1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org> 4 * Copyright (C) 2019-2022 Intel Corporation 5 */ 6 #include <linux/netdevice.h> 7 #include <linux/types.h> 8 #include <linux/skbuff.h> 9 #include <linux/debugfs.h> 10 #include <linux/random.h> 11 #include <linux/moduleparam.h> 12 #include <linux/ieee80211.h> 13 #include <linux/minmax.h> 14 #include <net/mac80211.h> 15 #include "rate.h" 16 #include "sta_info.h" 17 #include "rc80211_minstrel_ht.h" 18 19 #define AVG_AMPDU_SIZE 16 20 #define AVG_PKT_SIZE 1200 21 22 /* Number of bits for an average sized packet */ 23 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3) 24 25 /* Number of symbols for a packet with (bps) bits per symbol */ 26 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps)) 27 28 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */ 29 #define MCS_SYMBOL_TIME(sgi, syms) \ 30 (sgi ? \ 31 ((syms) * 18000 + 4000) / 5 : /* syms * 3.6 us */ \ 32 ((syms) * 1000) << 2 /* syms * 4 us */ \ 33 ) 34 35 /* Transmit duration for the raw data part of an average sized packet */ 36 #define MCS_DURATION(streams, sgi, bps) \ 37 (MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE) 38 39 #define BW_20 0 40 #define BW_40 1 41 #define BW_80 2 42 43 /* 44 * Define group sort order: HT40 -> SGI -> #streams 45 */ 46 #define GROUP_IDX(_streams, _sgi, _ht40) \ 47 MINSTREL_HT_GROUP_0 + \ 48 MINSTREL_MAX_STREAMS * 2 * _ht40 + \ 49 MINSTREL_MAX_STREAMS * _sgi + \ 50 _streams - 1 51 52 #define _MAX(a, b) (((a)>(b))?(a):(b)) 53 54 #define GROUP_SHIFT(duration) \ 55 _MAX(0, 16 - __builtin_clz(duration)) 56 57 /* MCS rate information for an MCS group */ 58 #define __MCS_GROUP(_streams, _sgi, _ht40, _s) \ 59 [GROUP_IDX(_streams, _sgi, _ht40)] = { \ 60 .streams = _streams, \ 61 .shift = _s, \ 62 .bw = _ht40, \ 63 .flags = \ 64 IEEE80211_TX_RC_MCS | \ 65 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \ 66 (_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \ 67 .duration = { \ 68 MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s, \ 69 MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s, \ 70 MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s, \ 71 MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s, \ 72 MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s, \ 73 MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s, \ 74 MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s, \ 75 MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s \ 76 } \ 77 } 78 79 #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40) \ 80 GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26)) 81 82 #define MCS_GROUP(_streams, _sgi, _ht40) \ 83 __MCS_GROUP(_streams, _sgi, _ht40, \ 84 MCS_GROUP_SHIFT(_streams, _sgi, _ht40)) 85 86 #define VHT_GROUP_IDX(_streams, _sgi, _bw) \ 87 (MINSTREL_VHT_GROUP_0 + \ 88 MINSTREL_MAX_STREAMS * 2 * (_bw) + \ 89 MINSTREL_MAX_STREAMS * (_sgi) + \ 90 (_streams) - 1) 91 92 #define BW2VBPS(_bw, r3, r2, r1) \ 93 (_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1) 94 95 #define __VHT_GROUP(_streams, _sgi, _bw, _s) \ 96 [VHT_GROUP_IDX(_streams, _sgi, _bw)] = { \ 97 .streams = _streams, \ 98 .shift = _s, \ 99 .bw = _bw, \ 100 .flags = \ 101 IEEE80211_TX_RC_VHT_MCS | \ 102 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \ 103 (_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH : \ 104 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \ 105 .duration = { \ 106 MCS_DURATION(_streams, _sgi, \ 107 BW2VBPS(_bw, 117, 54, 26)) >> _s, \ 108 MCS_DURATION(_streams, _sgi, \ 109 BW2VBPS(_bw, 234, 108, 52)) >> _s, \ 110 MCS_DURATION(_streams, _sgi, \ 111 BW2VBPS(_bw, 351, 162, 78)) >> _s, \ 112 MCS_DURATION(_streams, _sgi, \ 113 BW2VBPS(_bw, 468, 216, 104)) >> _s, \ 114 MCS_DURATION(_streams, _sgi, \ 115 BW2VBPS(_bw, 702, 324, 156)) >> _s, \ 116 MCS_DURATION(_streams, _sgi, \ 117 BW2VBPS(_bw, 936, 432, 208)) >> _s, \ 118 MCS_DURATION(_streams, _sgi, \ 119 BW2VBPS(_bw, 1053, 486, 234)) >> _s, \ 120 MCS_DURATION(_streams, _sgi, \ 121 BW2VBPS(_bw, 1170, 540, 260)) >> _s, \ 122 MCS_DURATION(_streams, _sgi, \ 123 BW2VBPS(_bw, 1404, 648, 312)) >> _s, \ 124 MCS_DURATION(_streams, _sgi, \ 125 BW2VBPS(_bw, 1560, 720, 346)) >> _s \ 126 } \ 127 } 128 129 #define VHT_GROUP_SHIFT(_streams, _sgi, _bw) \ 130 GROUP_SHIFT(MCS_DURATION(_streams, _sgi, \ 131 BW2VBPS(_bw, 117, 54, 26))) 132 133 #define VHT_GROUP(_streams, _sgi, _bw) \ 134 __VHT_GROUP(_streams, _sgi, _bw, \ 135 VHT_GROUP_SHIFT(_streams, _sgi, _bw)) 136 137 #define CCK_DURATION(_bitrate, _short) \ 138 (1000 * (10 /* SIFS */ + \ 139 (_short ? 72 + 24 : 144 + 48) + \ 140 (8 * (AVG_PKT_SIZE + 4) * 10) / (_bitrate))) 141 142 #define CCK_DURATION_LIST(_short, _s) \ 143 CCK_DURATION(10, _short) >> _s, \ 144 CCK_DURATION(20, _short) >> _s, \ 145 CCK_DURATION(55, _short) >> _s, \ 146 CCK_DURATION(110, _short) >> _s 147 148 #define __CCK_GROUP(_s) \ 149 [MINSTREL_CCK_GROUP] = { \ 150 .streams = 1, \ 151 .flags = 0, \ 152 .shift = _s, \ 153 .duration = { \ 154 CCK_DURATION_LIST(false, _s), \ 155 CCK_DURATION_LIST(true, _s) \ 156 } \ 157 } 158 159 #define CCK_GROUP_SHIFT \ 160 GROUP_SHIFT(CCK_DURATION(10, false)) 161 162 #define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT) 163 164 #define OFDM_DURATION(_bitrate) \ 165 (1000 * (16 /* SIFS + signal ext */ + \ 166 16 /* T_PREAMBLE */ + \ 167 4 /* T_SIGNAL */ + \ 168 4 * (((16 + 80 * (AVG_PKT_SIZE + 4) + 6) / \ 169 ((_bitrate) * 4))))) 170 171 #define OFDM_DURATION_LIST(_s) \ 172 OFDM_DURATION(60) >> _s, \ 173 OFDM_DURATION(90) >> _s, \ 174 OFDM_DURATION(120) >> _s, \ 175 OFDM_DURATION(180) >> _s, \ 176 OFDM_DURATION(240) >> _s, \ 177 OFDM_DURATION(360) >> _s, \ 178 OFDM_DURATION(480) >> _s, \ 179 OFDM_DURATION(540) >> _s 180 181 #define __OFDM_GROUP(_s) \ 182 [MINSTREL_OFDM_GROUP] = { \ 183 .streams = 1, \ 184 .flags = 0, \ 185 .shift = _s, \ 186 .duration = { \ 187 OFDM_DURATION_LIST(_s), \ 188 } \ 189 } 190 191 #define OFDM_GROUP_SHIFT \ 192 GROUP_SHIFT(OFDM_DURATION(60)) 193 194 #define OFDM_GROUP __OFDM_GROUP(OFDM_GROUP_SHIFT) 195 196 197 static bool minstrel_vht_only = true; 198 module_param(minstrel_vht_only, bool, 0644); 199 MODULE_PARM_DESC(minstrel_vht_only, 200 "Use only VHT rates when VHT is supported by sta."); 201 202 /* 203 * To enable sufficiently targeted rate sampling, MCS rates are divided into 204 * groups, based on the number of streams and flags (HT40, SGI) that they 205 * use. 206 * 207 * Sortorder has to be fixed for GROUP_IDX macro to be applicable: 208 * BW -> SGI -> #streams 209 */ 210 const struct mcs_group minstrel_mcs_groups[] = { 211 MCS_GROUP(1, 0, BW_20), 212 MCS_GROUP(2, 0, BW_20), 213 MCS_GROUP(3, 0, BW_20), 214 MCS_GROUP(4, 0, BW_20), 215 216 MCS_GROUP(1, 1, BW_20), 217 MCS_GROUP(2, 1, BW_20), 218 MCS_GROUP(3, 1, BW_20), 219 MCS_GROUP(4, 1, BW_20), 220 221 MCS_GROUP(1, 0, BW_40), 222 MCS_GROUP(2, 0, BW_40), 223 MCS_GROUP(3, 0, BW_40), 224 MCS_GROUP(4, 0, BW_40), 225 226 MCS_GROUP(1, 1, BW_40), 227 MCS_GROUP(2, 1, BW_40), 228 MCS_GROUP(3, 1, BW_40), 229 MCS_GROUP(4, 1, BW_40), 230 231 CCK_GROUP, 232 OFDM_GROUP, 233 234 VHT_GROUP(1, 0, BW_20), 235 VHT_GROUP(2, 0, BW_20), 236 VHT_GROUP(3, 0, BW_20), 237 VHT_GROUP(4, 0, BW_20), 238 239 VHT_GROUP(1, 1, BW_20), 240 VHT_GROUP(2, 1, BW_20), 241 VHT_GROUP(3, 1, BW_20), 242 VHT_GROUP(4, 1, BW_20), 243 244 VHT_GROUP(1, 0, BW_40), 245 VHT_GROUP(2, 0, BW_40), 246 VHT_GROUP(3, 0, BW_40), 247 VHT_GROUP(4, 0, BW_40), 248 249 VHT_GROUP(1, 1, BW_40), 250 VHT_GROUP(2, 1, BW_40), 251 