1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp_states.h> 19 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 20 #include <net/transp_v6.h> 21 #endif 22 #include <net/mptcp.h> 23 #include <net/hotdata.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 WRITE_ONCE(subflow->local_id, 0); 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 } 111 112 return msk->first; 113 } 114 115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 116 { 117 sk_drops_add(sk, skb); 118 __kfree_skb(skb); 119 } 120 121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 122 { 123 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 124 mptcp_sk(sk)->rmem_fwd_alloc + size); 125 } 126 127 static void mptcp_rmem_charge(struct sock *sk, int size) 128 { 129 mptcp_rmem_fwd_alloc_add(sk, -size); 130 } 131 132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 133 struct sk_buff *from) 134 { 135 bool fragstolen; 136 int delta; 137 138 if (MPTCP_SKB_CB(from)->offset || 139 !skb_try_coalesce(to, from, &fragstolen, &delta)) 140 return false; 141 142 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 143 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 144 to->len, MPTCP_SKB_CB(from)->end_seq); 145 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 146 147 /* note the fwd memory can reach a negative value after accounting 148 * for the delta, but the later skb free will restore a non 149 * negative one 150 */ 151 atomic_add(delta, &sk->sk_rmem_alloc); 152 mptcp_rmem_charge(sk, delta); 153 kfree_skb_partial(from, fragstolen); 154 155 return true; 156 } 157 158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 159 struct sk_buff *from) 160 { 161 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 162 return false; 163 164 return mptcp_try_coalesce((struct sock *)msk, to, from); 165 } 166 167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 168 { 169 amount >>= PAGE_SHIFT; 170 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 171 __sk_mem_reduce_allocated(sk, amount); 172 } 173 174 static void mptcp_rmem_uncharge(struct sock *sk, int size) 175 { 176 struct mptcp_sock *msk = mptcp_sk(sk); 177 int reclaimable; 178 179 mptcp_rmem_fwd_alloc_add(sk, size); 180 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 181 182 /* see sk_mem_uncharge() for the rationale behind the following schema */ 183 if (unlikely(reclaimable >= PAGE_SIZE)) 184 __mptcp_rmem_reclaim(sk, reclaimable); 185 } 186 187 static void mptcp_rfree(struct sk_buff *skb) 188 { 189 unsigned int len = skb->truesize; 190 struct sock *sk = skb->sk; 191 192 atomic_sub(len, &sk->sk_rmem_alloc); 193 mptcp_rmem_uncharge(sk, len); 194 } 195 196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 197 { 198 skb_orphan(skb); 199 skb->sk = sk; 200 skb->destructor = mptcp_rfree; 201 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 202 mptcp_rmem_charge(sk, skb->truesize); 203 } 204 205 /* "inspired" by tcp_data_queue_ofo(), main differences: 206 * - use mptcp seqs 207 * - don't cope with sacks 208 */ 209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 210 { 211 struct sock *sk = (struct sock *)msk; 212 struct rb_node **p, *parent; 213 u64 seq, end_seq, max_seq; 214 struct sk_buff *skb1; 215 216 seq = MPTCP_SKB_CB(skb)->map_seq; 217 end_seq = MPTCP_SKB_CB(skb)->end_seq; 218 max_seq = atomic64_read(&msk->rcv_wnd_sent); 219 220 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 221 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 222 if (after64(end_seq, max_seq)) { 223 /* out of window */ 224 mptcp_drop(sk, skb); 225 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 226 (unsigned long long)end_seq - (unsigned long)max_seq, 227 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 228 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 229 return; 230 } 231 232 p = &msk->out_of_order_queue.rb_node; 233 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 234 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 235 rb_link_node(&skb->rbnode, NULL, p); 236 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 237 msk->ooo_last_skb = skb; 238 goto end; 239 } 240 241 /* with 2 subflows, adding at end of ooo queue is quite likely 242 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 243 */ 244 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 245 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 247 return; 248 } 249 250 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 251 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 252 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 253 parent = &msk->ooo_last_skb->rbnode; 254 p = &parent->rb_right; 255 goto insert; 256 } 257 258 /* Find place to insert this segment. Handle overlaps on the way. */ 259 parent = NULL; 260 while (*p) { 261 parent = *p; 262 skb1 = rb_to_skb(parent); 263 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 264 p = &parent->rb_left; 265 continue; 266 } 267 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 268 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 /* All the bits are present. Drop. */ 270 mptcp_drop(sk, skb); 271 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 272 return; 273 } 274 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 275 /* partial overlap: 276 * | skb | 277 * | skb1 | 278 * continue traversing 279 */ 280 } else { 281 /* skb's seq == skb1's seq and skb covers skb1. 282 * Replace skb1 with skb. 283 */ 284 rb_replace_node(&skb1->rbnode, &skb->rbnode, 285 &msk->out_of_order_queue); 286 mptcp_drop(sk, skb1); 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 288 goto merge_right; 289 } 290 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 291 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 292 return; 293 } 294 p = &parent->rb_right; 295 } 296 297 insert: 298 /* Insert segment into RB tree. */ 299 rb_link_node(&skb->rbnode, parent, p); 300 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 301 302 merge_right: 303 /* Remove other segments covered by skb. */ 304 while ((skb1 = skb_rb_next(skb)) != NULL) { 305 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 306 break; 307 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 308 mptcp_drop(sk, skb1); 309 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 310 } 311 /* If there is no skb after us, we are the last_skb ! */ 312 if (!skb1) 313 msk->ooo_last_skb = skb; 314 315 end: 316 skb_condense(skb); 317 mptcp_set_owner_r(skb, sk); 318 } 319 320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 321 { 322 struct mptcp_sock *msk = mptcp_sk(sk); 323 int amt, amount; 324 325 if (size <= msk->rmem_fwd_alloc) 326 return true; 327 328 size -= msk->rmem_fwd_alloc; 329 amt = sk_mem_pages(size); 330 amount = amt << PAGE_SHIFT; 331 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 332 return false; 333 334 mptcp_rmem_fwd_alloc_add(sk, amount); 335 return true; 336 } 337 338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 339 struct sk_buff *skb, unsigned int offset, 340 size_t copy_len) 341 { 342 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 343 struct sock *sk = (struct sock *)msk; 344 struct sk_buff *tail; 345 bool has_rxtstamp; 346 347 __skb_unlink(skb, &ssk->sk_receive_queue); 348 349 skb_ext_reset(skb); 350 skb_orphan(skb); 351 352 /* try to fetch required memory from subflow */ 353 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) { 354 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 355 goto drop; 356 } 357 358 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 359 360 /* the skb map_seq accounts for the skb offset: 361 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 362 * value 363 */ 364 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 365 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 366 MPTCP_SKB_CB(skb)->offset = offset; 367 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 368 369 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 370 /* in sequence */ 371 msk->bytes_received += copy_len; 372 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 373 tail = skb_peek_tail(&sk->sk_receive_queue); 374 if (tail && mptcp_try_coalesce(sk, tail, skb)) 375 return true; 376 377 mptcp_set_owner_r(skb, sk); 378 __skb_queue_tail(&sk->sk_receive_queue, skb); 379 return true; 380 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 381 mptcp_data_queue_ofo(msk, skb); 382 return false; 383 } 384 385 /* old data, keep it simple and drop the whole pkt, sender 386 * will retransmit as needed, if needed. 387 */ 388 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 389 drop: 390 mptcp_drop(sk, skb); 391 return false; 392 } 393 394 static void mptcp_stop_rtx_timer(struct sock *sk) 395 { 396 struct inet_connection_sock *icsk = inet_csk(sk); 397 398 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 399 mptcp_sk(sk)->timer_ival = 0; 400 } 401 402 static void mptcp_close_wake_up(struct sock *sk) 403 { 404 if (sock_flag(sk, SOCK_DEAD)) 405 return; 406 407 sk->sk_state_change(sk); 408 if (sk->sk_shutdown == SHUTDOWN_MASK || 409 sk->sk_state == TCP_CLOSE) 410 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 411 else 412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 413 } 414 415 /* called under the msk socket lock */ 416 static bool mptcp_pending_data_fin_ack(struct sock *sk) 417 { 418 struct mptcp_sock *msk = mptcp_sk(sk); 419 420 return ((1 << sk->sk_state) & 421 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 422 msk->write_seq == READ_ONCE(msk->snd_una); 423 } 424 425 static void mptcp_check_data_fin_ack(struct sock *sk) 426 { 427 struct mptcp_sock *msk = mptcp_sk(sk); 428 429 /* Look for an acknowledged DATA_FIN */ 430 if (mptcp_pending_data_fin_ack(sk)) { 431 WRITE_ONCE(msk->snd_data_fin_enable, 0); 432 433 switch (sk->sk_state) { 434 case TCP_FIN_WAIT1: 435 mptcp_set_state(sk, TCP_FIN_WAIT2); 436 break; 437 case TCP_CLOSING: 438 case TCP_LAST_ACK: 439 mptcp_set_state(sk, TCP_CLOSE); 440 break; 441 } 442 443 mptcp_close_wake_up(sk); 444 } 445 } 446 447 /* can be called with no lock acquired */ 448 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 449 { 450 struct mptcp_sock *msk = mptcp_sk(sk); 451 452 if (READ_ONCE(msk->rcv_data_fin) && 453 ((1 << inet_sk_state_load(sk)) & 454 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 455 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 456 457 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 458 if (seq) 459 *seq = rcv_data_fin_seq; 460 461 return true; 462 } 463 } 464 465 return false; 466 } 467 468 static void mptcp_set_datafin_timeout(struct sock *sk) 469 { 470 struct inet_connection_sock *icsk = inet_csk(sk); 471 u32 retransmits; 472 473 retransmits = min_t(u32, icsk->icsk_retransmits, 474 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 475 476 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 477 } 478 479 static void __mptcp_set_timeout(struct sock *sk, long tout) 480 { 481 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 482 } 483 484 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 485 { 486 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 487 488 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 489 inet_csk(ssk)->icsk_timeout - jiffies : 0; 490 } 491 492 static void mptcp_set_timeout(struct sock *sk) 493 { 494 struct mptcp_subflow_context *subflow; 495 long tout = 0; 496 497 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 498 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 499 __mptcp_set_timeout(sk, tout); 500 } 501 502 static inline bool tcp_can_send_ack(const struct sock *ssk) 503 { 504 return !((1 << inet_sk_state_load(ssk)) & 505 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 506 } 507 508 void __mptcp_subflow_send_ack(struct sock *ssk) 509 { 510 if (tcp_can_send_ack(ssk)) 511 tcp_send_ack(ssk); 512 } 513 514 static void mptcp_subflow_send_ack(struct sock *ssk) 515 { 516 bool slow; 517 518 slow = lock_sock_fast(ssk); 519 __mptcp_subflow_send_ack(ssk); 520 unlock_sock_fast(ssk, slow); 521 } 522 523 static void mptcp_send_ack(struct mptcp_sock *msk) 524 { 525 struct mptcp_subflow_context *subflow; 526 527 mptcp_for_each_subflow(msk, subflow) 528 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 529 } 530 531 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 532 { 533 bool slow; 534 535 slow = lock_sock_fast(ssk); 536 if (tcp_can_send_ack(ssk)) 537 tcp_cleanup_rbuf(ssk, 1); 538 unlock_sock_fast(ssk, slow); 539 } 540 541 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 542 { 543 const struct inet_connection_sock *icsk = inet_csk(ssk); 544 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 545 const struct tcp_sock *tp = tcp_sk(ssk); 546 547 return (ack_pending & ICSK_ACK_SCHED) && 548 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 549 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 550 (rx_empty && ack_pending & 551 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 552 } 553 554 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 555 { 556 int old_space = READ_ONCE(msk->old_wspace); 557 struct mptcp_subflow_context *subflow; 558 struct sock *sk = (struct sock *)msk; 559 int space = __mptcp_space(sk); 560 bool cleanup, rx_empty; 561 562 cleanup = (space > 0) && (space >= (old_space << 1)); 563 rx_empty = !__mptcp_rmem(sk); 564 565 mptcp_for_each_subflow(msk, subflow) { 566 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 567 568 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 569 mptcp_subflow_cleanup_rbuf(ssk); 570 } 571 } 572 573 static bool mptcp_check_data_fin(struct sock *sk) 574 { 575 struct mptcp_sock *msk = mptcp_sk(sk); 576 u64 rcv_data_fin_seq; 577 bool ret = false; 578 579 /* Need to ack a DATA_FIN received from a peer while this side 580 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 581 * msk->rcv_data_fin was set when parsing the incoming options 582 * at the subflow level and the msk lock was not held, so this 583 * is the first opportunity to act on the DATA_FIN and change 584 * the msk state. 585 * 586 * If we are caught up to the sequence number of the incoming 587 * DATA_FIN, send the DATA_ACK now and do state transition. If 588 * not caught up, do nothing and let the recv code send DATA_ACK 589 * when catching up. 590 */ 591 592 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 593 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 594 WRITE_ONCE(msk->rcv_data_fin, 0); 595 596 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 597 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 598 599 switch (sk->sk_state) { 600 case TCP_ESTABLISHED: 601 mptcp_set_state(sk, TCP_CLOSE_WAIT); 602 break; 603 case TCP_FIN_WAIT1: 604 mptcp_set_state(sk, TCP_CLOSING); 605 break; 606 case TCP_FIN_WAIT2: 607 mptcp_set_state(sk, TCP_CLOSE); 608 break; 609 default: 610 /* Other states not expected */ 611 WARN_ON_ONCE(1); 612 break; 613 } 614 615 ret = true; 616 if (!