1 /* 2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 #include <linux/kernel.h> 34 #include <linux/slab.h> 35 #include <linux/in.h> 36 #include <linux/module.h> 37 #include <net/tcp.h> 38 #include <net/net_namespace.h> 39 #include <net/netns/generic.h> 40 #include <net/addrconf.h> 41 42 #include "rds.h" 43 #include "tcp.h" 44 45 /* only for info exporting */ 46 static DEFINE_SPINLOCK(rds_tcp_tc_list_lock); 47 static LIST_HEAD(rds_tcp_tc_list); 48 49 /* rds_tcp_tc_count counts only IPv4 connections. 50 * rds6_tcp_tc_count counts both IPv4 and IPv6 connections. 51 */ 52 static unsigned int rds_tcp_tc_count; 53 #if IS_ENABLED(CONFIG_IPV6) 54 static unsigned int rds6_tcp_tc_count; 55 #endif 56 57 /* Track rds_tcp_connection structs so they can be cleaned up */ 58 static DEFINE_SPINLOCK(rds_tcp_conn_lock); 59 static LIST_HEAD(rds_tcp_conn_list); 60 static atomic_t rds_tcp_unloading = ATOMIC_INIT(0); 61 62 static struct kmem_cache *rds_tcp_conn_slab; 63 64 static int rds_tcp_skbuf_handler(const struct ctl_table *ctl, int write, 65 void *buffer, size_t *lenp, loff_t *fpos); 66 67 static int rds_tcp_min_sndbuf = SOCK_MIN_SNDBUF; 68 static int rds_tcp_min_rcvbuf = SOCK_MIN_RCVBUF; 69 70 static struct ctl_table rds_tcp_sysctl_table[] = { 71 #define RDS_TCP_SNDBUF 0 72 { 73 .procname = "rds_tcp_sndbuf", 74 /* data is per-net pointer */ 75 .maxlen = sizeof(int), 76 .mode = 0644, 77 .proc_handler = rds_tcp_skbuf_handler, 78 .extra1 = &rds_tcp_min_sndbuf, 79 }, 80 #define RDS_TCP_RCVBUF 1 81 { 82 .procname = "rds_tcp_rcvbuf", 83 /* data is per-net pointer */ 84 .maxlen = sizeof(int), 85 .mode = 0644, 86 .proc_handler = rds_tcp_skbuf_handler, 87 .extra1 = &rds_tcp_min_rcvbuf, 88 }, 89 }; 90 91 u32 rds_tcp_write_seq(struct rds_tcp_connection *tc) 92 { 93 /* seq# of the last byte of data in tcp send buffer */ 94 return tcp_sk(tc->t_sock->sk)->write_seq; 95 } 96 97 u32 rds_tcp_snd_una(struct rds_tcp_connection *tc) 98 { 99 return tcp_sk(tc->t_sock->sk)->snd_una; 100 } 101 102 void rds_tcp_restore_callbacks(struct socket *sock, 103 struct rds_tcp_connection *tc) 104 { 105 rdsdebug("restoring sock %p callbacks from tc %p\n", sock, tc); 106 write_lock_bh(&sock->sk->sk_callback_lock); 107 108 /* done under the callback_lock to serialize with write_space */ 109 spin_lock(&rds_tcp_tc_list_lock); 110 list_del_init(&tc->t_list_item); 111 #if IS_ENABLED(CONFIG_IPV6) 112 rds6_tcp_tc_count--; 113 #endif 114 if (!tc->t_cpath->cp_conn->c_isv6) 115 rds_tcp_tc_count--; 116 spin_unlock(&rds_tcp_tc_list_lock); 117 118 tc->t_sock = NULL; 119 120 sock->sk->sk_write_space = tc->t_orig_write_space; 121 sock->sk->sk_data_ready = tc->t_orig_data_ready; 122 sock->sk->sk_state_change = tc->t_orig_state_change; 123 sock->sk->sk_user_data = NULL; 124 125 write_unlock_bh(&sock->sk->sk_callback_lock); 126 } 127 128 /* 129 * rds_tcp_reset_callbacks() switches the to the new sock and 130 * returns the existing tc->t_sock. 131 * 132 * The only functions that set tc->t_sock are rds_tcp_set_callbacks 133 * and rds_tcp_reset_callbacks. Send and receive trust that 134 * it is set. The absence of RDS_CONN_UP bit protects those paths 135 * from being called while it isn't set. 136 */ 137 void rds_tcp_reset_callbacks(struct socket *sock, 138 struct rds_conn_path *cp) 139 { 140 struct rds_tcp_connection *tc = cp->cp_transport_data; 141 struct socket *osock = tc->t_sock; 142 143 if (!osock) 144 goto newsock; 145 146 /* Need to resolve a duelling SYN between peers. 