~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/rose/af_rose.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *
  4  * Copyright (C) Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
  5  * Copyright (C) Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
  6  * Copyright (C) Terry Dawson VK2KTJ (terry@animats.net)
  7  * Copyright (C) Tomi Manninen OH2BNS (oh2bns@sral.fi)
  8  */
  9 
 10 #include <linux/capability.h>
 11 #include <linux/module.h>
 12 #include <linux/moduleparam.h>
 13 #include <linux/init.h>
 14 #include <linux/errno.h>
 15 #include <linux/types.h>
 16 #include <linux/socket.h>
 17 #include <linux/in.h>
 18 #include <linux/slab.h>
 19 #include <linux/kernel.h>
 20 #include <linux/sched/signal.h>
 21 #include <linux/spinlock.h>
 22 #include <linux/timer.h>
 23 #include <linux/string.h>
 24 #include <linux/sockios.h>
 25 #include <linux/net.h>
 26 #include <linux/stat.h>
 27 #include <net/net_namespace.h>
 28 #include <net/ax25.h>
 29 #include <linux/inet.h>
 30 #include <linux/netdevice.h>
 31 #include <linux/if_arp.h>
 32 #include <linux/skbuff.h>
 33 #include <net/sock.h>
 34 #include <linux/uaccess.h>
 35 #include <linux/fcntl.h>
 36 #include <linux/termios.h>
 37 #include <linux/mm.h>
 38 #include <linux/interrupt.h>
 39 #include <linux/notifier.h>
 40 #include <net/rose.h>
 41 #include <linux/proc_fs.h>
 42 #include <linux/seq_file.h>
 43 #include <net/tcp_states.h>
 44 #include <net/ip.h>
 45 #include <net/arp.h>
 46 
 47 static int rose_ndevs = 10;
 48 
 49 int sysctl_rose_restart_request_timeout = ROSE_DEFAULT_T0;
 50 int sysctl_rose_call_request_timeout    = ROSE_DEFAULT_T1;
 51 int sysctl_rose_reset_request_timeout   = ROSE_DEFAULT_T2;
 52 int sysctl_rose_clear_request_timeout   = ROSE_DEFAULT_T3;
 53 int sysctl_rose_no_activity_timeout     = ROSE_DEFAULT_IDLE;
 54 int sysctl_rose_ack_hold_back_timeout   = ROSE_DEFAULT_HB;
 55 int sysctl_rose_routing_control         = ROSE_DEFAULT_ROUTING;
 56 int sysctl_rose_link_fail_timeout       = ROSE_DEFAULT_FAIL_TIMEOUT;
 57 int sysctl_rose_maximum_vcs             = ROSE_DEFAULT_MAXVC;
 58 int sysctl_rose_window_size             = ROSE_DEFAULT_WINDOW_SIZE;
 59 
 60 static HLIST_HEAD(rose_list);
 61 static DEFINE_SPINLOCK(rose_list_lock);
 62 
 63 static const struct proto_ops rose_proto_ops;
 64 
 65 ax25_address rose_callsign;
 66 
 67 /*
 68  * ROSE network devices are virtual network devices encapsulating ROSE
 69  * frames into AX.25 which will be sent through an AX.25 device, so form a
 70  * special "super class" of normal net devices; split their locks off into a
 71  * separate class since they always nest.
 72  */
 73 static struct lock_class_key rose_netdev_xmit_lock_key;
 74 static struct lock_class_key rose_netdev_addr_lock_key;
 75 
 76 static void rose_set_lockdep_one(struct net_device *dev,
 77                                  struct netdev_queue *txq,
 78                                  void *_unused)
 79 {
 80         lockdep_set_class(&txq->_xmit_lock, &rose_netdev_xmit_lock_key);
 81 }
 82 
 83 static void rose_set_lockdep_key(struct net_device *dev)
 84 {
 85         lockdep_set_class(&dev->addr_list_lock, &rose_netdev_addr_lock_key);
 86         netdev_for_each_tx_queue(dev, rose_set_lockdep_one, NULL);
 87 }
 88 
 89 /*
 90  *      Convert a ROSE address into text.
 91  */
 92 char *rose2asc(char *buf, const rose_address *addr)
 93 {
 94         if (addr->rose_addr[0] == 0x00 && addr->rose_addr[1] == 0x00 &&
 95             addr->rose_addr[2] == 0x00 && addr->rose_addr[3] == 0x00 &&
 96             addr->rose_addr[4] == 0x00) {
 97                 strcpy(buf, "*");
 98         } else {
 99                 sprintf(buf, "%02X%02X%02X%02X%02X", addr->rose_addr[0] & 0xFF,
100                                                 addr->rose_addr[1] & 0xFF,
101                                                 addr->rose_addr[2] & 0xFF,
102                                                 addr->rose_addr[3] & 0xFF,
103                                                 addr->rose_addr[4] & 0xFF);
104         }
105 
106         return buf;
107 }
108 
109 /*
110  *      Compare two ROSE addresses, 0 == equal.
111  */
112 int rosecmp(const rose_address *addr1, const rose_address *addr2)
113 {
114         int i;
115 
116         for (i = 0; i < 5; i++)
117                 if (addr1->rose_addr[i] != addr2->rose_addr[i])
118                         return 1;
119 
120         return 0;
121 }
122 
123 /*
124  *      Compare two ROSE addresses for only mask digits, 0 == equal.
125  */
126 int rosecmpm(const rose_address *addr1, const rose_address *addr2,
127              unsigned short mask)
128 {
129         unsigned int i, j;
130 
131         if (mask > 10)
132                 return 1;
133 
134         for (i = 0; i < mask; i++) {
135                 j = i / 2;
136 
137                 if ((i % 2) != 0) {
138                         if ((addr1->rose_addr[j] & 0x0F) != (addr2->rose_addr[j] & 0x0F))
139                                 return 1;
140                 } else {
141                         if ((addr1->rose_addr[j] & 0xF0) != (addr2->rose_addr[j] & 0xF0))
142                                 return 1;
143                 }
144         }
145 
146         return 0;
147 }
148 
149 /*
150  *      Socket removal during an interrupt is now safe.
151  */
152 static void rose_remove_socket(struct sock *sk)
153 {
154         spin_lock_bh(&rose_list_lock);
155         sk_del_node_init(sk);
156         spin_unlock_bh(&rose_list_lock);
157 }
158 
159 /*
160  *      Kill all bound sockets on a broken link layer connection to a
161  *      particular neighbour.
162  */
163 void rose_kill_by_neigh(struct rose_neigh *neigh)
164 {
165         struct sock *s;
166 
167         spin_lock_bh(&rose_list_lock);
168         sk_for_each(s, &rose_list) {
169                 struct rose_sock *rose = rose_sk(s);
170 
171                 if (rose->neighbour == neigh) {
172                         rose_disconnect(s, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
173                         rose->neighbour->use--;
174                         rose->neighbour = NULL;
175                 }
176         }
177         spin_unlock_bh(&rose_list_lock);
178 }
179 
180 /*
181  *      Kill all bound sockets on a dropped device.