VHT_GROUP(3, 1, BW_40), 252 VHT_GROUP(4, 1, BW_40), 253 254 VHT_GROUP(1, 0, BW_80), 255 VHT_GROUP(2, 0, BW_80), 256 VHT_GROUP(3, 0, BW_80), 257 VHT_GROUP(4, 0, BW_80), 258 259 VHT_GROUP(1, 1, BW_80), 260 VHT_GROUP(2, 1, BW_80), 261 VHT_GROUP(3, 1, BW_80), 262 VHT_GROUP(4, 1, BW_80), 263 }; 264 265 const s16 minstrel_cck_bitrates[4] = { 10, 20, 55, 110 }; 266 const s16 minstrel_ofdm_bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 }; 267 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly; 268 static const u8 minstrel_sample_seq[] = { 269 MINSTREL_SAMPLE_TYPE_INC, 270 MINSTREL_SAMPLE_TYPE_JUMP, 271 MINSTREL_SAMPLE_TYPE_INC, 272 MINSTREL_SAMPLE_TYPE_JUMP, 273 MINSTREL_SAMPLE_TYPE_INC, 274 MINSTREL_SAMPLE_TYPE_SLOW, 275 }; 276 277 static void 278 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi); 279 280 /* 281 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer) 282 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1 283 * 284 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported 285 */ 286 static u16 287 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map) 288 { 289 u16 mask = 0; 290 291 if (bw == BW_20) { 292 if (nss != 3 && nss != 6) 293 mask = BIT(9); 294 } else if (bw == BW_80) { 295 if (nss == 3 || nss == 7) 296 mask = BIT(6); 297 else if (nss == 6) 298 mask = BIT(9); 299 } else { 300 WARN_ON(bw != BW_40); 301 } 302 303 switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) { 304 case IEEE80211_VHT_MCS_SUPPORT_0_7: 305 mask |= 0x300; 306 break; 307 case IEEE80211_VHT_MCS_SUPPORT_0_8: 308 mask |= 0x200; 309 break; 310 case IEEE80211_VHT_MCS_SUPPORT_0_9: 311 break; 312 default: 313 mask = 0x3ff; 314 } 315 316 return 0x3ff & ~mask; 317 } 318 319 static bool 320 minstrel_ht_is_legacy_group(int group) 321 { 322 return group == MINSTREL_CCK_GROUP || 323 group == MINSTREL_OFDM_GROUP; 324 } 325 326 /* 327 * Look up an MCS group index based on mac80211 rate information 328 */ 329 static int 330 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate) 331 { 332 return GROUP_IDX((rate->idx / 8) + 1, 333 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI), 334 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)); 335 } 336 337 /* 338 * Look up an MCS group index based on new cfg80211 rate_info. 339 */ 340 static int 341 minstrel_ht_ri_get_group_idx(struct rate_info *rate) 342 { 343 return GROUP_IDX((rate->mcs / 8) + 1, 344 !!(rate->flags & RATE_INFO_FLAGS_SHORT_GI), 345 !!(rate->bw & RATE_INFO_BW_40)); 346 } 347 348 static int 349 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate) 350 { 351 return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate), 352 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI), 353 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) + 354 2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)); 355 } 356 357 /* 358 * Look up an MCS group index based on new cfg80211 rate_info. 359 */ 360 static int 361 minstrel_vht_ri_get_group_idx(struct rate_info *rate) 362 { 363 return VHT_GROUP_IDX(rate->nss, 364 !!(rate->flags & RATE_INFO_FLAGS_SHORT_GI), 365 !!(rate->bw & RATE_INFO_BW_40) + 366 2*!!(rate->bw & RATE_INFO_BW_80)); 367 } 368 369 static struct minstrel_rate_stats * 370 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, 371 struct ieee80211_tx_rate *rate) 372 { 373 int group, idx; 374 375 if (rate->flags & IEEE80211_TX_RC_MCS) { 376 group = minstrel_ht_get_group_idx(rate); 377 idx = rate->idx % 8; 378 goto out; 379 } 380 381 if (rate->flags & IEEE80211_TX_RC_VHT_MCS) { 382 group = minstrel_vht_get_group_idx(rate); 383 idx = ieee80211_rate_get_vht_mcs(rate); 384 goto out; 385 } 386 387 group = MINSTREL_CCK_GROUP; 388 for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) { 389 if (!(mi->supported[group] & BIT(idx))) 390 continue; 391 392 if (rate->idx != mp->cck_rates[idx]) 393 continue; 394 395 /* short preamble */ 396 if ((mi->supported[group] & BIT(idx + 4)) && 397 (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)) 398 idx += 4; 399 goto out; 400 } 401 402 group = MINSTREL_OFDM_GROUP; 403 for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++) 404 if (rate->idx == mp->ofdm_rates[mi->band][idx]) 405 goto out; 406 407 idx = 0; 408 out: 409 return &mi->groups[group].rates[idx]; 410 } 411 412 /* 413 * Get the minstrel rate statistics for specified STA and rate info. 414 */ 415 static struct minstrel_rate_stats * 416 minstrel_ht_ri_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, 417 struct ieee80211_rate_status *rate_status) 418 { 419 int group, idx; 420 struct rate_info *rate = &rate_status->rate_idx; 421 422 if (rate->flags & RATE_INFO_FLAGS_MCS) { 423 group = minstrel_ht_ri_get_group_idx(rate); 424 idx = rate->mcs % 8; 425 goto out; 426 } 427 428 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) { 429 group = minstrel_vht_ri_get_group_idx(rate); 430 idx = rate->mcs; 431 goto out; 432 } 433 434 group = MINSTREL_CCK_GROUP; 435 for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) { 436 if (rate->legacy != minstrel_cck_bitrates[ mp->cck_rates[idx] ]) 437 continue; 438 439 /* short preamble */ 440 if ((mi->supported[group] & BIT(idx + 4)) && 441 mi->use_short_preamble) 442 idx += 4; 443 goto out; 444 } 445 446 group = MINSTREL_OFDM_GROUP; 447 for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++) 448 if (rate->legacy == minstrel_ofdm_bitrates[ mp->ofdm_rates[mi->band][idx] ]) 449 goto out; 450 451 idx = 0; 452 out: 453 return &mi->groups[group].rates[idx]; 454 } 455 456 static inline struct minstrel_rate_stats * 457 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index) 458 { 459 return &mi->groups[MI_RATE_GROUP(index)].rates[MI_RATE_IDX(index)]; 460 } 461 462 static inline int minstrel_get_duration(int index) 463 { 464 const struct mcs_group *group = &minstrel_mcs_groups[MI_RATE_GROUP(index)]; 465 unsigned int duration = group->duration[MI_RATE_IDX(index)]; 466 467 return duration << group->shift; 468 } 469 470 static unsigned int 471 minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi) 472 { 473 int duration; 474 475 if (mi->avg_ampdu_len) 476 return MINSTREL_TRUNC(mi->avg_ampdu_len); 477 478 if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(mi->max_tp_rate[0]))) 479 return 1; 480 481 duration = minstrel_get_duration(mi->max_tp_rate[0]); 482 483 if (duration > 400 * 1000) 484 return 2; 485 486 if (duration > 250 * 1000) 487 return 4; 488 489 if (duration > 150 * 1000) 490 return 8; 491 492 return 16; 493 } 494 495 /* 496 * Return current throughput based on the average A-MPDU length, taking into 497 * account the expected number of retransmissions and their expected length 498 */ 499 int 500 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate, 501 int prob_avg) 502 { 503 unsigned int nsecs = 0, overhead = mi->overhead; 504 unsigned int ampdu_len = 1; 505 506 /* do not account throughput if success prob is below 10% */ 507 if (prob_avg < MINSTREL_FRAC(10, 100)) 508 return 0; 509 510 if (minstrel_ht_is_legacy_group(group)) 511 overhead = mi->overhead_legacy; 512 else 513 ampdu_len = minstrel_ht_avg_ampdu_len(mi); 514 515 nsecs = 1000 * overhead / ampdu_len; 516 nsecs += minstrel_mcs_groups[group].duration[rate] << 517 minstrel_mcs_groups[group].shift; 518 519 /* 520 * For the throughput calculation, limit the probability value to 90% to 521 * account for collision related packet error rate fluctuation 522 * (prob is scaled - see MINSTREL_FRAC above) 523 */ 524 if (prob_avg > MINSTREL_FRAC(90, 