147 * We have an outstanding SYN to this peer, which may 148 * potentially have transitioned to the RDS_CONN_UP state, 149 * so we must quiesce any send threads before resetting 150 * cp_transport_data. We quiesce these threads by setting 151 * cp_state to something other than RDS_CONN_UP, and then 152 * waiting for any existing threads in rds_send_xmit to 153 * complete release_in_xmit(). (Subsequent threads entering 154 * rds_send_xmit() will bail on !rds_conn_up(). 155 * 156 * However an incoming syn-ack at this point would end up 157 * marking the conn as RDS_CONN_UP, and would again permit 158 * rds_send_xmi() threads through, so ideally we would 159 * synchronize on RDS_CONN_UP after lock_sock(), but cannot 160 * do that: waiting on !RDS_IN_XMIT after lock_sock() may 161 * end up deadlocking with tcp_sendmsg(), and the RDS_IN_XMIT 162 * would not get set. As a result, we set c_state to 163 * RDS_CONN_RESETTTING, to ensure that rds_tcp_state_change 164 * cannot mark rds_conn_path_up() in the window before lock_sock() 165 */ 166 atomic_set(&cp->cp_state, RDS_CONN_RESETTING); 167 wait_event(cp->cp_waitq, !test_bit(RDS_IN_XMIT, &cp->cp_flags)); 168 /* reset receive side state for rds_tcp_data_recv() for osock */ 169 cancel_delayed_work_sync(&cp->cp_send_w); 170 cancel_delayed_work_sync(&cp->cp_recv_w); 171 lock_sock(osock->sk); 172 if (tc->t_tinc) { 173 rds_inc_put(&tc->t_tinc->ti_inc); 174 tc->t_tinc = NULL; 175 } 176 tc->t_tinc_hdr_rem = sizeof(struct rds_header); 177 tc->t_tinc_data_rem = 0; 178 rds_tcp_restore_callbacks(osock, tc); 179 release_sock(osock->sk); 180 sock_release(osock); 181 newsock: 182 rds_send_path_reset(cp); 183 lock_sock(sock->sk); 184 rds_tcp_set_callbacks(sock, cp); 185 release_sock(sock->sk); 186 } 187 188 /* Add tc to rds_tcp_tc_list and set tc->t_sock. See comments 189 * above rds_tcp_reset_callbacks for notes about synchronization 190 * with data path 191 */ 192 void rds_tcp_set_callbacks(struct socket *sock, struct rds_conn_path *cp) 193 { 194 struct rds_tcp_connection *tc = cp->cp_transport_data; 195 196 rdsdebug("setting sock %p callbacks to tc %p\n", sock, tc); 197 write_lock_bh(&sock->sk->sk_callback_lock); 198 199 /* done under the callback_lock to serialize with write_space */ 200 spin_lock(&rds_tcp_tc_list_lock); 201 list_add_tail(&tc->t_list_item, &rds_tcp_tc_list); 202 #if IS_ENABLED(CONFIG_IPV6) 203 rds6_tcp_tc_count++; 204 #endif 205 if (!tc->t_cpath->cp_conn->c_isv6) 206 rds_tcp_tc_count++; 207 spin_unlock(&rds_tcp_tc_list_lock); 208 209 /* accepted sockets need our listen data ready undone */ 210 if (sock->sk->sk_data_ready == rds_tcp_listen_data_ready) 211 sock->sk->sk_data_ready = sock->sk->sk_user_data; 212 213 tc->t_sock = sock; 214 tc->t_cpath = cp; 215 tc->t_orig_data_ready = sock->sk->sk_data_ready; 216 tc->t_orig_write_space = sock->sk->sk_write_space; 217 tc->t_orig_state_change = sock->sk->sk_state_change; 218 219 sock->sk->sk_user_data = cp; 220 sock->sk->sk_data_ready = rds_tcp_data_ready; 221 sock->sk->sk_write_space = rds_tcp_write_space; 222 sock->sk->sk_state_change = rds_tcp_state_change; 223 224 write_unlock_bh(&sock->sk->sk_callback_lock); 225 } 226 227 /* Handle RDS_INFO_TCP_SOCKETS socket option. It only returns IPv4 228 * connections for backward compatibility. 229 */ 230 static void rds_tcp_tc_info(struct socket *rds_sock, unsigned int len, 231 struct rds_info_iterator *iter, 232 struct rds_info_lengths *lens) 233 { 234 struct rds_info_tcp_socket tsinfo; 235 struct rds_tcp_connection *tc; 236 unsigned long flags; 237 238 spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); 239 240 if (len / sizeof(tsinfo) < rds_tcp_tc_count) 241 goto out; 242 243 list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { 244 struct inet_sock *inet = inet_sk(tc->t_sock->sk); 245 246 if (tc->t_cpath->cp_conn->c_isv6) 247 continue; 248 249 tsinfo.local_addr = inet->inet_saddr; 250 tsinfo.local_port = inet->inet_sport; 251 tsinfo.peer_addr = inet->inet_daddr; 252 tsinfo.peer_port = inet->inet_dport; 253 254 tsinfo.hdr_rem = tc->t_tinc_hdr_rem; 255 tsinfo.data_rem = tc->t_tinc_data_rem; 256 tsinfo.last_sent_nxt = tc->t_last_sent_nxt; 257 tsinfo.last_expected_una = tc->t_last_expected_una; 258 tsinfo.last_seen_una = tc->t_last_seen_una; 259 tsinfo.tos = tc->t_cpath->cp_conn->c_tos; 260 261 rds_info_copy(iter, &tsinfo, sizeof(tsinfo)); 262 } 263 264 out: 265 lens->nr = rds_tcp_tc_count; 266 lens->each = sizeof(tsinfo); 267 268 spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); 269 } 270 271 #if IS_ENABLED(CONFIG_IPV6) 272 /* Handle RDS6_INFO_TCP_SOCKETS socket option. It returns both IPv4 and 273 * IPv6 connections. IPv4 connection address is returned in an IPv4 mapped 274 * address. 275 */ 276 static void rds6_tcp_tc_info(struct socket *sock, unsigned int len, 277 struct rds_info_iterator *iter, 278 struct rds_info_lengths *lens) 279 { 280 struct rds6_info_tcp_socket tsinfo6; 281 struct rds_tcp_connection *tc; 282 unsigned long flags; 283 284 spin_lock_irqsave(&rds_tcp_tc_list_lock, flags); 285 286 if (len / sizeof(tsinfo6) < rds6_tcp_tc_count) 287 goto out; 288 289 list_for_each_entry(tc, &rds_tcp_tc_list, t_list_item) { 290 struct sock *sk = tc->t_sock->sk; 291 struct inet_sock *inet = inet_sk(sk); 292 293 tsinfo6.local_addr = sk->sk_v6_rcv_saddr; 294 tsinfo6.local_port = inet->inet_sport; 295 tsinfo6.peer_addr = sk->sk_v6_daddr; 296 tsinfo6.peer_port = inet->inet_dport; 297 298 tsinfo6.hdr_rem = tc->t_tinc_hdr_rem; 299 tsinfo6.data_rem = tc->t_tinc_data_rem; 300 tsinfo6.last_sent_nxt = tc->t_last_sent_nxt; 301 tsinfo6.last_expected_una = tc->t_last_expected_una; 302 tsinfo6.last_seen_una = tc->t_last_seen_una; 303 304 rds_info_copy(iter, &tsinfo6, sizeof(tsinfo6)); 305 } 306 307 out: 308 lens->nr = rds6_tcp_tc_count; 309 lens->each = sizeof(tsinfo6); 310 311 spin_unlock_irqrestore(&rds_tcp_tc_list_lock, flags); 312 } 313 #endif 314 315 int rds_tcp_laddr_check(struct net *net, const struct in6_addr *addr, 316 __u32 scope_id) 317 { 318 struct net_device *dev = NULL; 319 #if IS_ENABLED(CONFIG_IPV6) 320 int ret; 321 #endif 322 323 if (ipv6_addr_v4mapped(addr)) { 324 if (inet_addr_type(net, addr->s6_addr32[3]) == RTN_LOCAL) 325 return 0; 326 return -EADDRNOTAVAIL; 327 } 328 329 /* If the scope_id is specified, check only those addresses 330 * hosted on the specified interface. 