~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/sched/sch_hfsc.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
  3  *
  4  * This program is free software; you can redistribute it and/or
  5  * modify it under the terms of the GNU General Public License
  6  * as published by the Free Software Foundation; either version 2
  7  * of the License, or (at your option) any later version.
  8  *
  9  * 2003-10-17 - Ported from altq
 10  */
 11 /*
 12  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
 13  *
 14  * Permission to use, copy, modify, and distribute this software and
 15  * its documentation is hereby granted (including for commercial or
 16  * for-profit use), provided that both the copyright notice and this
 17  * permission notice appear in all copies of the software, derivative
 18  * works, or modified versions, and any portions thereof.
 19  *
 20  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
 21  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
 22  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
 23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 25  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
 26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 28  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 30  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 32  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 33  * DAMAGE.
 34  *
 35  * Carnegie Mellon encourages (but does not require) users of this
 36  * software to return any improvements or extensions that they make,
 37  * and to grant Carnegie Mellon the rights to redistribute these
 38  * changes without encumbrance.
 39  */
 40 /*
 41  * H-FSC is described in Proceedings of SIGCOMM'97,
 42  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
 43  * Real-Time and Priority Service"
 44  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
 45  *
 46  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
 47  * when a class has an upperlimit, the fit-time is computed from the
 48  * upperlimit service curve.  the link-sharing scheduler does not schedule
 49  * a class whose fit-time exceeds the current time.
 50  */
 51 
 52 #include <linux/kernel.h>
 53 #include <linux/module.h>
 54 #include <linux/types.h>
 55 #include <linux/errno.h>
 56 #include <linux/compiler.h>
 57 #include <linux/spinlock.h>
 58 #include <linux/skbuff.h>
 59 #include <linux/string.h>
 60 #include <linux/slab.h>
 61 #include <linux/list.h>
 62 #include <linux/rbtree.h>
 63 #include <linux/init.h>
 64 #include <linux/rtnetlink.h>
 65 #include <linux/pkt_sched.h>
 66 #include <net/netlink.h>
 67 #include <net/pkt_sched.h>
 68 #include <net/pkt_cls.h>
 69 #include <asm/div64.h>
 70 
 71 /*
 72  * kernel internal service curve representation:
 73  *   coordinates are given by 64 bit unsigned integers.
 74  *   x-axis: unit is clock count.
 75  *   y-axis: unit is byte.
 76  *
 77  *   The service curve parameters are converted to the internal
 78  *   representation. The slope values are scaled to avoid overflow.
 79  *   the inverse slope values as well as the y-projection of the 1st
 80  *   segment are kept in order to avoid 64-bit divide operations
 81  *   that are expensive on 32-bit architectures.
 82  */
 83 
 84 struct internal_sc {
 85         u64     sm1;    /* scaled slope of the 1st segment */
 86         u64     ism1;   /* scaled inverse-slope of the 1st segment */
 87         u64     dx;     /* the x-projection of the 1st segment */
 88         u64     dy;     /* the y-projection of the 1st segment */
 89         u64     sm2;    /* scaled slope of the 2nd segment */
 90         u64     ism2;   /* scaled inverse-slope of the 2nd segment */
 91 };
 92 
 93 /* runtime service curve */
 94 struct runtime_sc {
 95         u64     x;      /* current starting position on x-axis */
 96         u64     y;      /* current starting position on y-axis */
 97         u64     sm1;    /* scaled slope of the 1st segment */
 98         u64     ism1;   /* scaled inverse-slope of the 1st segment */
 99         u64     dx;     /* the x-projection of the 1st segment */
100         u64     dy;     /* the y-projection of the 1st segment */
101         u64     sm2;    /* scaled slope of the 2nd segment */
102         u64     ism2;   /* scaled inverse-slope of the 2nd segment */
103 };
104 
105 enum hfsc_class_flags {
106         HFSC_RSC = 0x1,
107         HFSC_FSC = 0x2,
108         HFSC_USC = 0x4
109 };
110 
111 struct hfsc_class {
112         struct Qdisc_class_common cl_common;
113 
114         struct gnet_stats_basic_sync bstats;
115         struct gnet_stats_queue qstats;
116         struct net_rate_estimator __rcu *rate_est;
117         struct tcf_proto __rcu *filter_list; /* filter list */
118         struct tcf_block *block;
119         unsigned int    level;          /* class level in hierarchy */
120 
121         struct hfsc_sched *sched;       /* scheduler data */
122         struct hfsc_class *cl_parent;   /* parent class */
123         struct list_head siblings;      /* sibling classes */
124         struct list_head children;      /* child classes */
125         struct Qdisc    *qdisc;         /* leaf qdisc */
126 
127         struct rb_node el_node;         /* qdisc's eligible tree member */
128         struct rb_root vt_tree;         /* active children sorted by cl_vt */
129         struct rb_node vt_node;         /* parent's vt_tree member */
130         struct rb_root cf_tree;         /* active children sorted by cl_f */
131         struct rb_node cf_node;         /* parent's cf_heap member */
132 
133         u64     cl_total;               /* total work in bytes */
134         u64     cl_cumul;               /* cumulative work in bytes done by
135                                            real-time criteria */
136 
137         u64     cl_d;                   /* deadline*/
138         u64     cl_e;                   /* eligible time */
139         u64     cl_vt;                  /* virtual time */
140         u64     cl_f;                   /* time when this class will fit for
141                                            link-sharing, max(myf, cfmin) */
142         u64     cl_myf;                 /* my fit-time (calculated from this
143                                            class's own upperlimit curve) */
144         u64     cl_cfmin;               /* earliest children's fit-time (used
145                                            with cl_myf to obtain cl_f) */
146         u64     cl_cvtmin;              /* minimal virtual time among the
147                                            children fit for link-sharing
148                                            (monotonic within a period) */
149         u64     cl_vtadj;               /* intra-period cumulative vt
150                                            adjustment */
151         u64     cl_cvtoff;              /* largest virtual time seen among
152                                            the children */
153 
154         struct internal_sc cl_rsc;      /* internal real-time service curve */
155         struct internal_sc cl_fsc;      /* internal fair service curve */
156         struct internal_sc cl_usc;      /* internal upperlimit service curve */
157         struct runtime_sc cl_deadline;  /* deadline curve */
158         struct runtime_sc cl_eligible;  /* eligible curve */
159         struct runtime_sc cl_virtual;   /* virtual curve */
160         struct runtime_sc cl_ulimit;    /* upperlimit curve */
161 
162         u8              cl_flags;       /* which curves are valid */
163         u32             cl_vtperiod;    /* vt period sequence number */
164         u32             cl_parentperiod;/* parent's vt period sequence number*/
165         u32             cl_nactive;     /* number of active children */
166 };
167 
168 struct hfsc_sched {
169         u16     defcls;                         /* default class id */
170         struct hfsc_class root;                 /* root class */
171         struct Qdisc_class_hash clhash;         /* class hash */
172         struct rb_root eligible;                /* eligible tree */
173         struct qdisc_watchdog watchdog;         /* watchdog timer */
174 };
175 
176 #define HT_INFINITY     0xffffffffffffffffULL   /* infinite time value */
177 
178 
179 /*
180  * eligible tree holds backlogged classes being sorted by their eligible times.
