1 /* 2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/in.h> 35 #include <linux/if.h> 36 #include <linux/netdevice.h> 37 #include <linux/inetdevice.h> 38 #include <linux/if_arp.h> 39 #include <linux/delay.h> 40 #include <linux/slab.h> 41 #include <linux/module.h> 42 #include <net/addrconf.h> 43 44 #include "rds_single_path.h" 45 #include "rds.h" 46 #include "ib.h" 47 #include "ib_mr.h" 48 49 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE; 50 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE; 51 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT; 52 static atomic_t rds_ib_unloading; 53 54 module_param(rds_ib_mr_1m_pool_size, int, 0444); 55 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA"); 56 module_param(rds_ib_mr_8k_pool_size, int, 0444); 57 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA"); 58 module_param(rds_ib_retry_count, int, 0444); 59 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error"); 60 61 /* 62 * we have a clumsy combination of RCU and a rwsem protecting this list 63 * because it is used both in the get_mr fast path and while blocking in 64 * the FMR flushing path. 65 */ 66 DECLARE_RWSEM(rds_ib_devices_lock); 67 struct list_head rds_ib_devices; 68 69 /* NOTE: if also grabbing ibdev lock, grab this first */ 70 DEFINE_SPINLOCK(ib_nodev_conns_lock); 71 LIST_HEAD(ib_nodev_conns); 72 73 static void rds_ib_nodev_connect(void) 74 { 75 struct rds_ib_connection *ic; 76 77 spin_lock(&ib_nodev_conns_lock); 78 list_for_each_entry(ic, &ib_nodev_conns, ib_node) 79 rds_conn_connect_if_down(ic->conn); 80 spin_unlock(&ib_nodev_conns_lock); 81 } 82 83 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev) 84 { 85 struct rds_ib_connection *ic; 86 unsigned long flags; 87 88 spin_lock_irqsave(&rds_ibdev->spinlock, flags); 89 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node) 90 rds_conn_path_drop(&ic->conn->c_path[0], true); 91 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags); 92 } 93 94 /* 95 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references 96 * from interrupt context so we push freing off into a work struct in krdsd. 97 */ 98 static void rds_ib_dev_free(struct work_struct *work) 99 { 100 struct rds_ib_ipaddr *i_ipaddr, *i_next; 101 struct rds_ib_device *rds_ibdev = container_of(work, 102 struct rds_ib_device, free_work); 103 104 if (rds_ibdev->mr_8k_pool) 105 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool); 106 if (rds_ibdev->mr_1m_pool) 107 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool); 108 if (rds_ibdev->pd) 109 ib_dealloc_pd(rds_ibdev->pd); 110 111 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) { 112 list_del(&i_ipaddr->list); 113 kfree(i_ipaddr); 114 } 115 116 kfree(rds_ibdev->vector_load); 117 118 kfree(rds_ibdev); 119 } 120 121 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev) 122 { 123 BUG_ON(refcount_read(&rds_ibdev->refcount) == 0); 124 if (refcount_dec_and_test(&rds_ibdev->refcount)) 125 queue_work(rds_wq, &rds_ibdev->free_work); 126 } 127 128 static int rds_ib_add_one(struct ib_device *device) 129 { 130 struct rds_ib_device *rds_ibdev; 131 int ret; 132 133 /* Only handle IB (no iWARP) devices */ 134 if (device->node_type != RDMA_NODE_IB_CA) 135 return -EOPNOTSUPP; 136 137 /* Device must support FRWR */ 138 if (!