100)) 525 prob_avg = MINSTREL_FRAC(90, 100); 526 527 return MINSTREL_TRUNC(100 * ((prob_avg * 1000000) / nsecs)); 528 } 529 530 /* 531 * Find & sort topmost throughput rates 532 * 533 * If multiple rates provide equal throughput the sorting is based on their 534 * current success probability. Higher success probability is preferred among 535 * MCS groups, CCK rates do not provide aggregation and are therefore at last. 536 */ 537 static void 538 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index, 539 u16 *tp_list) 540 { 541 int cur_group, cur_idx, cur_tp_avg, cur_prob; 542 int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob; 543 int j = MAX_THR_RATES; 544 545 cur_group = MI_RATE_GROUP(index); 546 cur_idx = MI_RATE_IDX(index); 547 cur_prob = mi->groups[cur_group].rates[cur_idx].prob_avg; 548 cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob); 549 550 do { 551 tmp_group = MI_RATE_GROUP(tp_list[j - 1]); 552 tmp_idx = MI_RATE_IDX(tp_list[j - 1]); 553 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; 554 tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, 555 tmp_prob); 556 if (cur_tp_avg < tmp_tp_avg || 557 (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob)) 558 break; 559 j--; 560 } while (j > 0); 561 562 if (j < MAX_THR_RATES - 1) { 563 memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) * 564 (MAX_THR_RATES - (j + 1)))); 565 } 566 if (j < MAX_THR_RATES) 567 tp_list[j] = index; 568 } 569 570 /* 571 * Find and set the topmost probability rate per sta and per group 572 */ 573 static void 574 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 *dest, u16 index) 575 { 576 struct minstrel_mcs_group_data *mg; 577 struct minstrel_rate_stats *mrs; 578 int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob; 579 int max_tp_group, max_tp_idx, max_tp_prob; 580 int cur_tp_avg, cur_group, cur_idx; 581 int max_gpr_group, max_gpr_idx; 582 int max_gpr_tp_avg, max_gpr_prob; 583 584 cur_group = MI_RATE_GROUP(index); 585 cur_idx = MI_RATE_IDX(index); 586 mg = &mi->groups[cur_group]; 587 mrs = &mg->rates[cur_idx]; 588 589 tmp_group = MI_RATE_GROUP(*dest); 590 tmp_idx = MI_RATE_IDX(*dest); 591 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; 592 tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); 593 594 /* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from 595 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */ 596 max_tp_group = MI_RATE_GROUP(mi->max_tp_rate[0]); 597 max_tp_idx = MI_RATE_IDX(mi->max_tp_rate[0]); 598 max_tp_prob = mi->groups[max_tp_group].rates[max_tp_idx].prob_avg; 599 600 if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index)) && 601 !minstrel_ht_is_legacy_group(max_tp_group)) 602 return; 603 604 /* skip rates faster than max tp rate with lower prob */ 605 if (minstrel_get_duration(mi->max_tp_rate[0]) > minstrel_get_duration(index) && 606 mrs->prob_avg < max_tp_prob) 607 return; 608 609 max_gpr_group = MI_RATE_GROUP(mg->max_group_prob_rate); 610 max_gpr_idx = MI_RATE_IDX(mg->max_group_prob_rate); 611 max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_avg; 612 613 if (mrs->prob_avg > MINSTREL_FRAC(75, 100)) { 614 cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, 615 mrs->prob_avg); 616 if (cur_tp_avg > tmp_tp_avg) 617 *dest = index; 618 619 max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group, 620 max_gpr_idx, 621 max_gpr_prob); 622 if (cur_tp_avg > max_gpr_tp_avg) 623 mg->max_group_prob_rate = index; 624 } else { 625 if (mrs->prob_avg > tmp_prob) 626 *dest = index; 627 if (mrs->prob_avg > max_gpr_prob) 628 mg->max_group_prob_rate = index; 629 } 630 } 631 632 633 /* 634 * Assign new rate set per sta and use CCK rates only if the fastest 635 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted 636 * rate sets where MCS and CCK rates are mixed, because CCK rates can 637 * not use aggregation. 638 */ 639 static void 640 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi, 641 u16 tmp_mcs_tp_rate[MAX_THR_RATES], 642 u16 tmp_legacy_tp_rate[MAX_THR_RATES]) 643 { 644 unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob; 645 int i; 646 647 tmp_group = MI_RATE_GROUP(tmp_legacy_tp_rate[0]); 648 tmp_idx = MI_RATE_IDX(tmp_legacy_tp_rate[0]); 649 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; 650 tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); 651 652 tmp_group = MI_RATE_GROUP(tmp_mcs_tp_rate[0]); 653 tmp_idx = MI_RATE_IDX(tmp_mcs_tp_rate[0]); 654 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg; 655 tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob); 656 657 if (tmp_cck_tp > tmp_mcs_tp) { 658 for(i = 0; i < MAX_THR_RATES; i++) { 659 minstrel_ht_sort_best_tp_rates(mi, tmp_legacy_tp_rate[i], 660 tmp_mcs_tp_rate); 661 } 662 } 663 664 } 665 666 /* 667 * Try to increase robustness of max_prob rate by decrease number of 668 * streams if possible. 669 */ 670 static inline void 671 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi) 672 { 673 struct minstrel_mcs_group_data *mg; 674 int tmp_max_streams, group, tmp_idx, tmp_prob; 675 int tmp_tp = 0; 676 677 if (!mi->sta->deflink.ht_cap.ht_supported) 678 return; 679 680 group = MI_RATE_GROUP(mi->max_tp_rate[0]); 681 tmp_max_streams = minstrel_mcs_groups[group].streams; 682 for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { 683 mg = &mi->groups[group]; 684 if (!mi->supported[group] || group == MINSTREL_CCK_GROUP) 685 continue; 686 687 tmp_idx = MI_RATE_IDX(mg->max_group_prob_rate); 688 tmp_prob = mi->groups[group].rates[tmp_idx].prob_avg; 689 690 if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) && 691 (minstrel_mcs_groups[group].streams < tmp_max_streams)) { 692 mi->max_prob_rate = mg->max_group_prob_rate; 693 tmp_tp = minstrel_ht_get_tp_avg(mi, group, 694 tmp_idx, 695 tmp_prob); 696 } 697 } 698 } 699 700 static u16 701 __minstrel_ht_get_sample_rate(struct minstrel_ht_sta *mi, 702 enum minstrel_sample_type type) 703 { 704 u16 *rates = mi->sample[type].sample_rates; 705 u16 cur; 706 int i; 707 708 for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) { 709 if (!rates[i]) 710 continue; 711 712 cur = rates[i]; 713 rates[i] = 0; 714 return cur; 715 } 716 717 return 0; 718 } 719 720 static inline int 721 minstrel_ewma(int old, int new, int weight) 722 { 723 int diff, incr; 724 725 diff = new - old; 726 incr = (EWMA_DIV - weight) * diff / EWMA_DIV; 727 728 return old + incr; 729 } 730 731 static inline int minstrel_filter_avg_add(u16 *prev_1, u16 *prev_2, s32 in) 732 { 733 s32 out_1 = *prev_1; 734 s32 out_2 = *prev_2; 735 s32 val; 736 737 if (!in) 738 in += 1; 739 740 if (!out_1) { 741 val = out_1 = in; 742 goto out; 743 } 744 745 val = MINSTREL_AVG_COEFF1 * in; 746 val += MINSTREL_AVG_COEFF2 * out_1; 747 val += MINSTREL_AVG_COEFF3 * out_2; 748 val >>= MINSTREL_SCALE; 749 750 if (val > 1 << MINSTREL_SCALE) 751 val = 1 << MINSTREL_SCALE; 752 if (val < 0) 753 val = 1; 754 755 out: 756 *prev_2 = out_1; 757 *prev_1 = val; 758 759 return val; 760 } 761 762 /* 763 * Recalculate statistics and counters of a given rate 764 */ 765 static void 766 minstrel_ht_calc_rate_stats(struct minstrel_priv *mp, 767 struct minstrel_rate_stats *mrs) 768 { 769 unsigned int cur_prob; 770 771 if (unlikely(mrs->attempts > 0)) { 772 cur_prob = MINSTREL_FRAC(mrs->success, mrs->attempts); 773 minstrel_filter_avg_add(&mrs->prob_avg, 774 &mrs->prob_avg_1, cur_prob); 775 mrs->att_hist += mrs->attempts; 776 mrs->succ_hist += mrs->success; 777 } 778 779 mrs->last_success = mrs->success; 780 