~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/rds/rdma.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2007, 2020 Oracle and/or its affiliates.
  3  *
  4  * This software is available to you under a choice of one of two
  5  * licenses.  You may choose to be licensed under the terms of the GNU
  6  * General Public License (GPL) Version 2, available from the file
  7  * COPYING in the main directory of this source tree, or the
  8  * OpenIB.org BSD license below:
  9  *
 10  *     Redistribution and use in source and binary forms, with or
 11  *     without modification, are permitted provided that the following
 12  *     conditions are met:
 13  *
 14  *      - Redistributions of source code must retain the above
 15  *        copyright notice, this list of conditions and the following
 16  *        disclaimer.
 17  *
 18  *      - Redistributions in binary form must reproduce the above
 19  *        copyright notice, this list of conditions and the following
 20  *        disclaimer in the documentation and/or other materials
 21  *        provided with the distribution.
 22  *
 23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30  * SOFTWARE.
 31  *
 32  */
 33 #include <linux/pagemap.h>
 34 #include <linux/slab.h>
 35 #include <linux/rbtree.h>
 36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
 37 
 38 #include "rds.h"
 39 
 40 /*
 41  * XXX
 42  *  - build with sparse
 43  *  - should we detect duplicate keys on a socket?  hmm.
 44  *  - an rdma is an mlock, apply rlimit?
 45  */
 46 
 47 /*
 48  * get the number of pages by looking at the page indices that the start and
 49  * end addresses fall in.
 50  *
 51  * Returns 0 if the vec is invalid.  It is invalid if the number of bytes
 52  * causes the address to wrap or overflows an unsigned int.  This comes
 53  * from being stored in the 'length' member of 'struct scatterlist'.
 54  */
 55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
 56 {
 57         if ((vec->addr + vec->bytes <= vec->addr) ||
 58             (vec->bytes > (u64)UINT_MAX))
 59                 return 0;
 60 
 61         return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
 62                 (vec->addr >> PAGE_SHIFT);
 63 }
 64 
 65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
 66                                        struct rds_mr *insert)
 67 {
 68         struct rb_node **p = &root->rb_node;
 69         struct rb_node *parent = NULL;
 70         struct rds_mr *mr;
 71 
 72         while (*p) {
 73                 parent = *p;
 74                 mr = rb_entry(parent, struct rds_mr, r_rb_node);
 75 
 76                 if (key < mr->r_key)
 77                         p = &(*p)->rb_left;
 78                 else if (key > mr->r_key)
 79                         p = &(*p)->rb_right;
 80                 else
 81                         return mr;
 82         }
 83 
 84         if (insert) {
 85                 rb_link_node(&insert->r_rb_node, parent, p);
 86                 rb_insert_color(&insert->r_rb_node, root);
 87                 kref_get(&insert->r_kref);
 88         }
 89         return NULL;
 90 }
 91 
 92 /*
 93  * Destroy the transport-specific part of a MR.
 94  */
 95 static void rds_destroy_mr(struct rds_mr *mr)
 96 {
 97         struct rds_sock *rs = mr->r_sock;
 98         void *trans_private = NULL;
 99         unsigned long flags;
100 
101         rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102                  mr->r_key, kref_read(&mr->r_kref));
103 
104         spin_lock_irqsave(&rs->rs_rdma_lock, flags);
105         if (!RB_EMPTY_NODE(&mr->r_rb_node))
106                 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
107         trans_private = mr->r_trans_private;
108         mr->r_trans_private = NULL;
109         spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
110 
111         if (trans_private)
112                 mr->r_trans->free_mr(trans_private, mr->r_invalidate);
113 }
114 
115 void __rds_put_mr_final(struct kref *kref)
116 {
117         struct rds_mr *mr = container_of(kref, struct rds_mr, r_kref);
118 
119         rds_destroy_mr(mr);
120         kfree(mr);
121 }
122 
123 /*
124  * By the time this is called we can't have any more ioctls called on
125  * the socket so we don't need to worry about racing with others.
