1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2015 Nicira, Inc. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/openvswitch.h> 8 #include <linux/tcp.h> 9 #include <linux/udp.h> 10 #include <linux/sctp.h> 11 #include <linux/static_key.h> 12 #include <linux/string_helpers.h> 13 #include <net/ip.h> 14 #include <net/genetlink.h> 15 #include <net/netfilter/nf_conntrack_core.h> 16 #include <net/netfilter/nf_conntrack_count.h> 17 #include <net/netfilter/nf_conntrack_helper.h> 18 #include <net/netfilter/nf_conntrack_labels.h> 19 #include <net/netfilter/nf_conntrack_seqadj.h> 20 #include <net/netfilter/nf_conntrack_timeout.h> 21 #include <net/netfilter/nf_conntrack_zones.h> 22 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 23 #include <net/ipv6_frag.h> 24 25 #if IS_ENABLED(CONFIG_NF_NAT) 26 #include <net/netfilter/nf_nat.h> 27 #endif 28 29 #include <net/netfilter/nf_conntrack_act_ct.h> 30 31 #include "datapath.h" 32 #include "drop.h" 33 #include "conntrack.h" 34 #include "flow.h" 35 #include "flow_netlink.h" 36 37 struct ovs_ct_len_tbl { 38 int maxlen; 39 int minlen; 40 }; 41 42 /* Metadata mark for masked write to conntrack mark */ 43 struct md_mark { 44 u32 value; 45 u32 mask; 46 }; 47 48 /* Metadata label for masked write to conntrack label. */ 49 struct md_labels { 50 struct ovs_key_ct_labels value; 51 struct ovs_key_ct_labels mask; 52 }; 53 54 enum ovs_ct_nat { 55 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 56 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 57 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 58 }; 59 60 /* Conntrack action context for execution. */ 61 struct ovs_conntrack_info { 62 struct nf_conntrack_helper *helper; 63 struct nf_conntrack_zone zone; 64 struct nf_conn *ct; 65 u8 commit : 1; 66 u8 nat : 3; /* enum ovs_ct_nat */ 67 u8 force : 1; 68 u8 have_eventmask : 1; 69 u16 family; 70 u32 eventmask; /* Mask of 1 << IPCT_*. */ 71 struct md_mark mark; 72 struct md_labels labels; 73 char timeout[CTNL_TIMEOUT_NAME_MAX]; 74 struct nf_ct_timeout *nf_ct_timeout; 75 #if IS_ENABLED(CONFIG_NF_NAT) 76 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */ 77 #endif 78 }; 79 80 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 81 #define OVS_CT_LIMIT_UNLIMITED 0 82 #define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED 83 #define CT_LIMIT_HASH_BUCKETS 512 84 static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled); 85 86 struct ovs_ct_limit { 87 /* Elements in ovs_ct_limit_info->limits hash table */ 88 struct hlist_node hlist_node; 89 struct rcu_head rcu; 90 u16 zone; 91 u32 limit; 92 }; 93 94 struct ovs_ct_limit_info { 95 u32 default_limit; 96 struct hlist_head *limits; 97 struct nf_conncount_data *data; 98 }; 99 100 static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = { 101 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, }, 102 }; 103 #endif 104 105 static bool labels_nonzero(const struct ovs_key_ct_labels *labels); 106 107 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 108 109 static u16 key_to_nfproto(const struct sw_flow_key *key) 110 { 111 switch (ntohs(key->eth.type)) { 112 case ETH_P_IP: 113 return NFPROTO_IPV4; 114 case ETH_P_IPV6: 115 return NFPROTO_IPV6; 116 default: 117 return NFPROTO_UNSPEC; 118 } 119 } 120 121 /* Map SKB connection state into the values used by flow definition. */ 122 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 123 { 124 u8 ct_state = OVS_CS_F_TRACKED; 125 126 switch (ctinfo) { 127 case IP_CT_ESTABLISHED_REPLY: 128 case IP_CT_RELATED_REPLY: 129 ct_state |= OVS_CS_F_REPLY_DIR; 130 break; 131 default: 132 break; 133 } 134 135 switch (ctinfo) { 136 case IP_CT_ESTABLISHED: 137 case IP_CT_ESTABLISHED_REPLY: 138 ct_state |= OVS_CS_F_ESTABLISHED; 139 break; 140 case IP_CT_RELATED: 141 case IP_CT_RELATED_REPLY: 142 ct_state |= OVS_CS_F_RELATED; 143 break; 144 case IP_CT_NEW: 145 ct_state |= OVS_CS_F_NEW; 146 break; 147 default: 148 break; 149 } 150 151 return ct_state; 152 } 153 154 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 155 { 156 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 157 return ct ? READ_ONCE(ct->mark) : 0; 158 #else 159 return 0; 160 #endif 161 } 162 163 /* Guard against conntrack labels max size shrinking below 128 bits. */ 164 #if NF_CT_LABELS_MAX_SIZE < 16 165 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes 166 #endif 167 168 static void ovs_ct_get_labels(const struct nf_conn *ct, 169 struct ovs_key_ct_labels *labels) 170 { 171 struct nf_conn_labels *cl = NULL; 172 173 if (ct) { 174 if (ct->master && !nf_ct_is_confirmed(ct)) 175 ct = ct->master; 176 cl = nf_ct_labels_find(ct); 177 } 178 if (cl) 179 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN); 180 else 181 memset(labels, 0, OVS_CT_LABELS_LEN); 182 } 183 184 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key, 185 const struct nf_conntrack_tuple *orig, 186 u8 icmp_proto) 187 { 188 key->ct_orig_proto = orig->dst.protonum; 189 if (orig->dst.protonum == icmp_proto) { 190 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type); 191 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code); 192 } else { 193 key->ct.orig_tp.src = orig->src.u.all; 194 key->ct.orig_tp.dst = orig->dst.u.all; 195 } 196 } 197 198 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 199 const struct nf_conntrack_zone *zone, 200 const struct nf_conn *ct) 201 { 202 key->ct_state = state; 203 key->ct_zone = zone->id; 204 key->ct.mark = ovs_ct_get_mark(ct); 205 ovs_ct_get_labels(ct, &key->ct.labels); 206 207 if (ct) { 208 const struct nf_conntrack_tuple *orig; 209 210 /* Use the master if we have one. */ 211 if (ct->master) 212 ct = ct->master; 213 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 214 215 /* IP version must match with the master connection. */ 216 if (key->eth.type == htons(ETH_P_IP) && 217 nf_ct_l3num(ct) == NFPROTO_IPV4) { 218 key->ipv4.ct_orig.src = orig->src.u3.ip; 219 key->ipv4.ct_orig.dst = orig->dst.u3.ip; 220 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP); 221 return; 222 } else if (key->eth.type == htons(ETH_P_IPV6) && 223 !sw_flow_key_is_nd(key) && 224 nf_ct_l3num(ct) == NFPROTO_IPV6) { 225 key->ipv6.ct_orig.src = orig->src.u3.in6; 226 key->ipv6.ct_orig.dst = orig->dst.u3.in6; 227 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP); 228 return; 229 } 230 } 231 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack 232 * original direction key fields. 233 */ 234 key->ct_orig_proto = 0; 235 } 236 237 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has 238 * previously sent the packet to conntrack via the ct action. If 239 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 240 * initialized from the connection status. 241 */ 242 static void ovs_ct_update_key(const struct sk_buff *skb, 243 const struct ovs_conntrack_info *info, 244 struct sw_flow_key *key, bool post_ct, 245 bool keep_nat_flags) 246 { 247 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 248 enum ip_conntrack_info ctinfo; 249 struct nf_conn *ct; 250 u8 state = 0; 251 252 ct = nf_ct_get(skb, &ctinfo); 253 if (ct) { 254 state = ovs_ct_get_state(ctinfo); 255 /* All unconfirmed entries are NEW connections. */ 256 if (!nf_ct_is_confirmed(ct)) 257 state |= OVS_CS_F_NEW; 258 /* OVS persists the related flag for the duration of the 259 * connection. 