1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* - 3 * net/sched/act_ct.c Connection Tracking action 4 * 5 * Authors: Paul Blakey <paulb@mellanox.com> 6 * Yossi Kuperman <yossiku@mellanox.com> 7 * Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/skbuff.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/pkt_cls.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/rhashtable.h> 19 #include <net/netlink.h> 20 #include <net/pkt_sched.h> 21 #include <net/pkt_cls.h> 22 #include <net/act_api.h> 23 #include <net/ip.h> 24 #include <net/ipv6_frag.h> 25 #include <uapi/linux/tc_act/tc_ct.h> 26 #include <net/tc_act/tc_ct.h> 27 #include <net/tc_wrapper.h> 28 29 #include <net/netfilter/nf_flow_table.h> 30 #include <net/netfilter/nf_conntrack.h> 31 #include <net/netfilter/nf_conntrack_core.h> 32 #include <net/netfilter/nf_conntrack_zones.h> 33 #include <net/netfilter/nf_conntrack_helper.h> 34 #include <net/netfilter/nf_conntrack_acct.h> 35 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 36 #include <net/netfilter/nf_conntrack_act_ct.h> 37 #include <net/netfilter/nf_conntrack_seqadj.h> 38 #include <uapi/linux/netfilter/nf_nat.h> 39 40 static struct workqueue_struct *act_ct_wq; 41 static struct rhashtable zones_ht; 42 static DEFINE_MUTEX(zones_mutex); 43 44 struct zones_ht_key { 45 struct net *net; 46 u16 zone; 47 /* Note : pad[] must be the last field. */ 48 u8 pad[]; 49 }; 50 51 struct tcf_ct_flow_table { 52 struct rhash_head node; /* In zones tables */ 53 54 struct rcu_work rwork; 55 struct nf_flowtable nf_ft; 56 refcount_t ref; 57 struct zones_ht_key key; 58 59 bool dying; 60 }; 61 62 static const struct rhashtable_params zones_params = { 63 .head_offset = offsetof(struct tcf_ct_flow_table, node), 64 .key_offset = offsetof(struct tcf_ct_flow_table, key), 65 .key_len = offsetof(struct zones_ht_key, pad), 66 .automatic_shrinking = true, 67 }; 68 69 static struct flow_action_entry * 70 tcf_ct_flow_table_flow_action_get_next(struct flow_action *flow_action) 71 { 72 int i = flow_action->num_entries++; 73 74 return &flow_action->entries[i]; 75 } 76 77 static void tcf_ct_add_mangle_action(struct flow_action *action, 78 enum flow_action_mangle_base htype, 79 u32 offset, 80 u32 mask, 81 u32 val) 82 { 83 struct flow_action_entry *entry; 84 85 entry = tcf_ct_flow_table_flow_action_get_next(action); 86 entry->id = FLOW_ACTION_MANGLE; 87 entry->mangle.htype = htype; 88 entry->mangle.mask = ~mask; 89 entry->mangle.offset = offset; 90 entry->mangle.val = val; 91 } 92 93 /* The following nat helper functions check if the inverted reverse tuple 94 * (target) is different then the current dir tuple - meaning nat for ports 95 * and/or ip is needed, and add the relevant mangle actions. 96 */ 97 static void 98 tcf_ct_flow_table_add_action_nat_ipv4(const struct nf_conntrack_tuple *tuple, 99 struct nf_conntrack_tuple target, 100 struct flow_action *action) 101 { 102 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 103 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 104 offsetof(struct iphdr, saddr), 105 0xFFFFFFFF, 106 be32_to_cpu(target.src.u3.ip)); 107 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 108 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP4, 109 offsetof(struct iphdr, daddr), 110 0xFFFFFFFF, 111 be32_to_cpu(target.dst.u3.ip)); 112 } 113 114 static void 115 tcf_ct_add_ipv6_addr_mangle_action(struct flow_action *action, 116 union nf_inet_addr *addr, 117 u32 offset) 118 { 119 int i; 120 121 for (i = 0; i < sizeof(struct in6_addr) / sizeof(u32); i++) 122 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_IP6, 123 i * sizeof(u32) + offset, 124 0xFFFFFFFF, be32_to_cpu(addr->ip6[i])); 125 } 126 127 static void 128 tcf_ct_flow_table_add_action_nat_ipv6(const struct nf_conntrack_tuple *tuple, 129 struct nf_conntrack_tuple target, 130 struct flow_action *action) 131 { 132 if (memcmp(&target.src.u3, &tuple->src.u3, sizeof(target.src.u3))) 133 tcf_ct_add_ipv6_addr_mangle_action(action, &target.src.u3, 134 offsetof(struct ipv6hdr, 135 saddr)); 136 if (memcmp(&target.dst.u3, &tuple->dst.u3, sizeof(target.dst.u3))) 137 tcf_ct_add_ipv6_addr_mangle_action(action, &target.dst.u3, 138 offsetof(struct ipv6hdr, 139 daddr)); 140 } 141 142 static void 143 tcf_ct_flow_table_add_action_nat_tcp(const struct nf_conntrack_tuple *tuple, 144 struct nf_conntrack_tuple target, 145 struct flow_action *action) 146 { 147 __be16 target_src = target.src.u.tcp.port; 148 __be16 target_dst = target.dst.u.tcp.port; 149 150 if (target_src != tuple->src.u.tcp.port) 151 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 152 offsetof(struct tcphdr, source), 153 0xFFFF, be16_to_cpu(target_src)); 154 if (target_dst != tuple->dst.u.tcp.port) 155 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_TCP, 156 offsetof(struct tcphdr, dest), 157 0xFFFF, be16_to_cpu(target_dst)); 158 } 159 160 static void 161 tcf_ct_flow_table_add_action_nat_udp(const struct nf_conntrack_tuple *tuple, 162 struct nf_conntrack_tuple target, 163 struct flow_action *action) 164 { 165 __be16 target_src = target.src.u.udp.port; 166 __be16 target_dst = target.dst.u.udp.port; 167 168 if (target_src != tuple->src.u.udp.port) 169 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 170 offsetof(struct udphdr, source), 171 0xFFFF, be16_to_cpu(target_src)); 172 if (target_dst != tuple->dst.u.udp.port) 173 tcf_ct_add_mangle_action(action, FLOW_ACT_MANGLE_HDR_TYPE_UDP, 174 offsetof(struct udphdr, dest), 175 0xFFFF, be16_to_cpu(target_dst)); 176 } 177 178 static void tcf_ct_flow_table_add_action_meta(struct nf_conn *ct, 179 enum ip_conntrack_dir dir, 180 enum ip_conntrack_info ctinfo, 181 struct flow_action *action) 182 { 183 struct nf_conn_labels *ct_labels; 184 struct flow_action_entry *entry; 185 u32 *act_ct_labels; 186 187 entry = tcf_ct_flow_table_flow_action_get_next(action); 188 entry->id = FLOW_ACTION_CT_METADATA; 189 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 190 entry->ct_metadata.mark = READ_ONCE(ct->mark); 191 #endif 192 /* aligns with the CT reference on the SKB nf_ct_set */ 193 entry->ct_metadata.cookie = (unsigned long)ct | ctinfo; 194 entry->ct_metadata.orig_dir = dir == IP_CT_DIR_ORIGINAL; 195 196 act_ct_labels = entry->ct_metadata.labels; 197 ct_labels = nf_ct_labels_find(ct); 198 if (ct_labels) 199 memcpy(act_ct_labels, ct_labels->bits, NF_CT_LABELS_MAX_SIZE); 200 else 201 memset(act_ct_labels, 0, NF_CT_LABELS_MAX_SIZE); 202 } 203 204 static int tcf_ct_flow_table_add_action_nat(struct net *net, 205 struct nf_conn *ct, 206 enum ip_conntrack_dir dir, 207 struct flow_action *action) 208 { 209 const struct nf_conntrack_tuple *tuple = &ct->tuplehash[dir].tuple; 210 struct nf_conntrack_tuple target; 211 212 if (!