126  */
127 void rds_rdma_drop_keys(struct rds_sock *rs)
128 {
129         struct rds_mr *mr;
130         struct rb_node *node;
131         unsigned long flags;
132 
133         /* Release any MRs associated with this socket */
134         spin_lock_irqsave(&rs->rs_rdma_lock, flags);
135         while ((node = rb_first(&rs->rs_rdma_keys))) {
136                 mr = rb_entry(node, struct rds_mr, r_rb_node);
137                 if (mr->r_trans == rs->rs_transport)
138                         mr->r_invalidate = 0;
139                 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
140                 RB_CLEAR_NODE(&mr->r_rb_node);
141                 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
142                 kref_put(&mr->r_kref, __rds_put_mr_final);
143                 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
144         }
145         spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
146 
147         if (rs->rs_transport && rs->rs_transport->flush_mrs)
148                 rs->rs_transport->flush_mrs();
149 }
150 
151 /*
152  * Helper function to pin user pages.
153  */
154 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
155                         struct page **pages, int write)
156 {
157         unsigned int gup_flags = FOLL_LONGTERM;
158         int ret;
159 
160         if (write)
161                 gup_flags |= FOLL_WRITE;
162 
163         ret = pin_user_pages_fast(user_addr, nr_pages, gup_flags, pages);
164         if (ret >= 0 && ret < nr_pages) {
165                 unpin_user_pages(pages, ret);
166                 ret = -EFAULT;
167         }
168 
169         return ret;
170 }
171 
172 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
173                           u64 *cookie_ret, struct rds_mr **mr_ret,
174                           struct rds_conn_path *cp)
175 {
176         struct rds_mr *mr = NULL, *found;
177         struct scatterlist *sg = NULL;
178         unsigned int nr_pages;
179         struct page **pages = NULL;
180         void *trans_private;
181         unsigned long flags;
182         rds_rdma_cookie_t cookie;
183         unsigned int nents = 0;
184         int need_odp = 0;
185         long i;
186         int ret;
187 
188         if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
189                 ret = -ENOTCONN; /* XXX not a great errno */
190                 goto out;
191         }
192 
193         if (!rs->rs_transport->get_mr) {
194                 ret = -EOPNOTSUPP;
195                 goto out;
196         }
197 
198         /* If the combination of the addr and size requested for this memory
199          * region causes an integer overflow, return error.
200          */
201         if (((args->vec.addr + args->vec.bytes) < args->vec.addr) ||
202             PAGE_ALIGN(args->vec.addr + args->vec.bytes) <
203                     (args->vec.addr + args->vec.bytes)) {
204                 ret = -EINVAL;
205                 goto out;
206         }
207 
208         if (!can_do_mlock()) {
209                 ret = -EPERM;
210                 goto out;
211         }
212 
213         nr_pages = rds_pages_in_vec(&args->vec);
214         if (nr_pages == 0) {
215                 ret = -EINVAL;
216                 goto out;
217         }
218 
219         /* Restrict the size of mr irrespective of underlying transport
220          * To account for unaligned mr regions, subtract one from nr_pages
221          */
222         if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
223                 ret = -EMSGSIZE;
224                 goto out;
225         }
226 
227         rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
228                 args->vec.addr, args->vec.bytes, nr_pages);
229 
230         /* XXX clamp nr_pages to limit the size of this alloc? */
231         pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
232         if (!pages) {
233                 ret = -ENOMEM;
234                 goto out;
235         }
236 
237         mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
238         if (!mr) {
239                 ret = -ENOMEM;
240                 goto out;
241         }
242 
243         kref_init(&mr->r_kref);
244         RB_CLEAR_NODE(&mr->r_rb_node);
245         mr->r_trans = rs->rs_transport;
246         mr->r_sock = rs;
247 
248         if (args->flags & RDS_RDMA_USE_ONCE)
249                 mr->r_use_once = 1;
250         if (args->flags & RDS_RDMA_INVALIDATE)
251                 mr->r_invalidate = 1;
252         if (args->flags & RDS_RDMA_READWRITE)
253                 mr->r_write = 1;
254 
255         /*
256          * Pin the pages that make up the user buffer and transfer the page
257          * pointers to the mr's sg array.  We check to see if we've mapped
258          * the whole region after transferring the partial page references
259          * to the sg array so that we can have one page ref cleanup path.