182  */
183 static void rose_kill_by_device(struct net_device *dev)
184 {
185         struct sock *sk, *array[16];
186         struct rose_sock *rose;
187         bool rescan;
188         int i, cnt;
189 
190 start:
191         rescan = false;
192         cnt = 0;
193         spin_lock_bh(&rose_list_lock);
194         sk_for_each(sk, &rose_list) {
195                 rose = rose_sk(sk);
196                 if (rose->device == dev) {
197                         if (cnt == ARRAY_SIZE(array)) {
198                                 rescan = true;
199                                 break;
200                         }
201                         sock_hold(sk);
202                         array[cnt++] = sk;
203                 }
204         }
205         spin_unlock_bh(&rose_list_lock);
206 
207         for (i = 0; i < cnt; i++) {
208                 sk = array[cnt];
209                 rose = rose_sk(sk);
210                 lock_sock(sk);
211                 spin_lock_bh(&rose_list_lock);
212                 if (rose->device == dev) {
213                         rose_disconnect(sk, ENETUNREACH, ROSE_OUT_OF_ORDER, 0);
214                         if (rose->neighbour)
215                                 rose->neighbour->use--;
216                         netdev_put(rose->device, &rose->dev_tracker);
217                         rose->device = NULL;
218                 }
219                 spin_unlock_bh(&rose_list_lock);
220                 release_sock(sk);
221                 sock_put(sk);
222                 cond_resched();
223         }
224         if (rescan)
225                 goto start;
226 }
227 
228 /*
229  *      Handle device status changes.
230  */
231 static int rose_device_event(struct notifier_block *this,
232                              unsigned long event, void *ptr)
233 {
234         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
235 
236         if (!net_eq(dev_net(dev), &init_net))
237                 return NOTIFY_DONE;
238 
239         if (event != NETDEV_DOWN)
240                 return NOTIFY_DONE;
241 
242         switch (dev->type) {
243         case ARPHRD_ROSE:
244                 rose_kill_by_device(dev);
245                 break;
246         case ARPHRD_AX25:
247                 rose_link_device_down(dev);
248                 rose_rt_device_down(dev);
249                 break;
250         }
251 
252         return NOTIFY_DONE;
253 }
254 
255 /*
256  *      Add a socket to the bound sockets list.
257  */
258 static void rose_insert_socket(struct sock *sk)
259 {
260 
261         spin_lock_bh(&rose_list_lock);
262         sk_add_node(sk, &rose_list);
263         spin_unlock_bh(&rose_list_lock);
264 }
265 
266 /*
267  *      Find a socket that wants to accept the Call Request we just
268  *      received.
269  */
270 static struct sock *rose_find_listener(rose_address *addr, ax25_address *call)
271 {
272         struct sock *s;
273 
274         spin_lock_bh(&rose_list_lock);
275         sk_for_each(s, &rose_list) {
276                 struct rose_sock *rose = rose_sk(s);
277 
278                 if (!rosecmp(&rose->source_addr, addr) &&
279                     !ax25cmp(&rose->source_call, call) &&
280                     !rose->source_ndigis && s->sk_state == TCP_LISTEN)
281                         goto found;
282         }
283 
284         sk_for_each(s, &rose_list) {
285                 struct rose_sock *rose = rose_sk(s);
286 
287                 if (!rosecmp(&rose->source_addr, addr) &&
288                     !ax25cmp(&rose->source_call, &null_ax25_address) &&
289                     s->sk_state == TCP_LISTEN)
290                         goto found;
291         }
292         s = NULL;
293 found:
294         spin_unlock_bh(&rose_list_lock);
295         return s;
296 }
297 
298 /*
299  *      Find a connected ROSE socket given my LCI and device.
300  */
301 struct sock *rose_find_socket(unsigned int lci, struct rose_neigh *neigh)
302 {
303         struct sock *s;
304 
305         spin_lock_bh(&rose_list_lock);
306         sk_for_each(s, &rose_list) {
307                 struct rose_sock *rose = rose_sk(s);
308 
309                 if (rose->lci == lci && rose->neighbour == neigh)
310                         goto found;
311         }
312         s = NULL;
313 found:
314         spin_unlock_bh(&rose_list_lock);
315         return s;
316 }
317 
318 /*
319  *      Find a unique LCI for a given device.
320  */
321 unsigned int rose_new_lci(struct rose_neigh *neigh)
322 {
323         int lci;
324 
325         if (neigh->dce_mode) {
326                 for (lci = 1; lci <= sysctl_rose_maximum_vcs; lci++)
327                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
328                                 return lci;
329         } else {
330                 for (lci = sysctl_rose_maximum_vcs; lci > 0; lci--)
331                         if (rose_find_socket(lci, neigh) == NULL && rose_route_free_lci(lci, neigh) == NULL)
332                                 return lci;
333         }
334 
335         return 0;
336 }
337 
338 /*
339  *      Deferred destroy.
340  */
341 void rose_destroy_socket(struct sock *);
342 
343 /*
344  *      Handler for deferred kills.
345  */
346 static void rose_destroy_timer(struct timer_list *t)
347 {
348         struct sock *sk = from_timer(sk, t, sk_timer);
349 
350         rose_destroy_socket(sk);
351 }
352 
353 /*
354  *      This is called from user mode and the timers. Thus it protects itself
355  *      against interrupt users but doesn't worry about being called during
356  *      work.  Once it is removed from the queue no interrupt or bottom half
357  *      will touch it and we are (fairly 8-) ) safe.
358  */
359 void rose_destroy_socket(struct sock *sk)
360 {
361         struct sk_buff *skb;
362 
363         rose_remove_socket(sk);
364         rose_stop_heartbeat(sk);
365         rose_stop_idletimer(sk);
366         rose_stop_timer(sk);
367 
368         rose_clear_queues(sk);          /* Flush the queues */
369 
370         while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
371                 if (skb->sk != sk) {    /* A pending connection */
372                         /* Queue the unaccepted socket for death */
373                         sock_set_flag(skb->sk, SOCK_DEAD);
374                         rose_start_heartbeat(skb->sk);
375                         rose_sk(skb->sk)->state = ROSE_STATE_0;
376                 }
377 
378                 kfree_skb(skb);
379         }
380 
381         if (sk_has_allocations(sk)) {
382                 /* Defer: outstanding buffers */
383                 timer_setup(&sk->sk_timer, rose_destroy_timer, 0);
384                 sk->sk_timer.expires  = jiffies + 10 * HZ;
385                 add_timer(&sk->sk_timer);
386         } else
387                 sock_put(sk);
388 }
389 
390 /*
391  *      Handling for system calls applied via the various interfaces to a
392  *      ROSE socket object.
