~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/openvswitch/flow_table.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Copyright (c) 2007-2014 Nicira, Inc.
  4  */
  5 
  6 #include "flow.h"
  7 #include "datapath.h"
  8 #include "flow_netlink.h"
  9 #include <linux/uaccess.h>
 10 #include <linux/netdevice.h>
 11 #include <linux/etherdevice.h>
 12 #include <linux/if_ether.h>
 13 #include <linux/if_vlan.h>
 14 #include <net/llc_pdu.h>
 15 #include <linux/kernel.h>
 16 #include <linux/jhash.h>
 17 #include <linux/jiffies.h>
 18 #include <linux/llc.h>
 19 #include <linux/module.h>
 20 #include <linux/in.h>
 21 #include <linux/rcupdate.h>
 22 #include <linux/cpumask.h>
 23 #include <linux/if_arp.h>
 24 #include <linux/ip.h>
 25 #include <linux/ipv6.h>
 26 #include <linux/sctp.h>
 27 #include <linux/tcp.h>
 28 #include <linux/udp.h>
 29 #include <linux/icmp.h>
 30 #include <linux/icmpv6.h>
 31 #include <linux/rculist.h>
 32 #include <linux/sort.h>
 33 #include <net/ip.h>
 34 #include <net/ipv6.h>
 35 #include <net/ndisc.h>
 36 
 37 #define TBL_MIN_BUCKETS         1024
 38 #define MASK_ARRAY_SIZE_MIN     16
 39 #define REHASH_INTERVAL         (10 * 60 * HZ)
 40 
 41 #define MC_DEFAULT_HASH_ENTRIES 256
 42 #define MC_HASH_SHIFT           8
 43 #define MC_HASH_SEGS            ((sizeof(uint32_t) * 8) / MC_HASH_SHIFT)
 44 
 45 static struct kmem_cache *flow_cache;
 46 struct kmem_cache *flow_stats_cache __read_mostly;
 47 
 48 static u16 range_n_bytes(const struct sw_flow_key_range *range)
 49 {
 50         return range->end - range->start;
 51 }
 52 
 53 void ovs_flow_mask_key(struct sw_flow_key *dst, const struct sw_flow_key *src,
 54                        bool full, const struct sw_flow_mask *mask)
 55 {
 56         int start = full ? 0 : mask->range.start;
 57         int len = full ? sizeof *dst : range_n_bytes(&mask->range);
 58         const long *m = (const long *)((const u8 *)&mask->key + start);
 59         const long *s = (const long *)((const u8 *)src + start);
 60         long *d = (long *)((u8 *)dst + start);
 61         int i;
 62 
 63         /* If 'full' is true then all of 'dst' is fully initialized. Otherwise,
 64          * if 'full' is false the memory outside of the 'mask->range' is left
 65          * uninitialized. This can be used as an optimization when further
 66          * operations on 'dst' only use contents within 'mask->range'.
 67          */
 68         for (i = 0; i < len; i += sizeof(long))
 69                 *d++ = *s++ & *m++;
 70 }
 71 
 72 struct sw_flow *ovs_flow_alloc(void)
 73 {
 74         struct sw_flow *flow;
 75         struct sw_flow_stats *stats;
 76 
 77         flow = kmem_cache_zalloc(flow_cache, GFP_KERNEL);
 78         if (!flow)
 79                 return ERR_PTR(-ENOMEM);
 80 
 81         flow->stats_last_writer = -1;
 82         flow->cpu_used_mask = (struct cpumask *)&flow->stats[nr_cpu_ids];
 83 
 84         /* Initialize the default stat node. */
 85         stats = kmem_cache_alloc_node(flow_stats_cache,
 86                                       GFP_KERNEL | __GFP_ZERO,
 87                                       node_online(0) ? 0 : NUMA_NO_NODE);
 88         if (!stats)
 89                 goto err;
 90 
 91         spin_lock_init(&stats->lock);
 92 
 93         RCU_INIT_POINTER(flow->stats[0], stats);
 94 
 95         cpumask_set_cpu(0, flow->cpu_used_mask);
 96 
 97         return flow;
 98 err:
 99         kmem_cache_free(flow_cache, flow);
100         return ERR_PTR(-ENOMEM);
101 }
102 
103 int ovs_flow_tbl_count(const struct flow_table *table)
104 {
105         return table->count;
106 }
107 
108 static void flow_free(struct sw_flow *flow)
109 {
110         int cpu;
111 
112         if (ovs_identifier_is_key(&flow->id))
113                 kfree(flow->id.unmasked_key);
114         if (flow->sf_acts)
115                 ovs_nla_free_flow_actions((struct sw_flow_actions __force *)
116                                           flow->sf_acts);
117         /* We open code this to make sure cpu 0 is always considered */
118         for (cpu = 0; cpu < nr_cpu_ids;
119              cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
120                 if (flow->stats[cpu])
121                         kmem_cache_free(flow_stats_cache,
122                                         (struct sw_flow_stats __force *)flow->stats[cpu]);
123         }
124 
125         kmem_cache_free(flow_cache, flow);
126 }
127 
128 static void rcu_free_flow_callback(struct rcu_head *rcu)
129 {
130         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
131 
132         flow_free(flow);
133 }
134 
135 void ovs_flow_free(struct sw_flow *flow, bool deferred)
136 {
137         if (!flow)
138                 return;
139 
140         if (deferred)
141                 call_rcu(&flow->rcu, rcu_free_flow_callback);
142         else
143                 flow_free(flow);
