) {
563                 memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
564                        (MAX_THR_RATES - (j + 1))));
565         }
566         if (j < MAX_THR_RATES)
567                 tp_list[j] = index;
568 }
569 
570 /*
571  * Find and set the topmost probability rate per sta and per group
572  */
573 static void
574 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 *dest, u16 index)
575 {
576         struct minstrel_mcs_group_data *mg;
577         struct minstrel_rate_stats *mrs;
578         int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
579         int max_tp_group, max_tp_idx, max_tp_prob;
580         int cur_tp_avg, cur_group, cur_idx;
581         int max_gpr_group, max_gpr_idx;
582         int max_gpr_tp_avg, max_gpr_prob;
583 
584         cur_group = MI_RATE_GROUP(index);
585         cur_idx = MI_RATE_IDX(index);
586         mg = &mi->groups[cur_group];
587         mrs = &mg->rates[cur_idx];
588 
589         tmp_group = MI_RATE_GROUP(*dest);
590         tmp_idx = MI_RATE_IDX(*dest);
591         tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
592         tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
593 
594         /* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
595          * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
596         max_tp_group = MI_RATE_GROUP(mi->max_tp_rate[0]);
597         max_tp_idx = MI_RATE_IDX(mi->max_tp_rate[0]);
598         max_tp_prob = mi->groups[max_tp_group].rates[max_tp_idx].prob_avg;
599 
600         if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index)) &&
601             !minstrel_ht_is_legacy_group(max_tp_group))
602                 return;
603 
604         /* skip rates faster than max tp rate with lower prob */
605         if (minstrel_get_duration(mi->max_tp_rate[0]) > minstrel_get_duration(index) &&
606             mrs->prob_avg < max_tp_prob)
607                 return;
608 
609         max_gpr_group = MI_RATE_GROUP(mg->max_group_prob_rate);
610         max_gpr_idx = MI_RATE_IDX(mg->max_group_prob_rate);
611         max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_avg;
612 
613         if (mrs->prob_avg > MINSTREL_FRAC(75, 100)) {
614                 cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
615                                                     mrs->prob_avg);
616                 if (cur_tp_avg > tmp_tp_avg)
617                         *dest = index;
618 
619                 max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
620                                                         max_gpr_idx,
621                                                         max_gpr_prob);
622                 if (cur_tp_avg > max_gpr_tp_avg)
623                         mg->max_group_prob_rate = index;
624         } else {
625                 if (mrs->prob_avg > tmp_prob)
626                         *dest = index;
627                 if (mrs->prob_avg > max_gpr_prob)
628                         mg->max_group_prob_rate = index;
629         }
630 }
631 
632 
633 /*
634  * Assign new rate set per sta and use CCK rates only if the fastest
635  * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
636  * rate sets where MCS and CCK rates are mixed, because CCK rates can
637  * not use aggregation.
638  */
639 static void
640 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
641                                  u16 tmp_mcs_tp_rate[MAX_THR_RATES],
642                                  u16 tmp_legacy_tp_rate[MAX_THR_RATES])
643 {
644         unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
645         int i;
646 
647         tmp_group = MI_RATE_GROUP(tmp_legacy_tp_rate[0]);
648         tmp_idx = MI_RATE_IDX(tmp_legacy_tp_rate[0]);
649         tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
650         tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
651 
652         tmp_group = MI_RATE_GROUP(tmp_mcs_tp_rate[0]);
653         tmp_idx = MI_RATE_IDX(tmp_mcs_tp_rate[0]);
654         tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
655         tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
656 
657         if (tmp_cck_tp > tmp_mcs_tp) {
658                 for(i = 0; i < MAX_THR_RATES; i++) {
659                         minstrel_ht_sort_best_tp_rates(mi, tmp_legacy_tp_rate[i],
660                                                        tmp_mcs_tp_rate);
661                 }
662         }
663 
664 }
665 
666 /*
667  * Try to increase robustness of max_prob rate by decrease number of
668  * streams if possible.
669  */
670 static inline void
671 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
672 {
673         struct minstrel_mcs_group_data *mg;
674         int tmp_max_streams, group, tmp_idx, tmp_prob;
675         int tmp_tp = 0;
676 
677         if (!mi->sta->deflink.ht_cap.ht_supported)
678                 return;
679 
680         group = MI_RATE_GROUP(mi->max_tp_rate[0]);
681         tmp_max_streams = minstrel_mcs_groups[group].streams;
682         for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
683                 mg = &mi->groups[group];
684                 if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
685                         continue;
686 
687                 tmp_idx = MI_RATE_IDX(mg->max_group_prob_rate);
688                 tmp_prob = mi->groups[group].rates[tmp_idx].prob_avg;
689 
690                 if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
691                    (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
692                                 mi->max_prob_rate = mg->max_group_prob_rate;
693                                 tmp_tp = minstrel_ht_get_tp_avg(mi, group,
694                                                                 tmp_idx,
695                                                                 tmp_prob);
696                 }
697         }
698 }
699 
700 static u16
701 __minstrel_ht_get_sample_rate(struct minstrel_ht_sta *mi,
702                               enum minstrel_sample_type type)
703 {
704         u16 *rates = mi->sample[type].sample_rates;
705         u16 cur;
706         int i;
707 
708         for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) {
709                 if (!rates[i])
710                         continue;
711 
712                 cur = rates[i];
713                 rates[i] = 0;
714                 return cur;
715         }
716 
717         return 0;
718 }
719 
720 static inline int
721 minstrel_ewma(int old, int new, int weight)
722 {
723         int diff, incr;
724 
725         diff = new - old;
726         incr = (EWMA_DIV - weight) * diff / EWMA_DIV;
727 
728         return old + incr;
729 }
730 
731 static inline int minstrel_filter_avg_add(u16 *prev_1, u16 *prev_2, s32 in)
732 {
733         s32 out_1 = *prev_1;
734         s32 out_2 = *prev_2;
735         s32 val;
736 
737         if (!in)
738                 in += 1;
739 
740         if (!out_1) {
741                 val = out_1 = in;
742                 goto out;
743         }
744 
745         val = MINSTREL_AVG_COEFF1 * in;
746         val += MINSTREL_AVG_COEFF2 * out_1;
747         val += MINSTREL_AVG_COEFF3 * out_2;
748         val >>= MINSTREL_SCALE;
749 
750         if (val > 1 << MINSTREL_SCALE)
751                 val = 1 << MINSTREL_SCALE;
752         if (val < 0)
753                 val = 1;
754 
755 out:
756         *prev_2 = out_1;
757         *prev_1 = val;
758 
759         return val;
760 }
761 
762 /*
763 * Recalculate statistics and counters of a given rate
764 */
765 static void
766 minstrel_ht_calc_rate_stats(struct minstrel_priv *mp,