260          *
261          * For now we have no flag that tells us whether the mapping is
262          * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
263          * the zero page.
264          */
265         ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
266         if (ret == -EOPNOTSUPP) {
267                 need_odp = 1;
268         } else if (ret <= 0) {
269                 goto out;
270         } else {
271                 nents = ret;
272                 sg = kmalloc_array(nents, sizeof(*sg), GFP_KERNEL);
273                 if (!sg) {
274                         ret = -ENOMEM;
275                         goto out;
276                 }
277                 WARN_ON(!nents);
278                 sg_init_table(sg, nents);
279 
280                 /* Stick all pages into the scatterlist */
281                 for (i = 0 ; i < nents; i++)
282                         sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
283 
284                 rdsdebug("RDS: trans_private nents is %u\n", nents);
285         }
286         /* Obtain a transport specific MR. If this succeeds, the
287          * s/g list is now owned by the MR.
288          * Note that dma_map() implies that pending writes are
289          * flushed to RAM, so no dma_sync is needed here. */
290         trans_private = rs->rs_transport->get_mr(
291                 sg, nents, rs, &mr->r_key, cp ? cp->cp_conn : NULL,
292                 args->vec.addr, args->vec.bytes,
293                 need_odp ? ODP_ZEROBASED : ODP_NOT_NEEDED);
294 
295         if (IS_ERR(trans_private)) {
296                 /* In ODP case, we don't GUP pages, so don't need
297                  * to release anything.
298                  */
299                 if (!need_odp) {
300                         unpin_user_pages(pages, nr_pages);
301                         kfree(sg);
302                 }
303                 ret = PTR_ERR(trans_private);
304                 /* Trigger connection so that its ready for the next retry */
305                 if (ret == -ENODEV && cp)
306                         rds_conn_connect_if_down(cp->cp_conn);
307                 goto out;
308         }
309 
310         mr->r_trans_private = trans_private;
311 
312         rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
313                mr->r_key, (void *)(unsigned long) args->cookie_addr);
314 
315         /* The user may pass us an unaligned address, but we can only
316          * map page aligned regions. So we keep the offset, and build
317          * a 64bit cookie containing <R_Key, offset> and pass that
318          * around. */
319         if (need_odp)
320                 cookie = rds_rdma_make_cookie(mr->r_key, 0);
321         else
322                 cookie = rds_rdma_make_cookie(mr->r_key,
323                                               args->vec.addr & ~PAGE_MASK);
324         if (cookie_ret)
325                 *cookie_ret = cookie;
326 
327         if (args->cookie_addr &&
328             put_user(cookie, (u64 __user *)(unsigned long)args->cookie_addr)) {
329                 if (!need_odp) {
330                         unpin_user_pages(pages, nr_pages);
331                         kfree(sg);
332                 }
333                 ret = -EFAULT;
334                 goto out;
335         }
336 
337         /* Inserting the new MR into the rbtree bumps its
338          * reference count. */
339         spin_lock_irqsave(&rs->rs_rdma_lock, flags);
340         found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
341         spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
342 
343         BUG_ON(found && found != mr);
344 
345         rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
346         if (mr_ret) {
347                 kref_get(&mr->r_kref);
348                 *mr_ret = mr;
349         }
350 
351         ret = 0;
352 out:
353         kfree(pages);
354         if (mr)
355                 kref_put(&mr->r_kref, __rds_put_mr_final);
356         return ret;
357 }
358 
359 int rds_get_mr(struct rds_sock *rs, sockptr_t optval, int optlen)
360 {
361         struct rds_get_mr_args args;
362 
363         if (optlen != sizeof(struct rds_get_mr_args))
364                 return -EINVAL;
365 
366         if (copy_from_sockptr(&args, optval, sizeof(struct rds_get_mr_args)))
367                 return -EFAULT;
368 
369         return __rds_rdma_map(rs, &args, NULL, NULL, NULL);
370 }
371 
372 int rds_get_mr_for_dest(struct rds_sock *rs, sockptr_t optval, int optlen)
373 {
374         struct rds_get_mr_for_dest_args args;
375         struct rds_get_mr_args new_args;
376 
377         if (optlen != sizeof(struct rds_get_mr_for_dest_args))
378                 return -EINVAL;
379 
380         if (copy_from_sockptr(&args, optval,
381                            sizeof(struct rds_get_mr_for_dest_args)))
382                 return -EFAULT;
383 
384         /*
385          * Initially, just behave like get_mr().