(device->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 139 return -EOPNOTSUPP; 140 141 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL, 142 ibdev_to_node(device)); 143 if (!rds_ibdev) 144 return -ENOMEM; 145 146 spin_lock_init(&rds_ibdev->spinlock); 147 refcount_set(&rds_ibdev->refcount, 1); 148 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free); 149 150 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list); 151 INIT_LIST_HEAD(&rds_ibdev->conn_list); 152 153 rds_ibdev->max_wrs = device->attrs.max_qp_wr; 154 rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE); 155 156 rds_ibdev->odp_capable = 157 !!(device->attrs.kernel_cap_flags & 158 IBK_ON_DEMAND_PAGING) && 159 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & 160 IB_ODP_SUPPORT_WRITE) && 161 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps & 162 IB_ODP_SUPPORT_READ); 163 164 rds_ibdev->max_1m_mrs = device->attrs.max_mr ? 165 min_t(unsigned int, (device->attrs.max_mr / 2), 166 rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size; 167 168 rds_ibdev->max_8k_mrs = device->attrs.max_mr ? 169 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE), 170 rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size; 171 172 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom; 173 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom; 174 175 rds_ibdev->vector_load = kcalloc(device->num_comp_vectors, 176 sizeof(int), 177 GFP_KERNEL); 178 if (!rds_ibdev->vector_load) { 179 pr_err("RDS/IB: %s failed to allocate vector memory\n", 180 __func__); 181 ret = -ENOMEM; 182 goto put_dev; 183 } 184 185 rds_ibdev->dev = device; 186 rds_ibdev->pd = ib_alloc_pd(device, 0); 187 if (IS_ERR(rds_ibdev->pd)) { 188 ret = PTR_ERR(rds_ibdev->pd); 189 rds_ibdev->pd = NULL; 190 goto put_dev; 191 } 192 193 rds_ibdev->mr_1m_pool = 194 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL); 195 if (IS_ERR(rds_ibdev->mr_1m_pool)) { 196 ret = PTR_ERR(rds_ibdev->mr_1m_pool); 197 rds_ibdev->mr_1m_pool = NULL; 198 goto put_dev; 199 } 200 201 rds_ibdev->mr_8k_pool = 202 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL); 203 if (IS_ERR(rds_ibdev->mr_8k_pool)) { 204 ret = PTR_ERR(rds_ibdev->mr_8k_pool); 205 rds_ibdev->mr_8k_pool = NULL; 206 goto put_dev; 207 } 208 209 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, max_1m_mrs = %d, max_8k_mrs = %d\n", 210 device->attrs.max_mr, rds_ibdev->max_wrs, rds_ibdev->max_sge, 211 rds_ibdev->max_1m_mrs, rds_ibdev->max_8k_mrs); 212 213 pr_info("RDS/IB: %s: added\n", device->name); 214 215 down_write(&rds_ib_devices_lock); 216 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices); 217 up_write(&rds_ib_devices_lock); 218 refcount_inc(&rds_ibdev->refcount); 219 220 ib_set_client_data(device, &rds_ib_client, rds_ibdev); 221 222 rds_ib_nodev_connect(); 223 return 0; 224 225 put_dev: 226 rds_ib_dev_put(rds_ibdev); 227 return ret; 228 } 229 230 /* 231 * New connections use this to find the device to associate with the 232 * connection. It's not in the fast path so we're not concerned about the 233 * performance of the IB call. (As of this writing, it uses an interrupt 234 * blocking spinlock to serialize walking a per-device list of all registered 235 * clients.) 236 * 237 * RCU is used to handle incoming connections racing with device teardown. 238 * Rather than use a lock to serialize removal from the client_data and 239 * getting a new reference, we use an RCU grace period. The destruction 240 * path removes the device from client_data and then waits for all RCU 241 * readers to finish. 242 * 243 * A new connection can get NULL from this if its arriving on a 244 * device that is in the process of being removed. 