mrs->last_attempts = mrs->attempts; 781 mrs->success = 0; 782 mrs->attempts = 0; 783 } 784 785 static bool 786 minstrel_ht_find_sample_rate(struct minstrel_ht_sta *mi, int type, int idx) 787 { 788 int i; 789 790 for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) { 791 u16 cur = mi->sample[type].sample_rates[i]; 792 793 if (cur == idx) 794 return true; 795 796 if (!cur) 797 break; 798 } 799 800 return false; 801 } 802 803 static int 804 minstrel_ht_move_sample_rates(struct minstrel_ht_sta *mi, int type, 805 u32 fast_rate_dur, u32 slow_rate_dur) 806 { 807 u16 *rates = mi->sample[type].sample_rates; 808 int i, j; 809 810 for (i = 0, j = 0; i < MINSTREL_SAMPLE_RATES; i++) { 811 u32 duration; 812 bool valid = false; 813 u16 cur; 814 815 cur = rates[i]; 816 if (!cur) 817 continue; 818 819 duration = minstrel_get_duration(cur); 820 switch (type) { 821 case MINSTREL_SAMPLE_TYPE_SLOW: 822 valid = duration > fast_rate_dur && 823 duration < slow_rate_dur; 824 break; 825 case MINSTREL_SAMPLE_TYPE_INC: 826 case MINSTREL_SAMPLE_TYPE_JUMP: 827 valid = duration < fast_rate_dur; 828 break; 829 default: 830 valid = false; 831 break; 832 } 833 834 if (!valid) { 835 rates[i] = 0; 836 continue; 837 } 838 839 if (i == j) 840 continue; 841 842 rates[j++] = cur; 843 rates[i] = 0; 844 } 845 846 return j; 847 } 848 849 static int 850 minstrel_ht_group_min_rate_offset(struct minstrel_ht_sta *mi, int group, 851 u32 max_duration) 852 { 853 u16 supported = mi->supported[group]; 854 int i; 855 856 for (i = 0; i < MCS_GROUP_RATES && supported; i++, supported >>= 1) { 857 if (!(supported & BIT(0))) 858 continue; 859 860 if (minstrel_get_duration(MI_RATE(group, i)) >= max_duration) 861 continue; 862 863 return i; 864 } 865 866 return -1; 867 } 868 869 /* 870 * Incremental update rates: 871 * Flip through groups and pick the first group rate that is faster than the 872 * highest currently selected rate 873 */ 874 static u16 875 minstrel_ht_next_inc_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur) 876 { 877 u8 type = MINSTREL_SAMPLE_TYPE_INC; 878 int i, index = 0; 879 u8 group; 880 881 group = mi->sample[type].sample_group; 882 for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) { 883 group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups); 884 885 index = minstrel_ht_group_min_rate_offset(mi, group, 886 fast_rate_dur); 887 if (index < 0) 888 continue; 889 890 index = MI_RATE(group, index & 0xf); 891 if (!minstrel_ht_find_sample_rate(mi, type, index)) 892 goto out; 893 } 894 index = 0; 895 896 out: 897 mi->sample[type].sample_group = group; 898 899 return index; 900 } 901 902 static int 903 minstrel_ht_next_group_sample_rate(struct minstrel_ht_sta *mi, int group, 904 u16 supported, int offset) 905 { 906 struct minstrel_mcs_group_data *mg = &mi->groups[group]; 907 u16 idx; 908 int i; 909 910 for (i = 0; i < MCS_GROUP_RATES; i++) { 911 idx = sample_table[mg->column][mg->index]; 912 if (++mg->index >= MCS_GROUP_RATES) { 913 mg->index = 0; 914 if (++mg->column >= ARRAY_SIZE(sample_table)) 915 mg->column = 0; 916 } 917 918 if (idx < offset) 919 continue; 920 921 if (!(supported & BIT(idx))) 922 continue; 923 924 return MI_RATE(group, idx); 925 } 926 927 return -1; 928 } 929 930 /* 931 * Jump rates: 932 * Sample random rates, use those that are faster than the highest 933 * currently selected rate. Rates between the fastest and the slowest 934 * get sorted into the slow sample bucket, but only if it has room 935 */ 936 static u16 937 minstrel_ht_next_jump_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur, 938 u32 slow_rate_dur, int *slow_rate_ofs) 939 { 940 struct minstrel_rate_stats *mrs; 941 u32 max_duration = slow_rate_dur; 942 int i, index, offset; 943 u16 *slow_rates; 944 u16 supported; 945 u32 duration; 946 u8 group; 947 948 if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES) 949 max_duration = fast_rate_dur; 950 951 slow_rates = mi->sample[MINSTREL_SAMPLE_TYPE_SLOW].sample_rates; 952 group = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group; 953 for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) { 954 u8 type; 955 956 group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups); 957 958 supported = mi->supported[group]; 959 if (!supported) 960 continue; 961 962 offset = minstrel_ht_group_min_rate_offset(mi, group, 963 max_duration); 964 if (offset < 0) 965 continue; 966 967 index = minstrel_ht_next_group_sample_rate(mi, group, supported, 968 offset); 969 if (index < 0) 970 continue; 971 972 duration = minstrel_get_duration(index); 973 if (duration < fast_rate_dur) 974 type = MINSTREL_SAMPLE_TYPE_JUMP; 975 else 976 type = MINSTREL_SAMPLE_TYPE_SLOW; 977 978 if (minstrel_ht_find_sample_rate(mi, type, index)) 979 continue; 980 981 if (type == MINSTREL_SAMPLE_TYPE_JUMP) 982 goto found; 983 984 if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES) 985 continue; 986 987 if (duration >= slow_rate_dur) 988 continue; 989 990 /* skip slow rates with high success probability */ 991 mrs = minstrel_get_ratestats(mi, index); 992 if (mrs->prob_avg > MINSTREL_FRAC(95, 100)) 993 continue; 994 995 slow_rates[(*slow_rate_ofs)++] = index; 996 if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES) 997 max_duration = fast_rate_dur; 998 } 999 index = 0; 1000 1001 found: 1002 mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group = group; 1003 1004 return index; 1005 } 1006 1007 static void 1008 minstrel_ht_refill_sample_rates(struct minstrel_ht_sta *mi) 1009 { 1010 u32 prob_dur = minstrel_get_duration(mi->max_prob_rate); 1011 u32 tp_dur = minstrel_get_duration(mi->max_tp_rate[0]); 1012 u32 tp2_dur = minstrel_get_duration(mi->max_tp_rate[1]); 1013 u32 fast_rate_dur = min(min(tp_dur, tp2_dur), prob_dur); 1014 u32 slow_rate_dur = max(max(tp_dur, tp2_dur), prob_dur); 1015 u16 *rates; 1016 int i, j; 1017 1018 rates = mi->sample[MINSTREL_SAMPLE_TYPE_INC].sample_rates; 1019 i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_INC, 1020 fast_rate_dur, slow_rate_dur); 1021 while (i < MINSTREL_SAMPLE_RATES) { 1022 rates[i] = minstrel_ht_next_inc_rate(mi, tp_dur); 1023 if (!rates[i]) 1024 break; 1025 1026 i++; 1027 } 1028 1029 rates = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_rates; 1030 i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_JUMP, 1031 fast_rate_dur, slow_rate_dur); 1032 j = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_SLOW, 1033 fast_rate_dur, slow_rate_dur); 1034 while (i < MINSTREL_SAMPLE_RATES) { 1035 rates[i] = minstrel_ht_next_jump_rate(mi, fast_rate_dur, 1036 slow_rate_dur, &j); 1037 if (!rates[i]) 1038 break; 1039 1040 i++; 1041 } 1042 1043 for (i = 0; i < ARRAY_SIZE(mi->sample); i++) 1044 memcpy(mi->sample[i].cur_sample_rates, mi->sample[i].sample_rates, 1045 sizeof(mi->sample[i].cur_sample_rates)); 1046 } 1047 1048 1049 /* 1050 * Update rate statistics and select new primary rates 1051 * 1052 * Rules for rate selection: 1053 * - max_prob_rate must use only one stream, as a tradeoff between delivery 1054 * probability and throughput during strong fluctuations 1055 * - as long as the max prob rate has a probability of more than 75%, pick 1056 * higher throughput rates, even if the probablity is a bit lower 1057 */ 1058 static void 1059 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) 1060 { 1061 struct minstrel_mcs_group_data *mg; 1062 struct minstrel_rate_stats *mrs; 1063 int group, i, j, cur_prob; 1064 u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES]; 1065 u16 