386          * TODO: Implement get_mr as wrapper around this
387          *       and deprecate it.
388          */
389         new_args.vec = args.vec;
390         new_args.cookie_addr = args.cookie_addr;
391         new_args.flags = args.flags;
392 
393         return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL);
394 }
395 
396 /*
397  * Free the MR indicated by the given R_Key
398  */
399 int rds_free_mr(struct rds_sock *rs, sockptr_t optval, int optlen)
400 {
401         struct rds_free_mr_args args;
402         struct rds_mr *mr;
403         unsigned long flags;
404 
405         if (optlen != sizeof(struct rds_free_mr_args))
406                 return -EINVAL;
407 
408         if (copy_from_sockptr(&args, optval, sizeof(struct rds_free_mr_args)))
409                 return -EFAULT;
410 
411         /* Special case - a null cookie means flush all unused MRs */
412         if (args.cookie == 0) {
413                 if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
414                         return -EINVAL;
415                 rs->rs_transport->flush_mrs();
416                 return 0;
417         }
418 
419         /* Look up the MR given its R_key and remove it from the rbtree
420          * so nobody else finds it.
421          * This should also prevent races with rds_rdma_unuse.
422          */
423         spin_lock_irqsave(&rs->rs_rdma_lock, flags);
424         mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
425         if (mr) {
426                 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
427                 RB_CLEAR_NODE(&mr->r_rb_node);
428                 if (args.flags & RDS_RDMA_INVALIDATE)
429                         mr->r_invalidate = 1;
430         }
431         spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
432 
433         if (!mr)
434                 return -EINVAL;
435 
436         kref_put(&mr->r_kref, __rds_put_mr_final);
437         return 0;
438 }
439 
440 /*
441  * This is called when we receive an extension header that
442  * tells us this MR was used. It allows us to implement
443  * use_once semantics
444  */
445 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
446 {
447         struct rds_mr *mr;
448         unsigned long flags;
449         int zot_me = 0;
450 
451         spin_lock_irqsave(&rs->rs_rdma_lock, flags);
452         mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
453         if (!mr) {
454                 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
455                          r_key);
456                 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
457                 return;
458         }
459 
460         /* Get a reference so that the MR won't go away before calling
461          * sync_mr() below.
462          */
463         kref_get(&mr->r_kref);
464 
465         /* If it is going to be freed, remove it from the tree now so
466          * that no other thread can find it and free it.
467          */
468         if (mr->r_use_once || force) {
469                 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
470                 RB_CLEAR_NODE(&mr->r_rb_node);
471                 zot_me = 1;
472         }
473         spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
474 
475         /* May have to issue a dma_sync on this memory region.