__mptcp_check_fallback(msk)) 617 mptcp_send_ack(msk); 618 mptcp_close_wake_up(sk); 619 } 620 return ret; 621 } 622 623 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 624 { 625 if (READ_ONCE(msk->allow_infinite_fallback)) { 626 MPTCP_INC_STATS(sock_net(ssk), 627 MPTCP_MIB_DSSCORRUPTIONFALLBACK); 628 mptcp_do_fallback(ssk); 629 } else { 630 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 631 mptcp_subflow_reset(ssk); 632 } 633 } 634 635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 636 struct sock *ssk, 637 unsigned int *bytes) 638 { 639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 640 struct sock *sk = (struct sock *)msk; 641 unsigned int moved = 0; 642 bool more_data_avail; 643 struct tcp_sock *tp; 644 bool done = false; 645 int sk_rbuf; 646 647 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 648 649 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 650 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 651 652 if (unlikely(ssk_rbuf > sk_rbuf)) { 653 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 654 sk_rbuf = ssk_rbuf; 655 } 656 } 657 658 pr_debug("msk=%p ssk=%p\n", msk, ssk); 659 tp = tcp_sk(ssk); 660 do { 661 u32 map_remaining, offset; 662 u32 seq = tp->copied_seq; 663 struct sk_buff *skb; 664 bool fin; 665 666 /* try to move as much data as available */ 667 map_remaining = subflow->map_data_len - 668 mptcp_subflow_get_map_offset(subflow); 669 670 skb = skb_peek(&ssk->sk_receive_queue); 671 if (!skb) { 672 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 673 * a different CPU can have already processed the pending 674 * data, stop here or we can enter an infinite loop 675 */ 676 if (!moved) 677 done = true; 678 break; 679 } 680 681 if (__mptcp_check_fallback(msk)) { 682 /* Under fallback skbs have no MPTCP extension and TCP could 683 * collapse them between the dummy map creation and the 684 * current dequeue. Be sure to adjust the map size. 685 */ 686 map_remaining = skb->len; 687 subflow->map_data_len = skb->len; 688 } 689 690 offset = seq - TCP_SKB_CB(skb)->seq; 691 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 692 if (fin) { 693 done = true; 694 seq++; 695 } 696 697 if (offset < skb->len) { 698 size_t len = skb->len - offset; 699 700 if (tp->urg_data) 701 done = true; 702 703 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 704 moved += len; 705 seq += len; 706 707 if (unlikely(map_remaining < len)) { 708 DEBUG_NET_WARN_ON_ONCE(1); 709 mptcp_dss_corruption(msk, ssk); 710 } 711 } else { 712 if (unlikely(!fin)) { 713 DEBUG_NET_WARN_ON_ONCE(1); 714 mptcp_dss_corruption(msk, ssk); 715 } 716 717 sk_eat_skb(ssk, skb); 718 done = true; 719 } 720 721 WRITE_ONCE(tp->copied_seq, seq); 722 more_data_avail = mptcp_subflow_data_available(ssk); 723 724 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 725 done = true; 726 break; 727 } 728 } while (more_data_avail); 729 730 if (moved > 0) 731 msk->last_data_recv = tcp_jiffies32; 732 *bytes += moved; 733 return done; 734 } 735 736 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 737 { 738 struct sock *sk = (struct sock *)msk; 739 struct sk_buff *skb, *tail; 740 bool moved = false; 741 struct rb_node *p; 742 u64 end_seq; 743 744 p = rb_first(&msk->out_of_order_queue); 745 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 746 while (p) { 747 skb = rb_to_skb(p); 748 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 749 break; 750 751 p = rb_next(p); 752 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 753 754 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 755 msk->ack_seq))) { 756 mptcp_drop(sk, skb); 757 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 758 continue; 759 } 760 761 end_seq = MPTCP_SKB_CB(skb)->end_seq; 762 tail = skb_peek_tail(&sk->sk_receive_queue); 763 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 764 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 765 766 /* skip overlapping data, if any */ 767 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 768 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 769 delta); 770 MPTCP_SKB_CB(skb)->offset += delta; 771 MPTCP_SKB_CB(skb)->map_seq += delta; 772 __skb_queue_tail(&sk->sk_receive_queue, skb); 773 } 774 msk->bytes_received += end_seq - msk->ack_seq; 775 WRITE_ONCE(msk->ack_seq, end_seq); 776 moved = true; 777 } 778 return moved; 779 } 780 781 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 782 { 783 int err = sock_error(ssk); 784 int ssk_state; 785 786 if (!err) 787 return false; 788 789 /* only propagate errors on fallen-back sockets or 790 * on MPC connect 791 */ 792 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 793 return false; 794 795 /* We need to propagate only transition to CLOSE state. 796 * Orphaned socket will see such state change via 797 * subflow_sched_work_if_closed() and that path will properly 798 * destroy the msk as needed. 799 */ 800 ssk_state = inet_sk_state_load(ssk); 801 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 802 mptcp_set_state(sk, ssk_state); 803 WRITE_ONCE(sk->sk_err, -err); 804 805 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 806 smp_wmb(); 807 sk_error_report(sk); 808 return true; 809 } 810 811 void __mptcp_error_report(struct sock *sk) 812 { 813 struct mptcp_subflow_context *subflow; 814 struct mptcp_sock *msk = mptcp_sk(sk); 815 816 mptcp_for_each_subflow(msk, subflow) 817 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 818 break; 819 } 820 821 /* In most cases we will be able to lock the mptcp socket. If its already 822 * owned, we need to defer to the work queue to avoid ABBA deadlock. 823 */ 824 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 825 { 826 struct sock *sk = (struct sock *)msk; 827 unsigned int moved = 0; 828 829 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 830 __mptcp_ofo_queue(msk); 831 if (unlikely(ssk->sk_err)) { 832 if (!sock_owned_by_user(sk)) 833 __mptcp_error_report(sk); 834 else 835 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 836 } 837 838 /* If the moves have caught up with the DATA_FIN sequence number 839 * it's time to ack the DATA_FIN and change socket state, but 840 * this is not a good place to change state. Let the workqueue 841 * do it. 842 */ 843 if (mptcp_pending_data_fin(sk, NULL)) 844 mptcp_schedule_work(sk); 845 return moved > 0; 846 } 847 848 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 849 { 850 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 851 struct mptcp_sock *msk = mptcp_sk(sk); 852 int sk_rbuf, ssk_rbuf; 853 854 /* The peer can send data while we are shutting down this 855 * subflow at msk destruction time, but we must avoid enqueuing 856 * more data to the msk receive queue 857 */ 858 if (unlikely(subflow->disposable)) 859 return; 860 861 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 862 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 863 if (unlikely(ssk_rbuf > sk_rbuf)) 864 sk_rbuf = ssk_rbuf; 865 866 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 867 if (__mptcp_rmem(sk) > sk_rbuf) 868 return; 869 870 /* Wake-up the reader only for in-sequence data */ 871 mptcp_data_lock(sk); 872 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 873 sk->sk_data_ready(sk); 874 mptcp_data_unlock(sk); 875 } 876 877 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 878 { 879 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 880 WRITE_ONCE(msk->allow_infinite_fallback, false); 881 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 882 } 883 884 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 885 { 886 struct sock *sk = (struct sock *)msk; 887 888 if (sk->sk_state != TCP_ESTABLISHED) 889 return false; 890 891 /* attach to msk socket only after we are sure we will deal with it 892 * at close time 893 */ 894 if (sk->sk_socket && !ssk->sk_socket) 895 mptcp_sock_graft(ssk, sk->sk_socket); 896 897 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 898 mptcp_sockopt_sync_locked(msk, ssk); 899 mptcp_subflow_joined(msk, ssk); 900 mptcp_stop_tout_timer(sk); 901 __mptcp_propagate_sndbuf(sk, ssk); 902 return true; 903 } 904 905 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 906 { 907 struct mptcp_subflow_context *tmp, *subflow; 908 struct mptcp_sock *msk = mptcp_sk(sk); 909 910 list_for_each_entry_safe(subflow, tmp, join_list, node) { 911 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 912 bool slow = lock_sock_fast(ssk); 913 914 list_move_tail(&subflow->node, &msk->conn_list); 915 if (!__mptcp_finish_join(msk, ssk)) 916 mptcp_subflow_reset(ssk); 917 unlock_sock_fast(ssk, slow); 918 } 919 } 920 921 static bool mptcp_rtx_timer_pending(struct sock *sk) 922 { 923 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 924 } 925 926 static void mptcp_reset_rtx_timer(struct sock *sk) 927 { 928 struct inet_connection_sock *icsk = inet_csk(sk); 929 unsigned long tout; 930 931 /* prevent rescheduling on close */ 932 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 933 return; 934 935 tout = mptcp_sk(sk)->timer_ival; 936 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 937 } 938 939 bool mptcp_schedule_work(struct sock *sk) 940 { 941 if (inet_sk_state_load(sk) != TCP_CLOSE && 942 schedule_work(&mptcp_sk(sk)->work)) { 943 /* each subflow already holds a reference to the sk, and the 944 * workqueue is invoked by a subflow, so sk can't go away here. 945 */ 946 sock_hold(sk); 947 return true; 948 } 949 return false; 950 } 951 952 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 953 { 954 struct mptcp_subflow_context *subflow; 955 956 msk_owned_by_me(msk); 957 958 mptcp_for_each_subflow(msk, subflow) { 959 if (READ_ONCE(subflow->data_avail)) 960 return mptcp_subflow_tcp_sock(subflow); 961 } 962 963 return NULL; 964 } 965 966 static bool mptcp_skb_can_collapse_to(u64 write_seq, 967 const struct sk_buff *skb, 968 const struct mptcp_ext *mpext) 969 { 970 if (!tcp_skb_can_collapse_to(skb)) 971 return false; 972 973 /* can collapse only if MPTCP level sequence is in order and this 974 * mapping has not been xmitted yet 975 */ 976 return mpext && mpext->data_seq + mpext->data_len == write_seq && 977 !mpext->frozen; 978 } 979 980 /* we can append data to the given data frag if: 981 * - there is space available in the backing page_frag 982 * - the data frag tail matches the current page_frag free offset 983 * - the data frag end sequence number matches the current write seq 984 */ 985 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 986 const struct page_frag *pfrag, 987 const struct mptcp_data_frag *df) 988 { 989 return df && pfrag->page == df->page && 990 pfrag->size - pfrag->offset > 0 && 991 pfrag->offset == (df->offset + df->data_len) && 992 df->data_seq + df->data_len == msk->write_seq; 993 } 994 995 static void dfrag_uncharge(struct sock *sk, int len) 996 { 997 sk_mem_uncharge(sk, len); 998 sk_wmem_queued_add(sk, -len); 999 } 1000 1001 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1002 { 1003 int len = dfrag->data_len + dfrag->overhead; 1004 1005 list_del(&dfrag->list); 1006 dfrag_uncharge(sk, len); 1007 put_page(dfrag->page); 1008 } 1009 1010 /* called under both the msk socket lock and the data lock */ 1011 static void __mptcp_clean_una(struct sock *sk) 1012 { 1013 struct mptcp_sock *msk = mptcp_sk(sk); 1014 struct mptcp_data_frag *dtmp, *dfrag; 1015 u64 snd_una; 1016 1017 snd_una = msk->snd_una; 1018 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1019 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1020 break; 1021 1022 if (unlikely(dfrag == msk->first_pending)) { 1023 /* in recovery mode can see ack after the current snd head */ 1024 if (WARN_ON_ONCE(!msk->recovery)) 1025 break; 1026 1027 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1028 } 1029 1030 dfrag_clear(sk, dfrag); 1031 } 1032 1033 dfrag = mptcp_rtx_head(sk); 1034 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1035 u64 delta = snd_una - dfrag->data_seq; 1036 1037 /* prevent wrap around in recovery mode */ 1038 if (unlikely(delta > dfrag->already_sent)) { 1039 if (WARN_ON_ONCE(!msk->recovery)) 1040 goto out; 1041 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1042 goto out; 1043 dfrag->already_sent += delta - dfrag->already_sent; 1044 } 1045 1046 dfrag->data_seq += delta; 1047 dfrag->offset += delta; 1048 dfrag->data_len -= delta; 1049 dfrag->already_sent -= delta; 1050 1051 dfrag_uncharge(sk, delta); 1052 } 1053 1054 /* all retransmitted data acked, recovery completed */ 1055 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1056 msk->recovery = false; 1057 1058 out: 1059 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1060 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1061 mptcp_stop_rtx_timer(sk); 1062 } else { 1063 mptcp_reset_rtx_timer(sk); 1064 } 1065 1066 if (mptcp_pending_data_fin_ack(sk)) 1067 mptcp_schedule_work(sk); 1068 } 1069 1070 static void __mptcp_clean_una_wakeup(struct sock *sk) 1071 { 1072 lockdep_assert_held_once(&sk->sk_lock.slock); 1073 1074 __mptcp_clean_una(sk); 1075 mptcp_write_space(sk); 1076 } 1077 1078 static void mptcp_clean_una_wakeup(struct sock *sk) 1079 { 1080 mptcp_data_lock(sk); 1081 __mptcp_clean_una_wakeup(sk); 1082 mptcp_data_unlock(sk); 1083 } 1084 1085 static void mptcp_enter_memory_pressure(struct sock *sk) 1086 { 1087 struct mptcp_subflow_context *subflow; 1088 struct mptcp_sock *msk = mptcp_sk(sk); 1089 bool first = true; 1090 1091 mptcp_for_each_subflow(msk, subflow) { 1092 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1093 1094 if (first) 1095 tcp_enter_memory_pressure(ssk); 1096 sk_stream_moderate_sndbuf(ssk); 1097 1098 first = false; 1099 } 1100 __mptcp_sync_sndbuf(sk); 1101 } 1102 1103 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1104 * data 1105 */ 1106 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1107 { 1108 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1109 pfrag, sk->sk_allocation))) 1110 return true; 1111 1112 mptcp_enter_memory_pressure(sk); 1113 return false; 1114 } 1115 1116 static struct mptcp_data_frag * 1117 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1118 int orig_offset) 1119 { 1120 int offset = ALIGN(orig_offset, sizeof(long)); 1121 struct mptcp_data_frag *dfrag; 1122 1123 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1124 dfrag->data_len = 0; 1125 dfrag->data_seq = msk->write_seq; 1126 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1127 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1128 dfrag->already_sent = 0; 1129 dfrag->page = pfrag->page; 1130 1131 return dfrag; 1132 } 1133 1134 struct mptcp_sendmsg_info { 1135 int mss_now; 1136 int size_goal; 1137 u16 limit; 1138 u16 sent; 1139 unsigned int flags; 1140 bool data_lock_held; 1141 }; 1142 1143 