181  * there is one eligible tree per hfsc instance.
182  */
183 
184 static void
185 eltree_insert(struct hfsc_class *cl)
186 {
187         struct rb_node **p = &cl->sched->eligible.rb_node;
188         struct rb_node *parent = NULL;
189         struct hfsc_class *cl1;
190 
191         while (*p != NULL) {
192                 parent = *p;
193                 cl1 = rb_entry(parent, struct hfsc_class, el_node);
194                 if (cl->cl_e >= cl1->cl_e)
195                         p = &parent->rb_right;
196                 else
197                         p = &parent->rb_left;
198         }
199         rb_link_node(&cl->el_node, parent, p);
200         rb_insert_color(&cl->el_node, &cl->sched->eligible);
201 }
202 
203 static inline void
204 eltree_remove(struct hfsc_class *cl)
205 {
206         rb_erase(&cl->el_node, &cl->sched->eligible);
207 }
208 
209 static inline void
210 eltree_update(struct hfsc_class *cl)
211 {
212         eltree_remove(cl);
213         eltree_insert(cl);
214 }
215 
216 /* find the class with the minimum deadline among the eligible classes */
217 static inline struct hfsc_class *
218 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
219 {
220         struct hfsc_class *p, *cl = NULL;
221         struct rb_node *n;
222 
223         for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
224                 p = rb_entry(n, struct hfsc_class, el_node);
225                 if (p->cl_e > cur_time)
226                         break;
227                 if (cl == NULL || p->cl_d < cl->cl_d)
228                         cl = p;
229         }
230         return cl;
231 }
232 
233 /* find the class with minimum eligible time among the eligible classes */
234 static inline struct hfsc_class *
235 eltree_get_minel(struct hfsc_sched *q)
236 {
237         struct rb_node *n;
238 
239         n = rb_first(&q->eligible);
240         if (n == NULL)
241                 return NULL;
242         return rb_entry(n, struct hfsc_class, el_node);
243 }
244 
245 /*
246  * vttree holds holds backlogged child classes being sorted by their virtual
247  * time. each intermediate class has one vttree.
248  */
249 static void
250 vttree_insert(struct hfsc_class *cl)
251 {
252         struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
253         struct rb_node *parent = NULL;
254         struct hfsc_class *cl1;
255 
256         while (*p != NULL) {
257                 parent = *p;
258                 cl1 = rb_entry(parent, struct hfsc_class, vt_node);
259                 if (cl->cl_vt >= cl1->cl_vt)
260                         p = &parent->rb_right;
261                 else
262                         p = &parent->rb_left;
263         }
264         rb_link_node(&cl->vt_node, parent, p);
265         rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
266 }
267 
268 static inline void
269 vttree_remove(struct hfsc_class *cl)
270 {
271         rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
272 }
273 
274 static inline void
275 vttree_update(struct hfsc_class *cl)
276 {
277         vttree_remove(cl);
278         vttree_insert(cl);
279 }
280 
281 static inline struct hfsc_class *
282 vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
283 {
284         struct hfsc_class *p;
285         struct rb_node *n;
286 
287         for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
288                 p = rb_entry(n, struct hfsc_class, vt_node);
289                 if (p->cl_f <= cur_time)
290                         return p;
291         }
292         return NULL;
293 }
294 
295 /*
296  * get the leaf class with the minimum vt in the hierarchy
297  */
298 static struct hfsc_class *
299 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
300 {
301         /* if root-class's cfmin is bigger than cur_time nothing to do */
302         if (cl->cl_cfmin > cur_time)
303                 return NULL;
304 
305         while (cl->level > 0) {
306                 cl = vttree_firstfit(cl, cur_time);
307                 if (cl == NULL)
308                         return NULL;
309                 /*
310                  * update parent's cl_cvtmin.
311                  */
312                 if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
313                         cl->cl_parent->cl_cvtmin = cl->cl_vt;
314         }
315         return cl;
316 }
317 
318 static void
319 cftree_insert(struct hfsc_class *cl)
320 {
321         struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
322         struct rb_node *parent = NULL;
323         struct hfsc_class *cl1;
324 
325         while (*p != NULL) {
326                 parent = *p;
327                 cl1 = rb_entry(parent, struct hfsc_class, cf_node);
328                 if (cl->cl_f >= cl1->cl_f)
329                         p = &parent->rb_right;
330                 else
331                         p = &parent->rb_left;
332         }
333         rb_link_node(&cl->cf_node, parent, p);
334         rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
335 }
336 
337 static inline void
338 cftree_remove(struct hfsc_class *cl)
339 {
340         rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
341 }
342 
343 static inline void
344 cftree_update(struct hfsc_class *cl)
345 {
346         cftree_remove(cl);
347         cftree_insert(cl);
348 }
349 
350 /*
351  * service curve support functions
352  *
353  *  external service curve parameters
354  *      m: bps
355  *      d: us
356  *  internal service curve parameters
357  *      sm: (bytes/psched_us) << SM_SHIFT
358  *      ism: (psched_us/byte) << ISM_SHIFT
359  *      dx: psched_us
360  *
361  * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
362  *
363  * sm and ism are scaled in order to keep effective digits.
364  * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
365  * digits in decimal using the following table.
