1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/cls_flow.c Generic flow classifier 4 * 5 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net> 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/init.h> 10 #include <linux/list.h> 11 #include <linux/jhash.h> 12 #include <linux/random.h> 13 #include <linux/pkt_cls.h> 14 #include <linux/skbuff.h> 15 #include <linux/in.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/if_vlan.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <net/inet_sock.h> 22 23 #include <net/pkt_cls.h> 24 #include <net/ip.h> 25 #include <net/route.h> 26 #include <net/flow_dissector.h> 27 #include <net/tc_wrapper.h> 28 29 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 30 #include <net/netfilter/nf_conntrack.h> 31 #endif 32 33 struct flow_head { 34 struct list_head filters; 35 struct rcu_head rcu; 36 }; 37 38 struct flow_filter { 39 struct list_head list; 40 struct tcf_exts exts; 41 struct tcf_ematch_tree ematches; 42 struct tcf_proto *tp; 43 struct timer_list perturb_timer; 44 u32 perturb_period; 45 u32 handle; 46 47 u32 nkeys; 48 u32 keymask; 49 u32 mode; 50 u32 mask; 51 u32 xor; 52 u32 rshift; 53 u32 addend; 54 u32 divisor; 55 u32 baseclass; 56 u32 hashrnd; 57 struct rcu_work rwork; 58 }; 59 60 static inline u32 addr_fold(void *addr) 61 { 62 unsigned long a = (unsigned long)addr; 63 64 return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0); 65 } 66 67 static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow) 68 { 69 __be32 src = flow_get_u32_src(flow); 70 71 if (src) 72 return ntohl(src); 73 74 return addr_fold(skb->sk); 75 } 76 77 static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow) 78 { 79 __be32 dst = flow_get_u32_dst(flow); 80 81 if (dst) 82 return ntohl(dst); 83 84 return addr_fold(skb_dst(skb)) ^ (__force u16)skb_protocol(skb, true); 85 } 86 87 static u32 flow_get_proto(const struct sk_buff *skb, 88 const struct flow_keys *flow) 89 { 90 return flow->basic.ip_proto; 91 } 92 93 static u32 flow_get_proto_src(const struct sk_buff *skb, 94 const struct flow_keys *flow) 95 { 96 if (flow->ports.ports) 97 return ntohs(flow->ports.src); 98 99 return addr_fold(skb->sk); 100 } 101 102 static u32 flow_get_proto_dst(const struct sk_buff *skb, 103 const struct flow_keys *flow) 104 { 105 if (flow->ports.ports) 106 return ntohs(flow->ports.dst); 107 108 return addr_fold(skb_dst(skb)) ^ (__force u16)skb_protocol(skb, true); 109 } 110 111 static u32 flow_get_iif(const struct sk_buff *skb) 112 { 113 return skb->skb_iif; 114 } 115 116 static u32 flow_get_priority(const struct sk_buff *skb) 117 { 118 return skb->priority; 119 } 120 121 static u32 flow_get_mark(const struct sk_buff *skb) 122 { 123 return skb->mark; 124 } 125 126 static u32 flow_get_nfct(const struct sk_buff *skb) 127 { 128 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 129 return addr_fold(skb_nfct(skb)); 130 #else 131 return 0; 132 #endif 133 } 134 135 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 136 #define CTTUPLE(skb, member) \ 137 ({ \ 138 enum ip_conntrack_info ctinfo; \ 139 const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \ 140 if (ct == NULL) \ 141 goto fallback; \ 142 ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \ 143 }) 144 #else 145 #define CTTUPLE(skb, member) \ 146 ({ \ 147 goto fallback; \ 148 0; \ 149 }) 150 #endif 151 152 static u32 flow_get_nfct_src(const struct sk_buff *skb, 153 const struct flow_keys *flow) 154 { 155 switch (skb_protocol(skb, true)) { 156 case htons(ETH_P_IP): 157 return ntohl(CTTUPLE(skb, src.u3.ip)); 158 case htons(ETH_P_IPV6): 159 return ntohl(CTTUPLE(skb, src.u3.ip6[3])); 160 } 161 fallback: 162 return flow_get_src(skb, flow); 163 } 164 165 static u32 flow_get_nfct_dst(const struct sk_buff *skb, 166 const struct flow_keys *flow) 167 { 168 switch (skb_protocol(skb, true)) { 169 case htons(ETH_P_IP): 170 return ntohl(CTTUPLE(skb, dst.u3.ip)); 171 case htons(ETH_P_IPV6): 172 return ntohl(CTTUPLE(skb, dst.u3.ip6[3])); 173 } 174 fallback: 175 return flow_get_dst(skb, flow); 176 } 177 178 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, 179 const struct flow_keys *flow) 180 { 181 return ntohs(CTTUPLE(skb, src.u.all)); 182 fallback: 183 return flow_get_proto_src(skb, flow); 184 } 185 186 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, 187 const struct flow_keys *flow) 188 { 189 return ntohs(CTTUPLE(skb, dst.u.all)); 190 fallback: 191 return flow_get_proto_dst(skb, flow); 192 } 193 194 static u32 flow_get_rtclassid(const struct sk_buff *skb) 195 { 196 #ifdef CONFIG_IP_ROUTE_CLASSID 197 if (skb_dst(skb)) 198 return skb_dst(skb)->tclassid; 199 #endif 200 return 0; 201 } 202 203 static u32 flow_get_skuid(const struct sk_buff *skb) 204 { 205 struct sock *sk = skb_to_full_sk(skb); 206 207 if (sk && sk->sk_socket && sk->sk_socket->file) { 208 kuid_t skuid = sk->sk_socket->file->f_cred->fsuid; 209 210 return from_kuid(&init_user_ns, skuid); 211 } 212 return 0; 213 } 214 215 static u32 flow_get_skgid(const struct sk_buff *skb) 216 { 217 struct sock *sk = skb_to_full_sk(skb); 218 219 if (sk && sk->sk_socket && sk->sk_socket->file) { 220 kgid_t skgid = sk->sk_socket->file->f_cred->fsgid; 221 222 return from_kgid(&init_user_ns, skgid); 223 } 224 return 0; 225 } 226 227 static u32 flow_get_vlan_tag(const struct sk_buff *skb) 228 { 229 u16 tag; 230 231 if (vlan_get_tag(skb, &tag) < 0) 232 return 0; 233 return tag & VLAN_VID_MASK; 234 } 235 236 static u32 flow_get_rxhash(struct sk_buff *skb) 237 { 238 return skb_get_hash(skb); 239 } 240 241 static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow) 242 { 243 switch (key) { 244 case FLOW_KEY_SRC: 245 return flow_get_src(skb, flow); 246 case FLOW_KEY_DST: 247 return flow_get_dst(skb, flow); 248 case FLOW_KEY_PROTO: 249 return flow_get_proto(skb, flow); 250 case FLOW_KEY_PROTO_SRC: 251 return flow_get_proto_src(skb, flow); 252 case FLOW_KEY_PROTO_DST: 253 return flow_get_proto_dst(skb, flow); 254 case FLOW_KEY_IIF: 255 return flow_get_iif(skb); 256 case FLOW_KEY_PRIORITY: 257 return flow_get_priority(skb); 258 case FLOW_KEY_MARK: 259 return flow_get_mark(skb); 260 case FLOW_KEY_NFCT: 261 return flow_get_nfct(skb); 262 case FLOW_KEY_NFCT_SRC: 263 return flow_get_nfct_src(skb, flow); 264 case