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1144 u64 data_seq, int avail_size) 1145 { 1146 u64 window_end = mptcp_wnd_end(msk); 1147 u64 mptcp_snd_wnd; 1148 1149 if (__mptcp_check_fallback(msk)) 1150 return avail_size; 1151 1152 mptcp_snd_wnd = window_end - data_seq; 1153 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1154 1155 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1156 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1157 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1158 } 1159 1160 return avail_size; 1161 } 1162 1163 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1164 { 1165 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1166 1167 if (!mpext) 1168 return false; 1169 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1170 return true; 1171 } 1172 1173 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1174 { 1175 struct sk_buff *skb; 1176 1177 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1178 if (likely(skb)) { 1179 if (likely(__mptcp_add_ext(skb, gfp))) { 1180 skb_reserve(skb, MAX_TCP_HEADER); 1181 skb->ip_summed = CHECKSUM_PARTIAL; 1182 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1183 return skb; 1184 } 1185 __kfree_skb(skb); 1186 } else { 1187 mptcp_enter_memory_pressure(sk); 1188 } 1189 return NULL; 1190 } 1191 1192 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1193 { 1194 struct sk_buff *skb; 1195 1196 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1197 if (!skb) 1198 return NULL; 1199 1200 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1201 tcp_skb_entail(ssk, skb); 1202 return skb; 1203 } 1204 tcp_skb_tsorted_anchor_cleanup(skb); 1205 kfree_skb(skb); 1206 return NULL; 1207 } 1208 1209 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1210 { 1211 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1212 1213 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1214 } 1215 1216 /* note: this always recompute the csum on the whole skb, even 1217 * if we just appended a single frag. More status info needed 1218 */ 1219 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1220 { 1221 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1222 __wsum csum = ~csum_unfold(mpext->csum); 1223 int offset = skb->len - added; 1224 1225 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1226 } 1227 1228 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1229 struct sock *ssk, 1230 struct mptcp_ext *mpext) 1231 { 1232 if (!mpext) 1233 return; 1234 1235 mpext->infinite_map = 1; 1236 mpext->data_len = 0; 1237 1238 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1239 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1240 pr_fallback(msk); 1241 mptcp_do_fallback(ssk); 1242 } 1243 1244 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1245 1246 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1247 struct mptcp_data_frag *dfrag, 1248 struct mptcp_sendmsg_info *info) 1249 { 1250 u64 data_seq = dfrag->data_seq + info->sent; 1251 int offset = dfrag->offset + info->sent; 1252 struct mptcp_sock *msk = mptcp_sk(sk); 1253 bool zero_window_probe = false; 1254 struct mptcp_ext *mpext = NULL; 1255 bool can_coalesce = false; 1256 bool reuse_skb = true; 1257 struct sk_buff *skb; 1258 size_t copy; 1259 int i; 1260 1261 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1262 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1263 1264 if (WARN_ON_ONCE(info->sent > info->limit || 1265 info->limit > dfrag->data_len)) 1266 return 0; 1267 1268 if (unlikely(!__tcp_can_send(ssk))) 1269 return -EAGAIN; 1270 1271 /* compute send limit */ 1272 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1273 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1274 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1275 copy = info->size_goal; 1276 1277 skb = tcp_write_queue_tail(ssk); 1278 if (skb && copy > skb->len) { 1279 /* Limit the write to the size available in the 1280 * current skb, if any, so that we create at most a new skb. 1281 * Explicitly tells TCP internals to avoid collapsing on later 1282 * queue management operation, to avoid breaking the ext <-> 1283 * SSN association set here 1284 */ 1285 mpext = mptcp_get_ext(skb); 1286 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1287 TCP_SKB_CB(skb)->eor = 1; 1288 tcp_mark_push(tcp_sk(ssk), skb); 1289 goto alloc_skb; 1290 } 1291 1292 i = skb_shinfo(skb)->nr_frags; 1293 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1294 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1295 tcp_mark_push(tcp_sk(ssk), skb); 1296 goto alloc_skb; 1297 } 1298 1299 copy -= skb->len; 1300 } else { 1301 alloc_skb: 1302 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1303 if (!skb) 1304 return -ENOMEM; 1305 1306 i = skb_shinfo(skb)->nr_frags; 1307 reuse_skb = false; 1308 mpext = mptcp_get_ext(skb); 1309 } 1310 1311 /* Zero window and all data acked? Probe. */ 1312 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1313 if (copy == 0) { 1314 u64 snd_una = READ_ONCE(msk->snd_una); 1315 1316 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1317 tcp_remove_empty_skb(ssk); 1318 return 0; 1319 } 1320 1321 zero_window_probe = true; 1322 data_seq = snd_una - 1; 1323 copy = 1; 1324 } 1325 1326 copy = min_t(size_t, copy, info->limit - info->sent); 1327 if (!sk_wmem_schedule(ssk, copy)) { 1328 tcp_remove_empty_skb(ssk); 1329 return -ENOMEM; 1330 } 1331 1332 if (can_coalesce) { 1333 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1334 } else { 1335 get_page(dfrag->page); 1336 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1337 } 1338 1339 skb->len += copy; 1340 skb->data_len += copy; 1341 skb->truesize += copy; 1342 sk_wmem_queued_add(ssk, copy); 1343 sk_mem_charge(ssk, copy); 1344 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1345 TCP_SKB_CB(skb)->end_seq += copy; 1346 tcp_skb_pcount_set(skb, 0); 1347 1348 /* on skb reuse we just need to update the DSS len */ 1349 if (reuse_skb) { 1350 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1351 mpext->data_len += copy; 1352 goto out; 1353 } 1354 1355 memset(mpext, 0, sizeof(*mpext)); 1356 mpext->data_seq = data_seq; 1357 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1358 mpext->data_len = copy; 1359 mpext->use_map = 1; 1360 mpext->dsn64 = 1; 1361 1362 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1363 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1364 mpext->dsn64); 1365 1366 if (zero_window_probe) { 1367 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1368 mpext->frozen = 1; 1369 if (READ_ONCE(msk->csum_enabled)) 1370 mptcp_update_data_checksum(skb, copy); 1371 tcp_push_pending_frames(ssk); 1372 return 0; 1373 } 1374 out: 1375 if (READ_ONCE(msk->csum_enabled)) 1376 mptcp_update_data_checksum(skb, copy); 1377 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1378 mptcp_update_infinite_map(msk, ssk, mpext); 1379 trace_mptcp_sendmsg_frag(mpext); 1380 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1381 return copy; 1382 } 1383 1384 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1385 sizeof(struct tcphdr) - \ 1386 MAX_TCP_OPTION_SPACE - \ 1387 sizeof(struct ipv6hdr) - \ 1388 sizeof(struct frag_hdr)) 1389 1390 struct subflow_send_info { 1391 struct sock *ssk; 1392 u64 linger_time; 1393 }; 1394 1395 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1396 { 1397 if (!subflow->stale) 1398 return; 1399 1400 subflow->stale = 0; 1401 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1402 } 1403 1404 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1405 { 1406 if (unlikely(subflow->stale)) { 1407 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1408 1409 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1410 return false; 1411 1412 mptcp_subflow_set_active(subflow); 1413 } 1414 return __mptcp_subflow_active(subflow); 1415 } 1416 1417 #define SSK_MODE_ACTIVE 0 1418 #define SSK_MODE_BACKUP 1 1419 #define SSK_MODE_MAX 2 1420 1421 /* implement the mptcp packet scheduler; 1422 * returns the subflow that will transmit the next DSS 1423 * additionally updates the rtx timeout 1424 */ 1425 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1426 { 1427 struct subflow_send_info send_info[SSK_MODE_MAX]; 1428 struct mptcp_subflow_context *subflow; 1429 struct sock *sk = (struct sock *)msk; 1430 u32 pace, burst, wmem; 1431 int i, nr_active = 0; 1432 struct sock *ssk; 1433 u64 linger_time; 1434 long tout = 0; 1435 1436 /* pick the subflow with the lower wmem/wspace ratio */ 1437 for (i = 0; i < SSK_MODE_MAX; ++i) { 1438 send_info[i].ssk = NULL; 1439 send_info[i].linger_time = -1; 1440 } 1441 1442 mptcp_for_each_subflow(msk, subflow) { 1443 bool backup = subflow->backup || subflow->request_bkup; 1444 1445 trace_mptcp_subflow_get_send(subflow); 1446 ssk = mptcp_subflow_tcp_sock(subflow); 1447 if (!mptcp_subflow_active(subflow)) 1448 continue; 1449 1450 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1451 nr_active += !backup; 1452 pace = subflow->avg_pacing_rate; 1453 if (unlikely(!pace)) { 1454 /* init pacing rate from socket */ 1455 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1456 pace = subflow->avg_pacing_rate; 1457 if (!pace) 1458 continue; 1459 } 1460 1461 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1462 if (linger_time < send_info[backup].linger_time) { 1463 send_info[backup].ssk = ssk; 1464 send_info[backup].linger_time = linger_time; 1465 } 1466 } 1467 __mptcp_set_timeout(sk, tout); 1468 1469 /* pick the best backup if no other subflow is active */ 1470 if (!nr_active) 1471 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1472 1473 /* According to the blest algorithm, to avoid HoL blocking for the 1474 * faster flow, we need to: 1475 * - estimate the faster flow linger time 1476 * - use the above to estimate the amount of byte transferred 1477 * by the faster flow 1478 * - check that the amount of queued data is greter than the above, 1479 * otherwise do not use the picked, slower, subflow 1480 * We select the subflow with the shorter estimated time to flush 1481 * the queued mem, which basically ensure the above. We just need 1482 * to check that subflow has a non empty cwin. 1483 */ 1484 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1485 if (!ssk || !sk_stream_memory_free(ssk)) 1486 return NULL; 1487 1488 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1489 wmem = READ_ONCE(ssk->sk_wmem_queued); 1490 if (!burst) 1491 return ssk; 1492 1493 subflow = mptcp_subflow_ctx(ssk); 1494 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1495 READ_ONCE(ssk->sk_pacing_rate) * burst, 1496 burst + wmem); 1497 msk->snd_burst = burst; 1498 return ssk; 1499 } 1500 1501 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1502 { 1503 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1504 release_sock(ssk); 1505 } 1506 1507 static void mptcp_update_post_push(struct mptcp_sock *msk, 1508 struct mptcp_data_frag *dfrag, 1509 u32 sent) 1510 { 1511 u64 snd_nxt_new = dfrag->data_seq; 1512 1513 dfrag->already_sent += sent; 1514 1515 msk->snd_burst -= sent; 1516 1517 snd_nxt_new += dfrag->already_sent; 1518 1519 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1520 * is recovering after a failover. In that event, this re-sends 1521 * old segments. 1522 * 1523 * Thus compute snd_nxt_new candidate based on 1524 * the dfrag->data_seq that was sent and the data 1525 * that has been handed to the subflow for transmission 1526 * and skip update in case it was old dfrag. 1527 */ 1528 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1529 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1530 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1531 } 1532 } 1533 1534 void mptcp_check_and_set_pending(struct sock *sk) 1535 { 1536 if (mptcp_send_head(sk)) { 1537 mptcp_data_lock(sk); 1538 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1539 mptcp_data_unlock(sk); 1540 } 1541 } 1542 1543 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1544 struct mptcp_sendmsg_info *info) 1545 { 1546 struct mptcp_sock *msk = mptcp_sk(sk); 1547 struct mptcp_data_frag *dfrag; 1548 int len, copied = 0, err = 0; 1549 1550 while ((dfrag = mptcp_send_head(sk))) { 1551 info->sent = dfrag->already_sent; 1552 info->limit = dfrag->data_len; 1553 len = dfrag->data_len - dfrag->already_sent; 1554 while (len > 0) { 1555 int ret = 0; 1556 1557 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1558 if (ret <= 0) { 1559 err = copied ? : ret; 1560 goto out; 1561 } 1562 1563 info->sent += ret; 1564 copied += ret; 1565 len -= ret; 1566 1567 mptcp_update_post_push(msk, dfrag, ret); 1568 } 1569 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1570 1571 if (msk->snd_burst <= 0 || 1572 !sk_stream_memory_free(ssk) || 1573 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1574 err = copied; 1575 goto out; 1576 } 1577 mptcp_set_timeout(sk); 1578 } 1579 err = copied; 1580 1581 out: 1582 if (err > 0) 1583 msk->last_data_sent = tcp_jiffies32; 1584 return err; 1585 } 1586 1587 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1588 { 1589 struct sock *prev_ssk = NULL, *ssk = NULL; 1590 struct mptcp_sock *msk = mptcp_sk(sk); 1591 struct mptcp_sendmsg_info info = { 1592 .flags = flags, 1593 }; 1594 bool do_check_data_fin = false; 1595 int push_count = 1; 1596 1597 while (mptcp_send_head(sk) && (push_count > 0)) { 1598 struct mptcp_subflow_context *subflow; 1599 int ret = 0; 1600 1601 if (mptcp_sched_get_send(msk)) 1602 break; 1603 1604 push_count = 0; 1605 1606 mptcp_for_each_subflow(msk, subflow) { 1607 if (READ_ONCE(subflow->scheduled)) { 1608 mptcp_subflow_set_scheduled(subflow, false); 1609 1610 prev_ssk = ssk; 1611 ssk = mptcp_subflow_tcp_sock(subflow); 1612 if (ssk != prev_ssk) { 1613 /* First check. If the ssk has changed since 1614 * the last round, release prev_ssk 1615 */ 1616 if (prev_ssk) 1617 mptcp_push_release(prev_ssk, &info); 1618 1619 /* Need to lock the new subflow only if different 1620 * from the previous one, otherwise we are still 1621 * helding the relevant lock 1622 */ 1623 lock_sock(ssk); 1624 } 1625 1626 push_count++; 1627 1628 ret = __subflow_push_pending(sk, ssk, &info); 1629 if (ret <= 0) { 1630 if (ret != -EAGAIN || 1631 (1 << ssk->sk_state) & 1632 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1633 push_count--; 1634 continue; 1635 } 1636 do_check_data_fin = true; 1637 } 1638 } 1639 } 1640 1641 /* at this point we held the socket lock for the last subflow we used */ 1642 if (ssk) 1643 mptcp_push_release(ssk, &info); 1644 1645 /* ensure the rtx timer is running */ 1646 if (!mptcp_rtx_timer_pending(sk)) 1647 mptcp_reset_rtx_timer(sk); 1648 if (do_check_data_fin) 1649 mptcp_check_send_data_fin(sk); 1650 } 1651 1652 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1653 { 1654 struct mptcp_sock *msk = mptcp_sk(sk); 1655 struct mptcp_sendmsg_info info = { 1656 .data_lock_held = true, 1657 }; 1658 bool keep_pushing = true; 1659 struct sock *xmit_ssk; 1660 int copied = 0; 1661 1662 info.flags = 0; 1663 while (mptcp_send_head(sk) && keep_pushing) { 1664 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1665 int ret = 0; 1666 1667 /* check for a different subflow usage only after 1668 * spooling the first chunk of data 1669 */ 1670 if (first) { 1671 mptcp_subflow_set_scheduled(subflow, false); 1672 ret = __subflow_push_pending(sk, ssk, &info); 1673 first = false; 1674 if (ret <= 0) 1675 break; 1676 copied += ret; 1677 continue; 1678 } 1679 1680 if (mptcp_sched_get_send(msk)) 1681 goto out; 1682 1683 if (READ_ONCE(subflow->scheduled)) { 1684 mptcp_subflow_set_scheduled(subflow, false); 1685 ret = __subflow_push_pending(sk, ssk, &info); 1686 if (ret <= 0) 1687 keep_pushing = false; 1688 copied += ret; 1689 } 1690 1691 mptcp_for_each_subflow(msk, subflow) { 1692 if (READ_ONCE(subflow->scheduled)) { 1693 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1694 if (xmit_ssk != ssk) { 1695 mptcp_subflow_delegate(subflow, 1696 MPTCP_DELEGATE_SEND); 1697 keep_pushing = false; 1698 } 1699 } 1700 } 1701 } 1702 1703 out: 1704 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1705 * not going to flush it via release_sock() 1706 */ 1707 if (copied) { 1708 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1709 info.size_goal); 1710 if (!mptcp_rtx_timer_pending(sk)) 1711 mptcp_reset_rtx_timer(sk); 1712 1713 if (msk->snd_data_fin_enable && 1714 msk->snd_nxt + 1 == msk->write_seq) 1715 mptcp_schedule_work(sk); 1716 } 1717 } 1718 1719 static int mptcp_disconnect(struct sock *sk, int flags); 1720 1721 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1722 size_t len, int *copied_syn) 1723 { 1724 unsigned int saved_flags = msg->msg_flags; 1725 struct mptcp_sock *msk = mptcp_sk(sk); 1726 struct sock *ssk; 1727 int ret; 1728 1729 /* on flags based fastopen the mptcp is supposed to create the 1730 * first subflow right now. Otherwise we are in the defer_connect 1731 * path, and the first subflow must be already present. 