767                             struct minstrel_rate_stats *mrs)
768 {
769         unsigned int cur_prob;
770 
771         if (unlikely(mrs->attempts > 0)) {
772                 cur_prob = MINSTREL_FRAC(mrs->success, mrs->attempts);
773                 minstrel_filter_avg_add(&mrs->prob_avg,
774                                         &mrs->prob_avg_1, cur_prob);
775                 mrs->att_hist += mrs->attempts;
776                 mrs->succ_hist += mrs->success;
777         }
778 
779         mrs->last_success = mrs->success;
780         mrs->last_attempts = mrs->attempts;
781         mrs->success = 0;
782         mrs->attempts = 0;
783 }
784 
785 static bool
786 minstrel_ht_find_sample_rate(struct minstrel_ht_sta *mi, int type, int idx)
787 {
788         int i;
789 
790         for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) {
791                 u16 cur = mi->sample[type].sample_rates[i];
792 
793                 if (cur == idx)
794                         return true;
795 
796                 if (!cur)
797                         break;
798         }
799 
800         return false;
801 }
802 
803 static int
804 minstrel_ht_move_sample_rates(struct minstrel_ht_sta *mi, int type,
805                               u32 fast_rate_dur, u32 slow_rate_dur)
806 {
807         u16 *rates = mi->sample[type].sample_rates;
808         int i, j;
809 
810         for (i = 0, j = 0; i < MINSTREL_SAMPLE_RATES; i++) {
811                 u32 duration;
812                 bool valid = false;
813                 u16 cur;
814 
815                 cur = rates[i];
816                 if (!cur)
817                         continue;
818 
819                 duration = minstrel_get_duration(cur);
820                 switch (type) {
821                 case MINSTREL_SAMPLE_TYPE_SLOW:
822                         valid = duration > fast_rate_dur &&
823                                 duration < slow_rate_dur;
824                         break;
825                 case MINSTREL_SAMPLE_TYPE_INC:
826                 case MINSTREL_SAMPLE_TYPE_JUMP:
827                         valid = duration < fast_rate_dur;
828                         break;
829                 default:
830                         valid = false;
831                         break;
832                 }
833 
834                 if (!valid) {
835                         rates[i] = 0;
836                         continue;
837                 }
838 
839                 if (i == j)
840                         continue;
841 
842                 rates[j++] = cur;
843                 rates[i] = 0;
844         }
845 
846         return j;
847 }
848 
849 static int
850 minstrel_ht_group_min_rate_offset(struct minstrel_ht_sta *mi, int group,
851                                   u32 max_duration)
852 {
853         u16 supported = mi->supported[group];
854         int i;
855 
856         for (i = 0; i < MCS_GROUP_RATES && supported; i++, supported >>= 1) {
857                 if (!(supported & BIT(0)))
858                         continue;
859 
860                 if (minstrel_get_duration(MI_RATE(group, i)) >= max_duration)
861                         continue;
862 
863                 return i;
864         }
865 
866         return -1;
867 }
868 
869 /*
870  * Incremental update rates:
871  * Flip through groups and pick the first group rate that is faster than the
872  * highest currently selected rate
873  */
874 static u16
875 minstrel_ht_next_inc_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur)
876 {
877         u8 type = MINSTREL_SAMPLE_TYPE_INC;
878         int i, index = 0;
879         u8 group;
880 
881         group = mi->sample[type].sample_group;
882         for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) {
883                 group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups);
884 
885                 index = minstrel_ht_group_min_rate_offset(mi, group,
886                                                           fast_rate_dur);
887                 if (index < 0)
888                         continue;
889 
890                 index = MI_RATE(group, index & 0xf);
891                 if (!minstrel_ht_find_sample_rate(mi, type, index))
892                         goto out;
893         }
894         index = 0;
895 
896 out:
897         mi->sample[type].sample_group = group;
898 
899         return index;
900 }
901 
902 static int
903 minstrel_ht_next_group_sample_rate(struct minstrel_ht_sta *mi, int group,
904                                    u16 supported, int offset)
905 {
906         struct minstrel_mcs_group_data *mg = &mi->groups[group];
907         u16 idx;
908         int i;
909 
910         for (i = 0; i < MCS_GROUP_RATES; i++) {
911                 idx = sample_table[mg->column][mg->index];
912                 if (++mg->index >= MCS_GROUP_RATES) {
913                         mg->index = 0;
914                         if (++mg->column >= ARRAY_SIZE(sample_table))
915                                 mg->column = 0;
916                 }
917 
918                 if (idx < offset)
919                         continue;
920 
921                 if (!(supported & BIT(idx)))
922                         continue;
923 
924                 return MI_RATE(group, idx);
925         }
926 
927         return -1;
928 }
929 
930 /*
931  * Jump rates:
932  * Sample random rates, use those that are faster than the highest
933  * currently selected rate. Rates between the fastest and the slowest
934  * get sorted into the slow sample bucket, but only if it has room
935  */
936 static u16
937 minstrel_ht_next_jump_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur,
938                            u32 slow_rate_dur, int *slow_rate_ofs)
939 {
940         struct minstrel_rate_stats *mrs;
941         u32 max_duration = slow_rate_dur;
942         int i, index, offset;
943         u16 *slow_rates;
944         u16 supported;
945         u32 duration;
946         u8 group;
947 
948         if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
949                 max_duration = fast_rate_dur;
950 
951         slow_rates = mi->sample[MINSTREL_SAMPLE_TYPE_SLOW].sample_rates;
952         group = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group;
953         for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) {
954                 u8 type;
955 
956                 group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups);
957 
958                 supported = mi->supported[group];
959                 if (!supported)
960                         continue;
961 
962                 offset = minstrel_ht_group_min_rate_offset(mi, group,
963                                                            max_duration);
964                 if (offset < 0)
965                         continue;
966 
967                 index = minstrel_ht_next_group_sample_rate(mi, group, supported,
968                                                            offset);
969                 if (index < 0)
970                         continue;
971 
972                 duration = minstrel_get_duration(index);
973                 if (duration < fast_rate_dur)
974                         type = MINSTREL_SAMPLE_TYPE_JUMP;
975                 else
976                         type = MINSTREL_SAMPLE_TYPE_SLOW;
977 
978                 if (minstrel_ht_find_sample_rate(mi, type, index))
979                         continue;
980 
981                 if (type == MINSTREL_SAMPLE_TYPE_JUMP)
982                         goto found;
983 
984                 if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
985                         continue;
986 
987                 if (duration >= slow_rate_dur)