(ct->status & IPS_NAT_MASK)) 213 return 0; 214 215 nf_ct_invert_tuple(&target, &ct->tuplehash[!dir].tuple); 216 217 switch (tuple->src.l3num) { 218 case NFPROTO_IPV4: 219 tcf_ct_flow_table_add_action_nat_ipv4(tuple, target, 220 action); 221 break; 222 case NFPROTO_IPV6: 223 tcf_ct_flow_table_add_action_nat_ipv6(tuple, target, 224 action); 225 break; 226 default: 227 return -EOPNOTSUPP; 228 } 229 230 switch (nf_ct_protonum(ct)) { 231 case IPPROTO_TCP: 232 tcf_ct_flow_table_add_action_nat_tcp(tuple, target, action); 233 break; 234 case IPPROTO_UDP: 235 tcf_ct_flow_table_add_action_nat_udp(tuple, target, action); 236 break; 237 default: 238 return -EOPNOTSUPP; 239 } 240 241 return 0; 242 } 243 244 static int tcf_ct_flow_table_fill_actions(struct net *net, 245 struct flow_offload *flow, 246 enum flow_offload_tuple_dir tdir, 247 struct nf_flow_rule *flow_rule) 248 { 249 struct flow_action *action = &flow_rule->rule->action; 250 int num_entries = action->num_entries; 251 struct nf_conn *ct = flow->ct; 252 enum ip_conntrack_info ctinfo; 253 enum ip_conntrack_dir dir; 254 int i, err; 255 256 switch (tdir) { 257 case FLOW_OFFLOAD_DIR_ORIGINAL: 258 dir = IP_CT_DIR_ORIGINAL; 259 ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? 260 IP_CT_ESTABLISHED : IP_CT_NEW; 261 if (ctinfo == IP_CT_ESTABLISHED) 262 set_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags); 263 break; 264 case FLOW_OFFLOAD_DIR_REPLY: 265 dir = IP_CT_DIR_REPLY; 266 ctinfo = IP_CT_ESTABLISHED_REPLY; 267 break; 268 default: 269 return -EOPNOTSUPP; 270 } 271 272 err = tcf_ct_flow_table_add_action_nat(net, ct, dir, action); 273 if (err) 274 goto err_nat; 275 276 tcf_ct_flow_table_add_action_meta(ct, dir, ctinfo, action); 277 return 0; 278 279 err_nat: 280 /* Clear filled actions */ 281 for (i = num_entries; i < action->num_entries; i++) 282 memset(&action->entries[i], 0, sizeof(action->entries[i])); 283 action->num_entries = num_entries; 284 285 return err; 286 } 287 288 static bool tcf_ct_flow_is_outdated(const struct flow_offload *flow) 289 { 290 return test_bit(IPS_SEEN_REPLY_BIT, &flow->ct->status) && 291 test_bit(IPS_HW_OFFLOAD_BIT, &flow->ct->status) && 292 !test_bit(NF_FLOW_HW_PENDING, &flow->flags) && 293 !test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags); 294 } 295 296 static void tcf_ct_flow_table_get_ref(struct tcf_ct_flow_table *ct_ft); 297 298 static void tcf_ct_nf_get(struct nf_flowtable *ft) 299 { 300 struct tcf_ct_flow_table *ct_ft = 301 container_of(ft, struct tcf_ct_flow_table, nf_ft); 302 303 tcf_ct_flow_table_get_ref(ct_ft); 304 } 305 306 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft); 307 308 static void tcf_ct_nf_put(struct nf_flowtable *ft) 309 { 310 struct tcf_ct_flow_table *ct_ft = 311 container_of(ft, struct tcf_ct_flow_table, nf_ft); 312 313 tcf_ct_flow_table_put(ct_ft); 314 } 315 316 static struct nf_flowtable_type flowtable_ct = { 317 .gc = tcf_ct_flow_is_outdated, 318 .action = tcf_ct_flow_table_fill_actions, 319 .get = tcf_ct_nf_get, 320 .put = tcf_ct_nf_put, 321 .owner = THIS_MODULE, 322 }; 323 324 static int tcf_ct_flow_table_get(struct net *net, struct tcf_ct_params *params) 325 { 326 struct zones_ht_key key = { .net = net, .zone = params->zone }; 327 struct tcf_ct_flow_table *ct_ft; 328 int err = -ENOMEM; 329 330 mutex_lock(&zones_mutex); 331 ct_ft = rhashtable_lookup_fast(&zones_ht, &key, zones_params); 332 if (ct_ft && refcount_inc_not_zero(&ct_ft->ref)) 333 goto out_unlock; 334 335 ct_ft = kzalloc(sizeof(*ct_ft), GFP_KERNEL); 336 if (!ct_ft) 337 goto err_alloc; 338 refcount_set(&ct_ft->ref, 1); 339 340 ct_ft->key = key; 341 err = rhashtable_insert_fast(&zones_ht, &ct_ft->node, zones_params); 342 if (err) 343 goto err_insert; 344 345 ct_ft->nf_ft.type = &flowtable_ct; 346 ct_ft->nf_ft.flags |= NF_FLOWTABLE_HW_OFFLOAD | 347 NF_FLOWTABLE_COUNTER; 348 err = nf_flow_table_init(&ct_ft->nf_ft); 349 if (err) 350 goto err_init; 351 write_pnet(&ct_ft->nf_ft.net, net); 352 353 __module_get(THIS_MODULE); 354 out_unlock: 355 params->ct_ft = ct_ft; 356 params->nf_ft = &ct_ft->nf_ft; 357 mutex_unlock(&zones_mutex); 358 359 return 0; 360 361 err_init: 362 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 363 err_insert: 364 kfree(ct_ft); 365 err_alloc: 366 mutex_unlock(&zones_mutex); 367 return err; 368 } 369 370 static void tcf_ct_flow_table_get_ref(struct tcf_ct_flow_table *ct_ft) 371 { 372 refcount_inc(&ct_ft->ref); 373 } 374 375 static void tcf_ct_flow_table_cleanup_work(struct work_struct *work) 376 { 377 struct tcf_ct_flow_table *ct_ft; 378 struct flow_block *block; 379 380 ct_ft = container_of(to_rcu_work(work), struct tcf_ct_flow_table, 381 rwork); 382 nf_flow_table_free(&ct_ft->nf_ft); 383 384 block = &ct_ft->nf_ft.flow_block; 385 down_write(&ct_ft->nf_ft.flow_block_lock); 386 WARN_ON(!list_empty(&block->cb_list)); 387 up_write(&ct_ft->nf_ft.flow_block_lock); 388 kfree(ct_ft); 389 390 module_put(THIS_MODULE); 391 } 392 393 static void tcf_ct_flow_table_put(struct tcf_ct_flow_table *ct_ft) 394 { 395 if (refcount_dec_and_test(&ct_ft->ref)) { 396 rhashtable_remove_fast(&zones_ht, &ct_ft->node, zones_params); 397 INIT_RCU_WORK(&ct_ft->rwork, tcf_ct_flow_table_cleanup_work); 398 queue_rcu_work(act_ct_wq, &ct_ft->rwork); 399 } 400 } 401 402 static void tcf_ct_flow_tc_ifidx(struct flow_offload *entry, 403 struct nf_conn_act_ct_ext *act_ct_ext, u8 dir) 404 { 405 entry->tuplehash[dir].tuple.xmit_type = FLOW_OFFLOAD_XMIT_TC; 406 entry->tuplehash[dir].tuple.tc.iifidx = act_ct_ext->ifindex[dir]; 407 } 408 409 static void tcf_ct_flow_ct_ext_ifidx_update(struct flow_offload *entry) 410 { 411 struct nf_conn_act_ct_ext *act_ct_ext; 412 413 act_ct_ext = nf_conn_act_ct_ext_find(entry->ct); 414 if (act_ct_ext) { 415 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL); 416 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY); 417 } 418 } 419 420 static void tcf_ct_flow_table_add(struct tcf_ct_flow_table *ct_ft, 421 struct nf_conn *ct, 422 bool tcp, bool bidirectional) 423 { 424 struct nf_conn_act_ct_ext *act_ct_ext; 425 struct flow_offload *entry; 426 int err; 427 428 if (test_and_set_bit(IPS_OFFLOAD_BIT, &ct->status)) 429 return; 430 431 entry = flow_offload_alloc(ct); 432 if (!entry) { 433 WARN_ON_ONCE(1); 434 goto err_alloc; 435 } 436 437 if (tcp) { 438 ct->proto.tcp.seen[0].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 439 ct->proto.tcp.seen[1].flags |= IP_CT_TCP_FLAG_BE_LIBERAL; 440 } 441 if (bidirectional) 442 __set_bit(NF_FLOW_HW_BIDIRECTIONAL, &entry->flags); 443 444 act_ct_ext = nf_conn_act_ct_ext_find(ct); 445 if (act_ct_ext) { 446 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_ORIGINAL); 447 tcf_ct_flow_tc_ifidx(entry, act_ct_ext, FLOW_OFFLOAD_DIR_REPLY); 448 } 449 450 err = flow_offload_add(&ct_ft->nf_ft, entry); 451 if (err) 452 goto err_add; 453 454 return; 455 456 err_add: 457 flow_offload_free(entry); 458 err_alloc: 459 clear_bit(IPS_OFFLOAD_BIT, &ct->status); 460 } 461 462 static void tcf_ct_flow_table_process_conn(struct tcf_ct_flow_table *ct_ft, 463 struct nf_conn *ct, 464 enum ip_conntrack_info ctinfo) 465 { 466 bool tcp = false, bidirectional = true; 467 468 switch (nf_ct_protonum(ct)) { 469 case IPPROTO_TCP: 470 if ((ctinfo != IP_CT_ESTABLISHED && 471 ctinfo != IP_CT_ESTABLISHED_REPLY) || 472 !test_bit(IPS_ASSURED_BIT, &ct->status) || 473 ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) 474 return; 475 476 tcp = true; 477 break; 478 case IPPROTO_UDP: 479 if (!nf_ct_is_confirmed(ct)) 480 return; 481 if (!test_bit(IPS_ASSURED_BIT, &ct->status)) 482 bidirectional = false; 483 break; 484 #ifdef CONFIG_NF_CT_PROTO_GRE 485 case IPPROTO_GRE: { 486 struct nf_conntrack_tuple *tuple; 487 488 if ((ctinfo != IP_CT_ESTABLISHED && 489 ctinfo != IP_CT_ESTABLISHED_REPLY) || 490 !test_bit(IPS_ASSURED_BIT, &ct->status) || 491 ct->status & IPS_NAT_MASK) 492 return; 493 494 tuple = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; 495 /* No support for GRE v1 */ 496 if (tuple->src.u.gre.key || tuple->dst.u.gre.key) 497 return; 498 break; 499 } 500 #endif 501 default: 502 return; 503 } 504 505 if (nf_ct_ext_exist(ct, NF_CT_EXT_HELPER) || 506 ct->status & IPS_SEQ_ADJUST) 507 return; 508 509 tcf_ct_flow_table_add(ct_ft, ct, tcp, bidirectional); 510 } 511 512 static bool 513 tcf_ct_flow_table_fill_tuple_ipv4(struct sk_buff *skb, 514 struct flow_offload_tuple *tuple, 515 struct tcphdr **tcph) 516 { 517 struct flow_ports *ports; 518 unsigned int thoff; 519 struct iphdr *iph; 520 size_t hdrsize; 521 u8 ipproto; 522 523 if (!pskb_network_may_pull(skb, sizeof(*iph))) 524 return false; 525 526 iph = ip_hdr(skb); 527 thoff = iph->ihl * 4; 528 529 if (ip_is_fragment(iph) || 530 unlikely(thoff != sizeof(struct iphdr))) 531 return false; 532 533 ipproto = iph->protocol; 534 switch (ipproto) { 535 case IPPROTO_TCP: 536 hdrsize = sizeof(struct tcphdr); 537 break; 538 case IPPROTO_UDP: 539 hdrsize = sizeof(*ports); 540 break; 541 #ifdef CONFIG_NF_CT_PROTO_GRE 542 case IPPROTO_GRE: 543 hdrsize = sizeof(struct gre_base_hdr); 544 break; 545 #endif 546 default: 547 return false; 548 } 549 550 if (iph->ttl <= 1) 551 return false; 552 553 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 554 return false; 555 556 switch (ipproto) { 557 case IPPROTO_TCP: 558 *tcph = (void *)(skb_network_header(skb) + thoff); 559 fallthrough; 560 case IPPROTO_UDP: 561 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 562 tuple->src_port = ports->source; 563 tuple->dst_port = ports->dest; 564 break; 565 case IPPROTO_GRE: { 566 struct gre_base_hdr *greh; 567 568 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 569 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 570 return false; 571 break; 572 } 573 } 574 575 iph = ip_hdr(skb); 576 577 tuple->src_v4.s_addr = iph->saddr; 578 tuple->dst_v4.s_addr = iph->daddr; 579 tuple->l3proto = AF_INET; 580 tuple->l4proto = ipproto; 581 582 return true; 583 } 584 585 static bool 586 tcf_ct_flow_table_fill_tuple_ipv6(struct sk_buff *skb, 587 struct flow_offload_tuple *tuple, 588 struct tcphdr **tcph) 589 { 590 struct flow_ports *ports; 591 struct ipv6hdr *ip6h; 592 unsigned int thoff; 593 size_t hdrsize; 594 u8 nexthdr; 595 596 if (!pskb_network_may_pull(skb, sizeof(*ip6h))) 597 return false; 598 599 ip6h = ipv6_hdr(skb); 600 thoff = sizeof(*ip6h); 601 602 nexthdr = ip6h->nexthdr; 603 switch (nexthdr) { 604 case IPPROTO_TCP: 605 hdrsize = sizeof(struct tcphdr); 606 break; 607 case IPPROTO_UDP: 608 hdrsize = sizeof(*ports); 609 break; 610 #ifdef CONFIG_NF_CT_PROTO_GRE 611 case IPPROTO_GRE: 612 hdrsize = sizeof(struct gre_base_hdr); 613 break; 614 #endif 615 default: 616 return false; 617 } 618 619 if (ip6h->hop_limit <= 1) 620 return false; 621 622 if (!pskb_network_may_pull(skb, thoff + hdrsize)) 623 return false; 624 625 switch (nexthdr) { 626 case IPPROTO_TCP: 627 *tcph = (void *)(skb_network_header(skb) + thoff); 628 fallthrough; 629 case IPPROTO_UDP: 630 ports = (struct flow_ports *)(skb_network_header(skb) + thoff); 631 tuple->src_port = ports->source; 632 tuple->dst_port = ports->dest; 633 break; 634 case IPPROTO_GRE: { 635 struct gre_base_hdr *greh; 636 637 greh = (struct gre_base_hdr *)(skb_network_header(skb) + thoff); 638 if ((greh->flags & GRE_VERSION) != GRE_VERSION_0) 639 return false; 640 break; 641 } 642 } 643 644 ip6h = ipv6_hdr(skb); 645 646 tuple->src_v6 = ip6h->saddr; 647 tuple->dst_v6 = ip6h->daddr; 648 tuple->l3proto = AF_INET6; 649 tuple->l4proto = nexthdr; 650 651 return true; 652 } 653 654 static bool tcf_ct_flow_table_lookup(struct tcf_ct_params *p, 655 struct sk_buff *skb, 656 u8 family) 657 { 658 struct nf_flowtable *nf_ft = &p->ct_ft->nf_ft; 659 struct flow_offload_tuple_rhash *tuplehash; 660 struct flow_offload_tuple tuple = {}; 661 enum ip_conntrack_info ctinfo; 662 struct tcphdr *tcph = NULL; 663 bool force_refresh = false; 664 struct flow_offload *flow; 665 struct nf_conn *ct; 666 u8 dir; 667 668 switch (family) { 669 case NFPROTO_IPV4: 670 if (!tcf_ct_flow_table_fill_tuple_ipv4(skb, &tuple, &tcph)) 671 return false; 672 break; 673 case NFPROTO_IPV6: 674 if (!tcf_ct_flow_table_fill_tuple_ipv6(skb, &tuple, &tcph)) 675 return false; 676 break; 677 default: 678 return false; 679 } 680 681 tuplehash = flow_offload_lookup(nf_ft, &tuple); 682 if (!tuplehash) 683 return false; 684 685 dir = tuplehash->tuple.dir; 686 flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]); 687 ct = flow->ct; 688 689 if (dir == FLOW_OFFLOAD_DIR_REPLY && 690 !test_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags)) { 691 /* Only offload reply direction after connection became 692 * assured. 693 */ 694 if (test_bit(IPS_ASSURED_BIT, &ct->status)) 695 set_bit(NF_FLOW_HW_BIDIRECTIONAL, &flow->flags); 696 else if (test_bit(NF_FLOW_HW_ESTABLISHED, &flow->flags)) 697 /* If flow_table flow has already been updated to the 698 * established state, then don't refresh. 699 */ 700 return false; 701 force_refresh = true; 702 } 703 704 if (tcph && (unlikely(tcph->fin || tcph->rst))) { 705 flow_offload_teardown(flow); 706 return false; 707 } 708 709 if (dir == FLOW_OFFLOAD_DIR_ORIGINAL) 710 ctinfo = test_bit(IPS_SEEN_REPLY_BIT, &ct->status) ? 711 IP_CT_ESTABLISHED : IP_CT_NEW; 712 else 713 ctinfo = IP_CT_ESTABLISHED_REPLY; 714 715 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 716 tcf_ct_flow_ct_ext_ifidx_update(flow); 717 flow_offload_refresh(nf_ft, flow, force_refresh); 718 if (!test_bit(IPS_ASSURED_BIT, &ct->status)) { 719 /* Process this flow in SW to allow promoting to ASSURED */ 720 return false; 721 } 722 723 nf_conntrack_get(&ct->ct_general); 724 nf_ct_set(skb, ct, ctinfo); 725 if (nf_ft->flags & NF_FLOWTABLE_COUNTER) 726 nf_ct_acct_update(ct, dir, skb->len); 727 728 return true; 729 } 730 731 static int tcf_ct_flow_tables_init(void) 732 { 733 return rhashtable_init(&zones_ht, &zones_params); 734 } 735 736 static void tcf_ct_flow_tables_uninit(void) 737 { 738 rhashtable_destroy(&zones_ht); 739 } 740 741 static struct tc_action_ops act_ct_ops; 742 743 struct tc_ct_action_net { 744 struct tc_action_net tn; /* Must be first */ 745 }; 746 747 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ 748 static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, 749 struct tcf_ct_params *p) 750 { 751 enum ip_conntrack_info ctinfo; 752 struct nf_conn *ct; 753 754 ct = nf_ct_get(skb, &ctinfo); 755 if (!ct) 756 return false; 757 if (!net_eq(net, read_pnet(&ct->ct_net))) 758 goto drop_ct; 759 if (nf_ct_zone(ct)->id != p->zone) 760 goto drop_ct; 761 if (p->helper) { 762 struct nf_conn_help *help; 763 764 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 765 if (help && rcu_access_pointer(help->helper) != p->helper) 766 goto drop_ct; 767 } 768 769 /* Force conntrack entry direction. */ 770 if ((p->ct_action & TCA_CT_ACT_FORCE) && 771 CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { 772 if (nf_ct_is_confirmed(ct)) 773 nf_ct_kill(ct); 774 775 goto drop_ct; 776 } 777 778 return true; 779 780 drop_ct: 781 nf_ct_put(ct); 782 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 783 784 return false; 785 } 786 787 static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) 788 { 789 u8 family = NFPROTO_UNSPEC; 790 791 switch (skb_protocol(skb, true)) { 792 case htons(ETH_P_IP): 793 family = NFPROTO_IPV4; 794 break; 795 case htons(ETH_P_IPV6): 796 family = NFPROTO_IPV6; 797 break; 798 default: 799 break; 800 } 801 802 return family; 803 } 804 805 static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) 806 { 807 unsigned int len; 808 809 len = skb_network_offset(skb) + sizeof(struct iphdr); 810 if (unlikely(skb->len < len)) 811 return -EINVAL; 812 if (unlikely(!pskb_may_pull(skb, len))) 813 return -ENOMEM; 814 815 *frag = ip_is_fragment(ip_hdr(skb)); 816 return 0; 817 } 818 819 static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) 820 { 821 unsigned int flags = 0, len, payload_ofs = 0; 822 unsigned short frag_off; 823 int nexthdr; 824 825 len = skb_network_offset(skb) + sizeof(struct ipv6hdr); 826 if (unlikely(skb->len < len)) 827 return -EINVAL; 828 if (unlikely(!pskb_may_pull(skb, len))) 829 return -ENOMEM; 830 831 nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); 832 if (unlikely(nexthdr < 0)) 833 return -EPROTO; 834 835 *frag = flags & IP6_FH_F_FRAG; 836 return 0; 837 } 838 839 static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, 840 u8 family, u16 zone, bool *defrag) 841 { 842 enum ip_conntrack_info ctinfo; 843 struct nf_conn *ct; 844 int err = 0; 845 bool frag; 846 u8 proto; 847 u16 mru; 848 849 /* Previously seen (loopback)? Ignore. */ 850 ct = nf_ct_get(skb, &ctinfo); 851 if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) 852 return 0; 853 854 if (family == NFPROTO_IPV4) 