144 }
145 
146 static void __table_instance_destroy(struct table_instance *ti)
147 {
148         kvfree(ti->buckets);
149         kfree(ti);
150 }
151 
152 static struct table_instance *table_instance_alloc(int new_size)
153 {
154         struct table_instance *ti = kmalloc(sizeof(*ti), GFP_KERNEL);
155         int i;
156 
157         if (!ti)
158                 return NULL;
159 
160         ti->buckets = kvmalloc_array(new_size, sizeof(struct hlist_head),
161                                      GFP_KERNEL);
162         if (!ti->buckets) {
163                 kfree(ti);
164                 return NULL;
165         }
166 
167         for (i = 0; i < new_size; i++)
168                 INIT_HLIST_HEAD(&ti->buckets[i]);
169 
170         ti->n_buckets = new_size;
171         ti->node_ver = 0;
172         get_random_bytes(&ti->hash_seed, sizeof(u32));
173 
174         return ti;
175 }
176 
177 static void __mask_array_destroy(struct mask_array *ma)
178 {
179         free_percpu(ma->masks_usage_stats);
180         kfree(ma);
181 }
182 
183 static void mask_array_rcu_cb(struct rcu_head *rcu)
184 {
185         struct mask_array *ma = container_of(rcu, struct mask_array, rcu);
186 
187         __mask_array_destroy(ma);
188 }
189 
190 static void tbl_mask_array_reset_counters(struct mask_array *ma)
191 {
192         int i, cpu;
193 
194         /* As the per CPU counters are not atomic we can not go ahead and
195          * reset them from another CPU. To be able to still have an approximate
196          * zero based counter we store the value at reset, and subtract it
197          * later when processing.
198          */
199         for (i = 0; i < ma->max; i++) {
200                 ma->masks_usage_zero_cntr[i] = 0;
201 
202                 for_each_possible_cpu(cpu) {
203                         struct mask_array_stats *stats;
204                         unsigned int start;
205                         u64 counter;
206 
207                         stats = per_cpu_ptr(ma->masks_usage_stats, cpu);
208                         do {
209                                 start = u64_stats_fetch_begin(&stats->syncp);
210                                 counter = stats->usage_cntrs[i];
211                         } while (u64_stats_fetch_retry(&stats->syncp, start));
212 
213                         ma->masks_usage_zero_cntr[i] += counter;
214                 }
215         }
216 }
217 
218 static struct mask_array *tbl_mask_array_alloc(int size)
219 {
220         struct mask_array *new;
221 
222         size = max(MASK_ARRAY_SIZE_MIN, size);
223         new = kzalloc(struct_size(new, masks, size) +
224                       sizeof(u64) * size, GFP_KERNEL);
225         if (!new)
226                 return NULL;
227 
228         new->masks_usage_zero_cntr = (u64 *)((u8 *)new +
229                                              struct_size(new, masks, size));
230 
231         new->masks_usage_stats = __alloc_percpu(sizeof(struct mask_array_stats) +
232                                                 sizeof(u64) * size,
233                                                 __alignof__(u64));
234         if (!new->masks_usage_stats) {
235                 kfree(new);
236                 return NULL;
237         }
238 
239         new->count = 0;
240         new->max = size;
241 
242         return new;
243 }
244 
245 static int tbl_mask_array_realloc(struct flow_table *tbl, int size)
246 {
247         struct mask_array *old;
248         struct mask_array *new;
249 
250         new = tbl_mask_array_alloc(size);
251         if (!new)
252                 return -ENOMEM;
253 
254         old = ovsl_dereference(tbl->mask_array);
255         if (old) {
256                 int i;
257 
258                 for (i = 0; i < old->max; i++) {
259                         if (ovsl_dereference(old->masks[i]))
260                                 new->masks[new->count++] = old->masks[i];
261                 }
262                 call_rcu(&old->rcu, mask_array_rcu_cb);
263         }
264 
265         rcu_assign_pointer(tbl->mask_array, new);
266 
267         return 0;
268 }
269 
270 static int tbl_mask_array_add_mask(struct flow_table *tbl,
271                                    struct sw_flow_mask *new)
272 {
273         struct mask_array *ma = ovsl_dereference(tbl->mask_array);
274         int err, ma_count = READ_ONCE(ma->count);
275 
276         if (ma_count >= ma->max) {
277                 err = tbl_mask_array_realloc(tbl, ma->max +
278                                                   MASK_ARRAY_SIZE_MIN);
279                 if (err)
280                         return err;
281 
282                 ma = ovsl_dereference(tbl->mask_array);
283         } else {
284                 /* On every add or delete we need to reset the counters so
285                  * every new mask gets a fair chance of being prioritized.