988                         continue;
989 
990                 /* skip slow rates with high success probability */
991                 mrs = minstrel_get_ratestats(mi, index);
992                 if (mrs->prob_avg > MINSTREL_FRAC(95, 100))
993                         continue;
994 
995                 slow_rates[(*slow_rate_ofs)++] = index;
996                 if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
997                         max_duration = fast_rate_dur;
998         }
999         index = 0;
1000 
1001 found:
1002         mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group = group;
1003 
1004         return index;
1005 }
1006 
1007 static void
1008 minstrel_ht_refill_sample_rates(struct minstrel_ht_sta *mi)
1009 {
1010         u32 prob_dur = minstrel_get_duration(mi->max_prob_rate);
1011         u32 tp_dur = minstrel_get_duration(mi->max_tp_rate[0]);
1012         u32 tp2_dur = minstrel_get_duration(mi->max_tp_rate[1]);
1013         u32 fast_rate_dur = min(min(tp_dur, tp2_dur), prob_dur);
1014         u32 slow_rate_dur = max(max(tp_dur, tp2_dur), prob_dur);
1015         u16 *rates;
1016         int i, j;
1017 
1018         rates = mi->sample[MINSTREL_SAMPLE_TYPE_INC].sample_rates;
1019         i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_INC,
1020                                           fast_rate_dur, slow_rate_dur);
1021         while (i < MINSTREL_SAMPLE_RATES) {
1022                 rates[i] = minstrel_ht_next_inc_rate(mi, tp_dur);
1023                 if (!rates[i])
1024                         break;
1025 
1026                 i++;
1027         }
1028 
1029         rates = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_rates;
1030         i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_JUMP,
1031                                           fast_rate_dur, slow_rate_dur);
1032         j = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_SLOW,
1033                                           fast_rate_dur, slow_rate_dur);
1034         while (i < MINSTREL_SAMPLE_RATES) {
1035                 rates[i] = minstrel_ht_next_jump_rate(mi, fast_rate_dur,
1036                                                       slow_rate_dur, &j);
1037                 if (!rates[i])
1038                         break;
1039 
1040                 i++;
1041         }
1042 
1043         for (i = 0; i < ARRAY_SIZE(mi->sample); i++)
1044                 memcpy(mi->sample[i].cur_sample_rates, mi->sample[i].sample_rates,
1045                        sizeof(mi->sample[i].cur_sample_rates));
1046 }
1047 
1048 
1049 /*
1050  * Update rate statistics and select new primary rates
1051  *
1052  * Rules for rate selection:
1053  *  - max_prob_rate must use only one stream, as a tradeoff between delivery
1054  *    probability and throughput during strong fluctuations
1055  *  - as long as the max prob rate has a probability of more than 75%, pick
1056  *    higher throughput rates, even if the probablity is a bit lower
1057  */
1058 static void
1059 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1060 {
1061         struct minstrel_mcs_group_data *mg;
1062         struct minstrel_rate_stats *mrs;
1063         int group, i, j, cur_prob;
1064         u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
1065         u16 tmp_legacy_tp_rate[MAX_THR_RATES], tmp_max_prob_rate;
1066         u16 index;
1067         bool ht_supported = mi->sta->deflink.ht_cap.ht_supported;
1068 
1069         if (mi->ampdu_packets > 0) {
1070                 if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN))
1071                         mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
1072                                 MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets),
1073                                               EWMA_LEVEL);
1074                 else
1075                         mi->avg_ampdu_len = 0;
1076                 mi->ampdu_len = 0;
1077                 mi->ampdu_packets = 0;
1078         }
1079 
1080         if (mi->supported[MINSTREL_CCK_GROUP])
1081                 group = MINSTREL_CCK_GROUP;
1082         else if (mi->supported[MINSTREL_OFDM_GROUP])
1083                 group = MINSTREL_OFDM_GROUP;
1084         else
1085                 group = 0;
1086 
1087         index = MI_RATE(group, 0);
1088         for (j = 0; j < ARRAY_SIZE(tmp_legacy_tp_rate); j++)
1089                 tmp_legacy_tp_rate[j] = index;
1090 
1091         if (mi->supported[MINSTREL_VHT_GROUP_0])
1092                 group = MINSTREL_VHT_GROUP_0;
1093         else if (ht_supported)
1094                 group = MINSTREL_HT_GROUP_0;
1095         else if (mi->supported[MINSTREL_CCK_GROUP])
1096                 group = MINSTREL_CCK_GROUP;
1097         else
1098                 group = MINSTREL_OFDM_GROUP;
1099 
1100         index = MI_RATE(group, 0);
1101         tmp_max_prob_rate = index;
1102         for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++)
1103                 tmp_mcs_tp_rate[j] = index;
1104 
1105         /* Find best rate sets within all MCS groups*/
1106         for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
1107                 u16 *tp_rate = tmp_mcs_tp_rate;
1108                 u16 last_prob = 0;
1109 
1110                 mg = &mi->groups[group];
1111                 if (!mi->supported[group])
1112                         continue;
1113 
1114                 /* (re)Initialize group rate indexes */
1115                 for(j = 0; j < MAX_THR_RATES; j++)
1116                         tmp_group_tp_rate[j] = MI_RATE(group, 0);
1117 
1118                 if (group == MINSTREL_CCK_GROUP && ht_supported)
1119                         tp_rate = tmp_legacy_tp_rate;
1120 
1121                 for (i = MCS_GROUP_RATES - 1; i >= 0; i--) {
1122                         if (!(mi->supported[group] & BIT(i)))
1123                                 continue;
1124 
1125                         index = MI_RATE(group, i);
1126 
1127                         mrs = &mg->rates[i];
1128                         mrs->retry_updated = false;
1129                         minstrel_ht_calc_rate_stats(mp, mrs);
1130 
1131                         if (mrs->att_hist)
1132                                 last_prob = max(last_prob, mrs->prob_avg);
1133                         else
1134                                 mrs->prob_avg = max(last_prob, mrs->prob_avg);
1135                         cur_prob = mrs->prob_avg;
1136 
1137                         if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
1138                                 continue;
1139 
1140                         /* Find max throughput rate set */
1141                         minstrel_ht_sort_best_tp_rates(mi, index, tp_rate);
1142 
1143                         /* Find max throughput rate set within a group */
1144                         minstrel_ht_sort_best_tp_rates(mi, index,
1145                                                        tmp_group_tp_rate);
1146                 }
1147 
1148                 memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
1149                        sizeof(mg->max_group_tp_rate));
1150         }
1151 
1152         /* Assign new rate set per sta */
1153         minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate,
1154                                          tmp_legacy_tp_rate);
1155         memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
1156 
1157         for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
1158                 if (!mi->supported[group])
1159                         continue;
1160 
1161                 mg = &mi->groups[group];