331 */ 332 if (scope_id != 0) { 333 rcu_read_lock(); 334 dev = dev_get_by_index_rcu(net, scope_id); 335 /* scope_id is not valid... */ 336 if (!dev) { 337 rcu_read_unlock(); 338 return -EADDRNOTAVAIL; 339 } 340 rcu_read_unlock(); 341 } 342 #if IS_ENABLED(CONFIG_IPV6) 343 ret = ipv6_chk_addr(net, addr, dev, 0); 344 if (ret) 345 return 0; 346 #endif 347 return -EADDRNOTAVAIL; 348 } 349 350 static void rds_tcp_conn_free(void *arg) 351 { 352 struct rds_tcp_connection *tc = arg; 353 unsigned long flags; 354 355 rdsdebug("freeing tc %p\n", tc); 356 357 spin_lock_irqsave(&rds_tcp_conn_lock, flags); 358 if (!tc->t_tcp_node_detached) 359 list_del(&tc->t_tcp_node); 360 spin_unlock_irqrestore(&rds_tcp_conn_lock, flags); 361 362 kmem_cache_free(rds_tcp_conn_slab, tc); 363 } 364 365 static int rds_tcp_conn_alloc(struct rds_connection *conn, gfp_t gfp) 366 { 367 struct rds_tcp_connection *tc; 368 int i, j; 369 int ret = 0; 370 371 for (i = 0; i < RDS_MPATH_WORKERS; i++) { 372 tc = kmem_cache_alloc(rds_tcp_conn_slab, gfp); 373 if (!tc) { 374 ret = -ENOMEM; 375 goto fail; 376 } 377 mutex_init(&tc->t_conn_path_lock); 378 tc->t_sock = NULL; 379 tc->t_tinc = NULL; 380 tc->t_tinc_hdr_rem = sizeof(struct rds_header); 381 tc->t_tinc_data_rem = 0; 382 383 conn->c_path[i].cp_transport_data = tc; 384 tc->t_cpath = &conn->c_path[i]; 385 tc->t_tcp_node_detached = true; 386 387 rdsdebug("rds_conn_path [%d] tc %p\n", i, 388 conn->c_path[i].cp_transport_data); 389 } 390 spin_lock_irq(&rds_tcp_conn_lock); 391 for (i = 0; i < RDS_MPATH_WORKERS; i++) { 392 tc = conn->c_path[i].cp_transport_data; 393 tc->t_tcp_node_detached = false; 394 list_add_tail(&tc->t_tcp_node, &rds_tcp_conn_list); 395 } 396 spin_unlock_irq(&rds_tcp_conn_lock); 397 fail: 398 if (ret) { 399 for (j = 0; j < i; j++) 400 rds_tcp_conn_free(conn->c_path[j].cp_transport_data); 401 } 402 return ret; 403 } 404 405 static bool list_has_conn(struct list_head *list, struct rds_connection *conn) 406 { 407 struct rds_tcp_connection *tc, *_tc; 408 409 list_for_each_entry_safe(tc, _tc, list, t_tcp_node) { 410 if (tc->t_cpath->cp_conn == conn) 411 return true; 412 } 413 return false; 414 } 415 416 static void rds_tcp_set_unloading(void) 417 { 418 atomic_set(&rds_tcp_unloading, 1); 419 } 420 421 static bool rds_tcp_is_unloading(struct rds_connection *conn) 422 { 423 return atomic_read(&rds_tcp_unloading) != 0; 424 } 425 426 static void rds_tcp_destroy_conns(void) 427 { 428 struct rds_tcp_connection *tc, *_tc; 429 LIST_HEAD(tmp_list); 430 431 /* avoid calling conn_destroy with irqs off */ 432 spin_lock_irq(&rds_tcp_conn_lock); 433 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { 434 