286                  */
287                 tbl_mask_array_reset_counters(ma);
288         }
289 
290         BUG_ON(ovsl_dereference(ma->masks[ma_count]));
291 
292         rcu_assign_pointer(ma->masks[ma_count], new);
293         WRITE_ONCE(ma->count, ma_count + 1);
294 
295         return 0;
296 }
297 
298 static void tbl_mask_array_del_mask(struct flow_table *tbl,
299                                     struct sw_flow_mask *mask)
300 {
301         struct mask_array *ma = ovsl_dereference(tbl->mask_array);
302         int i, ma_count = READ_ONCE(ma->count);
303 
304         /* Remove the deleted mask pointers from the array */
305         for (i = 0; i < ma_count; i++) {
306                 if (mask == ovsl_dereference(ma->masks[i]))
307                         goto found;
308         }
309 
310         BUG();
311         return;
312 
313 found:
314         WRITE_ONCE(ma->count, ma_count - 1);
315 
316         rcu_assign_pointer(ma->masks[i], ma->masks[ma_count - 1]);
317         RCU_INIT_POINTER(ma->masks[ma_count - 1], NULL);
318 
319         kfree_rcu(mask, rcu);
320 
321         /* Shrink the mask array if necessary. */
322         if (ma->max >= (MASK_ARRAY_SIZE_MIN * 2) &&
323             ma_count <= (ma->max / 3))
324                 tbl_mask_array_realloc(tbl, ma->max / 2);
325         else
326                 tbl_mask_array_reset_counters(ma);
327 
328 }
329 
330 /* Remove 'mask' from the mask list, if it is not needed any more. */
331 static void flow_mask_remove(struct flow_table *tbl, struct sw_flow_mask *mask)
332 {
333         if (mask) {
334                 /* ovs-lock is required to protect mask-refcount and
335                  * mask list.
336                  */
337                 ASSERT_OVSL();
338                 BUG_ON(!mask->ref_count);
339                 mask->ref_count--;
340 
341                 if (!mask->ref_count)
342                         tbl_mask_array_del_mask(tbl, mask);
343         }
344 }
345 
346 static void __mask_cache_destroy(struct mask_cache *mc)
347 {
348         free_percpu(mc->mask_cache);
349         kfree(mc);
350 }
351 
352 static void mask_cache_rcu_cb(struct rcu_head *rcu)
353 {
354         struct mask_cache *mc = container_of(rcu, struct mask_cache, rcu);
355 
356         __mask_cache_destroy(mc);
357 }
358 
359 static struct mask_cache *tbl_mask_cache_alloc(u32 size)
360 {
361         struct mask_cache_entry __percpu *cache = NULL;
362         struct mask_cache *new;
363 
364         /* Only allow size to be 0, or a power of 2, and does not exceed
365          * percpu allocation size.
366          */
367         if ((!is_power_of_2(size) && size != 0) ||
368             (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
369                 return NULL;
370 
371         new = kzalloc(sizeof(*new), GFP_KERNEL);
372         if (!new)
373                 return NULL;
374 
375         new->cache_size = size;
376         if (new->cache_size > 0) {
377                 cache = __alloc_percpu(array_size(sizeof(struct mask_cache_entry),
378                                                   new->cache_size),
379                                        __alignof__(struct mask_cache_entry));
380                 if (!cache) {
381                         kfree(new);
382                         return NULL;
383                 }
384         }
385 
386         new->mask_cache = cache;
387         return new;
388 }
389 int ovs_flow_tbl_masks_cache_resize(struct flow_table *table, u32 size)
390 {
391         struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache);
392         struct mask_cache *new;
393 
394         if (size == mc->cache_size)
395                 return 0;
396 
397         if ((!is_power_of_2(size) && size != 0) ||
398             (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
399                 return -EINVAL;
400 
401         new = tbl_mask_cache_alloc(size);
402         if (!new)
403                 return -ENOMEM;
404 
405         rcu_assign_pointer(table->mask_cache, new);
406         call_rcu(&mc->rcu, mask_cache_rcu_cb);
407 
408         return 0;
409 }
410 
411 int ovs_flow_tbl_init(struct flow_table *table)
412 {
413         struct table_instance *ti, *ufid_ti;
414         struct mask_cache *mc;
415         struct mask_array *ma;
416 
417         mc = tbl_mask_cache_alloc(MC_DEFAULT_HASH_ENTRIES);
418         if (!mc)
419                 return -ENOMEM;
420 
421         ma = tbl_mask_array_alloc(MASK_ARRAY_SIZE_MIN);
422         if (!ma)
423                 goto free_mask_cache;
424 
425         ti = table_instance_alloc(TBL_MIN_BUCKETS);
426         if (!ti)
427                 goto free_mask_array;
428 
429         ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
430         if (!ufid_ti)
431                 goto free_ti;
432 
433         rcu_assign_pointer(table->ti, ti);
434         rcu_assign_pointer(table->ufid_ti, ufid_ti);
435         rcu_assign_pointer(table->mask_array, ma);
436         rcu_assign_pointer(table->mask_cache, mc);
437         table->last_rehash = jiffies;
438         table->count = 0;
439         table->ufid_count = 0;
440         return 0;
441 
442 free_ti:
443         __table_instance_destroy(ti);
444 free_mask_array:
445         __mask_array_destroy(ma);
446 free_mask_cache:
447         __mask_cache_destroy(mc);
448         return -ENOMEM;
449 }
450 
451 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
452 {
453         struct table_instance *ti;
454 
455         ti = container_of(rcu, struct table_instance, rcu);
456         __table_instance_destroy(ti);
457 }
458 
459 static void table_instance_flow_free(struct flow_table *table,
460                                      struct table_instance *ti,
461                                      struct table_instance *ufid_ti,
462                                      struct sw_flow *flow)
463 {
464         hlist_del_rcu(&flow->flow_table.node[ti->node_ver]);
465         table->count--;
466 
467         if (ovs_identifier_is_ufid(&flow->id)) {
468                 hlist_del_rcu(&flow->ufid_table.node[ufid_ti->node_ver]);
469                 table->ufid_count--;
470         }
471 
472         flow_mask_remove(table, flow->mask);
473 }
474 
475 /* Must be called with OVS mutex held. */
476 void table_instance_flow_flush(struct flow_table *table,
477                                struct table_instance *ti,
478                                struct table_instance *ufid_ti)
479 {
480         int i;
481 
482         for (i = 0; i < ti->n_buckets; i++) {
483                 struct hlist_head *head = &ti->buckets[i];
484                 struct hlist_node *n;
485                 struct sw_flow *flow;
486 
487                 hlist_for_each_entry_safe(flow, n, head,
488                                           flow_table.node[ti->node_ver]) {
489 
490                         table_instance_flow_free(table, ti, ufid_ti,
491                                                  flow);
492                         ovs_flow_free(flow, true);
493                 }
494         }
495 
496         if (WARN_ON(table->count != 0 ||
497                     table->ufid_count != 0)) {
498                 table->count = 0;
499                 table->ufid_count = 0;
500         }
501 }
502 
503 static void table_instance_destroy(struct table_instance *ti,
504                                    struct table_instance *ufid_ti)
505 {
506         call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
507         call_rcu(&ufid_ti->rcu, flow_tbl_destroy_rcu_cb);
508 }
509 
510 /* No need for locking this function is called from RCU callback or
511  * error path.