366  *
367  *  bits/sec      100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
368  *  ------------+-------------------------------------------------------
369  *  bytes/1.024us 12.8e-3    128e-3     1280e-3    12800e-3   128000e-3
370  *
371  *  1.024us/byte  78.125     7.8125     0.78125    0.078125   0.0078125
372  *
373  * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
374  */
375 #define SM_SHIFT        (30 - PSCHED_SHIFT)
376 #define ISM_SHIFT       (8 + PSCHED_SHIFT)
377 
378 #define SM_MASK         ((1ULL << SM_SHIFT) - 1)
379 #define ISM_MASK        ((1ULL << ISM_SHIFT) - 1)
380 
381 static inline u64
382 seg_x2y(u64 x, u64 sm)
383 {
384         u64 y;
385 
386         /*
387          * compute
388          *      y = x * sm >> SM_SHIFT
389          * but divide it for the upper and lower bits to avoid overflow
390          */
391         y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
392         return y;
393 }
394 
395 static inline u64
396 seg_y2x(u64 y, u64 ism)
397 {
398         u64 x;
399 
400         if (y == 0)
401                 x = 0;
402         else if (ism == HT_INFINITY)
403                 x = HT_INFINITY;
404         else {
405                 x = (y >> ISM_SHIFT) * ism
406                     + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
407         }
408         return x;
409 }
410 
411 /* Convert m (bps) into sm (bytes/psched us) */
412 static u64
413 m2sm(u32 m)
414 {
415         u64 sm;
416 
417         sm = ((u64)m << SM_SHIFT);
418         sm += PSCHED_TICKS_PER_SEC - 1;
419         do_div(sm, PSCHED_TICKS_PER_SEC);
420         return sm;
421 }
422 
423 /* convert m (bps) into ism (psched us/byte) */
424 static u64
425 m2ism(u32 m)
426 {
427         u64 ism;
428 
429         if (m == 0)
430                 ism = HT_INFINITY;
431         else {
432                 ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
433                 ism += m - 1;
434                 do_div(ism, m);
435         }
436         return ism;
437 }
438 
439 /* convert d (us) into dx (psched us) */
440 static u64
441 d2dx(u32 d)
442 {
443         u64 dx;
444 
445         dx = ((u64)d * PSCHED_TICKS_PER_SEC);
446         dx += USEC_PER_SEC - 1;
447         do_div(dx, USEC_PER_SEC);
448         return dx;
449 }
450 
451 /* convert sm (bytes/psched us) into m (bps) */
452 static u32
453 sm2m(u64 sm)
454 {
455         u64 m;
456 
457         m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
458         return (u32)m;
459 }
460 
461 /* convert dx (psched us) into d (us) */
462 static u32
463 dx2d(u64 dx)
464 {
465         u64 d;
466 
467         d = dx * USEC_PER_SEC;
468         do_div(d, PSCHED_TICKS_PER_SEC);
469         return (u32)d;
470 }
471 
472 static void
473 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
474 {
475         isc->sm1  = m2sm(sc->m1);
476         isc->ism1 = m2ism(sc->m1);
477         isc->dx   = d2dx(sc->d);
478         isc->dy   = seg_x2y(isc->dx, isc->sm1);
479         isc->sm2  = m2sm(sc->m2);
480         isc->ism2 = m2ism(sc->m2);
481 }
482 
483 /*
484  * initialize the runtime service curve with the given internal
485  * service curve starting at (x, y).
486  */
487 static void
488 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
489 {
490         rtsc->x    = x;
491         rtsc->y    = y;
492         rtsc->sm1  = isc->sm1;
493         rtsc->ism1 = isc->ism1;
494         rtsc->dx   = isc->dx;
495         rtsc->dy   = isc->dy;
496         rtsc->sm2  = isc->sm2;
497         rtsc->ism2 = isc->ism2;
498 }
499 
500 /*
501  * calculate the y-projection of the runtime service curve by the
502  * given x-projection value
503  */
504 static u64
505 rtsc_y2x(struct runtime_sc *rtsc, u64 y)
506 {
507         u64 x;
508 
509         if (y < rtsc->y)
510                 x = rtsc->x;
511         else if (y <= rtsc->y + rtsc->dy) {
512                 /* x belongs to the 1st segment */
513                 if (rtsc->dy == 0)
514                         x = rtsc->x + rtsc->dx;
515                 else
516                         x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
517         } else {
518                 /* x belongs to the 2nd segment */
519                 x = rtsc->x + rtsc->dx
520                     + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
521         }
522         return x;
523 }
524 
525 static u64
526 rtsc_x2y(struct runtime_sc *rtsc, u64 x)
527 {
528         u64 y;
529 
530         if (x <= rtsc->x)
531                 y = rtsc->y;
532         else if (x <= rtsc->x + rtsc->dx)
533                 /* y belongs to the 1st segment */
534                 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
535         else
536                 /* y belongs to the 2nd segment */
537                 y = rtsc->y + rtsc->dy
538                     + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
539         return y;
540 }
541 
542 /*
543  * update the runtime service curve by taking the minimum of the current
544  * runtime service curve and the service curve starting at (x, y).
545  */
546 static void
547 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
548 {
549         u64 y1, y2, dx, dy;
550         u32 dsm;
551 
552         if (isc->sm1 <= isc->sm2) {
553                 /* service curve is convex */
554                 y1 = rtsc_x2y(rtsc, x);
555                 if (y1 < y)
556                         /* the current rtsc is smaller */
557                         return;
558                 rtsc->x = x;
559                 rtsc->y = y;
560                 return;
561         }
562 
563         /*
564          * service curve is concave
565          * compute the two y values of the current rtsc
566          *      y1: at x
567          *      y2: at (x + dx)
568          */
569         y1 = rtsc_x2y(rtsc, x);
570         if (y1 <= y) {
571                 /* rtsc is below isc, no change to rtsc */
572                 return;
573         }
574 
575         y2 = rtsc_x2y(rtsc, x + isc->dx);
576         if (y2 >= y + isc->dy) {
577                 /* rtsc is above isc, replace rtsc by isc */
578                 rtsc->x = x;
579                 rtsc->y = y;
580                 rtsc->dx = isc->dx;
581                 rtsc->dy = isc->dy;
582                 return;
583         }
584 
585         /*
586          * the two curves intersect
587          * compute the offsets (dx, dy) using the reverse
588          * function of seg_x2y()
589          *      seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
590          */
591         dx = (y1 - y) << SM_SHIFT;
592         dsm = isc->sm1 - isc->sm2;
593         do_div(dx, dsm);
594         /*
595          * check if (x, y1) belongs to the 1st segment of rtsc.
596          * if so, add the offset.
597          */
598         if (rtsc->x + rtsc->dx > x)
599                 dx += rtsc->x + rtsc->dx - x;
600         dy = seg_x2y(dx, isc->sm1);
601 
602         rtsc->x = x;
603         rtsc->y = y;
604         rtsc->dx = dx;
605         rtsc->dy = dy;
606 }
607 
608 static void
609 init_ed(struct hfsc_class *cl, unsigned int next_len)
610 {
611         u64 cur_time = psched_get_time();
612 
613         /* update the deadline curve */
614         rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
615 
616         /*
617          * update the eligible curve.
618          * for concave, it is equal to the deadline curve.
619          * for convex, it is a linear curve with slope m2.