393  */
394 
395 static int rose_setsockopt(struct socket *sock, int level, int optname,
396                 sockptr_t optval, unsigned int optlen)
397 {
398         struct sock *sk = sock->sk;
399         struct rose_sock *rose = rose_sk(sk);
400         int opt;
401 
402         if (level != SOL_ROSE)
403                 return -ENOPROTOOPT;
404 
405         if (optlen < sizeof(int))
406                 return -EINVAL;
407 
408         if (copy_from_sockptr(&opt, optval, sizeof(int)))
409                 return -EFAULT;
410 
411         switch (optname) {
412         case ROSE_DEFER:
413                 rose->defer = opt ? 1 : 0;
414                 return 0;
415 
416         case ROSE_T1:
417                 if (opt < 1)
418                         return -EINVAL;
419                 rose->t1 = opt * HZ;
420                 return 0;
421 
422         case ROSE_T2:
423                 if (opt < 1)
424                         return -EINVAL;
425                 rose->t2 = opt * HZ;
426                 return 0;
427 
428         case ROSE_T3:
429                 if (opt < 1)
430                         return -EINVAL;
431                 rose->t3 = opt * HZ;
432                 return 0;
433 
434         case ROSE_HOLDBACK:
435                 if (opt < 1)
436                         return -EINVAL;
437                 rose->hb = opt * HZ;
438                 return 0;
439 
440         case ROSE_IDLE:
441                 if (opt < 0)
442                         return -EINVAL;
443                 rose->idle = opt * 60 * HZ;
444                 return 0;
445 
446         case ROSE_QBITINCL:
447                 rose->qbitincl = opt ? 1 : 0;
448                 return 0;
449 
450         default:
451                 return -ENOPROTOOPT;
452         }
453 }
454 
455 static int rose_getsockopt(struct socket *sock, int level, int optname,
456         char __user *optval, int __user *optlen)
457 {
458         struct sock *sk = sock->sk;
459         struct rose_sock *rose = rose_sk(sk);
460         int val = 0;
461         int len;
462 
463         if (level != SOL_ROSE)
464                 return -ENOPROTOOPT;
465 
466         if (get_user(len, optlen))
467                 return -EFAULT;
468 
469         if (len < 0)
470                 return -EINVAL;
471 
472         switch (optname) {
473         case ROSE_DEFER:
474                 val = rose->defer;
475                 break;
476 
477         case ROSE_T1:
478                 val = rose->t1 / HZ;
479                 break;
480 
481         case ROSE_T2:
482                 val = rose->t2 / HZ;
483                 break;
484 
485         case ROSE_T3:
486                 val = rose->t3 / HZ;
487                 break;
488 
489         case ROSE_HOLDBACK:
490                 val = rose->hb / HZ;
491                 break;
492 
493         case ROSE_IDLE:
494                 val = rose->idle / (60 * HZ);
495                 break;
496 
497         case ROSE_QBITINCL:
498                 val = rose->qbitincl;
499                 break;
500 
501         default:
502                 return -ENOPROTOOPT;
503         }
504 
505         len = min_t(unsigned int, len, sizeof(int));
506 
507         if (put_user(len, optlen))
508                 return -EFAULT;
509 
510         return copy_to_user(optval, &val, len) ? -EFAULT : 0;
511 }
512 
513 static int rose_listen(struct socket *sock, int backlog)
514 {
515         struct sock *sk = sock->sk;
516 
517         lock_sock(sk);
518         if (sock->state != SS_UNCONNECTED) {
519                 release_sock(sk);
520                 return -EINVAL;
521         }
522 
523         if (sk->sk_state != TCP_LISTEN) {
524                 struct rose_sock *rose = rose_sk(sk);
525 
526                 rose->dest_ndigis = 0;
527                 memset(&rose->dest_addr, 0, ROSE_ADDR_LEN);
528                 memset(&rose->dest_call, 0, AX25_ADDR_LEN);
529                 memset(rose->dest_digis, 0, AX25_ADDR_LEN * ROSE_MAX_DIGIS);
530                 sk->sk_max_ack_backlog = backlog;
531                 sk->sk_state           = TCP_LISTEN;
532                 release_sock(sk);
533                 return 0;
534         }
535         release_sock(sk);
536 
537         return -EOPNOTSUPP;
538 }
539 
540 static struct proto rose_proto = {
541         .name     = "ROSE",
542         .owner    = THIS_MODULE,
543         .obj_size = sizeof(struct rose_sock),
544 };
545 
546 static int rose_create(struct net *net, struct socket *sock, int protocol,
547                        int kern)
548 {
549         struct sock *sk;
550         struct rose_sock *rose;
551 
552         if (!net_eq(net, &init_net))
553                 return -EAFNOSUPPORT;
554 
555         if (sock->type != SOCK_SEQPACKET || protocol != 0)
556                 return -ESOCKTNOSUPPORT;
557 
558         sk = sk_alloc(net, PF_ROSE, GFP_ATOMIC, &rose_proto, kern);
559         if (sk == NULL)
560                 return -ENOMEM;
561 
562         rose = rose_sk(sk);
563 
564         sock_init_data(sock, sk);
565 
566         skb_queue_head_init(&rose->ack_queue);
567 #ifdef M_BIT
568         skb_queue_head_init(&rose->frag_queue);
569         rose->fraglen    = 0;
570 #endif
571 
572         sock->ops    = &rose_proto_ops;
573         sk->sk_protocol = protocol;
574 
575         timer_setup(&rose->timer, NULL, 0);
576         timer_setup(&rose->idletimer, NULL, 0);
577 
578         rose->t1   = msecs_to_jiffies(sysctl_rose_call_request_timeout);
579         rose->t2   = msecs_to_jiffies(sysctl_rose_reset_request_timeout);
580         rose->t3   = msecs_to_jiffies(sysctl_rose_clear_request_timeout);
581         rose->hb   = msecs_to_jiffies(sysctl_rose_ack_hold_back_timeout);
582         rose->idle = msecs_to_jiffies(sysctl_rose_no_activity_timeout);
583 
584         rose->state = ROSE_STATE_0;
585 
586         return 0;
587 }
588 
589 static struct sock *rose_make_new(struct sock *osk)
590 {
591         struct sock *sk;
592         struct rose_sock *rose, *orose;
593 
594         if (osk->sk_type != SOCK_SEQPACKET)
595                 return NULL;
596 
597         sk = sk_alloc(sock_net(osk), PF_ROSE, GFP_ATOMIC, &rose_proto, 0);
598         if (sk == NULL)
599                 return NULL;
600 
601         rose = rose_sk(sk);
602 
603         sock_init_data(NULL, sk);
604 
605         skb_queue_head_init(&rose->ack_queue);
606 #ifdef M_BIT
607         skb_queue_head_init(&rose->frag_queue);
608         rose->fraglen  = 0;
609 #endif
610 
611         sk->sk_type     = osk->sk_type;
612         sk->sk_priority = READ_ONCE(osk->sk_priority);
613         sk->sk_protocol = osk->sk_protocol;
614         sk->sk_rcvbuf   = osk->sk_rcvbuf;
615         sk->sk_sndbuf   = osk->sk_sndbuf;
616         sk->sk_state    = TCP_ESTABLISHED;
617         sock_copy_flags(sk, osk);
618 
619         timer_setup(&rose->timer, NULL, 0);
620         timer_setup(&rose->idletimer, NULL, 0);
621 
622         orose           = rose_sk(osk);
623         rose->t1        = orose->t1;
624         rose->t2        = orose->t2;
625         rose->t3        = orose->t3;
626         rose->hb        = orose->hb;
627         rose->idle      = orose->idle;
628         rose->defer     = orose->defer;
629         rose->device    = orose->device;
630         if (rose->device)
631                 netdev_hold(rose->device, &rose->dev_tracker, GFP_ATOMIC);
632         rose->qbitincl  = orose->qbitincl;
633 
634         return sk;
635 }
636 
637 static int rose_release(struct socket *sock)
638 {
639         struct sock *sk = sock->sk;
640         struct rose_sock *rose;
641 
642         if (sk == NULL) return 0;
643 
644         sock_hold(sk);
645         sock_orphan(sk);
646         lock_sock(sk);
647         rose = rose_sk(sk);
648 
649         switch (rose->state) {
650         case ROSE_STATE_0:
651                 release_sock(sk);
652                 rose_disconnect(sk, 0, -1, -1);
653                 lock_sock(sk);
654                 rose_destroy_socket(sk);
655                 break;
656 
657         case ROSE_STATE_2:
658                 rose->neighbour->use--;
659                 release_sock(sk);
660                 rose_disconnect(sk, 0, -1, -1);