512  */
513 void ovs_flow_tbl_destroy(struct flow_table *table)
514 {
515         struct table_instance *ti = rcu_dereference_raw(table->ti);
516         struct table_instance *ufid_ti = rcu_dereference_raw(table->ufid_ti);
517         struct mask_cache *mc = rcu_dereference_raw(table->mask_cache);
518         struct mask_array *ma = rcu_dereference_raw(table->mask_array);
519 
520         call_rcu(&mc->rcu, mask_cache_rcu_cb);
521         call_rcu(&ma->rcu, mask_array_rcu_cb);
522         table_instance_destroy(ti, ufid_ti);
523 }
524 
525 struct sw_flow *ovs_flow_tbl_dump_next(struct table_instance *ti,
526                                        u32 *bucket, u32 *last)
527 {
528         struct sw_flow *flow;
529         struct hlist_head *head;
530         int ver;
531         int i;
532 
533         ver = ti->node_ver;
534         while (*bucket < ti->n_buckets) {
535                 i = 0;
536                 head = &ti->buckets[*bucket];
537                 hlist_for_each_entry_rcu(flow, head, flow_table.node[ver]) {
538                         if (i < *last) {
539                                 i++;
540                                 continue;
541                         }
542                         *last = i + 1;
543                         return flow;
544                 }
545                 (*bucket)++;
546                 *last = 0;
547         }
548 
549         return NULL;
550 }
551 
552 static struct hlist_head *find_bucket(struct table_instance *ti, u32 hash)
553 {
554         hash = jhash_1word(hash, ti->hash_seed);
555         return &ti->buckets[hash & (ti->n_buckets - 1)];
556 }
557 
558 static void table_instance_insert(struct table_instance *ti,
559                                   struct sw_flow *flow)
560 {
561         struct hlist_head *head;
562 
563         head = find_bucket(ti, flow->flow_table.hash);
564         hlist_add_head_rcu(&flow->flow_table.node[ti->node_ver], head);
565 }
566 
567 static void ufid_table_instance_insert(struct table_instance *ti,
568                                        struct sw_flow *flow)
569 {
570         struct hlist_head *head;
571 
572         head = find_bucket(ti, flow->ufid_table.hash);
573         hlist_add_head_rcu(&flow->ufid_table.node[ti->node_ver], head);
574 }
575 
576 static void flow_table_copy_flows(struct table_instance *old,
577                                   struct table_instance *new, bool ufid)
578 {
579         int old_ver;
580         int i;
581 
582         old_ver = old->node_ver;
583         new->node_ver = !old_ver;
584 
585         /* Insert in new table. */
586         for (i = 0; i < old->n_buckets; i++) {
587                 struct sw_flow *flow;
588                 struct hlist_head *head = &old->buckets[i];
589 
590                 if (ufid)
591                         hlist_for_each_entry_rcu(flow, head,
592                                                  ufid_table.node[old_ver],
593                                                  lockdep_ovsl_is_held())
594                                 ufid_table_instance_insert(new, flow);
595                 else
596                         hlist_for_each_entry_rcu(flow, head,
597                                                  flow_table.node[old_ver],
598                                                  lockdep_ovsl_is_held())
599                                 table_instance_insert(new, flow);
600         }
601 }
602 
603 static struct table_instance *table_instance_rehash(struct table_instance *ti,
604                                                     int n_buckets, bool ufid)
605 {
606         struct table_instance *new_ti;
607 
608         new_ti = table_instance_alloc(n_buckets);
609         if (!new_ti)
610                 return NULL;
611 
612         flow_table_copy_flows(ti, new_ti, ufid);
613 
614         return new_ti;
615 }
616 
617 int ovs_flow_tbl_flush(struct flow_table *flow_table)
618 {
619         struct table_instance *old_ti, *new_ti;
620         struct table_instance *old_ufid_ti, *new_ufid_ti;
621 
622         new_ti = table_instance_alloc(TBL_MIN_BUCKETS);
623         if (!new_ti)
624                 return -ENOMEM;
625         new_ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
626         if (!new_ufid_ti)
627                 goto err_free_ti;
628 
629         old_ti = ovsl_dereference(flow_table->ti);
630         old_ufid_ti = ovsl_dereference(flow_table->ufid_ti);
631 
632         rcu_assign_pointer(flow_table->ti, new_ti);
633         rcu_assign_pointer(flow_table->ufid_ti, new_ufid_ti);
634         flow_table->last_rehash = jiffies;
635 
636         table_instance_flow_flush(flow_table, old_ti, old_ufid_ti);
637         table_instance_destroy(old_ti, old_ufid_ti);
638         return 0;
639 
640 err_free_ti:
641         __table_instance_destroy(new_ti);
642         return -ENOMEM;
643 }
644 
645 static u32 flow_hash(const struct sw_flow_key *key,
646                      const struct sw_flow_key_range *range)
647 {
648         const u32 *hash_key = (const u32 *)((const u8 *)key + range->start);
649 
650         /* Make sure number of hash bytes are multiple of u32. */