FLOW_KEY_NFCT_DST: 265 return flow_get_nfct_dst(skb, flow); 266 case FLOW_KEY_NFCT_PROTO_SRC: 267 return flow_get_nfct_proto_src(skb, flow); 268 case FLOW_KEY_NFCT_PROTO_DST: 269 return flow_get_nfct_proto_dst(skb, flow); 270 case FLOW_KEY_RTCLASSID: 271 return flow_get_rtclassid(skb); 272 case FLOW_KEY_SKUID: 273 return flow_get_skuid(skb); 274 case FLOW_KEY_SKGID: 275 return flow_get_skgid(skb); 276 case FLOW_KEY_VLAN_TAG: 277 return flow_get_vlan_tag(skb); 278 case FLOW_KEY_RXHASH: 279 return flow_get_rxhash(skb); 280 default: 281 WARN_ON(1); 282 return 0; 283 } 284 } 285 286 #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | \ 287 (1 << FLOW_KEY_DST) | \ 288 (1 << FLOW_KEY_PROTO) | \ 289 (1 << FLOW_KEY_PROTO_SRC) | \ 290 (1 << FLOW_KEY_PROTO_DST) | \ 291 (1 << FLOW_KEY_NFCT_SRC) | \ 292 (1 << FLOW_KEY_NFCT_DST) | \ 293 (1 << FLOW_KEY_NFCT_PROTO_SRC) | \ 294 (1 << FLOW_KEY_NFCT_PROTO_DST)) 295 296 TC_INDIRECT_SCOPE int flow_classify(struct sk_buff *skb, 297 const struct tcf_proto *tp, 298 struct tcf_result *res) 299 { 300 struct flow_head *head = rcu_dereference_bh(tp->root); 301 struct flow_filter *f; 302 u32 keymask; 303 u32 classid; 304 unsigned int n, key; 305 int r; 306 307 list_for_each_entry_rcu(f, &head->filters, list) { 308 u32 keys[FLOW_KEY_MAX + 1]; 309 struct flow_keys flow_keys; 310 311 if (!tcf_em_tree_match(skb, &f->ematches, NULL)) 312 continue; 313 314 keymask = f->keymask; 315 if (keymask & FLOW_KEYS_NEEDED) 316 skb_flow_dissect_flow_keys(skb, &flow_keys, 0); 317 318 for (n = 0; n < f->nkeys; n++) { 319 key = ffs(keymask) - 1; 320 keymask &= ~(1 << key); 321 keys[n] = flow_key_get(skb, key, &flow_keys); 322 } 323 324 if (f->mode == FLOW_MODE_HASH) 325 classid = jhash2(keys, f->nkeys, f->hashrnd); 326 else { 327 classid = keys[0]; 328 classid = (classid & f->mask) ^ f->xor; 329 classid = (classid >> f->rshift) + f->addend; 330 } 331 332 if (f->divisor) 333 classid %= f->divisor; 334 335 res->class = 0; 336 res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid); 337 338 r = tcf_exts_exec(skb, &f->exts, res); 339 if (r < 0) 340 continue; 341 return r; 342 } 343 return -1; 344 } 345 346 static void flow_perturbation(struct timer_list *t) 347 { 348 struct flow_filter *f = from_timer(f, t, perturb_timer); 349 350 get_random_bytes(&f->hashrnd, 4); 351 if (f->perturb_period) 352 mod_timer(&f->perturb_timer, jiffies + f->perturb_period); 353 } 354 355 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = { 356 [TCA_FLOW_KEYS] = { .type = NLA_U32 }, 357 [TCA_FLOW_MODE] = { .type = NLA_U32 }, 358 [TCA_FLOW_BASECLASS] = { .type = NLA_U32 }, 359 [TCA_FLOW_RSHIFT] = { .type = NLA_U32 }, 360 [TCA_FLOW_ADDEND] = { .type = NLA_U32 }, 361 [TCA_FLOW_MASK] = { .type = NLA_U32 }, 362 [TCA_FLOW_XOR] = { .type = NLA_U32 }, 363 [TCA_FLOW_DIVISOR] = { .type = NLA_U32 }, 364 [TCA_FLOW_ACT] = { .type = NLA_NESTED }, 365 [TCA_FLOW_POLICE] = { .type = NLA_NESTED }, 366 [TCA_FLOW_EMATCHES] = { .type = NLA_NESTED }, 367 [TCA_FLOW_PERTURB] = { .type = NLA_U32 }, 368 }; 369 370 static void __flow_destroy_filter(struct flow_filter *f) 371 { 372 