1 /* 2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net> 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 2 7 * of the License, or (at your option) any later version. 8 * 9 * 2003-10-17 - Ported from altq 10 */ 11 /* 12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved. 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation is hereby granted (including for commercial or 16 * for-profit use), provided that both the copyright notice and this 17 * permission notice appear in all copies of the software, derivative 18 * works, or modified versions, and any portions thereof. 19 * 20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF 21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS 22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED 23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 33 * DAMAGE. 34 * 35 * Carnegie Mellon encourages (but does not require) users of this 36 * software to return any improvements or extensions that they make, 37 * and to grant Carnegie Mellon the rights to redistribute these 38 * changes without encumbrance. 39 */ 40 /* 41 * H-FSC is described in Proceedings of SIGCOMM'97, 42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing, 43 * Real-Time and Priority Service" 44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng. 45 * 46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing. 47 * when a class has an upperlimit, the fit-time is computed from the 48 * upperlimit service curve. the link-sharing scheduler does not schedule 49 * a class whose fit-time exceeds the current time. 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/types.h> 55 #include <linux/errno.h> 56 #include <linux/compiler.h> 57 #include <linux/spinlock.h> 58 #include <linux/skbuff.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/list.h> 62 #include <linux/rbtree.h> 63 #include <linux/init.h> 64 #include <linux/rtnetlink.h> 65 #include <linux/pkt_sched.h> 66 #include <net/netlink.h> 67 #include <net/pkt_sched.h> 68 #include <net/pkt_cls.h> 69 #include <asm/div64.h> 70 71 /* 72 * kernel internal service curve representation: 73 * coordinates are given by 64 bit unsigned integers. 74 * x-axis: unit is clock count. 75 * y-axis: unit is byte. 76 * 77 * The service curve parameters are converted to the internal 78 * representation. The slope values are scaled to avoid overflow. 79 * the inverse slope values as well as the y-projection of the 1st 80 * segment are kept in order to avoid 64-bit divide operations 81 * that are expensive on 32-bit architectures. 82 */ 83 84 struct internal_sc { 85 u64 sm1; /* scaled slope of the 1st segment */ 86 u64 ism1; /* scaled inverse-slope of the 1st segment */ 87 u64 dx; /* the x-projection of the 1st segment */ 88 u64 dy; /* the y-projection of the 1st segment */ 89 u64 sm2; /* scaled slope of the 2nd segment */ 90 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 91 }; 92 93 /* runtime service curve */ 94 struct runtime_sc { 95 u64 x; /* current starting position on x-axis */ 96 u64 y; /* current starting position on y-axis */ 97 u64 sm1; /* scaled slope of the 1st segment */ 98 u64 ism1; /* scaled inverse-slope of the 1st segment */ 99 u64 dx; /* the x-projection of the 1st segment */ 100 u64 dy; /* the y-projection of the 1st segment */ 101 u64 sm2; /* scaled slope of the 2nd segment */ 102 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 103 }; 104 105 enum hfsc_class_flags { 106 HFSC_RSC = 0x1, 107 HFSC_FSC = 0x2, 108 HFSC_USC = 0x4 109 }; 110 111 struct hfsc_class { 112 struct Qdisc_class_common cl_common; 113 114 struct gnet_stats_basic_sync bstats; 115 struct gnet_stats_queue qstats; 116 struct net_rate_estimator __rcu *rate_est; 117 struct tcf_proto __rcu *filter_list; /* filter list */ 118 struct tcf_block *block; 119 unsigned int level; /* class level in hierarchy */ 120 121 struct hfsc_sched *sched; /* scheduler data */ 122 struct hfsc_class *cl_parent; /* parent class */ 123 struct list_head siblings; /* sibling classes */ 124 struct list_head children; /* child classes */ 125 struct Qdisc *qdisc; /* leaf qdisc */ 126 127 struct rb_node el_node; /* qdisc's eligible tree member */ 128 struct rb_root vt_tree; /* active children sorted by cl_vt */ 129 struct rb_node vt_node; /* parent's vt_tree member */ 130 struct rb_root cf_tree; /* active children sorted by cl_f */ 131 struct rb_node cf_node; /* parent's cf_heap member */ 132 133 u64 cl_total; /* total work in bytes */ 134 u64 cl_cumul; /* cumulative work in bytes done by 135 real-time criteria */ 136 137 u64 cl_d; /* deadline*/ 138 u64 cl_e; /* eligible time */ 139 u64 cl_vt; /* virtual time */ 140 u64 cl_f; /* time when this class will fit for 141 link-sharing, max(myf, cfmin) */ 142 u64 cl_myf; /* my fit-time (calculated from this 143 class's own upperlimit curve) */ 144 u64 cl_cfmin; /* earliest children's fit-time (used 145 with cl_myf to obtain cl_f) */ 146 u64 cl_cvtmin; /* minimal virtual time among the 147 children fit for link-sharing 148 (monotonic within a period) */ 149 u64 cl_vtadj; /* intra-period cumulative vt 150 adjustment */ 151 u64 cl_cvtoff; /* largest virtual time seen among 152 the children */ 153 154 struct internal_sc cl_rsc; /* internal real-time service curve */ 155 struct internal_sc cl_fsc; /* internal fair service curve */ 156 struct internal_sc cl_usc; /* internal upperlimit service curve */ 157 struct runtime_sc cl_deadline; /* deadline curve */ 158 struct runtime_sc cl_eligible; /* eligible curve */ 159 struct runtime_sc cl_virtual; /* virtual curve */ 160 struct runtime_sc cl_ulimit; /* upperlimit curve */ 161 162 u8 cl_flags; /* which curves are valid */ 163 u32 cl_vtperiod; /* vt period sequence number */ 164 u32 cl_parentperiod;/* parent's vt period sequence number*/ 165 u32 cl_nactive; /* number of active children */ 166 }; 167 168 struct hfsc_sched { 169 u16 defcls; /* default class id */ 170 struct hfsc_class root; /* root class */ 171 struct Qdisc_class_hash clhash; /* class hash */ 172 struct rb_root eligible; /* eligible tree */ 173 struct qdisc_watchdog watchdog; /* watchdog timer */ 174 }; 175 176 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */ 177 178 179 /* 180 * eligible tree holds backlogged classes being sorted by their eligible times. 