if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) 435 list_move_tail(&tc->t_tcp_node, &tmp_list); 436 } 437 spin_unlock_irq(&rds_tcp_conn_lock); 438 439 list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) 440 rds_conn_destroy(tc->t_cpath->cp_conn); 441 } 442 443 static void rds_tcp_exit(void); 444 445 static u8 rds_tcp_get_tos_map(u8 tos) 446 { 447 /* all user tos mapped to default 0 for TCP transport */ 448 return 0; 449 } 450 451 struct rds_transport rds_tcp_transport = { 452 .laddr_check = rds_tcp_laddr_check, 453 .xmit_path_prepare = rds_tcp_xmit_path_prepare, 454 .xmit_path_complete = rds_tcp_xmit_path_complete, 455 .xmit = rds_tcp_xmit, 456 .recv_path = rds_tcp_recv_path, 457 .conn_alloc = rds_tcp_conn_alloc, 458 .conn_free = rds_tcp_conn_free, 459 .conn_path_connect = rds_tcp_conn_path_connect, 460 .conn_path_shutdown = rds_tcp_conn_path_shutdown, 461 .inc_copy_to_user = rds_tcp_inc_copy_to_user, 462 .inc_free = rds_tcp_inc_free, 463 .stats_info_copy = rds_tcp_stats_info_copy, 464 .exit = rds_tcp_exit, 465 .get_tos_map = rds_tcp_get_tos_map, 466 .t_owner = THIS_MODULE, 467 .t_name = "tcp", 468 .t_type = RDS_TRANS_TCP, 469 .t_prefer_loopback = 1, 470 .t_mp_capable = 1, 471 .t_unloading = rds_tcp_is_unloading, 472 }; 473 474 static unsigned int rds_tcp_netid; 475 476 /* per-network namespace private data for this module */ 477 struct rds_tcp_net { 478 struct socket *rds_tcp_listen_sock; 479 struct work_struct rds_tcp_accept_w; 480 struct ctl_table_header *rds_tcp_sysctl; 481 struct ctl_table *ctl_table; 482 int sndbuf_size; 483 int rcvbuf_size; 484 }; 485 486 /* All module specific customizations to the RDS-TCP socket should be done in 487 * rds_tcp_tune() and applied after socket creation. 488 */ 489 bool rds_tcp_tune(struct socket *sock) 490 { 491 struct sock *sk = sock->sk; 492 struct net *net = sock_net(sk); 493 struct rds_tcp_net *rtn; 494 495 tcp_sock_set_nodelay(sock->sk); 496 lock_sock(sk); 497 /* TCP timer functions might access net namespace even after 498 * a process which created this net namespace terminated. 499 */ 500 if (!sk->sk_net_refcnt) { 501 if (!maybe_get_net(net)) { 502 release_sock(sk); 503 return false; 504 } 505 /* Update ns_tracker to current stack trace and refcounted tracker */ 506 __netns_tracker_free(net, &sk->ns_tracker, false); 507 508 sk->sk_net_refcnt = 1; 509 netns_tracker_alloc(net, &sk->ns_tracker, GFP_KERNEL); 510 sock_inuse_add(net, 1); 511 } 512 rtn = net_generic(net, rds_tcp_netid); 513 if (rtn->sndbuf_size > 0) { 514 sk->sk_sndbuf = rtn->sndbuf_size; 515 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 516 } 517 if (rtn->rcvbuf_size > 0) { 518 sk->sk_rcvbuf = rtn->rcvbuf_size; 519 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 520 } 521 release_sock(sk); 522 return true; 523 } 524 525 static void rds_tcp_accept_worker(struct work_struct *work) 526 { 527 struct rds_tcp_net *rtn = container_of(work, 528 struct rds_tcp_net, 529 rds_tcp_accept_w); 530 531 while (rds_tcp_accept_one(rtn->rds_tcp_listen_sock) == 0) 532 cond_resched(); 533 } 534 535 void rds_tcp_accept_work(struct sock *sk) 536 { 537 struct net *net = sock_net(sk); 538 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 539 540 queue_work(rds_wq, &rtn->rds_tcp_accept_w); 541 } 542 543 static __net_init int rds_tcp_init_net(struct net *net) 544 { 545 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 546 struct ctl_table *tbl; 547 int err = 0; 548 549 memset(rtn, 0, sizeof(*rtn)); 550 551 /* {snd, rcv}buf_size default to 0, which implies we let the 552 * stack pick the value, and permit auto-tuning of buffer size. 553 */ 554 if (net == &init_net) { 555 tbl = rds_tcp_sysctl_table; 556 } else { 557 tbl = kmemdup(rds_tcp_sysctl_table, 558 sizeof(rds_tcp_sysctl_table), GFP_KERNEL); 559 if (!tbl) { 560 pr_warn("could not set allocate sysctl table\n"); 561 return -ENOMEM; 562 } 563 rtn->ctl_table = tbl; 564 } 565 tbl[RDS_TCP_SNDBUF].data = &rtn->sndbuf_size; 566 tbl[RDS_TCP_RCVBUF].data = &rtn->rcvbuf_size; 567 rtn->rds_tcp_sysctl = register_net_sysctl_sz(net, "net/rds/tcp", tbl, 568 ARRAY_SIZE(rds_tcp_sysctl_table)); 569 if (!rtn->rds_tcp_sysctl) { 570 pr_warn("could not register sysctl\n"); 571 err = -ENOMEM; 572 goto fail; 573 } 574 575 #if IS_ENABLED(CONFIG_IPV6) 576 rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, true); 577 #else 578 rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); 579 #endif 580 if (!rtn->rds_tcp_listen_sock) { 581 pr_warn("could not set up IPv6 listen sock\n"); 582 583 #if IS_ENABLED(CONFIG_IPV6) 584 /* Try IPv4 as some systems disable IPv6 */ 585 rtn->rds_tcp_listen_sock = rds_tcp_listen_init(net, false); 586 if (!rtn->rds_tcp_listen_sock) { 587 #endif 588 unregister_net_sysctl_table(rtn->rds_tcp_sysctl); 589 rtn->rds_tcp_sysctl = NULL; 590 err = -EAFNOSUPPORT; 591 goto fail; 592 #if IS_ENABLED(CONFIG_IPV6) 593 } 594 #endif 595 } 596 INIT_WORK(&rtn->rds_tcp_accept_w, rds_tcp_accept_worker); 597 return 0; 598 599 fail: 600 if (net != &init_net) 601 kfree(tbl); 602 return err; 603 } 604 605 static void rds_tcp_kill_sock(struct net *net) 606 { 607 struct rds_tcp_connection *tc, *_tc; 608 LIST_HEAD(tmp_list); 609 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 610 struct socket *lsock = rtn->rds_tcp_listen_sock; 611 612 rtn->rds_tcp_listen_sock = NULL; 613 rds_tcp_listen_stop(lsock, &rtn->rds_tcp_accept_w); 614 spin_lock_irq(&rds_tcp_conn_lock); 615 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { 616 struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); 617 618 if (net != c_net) 619 continue; 620 if (!list_has_conn(&tmp_list, tc->t_cpath->cp_conn)) { 621 list_move_tail(&tc->t_tcp_node, &tmp_list); 622 } else { 623 list_del(&tc->t_tcp_node); 624 tc->t_tcp_node_detached = true; 625 } 626 } 627 spin_unlock_irq(&rds_tcp_conn_lock); 628 list_for_each_entry_safe(tc, _tc, &tmp_list, t_tcp_node) 629 rds_conn_destroy(tc->t_cpath->cp_conn); 630 } 631 632 static void __net_exit rds_tcp_exit_net(struct net *net) 633 { 634 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 635 636 rds_tcp_kill_sock(net); 637 638 if (rtn->rds_tcp_sysctl) 639 unregister_net_sysctl_table(rtn->rds_tcp_sysctl); 640 641 if (net != &init_net) 642 kfree(rtn->ctl_table); 643 } 644 645 static