245 */ 246 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device) 247 { 248 struct rds_ib_device *rds_ibdev; 249 250 rcu_read_lock(); 251 rds_ibdev = ib_get_client_data(device, &rds_ib_client); 252 if (rds_ibdev) 253 refcount_inc(&rds_ibdev->refcount); 254 rcu_read_unlock(); 255 return rds_ibdev; 256 } 257 258 /* 259 * The IB stack is letting us know that a device is going away. This can 260 * happen if the underlying HCA driver is removed or if PCI hotplug is removing 261 * the pci function, for example. 262 * 263 * This can be called at any time and can be racing with any other RDS path. 264 */ 265 static void rds_ib_remove_one(struct ib_device *device, void *client_data) 266 { 267 struct rds_ib_device *rds_ibdev = client_data; 268 269 rds_ib_dev_shutdown(rds_ibdev); 270 271 /* stop connection attempts from getting a reference to this device. */ 272 ib_set_client_data(device, &rds_ib_client, NULL); 273 274 down_write(&rds_ib_devices_lock); 275 list_del_rcu(&rds_ibdev->list); 276 up_write(&rds_ib_devices_lock); 277 278 /* 279 * This synchronize rcu is waiting for readers of both the ib 280 * client data and the devices list to finish before we drop 281 * both of those references. 282 */ 283 synchronize_rcu(); 284 rds_ib_dev_put(rds_ibdev); 285 rds_ib_dev_put(rds_ibdev); 286 } 287 288 struct ib_client rds_ib_client = { 289 .name = "rds_ib", 290 .add = rds_ib_add_one, 291 .remove = rds_ib_remove_one 292 }; 293 294 static int rds_ib_conn_info_visitor(struct rds_connection *conn, 295 void *buffer) 296 { 297 struct rds_info_rdma_connection *iinfo = buffer; 298 struct rds_ib_connection *ic = conn->c_transport_data; 299 300 /* We will only ever look at IB transports */ 301 if (conn->c_trans != &rds_ib_transport) 302 return 0; 303 if (conn->c_isv6) 304 return 0; 305 306 iinfo->src_addr = conn->c_laddr.s6_addr32[3]; 307 iinfo->dst_addr = conn->c_faddr.s6_addr32[3]; 308 if (ic) { 309 iinfo->tos = conn->c_tos; 310 iinfo->sl = ic->i_sl; 311 } 312 313 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); 314 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); 315 if (rds_conn_state(conn) == RDS_CONN_UP) { 316 struct rds_ib_device *rds_ibdev; 317 318 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid, 319 (union ib_gid *)&iinfo->dst_gid); 320 321 rds_ibdev = ic->rds_ibdev; 322 iinfo->max_send_wr = ic->i_send_ring.w_nr; 323 iinfo->max_recv_wr = ic->i_recv_ring.w_nr; 324 iinfo->max_send_sge = rds_ibdev->max_sge; 325 rds_ib_get_mr_info(rds_ibdev, iinfo); 326 iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs); 327 } 328 return 1; 329 } 330 331 #if IS_ENABLED(CONFIG_IPV6) 332 /* IPv6 version of rds_ib_conn_info_visitor(). */ 333 static int rds6_ib_conn_info_visitor(struct rds_connection *conn, 334 void *buffer) 335 { 336 struct rds6_info_rdma_connection *iinfo6 = buffer; 337 struct rds_ib_connection *ic = conn->c_transport_data; 338 339 /* We will only ever look at IB transports */ 340 if (conn->c_trans != &rds_ib_transport) 341 return 0; 342 343 iinfo6->src_addr = conn->c_laddr; 344 iinfo6->dst_addr = conn->c_faddr; 345 if (ic) { 346 iinfo6->tos = conn->c_tos; 347 iinfo6->sl = ic->i_sl; 348 } 349 350 memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid)); 351 memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid)); 352 353 if (rds_conn_state(conn) == RDS_CONN_UP) { 354 struct rds_ib_device *rds_ibdev; 355 356 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid, 357 (union ib_gid *)&iinfo6->dst_gid); 358 rds_ibdev = ic->rds_ibdev; 359 iinfo6->max_send_wr = ic->i_send_ring.w_nr; 360 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr; 361 iinfo6->max_send_sge = rds_ibdev->max_sge; 362 rds6_ib_get_mr_info(rds_ibdev, iinfo6); 363 iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs); 364 } 365 return 1; 366 } 367 #endif 368 369 static void rds_ib_ic_info(struct socket *sock, unsigned int len, 370 struct rds_info_iterator *iter, 371 struct rds_info_lengths *lens) 372 { 373 u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8]; 374 375 rds_for_each_conn_info(sock, len, iter, lens, 376 rds_ib_conn_info_visitor, 377 buffer, 378 sizeof(struct rds_info_rdma_connection)); 379 } 380 381 #if IS_ENABLED(CONFIG_IPV6) 382 /* IPv6 version of rds_ib_ic_info(). */ 383 static void rds6_ib_ic_info(struct socket *sock, unsigned int len, 384 struct rds_info_iterator *iter, 385 struct rds_info_lengths *lens) 386 { 387 u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8]; 388 389 rds_for_each_conn_info(sock, len, iter, lens, 390 rds6_ib_conn_info_visitor, 391 buffer, 392 sizeof(struct rds6_info_rdma_connection)); 393 } 394 #endif 395 396 /* 397 * Early RDS/IB was built to only bind to an address if there is an IPoIB 398 * device with that address set. 399 * 400 * If it were me, I'd advocate for something more flexible. Sending and 401 * receiving should be device-agnostic. Transports would try and maintain 402 * connections between peers who have messages queued. Userspace would be 403 * allowed to influence which paths have priority. We could call userspace 404 * asserting this policy "routing". 405 */ 406 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr, 407 __u32 scope_id) 408 { 409 int ret; 410 struct rdma_cm_id *cm_id; 411 #if IS_ENABLED(CONFIG_IPV6) 412 struct sockaddr_in6 sin6; 413 #endif 414 struct sockaddr_in sin; 415 struct sockaddr *sa; 416 bool isv4; 417 418 isv4 = ipv6_addr_v4mapped(addr); 419 /* Create a CMA ID and try to bind it. This catches both 420 * IB and iWARP capable NICs. 421 */ 422 cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler, 423 NULL, RDMA_PS_TCP, IB_QPT_RC); 424 if (IS_ERR(cm_id)) 425 return PTR_ERR(cm_id); 426 427 if (isv4) { 428 memset(&sin, 0, sizeof(sin)); 429 sin.sin_family = AF_INET; 430 sin.sin_addr.s_addr = addr->s6_addr32[3]; 431 sa = (struct sockaddr *)&sin; 432 } else { 433 #if IS_ENABLED(CONFIG_IPV6) 434 memset(&sin6, 0, sizeof(sin6)); 435 sin6.sin6_family = AF_INET6; 436 sin6.sin6_addr = *addr; 437 sin6.sin6_scope_id = scope_id; 438 sa = (struct sockaddr *)&sin6; 439 440 /* XXX Do a special IPv6 link local address check here. The 441 * reason is that rdma_bind_addr() always succeeds with IPv6 442 * link local address regardless it is indeed configured in a 443 * system. 444 */ 445 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) { 446 struct net_device *dev; 447 448 if (scope_id == 0) { 449 ret = -EADDRNOTAVAIL; 450 goto out; 451 } 452 453 /* Use init_net for now as RDS is not network 454 * name space aware. 