181 * there is one eligible tree per hfsc instance. 182 */ 183 184 static void 185 eltree_insert(struct hfsc_class *cl) 186 { 187 struct rb_node **p = &cl->sched->eligible.rb_node; 188 struct rb_node *parent = NULL; 189 struct hfsc_class *cl1; 190 191 while (*p != NULL) { 192 parent = *p; 193 cl1 = rb_entry(parent, struct hfsc_class, el_node); 194 if (cl->cl_e >= cl1->cl_e) 195 p = &parent->rb_right; 196 else 197 p = &parent->rb_left; 198 } 199 rb_link_node(&cl->el_node, parent, p); 200 rb_insert_color(&cl->el_node, &cl->sched->eligible); 201 } 202 203 static inline void 204 eltree_remove(struct hfsc_class *cl) 205 { 206 rb_erase(&cl->el_node, &cl->sched->eligible); 207 } 208 209 static inline void 210 eltree_update(struct hfsc_class *cl) 211 { 212 eltree_remove(cl); 213 eltree_insert(cl); 214 } 215 216 /* find the class with the minimum deadline among the eligible classes */ 217 static inline struct hfsc_class * 218 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time) 219 { 220 struct hfsc_class *p, *cl = NULL; 221 struct rb_node *n; 222 223 for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) { 224 p = rb_entry(n, struct hfsc_class, el_node); 225 if (p->cl_e > cur_time) 226 break; 227 if (cl == NULL || p->cl_d < cl->cl_d) 228 cl = p; 229 } 230 return cl; 231 } 232 233 /* find the class with minimum eligible time among the eligible classes */ 234 static inline struct hfsc_class * 235 eltree_get_minel(struct hfsc_sched *q) 236 { 237 struct rb_node *n; 238 239 n = rb_first(&q->eligible); 240 if (n == NULL) 241 return NULL; 242 return rb_entry(n, struct hfsc_class, el_node); 243 } 244 245 /* 246 * vttree holds holds backlogged child classes being sorted by their virtual 247 * time. each intermediate class has one vttree. 248 */ 249 static void 250 vttree_insert(struct hfsc_class *cl) 251 { 252 struct rb_node **p = &cl->cl_parent->vt_tree.rb_node; 253 struct rb_node *parent = NULL; 254 struct hfsc_class *cl1; 255 256 while (*p != NULL) { 257 parent = *p; 258 cl1 = rb_entry(parent, struct hfsc_class, vt_node); 259 if (cl->cl_vt >= cl1->cl_vt) 260 p = &parent->rb_right; 261 else 262 p = &parent->rb_left; 263 } 264 rb_link_node(&cl->vt_node, parent, p); 265 rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree); 266 } 267 268 static inline void 269 vttree_remove(struct hfsc_class *cl) 270 { 271 rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree); 272 } 273 274 static inline void 275 vttree_update(struct hfsc_class *cl) 276 { 277 vttree_remove(cl); 278 vttree_insert(cl); 279 } 280 281 static inline struct hfsc_class * 282 vttree_firstfit(struct hfsc_class *cl, u64 cur_time) 283 { 284 struct hfsc_class *p; 285 struct rb_node *n; 286 287 for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) { 288 p = rb_entry(n, struct hfsc_class, vt_node); 289 if (p->cl_f <= cur_time) 290 return p; 291 } 292 return NULL; 293 } 294 295 /* 296 * get the leaf class with the minimum vt in the hierarchy 297 */ 298 static struct hfsc_class * 299 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time) 300 { 301 /* if root-class's cfmin is bigger than cur_time nothing to do */ 302 if (cl->cl_cfmin > cur_time) 303 return NULL; 304 305 while (cl->level > 0) { 306 cl = vttree_firstfit(cl, cur_time); 307 if (cl == NULL) 308 return NULL; 309 /* 310 * update parent's cl_cvtmin. 311 */ 312 if (cl->cl_parent->cl_cvtmin < cl->cl_vt) 313 cl->cl_parent->cl_cvtmin = cl->cl_vt; 314 } 315 return cl; 316 } 317 318 static void 319 cftree_insert(struct hfsc_class *cl) 320 { 321 struct rb_node **p = &cl->cl_parent->cf_tree.rb_node; 322 struct rb_node *parent = NULL; 323 struct hfsc_class *cl1; 324 325 while (*p != NULL) { 326 parent = *p; 327 cl1 = rb_entry(parent, struct hfsc_class, cf_node); 328 if (cl->cl_f >= cl1->cl_f) 329 p = &parent->rb_right; 330 else 331 p = &parent->rb_left; 332 } 333 rb_link_node(&cl->cf_node, parent, p); 334 rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree); 335 } 336 337 static inline void 338 cftree_remove(struct hfsc_class *cl) 339 { 340 rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree); 341 } 342 343 static inline void 344 cftree_update(struct hfsc_class *cl) 345 { 346 cftree_remove(cl); 347 cftree_insert(cl); 348 } 349 350 /* 351 * service curve support functions 352 * 353 * external service curve parameters 354 * m: bps 355 * d: us 356 * internal service curve parameters 357 * sm: (bytes/psched_us) << SM_SHIFT 358 * ism: (psched_us/byte) << ISM_SHIFT 359 * dx: psched_us 360 * 361 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us. 362 * 363 * sm and ism are scaled in order to keep effective digits. 364 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective 365 * digits in decimal using the following table. 366 * 367 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps 368 * ------------+------------------------------------------------------- 369 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3 370 * 371 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125 372 * 373 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18. 