620          */
621         cl->cl_eligible = cl->cl_deadline;
622         if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
623                 cl->cl_eligible.dx = 0;
624                 cl->cl_eligible.dy = 0;
625         }
626 
627         /* compute e and d */
628         cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
629         cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
630 
631         eltree_insert(cl);
632 }
633 
634 static void
635 update_ed(struct hfsc_class *cl, unsigned int next_len)
636 {
637         cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
638         cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
639 
640         eltree_update(cl);
641 }
642 
643 static inline void
644 update_d(struct hfsc_class *cl, unsigned int next_len)
645 {
646         cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
647 }
648 
649 static inline void
650 update_cfmin(struct hfsc_class *cl)
651 {
652         struct rb_node *n = rb_first(&cl->cf_tree);
653         struct hfsc_class *p;
654 
655         if (n == NULL) {
656                 cl->cl_cfmin = 0;
657                 return;
658         }
659         p = rb_entry(n, struct hfsc_class, cf_node);
660         cl->cl_cfmin = p->cl_f;
661 }
662 
663 static void
664 init_vf(struct hfsc_class *cl, unsigned int len)
665 {
666         struct hfsc_class *max_cl;
667         struct rb_node *n;
668         u64 vt, f, cur_time;
669         int go_active;
670 
671         cur_time = 0;
672         go_active = 1;
673         for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
674                 if (go_active && cl->cl_nactive++ == 0)
675                         go_active = 1;
676                 else
677                         go_active = 0;
678 
679                 if (go_active) {
680                         n = rb_last(&cl->cl_parent->vt_tree);
681                         if (n != NULL) {
682                                 max_cl = rb_entry(n, struct hfsc_class, vt_node);
683                                 /*
684                                  * set vt to the average of the min and max
685                                  * classes.  if the parent's period didn't
686                                  * change, don't decrease vt of the class.
687                                  */
688                                 vt = max_cl->cl_vt;
689                                 if (cl->cl_parent->cl_cvtmin != 0)
690                                         vt = (cl->cl_parent->cl_cvtmin + vt)/2;
691 
692                                 if (cl->cl_parent->cl_vtperiod !=
693                                     cl->cl_parentperiod || vt > cl->cl_vt)
694                                         cl->cl_vt = vt;
695                         } else {
696                                 /*
697                                  * first child for a new parent backlog period.
698                                  * initialize cl_vt to the highest value seen
699                                  * among the siblings. this is analogous to
700                                  * what cur_time would provide in realtime case.
701                                  */
702                                 cl->cl_vt = cl->cl_parent->cl_cvtoff;
703                                 cl->cl_parent->cl_cvtmin = 0;
704                         }
705 
706                         /* update the virtual curve */
707                         rtsc_min(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
708                         cl->cl_vtadj = 0;
709 
710                         cl->cl_vtperiod++;  /* increment vt period */
711                         cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
712                         if (cl->cl_parent->cl_nactive == 0)
713                                 cl->cl_parentperiod++;
714                         cl->cl_f = 0;
715 
716                         vttree_insert(cl);
717                         cftree_insert(cl);
718 
719                         if (cl->cl_flags & HFSC_USC) {
720                                 /* class has upper limit curve */
721                                 if (cur_time == 0)
722                                         cur_time = psched_get_time();
723 
724                                 /* update the ulimit curve */
725                                 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
726                                          cl->cl_total);
727                                 /* compute myf */
728                                 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
729                                                       cl->cl_total);
730                         }
731                 }
732 
733                 f = max(cl->cl_myf, cl->cl_cfmin);
734                 if (f != cl->cl_f) {
735                         cl->cl_f = f;
736                         cftree_update(cl);
737                 }
738                 update_cfmin(cl->cl_parent);
739         }
740 }
741 
742 static void
743 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
744 {
745         u64 f; /* , myf_bound, delta; */
746         int go_passive = 0;
747 
748         if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
749                 go_passive = 1;
750 
751         for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
752                 cl->cl_total += len;
753 
754                 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
755                         continue;
756 
757                 if (go_passive && --cl->cl_nactive == 0)
758                         go_passive = 1;
759                 else
760                         go_passive = 0;
761 
762                 /* update vt */
763                 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) + cl->cl_vtadj;
764 
765                 /*
766                  * if vt of the class is smaller than cvtmin,
767                  * the class was skipped in the past due to non-fit.
768                  * if so, we need to adjust vtadj.
769                  */
770                 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
771                         cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
772                         cl->cl_vt = cl->cl_parent->cl_cvtmin;
773                 }
774 
775                 if (go_passive) {
776                         /* no more active child, going passive */
777 
778                         /* update cvtoff of the parent class */
779                         if (cl->cl_vt > cl->cl_parent->cl_cvtoff)
780                                 cl->cl_parent->cl_cvtoff = cl->cl_vt;
781 
782                         /* remove this class from the vt tree */
783                         vttree_remove(cl);
784 
785                         cftree_remove(cl);
786                         update_cfmin(cl->cl_parent);
787 
788                         continue;
789                 }
790 
791                 /* update the vt tree */
792                 vttree_update(cl);
793 
794                 /* update f */
795                 if (cl->cl_flags & HFSC_USC) {
796                         cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
797 #if 0
798                         cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
799                                                               cl->cl_total);
800                         /*
801                          * This code causes classes to stay way under their
802                          * limit when multiple classes are used at gigabit
803                          * speed. needs investigation. -kaber
804                          */
805                         /*
806                          * if myf lags behind by more than one clock tick
807                          * from the current time, adjust myfadj to prevent
808                          * a rate-limited class from going greedy.
809                          * in a steady state under rate-limiting, myf
810                          * fluctuates within one clock tick.