661                 lock_sock(sk);
662                 rose_destroy_socket(sk);
663                 break;
664 
665         case ROSE_STATE_1:
666         case ROSE_STATE_3:
667         case ROSE_STATE_4:
668         case ROSE_STATE_5:
669                 rose_clear_queues(sk);
670                 rose_stop_idletimer(sk);
671                 rose_write_internal(sk, ROSE_CLEAR_REQUEST);
672                 rose_start_t3timer(sk);
673                 rose->state  = ROSE_STATE_2;
674                 sk->sk_state    = TCP_CLOSE;
675                 sk->sk_shutdown |= SEND_SHUTDOWN;
676                 sk->sk_state_change(sk);
677                 sock_set_flag(sk, SOCK_DEAD);
678                 sock_set_flag(sk, SOCK_DESTROY);
679                 break;
680 
681         default:
682                 break;
683         }
684 
685         spin_lock_bh(&rose_list_lock);
686         netdev_put(rose->device, &rose->dev_tracker);
687         rose->device = NULL;
688         spin_unlock_bh(&rose_list_lock);
689         sock->sk = NULL;
690         release_sock(sk);
691         sock_put(sk);
692 
693         return 0;
694 }
695 
696 static int rose_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
697 {
698         struct sock *sk = sock->sk;
699         struct rose_sock *rose = rose_sk(sk);
700         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
701         struct net_device *dev;
702         ax25_address *source;
703         ax25_uid_assoc *user;
704         int n;
705 
706         if (!sock_flag(sk, SOCK_ZAPPED))
707                 return -EINVAL;
708 
709         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
710                 return -EINVAL;
711 
712         if (addr->srose_family != AF_ROSE)
713                 return -EINVAL;
714 
715         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
716                 return -EINVAL;
717 
718         if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
719                 return -EINVAL;
720 
721         if ((dev = rose_dev_get(&addr->srose_addr)) == NULL)
722                 return -EADDRNOTAVAIL;
723 
724         source = &addr->srose_call;
725 
726         user = ax25_findbyuid(current_euid());
727         if (user) {
728                 rose->source_call = user->call;
729                 ax25_uid_put(user);
730         } else {
731                 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) {
732                         dev_put(dev);
733                         return -EACCES;
734                 }
735                 rose->source_call   = *source;
736         }
737 
738         rose->source_addr   = addr->srose_addr;
739         rose->device        = dev;
740         netdev_tracker_alloc(rose->device, &rose->dev_tracker, GFP_KERNEL);
741         rose->source_ndigis = addr->srose_ndigis;
742 
743         if (addr_len == sizeof(struct full_sockaddr_rose)) {
744                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
745                 for (n = 0 ; n < addr->srose_ndigis ; n++)
746                         rose->source_digis[n] = full_addr->srose_digis[n];
747         } else {
748                 if (rose->source_ndigis == 1) {
749                         rose->source_digis[0] = addr->srose_digi;
750                 }
751         }
752 
753         rose_insert_socket(sk);
754 
755         sock_reset_flag(sk, SOCK_ZAPPED);
756 
757         return 0;
758 }
759 
760 static int rose_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags)
761 {
762         struct sock *sk = sock->sk;
763         struct rose_sock *rose = rose_sk(sk);
764         struct sockaddr_rose *addr = (struct sockaddr_rose *)uaddr;
765         unsigned char cause, diagnostic;
766         ax25_uid_assoc *user;
767         int n, err = 0;
768 
769         if (addr_len != sizeof(struct sockaddr_rose) && addr_len != sizeof(struct full_sockaddr_rose))
770                 return -EINVAL;
771 
772         if (addr->srose_family != AF_ROSE)
773                 return -EINVAL;
774 
775         if (addr_len == sizeof(struct sockaddr_rose) && addr->srose_ndigis > 1)
776                 return -EINVAL;
777 
778         if ((unsigned int) addr->srose_ndigis > ROSE_MAX_DIGIS)
779                 return -EINVAL;
780 
781         /* Source + Destination digis should not exceed ROSE_MAX_DIGIS */
782         if ((rose->source_ndigis + addr->srose_ndigis) > ROSE_MAX_DIGIS)
783                 return -EINVAL;
784 
785         lock_sock(sk);
786 
787         if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
788                 /* Connect completed during a ERESTARTSYS event */
789                 sock->state = SS_CONNECTED;
790                 goto out_release;
791         }
792 
793         if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
794                 sock->state = SS_UNCONNECTED;
795                 err = -ECONNREFUSED;
796                 goto out_release;
797         }
798 
799         if (sk->sk_state == TCP_ESTABLISHED) {
800                 /* No reconnect on a seqpacket socket */
801                 err = -EISCONN;
802                 goto out_release;
803         }
804 
805         sk->sk_state   = TCP_CLOSE;
806         sock->state = SS_UNCONNECTED;
807 
808         rose->neighbour = rose_get_neigh(&addr->srose_addr, &cause,
809                                          &diagnostic, 0);
810         if (!rose->neighbour) {
811                 err = -ENETUNREACH;
812                 goto out_release;
813         }
814 
815         rose->lci = rose_new_lci(rose->neighbour);
816         if (!rose->lci) {
817                 err = -ENETUNREACH;
818                 goto out_release;
819         }
820 
821         if (sock_flag(sk, SOCK_ZAPPED)) {       /* Must bind first - autobinding in this may or may not work */
822                 struct net_device *dev;
823 
824                 sock_reset_flag(sk, SOCK_ZAPPED);
825 
826                 dev = rose_dev_first();
827                 if (!dev) {
828                         err = -ENETUNREACH;
829                         goto out_release;
830                 }
831 
832                 user = ax25_findbyuid(current_euid());
833                 if (!user) {
834                         err = -EINVAL;
835                         dev_put(dev);
836                         goto out_release;
837                 }
838 
839                 memcpy(&rose->source_addr, dev->dev_addr, ROSE_ADDR_LEN);
840                 rose->source_call = user->call;
841                 rose->device      = dev;
842                 netdev_tracker_alloc(rose->device, &rose->dev_tracker,
843                                      GFP_KERNEL);
844                 ax25_uid_put(user);
845 
846                 rose_insert_socket(sk);         /* Finish the bind */
847         }
848         rose->dest_addr   = addr->srose_addr;
849         rose->dest_call   = addr->srose_call;
850         rose->rand        = ((long)rose & 0xFFFF) + rose->lci;
851         rose->dest_ndigis = addr->srose_ndigis;
852 
853         if (addr_len == sizeof(struct full_sockaddr_rose)) {
854                 struct full_sockaddr_rose *full_addr = (struct full_sockaddr_rose *)uaddr;
855                 for (n = 0 ; n < addr->srose_ndigis ; n++)
856                         rose->dest_digis[n] = full_addr->srose_digis[n];
857         } else {
858                 if (rose->dest_ndigis == 1) {
859                         rose->dest_digis[0] = addr->srose_digi;
860                 }
861         }
862 
863         /* Move to connecting socket, start sending Connect Requests */
864         sock->state   = SS_CONNECTING;
865         sk->sk_state     = TCP_SYN_SENT;
866 
867         rose->state = ROSE_STATE_1;
868 
869         rose->neighbour->use++;
870 
871         rose_write_internal(sk, ROSE_CALL_REQUEST);
872         rose_start_heartbeat(sk);
873         rose_start_t1timer(sk);
874 
875         /* Now the loop */
876         if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
877                 err = -EINPROGRESS;
878                 goto out_release;
879         }
880 
881         /*
882          * A Connect Ack with Choke or timeout or failed routing will go to
883          * closed.