260 */ 261 if (ct->master) 262 state |= OVS_CS_F_RELATED; 263 if (keep_nat_flags) { 264 state |= key->ct_state & OVS_CS_F_NAT_MASK; 265 } else { 266 if (ct->status & IPS_SRC_NAT) 267 state |= OVS_CS_F_SRC_NAT; 268 if (ct->status & IPS_DST_NAT) 269 state |= OVS_CS_F_DST_NAT; 270 } 271 zone = nf_ct_zone(ct); 272 } else if (post_ct) { 273 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 274 if (info) 275 zone = &info->zone; 276 } 277 __ovs_ct_update_key(key, state, zone, ct); 278 } 279 280 /* This is called to initialize CT key fields possibly coming in from the local 281 * stack. 282 */ 283 void ovs_ct_fill_key(const struct sk_buff *skb, 284 struct sw_flow_key *key, 285 bool post_ct) 286 { 287 ovs_ct_update_key(skb, NULL, key, post_ct, false); 288 } 289 290 int ovs_ct_put_key(const struct sw_flow_key *swkey, 291 const struct sw_flow_key *output, struct sk_buff *skb) 292 { 293 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state)) 294 return -EMSGSIZE; 295 296 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 297 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone)) 298 return -EMSGSIZE; 299 300 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 301 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark)) 302 return -EMSGSIZE; 303 304 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 305 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels), 306 &output->ct.labels)) 307 return -EMSGSIZE; 308 309 if (swkey->ct_orig_proto) { 310 if (swkey->eth.type == htons(ETH_P_IP)) { 311 struct ovs_key_ct_tuple_ipv4 orig; 312 313 memset(&orig, 0, sizeof(orig)); 314 orig.ipv4_src = output->ipv4.ct_orig.src; 315 orig.ipv4_dst = output->ipv4.ct_orig.dst; 316 orig.src_port = output->ct.orig_tp.src; 317 orig.dst_port = output->ct.orig_tp.dst; 318 orig.ipv4_proto = output->ct_orig_proto; 319 320 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4, 321 sizeof(orig), &orig)) 322 return -EMSGSIZE; 323 } else if (swkey->eth.type == htons(ETH_P_IPV6)) { 324 struct ovs_key_ct_tuple_ipv6 orig; 325 326 memset(&orig, 0, sizeof(orig)); 327 memcpy(orig.ipv6_src, output->ipv6.ct_orig.src.s6_addr32, 328 sizeof(orig.ipv6_src)); 329 memcpy(orig.ipv6_dst, output->ipv6.ct_orig.dst.s6_addr32, 330 sizeof(orig.ipv6_dst)); 331 orig.src_port = output->ct.orig_tp.src; 332 orig.dst_port = output->ct.orig_tp.dst; 333 orig.ipv6_proto = output->ct_orig_proto; 334 335 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6, 336 sizeof(orig), &orig)) 337 return -EMSGSIZE; 338 } 339 } 340 341 return 0; 342 } 343 344 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key, 345 u32 ct_mark, u32 mask) 346 { 347 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 348 u32 new_mark; 349 350 new_mark = ct_mark | (READ_ONCE(ct->mark) & ~(mask)); 351 if (READ_ONCE(ct->mark) != new_mark) { 352 WRITE_ONCE(ct->mark, new_mark); 353 if (nf_ct_is_confirmed(ct)) 354 nf_conntrack_event_cache(IPCT_MARK, ct); 355 key->ct.mark = new_mark; 356 } 357 358 return 0; 359 #else 360 return -ENOTSUPP; 361 #endif 362 } 363 364 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct) 365 { 366 struct nf_conn_labels *cl; 367 368 cl = nf_ct_labels_find(ct); 369 if (!cl) { 370 nf_ct_labels_ext_add(ct); 371 cl = nf_ct_labels_find(ct); 372 } 373 374 return cl; 375 } 376 377 /* Initialize labels for a new, yet to be committed conntrack entry. Note that 378 * since the new connection is not yet confirmed, and thus no-one else has 379 * access to it's labels, we simply write them over. 380 */ 381 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key, 382 const struct ovs_key_ct_labels *labels, 383 const struct ovs_key_ct_labels *mask) 384 { 385 struct nf_conn_labels *cl, *master_cl; 386 bool have_mask = labels_nonzero(mask); 387 388 /* Inherit master's labels to the related connection? */ 389 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL; 390 391 if (!master_cl && !have_mask) 392 return 0; /* Nothing to do. */ 393 394 cl = ovs_ct_get_conn_labels(ct); 395 if (!cl) 396 return -ENOSPC; 397 398 /* Inherit the master's labels, if any. */ 399 if (master_cl) 400 *cl = *master_cl; 401 402 if (have_mask) { 403 u32 *dst = (u32 *)cl->bits; 404 int i; 405 406 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 407 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) | 408 (labels->ct_labels_32[i] 409 & mask->ct_labels_32[i]); 410 } 411 412 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the 413 * IPCT_LABEL bit is set in the event cache. 414 */ 415 nf_conntrack_event_cache(IPCT_LABEL, ct); 416 417 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 418 419 return 0; 420 } 421 422 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key, 423 const struct ovs_key_ct_labels *labels, 424 const struct ovs_key_ct_labels *mask) 425 { 426 struct nf_conn_labels *cl; 427 int err; 428 429 cl = ovs_ct_get_conn_labels(ct); 430 if (!cl) 431 return -ENOSPC; 432 433 err = nf_connlabels_replace(ct, labels->ct_labels_32, 434 mask->ct_labels_32, 435 OVS_CT_LABELS_LEN_32); 436 if (err) 437 return err; 438 439 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN); 440 441 return 0; 442 } 443 444 static int ovs_ct_handle_fragments(struct net *net, struct sw_flow_key *key, 445 u16 zone, int family, struct sk_buff *skb) 446 { 447 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 448 int err; 449 450 err = nf_ct_handle_fragments(net, skb, zone, family, &key->ip.proto, &ovs_cb.mru); 451 if (err) 452 return err; 453 454 /* The key extracted from the fragment that completed this datagram 455 * likely didn't have an L4 header, so regenerate it. 456 */ 457 ovs_flow_key_update_l3l4(skb, key); 458 key->ip.frag = OVS_FRAG_TYPE_NONE; 459 *OVS_CB(skb) = ovs_cb; 460 461 return 0; 462 } 463 464 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 465 static enum ip_conntrack_info 466 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 467 { 468 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 469 470 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 471 return IP_CT_ESTABLISHED_REPLY; 472 /* Once we've had two way comms, always ESTABLISHED. */ 473 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 474 return IP_CT_ESTABLISHED; 475 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 476 return IP_CT_RELATED; 477 return IP_CT_NEW; 478 } 479 480 /* Find an existing connection which this packet belongs to without 481 * re-attributing statistics or modifying the connection state. This allows an 482 * skb->_nfct lost due to an upcall to be recovered during actions execution. 483 * 484 * Must be called with rcu_read_lock. 485 * 486 * On success, populates skb->_nfct and returns the connection. Returns NULL 487 * if there is no existing entry. 488 */ 489 static struct nf_conn * 490 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 491 u8 l3num, struct sk_buff *skb, bool natted) 492 { 493 struct nf_conntrack_tuple tuple; 494 struct nf_conntrack_tuple_hash *h; 495 struct nf_conn *ct; 496 497 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num, 498 net, &tuple)) { 499 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 500 return NULL; 501 } 502 503 /* Must invert the tuple if skb has been transformed by NAT. */ 504 if (natted) { 505 struct nf_conntrack_tuple inverse; 506 507 if (!nf_ct_invert_tuple(&inverse, &tuple)) { 508 pr_debug("ovs_ct_find_existing: Inversion failed!