1162                 mg->max_group_prob_rate = MI_RATE(group, 0);
1163 
1164                 for (i = 0; i < MCS_GROUP_RATES; i++) {
1165                         if (!(mi->supported[group] & BIT(i)))
1166                                 continue;
1167 
1168                         index = MI_RATE(group, i);
1169 
1170                         /* Find max probability rate per group and global */
1171                         minstrel_ht_set_best_prob_rate(mi, &tmp_max_prob_rate,
1172                                                        index);
1173                 }
1174         }
1175 
1176         mi->max_prob_rate = tmp_max_prob_rate;
1177 
1178         /* Try to increase robustness of max_prob_rate*/
1179         minstrel_ht_prob_rate_reduce_streams(mi);
1180         minstrel_ht_refill_sample_rates(mi);
1181 
1182 #ifdef CONFIG_MAC80211_DEBUGFS
1183         /* use fixed index if set */
1184         if (mp->fixed_rate_idx != -1) {
1185                 for (i = 0; i < 4; i++)
1186                         mi->max_tp_rate[i] = mp->fixed_rate_idx;
1187                 mi->max_prob_rate = mp->fixed_rate_idx;
1188         }
1189 #endif
1190 
1191         /* Reset update timer */
1192         mi->last_stats_update = jiffies;
1193         mi->sample_time = jiffies;
1194 }
1195 
1196 static bool
1197 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1198                          struct ieee80211_tx_rate *rate)
1199 {
1200         int i;
1201 
1202         if (rate->idx < 0)
1203                 return false;
1204 
1205         if (!rate->count)
1206                 return false;
1207 
1208         if (rate->flags & IEEE80211_TX_RC_MCS ||
1209             rate->flags & IEEE80211_TX_RC_VHT_MCS)
1210                 return true;
1211 
1212         for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++)
1213                 if (rate->idx == mp->cck_rates[i])
1214                         return true;
1215 
1216         for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++)
1217                 if (rate->idx == mp->ofdm_rates[mi->band][i])
1218                         return true;
1219 
1220         return false;
1221 }
1222 
1223 /*
1224  * Check whether rate_status contains valid information.
1225  */
1226 static bool
1227 minstrel_ht_ri_txstat_valid(struct minstrel_priv *mp,
1228                             struct minstrel_ht_sta *mi,
1229                             struct ieee80211_rate_status *rate_status)
1230 {
1231         int i;
1232 
1233         if (!rate_status)
1234                 return false;
1235         if (!rate_status->try_count)
1236                 return false;
1237 
1238         if (rate_status->rate_idx.flags & RATE_INFO_FLAGS_MCS ||
1239             rate_status->rate_idx.flags & RATE_INFO_FLAGS_VHT_MCS)
1240                 return true;
1241 
1242         for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++) {
1243                 if (rate_status->rate_idx.legacy ==
1244                     minstrel_cck_bitrates[ mp->cck_rates[i] ])
1245                         return true;
1246         }
1247 
1248         for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates); i++) {
1249                 if (rate_status->rate_idx.legacy ==
1250                     minstrel_ofdm_bitrates[ mp->ofdm_rates[mi->band][i] ])
1251                         return true;
1252         }
1253 
1254         return false;
1255 }
1256 
1257 static void
1258 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
1259 {
1260         int group, orig_group;
1261 
1262         orig_group = group = MI_RATE_GROUP(*idx);
1263         while (group > 0) {
1264                 group--;
1265 
1266                 if (!mi->supported[group])
1267                         continue;
1268 
1269                 if (minstrel_mcs_groups[group].streams >
1270                     minstrel_mcs_groups[orig_group].streams)
1271                         continue;
1272 
1273                 if (primary)
1274                         *idx = mi->groups[group].max_group_tp_rate[0];
1275                 else
1276                         *idx = mi->groups[group].max_group_tp_rate[1];
1277                 break;
1278         }
1279 }
1280 
1281 static void
1282 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
1283                       void *priv_sta, struct ieee80211_tx_status *st)
1284 {
1285         struct ieee80211_tx_info *info = st->info;
1286         struct minstrel_ht_sta *mi = priv_sta;
1287         struct ieee80211_tx_rate *ar = info->status.rates;
1288         struct minstrel_rate_stats *rate, *rate2;
1289         struct minstrel_priv *mp = priv;
1290         u32 update_interval = mp->update_interval;
1291         bool last, update = false;
1292         int i;
1293 
1294         /* Ignore packet that was sent with noAck flag */
1295         if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1296                 return;
1297 
1298         /* This packet was aggregated but doesn't carry status info */
1299         if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
1300             !(info->flags & IEEE80211_TX_STAT_AMPDU))
1301                 return;
1302 
1303         if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
1304                 info->status.ampdu_ack_len =
1305                         (info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
1306                 info->status.ampdu_len = 1;
1307         }
1308 
1309         /* wraparound */
1310         if (mi->total_packets >= ~0 - info->status.ampdu_len) {
1311                 mi->total_packets = 0;
1312                 mi->sample_packets = 0;
1313         }
1314 
1315         mi->total_packets += info->status.ampdu_len;
1316         if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
1317                 mi->sample_packets += info->status.ampdu_len;
1318 
1319         mi->ampdu_packets++;
1320         mi->ampdu_len += info->status.ampdu_len;
1321 
1322         if (st->rates && st->n_rates) {
1323                 last = !minstrel_ht_ri_txstat_valid(mp, mi, &(st->rates[0]));
1324                 for (i = 0; !last; i++) {
1325                         last = (i == st->n_rates - 1) ||
1326                                 !minstrel_ht_ri_txstat_valid(mp, mi,
1327                                                         &(st->rates[i + 1]));
1328 
1329                         rate = minstrel_ht_ri_get_stats(mp, mi,
1330                                                         &(st->rates[i]));
1331 
1332                         if (last)
1333                                 rate->success += info->status.ampdu_ack_len;
1334 
1335                         rate->attempts += st->rates[i].try_count *
1336                                           info->status.ampdu_len;
1337                 }
1338         } else {
1339                 last = !minstrel_ht_txstat_valid(mp, mi, &ar[0]);
1340                 for (i = 0; !last; i++) {
1341                         last = (i == IEEE80211_TX_MAX_RATES - 1) ||
1342                                 !minstrel_ht_txstat_valid(mp, mi, &ar[i + 1]);
1343 
1344                         rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
1345                         if (last)
1346                                 rate->success += info->status.ampdu_ack_len;
1347 
1348                         rate->attempts += ar[i].count * info->status.ampdu_len;
1349                 }
1350         }
1351 
1352         if (mp->hw->max_rates > 1) {
1353                 /*
1354                  * check for sudden death of spatial multiplexing,
1355                  * downgrade to a lower number of streams if necessary.