884          */
885         if (sk->sk_state == TCP_SYN_SENT) {
886                 DEFINE_WAIT(wait);
887 
888                 for (;;) {
889                         prepare_to_wait(sk_sleep(sk), &wait,
890                                         TASK_INTERRUPTIBLE);
891                         if (sk->sk_state != TCP_SYN_SENT)
892                                 break;
893                         if (!signal_pending(current)) {
894                                 release_sock(sk);
895                                 schedule();
896                                 lock_sock(sk);
897                                 continue;
898                         }
899                         err = -ERESTARTSYS;
900                         break;
901                 }
902                 finish_wait(sk_sleep(sk), &wait);
903 
904                 if (err)
905                         goto out_release;
906         }
907 
908         if (sk->sk_state != TCP_ESTABLISHED) {
909                 sock->state = SS_UNCONNECTED;
910                 err = sock_error(sk);   /* Always set at this point */
911                 goto out_release;
912         }
913 
914         sock->state = SS_CONNECTED;
915 
916 out_release:
917         release_sock(sk);
918 
919         return err;
920 }
921 
922 static int rose_accept(struct socket *sock, struct socket *newsock,
923                        struct proto_accept_arg *arg)
924 {
925         struct sk_buff *skb;
926         struct sock *newsk;
927         DEFINE_WAIT(wait);
928         struct sock *sk;
929         int err = 0;
930 
931         if ((sk = sock->sk) == NULL)
932                 return -EINVAL;
933 
934         lock_sock(sk);
935         if (sk->sk_type != SOCK_SEQPACKET) {
936                 err = -EOPNOTSUPP;
937                 goto out_release;
938         }
939 
940         if (sk->sk_state != TCP_LISTEN) {
941                 err = -EINVAL;
942                 goto out_release;
943         }
944 
945         /*
946          *      The write queue this time is holding sockets ready to use
947          *      hooked into the SABM we saved
948          */
949         for (;;) {
950                 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
951 
952                 skb = skb_dequeue(&sk->sk_receive_queue);
953                 if (skb)
954                         break;
955 
956                 if (arg->flags & O_NONBLOCK) {
957                         err = -EWOULDBLOCK;
958                         break;
959                 }
960                 if (!signal_pending(current)) {
961                         release_sock(sk);
962                         schedule();
963                         lock_sock(sk);
964                         continue;
965                 }
966                 err = -ERESTARTSYS;
967                 break;
968         }
969         finish_wait(sk_sleep(sk), &wait);
970         if (err)
971                 goto out_release;
972 
973         newsk = skb->sk;
974         sock_graft(newsk, newsock);
975 
976         /* Now attach up the new socket */
977         skb->sk = NULL;
978         kfree_skb(skb);
979         sk_acceptq_removed(sk);
980 
981 out_release:
982         release_sock(sk);
983 
984         return err;
985 }
986 
987 static int rose_getname(struct socket *sock, struct sockaddr *uaddr,
988         int peer)
989 {
990         struct full_sockaddr_rose *srose = (struct full_sockaddr_rose *)uaddr;
991         struct sock *sk = sock->sk;
992         struct rose_sock *rose = rose_sk(sk);
993         int n;
994 
995         memset(srose, 0, sizeof(*srose));
996         if (peer != 0) {
997                 if (sk->sk_state != TCP_ESTABLISHED)
998                         return -ENOTCONN;
999                 srose->srose_family = AF_ROSE;
1000                 srose->srose_addr   = rose->dest_addr;
1001                 srose->srose_call   = rose->dest_call;
1002                 srose->srose_ndigis = rose->dest_ndigis;
1003                 for (n = 0; n < rose->dest_ndigis; n++)
1004                         srose->srose_digis[n] = rose->dest_digis[n];
1005         } else {
1006                 srose->srose_family = AF_ROSE;
1007                 srose->srose_addr   = rose->source_addr;
1008                 srose->srose_call   = rose->source_call;
1009                 srose->srose_ndigis = rose->source_ndigis;
1010                 for (n = 0; n < rose->source_ndigis; n++)
1011                         srose->srose_digis[n] = rose->source_digis[n];
1012         }
1013 
1014         return sizeof(struct full_sockaddr_rose);
1015 }
1016 
1017 int rose_rx_call_request(struct sk_buff *skb, struct net_device *dev, struct rose_neigh *neigh, unsigned int lci)
1018 {
1019         struct sock *sk;
1020         struct sock *make;
1021         struct rose_sock *make_rose;
1022         struct rose_facilities_struct facilities;
1023         int n;
1024 
1025         skb->sk = NULL;         /* Initially we don't know who it's for */
1026 
1027         /*
1028          *      skb->data points to the rose frame start
1029          */
1030         memset(&facilities, 0x00, sizeof(struct rose_facilities_struct));
1031 
1032         if (!rose_parse_facilities(skb->data + ROSE_CALL_REQ_FACILITIES_OFF,
1033                                    skb->len - ROSE_CALL_REQ_FACILITIES_OFF,
1034                                    &facilities)) {
1035                 rose_transmit_clear_request(neigh, lci, ROSE_INVALID_FACILITY, 76);
1036                 return 0;
1037         }
1038 
1039         sk = rose_find_listener(&facilities.source_addr, &facilities.source_call);
1040 
1041         /*
1042          * We can't accept the Call Request.