374 */ 375 #define SM_SHIFT (30 - PSCHED_SHIFT) 376 #define ISM_SHIFT (8 + PSCHED_SHIFT) 377 378 #define SM_MASK ((1ULL << SM_SHIFT) - 1) 379 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1) 380 381 static inline u64 382 seg_x2y(u64 x, u64 sm) 383 { 384 u64 y; 385 386 /* 387 * compute 388 * y = x * sm >> SM_SHIFT 389 * but divide it for the upper and lower bits to avoid overflow 390 */ 391 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT); 392 return y; 393 } 394 395 static inline u64 396 seg_y2x(u64 y, u64 ism) 397 { 398 u64 x; 399 400 if (y == 0) 401 x = 0; 402 else if (ism == HT_INFINITY) 403 x = HT_INFINITY; 404 else { 405 x = (y >> ISM_SHIFT) * ism 406 + (((y & ISM_MASK) * ism) >> ISM_SHIFT); 407 } 408 return x; 409 } 410 411 /* Convert m (bps) into sm (bytes/psched us) */ 412 static u64 413 m2sm(u32 m) 414 { 415 u64 sm; 416 417 sm = ((u64)m << SM_SHIFT); 418 sm += PSCHED_TICKS_PER_SEC - 1; 419 do_div(sm, PSCHED_TICKS_PER_SEC); 420 return sm; 421 } 422 423 /* convert m (bps) into ism (psched us/byte) */ 424 static u64 425 m2ism(u32 m) 426 { 427 u64 ism; 428 429 if (m == 0) 430 ism = HT_INFINITY; 431 else { 432 ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT); 433 ism += m - 1; 434 do_div(ism, m); 435 } 436 return ism; 437 } 438 439 /* convert d (us) into dx (psched us) */ 440 static u64 441 d2dx(u32 d) 442 { 443 u64 dx; 444 445 dx = ((u64)d * PSCHED_TICKS_PER_SEC); 446 dx += USEC_PER_SEC - 1; 447 do_div(dx, USEC_PER_SEC); 448 return dx; 449 } 450 451 /* convert sm (bytes/psched us) into m (bps) */ 452 static u32 453 sm2m(u64 sm) 454 { 455 u64 m; 456 457 m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT; 458 return (u32)m; 459 } 460 461 /* convert dx (psched us) into d (us) */ 462 static u32 463 dx2d(u64 dx) 464 { 465 u64 d; 466 467 d = dx * USEC_PER_SEC; 468 do_div(d, PSCHED_TICKS_PER_SEC); 469 return (u32)d; 470 } 471 472 static void 473 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc) 474 { 475 isc->sm1 = m2sm(sc->m1); 476 isc->ism1 = m2ism(sc->m1); 477 isc->dx = d2dx(sc->d); 478 isc->dy = seg_x2y(isc->dx, isc->sm1); 479 isc->sm2 = m2sm(sc->m2); 480 isc->ism2 = m2ism(sc->m2); 481 } 482 483 /* 484 * initialize the runtime service curve with the given internal 485 * service curve starting at (x, y). 486 */ 487 static void 488 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 489 { 490 rtsc->x = x; 491 rtsc->y = y; 492 rtsc->sm1 = isc->sm1; 493 rtsc->ism1 = isc->ism1; 494 rtsc->dx = isc->dx; 495 rtsc->dy = isc->dy; 496 rtsc->sm2 = isc->sm2; 497 rtsc->ism2 = isc->ism2; 498 } 499 500 /* 501 * calculate the y-projection of the runtime service curve by the 502 * given x-projection value 503 */ 504 static u64 505 rtsc_y2x(struct runtime_sc *rtsc, u64 y) 506 { 507 u64 x; 508 509 if (y < rtsc->y) 510 x = rtsc->x; 511 else if (y <= rtsc->y + rtsc->dy) { 512 /* x belongs to the 1st segment */ 513 if (rtsc->dy == 0) 514 x = rtsc->x + rtsc->dx; 515 else 516 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1); 517 } else { 518 /* x belongs to the 2nd segment */ 519 x = rtsc->x + rtsc->dx 520 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2); 521 } 522 return x; 523 } 524 525 static u64 526 rtsc_x2y(struct runtime_sc *rtsc, u64 x) 527 { 528 u64 y; 529 530 if (x <= rtsc->x) 531 y = rtsc->y; 532 else if (x <= rtsc->x + rtsc->dx) 533 /* y belongs to the 1st segment */ 534 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1); 535 else 536 /* y belongs to the 2nd segment */ 537 y = rtsc->y + rtsc->dy 538 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2); 539 return y; 540 } 541 542 /* 543 * update the runtime service curve by taking the minimum of the current 544 * runtime service curve and the service curve starting at (x, y). 545 */ 546 static void 547 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 548 { 549 u64 y1, y2, dx, dy; 550 u32 dsm; 551 552 if (isc->sm1 <= isc->sm2) { 553 /* service curve is convex */ 554 y1 = rtsc_x2y(rtsc, x); 555 if (y1 < y) 556 /* the current rtsc is smaller */ 557 return; 558 rtsc->x = x; 559 rtsc->y = y; 560 return; 561 } 562 563 /* 564 * service curve is concave 565 * compute the two y values of the current rtsc 566 * y1: at x 567 * y2: at (x + dx) 568 */ 569 y1 = rtsc_x2y(rtsc, x); 570 if (y1 <= y) { 571 /* rtsc is below isc, no change to rtsc */ 572 return; 573 } 574 575 y2 = rtsc_x2y(rtsc, x + isc->dx); 576 if (y2 >= y + isc->dy) { 577 /* rtsc is above isc, replace rtsc by isc */ 578 rtsc->x = x; 579 rtsc->y = y; 580 rtsc->dx = isc->dx; 581 rtsc->dy = isc->dy; 582 return; 583 } 584 585 /* 586 * the two curves intersect 587 * compute the offsets (dx, dy) using the reverse 588 * function of seg_x2y() 589 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y) 590 */ 591 dx = (y1 - y) << SM_SHIFT; 592 dsm = isc->sm1 - isc->sm2; 593 do_div(dx, dsm); 594 /* 595 * check if (x, y1) belongs to the 1st segment of rtsc. 596 * if so, add the offset. 597 */ 598 if (rtsc->x + rtsc->dx > x) 599 dx += rtsc->x + rtsc->dx - x; 600 dy = seg_x2y(dx, isc->sm1); 601 602 rtsc->x = x; 603 rtsc->y = y; 604 rtsc->dx = dx; 605 rtsc->dy = dy; 606 } 607 608 static void 609 init_ed(struct hfsc_class *cl, unsigned int next_len) 610 { 611 u64 cur_time = psched_get_time(); 612 613 /* update the deadline curve */ 614 rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 615 616 /* 617 * update the eligible curve. 618 * for concave, it is equal to the deadline curve. 