476          * Note we could avoid this if the operation was a RDMA READ,
477          * but at this point we can't tell. */
478         if (mr->r_trans->sync_mr)
479                 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
480 
481         /* Release the reference held above. */
482         kref_put(&mr->r_kref, __rds_put_mr_final);
483 
484         /* If the MR was marked as invalidate, this will
485          * trigger an async flush. */
486         if (zot_me)
487                 kref_put(&mr->r_kref, __rds_put_mr_final);
488 }
489 
490 void rds_rdma_free_op(struct rm_rdma_op *ro)
491 {
492         unsigned int i;
493 
494         if (ro->op_odp_mr) {
495                 kref_put(&ro->op_odp_mr->r_kref, __rds_put_mr_final);
496         } else {
497                 for (i = 0; i < ro->op_nents; i++) {
498                         struct page *page = sg_page(&ro->op_sg[i]);
499 
500                         /* Mark page dirty if it was possibly modified, which
501                          * is the case for a RDMA_READ which copies from remote
502                          * to local memory
503                          */
504                         unpin_user_pages_dirty_lock(&page, 1, !ro->op_write);
505                 }
506         }
507 
508         kfree(ro->op_notifier);
509         ro->op_notifier = NULL;
510         ro->op_active = 0;
511         ro->op_odp_mr = NULL;
512 }
513 
514 void rds_atomic_free_op(struct rm_atomic_op *ao)
515 {
516         struct page *page = sg_page(ao->op_sg);
517 
518         /* Mark page dirty if it was possibly modified, which
519          * is the case for a RDMA_READ which copies from remote
520          * to local memory */
521         unpin_user_pages_dirty_lock(&page, 1, true);
522 
523         kfree(ao->op_notifier);
524         ao->op_notifier = NULL;
525         ao->op_active = 0;
526 }
527 
528 
529 /*
530  * Count the number of pages needed to describe an incoming iovec array.
531  */
532 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
533 {
534         int tot_pages = 0;
535         unsigned int nr_pages;
536         unsigned int i;
537 
538         /* figure out the number of pages in the vector */
539         for (i = 0; i < nr_iovecs; i++) {
540                 nr_pages = rds_pages_in_vec(&iov[i]);
541                 if (nr_pages == 0)
542                         return -EINVAL;
543 
544                 tot_pages += nr_pages;
545 
546                 /*
547                  * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
548                  * so tot_pages cannot overflow without first going negative.
549                  */
550                 if (tot_pages < 0)
551                         return -EINVAL;
552         }
553 
554         return tot_pages;
555 }
556 
557 int rds_rdma_extra_size(struct rds_rdma_args *args,
558                         struct rds_iov_vector *iov)
559 {
560         struct rds_iovec *vec;
561         struct rds_iovec __user *local_vec;
562         int tot_pages = 0;
563         unsigned int nr_pages;
564         unsigned int i;
565 
566         local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
567 
568         if (args->nr_local == 0)
569                 return -EINVAL;
570 
571         if (args->nr_local > UIO_MAXIOV)
572                 return -EMSGSIZE;
573 
574         iov->iov = kcalloc(args->nr_local,
575                            sizeof(struct rds_iovec),
576                            GFP_KERNEL);
577         if (!iov->iov)
578                 return -ENOMEM;
579 
580         vec = &iov->iov[0];
581 
582         if (copy_from_user(vec, local_vec, args->nr_local *
583                            sizeof(struct rds_iovec)))
584                 return -EFAULT;
585         iov->len = args->nr_local;
586 
587         /* figure out the number of pages in the vector */
588         for (i = 0; i < args->nr_local; i++, vec++) {
589 
590                 nr_pages = rds_pages_in_vec(vec);
591                 if (nr_pages == 0)
592                         return -EINVAL;
593 
594                 tot_pages += nr_pages;
595 
596                 /*
597                  * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
598                  * so tot_pages cannot overflow without first going negative.