811                          */
812                         myf_bound = cur_time - PSCHED_JIFFIE2US(1);
813                         if (cl->cl_myf < myf_bound) {
814                                 delta = cur_time - cl->cl_myf;
815                                 cl->cl_myfadj += delta;
816                                 cl->cl_myf += delta;
817                         }
818 #endif
819                 }
820 
821                 f = max(cl->cl_myf, cl->cl_cfmin);
822                 if (f != cl->cl_f) {
823                         cl->cl_f = f;
824                         cftree_update(cl);
825                         update_cfmin(cl->cl_parent);
826                 }
827         }
828 }
829 
830 static unsigned int
831 qdisc_peek_len(struct Qdisc *sch)
832 {
833         struct sk_buff *skb;
834         unsigned int len;
835 
836         skb = sch->ops->peek(sch);
837         if (unlikely(skb == NULL)) {
838                 qdisc_warn_nonwc("qdisc_peek_len", sch);
839                 return 0;
840         }
841         len = qdisc_pkt_len(skb);
842 
843         return len;
844 }
845 
846 static void
847 hfsc_adjust_levels(struct hfsc_class *cl)
848 {
849         struct hfsc_class *p;
850         unsigned int level;
851 
852         do {
853                 level = 0;
854                 list_for_each_entry(p, &cl->children, siblings) {
855                         if (p->level >= level)
856                                 level = p->level + 1;
857                 }
858                 cl->level = level;
859         } while ((cl = cl->cl_parent) != NULL);
860 }
861 
862 static inline struct hfsc_class *
863 hfsc_find_class(u32 classid, struct Qdisc *sch)
864 {
865         struct hfsc_sched *q = qdisc_priv(sch);
866         struct Qdisc_class_common *clc;
867 
868         clc = qdisc_class_find(&q->clhash, classid);
869         if (clc == NULL)
870                 return NULL;
871         return container_of(clc, struct hfsc_class, cl_common);
872 }
873 
874 static void
875 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
876                 u64 cur_time)
877 {
878         sc2isc(rsc, &cl->cl_rsc);
879         rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
880         cl->cl_eligible = cl->cl_deadline;
881         if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
882                 cl->cl_eligible.dx = 0;
883                 cl->cl_eligible.dy = 0;
884         }
885         cl->cl_flags |= HFSC_RSC;
886 }
887 
888 static void
889 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
890 {
891         sc2isc(fsc, &cl->cl_fsc);
892         rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
893         cl->cl_flags |= HFSC_FSC;
894 }
895 
896 static void
897 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
898                 u64 cur_time)
899 {
900         sc2isc(usc, &cl->cl_usc);
901         rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
902         cl->cl_flags |= HFSC_USC;
903 }
904 
905 static void
906 hfsc_upgrade_rt(struct hfsc_class *cl)
907 {
908         cl->cl_fsc = cl->cl_rsc;
909         rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
910         cl->cl_flags |= HFSC_FSC;
911 }
912 
913 static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
914         [TCA_HFSC_RSC]  = { .len = sizeof(struct tc_service_curve) },
915         [TCA_HFSC_FSC]  = { .len = sizeof(struct tc_service_curve) },
916         [TCA_HFSC_USC]  = { .len = sizeof(struct tc_service_curve) },
917 };
918 
919 static int
920 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
921                   struct nlattr **tca, unsigned long *arg,
922                   struct netlink_ext_ack *extack)
923 {
924         struct hfsc_sched *q = qdisc_priv(sch);
925         struct hfsc_class *cl = (struct hfsc_class *)*arg;
926         struct hfsc_class *parent = NULL;
927         struct nlattr *opt = tca[TCA_OPTIONS];
928         struct nlattr *tb[TCA_HFSC_MAX + 1];
929         struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
930         u64 cur_time;
931         int err;
932 
933         if (opt == NULL)
934                 return -EINVAL;
935 
936         err = nla_parse_nested_deprecated(tb, TCA_HFSC_MAX, opt, hfsc_policy,
937                                           NULL);
938         if (err < 0)
939                 return err;
940 
941         if (tb[TCA_HFSC_RSC]) {
942                 rsc = nla_data(tb[TCA_HFSC_RSC]);
943                 if (rsc->m1 == 0 && rsc->m2 == 0)
944                         rsc = NULL;
945         }
946 
947         if (tb[TCA_HFSC_FSC]) {
948                 fsc = nla_data(tb[TCA_HFSC_FSC]);
949                 if (fsc->m1 == 0 && fsc->m2 == 0)
950                         fsc = NULL;
951         }
952 
953         if (tb[TCA_HFSC_USC]) {
954                 usc = nla_data(tb[TCA_HFSC_USC]);
955                 if (usc->m1 == 0 && usc->m2 == 0)
956                         usc = NULL;
957         }
958 
959         if (cl != NULL) {
960                 int old_flags;
961 
962                 if (parentid) {
963                         if (cl->cl_parent &&
964                             cl->cl_parent->cl_common.classid != parentid)
965                                 return -EINVAL;
966                         if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
967                                 return -EINVAL;
968                 }
969                 cur_time = psched_get_time();
970 
971                 if (tca[TCA_RATE]) {
972                         err = gen_replace_estimator(&cl->bstats, NULL,
973                                                     &cl->rate_est,
974                                                     NULL,
975                                                     true,
976                                                     tca[TCA_RATE]);
977                         if (err)
978                                 return err;
979                 }
980 
981                 sch_tree_lock(sch);
982                 old_flags = cl->cl_flags;
983 
984                 if (rsc != NULL)
985                         hfsc_change_rsc(cl, rsc, cur_time);
986                 if (fsc != NULL)
987                         hfsc_change_fsc(cl, fsc);
988                 if (usc != NULL)
989                         hfsc_change_usc(cl, usc, cur_time);
990 
991                 if (cl->qdisc->q.qlen != 0) {
992                         int len = qdisc_peek_len(cl->qdisc);
993 
994                         if (cl->cl_flags & HFSC_RSC) {
995                                 if (old_flags & HFSC_RSC)
996                                         update_ed(cl, len);
997                                 else
998                                         init_ed(cl, len);
999                         }
1000 
1001                         if (cl->cl_flags & HFSC_FSC) {
1002                                 if (old_flags & HFSC_FSC)
1003                                         update_vf(cl, 0, cur_time);
1004                                 else
1005                                         init_vf(cl, len);
1006                         }
1007                 }
1008                 sch_tree_unlock(sch);
1009 
1010                 return 0;
1011         }
1012 
1013         if (parentid == TC_H_ROOT)
1014                 return -EEXIST;
1015 
1016         parent = &q->root;
1017         if (parentid) {
1018                 parent = hfsc_find_class(parentid, sch);
1019                 if (parent == NULL)
1020                         return -ENOENT;
1021         }
1022 
1023         if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1024                 return -EINVAL;
1025         if (hfsc_find_class(classid, sch))
1026                 return -EEXIST;
1027 
1028         if (rsc == NULL && fsc == NULL)