1732 * Since the defer_connect flag is cleared after the first succsful 1733 * fastopen attempt, no need to check for additional subflow status. 1734 */ 1735 if (msg->msg_flags & MSG_FASTOPEN) { 1736 ssk = __mptcp_nmpc_sk(msk); 1737 if (IS_ERR(ssk)) 1738 return PTR_ERR(ssk); 1739 } 1740 if (!msk->first) 1741 return -EINVAL; 1742 1743 ssk = msk->first; 1744 1745 lock_sock(ssk); 1746 msg->msg_flags |= MSG_DONTWAIT; 1747 msk->fastopening = 1; 1748 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1749 msk->fastopening = 0; 1750 msg->msg_flags = saved_flags; 1751 release_sock(ssk); 1752 1753 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1754 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1755 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1756 msg->msg_namelen, msg->msg_flags, 1); 1757 1758 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1759 * case of any error, except timeout or signal 1760 */ 1761 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1762 *copied_syn = 0; 1763 } else if (ret && ret != -EINPROGRESS) { 1764 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1765 * __inet_stream_connect() can fail, due to looking check, 1766 * see mptcp_disconnect(). 1767 * Attempt it again outside the problematic scope. 1768 */ 1769 if (!mptcp_disconnect(sk, 0)) 1770 sk->sk_socket->state = SS_UNCONNECTED; 1771 } 1772 inet_clear_bit(DEFER_CONNECT, sk); 1773 1774 return ret; 1775 } 1776 1777 static int do_copy_data_nocache(struct sock *sk, int copy, 1778 struct iov_iter *from, char *to) 1779 { 1780 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1781 if (!copy_from_iter_full_nocache(to, copy, from)) 1782 return -EFAULT; 1783 } else if (!copy_from_iter_full(to, copy, from)) { 1784 return -EFAULT; 1785 } 1786 return 0; 1787 } 1788 1789 /* open-code sk_stream_memory_free() plus sent limit computation to 1790 * avoid indirect calls in fast-path. 1791 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1792 * annotations. 1793 */ 1794 static u32 mptcp_send_limit(const struct sock *sk) 1795 { 1796 const struct mptcp_sock *msk = mptcp_sk(sk); 1797 u32 limit, not_sent; 1798 1799 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1800 return 0; 1801 1802 limit = mptcp_notsent_lowat(sk); 1803 if (limit == UINT_MAX) 1804 return UINT_MAX; 1805 1806 not_sent = msk->write_seq - msk->snd_nxt; 1807 if (not_sent >= limit) 1808 return 0; 1809 1810 return limit - not_sent; 1811 } 1812 1813 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1814 { 1815 struct mptcp_sock *msk = mptcp_sk(sk); 1816 struct page_frag *pfrag; 1817 size_t copied = 0; 1818 int ret = 0; 1819 long timeo; 1820 1821 /* silently ignore everything else */ 1822 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1823 1824 lock_sock(sk); 1825 1826 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1827 msg->msg_flags & MSG_FASTOPEN)) { 1828 int copied_syn = 0; 1829 1830 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1831 copied += copied_syn; 1832 if (ret == -EINPROGRESS && copied_syn > 0) 1833 goto out; 1834 else if (ret) 1835 goto do_error; 1836 } 1837 1838 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1839 1840 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1841 ret = sk_stream_wait_connect(sk, &timeo); 1842 if (ret) 1843 goto do_error; 1844 } 1845 1846 ret = -EPIPE; 1847 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1848 goto do_error; 1849 1850 pfrag = sk_page_frag(sk); 1851 1852 while (msg_data_left(msg)) { 1853 int total_ts, frag_truesize = 0; 1854 struct mptcp_data_frag *dfrag; 1855 bool dfrag_collapsed; 1856 size_t psize, offset; 1857 u32 copy_limit; 1858 1859 /* ensure fitting the notsent_lowat() constraint */ 1860 copy_limit = mptcp_send_limit(sk); 1861 if (!copy_limit) 1862 goto wait_for_memory; 1863 1864 /* reuse tail pfrag, if possible, or carve a new one from the 1865 * page allocator 1866 */ 1867 dfrag = mptcp_pending_tail(sk); 1868 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1869 if (!dfrag_collapsed) { 1870 if (!mptcp_page_frag_refill(sk, pfrag)) 1871 goto wait_for_memory; 1872 1873 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1874 frag_truesize = dfrag->overhead; 1875 } 1876 1877 /* we do not bound vs wspace, to allow a single packet. 1878 * memory accounting will prevent execessive memory usage 1879 * anyway 1880 */ 1881 offset = dfrag->offset + dfrag->data_len; 1882 psize = pfrag->size - offset; 1883 psize = min_t(size_t, psize, msg_data_left(msg)); 1884 psize = min_t(size_t, psize, copy_limit); 1885 total_ts = psize + frag_truesize; 1886 1887 if (!sk_wmem_schedule(sk, total_ts)) 1888 goto wait_for_memory; 1889 1890 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1891 page_address(dfrag->page) + offset); 1892 if (ret) 1893 goto do_error; 1894 1895 /* data successfully copied into the write queue */ 1896 sk_forward_alloc_add(sk, -total_ts); 1897 copied += psize; 1898 dfrag->data_len += psize; 1899 frag_truesize += psize; 1900 pfrag->offset += frag_truesize; 1901 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1902 1903 /* charge data on mptcp pending queue to the msk socket 1904 * Note: we charge such data both to sk and ssk 1905 */ 1906 sk_wmem_queued_add(sk, frag_truesize); 1907 if (!dfrag_collapsed) { 1908 get_page(dfrag->page); 1909 list_add_tail(&dfrag->list, &msk->rtx_queue); 1910 if (!msk->first_pending) 1911 WRITE_ONCE(msk->first_pending, dfrag); 1912 } 1913 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1914 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1915 !dfrag_collapsed); 1916 1917 continue; 1918 1919 wait_for_memory: 1920 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1921 __mptcp_push_pending(sk, msg->msg_flags); 1922 ret = sk_stream_wait_memory(sk, &timeo); 1923 if (ret) 1924 goto do_error; 1925 } 1926 1927 if (copied) 1928 __mptcp_push_pending(sk, msg->msg_flags); 1929 1930 out: 1931 release_sock(sk); 1932 return copied; 1933 1934 do_error: 1935 if (copied) 1936 goto out; 1937 1938 copied = sk_stream_error(sk, msg->msg_flags, ret); 1939 goto out; 1940 } 1941 1942 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1943 struct msghdr *msg, 1944 size_t len, int flags, 1945 struct scm_timestamping_internal *tss, 1946 int *cmsg_flags) 1947 { 1948 struct sk_buff *skb, *tmp; 1949 int copied = 0; 1950 1951 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1952 u32 offset = MPTCP_SKB_CB(skb)->offset; 1953 u32 data_len = skb->len - offset; 1954 u32 count = min_t(size_t, len - copied, data_len); 1955 int err; 1956 1957 if (!(flags & MSG_TRUNC)) { 1958 err = skb_copy_datagram_msg(skb, offset, msg, count); 1959 if (unlikely(err < 0)) { 1960 if (!copied) 1961 return err; 1962 break; 1963 } 1964 } 1965 1966 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1967 tcp_update_recv_tstamps(skb, tss); 1968 *cmsg_flags |= MPTCP_CMSG_TS; 1969 } 1970 1971 copied += count; 1972 1973 if (count < data_len) { 1974 if (!(flags & MSG_PEEK)) { 1975 MPTCP_SKB_CB(skb)->offset += count; 1976 MPTCP_SKB_CB(skb)->map_seq += count; 1977 msk->bytes_consumed += count; 1978 } 1979 break; 1980 } 1981 1982 if (!(flags & MSG_PEEK)) { 1983 /* we will bulk release the skb memory later */ 1984 skb->destructor = NULL; 1985 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1986 __skb_unlink(skb, &msk->receive_queue); 1987 __kfree_skb(skb); 1988 msk->bytes_consumed += count; 1989 } 1990 1991 if (copied >= len) 1992 break; 1993 } 1994 1995 return copied; 1996 } 1997 1998 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1999 * 2000 * Only difference: Use highest rtt estimate of the subflows in use. 2001 */ 2002 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2003 { 2004 struct mptcp_subflow_context *subflow; 2005 struct sock *sk = (struct sock *)msk; 2006 u8 scaling_ratio = U8_MAX; 2007 u32 time, advmss = 1; 2008 u64 rtt_us, mstamp; 2009 2010 msk_owned_by_me(msk); 2011 2012 if (copied <= 0) 2013 return; 2014 2015 if (!msk->rcvspace_init) 2016 mptcp_rcv_space_init(msk, msk->first); 2017 2018 msk->rcvq_space.copied += copied; 2019 2020 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2021 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2022 2023 rtt_us = msk->rcvq_space.rtt_us; 2024 if (rtt_us && time < (rtt_us >> 3)) 2025 return; 2026 2027 rtt_us = 0; 2028 mptcp_for_each_subflow(msk, subflow) { 2029 const struct tcp_sock *tp; 2030 u64 sf_rtt_us; 2031 u32 sf_advmss; 2032 2033 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2034 2035 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2036 sf_advmss = READ_ONCE(tp->advmss); 2037 2038 rtt_us = max(sf_rtt_us, rtt_us); 2039 advmss = max(sf_advmss, advmss); 2040 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2041 } 2042 2043 msk->rcvq_space.rtt_us = rtt_us; 2044 msk->scaling_ratio = scaling_ratio; 2045 if (time < (rtt_us >> 3) || rtt_us == 0) 2046 return; 2047 2048 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2049 goto new_measure; 2050 2051 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2052 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2053 u64 rcvwin, grow; 2054 int rcvbuf; 2055 2056 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2057 2058 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2059 2060 do_div(grow, msk->rcvq_space.space); 2061 rcvwin += (grow << 1); 2062 2063 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin), 2064 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2065 2066 if (rcvbuf > sk->sk_rcvbuf) { 2067 u32 window_clamp; 2068 2069 window_clamp = mptcp_win_from_space(sk, rcvbuf); 2070 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2071 2072 /* Make subflows follow along. If we do not do this, we 2073 * get drops at subflow level if skbs can't be moved to 2074 * the mptcp rx queue fast enough (announced rcv_win can 2075 * exceed ssk->sk_rcvbuf). 2076 */ 2077 mptcp_for_each_subflow(msk, subflow) { 2078 struct sock *ssk; 2079 bool slow; 2080 2081 ssk = mptcp_subflow_tcp_sock(subflow); 2082 slow = lock_sock_fast(ssk); 2083 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2084 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2085 tcp_cleanup_rbuf(ssk, 1); 2086 unlock_sock_fast(ssk, slow); 2087 } 2088 } 2089 } 2090 2091 msk->rcvq_space.space = msk->rcvq_space.copied; 2092 new_measure: 2093 msk->rcvq_space.copied = 0; 2094 msk->rcvq_space.time = mstamp; 2095 } 2096 2097 static void __mptcp_update_rmem(struct sock *sk) 2098 { 2099 struct mptcp_sock *msk = mptcp_sk(sk); 2100 2101 if (!msk->rmem_released) 2102 return; 2103 2104 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2105 mptcp_rmem_uncharge(sk, msk->rmem_released); 2106 WRITE_ONCE(msk->rmem_released, 0); 2107 } 2108 2109 static void __mptcp_splice_receive_queue(struct sock *sk) 2110 { 2111 struct mptcp_sock *msk = mptcp_sk(sk); 2112 2113 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2114 } 2115 2116 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2117 { 2118 struct sock *sk = (struct sock *)msk; 2119 unsigned int moved = 0; 2120 bool ret, done; 2121 2122 do { 2123 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2124 bool slowpath; 2125 2126 /* we can have data pending in the subflows only if the msk 2127 * receive buffer was full at subflow_data_ready() time, 2128 * that is an unlikely slow path. 2129 */ 2130 if (likely(!ssk)) 2131 break; 2132 2133 slowpath = lock_sock_fast(ssk); 2134 mptcp_data_lock(sk); 2135 __mptcp_update_rmem(sk); 2136 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2137 mptcp_data_unlock(sk); 2138 2139 if (unlikely(ssk->sk_err)) 2140 __mptcp_error_report(sk); 2141 unlock_sock_fast(ssk, slowpath); 2142 } while (!done); 2143 2144 /* acquire the data lock only if some input data is pending */ 2145 ret = moved > 0; 2146 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2147 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2148 mptcp_data_lock(sk); 2149 __mptcp_update_rmem(sk); 2150 ret |= __mptcp_ofo_queue(msk); 2151 __mptcp_splice_receive_queue(sk); 2152 mptcp_data_unlock(sk); 2153 } 2154 if (ret) 2155 mptcp_check_data_fin((struct sock *)msk); 2156 return !skb_queue_empty(&msk->receive_queue); 2157 } 2158 2159 static unsigned int mptcp_inq_hint(const struct sock *sk) 2160 { 2161 const struct mptcp_sock *msk = mptcp_sk(sk); 2162 const struct sk_buff *skb; 2163 2164 skb = skb_peek(&msk->receive_queue); 2165 if (skb) { 2166 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2167 2168 if (hint_val >= INT_MAX) 2169 return INT_MAX; 2170 2171 return (unsigned int)hint_val; 2172 } 2173 2174 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2175 return 1; 2176 2177 return 0; 2178 } 2179 2180 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2181 int