599                  */
600                 if (tot_pages < 0)
601                         return -EINVAL;
602         }
603 
604         return tot_pages * sizeof(struct scatterlist);
605 }
606 
607 /*
608  * The application asks for a RDMA transfer.
609  * Extract all arguments and set up the rdma_op
610  */
611 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
612                        struct cmsghdr *cmsg,
613                        struct rds_iov_vector *vec)
614 {
615         struct rds_rdma_args *args;
616         struct rm_rdma_op *op = &rm->rdma;
617         int nr_pages;
618         unsigned int nr_bytes;
619         struct page **pages = NULL;
620         struct rds_iovec *iovs;
621         unsigned int i, j;
622         int ret = 0;
623         bool odp_supported = true;
624 
625         if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
626             || rm->rdma.op_active)
627                 return -EINVAL;
628 
629         args = CMSG_DATA(cmsg);
630 
631         if (ipv6_addr_any(&rs->rs_bound_addr)) {
632                 ret = -ENOTCONN; /* XXX not a great errno */
633                 goto out_ret;
634         }
635 
636         if (args->nr_local > UIO_MAXIOV) {
637                 ret = -EMSGSIZE;
638                 goto out_ret;
639         }
640 
641         if (vec->len != args->nr_local) {
642                 ret = -EINVAL;
643                 goto out_ret;
644         }
645         /* odp-mr is not supported for multiple requests within one message */
646         if (args->nr_local != 1)
647                 odp_supported = false;
648 
649         iovs = vec->iov;
650 
651         nr_pages = rds_rdma_pages(iovs, args->nr_local);
652         if (nr_pages < 0) {
653                 ret = -EINVAL;
654                 goto out_ret;
655         }
656 
657         pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
658         if (!pages) {
659                 ret = -ENOMEM;
660                 goto out_ret;
661         }
662 
663         op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
664         op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
665         op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
666         op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
667         op->op_active = 1;
668         op->op_recverr = rs->rs_recverr;
669         op->op_odp_mr = NULL;
670 
671         WARN_ON(!nr_pages);
672         op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
673         if (IS_ERR(op->op_sg)) {
674                 ret = PTR_ERR(op->op_sg);
675                 goto out_pages;
676         }
677 
678         if (op->op_notify || op->op_recverr) {
679                 /* We allocate an uninitialized notifier here, because
680                  * we don't want to do that in the completion handler. We
681                  * would have to use GFP_ATOMIC there, and don't want to deal
682                  * with failed allocations.
683                  */
684                 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
685                 if (!op->op_notifier) {
686                         ret = -ENOMEM;
687                         goto out_pages;
688                 }
689                 op->op_notifier->n_user_token = args->user_token;
690                 op->op_notifier->n_status = RDS_RDMA_SUCCESS;
691         }
692 
693         /* The cookie contains the R_Key of the remote memory region, and
694          * optionally an offset into it. This is how we implement RDMA into
695          * unaligned memory.
696          * When setting up the RDMA, we need to add that offset to the
697          * destination address (which is really an offset into the MR)
698          * FIXME: We may want to move this into ib_rdma.c
699          */
700         op->op_rkey = rds_rdma_cookie_key(args->cookie);
701         op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
702 
703         nr_bytes = 0;
704 
705         rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
706                (unsigned long long)args->nr_local,
707                (unsigned long long)args->remote_vec.addr,
708                op->op_rkey);
709 
710         for (i = 0; i < args->nr_local; i++) {
711                 struct rds_iovec *iov = &iovs[i];
712                 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
713                 unsigned int nr = rds_pages_in_vec(iov);
714 
715                 rs->rs_user_addr = iov->addr;
716                 rs->rs_user_bytes = iov->bytes;
717 
718                 /* If it's a WRITE operation, we want to pin the pages for reading.
719                  * If it's a READ operation, we need to pin the pages for writing.