855 err = tcf_ct_ipv4_is_fragment(skb, &frag); 856 else 857 err = tcf_ct_ipv6_is_fragment(skb, &frag); 858 if (err || !frag) 859 return err; 860 861 err = nf_ct_handle_fragments(net, skb, zone, family, &proto, &mru); 862 if (err) 863 return err; 864 865 *defrag = true; 866 tc_skb_cb(skb)->mru = mru; 867 868 return 0; 869 } 870 871 static void tcf_ct_params_free(struct tcf_ct_params *params) 872 { 873 if (params->helper) { 874 #if IS_ENABLED(CONFIG_NF_NAT) 875 if (params->ct_action & TCA_CT_ACT_NAT) 876 nf_nat_helper_put(params->helper); 877 #endif 878 nf_conntrack_helper_put(params->helper); 879 } 880 if (params->ct_ft) 881 tcf_ct_flow_table_put(params->ct_ft); 882 if (params->tmpl) { 883 if (params->put_labels) 884 nf_connlabels_put(nf_ct_net(params->tmpl)); 885 886 nf_ct_put(params->tmpl); 887 } 888 889 kfree(params); 890 } 891 892 static void tcf_ct_params_free_rcu(struct rcu_head *head) 893 { 894 struct tcf_ct_params *params; 895 896 params = container_of(head, struct tcf_ct_params, rcu); 897 tcf_ct_params_free(params); 898 } 899 900 static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) 901 { 902 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 903 u32 new_mark; 904 905 if (!mask) 906 return; 907 908 new_mark = mark | (READ_ONCE(ct->mark) & ~(mask)); 909 if (READ_ONCE(ct->mark) != new_mark) { 910 WRITE_ONCE(ct->mark, new_mark); 911 if (nf_ct_is_confirmed(ct)) 912 nf_conntrack_event_cache(IPCT_MARK, ct); 913 } 914 #endif 915 } 916 917 static void tcf_ct_act_set_labels(struct nf_conn *ct, 918 u32 *labels, 919 u32 *labels_m) 920 { 921 #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) 922 size_t labels_sz = sizeof_field(struct tcf_ct_params, labels); 923 924 if (!memchr_inv(labels_m, 0, labels_sz)) 925 return; 926 927 nf_connlabels_replace(ct, labels, labels_m, 4); 928 #endif 929 } 930 931 static int tcf_ct_act_nat(struct sk_buff *skb, 932 struct nf_conn *ct, 933 enum ip_conntrack_info ctinfo, 934 int ct_action, 935 struct nf_nat_range2 *range, 936 bool commit) 937 { 938 #if IS_ENABLED(CONFIG_NF_NAT) 939 int err, action = 0; 940 941 if (!(ct_action & TCA_CT_ACT_NAT)) 942 return NF_ACCEPT; 943 if (ct_action & TCA_CT_ACT_NAT_SRC) 944 action |= BIT(NF_NAT_MANIP_SRC); 945 if (ct_action & TCA_CT_ACT_NAT_DST) 946 action |= BIT(NF_NAT_MANIP_DST); 947 948 err = nf_ct_nat(skb, ct, ctinfo, &action, range, commit); 949 if (err != NF_ACCEPT) 950 return err & NF_VERDICT_MASK; 951 952 if (action & BIT(NF_NAT_MANIP_SRC)) 953 tc_skb_cb(skb)->post_ct_snat = 1; 954 if (action & BIT(NF_NAT_MANIP_DST)) 955 tc_skb_cb(skb)->post_ct_dnat = 1; 956 957 return err; 958 #else 959 return NF_ACCEPT; 960 #endif 961 } 962 963 TC_INDIRECT_SCOPE int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, 964 struct tcf_result *res) 965 { 966 struct net *net = dev_net(skb->dev); 967 enum ip_conntrack_info ctinfo; 968 struct tcf_ct *c = to_ct(a); 969 struct nf_conn *tmpl = NULL; 970 struct nf_hook_state state; 971 bool cached, commit, clear; 972 int nh_ofs, err, retval; 973 struct tcf_ct_params *p; 974 bool add_helper = false; 975 bool skip_add = false; 976 bool defrag = false; 977 struct nf_conn *ct; 978 u8 family; 979 980 p = rcu_dereference_bh(c->params); 981 982 retval = READ_ONCE(c->tcf_action); 983 commit = p->ct_action & TCA_CT_ACT_COMMIT; 984 clear = p->ct_action & TCA_CT_ACT_CLEAR; 985 tmpl = p->tmpl; 986 987 tcf_lastuse_update(&c->tcf_tm); 988 tcf_action_update_bstats(&c->common, skb); 989 990 if (clear) { 991 tc_skb_cb(skb)->post_ct = false; 992 ct = nf_ct_get(skb, &ctinfo); 993 if (ct) { 994 nf_ct_put(ct); 995 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 996 } 997 998 goto out_clear; 999 } 1000 1001 family = tcf_ct_skb_nf_family(skb); 1002 if (family == NFPROTO_UNSPEC) 1003 goto drop; 1004 1005 /* The conntrack module expects to be working at L3. 1006 * We also try to pull the IPv4/6 header to linear area 1007 */ 1008 nh_ofs = skb_network_offset(skb); 1009 skb_pull_rcsum(skb, nh_ofs); 1010 err = tcf_ct_handle_fragments(net, skb, family, p->zone, &defrag); 1011 if (err) 1012 goto out_frag; 1013 1014 err = nf_ct_skb_network_trim(skb, family); 1015 if (err) 1016 goto drop; 1017 1018 /* If we are recirculating packets to match on ct fields and 1019 * committing with a separate ct action, then we don't need to 1020 * actually run the packet through conntrack twice unless it's for a 1021 * different zone. 1022 */ 1023 cached = tcf_ct_skb_nfct_cached(net, skb, p); 1024 if (!cached) { 1025 if (tcf_ct_flow_table_lookup(p, skb, family)) { 1026 skip_add = true; 1027 goto do_nat; 1028 } 1029 1030 /* Associate skb with specified zone. */ 1031 if (tmpl) { 1032 nf_conntrack_put(skb_nfct(skb)); 1033 nf_conntrack_get(&tmpl->ct_general); 1034 nf_ct_set(skb, tmpl, IP_CT_NEW); 1035 } 1036 1037 state.hook = NF_INET_PRE_ROUTING; 1038 state.net = net; 1039 state.pf = family; 1040 err = nf_conntrack_in(skb, &state); 1041 if (err != NF_ACCEPT) 1042 goto nf_error; 1043 } 1044 1045 do_nat: 1046 ct = nf_ct_get(skb, &ctinfo); 1047 if (!ct) 1048 goto out_push; 1049 nf_ct_deliver_cached_events(ct); 1050 nf_conn_act_ct_ext_fill(skb, ct, ctinfo); 1051 1052 err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); 1053 if (err != NF_ACCEPT) 1054 goto nf_error; 1055 1056 if (!nf_ct_is_confirmed(ct) && commit && p->helper && !nfct_help(ct)) { 1057 err = __nf_ct_try_assign_helper(ct, p->tmpl, GFP_ATOMIC); 1058 if (err) 1059 goto drop; 1060 add_helper = true; 1061 if (p->ct_action & TCA_CT_ACT_NAT && !nfct_seqadj(ct)) { 1062 if (!nfct_seqadj_ext_add(ct)) 1063 goto drop; 1064 } 1065 } 1066 1067 if (nf_ct_is_confirmed(ct) ? ((!cached && !skip_add) || add_helper) : commit) { 1068 err = nf_ct_helper(skb, ct, ctinfo, family); 1069 if (err != NF_ACCEPT) 1070 goto nf_error; 1071 } 1072 1073 if (commit) { 1074 tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); 1075 tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); 1076 1077 if (!nf_ct_is_confirmed(ct)) 1078 nf_conn_act_ct_ext_add(skb, ct, ctinfo); 1079 1080 /* This will take care of sending queued events 1081 * even if the connection is already confirmed. 