1356                  */
1357                 rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
1358                 if (rate->attempts > 30 &&
1359                     rate->success < rate->attempts / 4) {
1360                         minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
1361                         update = true;
1362                 }
1363 
1364                 rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
1365                 if (rate2->attempts > 30 &&
1366                     rate2->success < rate2->attempts / 4) {
1367                         minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
1368                         update = true;
1369                 }
1370         }
1371 
1372         if (time_after(jiffies, mi->last_stats_update + update_interval)) {
1373                 update = true;
1374                 minstrel_ht_update_stats(mp, mi);
1375         }
1376 
1377         if (update)
1378                 minstrel_ht_update_rates(mp, mi);
1379 }
1380 
1381 static void
1382 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1383                          int index)
1384 {
1385         struct minstrel_rate_stats *mrs;
1386         unsigned int tx_time, tx_time_rtscts, tx_time_data;
1387         unsigned int cw = mp->cw_min;
1388         unsigned int ctime = 0;
1389         unsigned int t_slot = 9; /* FIXME */
1390         unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi);
1391         unsigned int overhead = 0, overhead_rtscts = 0;
1392 
1393         mrs = minstrel_get_ratestats(mi, index);
1394         if (mrs->prob_avg < MINSTREL_FRAC(1, 10)) {
1395                 mrs->retry_count = 1;
1396                 mrs->retry_count_rtscts = 1;
1397                 return;
1398         }
1399 
1400         mrs->retry_count = 2;
1401         mrs->retry_count_rtscts = 2;
1402         mrs->retry_updated = true;
1403 
1404         tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000;
1405 
1406         /* Contention time for first 2 tries */
1407         ctime = (t_slot * cw) >> 1;
1408         cw = min((cw << 1) | 1, mp->cw_max);
1409         ctime += (t_slot * cw) >> 1;
1410         cw = min((cw << 1) | 1, mp->cw_max);
1411 
1412         if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index))) {
1413                 overhead = mi->overhead_legacy;
1414                 overhead_rtscts = mi->overhead_legacy_rtscts;
1415         } else {
1416                 overhead = mi->overhead;
1417                 overhead_rtscts = mi->overhead_rtscts;
1418         }
1419 
1420         /* Total TX time for data and Contention after first 2 tries */
1421         tx_time = ctime + 2 * (overhead + tx_time_data);
1422         tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
1423 
1424         /* See how many more tries we can fit inside segment size */
1425         do {
1426                 /* Contention time for this try */
1427                 ctime = (t_slot * cw) >> 1;
1428                 cw = min((cw << 1) | 1, mp->cw_max);
1429 
1430                 /* Total TX time after this try */
1431                 tx_time += ctime + overhead + tx_time_data;
1432                 tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
1433 
1434                 if (tx_time_rtscts < mp->segment_size)
1435                         mrs->retry_count_rtscts++;
1436         } while ((tx_time < mp->segment_size) &&
1437                  (++mrs->retry_count < mp->max_retry));
1438 }
1439 
1440 
1441 static void
1442 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1443                      struct ieee80211_sta_rates *ratetbl, int offset, int index)
1444 {
1445         int group_idx = MI_RATE_GROUP(index);
1446         const struct mcs_group *group = &minstrel_mcs_groups[group_idx];
1447         struct minstrel_rate_stats *mrs;
1448         u8 idx;
1449         u16 flags = group->flags;
1450 
1451         mrs = minstrel_get_ratestats(mi, index);
1452         if (!mrs->retry_updated)
1453                 minstrel_calc_retransmit(mp, mi, index);
1454 
1455         if (mrs->prob_avg < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
1456                 ratetbl->rate[offset].count = 2;
1457                 ratetbl->rate[offset].count_rts = 2;
1458                 ratetbl->rate[offset].count_cts = 2;
1459         } else {
1460                 ratetbl->rate[offset].count = mrs->retry_count;
1461                 ratetbl->rate[offset].count_cts = mrs->retry_count;
1462                 ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
1463         }
1464 
1465         index = MI_RATE_IDX(index);
1466         if (group_idx == MINSTREL_CCK_GROUP)
1467                 idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
1468         else if (group_idx == MINSTREL_OFDM_GROUP)
1469                 idx = mp->ofdm_rates[mi->band][index %
1470                                                ARRAY_SIZE(mp->ofdm_rates[0])];
1471         else if (flags & IEEE80211_TX_RC_VHT_MCS)
1472                 idx = ((group->streams - 1) << 4) |
1473                       (index & 0xF);
1474         else
1475                 idx = index + (group->streams - 1) * 8;
1476 
1477         /* enable RTS/CTS if needed:
1478          *  - if station is in dynamic SMPS (and streams > 1)
1479          *  - for fallback rates, to increase chances of getting through
1480          */
1481         if (offset > 0 ||
1482             (mi->sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC &&
1483              group->streams > 1)) {
1484                 ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
1485                 flags |= IEEE80211_TX_RC_USE_RTS_CTS;
1486         }
1487 
1488         ratetbl->rate[offset].idx = idx;
1489         ratetbl->rate[offset].flags = flags;
1490 }
1491 
1492 static inline int
1493 minstrel_ht_get_prob_avg(struct minstrel_ht_sta *mi, int rate)
1494 {
1495         int group = MI_RATE_GROUP(rate);
1496         rate = MI_RATE_IDX(rate);
1497         return mi->groups[group].rates[rate].prob_avg;
1498 }
1499 
1500 static int
1501 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
1502 {
1503         int group = MI_RATE_GROUP(mi->max_prob_rate);
1504         const struct mcs_group *g = &minstrel_mcs_groups[group];
1505         int rate = MI_RATE_IDX(mi->max_prob_rate);
1506         unsigned int duration;
1507 
1508         /* Disable A-MSDU if max_prob_rate is bad */
1509         if (mi->groups[group].rates[rate].prob_avg < MINSTREL_FRAC(50, 100))
1510                 return 1;
1511 
1512         duration = g->duration[rate];
1513         duration <<= g->shift;
1514 
1515         /* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
1516         if (duration > MCS_DURATION(1, 0, 52))
1517                 return 500;
1518 
1519         /*
1520          * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
1521          * data packet size
1522          */
1523         if (duration > MCS_DURATION(1, 0, 104))
1524                 return 1600;
1525 
1526         /*
1527          * If the rate is slower than single-stream MCS7, or if the max throughput
1528          * rate success probability is less than 75%, limit A-MSDU to twice the usual
1529          * data packet size
1530          */
1531         if (duration > MCS_DURATION(1, 0, 260) ||
1532             (minstrel_ht_get_prob_avg(mi, mi->max_tp_rate[0]) <
1533              MINSTREL_FRAC(75, 100)))
1534                 return 3200;
1535 
1536         /*
1537          * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
1538          * Since aggregation sessions are started/stopped without txq flush, use
1539          * the limit here to avoid the complexity of having to de-aggregate
1540          * packets in the queue.