\n"); 509 return NULL; 510 } 511 tuple = inverse; 512 } 513 514 /* look for tuple match */ 515 h = nf_conntrack_find_get(net, zone, &tuple); 516 if (!h) 517 return NULL; /* Not found. */ 518 519 ct = nf_ct_tuplehash_to_ctrack(h); 520 521 /* Inverted packet tuple matches the reverse direction conntrack tuple, 522 * select the other tuplehash to get the right 'ctinfo' bits for this 523 * packet. 524 */ 525 if (natted) 526 h = &ct->tuplehash[!h->tuple.dst.dir]; 527 528 nf_ct_set(skb, ct, ovs_ct_get_info(h)); 529 return ct; 530 } 531 532 static 533 struct nf_conn *ovs_ct_executed(struct net *net, 534 const struct sw_flow_key *key, 535 const struct ovs_conntrack_info *info, 536 struct sk_buff *skb, 537 bool *ct_executed) 538 { 539 struct nf_conn *ct = NULL; 540 541 /* If no ct, check if we have evidence that an existing conntrack entry 542 * might be found for this skb. This happens when we lose a skb->_nfct 543 * due to an upcall, or if the direction is being forced. If the 544 * connection was not confirmed, it is not cached and needs to be run 545 * through conntrack again. 546 */ 547 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) && 548 !(key->ct_state & OVS_CS_F_INVALID) && 549 (key->ct_zone == info->zone.id); 550 551 if (*ct_executed || (!key->ct_state && info->force)) { 552 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb, 553 !!(key->ct_state & 554 OVS_CS_F_NAT_MASK)); 555 } 556 557 return ct; 558 } 559 560 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 561 static bool skb_nfct_cached(struct net *net, 562 const struct sw_flow_key *key, 563 const struct ovs_conntrack_info *info, 564 struct sk_buff *skb) 565 { 566 enum ip_conntrack_info ctinfo; 567 struct nf_conn *ct; 568 bool ct_executed = true; 569 570 ct = nf_ct_get(skb, &ctinfo); 571 if (!ct) 572 ct = ovs_ct_executed(net, key, info, skb, &ct_executed); 573 574 if (ct) 575 nf_ct_get(skb, &ctinfo); 576 else 577 return false; 578 579 if (!net_eq(net, read_pnet(&ct->ct_net))) 580 return false; 581 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 582 return false; 583 if (info->helper) { 584 struct nf_conn_help *help; 585 586 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 587 if (help && rcu_access_pointer(help->helper) != info->helper) 588 return false; 589 } 590 if (info->nf_ct_timeout) { 591 struct nf_conn_timeout *timeout_ext; 592 593 timeout_ext = nf_ct_timeout_find(ct); 594 if (!timeout_ext || info->nf_ct_timeout != 595 rcu_dereference(timeout_ext->timeout)) 596 return false; 597 } 598 /* Force conntrack entry direction to the current packet? */ 599 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 600 /* Delete the conntrack entry if confirmed, else just release 601 * the reference. 602 */ 603 if (nf_ct_is_confirmed(ct)) 604 nf_ct_delete(ct, 0, 0); 605 606 nf_ct_put(ct); 607 nf_ct_set(skb, NULL, 0); 608 return false; 609 } 610 611 return ct_executed; 612 } 613 614 #if IS_ENABLED(CONFIG_NF_NAT) 615 static void ovs_nat_update_key(struct sw_flow_key *key, 616 const struct sk_buff *skb, 617 enum nf_nat_manip_type maniptype) 618 { 619 if (maniptype == NF_NAT_MANIP_SRC) { 620 __be16 src; 621 622 key->ct_state |= OVS_CS_F_SRC_NAT; 623 if (key->eth.type == htons(ETH_P_IP)) 624 key->ipv4.addr.src = ip_hdr(skb)->saddr; 625 else if (key->eth.type == htons(ETH_P_IPV6)) 626 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 627 sizeof(key->ipv6.addr.src)); 628 else 629 return; 630 631 if (key->ip.proto == IPPROTO_UDP) 632 src = udp_hdr(skb)->source; 633 else if (key->ip.proto == IPPROTO_TCP) 634 src = tcp_hdr(skb)->source; 635 else if (key->ip.proto == IPPROTO_SCTP) 636 src = sctp_hdr(skb)->source; 637 else 638 return; 639 640 key->tp.src = src; 641 } else { 642 __be16 dst; 643 644 key->ct_state |= OVS_CS_F_DST_NAT; 645 if (key->eth.type == htons(ETH_P_IP)) 646 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 647 else if (key->eth.type == htons(ETH_P_IPV6)) 648 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 649 sizeof(key->ipv6.addr.dst)); 650 else 651 return; 652 653 if (key->ip.proto == IPPROTO_UDP) 654 dst = udp_hdr(skb)->dest; 655 else if (key->ip.proto == IPPROTO_TCP) 656 dst = tcp_hdr(skb)->dest; 657 else if (key->ip.proto == IPPROTO_SCTP) 658 dst = sctp_hdr(skb)->dest; 659 else 660 return; 661 662 key->tp.dst = dst; 663 } 664 } 665 666 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 667 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 668 const struct ovs_conntrack_info *info, 669 struct sk_buff *skb, struct nf_conn *ct, 670 enum ip_conntrack_info ctinfo) 671 { 672 int err, action = 0; 673 674 if (!(info->nat & OVS_CT_NAT)) 675 return NF_ACCEPT; 676 if (info->nat & OVS_CT_SRC_NAT) 677 action |= BIT(NF_NAT_MANIP_SRC); 678 if (info->nat & OVS_CT_DST_NAT) 679 action |= BIT(NF_NAT_MANIP_DST); 680 681 err = nf_ct_nat(skb, ct, ctinfo, &action, &info->range, info->commit); 682 if (err != NF_ACCEPT) 683 return err; 684 685 if (action & BIT(NF_NAT_MANIP_SRC)) 686 ovs_nat_update_key(key, skb, NF_NAT_MANIP_SRC); 687 if (action & BIT(NF_NAT_MANIP_DST)) 688 ovs_nat_update_key(key, skb, NF_NAT_MANIP_DST); 689 690 return err; 691 } 692 #else /* !CONFIG_NF_NAT */ 693 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 694 const struct ovs_conntrack_info *info, 695 struct sk_buff *skb, struct nf_conn *ct, 696 enum ip_conntrack_info ctinfo) 697 { 698 return NF_ACCEPT; 699 } 700 #endif 701 702 static int verdict_to_errno(unsigned int verdict) 703 { 704 switch (verdict & NF_VERDICT_MASK) { 705 case NF_ACCEPT: 706 return 0; 707 case NF_DROP: 708 return -EINVAL; 709 case NF_STOLEN: 710 return -EINPROGRESS; 711 default: 712 break; 713 } 714 715 return -EINVAL; 716 } 717 718 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 719 * not done already. Update key with new CT state after passing the packet 720 * through conntrack. 721 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be 722 * set to NULL and 0 will be returned. 723 */ 724 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 725 const struct ovs_conntrack_info *info, 726 struct sk_buff *skb) 727 { 728 /* If we are recirculating packets to match on conntrack fields and 729 * committing with a separate conntrack action, then we don't need to 730 * actually run the packet through conntrack twice unless it's for a 731 * different zone. 732 */ 733 bool cached = skb_nfct_cached(net, key, info, skb); 734 enum ip_conntrack_info ctinfo; 735 struct nf_conn *ct; 736 737 if (!cached) { 738 struct nf_hook_state state = { 739 .hook = NF_INET_PRE_ROUTING, 740 .pf = info->family, 741 .net = net, 742 }; 743 struct nf_conn *tmpl = info->ct; 744 int err; 745 746 /* Associate skb with specified zone. */ 747 if (tmpl) { 748 ct = nf_ct_get(skb, &ctinfo); 749 nf_ct_put(ct); 750 nf_conntrack_get(&tmpl->ct_general); 751 nf_ct_set(skb, tmpl, IP_CT_NEW); 752 } 753 754 err = nf_conntrack_in(skb, &state); 755 if (err != NF_ACCEPT) 756 return verdict_to_errno(err); 757 758 /* Clear CT state NAT flags to mark that we have not yet done 759 * NAT after the nf_conntrack_in() call. We can actually clear 760 * the whole state, as it will be re-initialized below. 