1029                 return -EINVAL;
1030 
1031         cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1032         if (cl == NULL)
1033                 return -ENOBUFS;
1034 
1035         err = tcf_block_get(&cl->block, &cl->filter_list, sch, extack);
1036         if (err) {
1037                 kfree(cl);
1038                 return err;
1039         }
1040 
1041         if (tca[TCA_RATE]) {
1042                 err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est,
1043                                         NULL, true, tca[TCA_RATE]);
1044                 if (err) {
1045                         tcf_block_put(cl->block);
1046                         kfree(cl);
1047                         return err;
1048                 }
1049         }
1050 
1051         if (rsc != NULL)
1052                 hfsc_change_rsc(cl, rsc, 0);
1053         if (fsc != NULL)
1054                 hfsc_change_fsc(cl, fsc);
1055         if (usc != NULL)
1056                 hfsc_change_usc(cl, usc, 0);
1057 
1058         cl->cl_common.classid = classid;
1059         cl->sched     = q;
1060         cl->cl_parent = parent;
1061         cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1062                                       classid, NULL);
1063         if (cl->qdisc == NULL)
1064                 cl->qdisc = &noop_qdisc;
1065         else
1066                 qdisc_hash_add(cl->qdisc, true);
1067         INIT_LIST_HEAD(&cl->children);
1068         cl->vt_tree = RB_ROOT;
1069         cl->cf_tree = RB_ROOT;
1070 
1071         sch_tree_lock(sch);
1072         /* Check if the inner class is a misconfigured 'rt' */
1073         if (!(parent->cl_flags & HFSC_FSC) && parent != &q->root) {
1074                 NL_SET_ERR_MSG(extack,
1075                                "Forced curve change on parent 'rt' to 'sc'");
1076                 hfsc_upgrade_rt(parent);
1077         }
1078         qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
1079         list_add_tail(&cl->siblings, &parent->children);
1080         if (parent->level == 0)
1081                 qdisc_purge_queue(parent->qdisc);
1082         hfsc_adjust_levels(parent);
1083         sch_tree_unlock(sch);
1084 
1085         qdisc_class_hash_grow(sch, &q->clhash);
1086 
1087         *arg = (unsigned long)cl;
1088         return 0;
1089 }
1090 
1091 static void
1092 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1093 {
1094         struct hfsc_sched *q = qdisc_priv(sch);
1095 
1096         tcf_block_put(cl->block);
1097         qdisc_put(cl->qdisc);
1098         gen_kill_estimator(&cl->rate_est);
1099         if (cl != &q->root)
1100                 kfree(cl);
1101 }
1102 
1103 static int
1104 hfsc_delete_class(struct Qdisc *sch, unsigned long arg,
1105                   struct netlink_ext_ack *extack)
1106 {
1107         struct hfsc_sched *q = qdisc_priv(sch);
1108         struct hfsc_class *cl = (struct hfsc_class *)arg;
1109 
1110         if (cl->level > 0 || qdisc_class_in_use(&cl->cl_common) ||
1111             cl == &q->root) {
1112                 NL_SET_ERR_MSG(extack, "HFSC class in use");
1113                 return -EBUSY;
1114         }
1115 
1116         sch_tree_lock(sch);
1117 
1118         list_del(&cl->siblings);
1119         hfsc_adjust_levels(cl->cl_parent);
1120 
1121         qdisc_purge_queue(cl->qdisc);
1122         qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
1123 
1124         sch_tree_unlock(sch);
1125 
1126         hfsc_destroy_class(sch, cl);
1127         return 0;
1128 }
1129 
1130 static struct hfsc_class *
1131 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1132 {
1133         struct hfsc_sched *q = qdisc_priv(sch);
1134         struct hfsc_class *head, *cl;
1135         struct tcf_result res;
1136         struct tcf_proto *tcf;
1137         int result;
1138 
1139         if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1140             (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1141                 if (cl->level == 0)
1142                         return cl;
1143 
1144         *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1145         head = &q->root;
1146         tcf = rcu_dereference_bh(q->root.filter_list);
1147         while (tcf && (result = tcf_classify(skb, NULL, tcf, &res, false)) >= 0) {
1148 #ifdef CONFIG_NET_CLS_ACT
1149                 switch (result) {
1150                 case TC_ACT_QUEUED:
1151                 case TC_ACT_STOLEN:
1152                 case TC_ACT_TRAP:
1153                         *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1154                         fallthrough;
1155                 case TC_ACT_SHOT:
1156                         return NULL;
1157                 }
1158 #endif
1159                 cl = (struct hfsc_class *)res.class;
1160                 if (!cl) {
1161                         cl = hfsc_find_class(res.classid, sch);
1162                         if (!cl)
1163                                 break; /* filter selected invalid classid */
1164                         if (cl->level >= head->level)
1165                                 break; /* filter may only point downwards */
1166                 }
1167 
1168                 if (cl->level == 0)
1169                         return cl; /* hit leaf class */
1170 
1171                 /* apply inner filter chain */
1172                 tcf = rcu_dereference_bh(cl->filter_list);
1173                 head = cl;
1174         }
1175 
1176         /* classification failed, try default class */
1177         cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle),
1178                                        READ_ONCE(q->defcls)), sch);
1179         if (cl == NULL || cl->level > 0)
1180                 return NULL;
1181 
1182         return cl;
1183 }
1184 
1185 static int
1186 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1187                  struct Qdisc **old, struct netlink_ext_ack *extack)
1188 {
1189         struct hfsc_class *cl = (struct hfsc_class *)arg;
1190 
1191         if (cl->level > 0)
1192                 return -EINVAL;
1193         if (new == NULL) {
1194                 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1195                                         cl->cl_common.classid, NULL);
1196                 if (new == NULL)
1197                         new = &noop_qdisc;
1198         }
1199 
1200         *old = qdisc_replace(sch, new, &cl->qdisc);
1201         return 0;
1202 }
1203 
1204 static struct Qdisc *
1205 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1206 {
1207         struct hfsc_class *cl = (struct hfsc_class *)arg;
1208 
1209         if (cl->level == 0)
1210                 return cl->qdisc;
1211 
1212         return NULL;
1213 }
1214 
1215 static void
1216 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1217 {
1218         struct hfsc_class *cl = (struct hfsc_class *)arg;
1219 
1220         /* vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
1221          * needs to be called explicitly to remove a class from vttree.
1222          */
1223         update_vf(cl, 0, 0);
1224         if (cl->cl_flags & HFSC_RSC)
1225                 eltree_remove(cl);
1226 }
1227 
1228 static unsigned long
1229 hfsc_search_class(struct Qdisc *sch, u32 classid)
1230 {
1231         return (unsigned long)hfsc_find_class(classid, sch);
1232 }
1233 
1234 static unsigned long
1235 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1236 {
1237         struct hfsc_class *p = (struct hfsc_class *)parent;
1238         struct hfsc_class *cl = hfsc_find_class(classid, sch);
1239 
1240         if (cl != NULL) {
1241                 if (p != NULL && p->level <= cl->level)
1242                         return 0;
1243                 qdisc_class_get(&cl->cl_common);
1244         }