flags, int *addr_len) 2182 { 2183 struct mptcp_sock *msk = mptcp_sk(sk); 2184 struct scm_timestamping_internal tss; 2185 int copied = 0, cmsg_flags = 0; 2186 int target; 2187 long timeo; 2188 2189 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2190 if (unlikely(flags & MSG_ERRQUEUE)) 2191 return inet_recv_error(sk, msg, len, addr_len); 2192 2193 lock_sock(sk); 2194 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2195 copied = -ENOTCONN; 2196 goto out_err; 2197 } 2198 2199 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2200 2201 len = min_t(size_t, len, INT_MAX); 2202 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2203 2204 if (unlikely(msk->recvmsg_inq)) 2205 cmsg_flags = MPTCP_CMSG_INQ; 2206 2207 while (copied < len) { 2208 int bytes_read; 2209 2210 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2211 if (unlikely(bytes_read < 0)) { 2212 if (!copied) 2213 copied = bytes_read; 2214 goto out_err; 2215 } 2216 2217 copied += bytes_read; 2218 2219 /* be sure to advertise window change */ 2220 mptcp_cleanup_rbuf(msk); 2221 2222 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2223 continue; 2224 2225 /* only the MPTCP socket status is relevant here. The exit 2226 * conditions mirror closely tcp_recvmsg() 2227 */ 2228 if (copied >= target) 2229 break; 2230 2231 if (copied) { 2232 if (sk->sk_err || 2233 sk->sk_state == TCP_CLOSE || 2234 (sk->sk_shutdown & RCV_SHUTDOWN) || 2235 !timeo || 2236 signal_pending(current)) 2237 break; 2238 } else { 2239 if (sk->sk_err) { 2240 copied = sock_error(sk); 2241 break; 2242 } 2243 2244 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2245 /* race breaker: the shutdown could be after the 2246 * previous receive queue check 2247 */ 2248 if (__mptcp_move_skbs(msk)) 2249 continue; 2250 break; 2251 } 2252 2253 if (sk->sk_state == TCP_CLOSE) { 2254 copied = -ENOTCONN; 2255 break; 2256 } 2257 2258 if (!timeo) { 2259 copied = -EAGAIN; 2260 break; 2261 } 2262 2263 if (signal_pending(current)) { 2264 copied = sock_intr_errno(timeo); 2265 break; 2266 } 2267 } 2268 2269 pr_debug("block timeout %ld\n", timeo); 2270 sk_wait_data(sk, &timeo, NULL); 2271 } 2272 2273 out_err: 2274 if (cmsg_flags && copied >= 0) { 2275 if (cmsg_flags & MPTCP_CMSG_TS) 2276 tcp_recv_timestamp(msg, sk, &tss); 2277 2278 if (cmsg_flags & MPTCP_CMSG_INQ) { 2279 unsigned int inq = mptcp_inq_hint(sk); 2280 2281 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2282 } 2283 } 2284 2285 pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n", 2286 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2287 skb_queue_empty(&msk->receive_queue), copied); 2288 if (!(flags & MSG_PEEK)) 2289 mptcp_rcv_space_adjust(msk, copied); 2290 2291 release_sock(sk); 2292 return copied; 2293 } 2294 2295 static void mptcp_retransmit_timer(struct timer_list *t) 2296 { 2297 struct inet_connection_sock *icsk = from_timer(icsk, t, 2298 icsk_retransmit_timer); 2299 struct sock *sk = &icsk->icsk_inet.sk; 2300 struct mptcp_sock *msk = mptcp_sk(sk); 2301 2302 bh_lock_sock(sk); 2303 if (!sock_owned_by_user(sk)) { 2304 /* we need a process context to retransmit */ 2305 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2306 mptcp_schedule_work(sk); 2307 } else { 2308 /* delegate our work to tcp_release_cb() */ 2309 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2310 } 2311 bh_unlock_sock(sk); 2312 sock_put(sk); 2313 } 2314 2315 static void mptcp_tout_timer(struct timer_list *t) 2316 { 2317 struct sock *sk = from_timer(sk, t, sk_timer); 2318 2319 mptcp_schedule_work(sk); 2320 sock_put(sk); 2321 } 2322 2323 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2324 * level. 2325 * 2326 * A backup subflow is returned only if that is the only kind available. 2327 */ 2328 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2329 { 2330 struct sock *backup = NULL, *pick = NULL; 2331 struct mptcp_subflow_context *subflow; 2332 int min_stale_count = INT_MAX; 2333 2334 mptcp_for_each_subflow(msk, subflow) { 2335 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2336 2337 if (!__mptcp_subflow_active(subflow)) 2338 continue; 2339 2340 /* still data outstanding at TCP level? skip this */ 2341 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2342 mptcp_pm_subflow_chk_stale(msk, ssk); 2343 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2344 continue; 2345 } 2346 2347 if (subflow->backup || subflow->request_bkup) { 2348 if (!backup) 2349 backup = ssk; 2350 continue; 2351 } 2352 2353 if (!pick) 2354 pick = ssk; 2355 } 2356 2357 if (pick) 2358 return pick; 2359 2360 /* use backup only if there are no progresses anywhere */ 2361 return min_stale_count > 1 ? backup : NULL; 2362 } 2363 2364 bool __mptcp_retransmit_pending_data(struct sock *sk) 2365 { 2366 struct mptcp_data_frag *cur, *rtx_head; 2367 struct mptcp_sock *msk = mptcp_sk(sk); 2368 2369 if (__mptcp_check_fallback(msk)) 2370 return false; 2371 2372 /* the closing socket has some data untransmitted and/or unacked: 2373 * some data in the mptcp rtx queue has not really xmitted yet. 2374 * keep it simple and re-inject the whole mptcp level rtx queue 2375 */ 2376 mptcp_data_lock(sk); 2377 __mptcp_clean_una_wakeup(sk); 2378 rtx_head = mptcp_rtx_head(sk); 2379 if (!rtx_head) { 2380 mptcp_data_unlock(sk); 2381 return false; 2382 } 2383 2384 msk->recovery_snd_nxt = msk->snd_nxt; 2385 msk->recovery = true; 2386 mptcp_data_unlock(sk); 2387 2388 msk->first_pending = rtx_head; 2389 msk->snd_burst = 0; 2390 2391 /* be sure to clear the "sent status" on all re-injected fragments */ 2392 list_for_each_entry(cur, &msk->rtx_queue, list) { 2393 if (!cur->already_sent) 2394 break; 2395 cur->already_sent = 0; 2396 } 2397 2398 return true; 2399 } 2400 2401 /* flags for __mptcp_close_ssk() */ 2402 #define MPTCP_CF_PUSH BIT(1) 2403 #define MPTCP_CF_FASTCLOSE BIT(2) 2404 2405 /* be sure to send a reset only if the caller asked for it, also 2406 * clean completely the subflow status when the subflow reaches 2407 * TCP_CLOSE state 2408 */ 2409 static void __mptcp_subflow_disconnect(struct sock *ssk, 2410 struct mptcp_subflow_context *subflow, 2411 unsigned int flags) 2412 { 2413 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2414 (flags & MPTCP_CF_FASTCLOSE)) { 2415 /* The MPTCP code never wait on the subflow sockets, TCP-level 2416 * disconnect should never fail 2417 */ 2418 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2419 mptcp_subflow_ctx_reset(subflow); 2420 } else { 2421 tcp_shutdown(ssk, SEND_SHUTDOWN); 2422 } 2423 } 2424 2425 /* subflow sockets can be either outgoing (connect) or incoming 2426 * (accept). 2427 * 2428 * Outgoing subflows use in-kernel sockets. 2429 * Incoming subflows do not have their own 'struct socket' allocated, 2430 * so we need to use tcp_close() after detaching them from the mptcp 2431 * parent socket. 2432 */ 2433 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2434 struct mptcp_subflow_context *subflow, 2435 unsigned int flags) 2436 { 2437 struct mptcp_sock *msk = mptcp_sk(sk); 2438 bool dispose_it, need_push = false; 2439 2440 /* If the first subflow moved to a close state before accept, e.g. due 2441 * to an incoming reset or listener shutdown, the subflow socket is 2442 * already deleted by inet_child_forget() and the mptcp socket can't 2443 * survive too. 2444 */ 2445 if (msk->in_accept_queue && msk->first == ssk && 2446 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2447 /* ensure later check in mptcp_worker() will dispose the msk */ 2448 sock_set_flag(sk, SOCK_DEAD); 2449 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2450 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2451 mptcp_subflow_drop_ctx(ssk); 2452 goto out_release; 2453 } 2454 2455 dispose_it = msk->free_first || ssk != msk->first; 2456 if (dispose_it) 2457 list_del(&subflow->node); 2458 2459 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2460 2461 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2462 /* be sure to force the tcp_close path 2463 * to generate the egress reset 2464 */ 2465 ssk->sk_lingertime = 0; 2466 sock_set_flag(ssk, SOCK_LINGER); 2467 subflow->send_fastclose = 1; 2468 } 2469 2470 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2471 if (!dispose_it) { 2472 __mptcp_subflow_disconnect(ssk, subflow, flags); 2473 release_sock(ssk); 2474 2475 goto out; 2476 } 2477 2478 subflow->disposable = 1; 2479 2480 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2481 * the ssk has been already destroyed, we just need to release the 2482 * reference owned by msk; 2483 */ 2484 if (!inet_csk(ssk)->icsk_ulp_ops) { 2485 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2486 kfree_rcu(subflow, rcu); 2487 } else { 2488 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2489 __tcp_close(ssk, 0); 2490 2491 /* close acquired an extra ref */ 2492 __sock_put(ssk); 2493 } 2494 2495 out_release: 2496 __mptcp_subflow_error_report(sk, ssk); 2497 release_sock(ssk); 2498 2499 sock_put(ssk); 2500 2501 if (ssk == msk->first) 2502 WRITE_ONCE(msk->first, NULL); 2503 2504 out: 2505 __mptcp_sync_sndbuf(sk); 2506 if (need_push) 2507 __mptcp_push_pending(sk, 0); 2508 2509 /* Catch every 'all subflows closed' scenario, including peers silently 2510 * closing them, e.g. due to timeout. 2511 * For established sockets, allow an additional timeout before closing, 2512 * as the protocol can still create more subflows. 2513 */ 2514 if (list_is_singular(&msk->conn_list) && msk->first && 2515 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2516 if (sk->sk_state != TCP_ESTABLISHED || 2517 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2518 mptcp_set_state(sk, TCP_CLOSE); 2519 mptcp_close_wake_up(sk); 2520 } else { 2521 mptcp_start_tout_timer(sk); 2522 } 2523 } 2524 } 2525 2526 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2527 struct mptcp_subflow_context *subflow) 2528 { 2529 /* The first subflow can already be closed and still in the list */ 2530 if (subflow->close_event_done) 2531 return; 2532 2533 subflow->close_event_done = true; 2534 2535 if (sk->sk_state == TCP_ESTABLISHED) 2536 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2537 2538 /* subflow aborted before reaching the fully_established status 2539 * attempt the creation of the next subflow 2540 */ 2541 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2542 2543 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2544 } 2545 2546 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2547 { 2548 return 0; 2549 } 2550 2551 static void __mptcp_close_subflow(struct sock *sk) 2552 { 2553 struct mptcp_subflow_context *subflow, *tmp; 2554 struct mptcp_sock *msk = mptcp_sk(sk); 2555 2556 might_sleep(); 2557 2558 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2559 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2560 int ssk_state = inet_sk_state_load(ssk); 2561 2562 if (ssk_state != TCP_CLOSE && 2563 (ssk_state != TCP_CLOSE_WAIT || 2564 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2565 continue; 2566 2567 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2568 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2569 continue; 2570 2571 mptcp_close_ssk(sk, ssk, subflow); 2572 } 2573 2574 } 2575 2576 static bool mptcp_close_tout_expired(const struct sock *sk) 2577 { 2578 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2579 sk->sk_state == TCP_CLOSE) 2580 return false; 2581 2582 return time_after32(tcp_jiffies32, 2583 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2584 } 2585 2586 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2587 { 2588 struct mptcp_subflow_context *subflow, *tmp; 2589 struct sock *sk = (struct sock *)msk; 2590 2591 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2592 return; 2593 2594 mptcp_token_destroy(msk); 2595 2596 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2597 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2598 bool slow; 2599 2600 slow = lock_sock_fast(tcp_sk); 2601 if (tcp_sk->sk_state != TCP_CLOSE) { 2602 mptcp_send_active_reset_reason(tcp_sk); 2603 tcp_set_state(tcp_sk, TCP_CLOSE); 2604 } 2605 unlock_sock_fast(tcp_sk, slow); 2606 } 2607 2608 /* Mirror the tcp_reset() error propagation */ 2609 switch (sk->sk_state) { 2610 case TCP_SYN_SENT: 2611 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2612 break; 2613 case TCP_CLOSE_WAIT: 2614 WRITE_ONCE(sk->sk_err, EPIPE); 2615 break; 2616 case TCP_CLOSE: 2617 return; 2618 default: 2619 WRITE_ONCE(sk->sk_err, ECONNRESET); 2620 } 2621 2622 mptcp_set_state(sk, TCP_CLOSE); 2623 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2624 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2625 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2626 2627 /* the calling mptcp_worker will properly destroy the socket */ 2628 if (sock_flag(sk, SOCK_DEAD)) 2629 return; 2630 2631 sk->sk_state_change(sk); 2632 sk_error_report(sk); 2633 } 2634 2635 static void __mptcp_retrans(struct sock *sk) 2636 { 2637 struct mptcp_sock *msk = mptcp_sk(sk); 2638 struct mptcp_subflow_context *subflow; 2639 struct mptcp_sendmsg_info info = {}; 2640 struct mptcp_data_frag *dfrag; 2641 struct sock *ssk; 2642 int ret, err; 2643 u16 len = 0; 2644 2645 mptcp_clean_una_wakeup(sk); 2646 2647 /* first check ssk: need to kick "stale" logic */ 2648 err = mptcp_sched_get_retrans(msk); 2649 dfrag = mptcp_rtx_head(sk); 2650 if (!dfrag) { 2651 if (mptcp_data_fin_enabled(msk)) { 2652 struct inet_connection_sock *icsk = inet_csk(sk); 2653 2654 icsk->icsk_retransmits++; 2655 mptcp_set_datafin_timeout(sk); 2656 mptcp_send_ack(msk); 2657 2658 goto reset_timer; 2659 } 2660 2661 if (!mptcp_send_head(sk)) 2662 return; 2663 2664 goto reset_timer; 2665 } 2666 2667 if (err) 2668 goto reset_timer; 2669 2670 mptcp_for_each_subflow(msk, subflow) { 2671 if (READ_ONCE(subflow->scheduled)) { 2672 u16 copied = 0; 2673 2674 mptcp_subflow_set_scheduled(subflow, false); 2675 2676 ssk = mptcp_subflow_tcp_sock(subflow); 2677 2678 lock_sock(ssk); 2679 2680 /* limit retransmission to the bytes already sent on some subflows */ 2681 info.sent = 0; 2682 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2683 dfrag->already_sent; 2684 while (info.sent < info.limit) { 2685 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2686 if (ret <= 0) 2687 break; 2688 2689 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2690 copied += ret; 2691 info.sent += ret; 2692 } 2693 if (copied) { 2694 len = max(copied, len); 2695 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2696 info.size_goal); 2697 WRITE_ONCE(msk->allow_infinite_fallback, false); 2698 } 2699 2700 release_sock(ssk); 2701 } 2702 } 2703 2704 msk->bytes_retrans += len; 2705 dfrag->already_sent = max(dfrag->already_sent, len); 2706 2707 reset_timer: 2708 mptcp_check_and_set_pending(sk); 2709 2710 if (!mptcp_rtx_timer_pending(sk)) 2711 