651         int hash_u32s = range_n_bytes(range) >> 2;
652 
653         return jhash2(hash_key, hash_u32s, 0);
654 }
655 
656 static int flow_key_start(const struct sw_flow_key *key)
657 {
658         if (key->tun_proto)
659                 return 0;
660         else
661                 return rounddown(offsetof(struct sw_flow_key, phy),
662                                  sizeof(long));
663 }
664 
665 static bool cmp_key(const struct sw_flow_key *key1,
666                     const struct sw_flow_key *key2,
667                     int key_start, int key_end)
668 {
669         const long *cp1 = (const long *)((const u8 *)key1 + key_start);
670         const long *cp2 = (const long *)((const u8 *)key2 + key_start);
671         int i;
672 
673         for (i = key_start; i < key_end; i += sizeof(long))
674                 if (*cp1++ ^ *cp2++)
675                         return false;
676 
677         return true;
678 }
679 
680 static bool flow_cmp_masked_key(const struct sw_flow *flow,
681                                 const struct sw_flow_key *key,
682                                 const struct sw_flow_key_range *range)
683 {
684         return cmp_key(&flow->key, key, range->start, range->end);
685 }
686 
687 static bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
688                                       const struct sw_flow_match *match)
689 {
690         struct sw_flow_key *key = match->key;
691         int key_start = flow_key_start(key);
692         int key_end = match->range.end;
693 
694         BUG_ON(ovs_identifier_is_ufid(&flow->id));
695         return cmp_key(flow->id.unmasked_key, key, key_start, key_end);
696 }
697 
698 static struct sw_flow *masked_flow_lookup(struct table_instance *ti,
699                                           const struct sw_flow_key *unmasked,
700                                           const struct sw_flow_mask *mask,
701                                           u32 *n_mask_hit)
702 {
703         struct sw_flow *flow;
704         struct hlist_head *head;
705         u32 hash;
706         struct sw_flow_key masked_key;
707 
708         ovs_flow_mask_key(&masked_key, unmasked, false, mask);
709         hash = flow_hash(&masked_key, &mask->range);
710         head = find_bucket(ti, hash);
711         (*n_mask_hit)++;
712 
713         hlist_for_each_entry_rcu(flow, head, flow_table.node[ti->node_ver],
714                                  lockdep_ovsl_is_held()) {
715                 if (flow->mask == mask && flow->flow_table.hash == hash &&
716                     flow_cmp_masked_key(flow, &masked_key, &mask->range))
717                         return flow;
718         }
719         return NULL;
720 }
721 
722 /* Flow lookup does full lookup on flow table. It starts with
723  * mask from index passed in *index.
724  * This function MUST be called with BH disabled due to the use
725  * of CPU specific variables.
726  */
727 static struct sw_flow *flow_lookup(struct flow_table *tbl,
728                                    struct table_instance *ti,
729                                    struct mask_array *ma,
730                                    const struct sw_flow_key *key,
731                                    u32 *n_mask_hit,
732                                    u32 *n_cache_hit,
733                                    u32 *index)
734 {
735         struct mask_array_stats *stats = this_cpu_ptr(ma->masks_usage_stats);
736         struct sw_flow *flow;
737         struct sw_flow_mask *mask;
738         int i;
739 
740         if (likely(*index < ma->max)) {
741                 mask = rcu_dereference_ovsl(ma->masks[*index]);
742                 if (mask) {
743                         flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
744                         if (flow) {
745                                 u64_stats_update_begin(&stats->syncp);
746                                 stats->usage_cntrs[*index]++;
747                                 u64_stats_update_end(&stats->syncp);
748                                 (*n_cache_hit)++;
749                                 return flow;
750                         }
751                 }
752         }
753 
754         for (i = 0; i < ma->max; i++)  {
755 
756                 if (i == *index)
757                         continue;
758 
759                 mask = rcu_dereference_ovsl(ma->masks[i]);
760                 if (unlikely(!mask))
761                         break;
762 
763                 flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
764                 if (flow) { /* Found */
765                         *index = i;
766                         u64_stats_update_begin(&stats->syncp);
767                         stats->usage_cntrs[*index]++;
768                         u64_stats_update_end(&stats->syncp);
769                         return flow;
770                 }
771         }
772 
773         return NULL;
774 }
775 
776 /*
777  * mask_cache maps flow to probable mask. This cache is not tightly
778  * coupled cache, It means updates to  mask list can result in inconsistent
779  * cache entry in mask cache.