timer_shutdown_sync(&f->perturb_timer); 373 tcf_exts_destroy(&f->exts); 374 tcf_em_tree_destroy(&f->ematches); 375 tcf_exts_put_net(&f->exts); 376 kfree(f); 377 } 378 379 static void flow_destroy_filter_work(struct work_struct *work) 380 { 381 struct flow_filter *f = container_of(to_rcu_work(work), 382 struct flow_filter, 383 rwork); 384 rtnl_lock(); 385 __flow_destroy_filter(f); 386 rtnl_unlock(); 387 } 388 389 static int flow_change(struct net *net, struct sk_buff *in_skb, 390 struct tcf_proto *tp, unsigned long base, 391 u32 handle, struct nlattr **tca, 392 void **arg, u32 flags, 393 struct netlink_ext_ack *extack) 394 { 395 struct flow_head *head = rtnl_dereference(tp->root); 396 struct flow_filter *fold, *fnew; 397 struct nlattr *opt = tca[TCA_OPTIONS]; 398 struct nlattr *tb[TCA_FLOW_MAX + 1]; 399 unsigned int nkeys = 0; 400 unsigned int perturb_period = 0; 401 u32 baseclass = 0; 402 u32 keymask = 0; 403 u32 mode; 404 int err; 405 406 if (opt == NULL) 407 return -EINVAL; 408 409 err = nla_parse_nested_deprecated(tb, TCA_FLOW_MAX, opt, flow_policy, 410 NULL); 411 if (err < 0) 412 return err; 413 414 if (tb[TCA_FLOW_BASECLASS]) { 415 baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]); 416 if (TC_H_MIN(baseclass) == 0) 417 return -EINVAL; 418 } 419 420 if (tb[TCA_FLOW_KEYS]) { 421 keymask = nla_get_u32(tb[TCA_FLOW_KEYS]); 422 423 nkeys = hweight32(keymask); 424 if (nkeys == 0) 425 return -EINVAL; 426 427 if (fls(keymask) - 1 > FLOW_KEY_MAX) 428 return -EOPNOTSUPP; 429 430 if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) && 431 sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns) 432 return -EOPNOTSUPP; 433 } 434 435 fnew = kzalloc(sizeof(*fnew), GFP_KERNEL); 436 if (!fnew) 437 return -ENOBUFS; 438 439 err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &fnew->ematches); 440 if (err < 0) 441 goto err1; 442 443 err = tcf_exts_init(&fnew->exts, net, TCA_FLOW_ACT, TCA_FLOW_POLICE); 444 if (err < 0) 445 goto err2; 446 447 err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &fnew->exts, flags, 448 extack); 449 if (err < 0) 450 goto err2; 451 452 fold = *arg; 453 if (fold) { 454 err = -EINVAL; 455 if (fold->handle != handle && handle) 456 goto err2; 457 458 /* Copy fold into fnew */ 459 fnew->tp = fold->tp; 460 fnew->handle = fold->handle; 461 fnew->nkeys = fold->nkeys; 462 fnew->keymask = fold->keymask; 463 fnew->mode = fold->mode; 464 fnew->mask = fold->mask; 465 fnew->xor = fold->xor; 466 fnew->rshift = fold->rshift; 467 fnew->addend = fold->addend; 468 fnew->divisor = fold->divisor; 469 fnew->baseclass = fold->baseclass; 470 fnew->hashrnd = fold->hashrnd; 471 472 mode = fold->mode; 473 if (tb[TCA_FLOW_MODE]) 474 mode = nla_get_u32(tb[TCA_FLOW_MODE]); 475 if (mode != FLOW_MODE_HASH && nkeys > 1) 476 goto err2; 477 478 if (mode == FLOW_MODE_HASH) 479 perturb_period = fold->perturb_period; 480 if (tb[TCA_FLOW_PERTURB]) { 481 if (mode != FLOW_MODE_HASH) 482 goto err2; 483 perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ; 484 } 485 } else { 486 err = -EINVAL; 487 if (!handle) 488 goto err2; 489 if (!tb[TCA_FLOW_KEYS]) 490 goto err2; 491 492 mode = FLOW_MODE_MAP; 493 if (tb[TCA_FLOW_MODE]) 494 mode = nla_get_u32(tb[TCA_FLOW_MODE]); 495 if (mode != FLOW_MODE_HASH && nkeys > 1) 496 goto err2; 497 498 if (tb[TCA_FLOW_PERTURB]) { 499 if (mode != FLOW_MODE_HASH) 500 goto err2; 501 perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ; 502 } 503 504 if (TC_H_MAJ(baseclass) == 0) { 505 struct Qdisc *q = tcf_block_q(tp->chain->block); 506 507 baseclass = TC_H_MAKE(q->handle, baseclass); 508 } 509 if (TC_H_MIN(baseclass) == 0) 510 baseclass = TC_H_MAKE(baseclass, 1); 511 512 fnew->handle = handle; 513 fnew->mask = ~0U; 514 fnew->tp = tp; 515 get_random_bytes(&fnew->hashrnd, 4); 516 } 517 518 timer_setup(&fnew->perturb_timer, flow_perturbation, TIMER_DEFERRABLE); 519 520 tcf_block_netif_keep_dst(tp->chain->block); 521 522 if (tb[TCA_FLOW_KEYS]) { 523 fnew->keymask = keymask; 524 fnew->nkeys = nkeys; 525 } 526 527 fnew->mode = mode; 528 529 if (tb[TCA_FLOW_MASK]) 530 fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]); 531 if (tb[TCA_FLOW_XOR]) 532 fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]); 533 if (tb[TCA_FLOW_RSHIFT]) 534 fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]); 535 if (tb[TCA_FLOW_ADDEND]) 536 fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]); 537 538 if (tb[TCA_FLOW_DIVISOR]) 539 fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]); 540 if (baseclass) 541 fnew->baseclass = baseclass; 542 543 fnew->perturb_period = perturb_period; 544 if (perturb_period) 545 mod_timer(&fnew->perturb_timer, jiffies + perturb_period); 546 547 if (!*arg) 548 list_add_tail_rcu(&fnew->list, &head->filters); 549 else 550 list_replace_rcu(&fold->list, &fnew->list); 551 552 *arg = fnew; 553 554 if (fold) { 555 tcf_exts_get_net(&fold->exts); 556 tcf_queue_work(&fold->rwork, flow_destroy_filter_work); 557 } 558 return 0; 559 560 err2: 561 tcf_exts_destroy(&fnew->exts); 562 tcf_em_tree_destroy(&fnew->ematches); 563 err1: 564 kfree(fnew); 565 return err; 566 } 567 568 static int flow_delete(struct tcf_proto *tp, void *arg, bool *last, 569 bool rtnl_held, struct netlink_ext_ack *extack) 570 { 571 struct flow_head *head = rtnl_dereference(tp->root); 572 struct flow_filter *f = arg; 573 574 list_del_rcu(&f->list); 575 tcf_exts_get_net(&f->exts); 576 tcf_queue_work(&f->rwork, flow_destroy_filter_work); 577 *last = list_empty(&head->filters); 578 return 0; 579 } 580 581 static int flow_init(struct tcf_proto *tp) 582 { 583 struct flow_head *head; 584 585 head = kzalloc(sizeof(*head), GFP_KERNEL); 586 if (head == NULL) 587 return -ENOBUFS; 588 INIT_LIST_HEAD(&head->filters); 589 rcu_assign_pointer(tp->root, head); 590 return 0; 591 } 592 593 static void flow_destroy(struct tcf_proto *tp, bool rtnl_held, 594 struct netlink_ext_ack *extack) 595 { 596 struct flow_head *head = rtnl_dereference(tp->root); 597 struct flow_filter *f, *next; 598 599 list_for_each_entry_safe(f, next, &head->filters, list) { 600 list_del_rcu(&f->list); 601 if (tcf_exts_get_net(&f->exts)) 602 tcf_queue_work(&f->rwork, flow_destroy_filter_work); 603 else 604 __flow_destroy_filter(f); 605 } 606 kfree_rcu(head, rcu); 607 } 608 609 