761 */ 762 key->ct_state = 0; 763 764 /* Update the key, but keep the NAT flags. */ 765 ovs_ct_update_key(skb, info, key, true, true); 766 } 767 768 ct = nf_ct_get(skb, &ctinfo); 769 if (ct) { 770 bool add_helper = false; 771 772 /* Packets starting a new connection must be NATted before the 773 * helper, so that the helper knows about the NAT. We enforce 774 * this by delaying both NAT and helper calls for unconfirmed 775 * connections until the committing CT action. For later 776 * packets NAT and Helper may be called in either order. 777 * 778 * NAT will be done only if the CT action has NAT, and only 779 * once per packet (per zone), as guarded by the NAT bits in 780 * the key->ct_state. 781 */ 782 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) && 783 (nf_ct_is_confirmed(ct) || info->commit)) { 784 int err = ovs_ct_nat(net, key, info, skb, ct, ctinfo); 785 786 err = verdict_to_errno(err); 787 if (err) 788 return err; 789 } 790 791 /* Userspace may decide to perform a ct lookup without a helper 792 * specified followed by a (recirculate and) commit with one, 793 * or attach a helper in a later commit. Therefore, for 794 * connections which we will commit, we may need to attach 795 * the helper here. 796 */ 797 if (!nf_ct_is_confirmed(ct) && info->commit && 798 info->helper && !nfct_help(ct)) { 799 int err = __nf_ct_try_assign_helper(ct, info->ct, 800 GFP_ATOMIC); 801 if (err) 802 return err; 803 add_helper = true; 804 805 /* helper installed, add seqadj if NAT is required */ 806 if (info->nat && !nfct_seqadj(ct)) { 807 if (!nfct_seqadj_ext_add(ct)) 808 return -EINVAL; 809 } 810 } 811 812 /* Call the helper only if: 813 * - nf_conntrack_in() was executed above ("!cached") or a 814 * helper was just attached ("add_helper") for a confirmed 815 * connection, or 816 * - When committing an unconfirmed connection. 817 */ 818 if ((nf_ct_is_confirmed(ct) ? !cached || add_helper : 819 info->commit)) { 820 int err = nf_ct_helper(skb, ct, ctinfo, info->family); 821 822 err = verdict_to_errno(err); 823 if (err) 824 return err; 825 } 826 827 if (nf_ct_protonum(ct) == IPPROTO_TCP && 828 nf_ct_is_confirmed(ct) && nf_conntrack_tcp_established(ct)) { 829 /* Be liberal for tcp packets so that out-of-window 830 * packets are not marked invalid. 831 */ 832 nf_ct_set_tcp_be_liberal(ct); 833 } 834 835 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 836 } 837 838 return 0; 839 } 840 841 /* Lookup connection and read fields into key. */ 842 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 843 const struct ovs_conntrack_info *info, 844 struct sk_buff *skb) 845 { 846 struct nf_conn *ct; 847 int err; 848 849 err = __ovs_ct_lookup(net, key, info, skb); 850 if (err) 851 return err; 852 853 ct = (struct nf_conn *)skb_nfct(skb); 854 if (ct) 855 nf_ct_deliver_cached_events(ct); 856 857 return 0; 858 } 859 860 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 861 { 862 size_t i; 863 864 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++) 865 if (labels->ct_labels_32[i]) 866 return true; 867 868 return false; 869 } 870 871 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 872 static struct hlist_head *ct_limit_hash_bucket( 873 const struct ovs_ct_limit_info *info, u16 zone) 874 { 875 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)]; 876 } 877 878 /* Call with ovs_mutex */ 879 static void ct_limit_set(const struct ovs_ct_limit_info *info, 880 struct ovs_ct_limit *new_ct_limit) 881 { 882 struct ovs_ct_limit *ct_limit; 883 struct hlist_head *head; 884 885 head = ct_limit_hash_bucket(info, new_ct_limit->zone); 886 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 887 if (ct_limit->zone == new_ct_limit->zone) { 888 hlist_replace_rcu(&ct_limit->hlist_node, 889 &new_ct_limit->hlist_node); 890 kfree_rcu(ct_limit, rcu); 891 return; 892 } 893 } 894 895 hlist_add_head_rcu(&new_ct_limit->hlist_node, head); 896 } 897 898 /* Call with ovs_mutex */ 899 static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone) 900 { 901 struct ovs_ct_limit *ct_limit; 902 struct hlist_head *head; 903 struct hlist_node *n; 904 905 head = ct_limit_hash_bucket(info, zone); 906 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) { 907 if (ct_limit->zone == zone) { 908 hlist_del_rcu(&ct_limit->hlist_node); 909 kfree_rcu(ct_limit, rcu); 910 return; 911 } 912 } 913 } 914 915 /* Call with RCU read lock */ 916 static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone) 917 { 918 struct ovs_ct_limit *ct_limit; 919 struct hlist_head *head; 920 921 head = ct_limit_hash_bucket(info, zone); 922 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 923 if (ct_limit->zone == zone) 924 return ct_limit->limit; 925 } 926 927 return info->default_limit; 928 } 929 930 static int ovs_ct_check_limit(struct net *net, 931 const struct ovs_conntrack_info *info, 932 const struct nf_conntrack_tuple *tuple) 933 { 934 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 935 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 936 u32 per_zone_limit, connections; 937 u32 conncount_key; 938 939 conncount_key = info->zone.id; 940 941 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id); 942 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED) 943 return 0; 944 945 connections = nf_conncount_count(net, ct_limit_info->data, 946 &conncount_key, tuple, &info->zone); 947 if (connections > per_zone_limit) 948 return -ENOMEM; 949 950 return 0; 951 } 952 #endif 953 954 /* Lookup connection and confirm if unconfirmed. */ 955 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 956 const struct ovs_conntrack_info *info, 957 struct sk_buff *skb) 958 { 959 enum ip_conntrack_info ctinfo; 960 struct nf_conn *ct; 961 int err; 962 963 err = __ovs_ct_lookup(net, key, info, skb); 964 if (err) 965 return err; 966 967 /* The connection could be invalid, in which case this is a no-op.*/ 968 ct = nf_ct_get(skb, &ctinfo); 969 if (!ct) 970 return 0; 971 972 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 973 if (static_branch_unlikely(&ovs_ct_limit_enabled)) { 974 if (!nf_ct_is_confirmed(ct)) { 975 err = ovs_ct_check_limit(net, info, 976 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple); 977 if (err) { 978 net_warn_ratelimited("openvswitch: zone: %u " 979 "exceeds conntrack limit\n", 980 info->zone.id); 981 return err; 982 } 983 } 984 } 985 #endif 986 987 /* Set the conntrack event mask if given. NEW and DELETE events have 988 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener 989 * typically would receive many kinds of updates. Setting the event 990 * mask allows those events to be filtered. The set event mask will 991 * remain in effect for the lifetime of the connection unless changed 992 * by a further CT action with both the commit flag and the eventmask 993 * option. */ 994 if (info->have_eventmask) { 995 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct); 996 997 if (cache) 998 cache->ctmask = info->eventmask; 999 } 1000 1001 /* Apply changes before confirming the connection so that the initial 1002 * conntrack NEW netlink event carries the values given in the CT 1003 * action. 1004 */ 1005 if (info->mark.mask) { 1006 err = ovs_ct_set_mark(ct, key, info->mark.value, 1007 info->mark.mask); 1008 if (err) 1009 return err; 1010 } 1011 if (!nf_ct_is_confirmed(ct)) { 1012 err = ovs_ct_init_labels(ct, key, &info->labels.value, 1013 &info->labels.mask); 1014 if (err) 1015 return err; 1016 1017 nf_conn_act_ct_ext_add(skb, ct, ctinfo); 1018 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1019 labels_nonzero(&info->labels.mask)) { 1020 err = ovs_ct_set_labels(ct, key, &info->labels.value, 1021 &info->labels.mask); 1022 if (err) 1023 return err; 1024 } 1025 /* This will take care of sending queued events even if the connection 1026 * is already confirmed. 