720                  */
721                 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
722                 if ((!odp_supported && ret <= 0) ||
723                     (odp_supported && ret <= 0 && ret != -EOPNOTSUPP))
724                         goto out_pages;
725 
726                 if (ret == -EOPNOTSUPP) {
727                         struct rds_mr *local_odp_mr;
728 
729                         if (!rs->rs_transport->get_mr) {
730                                 ret = -EOPNOTSUPP;
731                                 goto out_pages;
732                         }
733                         local_odp_mr =
734                                 kzalloc(sizeof(*local_odp_mr), GFP_KERNEL);
735                         if (!local_odp_mr) {
736                                 ret = -ENOMEM;
737                                 goto out_pages;
738                         }
739                         RB_CLEAR_NODE(&local_odp_mr->r_rb_node);
740                         kref_init(&local_odp_mr->r_kref);
741                         local_odp_mr->r_trans = rs->rs_transport;
742                         local_odp_mr->r_sock = rs;
743                         local_odp_mr->r_trans_private =
744                                 rs->rs_transport->get_mr(
745                                         NULL, 0, rs, &local_odp_mr->r_key, NULL,
746                                         iov->addr, iov->bytes, ODP_VIRTUAL);
747                         if (IS_ERR(local_odp_mr->r_trans_private)) {
748                                 ret = PTR_ERR(local_odp_mr->r_trans_private);
749                                 rdsdebug("get_mr ret %d %p\"", ret,
750                                          local_odp_mr->r_trans_private);
751                                 kfree(local_odp_mr);
752                                 ret = -EOPNOTSUPP;
753                                 goto out_pages;
754                         }
755                         rdsdebug("Need odp; local_odp_mr %p trans_private %p\n",
756                                  local_odp_mr, local_odp_mr->r_trans_private);
757                         op->op_odp_mr = local_odp_mr;
758                         op->op_odp_addr = iov->addr;
759                 }
760 
761                 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
762                          nr_bytes, nr, iov->bytes, iov->addr);
763 
764                 nr_bytes += iov->bytes;
765 
766                 for (j = 0; j < nr; j++) {
767                         unsigned int offset = iov->addr & ~PAGE_MASK;
768                         struct scatterlist *sg;
769 
770                         sg = &op->op_sg[op->op_nents + j];
771                         sg_set_page(sg, pages[j],
772                                         min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
773                                         offset);
774 
775                         sg_dma_len(sg) = sg->length;
776                         rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
777                                sg->offset, sg->length, iov->addr, iov->bytes);
778 
779                         iov->addr += sg->length;
780                         iov->bytes -= sg->length;
781                 }
782 
783                 op->op_nents += nr;
784         }
785 
786         if (nr_bytes > args->remote_vec.bytes) {
787                 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
788                                 nr_bytes,
789                                 (unsigned int) args->remote_vec.bytes);
790                 ret = -EINVAL;
791                 goto out_pages;
792         }
793         op->op_bytes = nr_bytes;
794         ret = 0;
795 
796 out_pages:
797         kfree(pages);
798 out_ret:
799         if (ret)
800                 rds_rdma_free_op(op);
801         else
802                 rds_stats_inc(s_send_rdma);
803 
804         return ret;
805 }
806 
807 /*
808  * The application wants us to pass an RDMA destination (aka MR)
809  * to the remote
810  */
811 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
812                           struct cmsghdr *cmsg)
813 {
814         unsigned long flags;
815         struct rds_mr *mr;
816         u32 r_key;
817         int err = 0;
818 
819         if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
820             rm->m_rdma_cookie != 0)
821                 return -EINVAL;
822 
823         memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
824 
825         /* We are reusing a previously mapped MR here. Most likely, the
826          * application has written to the buffer, so we need to explicitly
827          * flush those writes to RAM. Otherwise the HCA may not see them
828          * when doing a DMA from that buffer.