1245 
1246         return (unsigned long)cl;
1247 }
1248 
1249 static void
1250 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1251 {
1252         struct hfsc_class *cl = (struct hfsc_class *)arg;
1253 
1254         qdisc_class_put(&cl->cl_common);
1255 }
1256 
1257 static struct tcf_block *hfsc_tcf_block(struct Qdisc *sch, unsigned long arg,
1258                                         struct netlink_ext_ack *extack)
1259 {
1260         struct hfsc_sched *q = qdisc_priv(sch);
1261         struct hfsc_class *cl = (struct hfsc_class *)arg;
1262 
1263         if (cl == NULL)
1264                 cl = &q->root;
1265 
1266         return cl->block;
1267 }
1268 
1269 static int
1270 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1271 {
1272         struct tc_service_curve tsc;
1273 
1274         tsc.m1 = sm2m(sc->sm1);
1275         tsc.d  = dx2d(sc->dx);
1276         tsc.m2 = sm2m(sc->sm2);
1277         if (nla_put(skb, attr, sizeof(tsc), &tsc))
1278                 goto nla_put_failure;
1279 
1280         return skb->len;
1281 
1282  nla_put_failure:
1283         return -1;
1284 }
1285 
1286 static int
1287 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1288 {
1289         if ((cl->cl_flags & HFSC_RSC) &&
1290             (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1291                 goto nla_put_failure;
1292 
1293         if ((cl->cl_flags & HFSC_FSC) &&
1294             (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1295                 goto nla_put_failure;
1296 
1297         if ((cl->cl_flags & HFSC_USC) &&
1298             (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1299                 goto nla_put_failure;
1300 
1301         return skb->len;
1302 
1303  nla_put_failure:
1304         return -1;
1305 }
1306 
1307 static int
1308 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1309                 struct tcmsg *tcm)
1310 {
1311         struct hfsc_class *cl = (struct hfsc_class *)arg;
1312         struct nlattr *nest;
1313 
1314         tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
1315                                           TC_H_ROOT;
1316         tcm->tcm_handle = cl->cl_common.classid;
1317         if (cl->level == 0)
1318                 tcm->tcm_info = cl->qdisc->handle;
1319 
1320         nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1321         if (nest == NULL)
1322                 goto nla_put_failure;
1323         if (hfsc_dump_curves(skb, cl) < 0)
1324                 goto nla_put_failure;
1325         return nla_nest_end(skb, nest);
1326 
1327  nla_put_failure:
1328         nla_nest_cancel(skb, nest);
1329         return -EMSGSIZE;
1330 }
1331 
1332 static int
1333 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1334         struct gnet_dump *d)
1335 {
1336         struct hfsc_class *cl = (struct hfsc_class *)arg;
1337         struct tc_hfsc_stats xstats;
1338         __u32 qlen;
1339 
1340         qdisc_qstats_qlen_backlog(cl->qdisc, &qlen, &cl->qstats.backlog);
1341         xstats.level   = cl->level;
1342         xstats.period  = cl->cl_vtperiod;
1343         xstats.work    = cl->cl_total;
1344         xstats.rtwork  = cl->cl_cumul;
1345 
1346         if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
1347             gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
1348             gnet_stats_copy_queue(d, NULL, &cl->qstats, qlen) < 0)
1349                 return -1;
1350 
1351         return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1352 }
1353 
1354 
1355 
1356 static void
1357 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1358 {
1359         struct hfsc_sched *q = qdisc_priv(sch);
1360         struct hfsc_class *cl;
1361         unsigned int i;
1362 
1363         if (arg->stop)
1364                 return;
1365 
1366         for (i = 0; i < q->clhash.hashsize; i++) {
1367                 hlist_for_each_entry(cl, &q->clhash.hash[i],
1368                                      cl_common.hnode) {
1369                         if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
1370                                 return;
1371                 }
1372         }
1373 }
1374 
1375 static void
1376 hfsc_schedule_watchdog(struct Qdisc *sch)
1377 {
1378         struct hfsc_sched *q = qdisc_priv(sch);
1379         struct hfsc_class *cl;
1380         u64 next_time = 0;
1381 
1382         cl = eltree_get_minel(q);
1383         if (cl)
1384                 next_time = cl->cl_e;
1385         if (q->root.cl_cfmin != 0) {
1386                 if (next_time == 0 || next_time > q->root.cl_cfmin)
1387                         next_time = q->root.cl_cfmin;
1388         }
1389         if (next_time)
1390                 qdisc_watchdog_schedule(&q->watchdog, next_time);
1391 }
1392 
1393 static int
1394 hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1395                 struct netlink_ext_ack *extack)
1396 {
1397         struct hfsc_sched *q = qdisc_priv(sch);
1398         struct tc_hfsc_qopt *qopt;
1399         int err;
1400 
1401         qdisc_watchdog_init(&q->watchdog, sch);
1402 
1403         if (!opt || nla_len(opt) < sizeof(*qopt))
1404                 return -EINVAL;
1405         qopt = nla_data(opt);
1406 
1407         q->defcls = qopt->defcls;
1408         err = qdisc_class_hash_init(&q->clhash);
1409         if (err < 0)
1410                 return err;
1411         q->eligible = RB_ROOT;
1412 
1413         err = tcf_block_get(&q->root.block, &q->root.filter_list, sch, extack);
1414         if (err)
1415                 return err;
1416 
1417         gnet_stats_basic_sync_init(&q->root.bstats);
1418         q->root.cl_common.classid = sch->handle;
1419         q->root.sched   = q;
1420         q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1421                                           sch->handle, NULL);
1422         if (q->root.qdisc == NULL)
1423                 q->root.qdisc = &noop_qdisc;
1424         else
1425                 qdisc_hash_add(q->root.qdisc, true);
1426         INIT_LIST_HEAD(&q->root.children);
1427         q->root.vt_tree = RB_ROOT;
1428         q->root.cf_tree = RB_ROOT;
1429 
1430         qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
1431         qdisc_class_hash_grow(sch, &q->clhash);
1432 
1433         return 0;
1434 }
1435 
1436 static int
1437 hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt,
1438                   struct netlink_ext_ack *extack)
1439 {
1440         struct hfsc_sched *q = qdisc_priv(sch);
1441         struct tc_hfsc_qopt *qopt;
1442 
1443         if (nla_len(opt) < sizeof(*qopt))
1444                 return -EINVAL;
1445         qopt = nla_data(opt);
1446 
1447         WRITE_ONCE(q->defcls, qopt->defcls);
1448 
1449         return 0;
1450 }
1451 
1452 static void
1453 hfsc_reset_class(struct hfsc_class *cl)
1454 {
1455         cl->cl_total        = 0;
1456         cl->cl_cumul        = 0;
1457         cl->cl_d            = 0;
1458         cl->cl_e            = 0;
1459         cl->cl_vt           = 0;
1460         cl->cl_vtadj        = 0;
1461         cl->cl_cvtmin       = 0;
1462         cl->cl_cvtoff       = 0;
1463         cl->cl_vtperiod     = 0;
1464         cl->cl_parentperiod = 0;
1465         cl->cl_f            = 0;
1466         cl->cl_myf          = 0;
1467         cl->cl_cfmin        = 0;
1468         cl->cl_nactive      = 0;
1469 
1470         cl->vt_tree = RB_ROOT;
1471         cl->cf_tree = RB_ROOT;
1472         qdisc_reset(cl->qdisc);
1473 
1474         if (cl->cl_flags & HFSC_RSC)
1475                 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1476         if (cl->cl_flags & HFSC_FSC)
1477                 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1478         if (cl->cl_flags & HFSC_USC)