619 * for convex, it is a linear curve with slope m2. 620 */ 621 cl->cl_eligible = cl->cl_deadline; 622 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 623 cl->cl_eligible.dx = 0; 624 cl->cl_eligible.dy = 0; 625 } 626 627 /* compute e and d */ 628 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 629 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 630 631 eltree_insert(cl); 632 } 633 634 static void 635 update_ed(struct hfsc_class *cl, unsigned int next_len) 636 { 637 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 638 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 639 640 eltree_update(cl); 641 } 642 643 static inline void 644 update_d(struct hfsc_class *cl, unsigned int next_len) 645 { 646 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 647 } 648 649 static inline void 650 update_cfmin(struct hfsc_class *cl) 651 { 652 struct rb_node *n = rb_first(&cl->cf_tree); 653 struct hfsc_class *p; 654 655 if (n == NULL) { 656 cl->cl_cfmin = 0; 657 return; 658 } 659 p = rb_entry(n, struct hfsc_class, cf_node); 660 cl->cl_cfmin = p->cl_f; 661 } 662 663 static void 664 init_vf(struct hfsc_class *cl, unsigned int len) 665 { 666 struct hfsc_class *max_cl; 667 struct rb_node *n; 668 u64 vt, f, cur_time; 669 int go_active; 670 671 cur_time = 0; 672 go_active = 1; 673 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 674 if (go_active && cl->cl_nactive++ == 0) 675 go_active = 1; 676 else 677 go_active = 0; 678 679 if (go_active) { 680 n = rb_last(&cl->cl_parent->vt_tree); 681 if (n != NULL) { 682 max_cl = rb_entry(n, struct hfsc_class, vt_node); 683 /* 684 * set vt to the average of the min and max 685 * classes. if the parent's period didn't 686 * change, don't decrease vt of the class. 687 */ 688 vt = max_cl->cl_vt; 689 if (cl->cl_parent->cl_cvtmin != 0) 690 vt = (cl->cl_parent->cl_cvtmin + vt)/2; 691 692 if (cl->cl_parent->cl_vtperiod != 693 cl->cl_parentperiod || vt > cl->cl_vt) 694 cl->cl_vt = vt; 695 } else { 696 /* 697 * first child for a new parent backlog period. 698 * initialize cl_vt to the highest value seen 699 * among the siblings. this is analogous to 700 * what cur_time would provide in realtime case. 701 */ 702 cl->cl_vt = cl->cl_parent->cl_cvtoff; 703 cl->cl_parent->cl_cvtmin = 0; 704 } 705 706 /* update the virtual curve */ 707 rtsc_min(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total); 708 cl->cl_vtadj = 0; 709 710 cl->cl_vtperiod++; /* increment vt period */ 711 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod; 712 if (cl->cl_parent->cl_nactive == 0) 713 cl->cl_parentperiod++; 714 cl->cl_f = 0; 715 716 vttree_insert(cl); 717 cftree_insert(cl); 718 719 if (cl->cl_flags & HFSC_USC) { 720 /* class has upper limit curve */ 721 if (cur_time == 0) 722 cur_time = psched_get_time(); 723 724 /* update the ulimit curve */ 725 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time, 726 cl->cl_total); 727 /* compute myf */ 728 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, 729 cl->cl_total); 730 } 731 } 732 733 f = max(cl->cl_myf, cl->cl_cfmin); 734 if (f != cl->cl_f) { 735 cl->cl_f = f; 736 cftree_update(cl); 737 } 738 update_cfmin(cl->cl_parent); 739 } 740 } 741 742 static void 743 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time) 744 { 745 u64 f; /* , myf_bound, delta; */ 746 int go_passive = 0; 747 748 if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC) 749 go_passive = 1; 750 751 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 752 cl->cl_total += len; 753 754 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0) 755 continue; 756 757 if (go_passive && --cl->cl_nactive == 0) 758 go_passive = 1; 759 else 760 go_passive = 0; 761 762 /* update vt */ 763 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) + cl->cl_vtadj; 764 765 /* 766 * if vt of the class is smaller than cvtmin, 767 * the class was skipped in the past due to non-fit. 768 * if so, we need to adjust vtadj. 769 */ 770 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) { 771 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt; 772 cl->cl_vt = cl->cl_parent->cl_cvtmin; 773 } 774 775 if (go_passive) { 776 /* no more active child, going passive */ 777 778 /* update cvtoff of the parent class */ 779 if (cl->cl_vt > cl->cl_parent->cl_cvtoff) 780 cl->cl_parent->cl_cvtoff = cl->cl_vt; 781 782 /* remove this class from the vt tree */ 783 vttree_remove(cl); 784 785 cftree_remove(cl); 786 update_cfmin(cl->cl_parent); 787 788 continue; 789 } 790 791 /* update the vt tree */ 792 vttree_update(cl); 793 794 /* update f */ 795 if (cl->cl_flags & HFSC_USC) { 796 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, cl->cl_total); 797 #if 0 798 cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit, 799 cl->cl_total); 800 /* 801 * This code causes classes to stay way under their 802 * limit when multiple classes are used at gigabit 803 * speed. needs investigation. -kaber 804 */ 805 /* 806 * if myf lags behind by more than one clock tick 807 * from the current time, adjust myfadj to prevent 808 * a rate-limited class from going greedy. 