1043          */
1044         if (sk == NULL || sk_acceptq_is_full(sk) ||
1045             (make = rose_make_new(sk)) == NULL) {
1046                 rose_transmit_clear_request(neigh, lci, ROSE_NETWORK_CONGESTION, 120);
1047                 return 0;
1048         }
1049 
1050         skb->sk     = make;
1051         make->sk_state = TCP_ESTABLISHED;
1052         make_rose = rose_sk(make);
1053 
1054         make_rose->lci           = lci;
1055         make_rose->dest_addr     = facilities.dest_addr;
1056         make_rose->dest_call     = facilities.dest_call;
1057         make_rose->dest_ndigis   = facilities.dest_ndigis;
1058         for (n = 0 ; n < facilities.dest_ndigis ; n++)
1059                 make_rose->dest_digis[n] = facilities.dest_digis[n];
1060         make_rose->source_addr   = facilities.source_addr;
1061         make_rose->source_call   = facilities.source_call;
1062         make_rose->source_ndigis = facilities.source_ndigis;
1063         for (n = 0 ; n < facilities.source_ndigis ; n++)
1064                 make_rose->source_digis[n] = facilities.source_digis[n];
1065         make_rose->neighbour     = neigh;
1066         make_rose->device        = dev;
1067         /* Caller got a reference for us. */
1068         netdev_tracker_alloc(make_rose->device, &make_rose->dev_tracker,
1069                              GFP_ATOMIC);
1070         make_rose->facilities    = facilities;
1071 
1072         make_rose->neighbour->use++;
1073 
1074         if (rose_sk(sk)->defer) {
1075                 make_rose->state = ROSE_STATE_5;
1076         } else {
1077                 rose_write_internal(make, ROSE_CALL_ACCEPTED);
1078                 make_rose->state = ROSE_STATE_3;
1079                 rose_start_idletimer(make);
1080         }
1081 
1082         make_rose->condition = 0x00;
1083         make_rose->vs        = 0;
1084         make_rose->va        = 0;
1085         make_rose->vr        = 0;
1086         make_rose->vl        = 0;
1087         sk_acceptq_added(sk);
1088 
1089         rose_insert_socket(make);
1090 
1091         skb_queue_head(&sk->sk_receive_queue, skb);
1092 
1093         rose_start_heartbeat(make);
1094 
1095         if (!sock_flag(sk, SOCK_DEAD))
1096                 sk->sk_data_ready(sk);
1097 
1098         return 1;
1099 }
1100 
1101 static int rose_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1102 {
1103         struct sock *sk = sock->sk;
1104         struct rose_sock *rose = rose_sk(sk);
1105         DECLARE_SOCKADDR(struct sockaddr_rose *, usrose, msg->msg_name);
1106         int err;
1107         struct full_sockaddr_rose srose;
1108         struct sk_buff *skb;
1109         unsigned char *asmptr;
1110         int n, size, qbit = 0;
1111 
1112         if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1113                 return -EINVAL;
1114 
1115         if (sock_flag(sk, SOCK_ZAPPED))
1116                 return -EADDRNOTAVAIL;
1117 
1118         if (sk->sk_shutdown & SEND_SHUTDOWN) {
1119                 send_sig(SIGPIPE, current, 0);
1120                 return -EPIPE;
1121         }
1122 
1123         if (rose->neighbour == NULL || rose->device == NULL)
1124                 return -ENETUNREACH;
1125 
1126         if (usrose != NULL) {
1127                 if (msg->msg_namelen != sizeof(struct sockaddr_rose) && msg->msg_namelen != sizeof(struct full_sockaddr_rose))
1128                         return -EINVAL;
1129                 memset(&srose, 0, sizeof(struct full_sockaddr_rose));
1130                 memcpy(&srose, usrose, msg->msg_namelen);
1131                 if (rosecmp(&rose->dest_addr, &srose.srose_addr) != 0 ||
1132                     ax25cmp(&rose->dest_call, &srose.srose_call) != 0)
1133                         return -EISCONN;
1134                 if (srose.srose_ndigis != rose->dest_ndigis)
1135                         return -EISCONN;
1136                 if (srose.srose_ndigis == rose->dest_ndigis) {
1137                         for (n = 0 ; n < srose.srose_ndigis ; n++)
1138                                 if (ax25cmp(&rose->dest_digis[n],
1139                                             &srose.srose_digis[n]))
1140                                         return -EISCONN;
1141                 }
1142                 if (srose.srose_family != AF_ROSE)
1143                         return -EINVAL;
1144         } else {
1145                 if (sk->sk_state != TCP_ESTABLISHED)
1146                         return -ENOTCONN;
1147 
1148                 srose.srose_family = AF_ROSE;
1149                 srose.srose_addr   = rose->dest_addr;
1150                 srose.srose_call   = rose->dest_call;
1151                 srose.srose_ndigis = rose->dest_ndigis;
1152                 for (n = 0 ; n < rose->dest_ndigis ; n++)
1153                         srose.srose_digis[n] = rose->dest_digis[n];
1154         }
1155 
1156         /* Build a packet */
1157         /* Sanity check the packet size */
1158         if (len > 65535)
1159                 return -EMSGSIZE;
1160 
1161         size = len + AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN;
1162 
1163         if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1164                 return err;
1165 
1166         skb_reserve(skb, AX25_BPQ_HEADER_LEN + AX25_MAX_HEADER_LEN + ROSE_MIN_LEN);
1167 
1168         /*
1169          *      Put the data on the end
1170          */
1171 
1172         skb_reset_transport_header(skb);
1173         skb_put(skb, len);
1174 
1175         err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1176         if (err) {
1177                 kfree_skb(skb);
1178                 return err;
1179         }
1180 
1181         /*
1182          *      If the Q BIT Include socket option is in force, the first
1183          *      byte of the user data is the logical value of the Q Bit.
1184          */
1185         if (rose->qbitincl) {
1186                 qbit = skb->data[0];
1187                 skb_pull(skb, 1);
1188         }
1189 
1190         /*
1191          *      Push down the ROSE header
1192          */
1193         asmptr = skb_push(skb, ROSE_MIN_LEN);
1194 
1195         /* Build a ROSE Network header */
1196         asmptr[0] = ((rose->lci >> 8) & 0x0F) | ROSE_GFI;
1197         asmptr[1] = (rose->lci >> 0) & 0xFF;
1198         asmptr[2] = ROSE_DATA;
1199 
1200         if (qbit)
1201                 asmptr[0] |= ROSE_Q_BIT;
1202 
1203         if (sk->sk_state != TCP_ESTABLISHED) {
1204                 kfree_skb(skb);
1205                 return -ENOTCONN;
1206         }
1207 
1208 #ifdef M_BIT
1209 #define ROSE_PACLEN (256-ROSE_MIN_LEN)
1210         if (skb->len - ROSE_MIN_LEN > ROSE_PACLEN) {
1211                 unsigned char header[ROSE_MIN_LEN];
1212                 struct sk_buff *skbn;
1213                 int frontlen;
1214                 int lg;
1215 
1216                 /* Save a copy of the Header */
1217                 skb_copy_from_linear_data(skb, header, ROSE_MIN_LEN);
1218                 skb_pull(skb, ROSE_MIN_LEN);
1219 
1220                 frontlen = skb_headroom(skb);
1221 
1222                 while (skb->len > 0) {
1223                         if ((skbn = sock_alloc_send_skb(sk, frontlen + ROSE_PACLEN, 0, &err)) == NULL) {
1224                                 kfree_skb(skb);
1225                                 return err;
1226                         }
1227 
1228                         skbn->sk   = sk;
1229                         skbn->free = 1;
1230                         skbn->arp  = 1;
1231 
1232                         skb_reserve(skbn, frontlen);
1233 
1234                         lg = (ROSE_PACLEN > skb->len) ? skb->len : ROSE_PACLEN;
1235 
1236                         /* Copy the user data */
1237                         skb_copy_from_linear_data(skb, skb_put(skbn, lg), lg);
1238                         skb_pull(skb, lg);
1239 
1240                         /* Duplicate the Header */
1241                         skb_push(skbn, ROSE_MIN_LEN);
1242                         skb_copy_to_linear_data(skbn, header, ROSE_MIN_LEN);
1243 