1541          */
1542         if (!mi->sta->deflink.vht_cap.vht_supported)
1543                 return IEEE80211_MAX_MPDU_LEN_HT_BA;
1544 
1545         /* unlimited */
1546         return 0;
1547 }
1548 
1549 static void
1550 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1551 {
1552         struct ieee80211_sta_rates *rates;
1553         int i = 0;
1554         int max_rates = min_t(int, mp->hw->max_rates, IEEE80211_TX_RATE_TABLE_SIZE);
1555 
1556         rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
1557         if (!rates)
1558                 return;
1559 
1560         /* Start with max_tp_rate[0] */
1561         minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
1562 
1563         /* Fill up remaining, keep one entry for max_probe_rate */
1564         for (; i < (max_rates - 1); i++)
1565                 minstrel_ht_set_rate(mp, mi, rates, i, mi->max_tp_rate[i]);
1566 
1567         if (i < max_rates)
1568                 minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
1569 
1570         if (i < IEEE80211_TX_RATE_TABLE_SIZE)
1571                 rates->rate[i].idx = -1;
1572 
1573         mi->sta->deflink.agg.max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
1574         ieee80211_sta_recalc_aggregates(mi->sta);
1575         rate_control_set_rates(mp->hw, mi->sta, rates);
1576 }
1577 
1578 static u16
1579 minstrel_ht_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1580 {
1581         u8 seq;
1582 
1583         if (mp->hw->max_rates > 1) {
1584                 seq = mi->sample_seq;
1585                 mi->sample_seq = (seq + 1) % ARRAY_SIZE(minstrel_sample_seq);
1586                 seq = minstrel_sample_seq[seq];
1587         } else {
1588                 seq = MINSTREL_SAMPLE_TYPE_INC;
1589         }
1590 
1591         return __minstrel_ht_get_sample_rate(mi, seq);
1592 }
1593 
1594 static void
1595 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1596                      struct ieee80211_tx_rate_control *txrc)
1597 {
1598         const struct mcs_group *sample_group;
1599         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1600         struct ieee80211_tx_rate *rate = &info->status.rates[0];
1601         struct minstrel_ht_sta *mi = priv_sta;
1602         struct minstrel_priv *mp = priv;
1603         u16 sample_idx;
1604 
1605         info->flags |= mi->tx_flags;
1606 
1607 #ifdef CONFIG_MAC80211_DEBUGFS
1608         if (mp->fixed_rate_idx != -1)
1609                 return;
1610 #endif
1611 
1612         /* Don't use EAPOL frames for sampling on non-mrr hw */
1613         if (mp->hw->max_rates == 1 &&
1614             (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1615                 return;
1616 
1617         if (time_is_after_jiffies(mi->sample_time))
1618                 return;
1619 
1620         mi->sample_time = jiffies + MINSTREL_SAMPLE_INTERVAL;
1621         sample_idx = minstrel_ht_get_sample_rate(mp, mi);
1622         if (!sample_idx)
1623                 return;
1624 
1625         sample_group = &minstrel_mcs_groups[MI_RATE_GROUP(sample_idx)];
1626         sample_idx = MI_RATE_IDX(sample_idx);
1627 
1628         if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
1629             (sample_idx >= 4) != txrc->short_preamble)
1630                 return;
1631 
1632         info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1633         rate->count = 1;
1634 
1635         if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
1636                 int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1637                 rate->idx = mp->cck_rates[idx];
1638         } else if (sample_group == &minstrel_mcs_groups[MINSTREL_OFDM_GROUP]) {
1639                 int idx = sample_idx % ARRAY_SIZE(mp->ofdm_rates[0]);
1640                 rate->idx = mp->ofdm_rates[mi->band][idx];
1641         } else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1642                 ieee80211_rate_set_vht(rate, MI_RATE_IDX(sample_idx),
1643                                        sample_group->streams);
1644         } else {
1645                 rate->idx = sample_idx + (sample_group->streams - 1) * 8;
1646         }
1647 
1648         rate->flags = sample_group->flags;
1649 }
1650 
1651 static void
1652 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1653                        struct ieee80211_supported_band *sband,
1654                        struct ieee80211_sta *sta)
1655 {
1656         int i;
1657 
1658         if (sband->band != NL80211_BAND_2GHZ)
1659                 return;
1660 
1661         if (sta->deflink.ht_cap.ht_supported &&
1662             !ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1663                 return;
1664 
1665         for (i = 0; i < 4; i++) {
1666                 if (mp->cck_rates[i] == 0xff ||
1667                     !rate_supported(sta, sband->band, mp->cck_rates[i]))
1668                         continue;
1669 
1670                 mi->supported[MINSTREL_CCK_GROUP] |= BIT(i);
1671                 if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1672                         mi->supported[MINSTREL_CCK_GROUP] |= BIT(i + 4);
1673         }
1674 }
1675 
1676 static void
1677 minstrel_ht_update_ofdm(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1678                         struct ieee80211_supported_band *sband,
1679                         struct ieee80211_sta *sta)
1680 {
1681         const u8 *rates;
1682         int i;
1683 
1684         if (sta->deflink.ht_cap.ht_supported)
1685                 return;
1686 
1687         rates = mp->ofdm_rates[sband->band];
1688         for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) {
1689                 if (rates[i] == 0xff ||
1690                     !rate_supported(sta, sband->band, rates[i]))
1691                         continue;
1692 
1693                 mi->supported[MINSTREL_OFDM_GROUP] |= BIT(i);
1694         }
1695 }
1696 
1697 static void
1698 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1699                         struct cfg80211_chan_def *chandef,
1700                         struct ieee80211_sta *sta, void *priv_sta)
1701 {
1702         struct minstrel_priv *mp = priv;
1703         struct minstrel_ht_sta *mi = priv_sta;
1704         struct ieee80211_mcs_info *mcs = &sta->deflink.ht_cap.mcs;
1705         u16 ht_cap = sta->deflink.ht_cap.cap;
1706         struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;
1707         const struct ieee80211_rate *ctl_rate;
1708         struct sta_info *sta_info;
1709         bool ldpc, erp;
1710         int use_vht;
1711         int ack_dur;
1712         int stbc;
1713         int i;