809 * in a steady state under rate-limiting, myf 810 * fluctuates within one clock tick. 811 */ 812 myf_bound = cur_time - PSCHED_JIFFIE2US(1); 813 if (cl->cl_myf < myf_bound) { 814 delta = cur_time - cl->cl_myf; 815 cl->cl_myfadj += delta; 816 cl->cl_myf += delta; 817 } 818 #endif 819 } 820 821 f = max(cl->cl_myf, cl->cl_cfmin); 822 if (f != cl->cl_f) { 823 cl->cl_f = f; 824 cftree_update(cl); 825 update_cfmin(cl->cl_parent); 826 } 827 } 828 } 829 830 static unsigned int 831 qdisc_peek_len(struct Qdisc *sch) 832 { 833 struct sk_buff *skb; 834 unsigned int len; 835 836 skb = sch->ops->peek(sch); 837 if (unlikely(skb == NULL)) { 838 qdisc_warn_nonwc("qdisc_peek_len", sch); 839 return 0; 840 } 841 len = qdisc_pkt_len(skb); 842 843 return len; 844 } 845 846 static void 847 hfsc_adjust_levels(struct hfsc_class *cl) 848 { 849 struct hfsc_class *p; 850 unsigned int level; 851 852 do { 853 level = 0; 854 list_for_each_entry(p, &cl->children, siblings) { 855 if (p->level >= level) 856 level = p->level + 1; 857 } 858 cl->level = level; 859 } while ((cl = cl->cl_parent) != NULL); 860 } 861 862 static inline struct hfsc_class * 863 hfsc_find_class(u32 classid, struct Qdisc *sch) 864 { 865 struct hfsc_sched *q = qdisc_priv(sch); 866 struct Qdisc_class_common *clc; 867 868 clc = qdisc_class_find(&q->clhash, classid); 869 if (clc == NULL) 870 return NULL; 871 return container_of(clc, struct hfsc_class, cl_common); 872 } 873 874 static void 875 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc, 876 u64 cur_time) 877 { 878 sc2isc(rsc, &cl->cl_rsc); 879 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 880 cl->cl_eligible = cl->cl_deadline; 881 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 882 cl->cl_eligible.dx = 0; 883 cl->cl_eligible.dy = 0; 884 } 885 cl->cl_flags |= HFSC_RSC; 886 } 887 888 static void 889 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc) 890 { 891 sc2isc(fsc, &cl->cl_fsc); 892 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total); 893 cl->cl_flags |= HFSC_FSC; 894 } 895 896 static void 897 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc, 898 u64 cur_time) 899 { 900 sc2isc(usc, &cl->cl_usc); 901 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total); 902 cl->cl_flags |= HFSC_USC; 903 } 904 905 static void 906 hfsc_upgrade_rt(struct hfsc_class *cl) 907 { 908 cl->cl_fsc = cl->cl_rsc; 909 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total); 910 cl->cl_flags |= HFSC_FSC; 911 } 912 913 static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = { 914 [TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) }, 915 [TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) }, 916 [TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) }, 917 }; 918 919 static int 920 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 921 struct nlattr **tca, unsigned long *arg, 922 struct netlink_ext_ack *extack) 923 { 924 struct hfsc_sched *q = qdisc_priv(sch); 925 struct hfsc_class *cl = (struct hfsc_class *)*arg; 926 struct hfsc_class *parent = NULL; 927 struct nlattr *opt = tca[TCA_OPTIONS]; 928 struct nlattr *tb[TCA_HFSC_MAX + 1]; 929 struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL; 930 u64 cur_time; 931 int err; 932 933 if (opt == NULL) 934 return -EINVAL; 935 936 err = nla_parse_nested_deprecated(tb, TCA_HFSC_MAX, opt, hfsc_policy, 937 NULL); 938 if (err < 0) 939 return err; 940 941 if (tb[TCA_HFSC_RSC]) { 942 rsc = nla_data(tb[TCA_HFSC_RSC]); 943 if (rsc->m1 == 0 && rsc->m2 == 0) 944 rsc = NULL; 945 } 946 947 if (tb[TCA_HFSC_FSC]) { 948 fsc = nla_data(tb[TCA_HFSC_FSC]); 949 if (fsc->m1 == 0 && fsc->m2 == 0) 950 fsc = NULL; 951 } 952 953 if (tb[TCA_HFSC_USC]) { 954 usc = nla_data(tb[TCA_HFSC_USC]); 955 if (usc->m1 == 0 && usc->m2 == 0) 956 usc = NULL; 957 } 958 959 if (cl != NULL) { 960 int old_flags; 961 962 if (parentid) { 963 if (cl->cl_parent && 964 cl->cl_parent->cl_common.classid != parentid) 965 return -EINVAL; 966 if (cl->cl_parent == NULL && parentid != TC_H_ROOT) 967 return -EINVAL; 968 } 969 cur_time = psched_get_time(); 970 971 if (tca[TCA_RATE]) { 972 err = gen_replace_estimator(&cl->bstats, NULL, 973 &cl->rate_est, 974 NULL, 975 true, 976 tca[TCA_RATE]); 977 if (err) 978 return err; 979 } 980 981 sch_tree_lock(sch); 982 old_flags = cl->cl_flags; 983 984 if (rsc != NULL) 985 hfsc_change_rsc(cl, rsc, cur_time); 986 if (fsc != NULL) 987 hfsc_change_fsc(cl, fsc); 988 if (usc != NULL) 989 hfsc_change_usc(cl, usc, cur_time); 990 991 if (cl->qdisc->q.qlen != 0) { 992 int len = qdisc_peek_len(cl->qdisc); 993 994 if (cl->cl_flags & HFSC_RSC) { 995 if (old_flags & HFSC_RSC) 996 update_ed(cl, len); 997 else 998 init_ed(cl, len); 999 } 1000 1001 if (cl->cl_flags & HFSC_FSC) { 1002 if (old_flags & HFSC_FSC) 1003 update_vf(cl, 0, cur_time); 1004 else 1005 init_vf(cl, len); 1006 } 1007 } 1008 sch_tree_unlock(sch); 1009 1010 return 0; 1011 } 1012 1013 if (parentid == TC_H_ROOT) 1014 return -EEXIST; 1015 1016 parent = &q->root; 1017 if (parentid) { 1018 parent = hfsc_find_class(parentid, sch); 1019 if (parent == NULL) 1020 return -ENOENT; 1021 } 1022 1023 if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0) 1024 return -EINVAL; 1025 if (hfsc_find_class(classid, sch)) 1026 return -EEXIST; 1027 1028 if (rsc == NULL && fsc == NULL) 1029 return -EINVAL; 1030 1031 cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL); 1032 if (cl == NULL) 1033 return -ENOBUFS; 1034 1035 err = tcf_block_get(&cl->block, &cl->filter_list, sch, extack); 1036 if (err) { 1037 kfree(cl); 1038 return err; 1039 } 1040 1041 if (tca[TCA_RATE]) { 1042 err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est, 1043 NULL, true, tca[TCA_RATE]); 1044 if (err) { 1045 tcf_block_put(cl->block); 1046 kfree(cl); 1047 return err; 1048 } 1049 } 1050 1051 if (rsc != NULL) 1052 hfsc_change_rsc(cl, rsc, 0); 1053 if (fsc != NULL) 1054 hfsc_change_fsc(cl, fsc); 1055 if (usc != NULL) 1056 hfsc_change_usc(cl, usc, 0); 1057 1058 cl->cl_common.classid = classid; 1059 cl->sched = q; 1060 cl->cl_parent = parent; 1061 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1062 classid, NULL); 1063 if (cl->qdisc == NULL) 1064 cl->qdisc = &noop_qdisc; 1065 else 1066 qdisc_hash_add(cl->qdisc, true); 1067 INIT_LIST_HEAD(&cl->children); 1068 cl->vt_tree = RB_ROOT; 1069 cl->cf_tree = RB_ROOT; 1070 1071 sch_tree_lock(sch); 1072 /* Check if the inner class is a misconfigured 'rt' */ 1073 if (!