mptcp_reset_rtx_timer(sk); 2712 } 2713 2714 /* schedule the timeout timer for the relevant event: either close timeout 2715 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2716 */ 2717 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2718 { 2719 struct sock *sk = (struct sock *)msk; 2720 unsigned long timeout, close_timeout; 2721 2722 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2723 return; 2724 2725 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2726 mptcp_close_timeout(sk); 2727 2728 /* the close timeout takes precedence on the fail one, and here at least one of 2729 * them is active 2730 */ 2731 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2732 2733 sk_reset_timer(sk, &sk->sk_timer, timeout); 2734 } 2735 2736 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2737 { 2738 struct sock *ssk = msk->first; 2739 bool slow; 2740 2741 if (!ssk) 2742 return; 2743 2744 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2745 2746 slow = lock_sock_fast(ssk); 2747 mptcp_subflow_reset(ssk); 2748 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2749 unlock_sock_fast(ssk, slow); 2750 } 2751 2752 static void mptcp_do_fastclose(struct sock *sk) 2753 { 2754 struct mptcp_subflow_context *subflow, *tmp; 2755 struct mptcp_sock *msk = mptcp_sk(sk); 2756 2757 mptcp_set_state(sk, TCP_CLOSE); 2758 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2759 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2760 subflow, MPTCP_CF_FASTCLOSE); 2761 } 2762 2763 static void mptcp_worker(struct work_struct *work) 2764 { 2765 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2766 struct sock *sk = (struct sock *)msk; 2767 unsigned long fail_tout; 2768 int state; 2769 2770 lock_sock(sk); 2771 state = sk->sk_state; 2772 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2773 goto unlock; 2774 2775 mptcp_check_fastclose(msk); 2776 2777 mptcp_pm_nl_work(msk); 2778 2779 mptcp_check_send_data_fin(sk); 2780 mptcp_check_data_fin_ack(sk); 2781 mptcp_check_data_fin(sk); 2782 2783 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2784 __mptcp_close_subflow(sk); 2785 2786 if (mptcp_close_tout_expired(sk)) { 2787 mptcp_do_fastclose(sk); 2788 mptcp_close_wake_up(sk); 2789 } 2790 2791 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2792 __mptcp_destroy_sock(sk); 2793 goto unlock; 2794 } 2795 2796 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2797 __mptcp_retrans(sk); 2798 2799 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2800 if (fail_tout && time_after(jiffies, fail_tout)) 2801 mptcp_mp_fail_no_response(msk); 2802 2803 unlock: 2804 release_sock(sk); 2805 sock_put(sk); 2806 } 2807 2808 static void __mptcp_init_sock(struct sock *sk) 2809 { 2810 struct mptcp_sock *msk = mptcp_sk(sk); 2811 2812 INIT_LIST_HEAD(&msk->conn_list); 2813 INIT_LIST_HEAD(&msk->join_list); 2814 INIT_LIST_HEAD(&msk->rtx_queue); 2815 INIT_WORK(&msk->work, mptcp_worker); 2816 __skb_queue_head_init(&msk->receive_queue); 2817 msk->out_of_order_queue = RB_ROOT; 2818 msk->first_pending = NULL; 2819 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 2820 WRITE_ONCE(msk->rmem_released, 0); 2821 msk->timer_ival = TCP_RTO_MIN; 2822 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2823 2824 WRITE_ONCE(msk->first, NULL); 2825 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2826 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2827 WRITE_ONCE(msk->allow_infinite_fallback, true); 2828 msk->recovery = false; 2829 msk->subflow_id = 1; 2830 msk->last_data_sent = tcp_jiffies32; 2831 msk->last_data_recv = tcp_jiffies32; 2832 msk->last_ack_recv = tcp_jiffies32; 2833 2834 mptcp_pm_data_init(msk); 2835 2836 /* re-use the csk retrans timer for MPTCP-level retrans */ 2837 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2838 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2839 } 2840 2841 static void mptcp_ca_reset(struct sock *sk) 2842 { 2843 struct inet_connection_sock *icsk = inet_csk(sk); 2844 2845 tcp_assign_congestion_control(sk); 2846 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2847 sizeof(mptcp_sk(sk)->ca_name)); 2848 2849 /* no need to keep a reference to the ops, the name will suffice */ 2850 tcp_cleanup_congestion_control(sk); 2851 icsk->icsk_ca_ops = NULL; 2852 } 2853 2854 static int mptcp_init_sock(struct sock *sk) 2855 { 2856 struct net *net = sock_net(sk); 2857 int ret; 2858 2859 __mptcp_init_sock(sk); 2860 2861 if (!mptcp_is_enabled(net)) 2862 return -ENOPROTOOPT; 2863 2864 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2865 return -ENOMEM; 2866 2867 ret = mptcp_init_sched(mptcp_sk(sk), 2868 mptcp_sched_find(mptcp_get_scheduler(net))); 2869 if (ret) 2870 return ret; 2871 2872 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2873 2874 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2875 * propagate the correct value 2876 */ 2877 mptcp_ca_reset(sk); 2878 2879 sk_sockets_allocated_inc(sk); 2880 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2881 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2882 2883 return 0; 2884 } 2885 2886 static void __mptcp_clear_xmit(struct sock *sk) 2887 { 2888 struct mptcp_sock *msk = mptcp_sk(sk); 2889 struct mptcp_data_frag *dtmp, *dfrag; 2890 2891 WRITE_ONCE(msk->first_pending, NULL); 2892 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2893 dfrag_clear(sk, dfrag); 2894 } 2895 2896 void mptcp_cancel_work(struct sock *sk) 2897 { 2898 struct mptcp_sock *msk = mptcp_sk(sk); 2899 2900 if (cancel_work_sync(&msk->work)) 2901 __sock_put(sk); 2902 } 2903 2904 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2905 { 2906 lock_sock(ssk); 2907 2908 switch (ssk->sk_state) { 2909 case TCP_LISTEN: 2910 if (!(how & RCV_SHUTDOWN)) 2911 break; 2912 fallthrough; 2913 case TCP_SYN_SENT: 2914 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2915 break; 2916 default: 2917 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2918 pr_debug("Fallback\n"); 2919 ssk->sk_shutdown |= how; 2920 tcp_shutdown(ssk, how); 2921 2922 /* simulate the data_fin ack reception to let the state 2923 * machine move forward 2924 */ 2925 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2926 mptcp_schedule_work(sk); 2927 } else { 2928 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2929 tcp_send_ack(ssk); 2930 if (!mptcp_rtx_timer_pending(sk)) 2931 mptcp_reset_rtx_timer(sk); 2932 } 2933 break; 2934 } 2935 2936 release_sock(ssk); 2937 } 2938 2939 void mptcp_set_state(struct sock *sk, int state) 2940 { 2941 int oldstate = sk->sk_state; 2942 2943 switch (state) { 2944 case TCP_ESTABLISHED: 2945 if (oldstate != TCP_ESTABLISHED) 2946 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2947 break; 2948 case TCP_CLOSE_WAIT: 2949 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2950 * MPTCP "accepted" sockets will be created later on. So no 2951 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2952 */ 2953 break; 2954 default: 2955 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2956 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2957 } 2958 2959 inet_sk_state_store(sk, state); 2960 } 2961 2962 static const unsigned char new_state[16] = { 2963 /* current state: new state: action: */ 2964 [0 /* (Invalid) */] = TCP_CLOSE, 2965 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2966 [TCP_SYN_SENT] = TCP_CLOSE, 2967 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2968 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2969 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2970 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2971 [TCP_CLOSE] = TCP_CLOSE, 2972 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2973 [TCP_LAST_ACK] = TCP_LAST_ACK, 2974 [TCP_LISTEN] = TCP_CLOSE, 2975 [TCP_CLOSING] = TCP_CLOSING, 2976 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2977 }; 2978 2979 static int mptcp_close_state(struct sock *sk) 2980 { 2981 int next = (int)new_state[sk->sk_state]; 2982 int ns = next & TCP_STATE_MASK; 2983 2984 mptcp_set_state(sk, ns); 2985 2986 return next & TCP_ACTION_FIN; 2987 } 2988 2989 static void mptcp_check_send_data_fin(struct sock *sk) 2990 { 2991 struct mptcp_subflow_context *subflow; 2992 struct mptcp_sock *msk = mptcp_sk(sk); 2993 2994 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2995 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2996 msk->snd_nxt, msk->write_seq); 2997 2998 /* we still need to enqueue subflows or not really shutting down, 2999 * skip this 3000 */ 3001 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3002 mptcp_send_head(sk)) 3003 return; 3004 3005 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3006 3007 mptcp_for_each_subflow(msk, subflow) { 3008 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3009 3010 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3011 } 3012 } 3013 3014 static void __mptcp_wr_shutdown(struct sock *sk) 3015 { 3016 struct mptcp_sock *msk = mptcp_sk(sk); 3017 3018 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3019 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3020 !!mptcp_send_head(sk)); 3021 3022 /* will be ignored by fallback sockets */ 3023 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3024 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3025 3026 mptcp_check_send_data_fin(sk); 3027 } 3028 3029 static void __mptcp_destroy_sock(struct sock *sk) 3030 { 3031 struct mptcp_sock *msk = mptcp_sk(sk); 3032 3033 pr_debug("msk=%p\n", msk); 3034 3035 might_sleep(); 3036 3037 mptcp_stop_rtx_timer(sk); 3038 sk_stop_timer(sk, &sk->sk_timer); 3039 msk->pm.status = 0; 3040 mptcp_release_sched(msk); 3041 3042 sk->sk_prot->destroy(sk); 3043 3044 WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc)); 3045 WARN_ON_ONCE(msk->rmem_released); 3046 sk_stream_kill_queues(sk); 3047 xfrm_sk_free_policy(sk); 3048 3049 sock_put(sk); 3050 } 3051 3052 void __mptcp_unaccepted_force_close(struct sock *sk) 3053 { 3054 sock_set_flag(sk, SOCK_DEAD); 3055 mptcp_do_fastclose(sk); 3056 __mptcp_destroy_sock(sk); 3057 } 3058 3059 static __poll_t mptcp_check_readable(struct sock *sk) 3060 { 3061 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3062 } 3063 3064 static void mptcp_check_listen_stop(struct sock *sk) 3065 { 3066 struct sock *ssk; 3067 3068 if (inet_sk_state_load(sk) != TCP_LISTEN) 3069 return; 3070 3071 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3072 ssk = mptcp_sk(sk)->first; 3073 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3074 return; 3075 3076 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3077 tcp_set_state(ssk, TCP_CLOSE); 3078 mptcp_subflow_queue_clean(sk, ssk); 3079 inet_csk_listen_stop(ssk); 3080 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3081 release_sock(ssk); 3082 } 3083 3084 bool __mptcp_close(struct sock *sk, long timeout) 3085 { 3086 struct mptcp_subflow_context *subflow; 3087 struct mptcp_sock *msk = mptcp_sk(sk); 3088 bool do_cancel_work = false; 3089 int subflows_alive = 0; 3090 3091 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3092 3093 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3094 mptcp_check_listen_stop(sk); 3095 mptcp_set_state(sk, TCP_CLOSE); 3096 goto cleanup; 3097 } 3098 3099 if (mptcp_data_avail(msk) || timeout < 0) { 3100 /* If the msk has read data, or the caller explicitly ask it, 3101 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3102 */ 3103 mptcp_do_fastclose(sk); 3104 timeout = 0; 3105 } else if (mptcp_close_state(sk)) { 3106 __mptcp_wr_shutdown(sk); 3107 } 3108 3109 sk_stream_wait_close(sk, timeout); 3110 3111 cleanup: 3112 /* orphan all the subflows */ 3113 mptcp_for_each_subflow(msk, subflow) { 3114 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3115 bool slow = lock_sock_fast_nested(ssk); 3116 3117 subflows_alive += ssk->sk_state != TCP_CLOSE; 3118 3119 /* since the close timeout takes precedence on the fail one, 3120 * cancel the latter 3121 */ 3122 if (ssk == msk->first) 3123 subflow->fail_tout = 0; 3124 3125 /* detach from the parent socket, but allow data_ready to 3126 * push incoming data into the mptcp stack, to properly ack it 3127 */ 3128 ssk->sk_socket = NULL; 3129 ssk->sk_wq = NULL; 3130 unlock_sock_fast(ssk, slow); 3131 } 3132 sock_orphan(sk); 3133 3134 /* all the subflows are closed, only timeout can change the msk 3135 * state, let's not keep resources busy for no reasons 3136 */ 3137 if (subflows_alive == 0) 3138 mptcp_set_state(sk, TCP_CLOSE); 3139 3140 sock_hold(sk); 3141 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3142 if (msk->token) 3143 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3144 3145 if (sk->sk_state == TCP_CLOSE) { 3146 __mptcp_destroy_sock(sk); 3147 do_cancel_work = true; 3148 } else { 3149 mptcp_start_tout_timer(sk); 3150 } 3151 3152 return do_cancel_work; 3153 } 3154 3155 static void mptcp_close(struct sock *sk, long timeout) 3156 { 3157 bool do_cancel_work; 3158 3159 lock_sock(sk); 3160 3161 do_cancel_work = __mptcp_close(sk, timeout); 3162 release_sock(sk); 3163 if (do_cancel_work) 3164 mptcp_cancel_work(sk); 3165 3166 sock_put(sk); 3167 } 3168 3169 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3170 { 3171 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3172 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3173 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3174 3175 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3176 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3177 3178 if (msk6 && ssk6) { 3179 msk6->saddr = ssk6->saddr; 3180 msk6->flow_label = ssk6->flow_label; 3181 } 3182 #endif 3183 3184 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3185 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3186 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3187 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3188 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3189 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3190 } 3191 3192 static int mptcp_disconnect(struct sock *sk, int flags) 3193 { 3194 struct mptcp_sock *msk = mptcp_sk(sk); 3195 3196 /* We are on the fastopen error path. We can't call straight into the 3197 * subflows cleanup code due to lock nesting (we are already under 3198 * msk->firstsocket lock). 