1082 */ 1083 err = nf_conntrack_confirm(skb); 1084 if (err != NF_ACCEPT) 1085 goto nf_error; 1086 1087 /* The ct may be dropped if a clash has been resolved, 1088 * so it's necessary to retrieve it from skb again to 1089 * prevent UAF. 1090 */ 1091 ct = nf_ct_get(skb, &ctinfo); 1092 if (!ct) 1093 skip_add = true; 1094 } 1095 1096 if (!skip_add) 1097 tcf_ct_flow_table_process_conn(p->ct_ft, ct, ctinfo); 1098 1099 out_push: 1100 skb_push_rcsum(skb, nh_ofs); 1101 1102 tc_skb_cb(skb)->post_ct = true; 1103 tc_skb_cb(skb)->zone = p->zone; 1104 out_clear: 1105 if (defrag) 1106 qdisc_skb_cb(skb)->pkt_len = skb->len; 1107 return retval; 1108 1109 out_frag: 1110 if (err != -EINPROGRESS) 1111 tcf_action_inc_drop_qstats(&c->common); 1112 return TC_ACT_CONSUMED; 1113 1114 drop: 1115 tcf_action_inc_drop_qstats(&c->common); 1116 return TC_ACT_SHOT; 1117 1118 nf_error: 1119 /* some verdicts store extra data in upper bits, such 1120 * as errno or queue number. 1121 */ 1122 switch (err & NF_VERDICT_MASK) { 1123 case NF_DROP: 1124 goto drop; 1125 case NF_STOLEN: 1126 tcf_action_inc_drop_qstats(&c->common); 1127 return TC_ACT_CONSUMED; 1128 default: 1129 DEBUG_NET_WARN_ON_ONCE(1); 1130 goto drop; 1131 } 1132 } 1133 1134 static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { 1135 [TCA_CT_ACTION] = { .type = NLA_U16 }, 1136 [TCA_CT_PARMS] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_ct)), 1137 [TCA_CT_ZONE] = { .type = NLA_U16 }, 1138 [TCA_CT_MARK] = { .type = NLA_U32 }, 1139 [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, 1140 [TCA_CT_LABELS] = { .type = NLA_BINARY, 1141 .len = 128 / BITS_PER_BYTE }, 1142 [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, 1143 .len = 128 / BITS_PER_BYTE }, 1144 [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, 1145 [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, 1146 [TCA_CT_NAT_IPV6_MIN] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1147 [TCA_CT_NAT_IPV6_MAX] = NLA_POLICY_EXACT_LEN(sizeof(struct in6_addr)), 1148 [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, 1149 [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, 1150 [TCA_CT_HELPER_NAME] = { .type = NLA_STRING, .len = NF_CT_HELPER_NAME_LEN }, 1151 [TCA_CT_HELPER_FAMILY] = { .type = NLA_U8 }, 1152 [TCA_CT_HELPER_PROTO] = { .type = NLA_U8 }, 1153 }; 1154 1155 static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, 1156 struct tc_ct *parm, 1157 struct nlattr **tb, 1158 struct netlink_ext_ack *extack) 1159 { 1160 struct nf_nat_range2 *range; 1161 1162 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1163 return 0; 1164 1165 if (!IS_ENABLED(CONFIG_NF_NAT)) { 1166 NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); 1167 return -EOPNOTSUPP; 1168 } 1169 1170 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1171 return 0; 1172 1173 if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && 1174 (p->ct_action & TCA_CT_ACT_NAT_DST)) { 1175 NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); 1176 return -EOPNOTSUPP; 1177 } 1178 1179 range = &p->range; 1180 if (tb[TCA_CT_NAT_IPV4_MIN]) { 1181 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; 1182 1183 p->ipv4_range = true; 1184 range->flags |= NF_NAT_RANGE_MAP_IPS; 1185 range->min_addr.ip = 1186 nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); 1187 1188 range->max_addr.ip = max_attr ? 1189 nla_get_in_addr(max_attr) : 1190 range->min_addr.ip; 1191 } else if (tb[TCA_CT_NAT_IPV6_MIN]) { 1192 struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; 1193 1194 p->ipv4_range = false; 1195 range->flags |= NF_NAT_RANGE_MAP_IPS; 1196 range->min_addr.in6 = 1197 nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); 1198 1199 range->max_addr.in6 = max_attr ? 1200 nla_get_in6_addr(max_attr) : 1201 range->min_addr.in6; 1202 } 1203 1204 if (tb[TCA_CT_NAT_PORT_MIN]) { 1205 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 1206 range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); 1207 1208 range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? 1209 nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : 1210 range->min_proto.all; 1211 } 1212 1213 return 0; 1214 } 1215 1216 static void tcf_ct_set_key_val(struct nlattr **tb, 1217 void *val, int val_type, 1218 void *mask, int mask_type, 1219 int len) 1220 { 1221 if (!tb[val_type]) 1222 return; 1223 nla_memcpy(val, tb[val_type], len); 1224 1225 if (!mask) 1226 return; 1227 1228 if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) 1229 memset(mask, 0xff, len); 1230 else 1231 nla_memcpy(mask, tb[mask_type], len); 1232 } 1233 1234 static int tcf_ct_fill_params(struct net *net, 1235 struct tcf_ct_params *p, 1236 struct tc_ct *parm, 1237 struct nlattr **tb, 1238 struct netlink_ext_ack *extack) 1239 { 1240 struct nf_conntrack_zone zone; 1241 int err, family, proto, len; 1242 bool put_labels = false; 1243 struct nf_conn *tmpl; 1244 char *name; 1245 1246 p->zone = NF_CT_DEFAULT_ZONE_ID; 1247 1248 tcf_ct_set_key_val(tb, 1249 &p->ct_action, TCA_CT_ACTION, 1250 NULL, TCA_CT_UNSPEC, 1251 sizeof(p->ct_action)); 1252 1253 if (p->ct_action & TCA_CT_ACT_CLEAR) 1254 return 0; 1255 1256 err = tcf_ct_fill_params_nat(p, parm, tb, extack); 1257 if (err) 1258 return err; 1259 1260 if (tb[TCA_CT_MARK]) { 1261 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { 1262 NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); 1263 return -EOPNOTSUPP; 1264 } 1265 tcf_ct_set_key_val(tb, 1266 &p->mark, TCA_CT_MARK, 1267 &p->mark_mask, TCA_CT_MARK_MASK, 1268 sizeof(p->mark)); 1269 } 1270 1271 if (tb[TCA_CT_LABELS]) { 1272 unsigned int n_bits = sizeof_field(struct