1027 */ 1028 err = nf_conntrack_confirm(skb); 1029 1030 return verdict_to_errno(err); 1031 } 1032 1033 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 1034 * value if 'skb' is freed. 1035 */ 1036 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 1037 struct sw_flow_key *key, 1038 const struct ovs_conntrack_info *info) 1039 { 1040 int nh_ofs; 1041 int err; 1042 1043 /* The conntrack module expects to be working at L3. */ 1044 nh_ofs = skb_network_offset(skb); 1045 skb_pull_rcsum(skb, nh_ofs); 1046 1047 err = nf_ct_skb_network_trim(skb, info->family); 1048 if (err) { 1049 kfree_skb(skb); 1050 return err; 1051 } 1052 1053 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 1054 err = ovs_ct_handle_fragments(net, key, info->zone.id, 1055 info->family, skb); 1056 if (err) 1057 return err; 1058 } 1059 1060 if (info->commit) 1061 err = ovs_ct_commit(net, key, info, skb); 1062 else 1063 err = ovs_ct_lookup(net, key, info, skb); 1064 1065 /* conntrack core returned NF_STOLEN */ 1066 if (err == -EINPROGRESS) 1067 return err; 1068 1069 skb_push_rcsum(skb, nh_ofs); 1070 if (err) 1071 ovs_kfree_skb_reason(skb, OVS_DROP_CONNTRACK); 1072 return err; 1073 } 1074 1075 int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key) 1076 { 1077 enum ip_conntrack_info ctinfo; 1078 struct nf_conn *ct; 1079 1080 ct = nf_ct_get(skb, &ctinfo); 1081 1082 nf_ct_put(ct); 1083 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 1084 1085 if (key) 1086 ovs_ct_fill_key(skb, key, false); 1087 1088 return 0; 1089 } 1090 1091 #if IS_ENABLED(CONFIG_NF_NAT) 1092 static int parse_nat(const struct nlattr *attr, 1093 struct ovs_conntrack_info *info, bool log) 1094 { 1095 struct nlattr *a; 1096 int rem; 1097 bool have_ip_max = false; 1098 bool have_proto_max = false; 1099 bool ip_vers = (info->family == NFPROTO_IPV6); 1100 1101 nla_for_each_nested(a, attr, rem) { 1102 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 1103 [OVS_NAT_ATTR_SRC] = {0, 0}, 1104 [OVS_NAT_ATTR_DST] = {0, 0}, 1105 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 1106 sizeof(struct in6_addr)}, 1107 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 1108 sizeof(struct in6_addr)}, 1109 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 1110 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 1111 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 1112 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 1113 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 1114 }; 1115 int type = nla_type(a); 1116 1117 if (type > OVS_NAT_ATTR_MAX) { 1118 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)", 1119 type, OVS_NAT_ATTR_MAX); 1120 return -EINVAL; 1121 } 1122 1123 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 1124 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)", 1125 type, nla_len(a), 1126 ovs_nat_attr_lens[type][ip_vers]); 1127 return -EINVAL; 1128 } 1129 1130 switch (type) { 1131 case OVS_NAT_ATTR_SRC: 1132 case OVS_NAT_ATTR_DST: 1133 if (info->nat) { 1134 OVS_NLERR(log, "Only one type of NAT may be specified"); 1135 return -ERANGE; 1136 } 1137 info->nat |= OVS_CT_NAT; 1138 info->nat |= ((type == OVS_NAT_ATTR_SRC) 1139 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 1140 break; 1141 1142 case OVS_NAT_ATTR_IP_MIN: 1143 nla_memcpy(&info->range.min_addr, a, 1144 sizeof(info->range.min_addr)); 1145 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1146 break; 1147 1148 case OVS_NAT_ATTR_IP_MAX: 1149 have_ip_max = true; 1150 nla_memcpy(&info->range.max_addr, a, 1151 sizeof(info->range.max_addr)); 1152 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 1153 break; 1154 1155 case OVS_NAT_ATTR_PROTO_MIN: 1156 info->range.min_proto.all = htons(nla_get_u16(a)); 1157 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1158 break; 1159 1160 case OVS_NAT_ATTR_PROTO_MAX: 1161 have_proto_max = true; 1162 info->range.max_proto.all = htons(nla_get_u16(a)); 1163 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1164 break; 1165 1166 case OVS_NAT_ATTR_PERSISTENT: 1167 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 1168 break; 1169 1170 case OVS_NAT_ATTR_PROTO_HASH: 1171 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 1172 break; 1173 1174 case OVS_NAT_ATTR_PROTO_RANDOM: 1175 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1176 break; 1177 1178 default: 1179 OVS_NLERR(log, "Unknown nat attribute (%d)", type); 1180 return -EINVAL; 1181 } 1182 } 1183 1184 if (rem > 0) { 1185 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem); 1186 return -EINVAL; 1187 } 1188 if (!info->nat) { 1189 /* Do not allow flags if no type is given. */ 1190 if (info->range.flags) { 1191 OVS_NLERR(log, 1192 "NAT flags may be given only when NAT range (SRC or DST) is also specified." 1193 ); 1194 return -EINVAL; 1195 } 1196 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1197 } else if (!info->commit) { 1198 OVS_NLERR(log, 1199 "NAT attributes may be specified only when CT COMMIT flag is also specified." 1200 ); 1201 return -EINVAL; 1202 } 1203 /* Allow missing IP_MAX. */ 1204 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1205 memcpy(&info->range.max_addr, &info->range.min_addr, 1206 sizeof(info->range.max_addr)); 1207 } 1208 /* Allow missing PROTO_MAX. */ 1209 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1210 !have_proto_max) { 1211 info->range.max_proto.all = info->range.min_proto.all; 1212 } 1213 return 0; 1214 } 1215 #endif 1216 1217 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1218 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1219 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1220 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1221 .maxlen = sizeof(u16) }, 1222 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1223 .maxlen = sizeof(struct md_mark) }, 1224 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1225 .maxlen = sizeof(struct md_labels) }, 1226 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1227 .maxlen = NF_CT_HELPER_NAME_LEN }, 1228 #if IS_ENABLED(CONFIG_NF_NAT) 1229 /* NAT length is checked when parsing the nested attributes. */ 1230 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1231 #endif 1232 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32), 1233 .maxlen = sizeof(u32) }, 1234 [OVS_CT_ATTR_TIMEOUT] = { .minlen = 1, 1235 .maxlen = CTNL_TIMEOUT_NAME_MAX }, 1236 }; 1237 1238 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1239 const char **helper, bool log) 1240 { 1241 struct nlattr *a; 1242 int rem; 1243 1244 nla_for_each_nested(a, attr, rem) { 1245 int type = nla_type(a); 1246 int maxlen; 1247 int minlen; 1248 1249 if (type > OVS_CT_ATTR_MAX) { 1250 OVS_NLERR(log, 1251 "Unknown conntrack attr (type=%d, max=%d)", 1252 type, OVS_CT_ATTR_MAX); 1253 return -EINVAL; 1254 } 1255 1256 maxlen = ovs_ct_attr_lens[type].maxlen; 1257 minlen = ovs_ct_attr_lens[type].minlen; 1258 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1259 OVS_NLERR(log, 1260 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1261 type, nla_len(a), maxlen); 1262 return -EINVAL; 