3199 */ 3200 if (msk->fastopening) 3201 return -EBUSY; 3202 3203 mptcp_check_listen_stop(sk); 3204 mptcp_set_state(sk, TCP_CLOSE); 3205 3206 mptcp_stop_rtx_timer(sk); 3207 mptcp_stop_tout_timer(sk); 3208 3209 if (msk->token) 3210 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3211 3212 /* msk->subflow is still intact, the following will not free the first 3213 * subflow 3214 */ 3215 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3216 WRITE_ONCE(msk->flags, 0); 3217 msk->cb_flags = 0; 3218 msk->recovery = false; 3219 WRITE_ONCE(msk->can_ack, false); 3220 WRITE_ONCE(msk->fully_established, false); 3221 WRITE_ONCE(msk->rcv_data_fin, false); 3222 WRITE_ONCE(msk->snd_data_fin_enable, false); 3223 WRITE_ONCE(msk->rcv_fastclose, false); 3224 WRITE_ONCE(msk->use_64bit_ack, false); 3225 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3226 mptcp_pm_data_reset(msk); 3227 mptcp_ca_reset(sk); 3228 msk->bytes_consumed = 0; 3229 msk->bytes_acked = 0; 3230 msk->bytes_received = 0; 3231 msk->bytes_sent = 0; 3232 msk->bytes_retrans = 0; 3233 msk->rcvspace_init = 0; 3234 3235 WRITE_ONCE(sk->sk_shutdown, 0); 3236 sk_error_report(sk); 3237 return 0; 3238 } 3239 3240 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3241 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3242 { 3243 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3244 3245 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3246 } 3247 3248 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3249 { 3250 const struct ipv6_pinfo *np = inet6_sk(sk); 3251 struct ipv6_txoptions *opt; 3252 struct ipv6_pinfo *newnp; 3253 3254 newnp = inet6_sk(newsk); 3255 3256 rcu_read_lock(); 3257 opt = rcu_dereference(np->opt); 3258 if (opt) { 3259 opt = ipv6_dup_options(newsk, opt); 3260 if (!opt) 3261 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3262 } 3263 RCU_INIT_POINTER(newnp->opt, opt); 3264 rcu_read_unlock(); 3265 } 3266 #endif 3267 3268 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3269 { 3270 struct ip_options_rcu *inet_opt, *newopt = NULL; 3271 const struct inet_sock *inet = inet_sk(sk); 3272 struct inet_sock *newinet; 3273 3274 newinet = inet_sk(newsk); 3275 3276 rcu_read_lock(); 3277 inet_opt = rcu_dereference(inet->inet_opt); 3278 if (inet_opt) { 3279 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3280 inet_opt->opt.optlen, GFP_ATOMIC); 3281 if (newopt) 3282 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3283 inet_opt->opt.optlen); 3284 else 3285 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3286 } 3287 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3288 rcu_read_unlock(); 3289 } 3290 3291 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3292 const struct mptcp_options_received *mp_opt, 3293 struct sock *ssk, 3294 struct request_sock *req) 3295 { 3296 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3297 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3298 struct mptcp_subflow_context *subflow; 3299 struct mptcp_sock *msk; 3300 3301 if (!nsk) 3302 return NULL; 3303 3304 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3305 if (nsk->sk_family == AF_INET6) 3306 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3307 #endif 3308 3309 __mptcp_init_sock(nsk); 3310 3311 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3312 if (nsk->sk_family == AF_INET6) 3313 mptcp_copy_ip6_options(nsk, sk); 3314 else 3315 #endif 3316 mptcp_copy_ip_options(nsk, sk); 3317 3318 msk = mptcp_sk(nsk); 3319 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3320 WRITE_ONCE(msk->token, subflow_req->token); 3321 msk->in_accept_queue = 1; 3322 WRITE_ONCE(msk->fully_established, false); 3323 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3324 WRITE_ONCE(msk->csum_enabled, true); 3325 3326 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3327 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3328 WRITE_ONCE(msk->snd_una, msk->write_seq); 3329 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3330 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3331 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3332 3333 /* passive msk is created after the first/MPC subflow */ 3334 msk->subflow_id = 2; 3335 3336 sock_reset_flag(nsk, SOCK_RCU_FREE); 3337 security_inet_csk_clone(nsk, req); 3338 3339 /* this can't race with mptcp_close(), as the msk is 3340 * not yet exposted to user-space 3341 */ 3342 mptcp_set_state(nsk, TCP_ESTABLISHED); 3343 3344 /* The msk maintain a ref to each subflow in the connections list */ 3345 WRITE_ONCE(msk->first, ssk); 3346 subflow = mptcp_subflow_ctx(ssk); 3347 list_add(&subflow->node, &msk->conn_list); 3348 sock_hold(ssk); 3349 3350 /* new mpc subflow takes ownership of the newly 3351 * created mptcp socket 3352 */ 3353 mptcp_token_accept(subflow_req, msk); 3354 3355 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3356 * uses the correct data 3357 */ 3358 mptcp_copy_inaddrs(nsk, ssk); 3359 __mptcp_propagate_sndbuf(nsk, ssk); 3360 3361 mptcp_rcv_space_init(msk, ssk); 3362 3363 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3364 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3365 bh_unlock_sock(nsk); 3366 3367 /* note: the newly allocated socket refcount is 2 now */ 3368 return nsk; 3369 } 3370 3371 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3372 { 3373 const struct tcp_sock *tp = tcp_sk(ssk); 3374 3375 msk->rcvspace_init = 1; 3376 msk->rcvq_space.copied = 0; 3377 msk->rcvq_space.rtt_us = 0; 3378 3379 msk->rcvq_space.time = tp->tcp_mstamp; 3380 3381 /* initial rcv_space offering made to peer */ 3382 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3383 TCP_INIT_CWND * tp->advmss); 3384 if (msk->rcvq_space.space == 0) 3385 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3386 } 3387 3388 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3389 { 3390 struct mptcp_subflow_context *subflow, *tmp; 3391 struct sock *sk = (struct sock *)msk; 3392 3393 __mptcp_clear_xmit(sk); 3394 3395 /* join list will be eventually flushed (with rst) at sock lock release time */ 3396 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3397 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3398 3399 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3400 mptcp_data_lock(sk); 3401 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3402 __skb_queue_purge(&sk->sk_receive_queue); 3403 skb_rbtree_purge(&msk->out_of_order_queue); 3404 mptcp_data_unlock(sk); 3405 3406 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3407 * inet_sock_destruct() will dispose it 3408 */ 3409 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3410 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3411 mptcp_token_destroy(msk); 3412 mptcp_pm_free_anno_list(msk); 3413 mptcp_free_local_addr_list(msk); 3414 } 3415 3416 static void mptcp_destroy(struct sock *sk) 3417 { 3418 struct mptcp_sock *msk = mptcp_sk(sk); 3419 3420 /* allow the following to close even the initial subflow */ 3421 msk->free_first = 1; 3422 mptcp_destroy_common(msk, 0); 3423 sk_sockets_allocated_dec(sk); 3424 } 3425 3426 void __mptcp_data_acked(struct sock *sk) 3427 { 3428 if (!sock_owned_by_user(sk)) 3429 __mptcp_clean_una(sk); 3430 else 3431 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3432 } 3433 3434 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3435 { 3436 if (!mptcp_send_head(sk)) 3437 return; 3438 3439 if (!sock_owned_by_user(sk)) 3440 __mptcp_subflow_push_pending(sk, ssk, false); 3441 else 3442 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3443 } 3444 3445 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3446 BIT(MPTCP_RETRANSMIT) | \ 3447 BIT(MPTCP_FLUSH_JOIN_LIST)) 3448 3449 /* processes deferred events and flush wmem */ 3450 static void mptcp_release_cb(struct sock *sk) 3451 __must_hold(&sk->sk_lock.slock) 3452 { 3453 struct mptcp_sock *msk = mptcp_sk(sk); 3454 3455 for (;;) { 3456 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3457 struct list_head join_list; 3458 3459 if (!flags) 3460 break; 3461 3462 INIT_LIST_HEAD(&join_list); 3463 list_splice_init(&msk->join_list, &join_list); 3464 3465 /* the following actions acquire the subflow socket lock 3466 * 3467 * 1) can't be invoked in atomic scope 3468 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3469 * datapath acquires the msk socket spinlock while helding 3470 * the subflow socket lock 3471 */ 3472 msk->cb_flags &= ~flags; 3473 spin_unlock_bh(&sk->sk_lock.slock); 3474 3475 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3476 __mptcp_flush_join_list(sk, &join_list); 3477 if (flags & BIT(MPTCP_PUSH_PENDING)) 3478 __mptcp_push_pending(sk, 0); 3479 if (flags & BIT(MPTCP_RETRANSMIT)) 3480 __mptcp_retrans(sk); 3481 3482 cond_resched(); 3483 spin_lock_bh(&sk->sk_lock.slock); 3484 } 3485 3486 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3487 __mptcp_clean_una_wakeup(sk); 3488 if (unlikely(msk->cb_flags)) { 3489 /* be sure to sync the msk state before taking actions 3490 * depending on sk_state (MPTCP_ERROR_REPORT) 3491 * On sk release avoid actions depending on the first subflow 3492 */ 3493 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3494 __mptcp_sync_state(sk, msk->pending_state); 3495 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3496 __mptcp_error_report(sk); 3497 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3498 __mptcp_sync_sndbuf(sk); 3499 } 3500 3501 __mptcp_update_rmem(sk); 3502 } 3503 3504 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3505 * TCP can't schedule delack timer before the subflow is fully established. 3506 * MPTCP uses the delack timer to do 3rd ack retransmissions 3507 */ 3508 static void schedule_3rdack_retransmission(struct sock *ssk) 3509 { 3510 struct inet_connection_sock *icsk = inet_csk(ssk); 3511 struct tcp_sock *tp = tcp_sk(ssk); 3512 unsigned long timeout; 3513 3514 if (mptcp_subflow_ctx(ssk)->fully_established) 3515 return; 3516 3517 /* reschedule with a timeout above RTT, as we must look only for drop */ 3518 if (tp->srtt_us) 3519 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3520 else 3521 timeout = TCP_TIMEOUT_INIT; 3522 timeout += jiffies; 3523 3524 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3525 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3526 icsk->icsk_ack.timeout = timeout; 3527 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3528 } 3529 3530 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3531 { 3532 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3533 struct sock *sk = subflow->conn; 3534 3535 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3536 mptcp_data_lock(sk); 3537 if (!sock_owned_by_user(sk)) 3538 __mptcp_subflow_push_pending(sk, ssk, true); 3539 else 3540 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3541 mptcp_data_unlock(sk); 3542 } 3543 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3544 mptcp_data_lock(sk); 3545 if (!sock_owned_by_user(sk)) 3546 __mptcp_sync_sndbuf(sk); 3547 else 3548 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3549 mptcp_data_unlock(sk); 3550 } 3551 if (status & BIT(MPTCP_DELEGATE_ACK)) 3552 schedule_3rdack_retransmission(ssk); 3553 } 3554 3555 static int mptcp_hash(struct sock *sk) 3556 { 3557 /* should never be called, 3558 * we hash the TCP subflows not the MPTCP socket 3559 */ 3560 WARN_ON_ONCE(1); 3561 return 0; 3562 } 3563 3564 static void mptcp_unhash(struct sock *sk) 3565 { 3566 /* called from sk_common_release(), but nothing to do here */ 3567 } 3568 3569 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3570 { 3571 struct mptcp_sock *msk = mptcp_sk(sk); 3572 3573 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3574 if (WARN_ON_ONCE(!msk->first)) 3575 return -EINVAL; 3576 3577 return inet_csk_get_port(msk->first, snum); 3578 } 3579 3580 void mptcp_finish_connect(struct sock *ssk) 3581 { 3582 struct mptcp_subflow_context *subflow; 3583 struct mptcp_sock *msk; 3584 struct sock *sk; 3585 3586 subflow = mptcp_subflow_ctx(ssk); 3587 sk = subflow->conn; 3588 msk = mptcp_sk(sk); 3589 3590 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3591 3592 subflow->map_seq = subflow->iasn; 3593 subflow->map_subflow_seq = 1; 3594 3595 /* the socket is not connected yet, no msk/subflow ops can access/race 3596 * accessing the field below 3597 */ 3598 WRITE_ONCE(msk->local_key, subflow->local_key); 3599 3600 mptcp_pm_new_connection(msk, ssk, 0); 3601 } 3602 3603 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3604 { 3605 write_lock_bh(&sk->sk_callback_lock); 3606 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3607 sk_set_socket(sk, parent); 3608 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3609 write_unlock_bh(&sk->sk_callback_lock); 3610 } 3611 3612 bool mptcp_finish_join(struct sock *ssk) 3613 { 3614 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3615 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3616 struct sock *parent = (void *)msk; 3617 bool ret = true; 3618 3619 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3620 3621 /* mptcp socket already closing? */ 3622 if (!mptcp_is_fully_established(parent)) { 3623 subflow->reset_reason = MPTCP_RST_EMPTCP; 3624 return false; 3625 } 3626 3627 /* active subflow, already present inside the conn_list */ 3628 if (!list_empty(&subflow->node)) { 3629 mptcp_subflow_joined(msk, ssk); 3630 mptcp_propagate_sndbuf(parent, ssk); 3631 return true; 3632 } 3633 3634 if (!mptcp_pm_allow_new_subflow(msk)) 3635 goto err_prohibited; 3636 3637 /* If we can't acquire msk socket lock here, let the release callback 3638 * handle it 3639 */ 3640 mptcp_data_lock(parent); 3641 if (!sock_owned_by_user(parent)) { 3642 ret = __mptcp_finish_join(msk, ssk); 3643 if (ret) { 3644 sock_hold(ssk); 3645 list_add_tail(&subflow->node, &msk->conn_list); 3646 } 3647 } else { 3648 sock_hold(ssk); 3649 list_add_tail(&subflow->node, &msk->join_list); 3650 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3651 } 3652 mptcp_data_unlock(parent); 3653 3654 if (!ret) { 3655 err_prohibited: 3656 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3657 return false; 3658 } 3659 3660 return true; 3661 } 3662 3663 static void mptcp_shutdown(struct sock *sk, int how) 3664 { 3665 pr_debug("sk=%p, how=%d\n", sk, how); 3666 3667 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3668 __mptcp_wr_shutdown(sk); 3669 } 3670 3671 static int mptcp_forward_alloc_get(const struct sock *sk) 3672 { 3673 return READ_ONCE(sk->sk_forward_alloc) + 3674 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3675 } 3676 3677 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3678 { 3679 const struct sock *sk = (void *)msk; 3680 u64 delta; 3681 3682 if (sk->sk_state == TCP_LISTEN) 3683 return -EINVAL; 3684 3685 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3686 return 0; 3687 3688 delta = msk->write_seq - v; 3689 if (__mptcp_check_fallback(msk) && msk->first) { 3690 struct tcp_sock *tp = tcp_sk(msk->first); 3691 3692 /* the first subflow is disconnected after close - see 3693 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3694 * so ignore that status, too. 3695 */ 3696 if (!