tmp_legacy_tp_rate[MAX_THR_RATES], tmp_max_prob_rate; 1066 u16 index; 1067 bool ht_supported = mi->sta->deflink.ht_cap.ht_supported; 1068 1069 if (mi->ampdu_packets > 0) { 1070 if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN)) 1071 mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len, 1072 MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), 1073 EWMA_LEVEL); 1074 else 1075 mi->avg_ampdu_len = 0; 1076 mi->ampdu_len = 0; 1077 mi->ampdu_packets = 0; 1078 } 1079 1080 if (mi->supported[MINSTREL_CCK_GROUP]) 1081 group = MINSTREL_CCK_GROUP; 1082 else if (mi->supported[MINSTREL_OFDM_GROUP]) 1083 group = MINSTREL_OFDM_GROUP; 1084 else 1085 group = 0; 1086 1087 index = MI_RATE(group, 0); 1088 for (j = 0; j < ARRAY_SIZE(tmp_legacy_tp_rate); j++) 1089 tmp_legacy_tp_rate[j] = index; 1090 1091 if (mi->supported[MINSTREL_VHT_GROUP_0]) 1092 group = MINSTREL_VHT_GROUP_0; 1093 else if (ht_supported) 1094 group = MINSTREL_HT_GROUP_0; 1095 else if (mi->supported[MINSTREL_CCK_GROUP]) 1096 group = MINSTREL_CCK_GROUP; 1097 else 1098 group = MINSTREL_OFDM_GROUP; 1099 1100 index = MI_RATE(group, 0); 1101 tmp_max_prob_rate = index; 1102 for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++) 1103 tmp_mcs_tp_rate[j] = index; 1104 1105 /* Find best rate sets within all MCS groups*/ 1106 for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { 1107 u16 *tp_rate = tmp_mcs_tp_rate; 1108 u16 last_prob = 0; 1109 1110 mg = &mi->groups[group]; 1111 if (!mi->supported[group]) 1112 continue; 1113 1114 /* (re)Initialize group rate indexes */ 1115 for(j = 0; j < MAX_THR_RATES; j++) 1116 tmp_group_tp_rate[j] = MI_RATE(group, 0); 1117 1118 if (group == MINSTREL_CCK_GROUP && ht_supported) 1119 tp_rate = tmp_legacy_tp_rate; 1120 1121 for (i = MCS_GROUP_RATES - 1; i >= 0; i--) { 1122 if (!(mi->supported[group] & BIT(i))) 1123 continue; 1124 1125 index = MI_RATE(group, i); 1126 1127 mrs = &mg->rates[i]; 1128 mrs->retry_updated = false; 1129 minstrel_ht_calc_rate_stats(mp, mrs); 1130 1131 if (mrs->att_hist) 1132 last_prob = max(last_prob, mrs->prob_avg); 1133 else 1134 mrs->prob_avg = max(last_prob, mrs->prob_avg); 1135 cur_prob = mrs->prob_avg; 1136 1137 if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0) 1138 continue; 1139 1140 /* Find max throughput rate set */ 1141 minstrel_ht_sort_best_tp_rates(mi, index, tp_rate); 1142 1143 /* Find max throughput rate set within a group */ 1144 minstrel_ht_sort_best_tp_rates(mi, index, 1145 tmp_group_tp_rate); 1146 } 1147 1148 memcpy(mg->max_group_tp_rate, tmp_group_tp_rate, 1149 sizeof(mg->max_group_tp_rate)); 1150 } 1151 1152 /* Assign new rate set per sta */ 1153 minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, 1154 tmp_legacy_tp_rate); 1155 memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate)); 1156 1157 for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) { 1158 if (!mi->supported[group]) 1159 continue; 1160 1161 mg = &mi->groups[group]; 1162 mg->max_group_prob_rate = MI_RATE(group, 0); 1163 1164 for (i = 0; i < MCS_GROUP_RATES; i++) { 1165 if (!(mi->supported[group] & BIT(i))) 1166 continue; 1167 1168 index = MI_RATE(group, i); 1169 1170 /* Find max probability rate per group and global */ 1171 minstrel_ht_set_best_prob_rate(mi, &tmp_max_prob_rate, 1172 index); 1173 } 1174 } 1175 1176 mi->max_prob_rate = tmp_max_prob_rate; 1177 1178 /* Try to increase robustness of max_prob_rate*/ 1179 minstrel_ht_prob_rate_reduce_streams(mi); 1180 minstrel_ht_refill_sample_rates(mi); 1181 1182 #ifdef CONFIG_MAC80211_DEBUGFS 1183 /* use fixed index if set */ 1184 if (mp->fixed_rate_idx != -1) { 1185 for (i = 0; i < 4; i++) 1186 mi->max_tp_rate[i] = mp->fixed_rate_idx; 1187 mi->max_prob_rate = mp->fixed_rate_idx; 1188 } 1189 #endif 1190 1191 /* Reset update timer */ 1192 mi->last_stats_update = jiffies; 1193 mi->sample_time = jiffies; 1194 } 1195 1196 static bool 1197 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, 1198 struct ieee80211_tx_rate *rate) 1199 { 1200 int i; 1201 1202 if (rate->idx < 0) 1203 return false; 1204 1205 if (!rate->count) 1206 return false; 1207 1208 if (rate->flags & IEEE80211_TX_RC_MCS || 1209 rate->flags & IEEE80211_TX_RC_VHT_MCS) 1210 return true; 1211 1212 for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++) 1213 if (rate->idx == mp->cck_rates[i]) 1214 return true; 1215 1216 for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) 1217 if (rate->idx == mp->ofdm_rates[mi->band][i]) 1218 return true; 1219 1220 return false; 1221 } 1222 1223 /* 1224 * Check whether rate_status contains valid information. 1225 */ 1226 static bool 1227 minstrel_ht_ri_txstat_valid(struct minstrel_priv *mp, 1228 struct minstrel_ht_sta *mi, 1229 struct ieee80211_rate_status *rate_status) 1230 { 1231 int i; 1232 1233 if (!rate_status) 1234 return false; 1235 if (!rate_status->try_count) 1236 return false; 1237 1238 if (rate_status->rate_idx.flags & RATE_INFO_FLAGS_MCS || 1239 rate_status->rate_idx.flags & RATE_INFO_FLAGS_VHT_MCS) 1240 return true; 1241 1242 for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++) { 1243 if (rate_status->rate_idx.legacy == 1244 minstrel_cck_bitrates[ mp->cck_rates[i] ]) 1245 return true; 1246 } 1247 1248 for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates); i++) { 1249 if (rate_status->rate_idx.legacy == 1250 minstrel_ofdm_bitrates[ mp->ofdm_rates[mi->band][i] ]) 1251 return true; 1252 } 1253 1254 return false; 1255 } 1256 1257 static void 1258 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary) 1259 { 1260 int group, orig_group; 1261 1262 orig_group = group = MI_RATE_GROUP(*idx); 1263 while (group > 0) { 1264 group--; 1265 1266 if (!mi->supported[group]) 1267 continue; 1268 1269 if (minstrel_mcs_groups[group].streams > 1270 minstrel_mcs_groups[orig_group].streams) 1271 continue; 1272 1273 if (primary) 1274 *idx = mi->groups[group].max_group_tp_rate[0]; 1275 else 1276 *idx = mi->groups[group].max_group_tp_rate[1]; 1277 break; 1278 } 1279 } 1280 1281 static void 1282 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband, 1283 void *priv_sta, struct ieee80211_tx_status *st) 1284 { 1285 struct ieee80211_tx_info *info = st->info; 1286 struct minstrel_ht_sta *mi = priv_sta; 1287 struct ieee80211_tx_rate *ar = info->status.rates; 1288 struct minstrel_rate_stats *rate, *rate2; 1289 struct minstrel_priv *mp = priv; 1290 u32 update_interval = mp->update_interval; 1291 bool last, update = false; 1292 int i; 1293 1294 /* Ignore packet that was sent with noAck flag */ 1295 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 1296 return; 1297 1298 /* This packet was aggregated but doesn't carry status info */ 1299 if ((info->flags & IEEE80211_TX_CTL_AMPDU) && 1300 !