tcf_ct_params, labels) * 8; 1273 1274 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { 1275 NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); 1276 return -EOPNOTSUPP; 1277 } 1278 1279 if (nf_connlabels_get(net, n_bits - 1)) { 1280 NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); 1281 return -EOPNOTSUPP; 1282 } else { 1283 put_labels = true; 1284 } 1285 1286 tcf_ct_set_key_val(tb, 1287 p->labels, TCA_CT_LABELS, 1288 p->labels_mask, TCA_CT_LABELS_MASK, 1289 sizeof(p->labels)); 1290 } 1291 1292 if (tb[TCA_CT_ZONE]) { 1293 if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { 1294 NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); 1295 return -EOPNOTSUPP; 1296 } 1297 1298 tcf_ct_set_key_val(tb, 1299 &p->zone, TCA_CT_ZONE, 1300 NULL, TCA_CT_UNSPEC, 1301 sizeof(p->zone)); 1302 } 1303 1304 nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); 1305 tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); 1306 if (!tmpl) { 1307 NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); 1308 return -ENOMEM; 1309 } 1310 p->tmpl = tmpl; 1311 if (tb[TCA_CT_HELPER_NAME]) { 1312 name = nla_data(tb[TCA_CT_HELPER_NAME]); 1313 len = nla_len(tb[TCA_CT_HELPER_NAME]); 1314 if (len > 16 || name[len - 1] != '\0') { 1315 NL_SET_ERR_MSG_MOD(extack, "Failed to parse helper name."); 1316 err = -EINVAL; 1317 goto err; 1318 } 1319 family = tb[TCA_CT_HELPER_FAMILY] ? nla_get_u8(tb[TCA_CT_HELPER_FAMILY]) : AF_INET; 1320 proto = tb[TCA_CT_HELPER_PROTO] ? nla_get_u8(tb[TCA_CT_HELPER_PROTO]) : IPPROTO_TCP; 1321 err = nf_ct_add_helper(tmpl, name, family, proto, 1322 p->ct_action & TCA_CT_ACT_NAT, &p->helper); 1323 if (err) { 1324 NL_SET_ERR_MSG_MOD(extack, "Failed to add helper"); 1325 goto err; 1326 } 1327 } 1328 1329 p->put_labels = put_labels; 1330 1331 if (p->ct_action & TCA_CT_ACT_COMMIT) 1332 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); 1333 return 0; 1334 err: 1335 if (put_labels) 1336 nf_connlabels_put(net); 1337 1338 nf_ct_put(p->tmpl); 1339 p->tmpl = NULL; 1340 return err; 1341 } 1342 1343 static int tcf_ct_init(struct net *net, struct nlattr *nla, 1344 struct nlattr *est, struct tc_action **a, 1345 struct tcf_proto *tp, u32 flags, 1346 struct netlink_ext_ack *extack) 1347 { 1348 struct tc_action_net *tn = net_generic(net, act_ct_ops.net_id); 1349 bool bind = flags & TCA_ACT_FLAGS_BIND; 1350 struct tcf_ct_params *params = NULL; 1351 struct nlattr *tb[TCA_CT_MAX + 1]; 1352 struct tcf_chain *goto_ch = NULL; 1353 struct tc_ct *parm; 1354 struct tcf_ct *c; 1355 int err, res = 0; 1356 u32 index; 1357 1358 if (!nla) { 1359 NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); 1360 return -EINVAL; 1361 } 1362 1363 err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); 1364 if (err < 0) 1365 return err; 1366 1367 if (!tb[TCA_CT_PARMS]) { 1368 NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); 1369 return -EINVAL; 1370 } 1371 parm = nla_data(tb[TCA_CT_PARMS]); 1372 index = parm->index; 1373 err = tcf_idr_check_alloc(tn, &index, a, bind); 1374 if (err < 0) 1375 return err; 1376 1377 if (!err) { 1378 err = tcf_idr_create_from_flags(tn, index, est, a, 1379 &act_ct_ops, bind, flags); 1380 if (err) { 1381 tcf_idr_cleanup(tn, index); 1382 return err; 1383 } 1384 res = ACT_P_CREATED; 1385 } else { 1386 if (bind) 1387 return ACT_P_BOUND; 1388 1389 if (!(flags & TCA_ACT_FLAGS_REPLACE)) { 1390 tcf_idr_release(*a, bind); 1391 return -EEXIST; 1392 } 1393 } 1394 err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); 1395 if (err < 0) 1396 goto cleanup; 1397 1398 c = to_ct(*a); 1399 1400 params = kzalloc(sizeof(*params), GFP_KERNEL); 1401 if (unlikely(!params)) { 1402 err = -ENOMEM; 1403 goto cleanup; 1404 } 1405 1406 err = tcf_ct_fill_params(net, params, parm, tb, extack); 1407 if (err) 1408 goto cleanup; 1409 1410 err = tcf_ct_flow_table_get(net, params); 1411 if (err) 1412 goto cleanup; 1413 1414 spin_lock_bh(&c->tcf_lock); 1415 goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); 1416 params = rcu_replace_pointer(c->params, params, 1417 lockdep_is_held(&c->tcf_lock)); 1418 spin_unlock_bh(&c->tcf_lock); 1419 1420 if (goto_ch) 1421 tcf_chain_put_by_act(goto_ch); 1422 if (params) 1423 call_rcu(¶ms->rcu, tcf_ct_params_free_rcu); 1424 1425 return res; 1426 1427 cleanup: 1428 if (goto_ch) 1429 tcf_chain_put_by_act(goto_ch); 1430 if (params) 1431 tcf_ct_params_free(params); 1432 tcf_idr_release(*a, bind); 1433 return err; 1434 } 1435 1436 static void tcf_ct_cleanup(struct tc_action *a) 1437 { 1438 struct tcf_ct_params *params; 1439 struct tcf_ct *c = to_ct(a); 1440 1441 params = rcu_dereference_protected(c->params, 1); 1442 if (params) 1443 call_rcu(¶ms->rcu, tcf_ct_params_free_rcu); 1444 } 1445 1446 static int tcf_ct_dump_key_val(struct sk_buff *skb, 1447 void *val, int val_type, 1448 void *mask, int mask_type, 1449 int len) 1450 { 1451 int err; 1452 1453 if (mask && !memchr_inv(mask, 0, len)) 1454 return 0; 1455 1456 err = nla_put(skb, val_type, len, val); 1457 if (err) 1458 return err; 1459 1460 if (mask_type != TCA_CT_UNSPEC) { 1461 err = nla_put(skb, mask_type, len, mask); 1462 if (err) 1463 return err; 1464 } 1465 1466 return 0; 1467 } 1468 1469 static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) 1470 { 1471 struct nf_nat_range2 *range = &p->range; 1472 1473 if (!