780  * This is per cpu cache and is divided in MC_HASH_SEGS segments.
781  * In case of a hash collision the entry is hashed in next segment.
782  * */
783 struct sw_flow *ovs_flow_tbl_lookup_stats(struct flow_table *tbl,
784                                           const struct sw_flow_key *key,
785                                           u32 skb_hash,
786                                           u32 *n_mask_hit,
787                                           u32 *n_cache_hit)
788 {
789         struct mask_cache *mc = rcu_dereference(tbl->mask_cache);
790         struct mask_array *ma = rcu_dereference(tbl->mask_array);
791         struct table_instance *ti = rcu_dereference(tbl->ti);
792         struct mask_cache_entry *entries, *ce;
793         struct sw_flow *flow;
794         u32 hash;
795         int seg;
796 
797         *n_mask_hit = 0;
798         *n_cache_hit = 0;
799         if (unlikely(!skb_hash || mc->cache_size == 0)) {
800                 u32 mask_index = 0;
801                 u32 cache = 0;
802 
803                 return flow_lookup(tbl, ti, ma, key, n_mask_hit, &cache,
804                                    &mask_index);
805         }
806 
807         /* Pre and post recirulation flows usually have the same skb_hash
808          * value. To avoid hash collisions, rehash the 'skb_hash' with
809          * 'recirc_id'.  */
810         if (key->recirc_id)
811                 skb_hash = jhash_1word(skb_hash, key->recirc_id);
812 
813         ce = NULL;
814         hash = skb_hash;
815         entries = this_cpu_ptr(mc->mask_cache);
816 
817         /* Find the cache entry 'ce' to operate on. */
818         for (seg = 0; seg < MC_HASH_SEGS; seg++) {
819                 int index = hash & (mc->cache_size - 1);
820                 struct mask_cache_entry *e;
821 
822                 e = &entries[index];
823                 if (e->skb_hash == skb_hash) {
824                         flow = flow_lookup(tbl, ti, ma, key, n_mask_hit,
825                                            n_cache_hit, &e->mask_index);
826                         if (!flow)
827                                 e->skb_hash = 0;
828                         return flow;
829                 }
830 
831                 if (!ce || e->skb_hash < ce->skb_hash)
832                         ce = e;  /* A better replacement cache candidate. */
833 
834                 hash >>= MC_HASH_SHIFT;
835         }
836 
837         /* Cache miss, do full lookup. */
838         flow = flow_lookup(tbl, ti, ma, key, n_mask_hit, n_cache_hit,
839                            &ce->mask_index);
840         if (flow)
841                 ce->skb_hash = skb_hash;
842 
843         *n_cache_hit = 0;
844         return flow;
845 }
846 
847 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *tbl,
848                                     const struct sw_flow_key *key)
849 {
850         struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
851         struct mask_array *ma = rcu_dereference_ovsl(tbl->mask_array);
852         u32 __always_unused n_mask_hit;
853         u32 __always_unused n_cache_hit;
854         struct sw_flow *flow;
855         u32 index = 0;
856 
857         /* This function gets called trough the netlink interface and therefore
858          * is preemptible. However, flow_lookup() function needs to be called
859          * with BH disabled due to CPU specific variables.
860          */
861         local_bh_disable();
862         flow = flow_lookup(tbl, ti, ma, key, &n_mask_hit, &n_cache_hit, &index);
863         local_bh_enable();
864         return flow;
865 }
866 
867 struct sw_flow *ovs_flow_tbl_lookup_exact(struct flow_table *tbl,
868                                           const struct sw_flow_match *match)
869 {
870         struct mask_array *ma = ovsl_dereference(tbl->mask_array);
871         int i;
872 
873         /* Always called under ovs-mutex. */
874         for (i = 0; i < ma->max; i++) {
875                 struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
876                 u32 __always_unused n_mask_hit;
877                 struct sw_flow_mask *mask;
878                 struct sw_flow *flow;
879 
880                 mask = ovsl_dereference(ma->masks[i]);
881                 if (!mask)
882                         continue;
883 
884                 flow = masked_flow_lookup(ti, match->key, mask, &n_mask_hit);
885                 if (flow && ovs_identifier_is_key(&flow->id) &&
886                     ovs_flow_cmp_unmasked_key(flow, match)) {
887                         return flow;
888                 }
889         }
890 
891         return NULL;
892 }
893 
894 static u32 ufid_hash(const struct sw_flow_id *sfid)
895 {
896         return jhash(sfid->ufid, sfid->ufid_len, 0);
897 }
898 
899 static bool ovs_flow_cmp_ufid(const struct sw_flow *flow,
900                               const struct sw_flow_id *sfid)
901 {
902         if (flow->id.ufid_len != sfid->ufid_len)
903                 return false;
904 
905         return !memcmp(flow->id.ufid, sfid->ufid, sfid->ufid_len);
906 }
907 
908 bool ovs_flow_cmp(const struct sw_flow *flow,
909                   const struct sw_flow_match *match)
910 {
911         if (ovs_identifier_is_ufid(&flow->id))
912                 return flow_cmp_masked_key(flow, match->key, &match->range);
913 
914         return ovs_flow_cmp_unmasked_key(flow, match);
915 }
916 
917 struct sw_flow *ovs_flow_tbl_lookup_ufid(struct flow_table *tbl,
918                                          const struct sw_flow_id *ufid)
919 {
920         struct table_instance *ti = rcu_dereference_ovsl(tbl->ufid_ti);