1263 } 1264 1265 switch (type) { 1266 case OVS_CT_ATTR_FORCE_COMMIT: 1267 info->force = true; 1268 fallthrough; 1269 case OVS_CT_ATTR_COMMIT: 1270 info->commit = true; 1271 break; 1272 #ifdef CONFIG_NF_CONNTRACK_ZONES 1273 case OVS_CT_ATTR_ZONE: 1274 info->zone.id = nla_get_u16(a); 1275 break; 1276 #endif 1277 #ifdef CONFIG_NF_CONNTRACK_MARK 1278 case OVS_CT_ATTR_MARK: { 1279 struct md_mark *mark = nla_data(a); 1280 1281 if (!mark->mask) { 1282 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1283 return -EINVAL; 1284 } 1285 info->mark = *mark; 1286 break; 1287 } 1288 #endif 1289 #ifdef CONFIG_NF_CONNTRACK_LABELS 1290 case OVS_CT_ATTR_LABELS: { 1291 struct md_labels *labels = nla_data(a); 1292 1293 if (!labels_nonzero(&labels->mask)) { 1294 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1295 return -EINVAL; 1296 } 1297 info->labels = *labels; 1298 break; 1299 } 1300 #endif 1301 case OVS_CT_ATTR_HELPER: 1302 *helper = nla_data(a); 1303 if (!string_is_terminated(*helper, nla_len(a))) { 1304 OVS_NLERR(log, "Invalid conntrack helper"); 1305 return -EINVAL; 1306 } 1307 break; 1308 #if IS_ENABLED(CONFIG_NF_NAT) 1309 case OVS_CT_ATTR_NAT: { 1310 int err = parse_nat(a, info, log); 1311 1312 if (err) 1313 return err; 1314 break; 1315 } 1316 #endif 1317 case OVS_CT_ATTR_EVENTMASK: 1318 info->have_eventmask = true; 1319 info->eventmask = nla_get_u32(a); 1320 break; 1321 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT 1322 case OVS_CT_ATTR_TIMEOUT: 1323 memcpy(info->timeout, nla_data(a), nla_len(a)); 1324 if (!string_is_terminated(info->timeout, nla_len(a))) { 1325 OVS_NLERR(log, "Invalid conntrack timeout"); 1326 return -EINVAL; 1327 } 1328 break; 1329 #endif 1330 1331 default: 1332 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1333 type); 1334 return -EINVAL; 1335 } 1336 } 1337 1338 #ifdef CONFIG_NF_CONNTRACK_MARK 1339 if (!info->commit && info->mark.mask) { 1340 OVS_NLERR(log, 1341 "Setting conntrack mark requires 'commit' flag."); 1342 return -EINVAL; 1343 } 1344 #endif 1345 #ifdef CONFIG_NF_CONNTRACK_LABELS 1346 if (!info->commit && labels_nonzero(&info->labels.mask)) { 1347 OVS_NLERR(log, 1348 "Setting conntrack labels requires 'commit' flag."); 1349 return -EINVAL; 1350 } 1351 #endif 1352 if (rem > 0) { 1353 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1354 return -EINVAL; 1355 } 1356 1357 return 0; 1358 } 1359 1360 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1361 { 1362 if (attr == OVS_KEY_ATTR_CT_STATE) 1363 return true; 1364 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1365 attr == OVS_KEY_ATTR_CT_ZONE) 1366 return true; 1367 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1368 attr == OVS_KEY_ATTR_CT_MARK) 1369 return true; 1370 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1371 attr == OVS_KEY_ATTR_CT_LABELS) { 1372 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1373 1374 return ovs_net->xt_label; 1375 } 1376 1377 return false; 1378 } 1379 1380 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1381 const struct sw_flow_key *key, 1382 struct sw_flow_actions **sfa, bool log) 1383 { 1384 struct ovs_conntrack_info ct_info; 1385 const char *helper = NULL; 1386 u16 family; 1387 int err; 1388 1389 family = key_to_nfproto(key); 1390 if (family == NFPROTO_UNSPEC) { 1391 OVS_NLERR(log, "ct family unspecified"); 1392 return -EINVAL; 1393 } 1394 1395 memset(&ct_info, 0, sizeof(ct_info)); 1396 ct_info.family = family; 1397 1398 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1399 NF_CT_DEFAULT_ZONE_DIR, 0); 1400 1401 err = parse_ct(attr, &ct_info, &helper, log); 1402 if (err) 1403 return err; 1404 1405 /* Set up template for tracking connections in specific zones. */ 1406 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1407 if (!ct_info.ct) { 1408 OVS_NLERR(log, "Failed to allocate conntrack template"); 1409 return -ENOMEM; 1410 } 1411 1412 if (ct_info.timeout[0]) { 1413 if (nf_ct_set_timeout(net, ct_info.ct, family, key->ip.proto, 1414 ct_info.timeout)) 1415 OVS_NLERR(log, 1416 "Failed to associated timeout policy '%s'", 1417 ct_info.timeout); 1418 else 1419 ct_info.nf_ct_timeout = rcu_dereference( 1420 nf_ct_timeout_find(ct_info.ct)->timeout); 1421 1422 } 1423 1424 if (helper) { 1425 err = nf_ct_add_helper(ct_info.ct, helper, ct_info.family, 1426 key->ip.proto, ct_info.nat, &ct_info.helper); 1427 if (err) { 1428 OVS_NLERR(log, "Failed to add %s helper %d", helper, err); 1429 goto err_free_ct; 1430 } 1431 } 1432 1433 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1434 sizeof(ct_info), log); 1435 if (err) 1436 goto err_free_ct; 1437 1438 if (ct_info.commit) 1439 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1440 return 0; 1441 err_free_ct: 1442 __ovs_ct_free_action(&ct_info); 1443 return err; 1444 } 1445 1446 #if IS_ENABLED(CONFIG_NF_NAT) 1447 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1448 struct sk_buff *skb) 1449 { 1450 struct nlattr *start; 1451 1452 start = nla_nest_start_noflag(skb, OVS_CT_ATTR_NAT); 1453 if (!start) 1454 return false; 1455 1456 if (info->nat & OVS_CT_SRC_NAT) { 1457 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1458 return false; 1459 } else if (info->nat & OVS_CT_DST_NAT) { 1460 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1461 return false; 1462 } else { 1463 goto out; 1464 } 1465 1466 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1467 if (IS_ENABLED(CONFIG_NF_NAT) && 1468 info->family == NFPROTO_IPV4) { 1469 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1470 info->range.min_addr.ip) || 1471 (info->range.max_addr.ip 1472 != info->range.min_addr.ip && 1473 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1474 info->range.max_addr.ip)))) 1475 return false; 1476 } else if (IS_ENABLED(CONFIG_IPV6) && 1477 info->family == NFPROTO_IPV6) { 1478 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1479 &info->range.min_addr.in6) || 1480 (memcmp(&info->range.max_addr.in6, 1481 &info->range.min_addr.in6, 1482 sizeof(info->range.max_addr.in6)) && 1483 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1484 &info->range.max_addr.in6)))) 1485 return false; 1486 } else { 1487 return false; 1488 } 1489 } 1490 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1491 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1492 ntohs(info->range.min_proto.all)) || 1493 (info->range.max_proto.all != info->range.min_proto.all && 1494 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1495 ntohs(info->range.max_proto.all))))) 1496 return false; 1497 1498 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1499 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1500 return false; 1501 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1502 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1503 return false; 1504 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1505 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1506 return false; 1507 out: 1508 nla_nest_end(skb, start); 1509 1510 return true; 1511 } 1512 #endif 1513 1514 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1515 struct sk_buff *skb) 1516 { 1517 struct nlattr *start; 1518 1519 start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CT); 1520 if (!start) 1521 return -EMSGSIZE; 1522 1523 if (ct_info->commit && nla_put_flag(skb, ct_info->force 1524 ? OVS_CT_ATTR_FORCE_COMMIT 