struct pernet_operations rds_tcp_net_ops = { 646 .init = rds_tcp_init_net, 647 .exit = rds_tcp_exit_net, 648 .id = &rds_tcp_netid, 649 .size = sizeof(struct rds_tcp_net), 650 }; 651 652 void *rds_tcp_listen_sock_def_readable(struct net *net) 653 { 654 struct rds_tcp_net *rtn = net_generic(net, rds_tcp_netid); 655 struct socket *lsock = rtn->rds_tcp_listen_sock; 656 657 if (!lsock) 658 return NULL; 659 660 return lsock->sk->sk_user_data; 661 } 662 663 /* when sysctl is used to modify some kernel socket parameters,this 664 * function resets the RDS connections in that netns so that we can 665 * restart with new parameters. The assumption is that such reset 666 * events are few and far-between. 667 */ 668 static void rds_tcp_sysctl_reset(struct net *net) 669 { 670 struct rds_tcp_connection *tc, *_tc; 671 672 spin_lock_irq(&rds_tcp_conn_lock); 673 list_for_each_entry_safe(tc, _tc, &rds_tcp_conn_list, t_tcp_node) { 674 struct net *c_net = read_pnet(&tc->t_cpath->cp_conn->c_net); 675 676 if (net != c_net || !tc->t_sock) 677 continue; 678 679 /* reconnect with new parameters */ 680 rds_conn_path_drop(tc->t_cpath, false); 681 } 682 spin_unlock_irq(&rds_tcp_conn_lock); 683 } 684 685 static int rds_tcp_skbuf_handler(const struct ctl_table *ctl, int write, 686 void *buffer, size_t *lenp, loff_t *fpos) 687 { 688 struct net *net = current->nsproxy->net_ns; 689 int err; 690 691 err = proc_dointvec_minmax(ctl, write, buffer, lenp, fpos); 692 if (err < 0) { 693 pr_warn("Invalid input. Must be >= %d\n", 694 *(int *)(ctl->extra1)); 695 return err; 696 } 697 if (write) 698 rds_tcp_sysctl_reset(net); 699 return 0; 700 } 701 702 static void rds_tcp_exit(void) 703 { 704 rds_tcp_set_unloading(); 705 synchronize_rcu(); 706 rds_info_deregister_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); 707 #if IS_ENABLED(CONFIG_IPV6) 708 rds_info_deregister_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); 709 #endif 710 unregister_pernet_device(&rds_tcp_net_ops); 711 rds_tcp_destroy_conns(); 712 rds_trans_unregister(&rds_tcp_transport); 713 rds_tcp_recv_exit(); 714 kmem_cache_destroy(rds_tcp_conn_slab); 715 } 716 module_exit(rds_tcp_exit); 717 718 static int __init rds_tcp_init(void) 719 { 720 int ret; 721 722 rds_tcp_conn_slab = KMEM_CACHE(rds_tcp_connection, 0); 723 if (!rds_tcp_conn_slab) { 724 ret = -ENOMEM; 725 goto out; 726 } 727 728 ret = rds_tcp_recv_init(); 729 if (ret) 730 goto out_slab; 731 732 ret = register_pernet_device(&rds_tcp_net_ops); 733 if (ret) 734 goto out_recv; 735 736 rds_trans_register(&rds_tcp_transport); 737 738 rds_info_register_func(RDS_INFO_TCP_SOCKETS, rds_tcp_tc_info); 739 #if IS_ENABLED(CONFIG_IPV6) 740 rds_info_register_func(RDS6_INFO_TCP_SOCKETS, rds6_tcp_tc_info); 741 #endif 742 743 goto out; 744 out_recv: 745 rds_tcp_recv_exit(); 746 out_slab: 747 kmem_cache_destroy(rds_tcp_conn_slab); 748 out: 749 return ret; 750 } 751 module_init(rds_tcp_init); 752 753 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>"); 754 MODULE_DESCRIPTION("RDS: TCP transport"); 755 MODULE_LICENSE("Dual BSD/GPL"); 756
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.