1714 
1715         BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1716 
1717         if (vht_cap->vht_supported)
1718                 use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1719         else
1720                 use_vht = 0;
1721 
1722         memset(mi, 0, sizeof(*mi));
1723 
1724         mi->sta = sta;
1725         mi->band = sband->band;
1726         mi->last_stats_update = jiffies;
1727 
1728         ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1);
1729         mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1);
1730         mi->overhead += ack_dur;
1731         mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1732 
1733         ctl_rate = &sband->bitrates[rate_lowest_index(sband, sta)];
1734         erp = ctl_rate->flags & IEEE80211_RATE_ERP_G;
1735         ack_dur = ieee80211_frame_duration(sband->band, 10,
1736                                            ctl_rate->bitrate, erp, 1);
1737         mi->overhead_legacy = ack_dur;
1738         mi->overhead_legacy_rtscts = mi->overhead_legacy + 2 * ack_dur;
1739 
1740         mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1741 
1742         if (!use_vht) {
1743                 stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >>
1744                         IEEE80211_HT_CAP_RX_STBC_SHIFT;
1745 
1746                 ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING;
1747         } else {
1748                 stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >>
1749                         IEEE80211_VHT_CAP_RXSTBC_SHIFT;
1750 
1751                 ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC;
1752         }
1753 
1754         mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1755         if (ldpc)
1756                 mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1757 
1758         for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1759                 u32 gflags = minstrel_mcs_groups[i].flags;
1760                 int bw, nss;
1761 
1762                 mi->supported[i] = 0;
1763                 if (minstrel_ht_is_legacy_group(i))
1764                         continue;
1765 
1766                 if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1767                         if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1768                                 if (!(ht_cap & IEEE80211_HT_CAP_SGI_40))
1769                                         continue;
1770                         } else {
1771                                 if (!(ht_cap & IEEE80211_HT_CAP_SGI_20))
1772                                         continue;
1773                         }
1774                 }
1775 
1776                 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1777                     sta->deflink.bandwidth < IEEE80211_STA_RX_BW_40)
1778                         continue;
1779 
1780                 nss = minstrel_mcs_groups[i].streams;
1781 
1782                 /* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1783                 if (sta->deflink.smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1784                         continue;
1785 
1786                 /* HT rate */
1787                 if (gflags & IEEE80211_TX_RC_MCS) {
1788                         if (use_vht && minstrel_vht_only)
1789                                 continue;
1790 
1791                         mi->supported[i] = mcs->rx_mask[nss - 1];
1792                         continue;
1793                 }
1794 
1795                 /* VHT rate */
1796                 if (!vht_cap->vht_supported ||
1797                     WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1798                     WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1799                         continue;
1800 
1801                 if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1802                         if (sta->deflink.bandwidth < IEEE80211_STA_RX_BW_80 ||
1803                             ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1804                              !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1805                                 continue;
1806                         }
1807                 }
1808 
1809                 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1810                         bw = BW_40;
1811                 else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1812                         bw = BW_80;
1813                 else
1814                         bw = BW_20;
1815 
1816                 mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1817                                 vht_cap->vht_mcs.tx_mcs_map);
1818         }
1819 
1820         sta_info = container_of(sta, struct sta_info, sta);
1821         mi->use_short_preamble = test_sta_flag(sta_info, WLAN_STA_SHORT_PREAMBLE) &&
1822                                  sta_info->sdata->vif.bss_conf.use_short_preamble;
1823 
1824         minstrel_ht_update_cck(mp, mi, sband, sta);
1825         minstrel_ht_update_ofdm(mp, mi, sband, sta);
1826 
1827         /* create an initial rate table with the lowest supported rates */
1828         minstrel_ht_update_stats(mp, mi);
1829         minstrel_ht_update_rates(mp, mi);
1830 }
1831 
1832 static void
1833 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1834                       struct cfg80211_chan_def *chandef,
1835                       struct ieee80211_sta *sta, void *priv_sta)
1836 {
1837         minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1838 }
1839 
1840 static void
1841 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1842                         struct cfg80211_chan_def *chandef,
1843                         struct ieee80211_sta *sta, void *priv_sta,
1844                         u32 changed)
1845 {
1846         minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1847 }
1848 
1849 static void *
1850 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1851 {
1852         struct ieee80211_supported_band *sband;
1853         struct minstrel_ht_sta *mi;
1854         struct minstrel_priv *mp = priv;
1855         struct ieee80211_hw *hw = mp->hw;
1856         int max_rates = 0;
1857         int i;
1858 
1859         for (i = 0; i < NUM_NL80211_BANDS; i++) {
1860                 sband = hw->wiphy->bands[i];
1861                 if (sband && sband->n_bitrates > max_rates)
1862                         max_rates = sband->n_bitrates;
1863         }
1864 
1865         return kzalloc(sizeof(*mi), gfp);
1866 }
1867 
1868 static void
1869 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1870 {
1871         kfree(priv_sta);