((1 << msk->first->sk_state) & 3697 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3698 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3699 } 3700 if (delta > INT_MAX) 3701 delta = INT_MAX; 3702 3703 return (int)delta; 3704 } 3705 3706 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3707 { 3708 struct mptcp_sock *msk = mptcp_sk(sk); 3709 bool slow; 3710 3711 switch (cmd) { 3712 case SIOCINQ: 3713 if (sk->sk_state == TCP_LISTEN) 3714 return -EINVAL; 3715 3716 lock_sock(sk); 3717 __mptcp_move_skbs(msk); 3718 *karg = mptcp_inq_hint(sk); 3719 release_sock(sk); 3720 break; 3721 case SIOCOUTQ: 3722 slow = lock_sock_fast(sk); 3723 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3724 unlock_sock_fast(sk, slow); 3725 break; 3726 case SIOCOUTQNSD: 3727 slow = lock_sock_fast(sk); 3728 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3729 unlock_sock_fast(sk, slow); 3730 break; 3731 default: 3732 return -ENOIOCTLCMD; 3733 } 3734 3735 return 0; 3736 } 3737 3738 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3739 struct mptcp_subflow_context *subflow) 3740 { 3741 subflow->request_mptcp = 0; 3742 __mptcp_do_fallback(msk); 3743 } 3744 3745 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3746 { 3747 struct mptcp_subflow_context *subflow; 3748 struct mptcp_sock *msk = mptcp_sk(sk); 3749 int err = -EINVAL; 3750 struct sock *ssk; 3751 3752 ssk = __mptcp_nmpc_sk(msk); 3753 if (IS_ERR(ssk)) 3754 return PTR_ERR(ssk); 3755 3756 mptcp_set_state(sk, TCP_SYN_SENT); 3757 subflow = mptcp_subflow_ctx(ssk); 3758 #ifdef CONFIG_TCP_MD5SIG 3759 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3760 * TCP option space. 3761 */ 3762 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3763 mptcp_subflow_early_fallback(msk, subflow); 3764 #endif 3765 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3766 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3767 mptcp_subflow_early_fallback(msk, subflow); 3768 } 3769 3770 WRITE_ONCE(msk->write_seq, subflow->idsn); 3771 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3772 WRITE_ONCE(msk->snd_una, subflow->idsn); 3773 if (likely(!__mptcp_check_fallback(msk))) 3774 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3775 3776 /* if reaching here via the fastopen/sendmsg path, the caller already 3777 * acquired the subflow socket lock, too. 3778 */ 3779 if (!msk->fastopening) 3780 lock_sock(ssk); 3781 3782 /* the following mirrors closely a very small chunk of code from 3783 * __inet_stream_connect() 3784 */ 3785 if (ssk->sk_state != TCP_CLOSE) 3786 goto out; 3787 3788 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3789 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3790 if (err) 3791 goto out; 3792 } 3793 3794 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3795 if (err < 0) 3796 goto out; 3797 3798 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3799 3800 out: 3801 if (!msk->fastopening) 3802 release_sock(ssk); 3803 3804 /* on successful connect, the msk state will be moved to established by 3805 * subflow_finish_connect() 3806 */ 3807 if (unlikely(err)) { 3808 /* avoid leaving a dangling token in an unconnected socket */ 3809 mptcp_token_destroy(msk); 3810 mptcp_set_state(sk, TCP_CLOSE); 3811 return err; 3812 } 3813 3814 mptcp_copy_inaddrs(sk, ssk); 3815 return 0; 3816 } 3817 3818 static struct proto mptcp_prot = { 3819 .name = "MPTCP", 3820 .owner = THIS_MODULE, 3821 .init = mptcp_init_sock, 3822 .connect = mptcp_connect, 3823 .disconnect = mptcp_disconnect, 3824 .close = mptcp_close, 3825 .setsockopt = mptcp_setsockopt, 3826 .getsockopt = mptcp_getsockopt, 3827 .shutdown = mptcp_shutdown, 3828 .destroy = mptcp_destroy, 3829 .sendmsg = mptcp_sendmsg, 3830 .ioctl = mptcp_ioctl, 3831 .recvmsg = mptcp_recvmsg, 3832 .release_cb = mptcp_release_cb, 3833 .hash = mptcp_hash, 3834 .unhash = mptcp_unhash, 3835 .get_port = mptcp_get_port, 3836 .forward_alloc_get = mptcp_forward_alloc_get, 3837 .stream_memory_free = mptcp_stream_memory_free, 3838 .sockets_allocated = &mptcp_sockets_allocated, 3839 3840 .memory_allocated = &tcp_memory_allocated, 3841 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3842 3843 .memory_pressure = &tcp_memory_pressure, 3844 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3845 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3846 .sysctl_mem = sysctl_tcp_mem, 3847 .obj_size = sizeof(struct mptcp_sock), 3848 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3849 .no_autobind = true, 3850 }; 3851 3852 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3853 { 3854 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3855 struct sock *ssk, *sk = sock->sk; 3856 int err = -EINVAL; 3857 3858 lock_sock(sk); 3859 ssk = __mptcp_nmpc_sk(msk); 3860 if (IS_ERR(ssk)) { 3861 err = PTR_ERR(ssk); 3862 goto unlock; 3863 } 3864 3865 if (sk->sk_family == AF_INET) 3866 err = inet_bind_sk(ssk, uaddr, addr_len); 3867 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3868 else if (sk->sk_family == AF_INET6) 3869 err = inet6_bind_sk(ssk, uaddr, addr_len); 3870 #endif 3871 if (!err) 3872 mptcp_copy_inaddrs(sk, ssk); 3873 3874 unlock: 3875 release_sock(sk); 3876 return err; 3877 } 3878 3879 static int mptcp_listen(struct socket *sock, int backlog) 3880 { 3881 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3882 struct sock *sk = sock->sk; 3883 struct sock *ssk; 3884 int err; 3885 3886 pr_debug("msk=%p\n", msk); 3887 3888 lock_sock(sk); 3889 3890 err = -EINVAL; 3891 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3892 goto unlock; 3893 3894 ssk = __mptcp_nmpc_sk(msk); 3895 if (IS_ERR(ssk)) { 3896 err = PTR_ERR(ssk); 3897 goto unlock; 3898 } 3899 3900 mptcp_set_state(sk, TCP_LISTEN); 3901 sock_set_flag(sk, SOCK_RCU_FREE); 3902 3903 lock_sock(ssk); 3904 err = __inet_listen_sk(ssk, backlog); 3905 release_sock(ssk); 3906 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3907 3908 if (!err) { 3909 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3910 mptcp_copy_inaddrs(sk, ssk); 3911 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3912 } 3913 3914 unlock: 3915 release_sock(sk); 3916 return err; 3917 } 3918 3919 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3920 struct proto_accept_arg *arg) 3921 { 3922 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3923 struct sock *ssk, *newsk; 3924 3925 pr_debug("msk=%p\n", msk); 3926 3927 /* Buggy applications can call accept on socket states other then LISTEN 3928 * but no need to allocate the first subflow just to error out. 3929 */ 3930 ssk = READ_ONCE(msk->first); 3931 if (!ssk) 3932 return -EINVAL; 3933 3934 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3935 newsk = inet_csk_accept(ssk, arg); 3936 if (!newsk) 3937 return arg->err; 3938 3939 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3940 if (sk_is_mptcp(newsk)) { 3941 struct mptcp_subflow_context *subflow; 3942 struct sock *new_mptcp_sock; 3943 3944 subflow = mptcp_subflow_ctx(newsk); 3945 new_mptcp_sock = subflow->conn; 3946 3947 /* is_mptcp should be false if subflow->conn is missing, see 3948 * subflow_syn_recv_sock() 3949 */ 3950 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3951 tcp_sk(newsk)->is_mptcp = 0; 3952 goto tcpfallback; 3953 } 3954 3955 newsk = new_mptcp_sock; 3956 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3957 3958 newsk->sk_kern_sock = arg->kern; 3959 lock_sock(newsk); 3960 __inet_accept(sock, newsock, newsk); 3961 3962 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3963 msk = mptcp_sk(newsk); 3964 msk->in_accept_queue = 0; 3965 3966 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3967 * This is needed so NOSPACE flag can be set from tcp stack. 3968 */ 3969 mptcp_for_each_subflow(msk, subflow) { 3970 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3971 3972 if (!ssk->sk_socket) 3973 mptcp_sock_graft(ssk, newsock); 3974 } 3975 3976 /* Do late cleanup for the first subflow as necessary. Also 3977 * deal with bad peers not doing a complete shutdown. 3978 */ 3979 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3980 __mptcp_close_ssk(newsk, msk->first, 3981 mptcp_subflow_ctx(msk->first), 0); 3982 if (unlikely(list_is_singular(&msk->conn_list))) 3983 mptcp_set_state(newsk, TCP_CLOSE); 3984 } 3985 } else { 3986 tcpfallback: 3987 newsk->sk_kern_sock = arg->kern; 3988 lock_sock(newsk); 3989 __inet_accept(sock, newsock, newsk); 3990 /* we are being invoked after accepting a non-mp-capable 3991 * flow: sk is a tcp_sk, not an mptcp one. 3992 * 3993 * Hand the socket over to tcp so all further socket ops 3994 * bypass mptcp. 3995 */ 3996 WRITE_ONCE(newsock->sk->sk_socket->ops, 3997 mptcp_fallback_tcp_ops(newsock->sk)); 3998 } 3999 release_sock(newsk); 4000 4001 return 0; 4002 } 4003 4004 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4005 { 4006 struct sock *sk = (struct sock *)msk; 4007 4008 if (__mptcp_stream_is_writeable(sk, 1)) 4009 return EPOLLOUT | EPOLLWRNORM; 4010 4011 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4012 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4013 if (__mptcp_stream_is_writeable(sk, 1)) 4014 return EPOLLOUT | EPOLLWRNORM; 4015 4016 return 0; 4017 } 4018 4019 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4020 struct poll_table_struct *wait) 4021 { 4022 struct sock *sk = sock->sk; 4023 struct mptcp_sock *msk; 4024 __poll_t mask = 0; 4025 u8 shutdown; 4026 int state; 4027 4028 msk = mptcp_sk(sk); 4029 sock_poll_wait(file, sock, wait); 4030 4031 state = inet_sk_state_load(sk); 4032 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4033 if (state == TCP_LISTEN) { 4034 struct sock *ssk = READ_ONCE(msk->first); 4035 4036 if (WARN_ON_ONCE(!ssk)) 4037 return 0; 4038 4039 return inet_csk_listen_poll(ssk); 4040 } 4041 4042 shutdown = READ_ONCE(sk->sk_shutdown); 4043 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4044 mask |= EPOLLHUP; 4045 if (shutdown & RCV_SHUTDOWN) 4046 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4047 4048 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4049 mask |= mptcp_check_readable(sk); 4050 if (shutdown & SEND_SHUTDOWN) 4051 mask |= EPOLLOUT | EPOLLWRNORM; 4052 else 4053 mask |= mptcp_check_writeable(msk); 4054 } else if (state == TCP_SYN_SENT && 4055 inet_test_bit(DEFER_CONNECT, sk)) { 4056 /* cf tcp_poll() note about TFO */ 4057 mask |= EPOLLOUT | EPOLLWRNORM; 4058 } 4059 4060 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4061 smp_rmb(); 4062 if (READ_ONCE(sk->sk_err)) 4063 mask |= EPOLLERR; 4064 4065 return mask; 4066 } 4067 4068 static const struct proto_ops mptcp_stream_ops = { 4069 .family = PF_INET, 4070 .owner = THIS_MODULE, 4071 .release = inet_release, 4072 .bind = mptcp_bind, 4073 .connect = inet_stream_connect, 4074 .socketpair = sock_no_socketpair, 4075 .accept = mptcp_stream_accept, 4076 .getname = inet_getname, 4077 .poll = mptcp_poll, 4078 .ioctl = inet_ioctl, 4079 .gettstamp = sock_gettstamp, 4080 .listen = mptcp_listen, 4081 .shutdown = inet_shutdown, 4082 .setsockopt = sock_common_setsockopt, 4083 .getsockopt = sock_common_getsockopt, 4084 .sendmsg = inet_sendmsg, 4085 .recvmsg = inet_recvmsg, 4086 .mmap = sock_no_mmap, 4087 .set_rcvlowat = mptcp_set_rcvlowat, 4088 }; 4089 4090 static struct inet_protosw mptcp_protosw = { 4091 .type = SOCK_STREAM, 4092 .protocol = IPPROTO_MPTCP, 4093 .prot = &mptcp_prot, 4094 .ops = &mptcp_stream_ops, 4095 .flags = INET_PROTOSW_ICSK, 4096 }; 4097 4098 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4099 { 4100 struct mptcp_delegated_action *delegated; 4101 struct mptcp_subflow_context *subflow; 4102 int work_done = 0; 4103 4104 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4105 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4106 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4107 4108 bh_lock_sock_nested(ssk); 4109 if (!sock_owned_by_user(ssk)) { 4110 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4111 } else { 4112 /* tcp_release_cb_override already processed 4113 * the action or will do at next release_sock(). 4114 * In both case must dequeue the subflow here - on the same 4115 * CPU that scheduled it. 4116 */ 4117 smp_wmb(); 4118 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4119 } 4120 bh_unlock_sock(ssk); 4121 sock_put(ssk); 4122 4123 if (++work_done == budget) 4124 return budget; 4125 } 4126 4127 /* always provide a 0 'work_done' argument, so that napi_complete_done 4128 * will not try accessing the NULL napi->dev ptr 4129 */ 4130 napi_complete_done(napi, 0); 4131 return work_done; 4132 } 4133 4134 void __init mptcp_proto_init(void) 4135 { 4136 struct mptcp_delegated_action *delegated; 4137 int cpu; 4138 4139 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4140 4141 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4142 panic("Failed to allocate MPTCP pcpu counter\n"); 4143 4144 init_dummy_netdev(&mptcp_napi_dev); 4145 for_each_possible_cpu(cpu) { 4146 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4147 INIT_LIST_HEAD(&delegated->head); 4148 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4149 mptcp_napi_poll); 4150 napi_enable(&delegated->napi); 4151 } 4152 4153 mptcp_subflow_init(); 4154 mptcp_pm_init(); 4155 mptcp_sched_init(); 4156 mptcp_token_init(); 4157 4158 if (proto_register(&mptcp_prot, 1) != 0) 4159 panic("Failed to register MPTCP proto.\n"); 4160 4161 inet_register_protosw(&mptcp_protosw); 4162 4163 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4164 } 4165 4166 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4167 static const struct proto_ops mptcp_v6_stream_ops = { 4168 .family = PF_INET6, 4169 .owner = THIS_MODULE, 4170 .release = inet6_release, 4171 .bind = mptcp_bind, 4172 .connect = inet_stream_connect, 4173 .socketpair = sock_no_socketpair, 4174 .accept = mptcp_stream_accept, 4175 .getname = inet6_getname, 4176 .poll = mptcp_poll, 4177 .ioctl = inet6_ioctl, 4178 .gettstamp = sock_gettstamp, 4179 .listen = mptcp_listen, 4180 .shutdown = inet_shutdown, 4181 .setsockopt = sock_common_setsockopt, 4182 .getsockopt = sock_common_getsockopt, 4183 .sendmsg = inet6_sendmsg, 4184 .recvmsg = inet6_recvmsg, 4185 .mmap = sock_no_mmap, 4186 #ifdef CONFIG_COMPAT 4187 .compat_ioctl = inet6_compat_ioctl, 4188 #endif 4189 .set_rcvlowat = mptcp_set_rcvlowat, 4190 }; 4191 4192 static struct proto mptcp_v6_prot; 4193 4194 static struct inet_protosw mptcp_v6_protosw = { 4195 .type = SOCK_STREAM, 4196 .protocol = IPPROTO_MPTCP, 4197 .prot = &mptcp_v6_prot, 4198 .ops = &mptcp_v6_stream_ops, 4199 .flags = INET_PROTOSW_ICSK, 4200 }; 4201 4202 int __init mptcp_proto_v6_init(void) 4203 { 4204 int err; 4205 4206 mptcp_v6_prot = mptcp_prot; 4207 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4208 mptcp_v6_prot.slab = NULL; 4209 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4210 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4211 4212 err = proto_register(&mptcp_v6_prot, 1); 4213 if (err) 4214 return err; 4215 4216 err = inet6_register_protosw(&mptcp_v6_protosw); 4217 if (err) 4218 proto_unregister(&mptcp_v6_prot); 4219 4220 return err; 4221 } 4222 #endif 4223
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.