(p->ct_action & TCA_CT_ACT_NAT)) 1474 return 0; 1475 1476 if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) 1477 return 0; 1478 1479 if (range->flags & NF_NAT_RANGE_MAP_IPS) { 1480 if (p->ipv4_range) { 1481 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, 1482 range->min_addr.ip)) 1483 return -1; 1484 if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, 1485 range->max_addr.ip)) 1486 return -1; 1487 } else { 1488 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, 1489 &range->min_addr.in6)) 1490 return -1; 1491 if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, 1492 &range->max_addr.in6)) 1493 return -1; 1494 } 1495 } 1496 1497 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { 1498 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, 1499 range->min_proto.all)) 1500 return -1; 1501 if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, 1502 range->max_proto.all)) 1503 return -1; 1504 } 1505 1506 return 0; 1507 } 1508 1509 static int tcf_ct_dump_helper(struct sk_buff *skb, struct nf_conntrack_helper *helper) 1510 { 1511 if (!helper) 1512 return 0; 1513 1514 if (nla_put_string(skb, TCA_CT_HELPER_NAME, helper->name) || 1515 nla_put_u8(skb, TCA_CT_HELPER_FAMILY, helper->tuple.src.l3num) || 1516 nla_put_u8(skb, TCA_CT_HELPER_PROTO, helper->tuple.dst.protonum)) 1517 return -1; 1518 1519 return 0; 1520 } 1521 1522 static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, 1523 int bind, int ref) 1524 { 1525 unsigned char *b = skb_tail_pointer(skb); 1526 struct tcf_ct *c = to_ct(a); 1527 struct tcf_ct_params *p; 1528 1529 struct tc_ct opt = { 1530 .index = c->tcf_index, 1531 .refcnt = refcount_read(&c->tcf_refcnt) - ref, 1532 .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, 1533 }; 1534 struct tcf_t t; 1535 1536 spin_lock_bh(&c->tcf_lock); 1537 p = rcu_dereference_protected(c->params, 1538 lockdep_is_held(&c->tcf_lock)); 1539 opt.action = c->tcf_action; 1540 1541 if (tcf_ct_dump_key_val(skb, 1542 &p->ct_action, TCA_CT_ACTION, 1543 NULL, TCA_CT_UNSPEC, 1544 sizeof(p->ct_action))) 1545 goto nla_put_failure; 1546 1547 if (p->ct_action & TCA_CT_ACT_CLEAR) 1548 goto skip_dump; 1549 1550 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1551 tcf_ct_dump_key_val(skb, 1552 &p->mark, TCA_CT_MARK, 1553 &p->mark_mask, TCA_CT_MARK_MASK, 1554 sizeof(p->mark))) 1555 goto nla_put_failure; 1556 1557 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1558 tcf_ct_dump_key_val(skb, 1559 p->labels, TCA_CT_LABELS, 1560 p->labels_mask, TCA_CT_LABELS_MASK, 1561 sizeof(p->labels))) 1562 goto nla_put_failure; 1563 1564 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1565 tcf_ct_dump_key_val(skb, 1566 &p->zone, TCA_CT_ZONE, 1567 NULL, TCA_CT_UNSPEC, 1568 sizeof(p->zone))) 1569 goto nla_put_failure; 1570 1571 if (tcf_ct_dump_nat(skb, p)) 1572 goto nla_put_failure; 1573 1574 if (tcf_ct_dump_helper(skb, p->helper)) 1575 goto nla_put_failure; 1576 1577 skip_dump: 1578 if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) 1579 goto nla_put_failure; 1580 1581 tcf_tm_dump(&t, &c->tcf_tm); 1582 if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) 1583 goto nla_put_failure; 1584 spin_unlock_bh(&c->tcf_lock); 1585 1586 return skb->len; 1587 nla_put_failure: 1588 spin_unlock_bh(&c->tcf_lock); 1589 nlmsg_trim(skb, b); 1590 return -1; 1591 } 1592 1593 static void tcf_stats_update(struct tc_action *a, u64 bytes, u64 packets, 1594 u64 drops, u64 lastuse, bool hw) 1595 { 1596 struct tcf_ct *c = to_ct(a); 1597 1598 tcf_action_update_stats(a, bytes, packets, drops, hw); 1599 c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); 1600 } 1601 1602 static int tcf_ct_offload_act_setup(struct tc_action *act, void *entry_data, 1603 u32 *index_inc, bool bind, 1604 struct netlink_ext_ack *extack) 1605 { 1606 if (bind) { 1607 struct flow_action_entry *entry = entry_data; 1608 1609 if (tcf_ct_helper(act)) 1610 return -EOPNOTSUPP; 1611 1612 entry->id = FLOW_ACTION_CT; 1613 entry->ct.action = tcf_ct_action(act); 1614 entry->ct.zone = tcf_ct_zone(act); 1615 entry->ct.flow_table = tcf_ct_ft(act); 1616 *index_inc = 1; 1617 } else { 1618 struct flow_offload_action *fl_action = entry_data; 1619 1620 fl_action->id = FLOW_ACTION_CT; 1621 } 1622 1623 return 0; 1624 } 1625 1626 static struct tc_action_ops act_ct_ops = { 1627 .kind = "ct", 1628 .id = TCA_ID_CT, 1629 .owner = THIS_MODULE, 1630 .act = tcf_ct_act, 1631 .dump = tcf_ct_dump, 1632 .init = tcf_ct_init, 1633 .cleanup = tcf_ct_cleanup, 1634 .stats_update = tcf_stats_update, 1635 .offload_act_setup = tcf_ct_offload_act_setup, 1636 .size = sizeof(struct tcf_ct), 1637 }; 1638 MODULE_ALIAS_NET_ACT("ct"); 1639 1640 static __net_init int ct_init_net(struct net *net) 1641 { 1642 struct tc_ct_action_net *tn = net_generic(net, act_ct_ops.net_id); 1643 1644 return tc_action_net_init(net, &tn->tn, &act_ct_ops); 1645 } 1646 1647 static void __net_exit ct_exit_net(struct list_head *net_list) 1648 { 1649 tc_action_net_exit(net_list, act_ct_ops.net_id); 1650 } 1651 1652 static struct pernet_operations ct_net_ops = { 1653 .init = ct_init_net, 1654 .exit_batch = ct_exit_net, 1655 .id = &act_ct_ops.net_id, 1656 .size = sizeof(struct tc_ct_action_net), 1657 }; 1658 1659 static int __init ct_init_module(void) 1660 { 1661 int err; 1662 1663 act_ct_wq = alloc_ordered_workqueue("act_ct_workqueue", 0); 1664 if (!act_ct_wq) 1665 return -ENOMEM; 1666 1667 err = tcf_ct_flow_tables_init(); 1668 if (err) 1669 goto err_tbl_init; 1670 1671 err = tcf_register_action(&act_ct_ops, &ct_net_ops); 1672 if (err) 1673 goto err_register; 1674 1675 static_branch_inc(&tcf_frag_xmit_count); 1676 1677 return 0; 1678 1679 err_register: 1680 tcf_ct_flow_tables_uninit(); 1681 err_tbl_init: 1682 destroy_workqueue(act_ct_wq); 1683 return err; 1684 } 1685 1686 static void __exit ct_cleanup_module(void) 1687 { 1688 static_branch_dec(&tcf_frag_xmit_count); 1689 tcf_unregister_action(&act_ct_ops, &ct_net_ops); 1690 tcf_ct_flow_tables_uninit(); 1691 destroy_workqueue(act_ct_wq); 1692 } 1693 1694 module_init(ct_init_module); 1695 module_exit(ct_cleanup_module); 1696 MODULE_AUTHOR("Paul Blakey <paulb@mellanox.com>"); 1697 MODULE_AUTHOR("Yossi Kuperman <yossiku@mellanox.com>"); 1698 MODULE_AUTHOR("Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>"); 1699 MODULE_DESCRIPTION("Connection tracking action"); 1700 MODULE_LICENSE("GPL v2"); 1701
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.