829          */
830         r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
831 
832         spin_lock_irqsave(&rs->rs_rdma_lock, flags);
833         mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
834         if (!mr)
835                 err = -EINVAL;  /* invalid r_key */
836         else
837                 kref_get(&mr->r_kref);
838         spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
839 
840         if (mr) {
841                 mr->r_trans->sync_mr(mr->r_trans_private,
842                                      DMA_TO_DEVICE);
843                 rm->rdma.op_rdma_mr = mr;
844         }
845         return err;
846 }
847 
848 /*
849  * The application passes us an address range it wants to enable RDMA
850  * to/from. We map the area, and save the <R_Key,offset> pair
851  * in rm->m_rdma_cookie. This causes it to be sent along to the peer
852  * in an extension header.
853  */
854 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
855                           struct cmsghdr *cmsg)
856 {
857         if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
858             rm->m_rdma_cookie != 0)
859                 return -EINVAL;
860 
861         return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie,
862                               &rm->rdma.op_rdma_mr, rm->m_conn_path);
863 }
864 
865 /*
866  * Fill in rds_message for an atomic request.
867  */
868 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
869                     struct cmsghdr *cmsg)
870 {
871         struct page *page = NULL;
872         struct rds_atomic_args *args;
873         int ret = 0;
874 
875         if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
876          || rm->atomic.op_active)
877                 return -EINVAL;
878 
879         args = CMSG_DATA(cmsg);
880 
881         /* Nonmasked & masked cmsg ops converted to masked hw ops */
882         switch (cmsg->cmsg_type) {
883         case RDS_CMSG_ATOMIC_FADD:
884                 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
885                 rm->atomic.op_m_fadd.add = args->fadd.add;
886                 rm->atomic.op_m_fadd.nocarry_mask = 0;
887                 break;
888         case RDS_CMSG_MASKED_ATOMIC_FADD:
889                 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
890                 rm->atomic.op_m_fadd.add = args->m_fadd.add;
891                 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
892                 break;
893         case RDS_CMSG_ATOMIC_CSWP:
894                 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
895                 rm->atomic.op_m_cswp.compare = args->cswp.compare;
896                 rm->atomic.op_m_cswp.swap = args->cswp.swap;
897                 rm->atomic.op_m_cswp.compare_mask = ~0;
898                 rm->atomic.op_m_cswp.swap_mask = ~0;
899                 break;
900         case RDS_CMSG_MASKED_ATOMIC_CSWP:
901                 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
902                 rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
903                 rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
904                 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
905                 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
906                 break;
907         default:
908                 BUG(); /* should never happen */
909         }
910 
911         rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
912         rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
913         rm->atomic.op_active = 1;
914         rm->atomic.op_recverr = rs->rs_recverr;
915         rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
916         if (IS_ERR(rm->atomic.op_sg)) {
917                 ret = PTR_ERR(rm->atomic.op_sg);
918                 goto err;
919         }
920 
921         /* verify 8 byte-aligned */
922         if (args->local_addr & 0x7) {
923                 ret = -EFAULT;
924                 goto err;
925         }
926 
927         ret = rds_pin_pages(args->local_addr, 1, &page, 1);
928         if (ret != 1)
929                 goto err;
930         ret = 0;
931 
932         sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
933 
934         if (rm->atomic.op_notify || rm->atomic.op_recverr) {
935                 /* We allocate an uninitialized notifier here, because
936                  * we don't want to do that in the completion handler. We
937                  * would have to use GFP_ATOMIC there, and don't want to deal
938                  * with failed allocations.
939                  */
940                 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
941                 if (!rm->atomic.op_notifier) {
942                         ret = -ENOMEM;
943                         goto err;
944                 }
945 
946                 rm->atomic.op_notifier->n_user_token = args->user_token;
947                 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
948         }
949 
950         rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
951         rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
952 
953         return ret;
954 err:
955         if (page)
956                 unpin_user_page(page);
957         rm->atomic.op_active = 0;
958         kfree(rm->atomic.op_notifier);
959 
960         return ret;
961 }
962 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php