921         struct sw_flow *flow;
922         struct hlist_head *head;
923         u32 hash;
924 
925         hash = ufid_hash(ufid);
926         head = find_bucket(ti, hash);
927         hlist_for_each_entry_rcu(flow, head, ufid_table.node[ti->node_ver],
928                                  lockdep_ovsl_is_held()) {
929                 if (flow->ufid_table.hash == hash &&
930                     ovs_flow_cmp_ufid(flow, ufid))
931                         return flow;
932         }
933         return NULL;
934 }
935 
936 int ovs_flow_tbl_num_masks(const struct flow_table *table)
937 {
938         struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
939         return READ_ONCE(ma->count);
940 }
941 
942 u32 ovs_flow_tbl_masks_cache_size(const struct flow_table *table)
943 {
944         struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache);
945 
946         return READ_ONCE(mc->cache_size);
947 }
948 
949 static struct table_instance *table_instance_expand(struct table_instance *ti,
950                                                     bool ufid)
951 {
952         return table_instance_rehash(ti, ti->n_buckets * 2, ufid);
953 }
954 
955 /* Must be called with OVS mutex held. */
956 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
957 {
958         struct table_instance *ti = ovsl_dereference(table->ti);
959         struct table_instance *ufid_ti = ovsl_dereference(table->ufid_ti);
960 
961         BUG_ON(table->count == 0);
962         table_instance_flow_free(table, ti, ufid_ti, flow);
963 }
964 
965 static struct sw_flow_mask *mask_alloc(void)
966 {
967         struct sw_flow_mask *mask;
968 
969         mask = kmalloc(sizeof(*mask), GFP_KERNEL);
970         if (mask)
971                 mask->ref_count = 1;
972 
973         return mask;
974 }
975 
976 static bool mask_equal(const struct sw_flow_mask *a,
977                        const struct sw_flow_mask *b)
978 {
979         const u8 *a_ = (const u8 *)&a->key + a->range.start;
980         const u8 *b_ = (const u8 *)&b->key + b->range.start;
981 
982         return  (a->range.end == b->range.end)
983                 && (a->range.start == b->range.start)
984                 && (memcmp(a_, b_, range_n_bytes(&a->range)) == 0);
985 }
986 
987 static struct sw_flow_mask *flow_mask_find(const struct flow_table *tbl,
988                                            const struct sw_flow_mask *mask)
989 {
990         struct mask_array *ma;
991         int i;
992 
993         ma = ovsl_dereference(tbl->mask_array);
994         for (i = 0; i < ma->max; i++) {
995                 struct sw_flow_mask *t;
996                 t = ovsl_dereference(ma->masks[i]);
997 
998                 if (t && mask_equal(mask, t))
999                         return t;
1000         }
1001 
1002         return NULL;
1003 }
1004 
1005 /* Add 'mask' into the mask list, if it is not already there. */
1006 static int flow_mask_insert(struct flow_table *tbl, struct sw_flow *flow,
1007                             const struct sw_flow_mask *new)
1008 {
1009         struct sw_flow_mask *mask;
1010 
1011         mask = flow_mask_find(tbl, new);
1012         if (!mask) {
1013                 /* Allocate a new mask if none exists. */
1014                 mask = mask_alloc();
1015                 if (!mask)
1016                         return -ENOMEM;
1017                 mask->key = new->key;
1018                 mask->range = new->range;
1019 
1020                 /* Add mask to mask-list. */
1021                 if (tbl_mask_array_add_mask(tbl, mask)) {
1022                         kfree(mask);
1023                         return -ENOMEM;
1024                 }
1025         } else {
1026                 BUG_ON(!mask->ref_count);
1027                 mask->ref_count++;
1028         }
1029 
1030         flow->mask = mask;
1031         return 0;
1032 }
1033 
1034 /* Must be called with OVS mutex held. */
1035 static void flow_key_insert(struct flow_table *table, struct sw_flow *flow)
1036 {
1037         struct table_instance *new_ti = NULL;
1038         struct table_instance *ti;
1039 
1040         flow->flow_table.hash = flow_hash(&flow->key, &flow->mask->range);
1041         ti = ovsl_dereference(table->ti);
1042         table_instance_insert(ti, flow);
1043         table->count++;
1044 
1045         /* Expand table, if necessary, to make room. */
1046         if (table->count > ti->n_buckets)
1047                 new_ti = table_instance_expand(ti, false);
1048         else if (time_after(jiffies, table->last_rehash + REHASH_INTERVAL))
1049                 new_ti = table_instance_rehash(ti, ti->n_buckets, false);
1050 
1051         if (new_ti) {
1052                 rcu_assign_pointer(table->ti, new_ti);
1053                 call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1054                 table->last_rehash = jiffies;
1055         }
1056 }
1057 
1058 /* Must be called with OVS mutex held. */
1059 static void flow_ufid_insert(struct flow_table *table, struct sw_flow *flow)
1060 {
1061         struct table_instance *ti;
1062 
1063         flow->ufid_table.hash = ufid_hash(&flow->id);
1064         ti = ovsl_dereference(table->ufid_ti);
1065         ufid_table_instance_insert(ti, flow);
1066         table->ufid_count++;
1067 
1068         /* Expand table, if necessary, to make room. */
1069         if (table->ufid_count > ti->n_buckets) {
1070                 struct table_instance *new_ti;
1071 
1072                 new_ti = table_instance_expand(ti, true);
1073                 if (new_ti) {
1074                         rcu_assign_pointer(table->ufid_ti, new_ti);