(info->flags & IEEE80211_TX_STAT_AMPDU)) 1301 return; 1302 1303 if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) { 1304 info->status.ampdu_ack_len = 1305 (info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0); 1306 info->status.ampdu_len = 1; 1307 } 1308 1309 /* wraparound */ 1310 if (mi->total_packets >= ~0 - info->status.ampdu_len) { 1311 mi->total_packets = 0; 1312 mi->sample_packets = 0; 1313 } 1314 1315 mi->total_packets += info->status.ampdu_len; 1316 if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) 1317 mi->sample_packets += info->status.ampdu_len; 1318 1319 mi->ampdu_packets++; 1320 mi->ampdu_len += info->status.ampdu_len; 1321 1322 if (st->rates && st->n_rates) { 1323 last = !minstrel_ht_ri_txstat_valid(mp, mi, &(st->rates[0])); 1324 for (i = 0; !last; i++) { 1325 last = (i == st->n_rates - 1) || 1326 !minstrel_ht_ri_txstat_valid(mp, mi, 1327 &(st->rates[i + 1])); 1328 1329 rate = minstrel_ht_ri_get_stats(mp, mi, 1330 &(st->rates[i])); 1331 1332 if (last) 1333 rate->success += info->status.ampdu_ack_len; 1334 1335 rate->attempts += st->rates[i].try_count * 1336 info->status.ampdu_len; 1337 } 1338 } else { 1339 last = !minstrel_ht_txstat_valid(mp, mi, &ar[0]); 1340 for (i = 0; !last; i++) { 1341 last = (i == IEEE80211_TX_MAX_RATES - 1) || 1342 !minstrel_ht_txstat_valid(mp, mi, &ar[i + 1]); 1343 1344 rate = minstrel_ht_get_stats(mp, mi, &ar[i]); 1345 if (last) 1346 rate->success += info->status.ampdu_ack_len; 1347 1348 rate->attempts += ar[i].count * info->status.ampdu_len; 1349 } 1350 } 1351 1352 if (mp->hw->max_rates > 1) { 1353 /* 1354 * check for sudden death of spatial multiplexing, 1355 * downgrade to a lower number of streams if necessary. 1356 */ 1357 rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]); 1358 if (rate->attempts > 30 && 1359 rate->success < rate->attempts / 4) { 1360 minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true); 1361 update = true; 1362 } 1363 1364 rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]); 1365 if (rate2->attempts > 30 && 1366 rate2->success < rate2->attempts / 4) { 1367 minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false); 1368 update = true; 1369 } 1370 } 1371 1372 if (time_after(jiffies, mi->last_stats_update + update_interval)) { 1373 update = true; 1374 minstrel_ht_update_stats(mp, mi); 1375 } 1376 1377 if (update) 1378 minstrel_ht_update_rates(mp, mi); 1379 } 1380 1381 static void 1382 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, 1383 int index) 1384 { 1385 struct minstrel_rate_stats *mrs; 1386 unsigned int tx_time, tx_time_rtscts, tx_time_data; 1387 unsigned int cw = mp->cw_min; 1388 unsigned int ctime = 0; 1389 unsigned int t_slot = 9; /* FIXME */ 1390 unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi); 1391 unsigned int overhead = 0, overhead_rtscts = 0; 1392 1393 mrs = minstrel_get_ratestats(mi, index); 1394 if (mrs->prob_avg < MINSTREL_FRAC(1, 10)) { 1395 mrs->retry_count = 1; 1396 mrs->retry_count_rtscts = 1; 1397 return; 1398 } 1399 1400 mrs->retry_count = 2; 1401 mrs->retry_count_rtscts = 2; 1402 mrs->retry_updated = true; 1403 1404 tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000; 1405 1406 /* Contention time for first 2 tries */ 1407 ctime = (t_slot * cw) >> 1; 1408 cw = min((cw << 1) | 1, mp->cw_max); 1409 ctime += (t_slot * cw) >> 1; 1410 cw = min((cw << 1) | 1, mp->cw_max); 1411 1412 if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index))) { 1413 overhead = mi->overhead_legacy; 1414 overhead_rtscts = mi->overhead_legacy_rtscts; 1415 } else { 1416 overhead = mi->overhead; 1417 overhead_rtscts = mi->overhead_rtscts; 1418 } 1419 1420 /* Total TX time for data and Contention after first 2 tries */ 1421 tx_time = ctime + 2 * (overhead + tx_time_data); 1422 tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data); 1423 1424 /* See how many more tries we can fit inside segment size */ 1425 do { 1426 /* Contention time for this try */ 1427 ctime = (t_slot * cw) >> 1; 1428 cw = min((cw << 1) | 1, mp->cw_max); 1429 1430 /* Total TX time after this try */ 1431 tx_time += ctime + overhead + tx_time_data; 1432 tx_time_rtscts += ctime + overhead_rtscts + tx_time_data; 1433 1434 if (tx_time_rtscts < mp->segment_size) 1435 mrs->retry_count_rtscts++; 1436 } while ((tx_time < mp->segment_size) && 1437 (++mrs->retry_count < mp->max_retry)); 1438 } 1439 1440 1441 static void 1442 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, 1443 struct ieee80211_sta_rates *ratetbl, int offset, int index) 1444 { 1445 int group_idx = MI_RATE_GROUP(index); 1446 const struct mcs_group *group = &minstrel_mcs_groups[group_idx]; 1447 struct minstrel_rate_stats *mrs; 1448 u8 idx; 1449 u16 flags = group->flags; 1450 1451 mrs = minstrel_get_ratestats(mi, index); 1452 if (!mrs->retry_updated) 1453 minstrel_calc_retransmit(mp, mi, index); 1454 1455 if (mrs->prob_avg < MINSTREL_FRAC(20, 100) || !mrs->retry_count) { 1456 ratetbl->rate[offset].count = 2; 1457 ratetbl->rate[offset].count_rts = 2; 1458 ratetbl->rate[offset].count_cts = 2; 1459 } else { 1460 ratetbl->rate[offset].count = mrs->retry_count; 1461 ratetbl->rate[offset].count_cts = mrs->retry_count; 1462 ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts; 1463 } 1464 1465 index = MI_RATE_IDX(index); 1466 if (group_idx == MINSTREL_CCK_GROUP) 1467 idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)]; 1468 else if (group_idx == MINSTREL_OFDM_GROUP) 1469 idx = mp->ofdm_rates[mi->band][index % 1470 ARRAY_SIZE(mp->ofdm_rates[0])]; 1471 else if (flags & IEEE80211_TX_RC_VHT_MCS) 1472 idx = ((group->streams - 1) << 4) | 1473 (index & 0xF); 1474 else 1475 idx = index + (group->streams - 1) * 8; 1476 1477 /* enable RTS/CTS if needed: 1478 * - if station is in dynamic SMPS (and streams > 1) 1479 * - for fallback rates, to increase chances of getting through 1480 */ 1481 if (offset > 0 || 1482 (mi->sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC && 1483 group->streams > 1)) { 1484 ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts; 1485 flags |= IEEE80211_TX_RC_USE_RTS_CTS; 1486 } 1487 1488 ratetbl->rate[offset].idx = idx; 1489 ratetbl->rate[offset].flags = flags; 1490 } 1491 1492 static inline int 1493 minstrel_ht_get_prob_avg(struct minstrel_ht_sta *mi, int rate) 1494 { 1495 int group = MI_RATE_GROUP(rate); 1496 rate = MI_RATE_IDX(rate); 1497 return mi->groups[group].rates[rate].prob_avg; 1498 } 1499 1500 static int 1501 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi) 1502 { 1503 int group = MI_RATE_GROUP(mi->max_prob_rate); 1504 const struct mcs_group *g = &minstrel_mcs_groups[group]; 1505 int rate = MI_RATE_IDX(mi->max_prob_rate); 1506 unsigned int duration; 1507 1508 /* Disable A-MSDU if max_prob_rate is bad */ 1509 if (mi->groups[group].rates[rate].prob_avg < MINSTREL_FRAC(50, 100)) 1510 return 1; 1511 1512 duration = g->duration[rate]; 1513 duration <<= g->shift; 1514 1515 /* If the rate is slower than single-stream MCS1, make A-MSDU limit small */ 1516 if (duration > MCS_DURATION(1, 0, 52)) 1517 return 500; 1518 1519 /* 1520 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual 1521 * data packet size 1522 */ 1523 if (duration > MCS_DURATION(1, 0, 104)) 1524 return 1600; 1525 1526 /* 1527 * If the rate is slower than single-stream MCS7, or if the max throughput 1528 * rate success probability is less than 75%, limit A-MSDU to twice the usual 1529 * data packet size 1530 */ 1531 if (duration > MCS_DURATION(1, 0, 260) || 1532 (minstrel_ht_get_prob_avg(mi, mi->max_tp_rate[0]) < 1533 MINSTREL_FRAC(75, 100))) 1534 return 3200; 1535 1536 /* 1537 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes. 1538 * Since aggregation sessions are started/stopped without txq flush, use 1539 * the limit here to avoid the complexity of having to de-aggregate 1540 * packets in the queue. 