(parent->cl_flags & HFSC_FSC) && parent != &q->root) { 1074 NL_SET_ERR_MSG(extack, 1075 "Forced curve change on parent 'rt' to 'sc'"); 1076 hfsc_upgrade_rt(parent); 1077 } 1078 qdisc_class_hash_insert(&q->clhash, &cl->cl_common); 1079 list_add_tail(&cl->siblings, &parent->children); 1080 if (parent->level == 0) 1081 qdisc_purge_queue(parent->qdisc); 1082 hfsc_adjust_levels(parent); 1083 sch_tree_unlock(sch); 1084 1085 qdisc_class_hash_grow(sch, &q->clhash); 1086 1087 *arg = (unsigned long)cl; 1088 return 0; 1089 } 1090 1091 static void 1092 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl) 1093 { 1094 struct hfsc_sched *q = qdisc_priv(sch); 1095 1096 tcf_block_put(cl->block); 1097 qdisc_put(cl->qdisc); 1098 gen_kill_estimator(&cl->rate_est); 1099 if (cl != &q->root) 1100 kfree(cl); 1101 } 1102 1103 static int 1104 hfsc_delete_class(struct Qdisc *sch, unsigned long arg, 1105 struct netlink_ext_ack *extack) 1106 { 1107 struct hfsc_sched *q = qdisc_priv(sch); 1108 struct hfsc_class *cl = (struct hfsc_class *)arg; 1109 1110 if (cl->level > 0 || qdisc_class_in_use(&cl->cl_common) || 1111 cl == &q->root) { 1112 NL_SET_ERR_MSG(extack, "HFSC class in use"); 1113 return -EBUSY; 1114 } 1115 1116 sch_tree_lock(sch); 1117 1118 list_del(&cl->siblings); 1119 hfsc_adjust_levels(cl->cl_parent); 1120 1121 qdisc_purge_queue(cl->qdisc); 1122 qdisc_class_hash_remove(&q->clhash, &cl->cl_common); 1123 1124 sch_tree_unlock(sch); 1125 1126 hfsc_destroy_class(sch, cl); 1127 return 0; 1128 } 1129 1130 static struct hfsc_class * 1131 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) 1132 { 1133 struct hfsc_sched *q = qdisc_priv(sch); 1134 struct hfsc_class *head, *cl; 1135 struct tcf_result res; 1136 struct tcf_proto *tcf; 1137 int result; 1138 1139 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 && 1140 (cl = hfsc_find_class(skb->priority, sch)) != NULL) 1141 if (cl->level == 0) 1142 return cl; 1143 1144 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 1145 head = &q->root; 1146 tcf = rcu_dereference_bh(q->root.filter_list); 1147 while (tcf && (result = tcf_classify(skb, NULL, tcf, &res, false)) >= 0) { 1148 #ifdef CONFIG_NET_CLS_ACT 1149 switch (result) { 1150 case TC_ACT_QUEUED: 1151 case TC_ACT_STOLEN: 1152 case TC_ACT_TRAP: 1153 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 1154 fallthrough; 1155 case TC_ACT_SHOT: 1156 return NULL; 1157 } 1158 #endif 1159 cl = (struct hfsc_class *)res.class; 1160 if (!cl) { 1161 cl = hfsc_find_class(res.classid, sch); 1162 if (!cl) 1163 break; /* filter selected invalid classid */ 1164 if (cl->level >= head->level) 1165 break; /* filter may only point downwards */ 1166 } 1167 1168 if (cl->level == 0) 1169 return cl; /* hit leaf class */ 1170 1171 /* apply inner filter chain */ 1172 tcf = rcu_dereference_bh(cl->filter_list); 1173 head = cl; 1174 } 1175 1176 /* classification failed, try default class */ 1177 cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), 1178 READ_ONCE(q->defcls)), sch); 1179 if (cl == NULL || cl->level > 0) 1180 return NULL; 1181 1182 return cl; 1183 } 1184 1185 static int 1186 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1187 struct Qdisc **old, struct netlink_ext_ack *extack) 1188 { 1189 struct hfsc_class *cl = (struct hfsc_class *)arg; 1190 1191 if (cl->level > 0) 1192 return -EINVAL; 1193 if (new == NULL) { 1194 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1195 cl->cl_common.classid, NULL); 1196 if (new == NULL) 1197 new = &noop_qdisc; 1198 } 1199 1200 *old = qdisc_replace(sch, new, &cl->qdisc); 1201 return 0; 1202 } 1203 1204 static struct Qdisc * 1205 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg) 1206 { 1207 struct hfsc_class *cl = (struct hfsc_class *)arg; 1208 1209 if (cl->level == 0) 1210 return cl->qdisc; 1211 1212 return NULL; 1213 } 1214 1215 static void 1216 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg) 1217 { 1218 struct hfsc_class *cl = (struct hfsc_class *)arg; 1219 1220 /* vttree is now handled in update_vf() so that update_vf(cl, 0, 0) 1221 * needs to be called explicitly to remove a class from vttree. 1222 */ 1223 update_vf(cl, 0, 0); 1224 if (cl->cl_flags & HFSC_RSC) 1225 eltree_remove(cl); 1226 } 1227 1228 static unsigned long 1229 hfsc_search_class(struct Qdisc *sch, u32 classid) 1230 { 1231 return (unsigned long)hfsc_find_class(classid, sch); 1232 } 1233 1234 static unsigned long 1235 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid) 1236 { 1237 struct hfsc_class *p = (struct hfsc_class *)parent; 1238 struct hfsc_class *cl = hfsc_find_class(classid, sch); 1239 1240 if (cl != NULL) { 1241 if (p != NULL && p->level <= cl->level) 1242 return 0; 1243 qdisc_class_get(&cl->cl_common); 1244 } 1245 1246 return (unsigned long)cl; 1247 } 1248 1249 static void 1250 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg) 1251 { 1252 struct hfsc_class *cl = (struct hfsc_class *)arg; 1253 1254 qdisc_class_put(&cl->cl_common); 1255 } 1256 1257 static struct tcf_block *hfsc_tcf_block(struct Qdisc *sch, unsigned long arg, 1258 struct netlink_ext_ack *extack) 1259 { 1260 struct hfsc_sched *q = qdisc_priv(sch); 1261 struct hfsc_class *cl = (struct hfsc_class *)arg; 1262 1263 if (cl == NULL) 1264 cl = &q->root; 1265 1266 return cl->block; 1267 } 1268 1269 static int 1270 