1244                         if (skb->len > 0)
1245                                 skbn->data[2] |= M_BIT;
1246 
1247                         skb_queue_tail(&sk->sk_write_queue, skbn); /* Throw it on the queue */
1248                 }
1249 
1250                 skb->free = 1;
1251                 kfree_skb(skb);
1252         } else {
1253                 skb_queue_tail(&sk->sk_write_queue, skb);               /* Throw it on the queue */
1254         }
1255 #else
1256         skb_queue_tail(&sk->sk_write_queue, skb);       /* Shove it onto the queue */
1257 #endif
1258 
1259         rose_kick(sk);
1260 
1261         return len;
1262 }
1263 
1264 
1265 static int rose_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1266                         int flags)
1267 {
1268         struct sock *sk = sock->sk;
1269         struct rose_sock *rose = rose_sk(sk);
1270         size_t copied;
1271         unsigned char *asmptr;
1272         struct sk_buff *skb;
1273         int n, er, qbit;
1274 
1275         /*
1276          * This works for seqpacket too. The receiver has ordered the queue for
1277          * us! We do one quick check first though
1278          */
1279         if (sk->sk_state != TCP_ESTABLISHED)
1280                 return -ENOTCONN;
1281 
1282         /* Now we can treat all alike */
1283         skb = skb_recv_datagram(sk, flags, &er);
1284         if (!skb)
1285                 return er;
1286 
1287         qbit = (skb->data[0] & ROSE_Q_BIT) == ROSE_Q_BIT;
1288 
1289         skb_pull(skb, ROSE_MIN_LEN);
1290 
1291         if (rose->qbitincl) {
1292                 asmptr  = skb_push(skb, 1);
1293                 *asmptr = qbit;
1294         }
1295 
1296         skb_reset_transport_header(skb);
1297         copied     = skb->len;
1298 
1299         if (copied > size) {
1300                 copied = size;
1301                 msg->msg_flags |= MSG_TRUNC;
1302         }
1303 
1304         skb_copy_datagram_msg(skb, 0, msg, copied);
1305 
1306         if (msg->msg_name) {
1307                 struct sockaddr_rose *srose;
1308                 DECLARE_SOCKADDR(struct full_sockaddr_rose *, full_srose,
1309                                  msg->msg_name);
1310 
1311                 memset(msg->msg_name, 0, sizeof(struct full_sockaddr_rose));
1312                 srose = msg->msg_name;
1313                 srose->srose_family = AF_ROSE;
1314                 srose->srose_addr   = rose->dest_addr;
1315                 srose->srose_call   = rose->dest_call;
1316                 srose->srose_ndigis = rose->dest_ndigis;
1317                 for (n = 0 ; n < rose->dest_ndigis ; n++)
1318                         full_srose->srose_digis[n] = rose->dest_digis[n];
1319                 msg->msg_namelen = sizeof(struct full_sockaddr_rose);
1320         }
1321 
1322         skb_free_datagram(sk, skb);
1323 
1324         return copied;
1325 }
1326 
1327 
1328 static int rose_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1329 {
1330         struct sock *sk = sock->sk;
1331         struct rose_sock *rose = rose_sk(sk);
1332         void __user *argp = (void __user *)arg;
1333 
1334         switch (cmd) {
1335         case TIOCOUTQ: {
1336                 long amount;
1337 
1338                 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1339                 if (amount < 0)
1340                         amount = 0;
1341                 return put_user(amount, (unsigned int __user *) argp);
1342         }
1343 
1344         case TIOCINQ: {
1345                 struct sk_buff *skb;
1346                 long amount = 0L;
1347 
1348                 spin_lock_irq(&sk->sk_receive_queue.lock);
1349                 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1350                         amount = skb->len;
1351                 spin_unlock_irq(&sk->sk_receive_queue.lock);
1352                 return put_user(amount, (unsigned int __user *) argp);
1353         }
1354 
1355         case SIOCGIFADDR:
1356         case SIOCSIFADDR:
1357         case SIOCGIFDSTADDR:
1358         case SIOCSIFDSTADDR:
1359         case SIOCGIFBRDADDR:
1360         case SIOCSIFBRDADDR:
1361         case SIOCGIFNETMASK:
1362         case SIOCSIFNETMASK:
1363         case SIOCGIFMETRIC:
1364         case SIOCSIFMETRIC:
1365                 return -EINVAL;
1366 
1367         case SIOCADDRT:
1368         case SIOCDELRT:
1369         case SIOCRSCLRRT:
1370                 if (!capable(CAP_NET_ADMIN))
1371                         return -EPERM;
1372                 return rose_rt_ioctl(cmd, argp);
1373 
1374         case SIOCRSGCAUSE: {
1375                 struct rose_cause_struct rose_cause;
1376                 rose_cause.cause      = rose->cause;
1377                 rose_cause.diagnostic = rose->diagnostic;
1378                 return copy_to_user(argp, &rose_cause, sizeof(struct rose_cause_struct)) ? -EFAULT : 0;
1379         }
1380 
1381         case SIOCRSSCAUSE: {
1382                 struct rose_cause_struct rose_cause;
1383                 if (copy_from_user(&rose_cause, argp, sizeof(struct rose_cause_struct)))
1384                         return -EFAULT;
1385                 rose->cause      = rose_cause.cause;
1386                 rose->diagnostic = rose_cause.diagnostic;
1387                 return 0;
1388         }
1389 
1390         case SIOCRSSL2CALL:
1391                 if (!capable(CAP_NET_ADMIN)) return -EPERM;
1392                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1393                         ax25_listen_release(&rose_callsign, NULL);
1394                 if (copy_from_user(&rose_callsign, argp, sizeof(ax25_address)))
1395                         return -EFAULT;
1396                 if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1397                         return ax25_listen_register(&rose_callsign, NULL);
1398 
1399                 return 0;
1400 
1401         case SIOCRSGL2CALL:
1402                 return copy_to_user(argp, &rose_callsign, sizeof(ax25_address)) ? -EFAULT : 0;
1403 
1404         case SIOCRSACCEPT:
1405                 if (rose->state == ROSE_STATE_5) {
1406                         rose_write_internal(sk, ROSE_CALL_ACCEPTED);
1407                         rose_start_idletimer(sk);
1408                         rose->condition = 0x00;
1409                         rose->vs        = 0;
1410                         rose->va        = 0;
1411                         rose->vr        = 0;
1412                         rose->vl        = 0;
1413                         rose->state     = ROSE_STATE_3;
1414                 }
1415                 return 0;
1416 
1417         default:
1418                 return -ENOIOCTLCMD;
1419         }
1420 
1421         return 0;
1422 }
1423 
1424 #ifdef CONFIG_PROC_FS
1425 static void *rose_info_start(struct seq_file *seq, loff_t *pos)
1426         __acquires(rose_list_lock)
1427 {
1428         spin_lock_bh(&rose_list_lock);
1429         return seq_hlist_start_head(&rose_list, *pos);
1430 }
1431 
1432 static void *rose_info_next(struct seq_file *seq, void *v, loff_t *pos)
1433 {
1434         return seq_hlist_next(v, &rose_list, pos);
1435 }
1436 
1437 static void rose_info_stop(struct seq_file *seq, void *v)
1438         __releases(rose_list_lock)
1439 {
1440         spin_unlock_bh(&rose_list_lock);
1441 }
1442 
1443 static int rose_info_show(struct seq_file *seq, void *v)
1444 {
1445         char buf[11], rsbuf[11];
1446 
1447         if (v == SEQ_START_TOKEN)
1448                 seq_puts(seq,
1449                          "dest_addr  dest_call src_addr   src_call  dev   lci neigh st vs vr va   t  t1  t2  t3  hb    idle Snd-Q Rcv-Q inode\n");
1450 
1451         else {
1452                 struct sock *s = sk_entry(v);
1453                 struct rose_sock *rose = rose_sk(s);
1454                 const char *devname, *callsign;
1455                 const struct net_device *dev = rose->device;
1456 
1457                 if (!dev)
1458                         devname = "???";
1459                 else
1460                         devname = dev->name;
1461 
1462                 seq_printf(seq, "%-10s %-9s ",