1541 */ 1542 if (!mi->sta->deflink.vht_cap.vht_supported) 1543 return IEEE80211_MAX_MPDU_LEN_HT_BA; 1544 1545 /* unlimited */ 1546 return 0; 1547 } 1548 1549 static void 1550 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) 1551 { 1552 struct ieee80211_sta_rates *rates; 1553 int i = 0; 1554 int max_rates = min_t(int, mp->hw->max_rates, IEEE80211_TX_RATE_TABLE_SIZE); 1555 1556 rates = kzalloc(sizeof(*rates), GFP_ATOMIC); 1557 if (!rates) 1558 return; 1559 1560 /* Start with max_tp_rate[0] */ 1561 minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]); 1562 1563 /* Fill up remaining, keep one entry for max_probe_rate */ 1564 for (; i < (max_rates - 1); i++) 1565 minstrel_ht_set_rate(mp, mi, rates, i, mi->max_tp_rate[i]); 1566 1567 if (i < max_rates) 1568 minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate); 1569 1570 if (i < IEEE80211_TX_RATE_TABLE_SIZE) 1571 rates->rate[i].idx = -1; 1572 1573 mi->sta->deflink.agg.max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi); 1574 ieee80211_sta_recalc_aggregates(mi->sta); 1575 rate_control_set_rates(mp->hw, mi->sta, rates); 1576 } 1577 1578 static u16 1579 minstrel_ht_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi) 1580 { 1581 u8 seq; 1582 1583 if (mp->hw->max_rates > 1) { 1584 seq = mi->sample_seq; 1585 mi->sample_seq = (seq + 1) % ARRAY_SIZE(minstrel_sample_seq); 1586 seq = minstrel_sample_seq[seq]; 1587 } else { 1588 seq = MINSTREL_SAMPLE_TYPE_INC; 1589 } 1590 1591 return __minstrel_ht_get_sample_rate(mi, seq); 1592 } 1593 1594 static void 1595 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta, 1596 struct ieee80211_tx_rate_control *txrc) 1597 { 1598 const struct mcs_group *sample_group; 1599 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb); 1600 struct ieee80211_tx_rate *rate = &info->status.rates[0]; 1601 struct minstrel_ht_sta *mi = priv_sta; 1602 struct minstrel_priv *mp = priv; 1603 u16 sample_idx; 1604 1605 info->flags |= mi->tx_flags; 1606 1607 #ifdef CONFIG_MAC80211_DEBUGFS 1608 if (mp->fixed_rate_idx != -1) 1609 return; 1610 #endif 1611 1612 /* Don't use EAPOL frames for sampling on non-mrr hw */ 1613 if (mp->hw->max_rates == 1 && 1614 (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO)) 1615 return; 1616 1617 if (time_is_after_jiffies(mi->sample_time)) 1618 return; 1619 1620 mi->sample_time = jiffies + MINSTREL_SAMPLE_INTERVAL; 1621 sample_idx = minstrel_ht_get_sample_rate(mp, mi); 1622 if (!sample_idx) 1623 return; 1624 1625 sample_group = &minstrel_mcs_groups[MI_RATE_GROUP(sample_idx)]; 1626 sample_idx = MI_RATE_IDX(sample_idx); 1627 1628 if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] && 1629 (sample_idx >= 4) != txrc->short_preamble) 1630 return; 1631 1632 info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; 1633 rate->count = 1; 1634 1635 if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) { 1636 int idx = sample_idx % ARRAY_SIZE(mp->cck_rates); 1637 rate->idx = mp->cck_rates[idx]; 1638 } else if (sample_group == &minstrel_mcs_groups[MINSTREL_OFDM_GROUP]) { 1639 int idx = sample_idx % ARRAY_SIZE(mp->ofdm_rates[0]); 1640 rate->idx = mp->ofdm_rates[mi->band][idx]; 1641 } else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) { 1642 ieee80211_rate_set_vht(rate, MI_RATE_IDX(sample_idx), 1643 sample_group->streams); 1644 } else { 1645 rate->idx = sample_idx + (sample_group->streams - 1) * 8; 1646 } 1647 1648 rate->flags = sample_group->flags; 1649 } 1650 1651 static void 1652 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, 1653 struct ieee80211_supported_band *sband, 1654 struct ieee80211_sta *sta) 1655 { 1656 int i; 1657 1658 if (sband->band != NL80211_BAND_2GHZ) 1659 return; 1660 1661 if (sta->deflink.ht_cap.ht_supported && 1662 !ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES)) 1663 return; 1664 1665 for (i = 0; i < 4; i++) { 1666 if (mp->cck_rates[i] == 0xff || 1667 !rate_supported(sta, sband->band, mp->cck_rates[i])) 1668 continue; 1669 1670 mi->supported[MINSTREL_CCK_GROUP] |= BIT(i); 1671 if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE) 1672 mi->supported[MINSTREL_CCK_GROUP] |= BIT(i + 4); 1673 } 1674 } 1675 1676 static void 1677 minstrel_ht_update_ofdm(struct minstrel_priv *mp, struct minstrel_ht_sta *mi, 1678 struct ieee80211_supported_band *sband, 1679 struct ieee80211_sta *sta) 1680 { 1681 const u8 *rates; 1682 int i; 1683 1684 if (sta->deflink.ht_cap.ht_supported) 1685 return; 1686 1687 rates = mp->ofdm_rates[sband->band]; 1688 for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) { 1689 if (rates[i] == 0xff || 1690 !rate_supported(sta, sband->band, rates[i])) 1691 continue; 1692 1693 mi->supported[MINSTREL_OFDM_GROUP] |= BIT(i); 1694 } 1695 } 1696 1697 static void 1698 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband, 1699 struct cfg80211_chan_def *chandef, 1700 struct ieee80211_sta *sta, void *priv_sta) 1701 { 1702 struct minstrel_priv *mp = priv; 1703 struct minstrel_ht_sta *mi = priv_sta; 1704 struct ieee80211_mcs_info *mcs = &sta->deflink.ht_cap.mcs; 1705 u16 ht_cap = sta->deflink.ht_cap.cap; 1706 struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap; 1707 const struct ieee80211_rate *ctl_rate; 1708 struct sta_info *sta_info; 1709 bool ldpc, erp; 1710 int use_vht; 1711 int ack_dur; 1712 int stbc; 1713 int i; 1714 1715 BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB); 1716 1717 if (vht_cap->vht_supported) 1718 use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0); 1719 else 1720 use_vht = 0; 1721 1722 memset(mi, 0, sizeof(*mi)); 1723 1724 mi->sta = sta; 1725 mi->band = sband->band; 1726 mi->last_stats_update = jiffies; 1727 1728 ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1); 1729 mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1); 1730 mi->overhead += ack_dur; 1731 mi->overhead_rtscts = mi->overhead + 2 * ack_dur; 1732 1733 ctl_rate = &sband->bitrates[rate_lowest_index(sband, sta)]; 1734 erp = ctl_rate->flags & IEEE80211_RATE_ERP_G; 1735 ack_dur = ieee80211_frame_duration(sband->band, 10, 1736 ctl_rate->bitrate, erp, 1); 1737 mi->overhead_legacy = ack_dur; 1738 mi->overhead_legacy_rtscts = mi->overhead_legacy + 2 * ack_dur; 1739 1740 mi->avg_ampdu_len = MINSTREL_FRAC(1, 1); 1741 1742 if (!use_vht) { 1743 stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >> 1744 IEEE80211_HT_CAP_RX_STBC_SHIFT; 1745 1746 ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING; 1747 } else { 1748 stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >> 1749 IEEE80211_VHT_CAP_RXSTBC_SHIFT; 1750 1751 ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC; 1752 } 1753 1754 mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT; 1755 if (ldpc) 1756 mi->tx_flags |= IEEE80211_TX_CTL_LDPC; 1757 1758 for (i = 0; i < ARRAY_SIZE(mi->groups); i++) { 1759 u32 gflags = minstrel_mcs_groups[i].flags; 1760 int bw, nss; 1761 1762 mi->supported[i] = 0; 1763 if (minstrel_ht_is_legacy_group(i)) 1764 continue; 1765 1766 if (gflags & IEEE80211_TX_RC_SHORT_GI) { 1767 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) { 1768 if (!(ht_cap & IEEE80211_HT_CAP_SGI_40)) 1769 continue; 1770 } else { 1771 if (!(ht_cap & IEEE80211_HT_CAP_SGI_20)) 1772 continue; 1773 } 1774 } 1775 1776 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH && 1777 sta->deflink.bandwidth < IEEE80211_STA_RX_BW_40) 1778 continue; 1779 1780 nss = minstrel_mcs_groups[i].streams; 1781 1782 /* Mark MCS > 7 as unsupported if STA is in static SMPS mode */ 1783 if (sta->deflink.smps_mode == IEEE80211_SMPS_STATIC && nss > 1) 1784 continue; 1785 1786 /* HT rate */ 1787 if (gflags & IEEE80211_TX_RC_MCS) { 1788 if (use_vht && minstrel_vht_only) 1789 continue; 1790 1791 mi->supported[i] = mcs->rx_mask[nss - 1]; 1792 continue; 1793 } 1794 1795 /* VHT rate */ 1796 if (!vht_cap->vht_supported || 1797 WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) || 1798 WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH)) 1799 continue; 1800 1801 if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) { 1802 if (sta->deflink.bandwidth < IEEE80211_STA_RX_BW_80 || 1803 ((gflags & IEEE80211_TX_RC_SHORT_GI) && 1804 !