1075                         call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1076                 }
1077         }
1078 }
1079 
1080 /* Must be called with OVS mutex held. */
1081 int ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow,
1082                         const struct sw_flow_mask *mask)
1083 {
1084         int err;
1085 
1086         err = flow_mask_insert(table, flow, mask);
1087         if (err)
1088                 return err;
1089         flow_key_insert(table, flow);
1090         if (ovs_identifier_is_ufid(&flow->id))
1091                 flow_ufid_insert(table, flow);
1092 
1093         return 0;
1094 }
1095 
1096 static int compare_mask_and_count(const void *a, const void *b)
1097 {
1098         const struct mask_count *mc_a = a;
1099         const struct mask_count *mc_b = b;
1100 
1101         return (s64)mc_b->counter - (s64)mc_a->counter;
1102 }
1103 
1104 /* Must be called with OVS mutex held. */
1105 void ovs_flow_masks_rebalance(struct flow_table *table)
1106 {
1107         struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
1108         struct mask_count *masks_and_count;
1109         struct mask_array *new;
1110         int masks_entries = 0;
1111         int i;
1112 
1113         /* Build array of all current entries with use counters. */
1114         masks_and_count = kmalloc_array(ma->max, sizeof(*masks_and_count),
1115                                         GFP_KERNEL);
1116         if (!masks_and_count)
1117                 return;
1118 
1119         for (i = 0; i < ma->max; i++) {
1120                 struct sw_flow_mask *mask;
1121                 int cpu;
1122 
1123                 mask = rcu_dereference_ovsl(ma->masks[i]);
1124                 if (unlikely(!mask))
1125                         break;
1126 
1127                 masks_and_count[i].index = i;
1128                 masks_and_count[i].counter = 0;
1129 
1130                 for_each_possible_cpu(cpu) {
1131                         struct mask_array_stats *stats;
1132                         unsigned int start;
1133                         u64 counter;
1134 
1135                         stats = per_cpu_ptr(ma->masks_usage_stats, cpu);
1136                         do {
1137                                 start = u64_stats_fetch_begin(&stats->syncp);
1138                                 counter = stats->usage_cntrs[i];
1139                         } while (u64_stats_fetch_retry(&stats->syncp, start));
1140 
1141                         masks_and_count[i].counter += counter;
1142                 }
1143 
1144                 /* Subtract the zero count value. */
1145                 masks_and_count[i].counter -= ma->masks_usage_zero_cntr[i];
1146 
1147                 /* Rather than calling tbl_mask_array_reset_counters()
1148                  * below when no change is needed, do it inline here.
1149                  */
1150                 ma->masks_usage_zero_cntr[i] += masks_and_count[i].counter;
1151         }
1152 
1153         if (i == 0)
1154                 goto free_mask_entries;
1155 
1156         /* Sort the entries */
1157         masks_entries = i;
1158         sort(masks_and_count, masks_entries, sizeof(*masks_and_count),
1159              compare_mask_and_count, NULL);
1160 
1161         /* If the order is the same, nothing to do... */
1162         for (i = 0; i < masks_entries; i++) {
1163                 if (i != masks_and_count[i].index)
1164                         break;
1165         }
1166         if (i == masks_entries)
1167                 goto free_mask_entries;
1168 
1169         /* Rebuilt the new list in order of usage. */
1170         new = tbl_mask_array_alloc(ma->max);
1171         if (!new)
1172                 goto free_mask_entries;
1173 
1174         for (i = 0; i < masks_entries; i++) {
1175                 int index = masks_and_count[i].index;
1176 
1177                 if (ovsl_dereference(ma->masks[index]))
1178                         new->masks[new->count++] = ma->masks[index];
1179         }
1180 
1181         rcu_assign_pointer(table->mask_array, new);
1182         call_rcu(&ma->rcu, mask_array_rcu_cb);
1183 
1184 free_mask_entries:
1185         kfree(masks_and_count);
1186 }
1187 
1188 /* Initializes the flow module.
1189  * Returns zero if successful or a negative error code. */
1190 int ovs_flow_init(void)
1191 {
1192         BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long));
1193         BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long));
1194 
1195         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow)
1196                                        + (nr_cpu_ids
1197                                           * sizeof(struct sw_flow_stats *))
1198                                        + cpumask_size(),
1199                                        0, 0, NULL);
1200         if (flow_cache == NULL)
1201                 return -ENOMEM;
1202 
1203         flow_stats_cache
1204                 = kmem_cache_create("sw_flow_stats", sizeof(struct sw_flow_stats),
1205                                     0, SLAB_HWCACHE_ALIGN, NULL);
1206         if (flow_stats_cache == NULL) {
1207                 kmem_cache_destroy(flow_cache);
1208                 flow_cache = NULL;
1209                 return -ENOMEM;
1210         }
1211 
1212         return 0;
1213 }
1214 
1215 /* Uninitializes the flow module. */
1216 void ovs_flow_exit(void)
1217 {
1218         kmem_cache_destroy(flow_stats_cache);
1219         kmem_cache_destroy(flow_cache);
1220 }
1221 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php