1463                            rose2asc(rsbuf, &rose->dest_addr),
1464                            ax2asc(buf, &rose->dest_call));
1465 
1466                 if (ax25cmp(&rose->source_call, &null_ax25_address) == 0)
1467                         callsign = "??????-?";
1468                 else
1469                         callsign = ax2asc(buf, &rose->source_call);
1470 
1471                 seq_printf(seq,
1472                            "%-10s %-9s %-5s %3.3X %05d  %d  %d  %d  %d %3lu %3lu %3lu %3lu %3lu %3lu/%03lu %5d %5d %ld\n",
1473                         rose2asc(rsbuf, &rose->source_addr),
1474                         callsign,
1475                         devname,
1476                         rose->lci & 0x0FFF,
1477                         (rose->neighbour) ? rose->neighbour->number : 0,
1478                         rose->state,
1479                         rose->vs,
1480                         rose->vr,
1481                         rose->va,
1482                         ax25_display_timer(&rose->timer) / HZ,
1483                         rose->t1 / HZ,
1484                         rose->t2 / HZ,
1485                         rose->t3 / HZ,
1486                         rose->hb / HZ,
1487                         ax25_display_timer(&rose->idletimer) / (60 * HZ),
1488                         rose->idle / (60 * HZ),
1489                         sk_wmem_alloc_get(s),
1490                         sk_rmem_alloc_get(s),
1491                         s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1492         }
1493 
1494         return 0;
1495 }
1496 
1497 static const struct seq_operations rose_info_seqops = {
1498         .start = rose_info_start,
1499         .next = rose_info_next,
1500         .stop = rose_info_stop,
1501         .show = rose_info_show,
1502 };
1503 #endif  /* CONFIG_PROC_FS */
1504 
1505 static const struct net_proto_family rose_family_ops = {
1506         .family         =       PF_ROSE,
1507         .create         =       rose_create,
1508         .owner          =       THIS_MODULE,
1509 };
1510 
1511 static const struct proto_ops rose_proto_ops = {
1512         .family         =       PF_ROSE,
1513         .owner          =       THIS_MODULE,
1514         .release        =       rose_release,
1515         .bind           =       rose_bind,
1516         .connect        =       rose_connect,
1517         .socketpair     =       sock_no_socketpair,
1518         .accept         =       rose_accept,
1519         .getname        =       rose_getname,
1520         .poll           =       datagram_poll,
1521         .ioctl          =       rose_ioctl,
1522         .gettstamp      =       sock_gettstamp,
1523         .listen         =       rose_listen,
1524         .shutdown       =       sock_no_shutdown,
1525         .setsockopt     =       rose_setsockopt,
1526         .getsockopt     =       rose_getsockopt,
1527         .sendmsg        =       rose_sendmsg,
1528         .recvmsg        =       rose_recvmsg,
1529         .mmap           =       sock_no_mmap,
1530 };
1531 
1532 static struct notifier_block rose_dev_notifier = {
1533         .notifier_call  =       rose_device_event,
1534 };
1535 
1536 static struct net_device **dev_rose;
1537 
1538 static struct ax25_protocol rose_pid = {
1539         .pid    = AX25_P_ROSE,
1540         .func   = rose_route_frame
1541 };
1542 
1543 static struct ax25_linkfail rose_linkfail_notifier = {
1544         .func   = rose_link_failed
1545 };
1546 
1547 static int __init rose_proto_init(void)
1548 {
1549         int i;
1550         int rc;
1551 
1552         if (rose_ndevs > 0x7FFFFFFF/sizeof(struct net_device *)) {
1553                 printk(KERN_ERR "ROSE: rose_proto_init - rose_ndevs parameter too large\n");
1554                 rc = -EINVAL;
1555                 goto out;
1556         }
1557 
1558         rc = proto_register(&rose_proto, 0);
1559         if (rc != 0)
1560                 goto out;
1561 
1562         rose_callsign = null_ax25_address;
1563 
1564         dev_rose = kcalloc(rose_ndevs, sizeof(struct net_device *),
1565                            GFP_KERNEL);
1566         if (dev_rose == NULL) {
1567                 printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate device structure\n");
1568                 rc = -ENOMEM;
1569                 goto out_proto_unregister;
1570         }
1571 
1572         for (i = 0; i < rose_ndevs; i++) {
1573                 struct net_device *dev;
1574                 char name[IFNAMSIZ];
1575 
1576                 sprintf(name, "rose%d", i);
1577                 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, rose_setup);
1578                 if (!dev) {
1579                         printk(KERN_ERR "ROSE: rose_proto_init - unable to allocate memory\n");
1580                         rc = -ENOMEM;
1581                         goto fail;
1582                 }
1583                 rc = register_netdev(dev);
1584                 if (rc) {
1585                         printk(KERN_ERR "ROSE: netdevice registration failed\n");
1586                         free_netdev(dev);
1587                         goto fail;
1588                 }
1589                 rose_set_lockdep_key(dev);
1590                 dev_rose[i] = dev;
1591         }
1592 
1593         sock_register(&rose_family_ops);
1594         register_netdevice_notifier(&rose_dev_notifier);
1595 
1596         ax25_register_pid(&rose_pid);
1597         ax25_linkfail_register(&rose_linkfail_notifier);
1598 
1599 #ifdef CONFIG_SYSCTL
1600         rose_register_sysctl();
1601 #endif
1602         rose_loopback_init();
1603 
1604         rose_add_loopback_neigh();
1605 
1606         proc_create_seq("rose", 0444, init_net.proc_net, &rose_info_seqops);
1607         proc_create_seq("rose_neigh", 0444, init_net.proc_net,
1608                     &rose_neigh_seqops);
1609         proc_create_seq("rose_nodes", 0444, init_net.proc_net,
1610                     &rose_node_seqops);
1611         proc_create_seq("rose_routes", 0444, init_net.proc_net,
1612                     &rose_route_seqops);
1613 out:
1614         return rc;
1615 fail:
1616         while (--i >= 0) {
1617                 unregister_netdev(dev_rose[i]);
1618                 free_netdev(dev_rose[i]);
1619         }
1620         kfree(dev_rose);
1621 out_proto_unregister:
1622         proto_unregister(&rose_proto);
1623         goto out;
1624 }
1625 module_init(rose_proto_init);
1626 
1627 module_param(rose_ndevs, int, 0);
1628 MODULE_PARM_DESC(rose_ndevs, "number of ROSE devices");
1629 
1630 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1631 MODULE_DESCRIPTION("The amateur radio ROSE network layer protocol");
1632 MODULE_LICENSE("GPL");
1633 MODULE_ALIAS_NETPROTO(PF_ROSE);
1634 
1635 static void __exit rose_exit(void)
1636 {
1637         int i;
1638 
1639         remove_proc_entry("rose", init_net.proc_net);
1640         remove_proc_entry("rose_neigh", init_net.proc_net);
1641         remove_proc_entry("rose_nodes", init_net.proc_net);
1642         remove_proc_entry("rose_routes", init_net.proc_net);
1643         rose_loopback_clear();
1644 
1645         rose_rt_free();
1646 
1647         ax25_protocol_release(AX25_P_ROSE);
1648         ax25_linkfail_release(&rose_linkfail_notifier);
1649 
1650         if (ax25cmp(&rose_callsign, &null_ax25_address) != 0)
1651                 ax25_listen_release(&rose_callsign, NULL);
1652 
1653 #ifdef CONFIG_SYSCTL
1654         rose_unregister_sysctl();
1655 #endif
1656         unregister_netdevice_notifier(&rose_dev_notifier);
1657 
1658         sock_unregister(PF_ROSE);
1659 
1660         for (i = 0; i < rose_ndevs; i++) {
1661                 struct net_device *dev = dev_rose[i];
1662 
1663                 if (dev) {
1664                         unregister_netdev(dev);
1665                         free_netdev(dev);
1666                 }
1667         }
1668 
1669         kfree(dev_rose);
1670         proto_unregister(&rose_proto);
1671 }
1672 
1673 module_exit(rose_exit);
1674 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php