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc) 1271 { 1272 struct tc_service_curve tsc; 1273 1274 tsc.m1 = sm2m(sc->sm1); 1275 tsc.d = dx2d(sc->dx); 1276 tsc.m2 = sm2m(sc->sm2); 1277 if (nla_put(skb, attr, sizeof(tsc), &tsc)) 1278 goto nla_put_failure; 1279 1280 return skb->len; 1281 1282 nla_put_failure: 1283 return -1; 1284 } 1285 1286 static int 1287 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl) 1288 { 1289 if ((cl->cl_flags & HFSC_RSC) && 1290 (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0)) 1291 goto nla_put_failure; 1292 1293 if ((cl->cl_flags & HFSC_FSC) && 1294 (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0)) 1295 goto nla_put_failure; 1296 1297 if ((cl->cl_flags & HFSC_USC) && 1298 (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0)) 1299 goto nla_put_failure; 1300 1301 return skb->len; 1302 1303 nla_put_failure: 1304 return -1; 1305 } 1306 1307 static int 1308 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb, 1309 struct tcmsg *tcm) 1310 { 1311 struct hfsc_class *cl = (struct hfsc_class *)arg; 1312 struct nlattr *nest; 1313 1314 tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid : 1315 TC_H_ROOT; 1316 tcm->tcm_handle = cl->cl_common.classid; 1317 if (cl->level == 0) 1318 tcm->tcm_info = cl->qdisc->handle; 1319 1320 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1321 if (nest == NULL) 1322 goto nla_put_failure; 1323 if (hfsc_dump_curves(skb, cl) < 0) 1324 goto nla_put_failure; 1325 return nla_nest_end(skb, nest); 1326 1327 nla_put_failure: 1328 nla_nest_cancel(skb, nest); 1329 return -EMSGSIZE; 1330 } 1331 1332 static int 1333 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg, 1334 struct gnet_dump *d) 1335 { 1336 struct hfsc_class *cl = (struct hfsc_class *)arg; 1337 struct tc_hfsc_stats xstats; 1338 __u32 qlen; 1339 1340 qdisc_qstats_qlen_backlog(cl->qdisc, &qlen, &cl->qstats.backlog); 1341 xstats.level = cl->level; 1342 xstats.period = cl->cl_vtperiod; 1343 xstats.work = cl->cl_total; 1344 xstats.rtwork = cl->cl_cumul; 1345 1346 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 || 1347 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 1348 gnet_stats_copy_queue(d, NULL, &cl->qstats, qlen) < 0) 1349 return -1; 1350 1351 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 1352 } 1353 1354 1355 1356 static void 1357 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1358 { 1359 struct hfsc_sched *q = qdisc_priv(sch); 1360 struct hfsc_class *cl; 1361 unsigned int i; 1362 1363 if (arg->stop) 1364 return; 1365 1366 for (i = 0; i < q->clhash.hashsize; i++) { 1367 hlist_for_each_entry(cl, &q->clhash.hash[i], 1368 cl_common.hnode) { 1369 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg)) 1370 return; 1371 } 1372 } 1373 } 1374 1375 static void 1376 hfsc_schedule_watchdog(struct Qdisc *sch) 1377 { 1378 struct hfsc_sched *q = qdisc_priv(sch); 1379 struct hfsc_class *cl; 1380 u64 next_time = 0; 1381 1382 cl = eltree_get_minel(q); 1383 if (cl) 1384 next_time = cl->cl_e; 1385 if (q->root.cl_cfmin != 0) { 1386 if (next_time == 0 || next_time > q->root.cl_cfmin) 1387 next_time = q->root.cl_cfmin; 1388 } 1389 if (next_time) 1390 qdisc_watchdog_schedule(&q->watchdog, next_time); 1391 } 1392 1393 static int 1394 hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt, 1395 struct netlink_ext_ack *extack) 1396 { 1397 struct hfsc_sched *q = qdisc_priv(sch); 1398 struct tc_hfsc_qopt *qopt; 1399 int err; 1400 1401 qdisc_watchdog_init(&q->watchdog, sch); 1402 1403 if (!opt || nla_len(opt) < sizeof(*qopt)) 1404 return -EINVAL; 1405 qopt = nla_data(opt); 1406 1407 q->defcls = qopt->defcls; 1408 err = qdisc_class_hash_init(&q->clhash); 1409 if (err < 0) 1410 return err; 1411 q->eligible = RB_ROOT; 1412 1413 err = tcf_block_get(&q->root.block, &q->root.filter_list, sch, extack); 1414 if (err) 1415 return err; 1416 1417 gnet_stats_basic_sync_init(&q->root.bstats); 1418 q->root.cl_common.classid = sch->handle; 1419 q->root.sched = q; 1420 q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1421 sch->handle, NULL); 1422 if (q->root.qdisc == NULL) 1423 q->root.qdisc = &noop_qdisc; 1424 else 1425 qdisc_hash_add(q->root.qdisc, true); 1426 INIT_LIST_HEAD(&q->root.children); 1427 q->root.vt_tree = RB_ROOT; 1428 q->root.cf_tree = RB_ROOT; 1429 1430 qdisc_class_hash_insert(&q->clhash, &q->root.cl_common); 1431 qdisc_class_hash_grow(sch, &q->clhash); 1432 1433 return 0; 1434 } 1435 1436 static int 1437 hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt, 1438 struct netlink_ext_ack *extack) 1439 { 1440 struct hfsc_sched *q = qdisc_priv(sch); 1441 struct tc_hfsc_qopt *qopt; 1442 1443 if (nla_len(opt) < sizeof(*qopt)) 1444 return -EINVAL; 1445 qopt = nla_data(opt); 1446 1447 WRITE_ONCE(q->defcls, qopt->defcls); 1448 1449 return 0; 1450 } 1451 1452 static void 1453 hfsc_reset_class(struct hfsc_class *cl) 1454 { 1455 cl->cl_total = 0; 1456 cl->cl_cumul = 0; 1457 cl->cl_d = 0; 1458 cl->cl_e = 0; 1459 cl->cl_vt = 0; 1460 cl->cl_vtadj = 0; 1461 cl->cl_cvtmin = 0; 1462 cl->cl_cvtoff = 0; 1463 cl->cl_vtperiod = 0; 1464 cl->cl_parentperiod = 0; 1465 cl->cl_f = 0; 1466 cl->cl_myf = 0; 1467 cl->cl_cfmin = 0; 1468 cl->cl_nactive = 0; 1469 1470 cl->vt_tree = RB_ROOT; 1471 cl->cf_tree = RB_ROOT; 1472 qdisc_reset(cl->qdisc); 1473 1474 if (cl->cl_flags & HFSC_RSC) 1475 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0); 1476 if (cl->cl_flags & HFSC_FSC) 1477 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0); 1478 if (cl->cl_flags & HFSC_USC) 1479 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0); 1480 } 1481 1482 static void 1483 