1525 : OVS_CT_ATTR_COMMIT)) 1526 return -EMSGSIZE; 1527 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1528 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1529 return -EMSGSIZE; 1530 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1531 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1532 &ct_info->mark)) 1533 return -EMSGSIZE; 1534 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1535 labels_nonzero(&ct_info->labels.mask) && 1536 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1537 &ct_info->labels)) 1538 return -EMSGSIZE; 1539 if (ct_info->helper) { 1540 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1541 ct_info->helper->name)) 1542 return -EMSGSIZE; 1543 } 1544 if (ct_info->have_eventmask && 1545 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask)) 1546 return -EMSGSIZE; 1547 if (ct_info->timeout[0]) { 1548 if (nla_put_string(skb, OVS_CT_ATTR_TIMEOUT, ct_info->timeout)) 1549 return -EMSGSIZE; 1550 } 1551 1552 #if IS_ENABLED(CONFIG_NF_NAT) 1553 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1554 return -EMSGSIZE; 1555 #endif 1556 nla_nest_end(skb, start); 1557 1558 return 0; 1559 } 1560 1561 void ovs_ct_free_action(const struct nlattr *a) 1562 { 1563 struct ovs_conntrack_info *ct_info = nla_data(a); 1564 1565 __ovs_ct_free_action(ct_info); 1566 } 1567 1568 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1569 { 1570 if (ct_info->helper) { 1571 #if IS_ENABLED(CONFIG_NF_NAT) 1572 if (ct_info->nat) 1573 nf_nat_helper_put(ct_info->helper); 1574 #endif 1575 nf_conntrack_helper_put(ct_info->helper); 1576 } 1577 if (ct_info->ct) { 1578 if (ct_info->timeout[0]) 1579 nf_ct_destroy_timeout(ct_info->ct); 1580 nf_ct_tmpl_free(ct_info->ct); 1581 } 1582 } 1583 1584 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 1585 static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net) 1586 { 1587 int i, err; 1588 1589 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info), 1590 GFP_KERNEL); 1591 if (!ovs_net->ct_limit_info) 1592 return -ENOMEM; 1593 1594 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT; 1595 ovs_net->ct_limit_info->limits = 1596 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head), 1597 GFP_KERNEL); 1598 if (!ovs_net->ct_limit_info->limits) { 1599 kfree(ovs_net->ct_limit_info); 1600 return -ENOMEM; 1601 } 1602 1603 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++) 1604 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]); 1605 1606 ovs_net->ct_limit_info->data = 1607 nf_conncount_init(net, NFPROTO_INET, sizeof(u32)); 1608 1609 if (IS_ERR(ovs_net->ct_limit_info->data)) { 1610 err = PTR_ERR(ovs_net->ct_limit_info->data); 1611 kfree(ovs_net->ct_limit_info->limits); 1612 kfree(ovs_net->ct_limit_info); 1613 pr_err("openvswitch: failed to init nf_conncount %d\n", err); 1614 return err; 1615 } 1616 return 0; 1617 } 1618 1619 static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net) 1620 { 1621 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info; 1622 int i; 1623 1624 nf_conncount_destroy(net, NFPROTO_INET, info->data); 1625 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 1626 struct hlist_head *head = &info->limits[i]; 1627 struct ovs_ct_limit *ct_limit; 1628 struct hlist_node *next; 1629 1630 hlist_for_each_entry_safe(ct_limit, next, head, hlist_node) 1631 kfree_rcu(ct_limit, rcu); 1632 } 1633 kfree(info->limits); 1634 kfree(info); 1635 } 1636 1637 static struct sk_buff * 1638 ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd, 1639 struct ovs_header **ovs_reply_header) 1640 { 1641 struct ovs_header *ovs_header = genl_info_userhdr(info); 1642 struct sk_buff *skb; 1643 1644 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL); 1645 if (!skb) 1646 return ERR_PTR(-ENOMEM); 1647 1648 *ovs_reply_header = genlmsg_put(skb, info->snd_portid, 1649 info->snd_seq, 1650 &dp_ct_limit_genl_family, 0, cmd); 1651 1652 if (!*ovs_reply_header) { 1653 nlmsg_free(skb); 1654 return ERR_PTR(-EMSGSIZE); 1655 } 1656 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex; 1657 1658 return skb; 1659 } 1660 1661 static bool check_zone_id(int zone_id, u16 *pzone) 1662 { 1663 if (zone_id >= 0 && zone_id <= 65535) { 1664 *pzone = (u16)zone_id; 1665 return true; 1666 } 1667 return false; 1668 } 1669 1670 static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit, 1671 struct ovs_ct_limit_info *info) 1672 { 1673 struct ovs_zone_limit *zone_limit; 1674 int rem; 1675 u16 zone; 1676 1677 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1678 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1679 1680 while (rem >= sizeof(*zone_limit)) { 1681 if (unlikely(zone_limit->zone_id == 1682 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1683 ovs_lock(); 1684 info->default_limit = zone_limit->limit; 1685 ovs_unlock(); 1686 } else if (unlikely(!check_zone_id( 1687 zone_limit->zone_id, &zone))) { 1688 OVS_NLERR(true, "zone id is out of range"); 1689 } else { 1690 struct ovs_ct_limit *ct_limit; 1691 1692 ct_limit = kmalloc(sizeof(*ct_limit), 1693 GFP_KERNEL_ACCOUNT); 1694 if (!ct_limit) 1695 return -ENOMEM; 1696 1697 ct_limit->zone = zone; 1698 ct_limit->limit = zone_limit->limit; 1699 1700 ovs_lock(); 1701 ct_limit_set(info, ct_limit); 1702 ovs_unlock(); 1703 } 1704 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1705 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1706 NLA_ALIGN(sizeof(*zone_limit))); 1707 } 1708 1709 if (rem) 1710 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem); 1711 1712 return 0; 1713 } 1714 1715 static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit, 1716 struct ovs_ct_limit_info *info) 1717 { 1718 struct ovs_zone_limit *zone_limit; 1719 int rem; 1720 u16 zone; 1721 1722 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1723 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1724 1725 while (rem >= sizeof(*zone_limit)) { 1726 if (unlikely(zone_limit->zone_id == 1727 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1728 ovs_lock(); 1729 info->default_limit = OVS_CT_LIMIT_DEFAULT; 1730 ovs_unlock(); 1731 } else if (unlikely(!check_zone_id( 1732 zone_limit->zone_id, &zone))) { 1733 OVS_NLERR(true, "zone id is out of range"); 1734 } else { 1735 ovs_lock(); 1736 ct_limit_del(info, zone); 1737 ovs_unlock(); 1738 } 1739 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1740 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1741 NLA_ALIGN(sizeof(*zone_limit))); 1742 } 1743 1744 if (rem) 1745 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem); 1746 1747 return 0; 1748 } 1749 1750 static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info, 1751 struct sk_buff *reply) 1752 { 1753 struct ovs_zone_limit zone_limit = { 1754 .zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE, 1755 .limit = info->default_limit, 1756 }; 1757 1758 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 1759 } 1760 1761 static int __ovs_ct_limit_get_zone_limit(struct net *net, 1762 struct nf_conncount_data *data, 1763 u16 zone_id, u32 limit, 1764 struct sk_buff *reply) 1765 { 1766 struct nf_conntrack_zone ct_zone; 1767 struct ovs_zone_limit zone_limit; 1768 u32 conncount_key = zone_id; 1769 1770 zone_limit.zone_id = zone_id; 1771 zone_limit.limit = limit; 1772 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0); 1773 1774 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL, 