static void *flow_get(struct tcf_proto *tp, u32 handle) 610 { 611 struct flow_head *head = rtnl_dereference(tp->root); 612 struct flow_filter *f; 613 614 list_for_each_entry(f, &head->filters, list) 615 if (f->handle == handle) 616 return f; 617 return NULL; 618 } 619 620 static int flow_dump(struct net *net, struct tcf_proto *tp, void *fh, 621 struct sk_buff *skb, struct tcmsg *t, bool rtnl_held) 622 { 623 struct flow_filter *f = fh; 624 struct nlattr *nest; 625 626 if (f == NULL) 627 return skb->len; 628 629 t->tcm_handle = f->handle; 630 631 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 632 if (nest == NULL) 633 goto nla_put_failure; 634 635 if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) || 636 nla_put_u32(skb, TCA_FLOW_MODE, f->mode)) 637 goto nla_put_failure; 638 639 if (f->mask != ~0 || f->xor != 0) { 640 if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) || 641 nla_put_u32(skb, TCA_FLOW_XOR, f->xor)) 642 goto nla_put_failure; 643 } 644 if (f->rshift && 645 nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift)) 646 goto nla_put_failure; 647 if (f->addend && 648 nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend)) 649 goto nla_put_failure; 650 651 if (f->divisor && 652 nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor)) 653 goto nla_put_failure; 654 if (f->baseclass && 655 nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass)) 656 goto nla_put_failure; 657 658 if (f->perturb_period && 659 nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ)) 660 goto nla_put_failure; 661 662 if (tcf_exts_dump(skb, &f->exts) < 0) 663 goto nla_put_failure; 664 #ifdef CONFIG_NET_EMATCH 665 if (f->ematches.hdr.nmatches && 666 tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0) 667 goto nla_put_failure; 668 #endif 669 nla_nest_end(skb, nest); 670 671 if (tcf_exts_dump_stats(skb, &f->exts) < 0) 672 goto nla_put_failure; 673 674 return skb->len; 675 676 nla_put_failure: 677 nla_nest_cancel(skb, nest); 678 return -1; 679 } 680 681 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg, 682 bool rtnl_held) 683 { 684 struct flow_head *head = rtnl_dereference(tp->root); 685 struct flow_filter *f; 686 687 list_for_each_entry(f, &head->filters, list) { 688 if (!tc_cls_stats_dump(tp, arg, f)) 689 break; 690 } 691 } 692 693 static struct tcf_proto_ops cls_flow_ops __read_mostly = { 694 .kind = "flow", 695 .classify = flow_classify, 696 .init = flow_init, 697 .destroy = flow_destroy, 698 .change = flow_change, 699 .delete = flow_delete, 700 .get = flow_get, 701 .dump = flow_dump, 702 .walk = flow_walk, 703 .owner = THIS_MODULE, 704 }; 705 MODULE_ALIAS_NET_CLS("flow"); 706 707 static int __init cls_flow_init(void) 708 { 709 return register_tcf_proto_ops(&cls_flow_ops); 710 } 711 712 static void __exit cls_flow_exit(void) 713 { 714 unregister_tcf_proto_ops(&cls_flow_ops); 715 } 716 717 module_init(cls_flow_init); 718 module_exit(cls_flow_exit); 719 720 MODULE_LICENSE("GPL"); 721 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>"); 722 MODULE_DESCRIPTION("TC flow classifier"); 723
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.