hfsc_reset_qdisc(struct Qdisc *sch) 1484 { 1485 struct hfsc_sched *q = qdisc_priv(sch); 1486 struct hfsc_class *cl; 1487 unsigned int i; 1488 1489 for (i = 0; i < q->clhash.hashsize; i++) { 1490 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) 1491 hfsc_reset_class(cl); 1492 } 1493 q->eligible = RB_ROOT; 1494 qdisc_watchdog_cancel(&q->watchdog); 1495 } 1496 1497 static void 1498 hfsc_destroy_qdisc(struct Qdisc *sch) 1499 { 1500 struct hfsc_sched *q = qdisc_priv(sch); 1501 struct hlist_node *next; 1502 struct hfsc_class *cl; 1503 unsigned int i; 1504 1505 for (i = 0; i < q->clhash.hashsize; i++) { 1506 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) { 1507 tcf_block_put(cl->block); 1508 cl->block = NULL; 1509 } 1510 } 1511 for (i = 0; i < q->clhash.hashsize; i++) { 1512 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1513 cl_common.hnode) 1514 hfsc_destroy_class(sch, cl); 1515 } 1516 qdisc_class_hash_destroy(&q->clhash); 1517 qdisc_watchdog_cancel(&q->watchdog); 1518 } 1519 1520 static int 1521 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb) 1522 { 1523 struct hfsc_sched *q = qdisc_priv(sch); 1524 unsigned char *b = skb_tail_pointer(skb); 1525 struct tc_hfsc_qopt qopt; 1526 1527 qopt.defcls = READ_ONCE(q->defcls); 1528 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) 1529 goto nla_put_failure; 1530 return skb->len; 1531 1532 nla_put_failure: 1533 nlmsg_trim(skb, b); 1534 return -1; 1535 } 1536 1537 static int 1538 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) 1539 { 1540 unsigned int len = qdisc_pkt_len(skb); 1541 struct hfsc_class *cl; 1542 int err; 1543 bool first; 1544 1545 cl = hfsc_classify(skb, sch, &err); 1546 if (cl == NULL) { 1547 if (err & __NET_XMIT_BYPASS) 1548 qdisc_qstats_drop(sch); 1549 __qdisc_drop(skb, to_free); 1550 return err; 1551 } 1552 1553 first = !cl->qdisc->q.qlen; 1554 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1555 if (unlikely(err != NET_XMIT_SUCCESS)) { 1556 if (net_xmit_drop_count(err)) { 1557 cl->qstats.drops++; 1558 qdisc_qstats_drop(sch); 1559 } 1560 return err; 1561 } 1562 1563 if (first) { 1564 if (cl->cl_flags & HFSC_RSC) 1565 init_ed(cl, len); 1566 if (cl->cl_flags & HFSC_FSC) 1567 init_vf(cl, len); 1568 /* 1569 * If this is the first packet, isolate the head so an eventual 1570 * head drop before the first dequeue operation has no chance 1571 * to invalidate the deadline. 1572 */ 1573 if (cl->cl_flags & HFSC_RSC) 1574 cl->qdisc->ops->peek(cl->qdisc); 1575 1576 } 1577 1578 sch->qstats.backlog += len; 1579 sch->q.qlen++; 1580 1581 return NET_XMIT_SUCCESS; 1582 } 1583 1584 static struct sk_buff * 1585 hfsc_dequeue(struct Qdisc *sch) 1586 { 1587 struct hfsc_sched *q = qdisc_priv(sch); 1588 struct hfsc_class *cl; 1589 struct sk_buff *skb; 1590 u64 cur_time; 1591 unsigned int next_len; 1592 int realtime = 0; 1593 1594 if (sch->q.qlen == 0) 1595 return NULL; 1596 1597 cur_time = psched_get_time(); 1598 1599 /* 1600 * if there are eligible classes, use real-time criteria. 1601 * find the class with the minimum deadline among 1602 * the eligible classes. 1603 */ 1604 cl = eltree_get_mindl(q, cur_time); 1605 if (cl) { 1606 realtime = 1; 1607 } else { 1608 /* 1609 * use link-sharing criteria 1610 * get the class with the minimum vt in the hierarchy 1611 */ 1612 cl = vttree_get_minvt(&q->root, cur_time); 1613 if (cl == NULL) { 1614 qdisc_qstats_overlimit(sch); 1615 hfsc_schedule_watchdog(sch); 1616 return NULL; 1617 } 1618 } 1619 1620 skb = qdisc_dequeue_peeked(cl->qdisc); 1621 if (skb == NULL) { 1622 qdisc_warn_nonwc("HFSC", cl->qdisc); 1623 return NULL; 1624 } 1625 1626 bstats_update(&cl->bstats, skb); 1627 update_vf(cl, qdisc_pkt_len(skb), cur_time); 1628 if (realtime) 1629 cl->cl_cumul += qdisc_pkt_len(skb); 1630 1631 if (cl->cl_flags & HFSC_RSC) { 1632 if (cl->qdisc->q.qlen != 0) { 1633 /* update ed */ 1634 next_len = qdisc_peek_len(cl->qdisc); 1635 if (realtime) 1636 update_ed(cl, next_len); 1637 else 1638 update_d(cl, next_len); 1639 } else { 1640 /* the class becomes passive */ 1641 eltree_remove(cl); 1642 } 1643 } 1644 1645 qdisc_bstats_update(sch, skb); 1646 qdisc_qstats_backlog_dec(sch, skb); 1647 sch->q.qlen--; 1648 1649 return skb; 1650 } 1651 1652 static const struct Qdisc_class_ops hfsc_class_ops = { 1653 .change = hfsc_change_class, 1654 .delete = hfsc_delete_class, 1655 .graft = hfsc_graft_class, 1656 .leaf = hfsc_class_leaf, 1657 .qlen_notify = hfsc_qlen_notify, 1658 .find = hfsc_search_class, 1659 .bind_tcf = hfsc_bind_tcf, 1660 .unbind_tcf = hfsc_unbind_tcf, 1661 .tcf_block = hfsc_tcf_block, 1662 .dump = hfsc_dump_class, 1663 .dump_stats = hfsc_dump_class_stats, 1664 .walk = hfsc_walk 1665 }; 1666 1667 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = { 1668 .id = "hfsc", 1669 .init = hfsc_init_qdisc, 1670 .change = hfsc_change_qdisc, 1671 .reset = hfsc_reset_qdisc, 1672 .destroy = hfsc_destroy_qdisc, 1673 .dump = hfsc_dump_qdisc, 1674 .enqueue = hfsc_enqueue, 1675 .dequeue = hfsc_dequeue, 1676 .peek = qdisc_peek_dequeued, 1677 .cl_ops = &hfsc_class_ops, 1678 .priv_size = sizeof(struct hfsc_sched), 1679 .owner = THIS_MODULE 1680 }; 1681 MODULE_ALIAS_NET_SCH("hfsc"); 1682 1683 static int __init 1684 hfsc_init(void) 1685 { 1686 return register_qdisc(&hfsc_qdisc_ops); 1687 } 1688 1689 static void __exit 1690 hfsc_cleanup(void) 1691 { 1692 unregister_qdisc(&hfsc_qdisc_ops); 1693 } 1694 1695 MODULE_LICENSE("GPL"); 1696 MODULE_DESCRIPTION("Hierarchical Fair Service Curve scheduler"); 1697 module_init(hfsc_init); 1698 module_exit(hfsc_cleanup); 1699
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.