1775 &ct_zone); 1776 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit); 1777 } 1778 1779 static int ovs_ct_limit_get_zone_limit(struct net *net, 1780 struct nlattr *nla_zone_limit, 1781 struct ovs_ct_limit_info *info, 1782 struct sk_buff *reply) 1783 { 1784 struct ovs_zone_limit *zone_limit; 1785 int rem, err; 1786 u32 limit; 1787 u16 zone; 1788 1789 rem = NLA_ALIGN(nla_len(nla_zone_limit)); 1790 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit); 1791 1792 while (rem >= sizeof(*zone_limit)) { 1793 if (unlikely(zone_limit->zone_id == 1794 OVS_ZONE_LIMIT_DEFAULT_ZONE)) { 1795 err = ovs_ct_limit_get_default_limit(info, reply); 1796 if (err) 1797 return err; 1798 } else if (unlikely(!check_zone_id(zone_limit->zone_id, 1799 &zone))) { 1800 OVS_NLERR(true, "zone id is out of range"); 1801 } else { 1802 rcu_read_lock(); 1803 limit = ct_limit_get(info, zone); 1804 rcu_read_unlock(); 1805 1806 err = __ovs_ct_limit_get_zone_limit( 1807 net, info->data, zone, limit, reply); 1808 if (err) 1809 return err; 1810 } 1811 rem -= NLA_ALIGN(sizeof(*zone_limit)); 1812 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit + 1813 NLA_ALIGN(sizeof(*zone_limit))); 1814 } 1815 1816 if (rem) 1817 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem); 1818 1819 return 0; 1820 } 1821 1822 static int ovs_ct_limit_get_all_zone_limit(struct net *net, 1823 struct ovs_ct_limit_info *info, 1824 struct sk_buff *reply) 1825 { 1826 struct ovs_ct_limit *ct_limit; 1827 struct hlist_head *head; 1828 int i, err = 0; 1829 1830 err = ovs_ct_limit_get_default_limit(info, reply); 1831 if (err) 1832 return err; 1833 1834 rcu_read_lock(); 1835 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) { 1836 head = &info->limits[i]; 1837 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) { 1838 err = __ovs_ct_limit_get_zone_limit(net, info->data, 1839 ct_limit->zone, ct_limit->limit, reply); 1840 if (err) 1841 goto exit_err; 1842 } 1843 } 1844 1845 exit_err: 1846 rcu_read_unlock(); 1847 return err; 1848 } 1849 1850 static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info) 1851 { 1852 struct nlattr **a = info->attrs; 1853 struct sk_buff *reply; 1854 struct ovs_header *ovs_reply_header; 1855 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 1856 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1857 int err; 1858 1859 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET, 1860 &ovs_reply_header); 1861 if (IS_ERR(reply)) 1862 return PTR_ERR(reply); 1863 1864 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 1865 err = -EINVAL; 1866 goto exit_err; 1867 } 1868 1869 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 1870 ct_limit_info); 1871 if (err) 1872 goto exit_err; 1873 1874 static_branch_enable(&ovs_ct_limit_enabled); 1875 1876 genlmsg_end(reply, ovs_reply_header); 1877 return genlmsg_reply(reply, info); 1878 1879 exit_err: 1880 nlmsg_free(reply); 1881 return err; 1882 } 1883 1884 static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info) 1885 { 1886 struct nlattr **a = info->attrs; 1887 struct sk_buff *reply; 1888 struct ovs_header *ovs_reply_header; 1889 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id); 1890 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1891 int err; 1892 1893 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL, 1894 &ovs_reply_header); 1895 if (IS_ERR(reply)) 1896 return PTR_ERR(reply); 1897 1898 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 1899 err = -EINVAL; 1900 goto exit_err; 1901 } 1902 1903 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], 1904 ct_limit_info); 1905 if (err) 1906 goto exit_err; 1907 1908 genlmsg_end(reply, ovs_reply_header); 1909 return genlmsg_reply(reply, info); 1910 1911 exit_err: 1912 nlmsg_free(reply); 1913 return err; 1914 } 1915 1916 static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info) 1917 { 1918 struct nlattr **a = info->attrs; 1919 struct nlattr *nla_reply; 1920 struct sk_buff *reply; 1921 struct ovs_header *ovs_reply_header; 1922 struct net *net = sock_net(skb->sk); 1923 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1924 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info; 1925 int err; 1926 1927 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET, 1928 &ovs_reply_header); 1929 if (IS_ERR(reply)) 1930 return PTR_ERR(reply); 1931 1932 nla_reply = nla_nest_start_noflag(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT); 1933 if (!nla_reply) { 1934 err = -EMSGSIZE; 1935 goto exit_err; 1936 } 1937 1938 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) { 1939 err = ovs_ct_limit_get_zone_limit( 1940 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info, 1941 reply); 1942 if (err) 1943 goto exit_err; 1944 } else { 1945 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info, 1946 reply); 1947 if (err) 1948 goto exit_err; 1949 } 1950 1951 nla_nest_end(reply, nla_reply); 1952 genlmsg_end(reply, ovs_reply_header); 1953 return genlmsg_reply(reply, info); 1954 1955 exit_err: 1956 nlmsg_free(reply); 1957 return err; 1958 } 1959 1960 static const struct genl_small_ops ct_limit_genl_ops[] = { 1961 { .cmd = OVS_CT_LIMIT_CMD_SET, 1962 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1963 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN 1964 * privilege. 1965 */ 1966 .doit = ovs_ct_limit_cmd_set, 1967 }, 1968 { .cmd = OVS_CT_LIMIT_CMD_DEL, 1969 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1970 .flags = GENL_UNS_ADMIN_PERM, /* Requires CAP_NET_ADMIN 1971 * privilege. 1972 */ 1973 .doit = ovs_ct_limit_cmd_del, 1974 }, 1975 { .cmd = OVS_CT_LIMIT_CMD_GET, 1976 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP, 1977 .flags = 0, /* OK for unprivileged users. */ 1978 .doit = ovs_ct_limit_cmd_get, 1979 }, 1980 }; 1981 1982 static const struct genl_multicast_group ovs_ct_limit_multicast_group = { 1983 .name = OVS_CT_LIMIT_MCGROUP, 1984 }; 1985 1986 struct genl_family dp_ct_limit_genl_family __ro_after_init = { 1987 .hdrsize = sizeof(struct ovs_header), 1988 .name = OVS_CT_LIMIT_FAMILY, 1989 .version = OVS_CT_LIMIT_VERSION, 1990 .maxattr = OVS_CT_LIMIT_ATTR_MAX, 1991 .policy = ct_limit_policy, 1992 .netnsok = true, 1993 .parallel_ops = true, 1994 .small_ops = ct_limit_genl_ops, 1995 .n_small_ops = ARRAY_SIZE(ct_limit_genl_ops), 1996 .resv_start_op = OVS_CT_LIMIT_CMD_GET + 1, 1997 .mcgrps = &ovs_ct_limit_multicast_group, 1998 .n_mcgrps = 1, 1999 .module = THIS_MODULE, 2000 }; 2001 #endif 2002 2003 int ovs_ct_init(struct net *net) 2004 { 2005 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 2006 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2007 2008 if (nf_connlabels_get(net, n_bits - 1)) { 2009 ovs_net->xt_label = false; 2010 OVS_NLERR(true, "Failed to set connlabel length"); 2011 } else { 2012 ovs_net->xt_label = true; 2013 } 2014 2015 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2016 return ovs_ct_limit_init(net, ovs_net); 2017 #else 2018 return 0; 2019 #endif 2020 } 2021 2022 void ovs_ct_exit(struct net *net) 2023 { 2024 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 2025 2026 #if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT) 2027 ovs_ct_limit_exit(net, ovs_net); 2028 #endif 2029 2030 if (ovs_net->xt_label) 2031 nf_connlabels_put(net); 2032 } 2033
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.