1872 }
1873 
1874 static void
1875 minstrel_ht_fill_rate_array(u8 *dest, struct ieee80211_supported_band *sband,
1876                             const s16 *bitrates, int n_rates, u32 rate_flags)
1877 {
1878         int i, j;
1879 
1880         for (i = 0; i < sband->n_bitrates; i++) {
1881                 struct ieee80211_rate *rate = &sband->bitrates[i];
1882 
1883                 if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1884                         continue;
1885 
1886                 for (j = 0; j < n_rates; j++) {
1887                         if (rate->bitrate != bitrates[j])
1888                                 continue;
1889 
1890                         dest[j] = i;
1891                         break;
1892                 }
1893         }
1894 }
1895 
1896 static void
1897 minstrel_ht_init_cck_rates(struct minstrel_priv *mp)
1898 {
1899         static const s16 bitrates[4] = { 10, 20, 55, 110 };
1900         struct ieee80211_supported_band *sband;
1901         u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1902 
1903         memset(mp->cck_rates, 0xff, sizeof(mp->cck_rates));
1904         sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ];
1905         if (!sband)
1906                 return;
1907 
1908         BUILD_BUG_ON(ARRAY_SIZE(mp->cck_rates) != ARRAY_SIZE(bitrates));
1909         minstrel_ht_fill_rate_array(mp->cck_rates, sband,
1910                                     minstrel_cck_bitrates,
1911                                     ARRAY_SIZE(minstrel_cck_bitrates),
1912                                     rate_flags);
1913 }
1914 
1915 static void
1916 minstrel_ht_init_ofdm_rates(struct minstrel_priv *mp, enum nl80211_band band)
1917 {
1918         static const s16 bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
1919         struct ieee80211_supported_band *sband;
1920         u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1921 
1922         memset(mp->ofdm_rates[band], 0xff, sizeof(mp->ofdm_rates[band]));
1923         sband = mp->hw->wiphy->bands[band];
1924         if (!sband)
1925                 return;
1926 
1927         BUILD_BUG_ON(ARRAY_SIZE(mp->ofdm_rates[band]) != ARRAY_SIZE(bitrates));
1928         minstrel_ht_fill_rate_array(mp->ofdm_rates[band], sband,
1929                                     minstrel_ofdm_bitrates,
1930                                     ARRAY_SIZE(minstrel_ofdm_bitrates),
1931                                     rate_flags);
1932 }
1933 
1934 static void *
1935 minstrel_ht_alloc(struct ieee80211_hw *hw)
1936 {
1937         struct minstrel_priv *mp;
1938         int i;
1939 
1940         mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC);
1941         if (!mp)
1942                 return NULL;
1943 
1944         /* contention window settings
1945          * Just an approximation. Using the per-queue values would complicate
1946          * the calculations and is probably unnecessary */
1947         mp->cw_min = 15;
1948         mp->cw_max = 1023;
1949 
1950         /* maximum time that the hw is allowed to stay in one MRR segment */
1951         mp->segment_size = 6000;
1952 
1953         if (hw->max_rate_tries > 0)
1954                 mp->max_retry = hw->max_rate_tries;
1955         else
1956                 /* safe default, does not necessarily have to match hw properties */
1957                 mp->max_retry = 7;
1958 
1959         mp->hw = hw;
1960         mp->update_interval = HZ / 20;
1961 
1962         minstrel_ht_init_cck_rates(mp);
1963         for (i = 0; i < ARRAY_SIZE(mp->hw->wiphy->bands); i++)
1964             minstrel_ht_init_ofdm_rates(mp, i);
1965 
1966         return mp;
1967 }
1968 
1969 #ifdef CONFIG_MAC80211_DEBUGFS
1970 static void minstrel_ht_add_debugfs(struct ieee80211_hw *hw, void *priv,
1971                                     struct dentry *debugfsdir)
1972 {
1973         struct minstrel_priv *mp = priv;
1974 
1975         mp->fixed_rate_idx = (u32) -1;
1976         debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir,
1977                            &mp->fixed_rate_idx);
1978 }
1979 #endif
1980 
1981 static void
1982 minstrel_ht_free(void *priv)
1983 {
1984         kfree(priv);
1985 }
1986 
1987 static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1988 {
1989         struct minstrel_ht_sta *mi = priv_sta;
1990         int i, j, prob, tp_avg;
1991 
1992         i = MI_RATE_GROUP(mi->max_tp_rate[0]);
1993         j = MI_RATE_IDX(mi->max_tp_rate[0]);
1994         prob = mi->groups[i].rates[j].prob_avg;
1995 
1996         /* convert tp_avg from pkt per second in kbps */
1997         tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1998         tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1999 
2000         return tp_avg;
2001 }
2002 
2003 static const struct rate_control_ops mac80211_minstrel_ht = {
2004         .name = "minstrel_ht",
2005         .capa = RATE_CTRL_CAPA_AMPDU_TRIGGER,
2006         .tx_status_ext = minstrel_ht_tx_status,
2007         .get_rate = minstrel_ht_get_rate,
2008         .rate_init = minstrel_ht_rate_init,
2009         .rate_update = minstrel_ht_rate_update,
2010         .alloc_sta = minstrel_ht_alloc_sta,
2011         .free_sta = minstrel_ht_free_sta,
2012         .alloc = minstrel_ht_alloc,
2013         .free = minstrel_ht_free,
2014 #ifdef CONFIG_MAC80211_DEBUGFS
2015         .add_debugfs = minstrel_ht_add_debugfs,
2016         .add_sta_debugfs = minstrel_ht_add_sta_debugfs,
2017 #endif
2018         .get_expected_throughput = minstrel_ht_get_expected_throughput,
2019 };
2020 
2021 
2022 static void __init init_sample_table(void)
2023 {
2024         int col, i, new_idx;
2025         u8 rnd[MCS_GROUP_RATES];
2026 
2027         memset(sample_table, 0xff, sizeof(sample_table));
2028         for (col = 0; col < SAMPLE_COLUMNS; col++) {
2029                 get_random_bytes(rnd, sizeof(rnd));
2030                 for (i = 0; i < MCS_GROUP_RATES; i++) {
2031                         new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
2032                         while (sample_table[col][new_idx] != 0xff)
2033                                 new_idx = (new_idx + 1) % MCS_GROUP_RATES;
2034 
2035                         sample_table[col][new_idx] = i;
2036                 }
2037         }
2038 }
2039 
2040 int __init
2041 rc80211_minstrel_init(void)
2042 {
2043         init_sample_table();
2044         return ieee80211_rate_control_register(&mac80211_minstrel_ht);
2045 }
2046 
2047 void
2048 rc80211_minstrel_exit(void)
2049 {
2050         ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
2051 }
2052 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php