1479                 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1480 }
1481 
1482 static void
1483 hfsc_reset_qdisc(struct Qdisc *sch)
1484 {
1485         struct hfsc_sched *q = qdisc_priv(sch);
1486         struct hfsc_class *cl;
1487         unsigned int i;
1488 
1489         for (i = 0; i < q->clhash.hashsize; i++) {
1490                 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
1491                         hfsc_reset_class(cl);
1492         }
1493         q->eligible = RB_ROOT;
1494         qdisc_watchdog_cancel(&q->watchdog);
1495 }
1496 
1497 static void
1498 hfsc_destroy_qdisc(struct Qdisc *sch)
1499 {
1500         struct hfsc_sched *q = qdisc_priv(sch);
1501         struct hlist_node *next;
1502         struct hfsc_class *cl;
1503         unsigned int i;
1504 
1505         for (i = 0; i < q->clhash.hashsize; i++) {
1506                 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) {
1507                         tcf_block_put(cl->block);
1508                         cl->block = NULL;
1509                 }
1510         }
1511         for (i = 0; i < q->clhash.hashsize; i++) {
1512                 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1513                                           cl_common.hnode)
1514                         hfsc_destroy_class(sch, cl);
1515         }
1516         qdisc_class_hash_destroy(&q->clhash);
1517         qdisc_watchdog_cancel(&q->watchdog);
1518 }
1519 
1520 static int
1521 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1522 {
1523         struct hfsc_sched *q = qdisc_priv(sch);
1524         unsigned char *b = skb_tail_pointer(skb);
1525         struct tc_hfsc_qopt qopt;
1526 
1527         qopt.defcls = READ_ONCE(q->defcls);
1528         if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1529                 goto nla_put_failure;
1530         return skb->len;
1531 
1532  nla_put_failure:
1533         nlmsg_trim(skb, b);
1534         return -1;
1535 }
1536 
1537 static int
1538 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
1539 {
1540         unsigned int len = qdisc_pkt_len(skb);
1541         struct hfsc_class *cl;
1542         int err;
1543         bool first;
1544 
1545         cl = hfsc_classify(skb, sch, &err);
1546         if (cl == NULL) {
1547                 if (err & __NET_XMIT_BYPASS)
1548                         qdisc_qstats_drop(sch);
1549                 __qdisc_drop(skb, to_free);
1550                 return err;
1551         }
1552 
1553         first = !cl->qdisc->q.qlen;
1554         err = qdisc_enqueue(skb, cl->qdisc, to_free);
1555         if (unlikely(err != NET_XMIT_SUCCESS)) {
1556                 if (net_xmit_drop_count(err)) {
1557                         cl->qstats.drops++;
1558                         qdisc_qstats_drop(sch);
1559                 }
1560                 return err;
1561         }
1562 
1563         if (first) {
1564                 if (cl->cl_flags & HFSC_RSC)
1565                         init_ed(cl, len);
1566                 if (cl->cl_flags & HFSC_FSC)
1567                         init_vf(cl, len);
1568                 /*
1569                  * If this is the first packet, isolate the head so an eventual
1570                  * head drop before the first dequeue operation has no chance
1571                  * to invalidate the deadline.
1572                  */
1573                 if (cl->cl_flags & HFSC_RSC)
1574                         cl->qdisc->ops->peek(cl->qdisc);
1575 
1576         }
1577 
1578         sch->qstats.backlog += len;
1579         sch->q.qlen++;
1580 
1581         return NET_XMIT_SUCCESS;
1582 }
1583 
1584 static struct sk_buff *
1585 hfsc_dequeue(struct Qdisc *sch)
1586 {
1587         struct hfsc_sched *q = qdisc_priv(sch);
1588         struct hfsc_class *cl;
1589         struct sk_buff *skb;
1590         u64 cur_time;
1591         unsigned int next_len;
1592         int realtime = 0;
1593 
1594         if (sch->q.qlen == 0)
1595                 return NULL;
1596 
1597         cur_time = psched_get_time();
1598 
1599         /*
1600          * if there are eligible classes, use real-time criteria.
1601          * find the class with the minimum deadline among
1602          * the eligible classes.
1603          */
1604         cl = eltree_get_mindl(q, cur_time);
1605         if (cl) {
1606                 realtime = 1;
1607         } else {
1608                 /*
1609                  * use link-sharing criteria
1610                  * get the class with the minimum vt in the hierarchy
1611                  */
1612                 cl = vttree_get_minvt(&q->root, cur_time);
1613                 if (cl == NULL) {
1614                         qdisc_qstats_overlimit(sch);
1615                         hfsc_schedule_watchdog(sch);
1616                         return NULL;
1617                 }
1618         }
1619 
1620         skb = qdisc_dequeue_peeked(cl->qdisc);
1621         if (skb == NULL) {
1622                 qdisc_warn_nonwc("HFSC", cl->qdisc);
1623                 return NULL;
1624         }
1625 
1626         bstats_update(&cl->bstats, skb);
1627         update_vf(cl, qdisc_pkt_len(skb), cur_time);
1628         if (realtime)
1629                 cl->cl_cumul += qdisc_pkt_len(skb);
1630 
1631         if (cl->cl_flags & HFSC_RSC) {
1632                 if (cl->qdisc->q.qlen != 0) {
1633                         /* update ed */
1634                         next_len = qdisc_peek_len(cl->qdisc);
1635                         if (realtime)
1636                                 update_ed(cl, next_len);
1637                         else
1638                                 update_d(cl, next_len);
1639                 } else {
1640                         /* the class becomes passive */
1641                         eltree_remove(cl);
1642                 }
1643         }
1644 
1645         qdisc_bstats_update(sch, skb);
1646         qdisc_qstats_backlog_dec(sch, skb);
1647         sch->q.qlen--;
1648 
1649         return skb;
1650 }
1651 
1652 static const struct Qdisc_class_ops hfsc_class_ops = {
1653         .change         = hfsc_change_class,
1654         .delete         = hfsc_delete_class,
1655         .graft          = hfsc_graft_class,
1656         .leaf           = hfsc_class_leaf,
1657         .qlen_notify    = hfsc_qlen_notify,
1658         .find           = hfsc_search_class,
1659         .bind_tcf       = hfsc_bind_tcf,
1660         .unbind_tcf     = hfsc_unbind_tcf,
1661         .tcf_block      = hfsc_tcf_block,
1662         .dump           = hfsc_dump_class,
1663         .dump_stats     = hfsc_dump_class_stats,
1664         .walk           = hfsc_walk
1665 };
1666 
1667 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
1668         .id             = "hfsc",
1669         .init           = hfsc_init_qdisc,
1670         .change         = hfsc_change_qdisc,
1671         .reset          = hfsc_reset_qdisc,
1672         .destroy        = hfsc_destroy_qdisc,
1673         .dump           = hfsc_dump_qdisc,
1674         .enqueue        = hfsc_enqueue,
1675         .dequeue        = hfsc_dequeue,
1676         .peek           = qdisc_peek_dequeued,
1677         .cl_ops         = &hfsc_class_ops,
1678         .priv_size      = sizeof(struct hfsc_sched),
1679         .owner          = THIS_MODULE
1680 };
1681 MODULE_ALIAS_NET_SCH("hfsc");
1682 
1683 static int __init
1684 hfsc_init(void)
1685 {
1686         return register_qdisc(&hfsc_qdisc_ops);
1687 }
1688 
1689 static void __exit
1690 hfsc_cleanup(void)
1691 {
1692         unregister_qdisc(&hfsc_qdisc_ops);
1693 }
1694 
1695 MODULE_LICENSE("GPL");
1696 MODULE_DESCRIPTION("Hierarchical Fair Service Curve scheduler");
1697 module_init(hfsc_init);
1698 module_exit(hfsc_cleanup);
1699 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php