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) { 1805 continue; 1806 } 1807 } 1808 1809 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1810 bw = BW_40; 1811 else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) 1812 bw = BW_80; 1813 else 1814 bw = BW_20; 1815 1816 mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss, 1817 vht_cap->vht_mcs.tx_mcs_map); 1818 } 1819 1820 sta_info = container_of(sta, struct sta_info, sta); 1821 mi->use_short_preamble = test_sta_flag(sta_info, WLAN_STA_SHORT_PREAMBLE) && 1822 sta_info->sdata->vif.bss_conf.use_short_preamble; 1823 1824 minstrel_ht_update_cck(mp, mi, sband, sta); 1825 minstrel_ht_update_ofdm(mp, mi, sband, sta); 1826 1827 /* create an initial rate table with the lowest supported rates */ 1828 minstrel_ht_update_stats(mp, mi); 1829 minstrel_ht_update_rates(mp, mi); 1830 } 1831 1832 static void 1833 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband, 1834 struct cfg80211_chan_def *chandef, 1835 struct ieee80211_sta *sta, void *priv_sta) 1836 { 1837 minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta); 1838 } 1839 1840 static void 1841 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband, 1842 struct cfg80211_chan_def *chandef, 1843 struct ieee80211_sta *sta, void *priv_sta, 1844 u32 changed) 1845 { 1846 minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta); 1847 } 1848 1849 static void * 1850 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp) 1851 { 1852 struct ieee80211_supported_band *sband; 1853 struct minstrel_ht_sta *mi; 1854 struct minstrel_priv *mp = priv; 1855 struct ieee80211_hw *hw = mp->hw; 1856 int max_rates = 0; 1857 int i; 1858 1859 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1860 sband = hw->wiphy->bands[i]; 1861 if (sband && sband->n_bitrates > max_rates) 1862 max_rates = sband->n_bitrates; 1863 } 1864 1865 return kzalloc(sizeof(*mi), gfp); 1866 } 1867 1868 static void 1869 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta) 1870 { 1871 kfree(priv_sta); 1872 } 1873 1874 static void 1875 minstrel_ht_fill_rate_array(u8 *dest, struct ieee80211_supported_band *sband, 1876 const s16 *bitrates, int n_rates, u32 rate_flags) 1877 { 1878 int i, j; 1879 1880 for (i = 0; i < sband->n_bitrates; i++) { 1881 struct ieee80211_rate *rate = &sband->bitrates[i]; 1882 1883 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1884 continue; 1885 1886 for (j = 0; j < n_rates; j++) { 1887 if (rate->bitrate != bitrates[j]) 1888 continue; 1889 1890 dest[j] = i; 1891 break; 1892 } 1893 } 1894 } 1895 1896 static void 1897 minstrel_ht_init_cck_rates(struct minstrel_priv *mp) 1898 { 1899 static const s16 bitrates[4] = { 10, 20, 55, 110 }; 1900 struct ieee80211_supported_band *sband; 1901 u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef); 1902 1903 memset(mp->cck_rates, 0xff, sizeof(mp->cck_rates)); 1904 sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ]; 1905 if (!sband) 1906 return; 1907 1908 BUILD_BUG_ON(ARRAY_SIZE(mp->cck_rates) != ARRAY_SIZE(bitrates)); 1909 minstrel_ht_fill_rate_array(mp->cck_rates, sband, 1910 minstrel_cck_bitrates, 1911 ARRAY_SIZE(minstrel_cck_bitrates), 1912 rate_flags); 1913 } 1914 1915 static void 1916 minstrel_ht_init_ofdm_rates(struct minstrel_priv *mp, enum nl80211_band band) 1917 { 1918 static const s16 bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 }; 1919 struct ieee80211_supported_band *sband; 1920 u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef); 1921 1922 memset(mp->ofdm_rates[band], 0xff, sizeof(mp->ofdm_rates[band])); 1923 sband = mp->hw->wiphy->bands[band]; 1924 if (!sband) 1925 return; 1926 1927 BUILD_BUG_ON(ARRAY_SIZE(mp->ofdm_rates[band]) != ARRAY_SIZE(bitrates)); 1928 minstrel_ht_fill_rate_array(mp->ofdm_rates[band], sband, 1929 minstrel_ofdm_bitrates, 1930 ARRAY_SIZE(minstrel_ofdm_bitrates), 1931 rate_flags); 1932 } 1933 1934 static void * 1935 minstrel_ht_alloc(struct ieee80211_hw *hw) 1936 { 1937 struct minstrel_priv *mp; 1938 int i; 1939 1940 mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC); 1941 if (!mp) 1942 return NULL; 1943 1944 /* contention window settings 1945 * Just an approximation. Using the per-queue values would complicate 1946 * the calculations and is probably unnecessary */ 1947 mp->cw_min = 15; 1948 mp->cw_max = 1023; 1949 1950 /* maximum time that the hw is allowed to stay in one MRR segment */ 1951 mp->segment_size = 6000; 1952 1953 if (hw->max_rate_tries > 0) 1954 mp->max_retry = hw->max_rate_tries; 1955 else 1956 /* safe default, does not necessarily have to match hw properties */ 1957 mp->max_retry = 7; 1958 1959 mp->hw = hw; 1960 mp->update_interval = HZ / 20; 1961 1962 minstrel_ht_init_cck_rates(mp); 1963 for (i = 0; i < ARRAY_SIZE(mp->hw->wiphy->bands); i++) 1964 minstrel_ht_init_ofdm_rates(mp, i); 1965 1966 return mp; 1967 } 1968 1969 #ifdef CONFIG_MAC80211_DEBUGFS 1970 static void minstrel_ht_add_debugfs(struct ieee80211_hw *hw, void *priv, 1971 struct dentry *debugfsdir) 1972 { 1973 struct minstrel_priv *mp = priv; 1974 1975 mp->fixed_rate_idx = (u32) -1; 1976 debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir, 1977 &mp->fixed_rate_idx); 1978 } 1979 #endif 1980 1981 static void 1982 minstrel_ht_free(void *priv) 1983 { 1984 kfree(priv); 1985 } 1986 1987 static u32 minstrel_ht_get_expected_throughput(void *priv_sta) 1988 { 1989 struct minstrel_ht_sta *mi = priv_sta; 1990 int i, j, prob, tp_avg; 1991 1992 i = MI_RATE_GROUP(mi->max_tp_rate[0]); 1993 j = MI_RATE_IDX(mi->max_tp_rate[0]); 1994 prob = mi->groups[i].rates[j].prob_avg; 1995 1996 /* convert tp_avg from pkt per second in kbps */ 1997 tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10; 1998 tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024; 1999 2000 return tp_avg; 2001 } 2002 2003 static const struct rate_control_ops mac80211_minstrel_ht = { 2004 .name = "minstrel_ht", 2005 .capa = RATE_CTRL_CAPA_AMPDU_TRIGGER, 2006 .tx_status_ext = minstrel_ht_tx_status, 2007 .get_rate = minstrel_ht_get_rate, 2008 .rate_init = minstrel_ht_rate_init, 2009 .rate_update = minstrel_ht_rate_update, 2010 .alloc_sta = minstrel_ht_alloc_sta, 2011 .free_sta = minstrel_ht_free_sta, 2012 .alloc = minstrel_ht_alloc, 2013 .free = minstrel_ht_free, 2014 #ifdef CONFIG_MAC80211_DEBUGFS 2015 .add_debugfs = minstrel_ht_add_debugfs, 2016 .add_sta_debugfs = minstrel_ht_add_sta_debugfs, 2017 #endif 2018 .get_expected_throughput = minstrel_ht_get_expected_throughput, 2019 }; 2020 2021 2022 static void __init init_sample_table(void) 2023 { 2024 int col, i, new_idx; 2025 u8 rnd[MCS_GROUP_RATES]; 2026 2027 memset(sample_table, 0xff, sizeof(sample_table)); 2028 for (col = 0; col < SAMPLE_COLUMNS; col++) { 2029 get_random_bytes(rnd, sizeof(rnd)); 2030 for (i = 0; i < MCS_GROUP_RATES; i++) { 2031 new_idx = (i + rnd[i]) % MCS_GROUP_RATES; 2032 while (sample_table[col][new_idx] != 0xff) 2033 new_idx = (new_idx + 1) % MCS_GROUP_RATES; 2034 2035 sample_table[col][new_idx] = i; 2036 } 2037 } 2038 } 2039 2040 int __init 2041 rc80211_minstrel_init(void) 2042 { 2043 init_sample_table(); 2044 return ieee80211_rate_control_register(&mac80211_minstrel_ht); 2045 } 2046 2047 void 2048 rc80211_minstrel_exit(void) 2049 { 2050 ieee80211_rate_control_unregister(&mac80211_minstrel_ht); 2051 } 2052
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.