455 */ 456 dev = dev_get_by_index(&init_net, scope_id); 457 if (!dev) { 458 ret = -EADDRNOTAVAIL; 459 goto out; 460 } 461 if (!ipv6_chk_addr(&init_net, addr, dev, 1)) { 462 dev_put(dev); 463 ret = -EADDRNOTAVAIL; 464 goto out; 465 } 466 dev_put(dev); 467 } 468 #else 469 ret = -EADDRNOTAVAIL; 470 goto out; 471 #endif 472 } 473 474 /* rdma_bind_addr will only succeed for IB & iWARP devices */ 475 ret = rdma_bind_addr(cm_id, sa); 476 /* due to this, we will claim to support iWARP devices unless we 477 check node_type. */ 478 if (ret || !cm_id->device || 479 cm_id->device->node_type != RDMA_NODE_IB_CA) 480 ret = -EADDRNOTAVAIL; 481 482 rdsdebug("addr %pI6c%%%u ret %d node type %d\n", 483 addr, scope_id, ret, 484 cm_id->device ? cm_id->device->node_type : -1); 485 486 out: 487 rdma_destroy_id(cm_id); 488 489 return ret; 490 } 491 492 static void rds_ib_unregister_client(void) 493 { 494 ib_unregister_client(&rds_ib_client); 495 /* wait for rds_ib_dev_free() to complete */ 496 flush_workqueue(rds_wq); 497 } 498 499 static void rds_ib_set_unloading(void) 500 { 501 atomic_set(&rds_ib_unloading, 1); 502 } 503 504 static bool rds_ib_is_unloading(struct rds_connection *conn) 505 { 506 struct rds_conn_path *cp = &conn->c_path[0]; 507 508 return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) || 509 atomic_read(&rds_ib_unloading) != 0); 510 } 511 512 void rds_ib_exit(void) 513 { 514 rds_ib_set_unloading(); 515 synchronize_rcu(); 516 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 517 #if IS_ENABLED(CONFIG_IPV6) 518 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); 519 #endif 520 rds_ib_unregister_client(); 521 rds_ib_destroy_nodev_conns(); 522 rds_ib_sysctl_exit(); 523 rds_ib_recv_exit(); 524 rds_trans_unregister(&rds_ib_transport); 525 rds_ib_mr_exit(); 526 } 527 528 static u8 rds_ib_get_tos_map(u8 tos) 529 { 530 /* 1:1 user to transport map for RDMA transport. 531 * In future, if custom map is desired, hook can export 532 * user configurable map. 533 */ 534 return tos; 535 } 536 537 struct rds_transport rds_ib_transport = { 538 .laddr_check = rds_ib_laddr_check, 539 .xmit_path_complete = rds_ib_xmit_path_complete, 540 .xmit = rds_ib_xmit, 541 .xmit_rdma = rds_ib_xmit_rdma, 542 .xmit_atomic = rds_ib_xmit_atomic, 543 .recv_path = rds_ib_recv_path, 544 .conn_alloc = rds_ib_conn_alloc, 545 .conn_free = rds_ib_conn_free, 546 .conn_path_connect = rds_ib_conn_path_connect, 547 .conn_path_shutdown = rds_ib_conn_path_shutdown, 548 .inc_copy_to_user = rds_ib_inc_copy_to_user, 549 .inc_free = rds_ib_inc_free, 550 .cm_initiate_connect = rds_ib_cm_initiate_connect, 551 .cm_handle_connect = rds_ib_cm_handle_connect, 552 .cm_connect_complete = rds_ib_cm_connect_complete, 553 .stats_info_copy = rds_ib_stats_info_copy, 554 .exit = rds_ib_exit, 555 .get_mr = rds_ib_get_mr, 556 .sync_mr = rds_ib_sync_mr, 557 .free_mr = rds_ib_free_mr, 558 .flush_mrs = rds_ib_flush_mrs, 559 .get_tos_map = rds_ib_get_tos_map, 560 .t_owner = THIS_MODULE, 561 .t_name = "infiniband", 562 .t_unloading = rds_ib_is_unloading, 563 .t_type = RDS_TRANS_IB 564 }; 565 566 int rds_ib_init(void) 567 { 568 int ret; 569 570 INIT_LIST_HEAD(&rds_ib_devices); 571 572 ret = rds_ib_mr_init(); 573 if (ret) 574 goto out; 575 576 ret = ib_register_client(&rds_ib_client); 577 if (ret) 578 goto out_mr_exit; 579 580 ret = rds_ib_sysctl_init(); 581 if (ret) 582 goto out_ibreg; 583 584 ret = rds_ib_recv_init(); 585 if (ret) 586 goto out_sysctl; 587 588 rds_trans_register(&rds_ib_transport); 589 590 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); 591 #if IS_ENABLED(CONFIG_IPV6) 592 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info); 593 #endif 594 595 goto out; 596 597 out_sysctl: 598 rds_ib_sysctl_exit(); 599 out_ibreg: 600 rds_ib_unregister_client(); 601 out_mr_exit: 602 rds_ib_mr_exit(); 603 out: 604 return ret; 605 } 606 607 MODULE_LICENSE("GPL"); 608
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.