~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/sctp/associola.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /* SCTP kernel implementation
  3  * (C) Copyright IBM Corp. 2001, 2004
  4  * Copyright (c) 1999-2000 Cisco, Inc.
  5  * Copyright (c) 1999-2001 Motorola, Inc.
  6  * Copyright (c) 2001 Intel Corp.
  7  * Copyright (c) 2001 La Monte H.P. Yarroll
  8  *
  9  * This file is part of the SCTP kernel implementation
 10  *
 11  * This module provides the abstraction for an SCTP association.
 12  *
 13  * Please send any bug reports or fixes you make to the
 14  * email address(es):
 15  *    lksctp developers <linux-sctp@vger.kernel.org>
 16  *
 17  * Written or modified by:
 18  *    La Monte H.P. Yarroll <piggy@acm.org>
 19  *    Karl Knutson          <karl@athena.chicago.il.us>
 20  *    Jon Grimm             <jgrimm@us.ibm.com>
 21  *    Xingang Guo           <xingang.guo@intel.com>
 22  *    Hui Huang             <hui.huang@nokia.com>
 23  *    Sridhar Samudrala     <sri@us.ibm.com>
 24  *    Daisy Chang           <daisyc@us.ibm.com>
 25  *    Ryan Layer            <rmlayer@us.ibm.com>
 26  *    Kevin Gao             <kevin.gao@intel.com>
 27  */
 28 
 29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 30 
 31 #include <linux/types.h>
 32 #include <linux/fcntl.h>
 33 #include <linux/poll.h>
 34 #include <linux/init.h>
 35 
 36 #include <linux/slab.h>
 37 #include <linux/in.h>
 38 #include <net/ipv6.h>
 39 #include <net/sctp/sctp.h>
 40 #include <net/sctp/sm.h>
 41 
 42 /* Forward declarations for internal functions. */
 43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
 44 static void sctp_assoc_bh_rcv(struct work_struct *work);
 45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
 46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
 47 
 48 /* 1st Level Abstractions. */
 49 
 50 /* Initialize a new association from provided memory. */
 51 static struct sctp_association *sctp_association_init(
 52                                         struct sctp_association *asoc,
 53                                         const struct sctp_endpoint *ep,
 54                                         const struct sock *sk,
 55                                         enum sctp_scope scope, gfp_t gfp)
 56 {
 57         struct sctp_sock *sp;
 58         struct sctp_paramhdr *p;
 59         int i;
 60 
 61         /* Retrieve the SCTP per socket area.  */
 62         sp = sctp_sk((struct sock *)sk);
 63 
 64         /* Discarding const is appropriate here.  */
 65         asoc->ep = (struct sctp_endpoint *)ep;
 66         asoc->base.sk = (struct sock *)sk;
 67         asoc->base.net = sock_net(sk);
 68 
 69         sctp_endpoint_hold(asoc->ep);
 70         sock_hold(asoc->base.sk);
 71 
 72         /* Initialize the common base substructure.  */
 73         asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
 74 
 75         /* Initialize the object handling fields.  */
 76         refcount_set(&asoc->base.refcnt, 1);
 77 
 78         /* Initialize the bind addr area.  */
 79         sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
 80 
 81         asoc->state = SCTP_STATE_CLOSED;
 82         asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
 83         asoc->user_frag = sp->user_frag;
 84 
 85         /* Set the association max_retrans and RTO values from the
 86          * socket values.
 87          */
 88         asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
 89         asoc->pf_retrans  = sp->pf_retrans;
 90         asoc->ps_retrans  = sp->ps_retrans;
 91         asoc->pf_expose   = sp->pf_expose;
 92 
 93         asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
 94         asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
 95         asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
 96 
 97         /* Initialize the association's heartbeat interval based on the
 98          * sock configured value.
 99          */
100         asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
101         asoc->probe_interval = msecs_to_jiffies(sp->probe_interval);
102 
103         asoc->encap_port = sp->encap_port;
104 
105         /* Initialize path max retrans value. */
106         asoc->pathmaxrxt = sp->pathmaxrxt;
107 
108         asoc->flowlabel = sp->flowlabel;
109         asoc->dscp = sp->dscp;
110 
111         /* Set association default SACK delay */
112         asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
113         asoc->sackfreq = sp->sackfreq;
114 
115         /* Set the association default flags controlling
116          * Heartbeat, SACK delay, and Path MTU Discovery.
117          */
118         asoc->param_flags = sp->param_flags;
119 
120         /* Initialize the maximum number of new data packets that can be sent
121          * in a burst.
122          */
123         asoc->max_burst = sp->max_burst;
124 
125         asoc->subscribe = sp->subscribe;
126 
127         /* initialize association timers */
128         asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
129         asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
130         asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
131 
132         /* sctpimpguide Section 2.12.2
133          * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
134          * recommended value of 5 times 'RTO.Max'.
135          */
136         asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
137                 = 5 * asoc->rto_max;
138 
139         asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
140         asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
141 
142         /* Initializes the timers */
143         for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
144                 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
145 
146         /* Pull default initialization values from the sock options.
147          * Note: This assumes that the values have already been
148          * validated in the sock.
149          */
150         asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
151         asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
152         asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
153 
154         asoc->max_init_timeo =
155                  msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
156 
157         /* Set the local window size for receive.
158          * This is also the rcvbuf space per association.
159          * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
160          * 1500 bytes in one SCTP packet.
161          */
162         if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
163                 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
164         else
165                 asoc->rwnd = sk->sk_rcvbuf/2;
166 
167         asoc->a_rwnd = asoc->rwnd;
168 
169         /* Use my own max window until I learn something better.  */
170         asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
171 
172         /* Initialize the receive memory counter */
173         atomic_set(&asoc->rmem_alloc, 0);
174 
175         init_waitqueue_head(&asoc->wait);
176 
177         asoc->c.my_vtag = sctp_generate_tag(ep);
178         asoc->c.my_port = ep->base.bind_addr.port;
179 
180         asoc->c.initial_tsn = sctp_generate_tsn(ep);
181 
182         asoc->next_tsn = asoc->c.initial_tsn;
183 
184         asoc->ctsn_ack_point = asoc->next_tsn - 1;
185         asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
186         asoc->highest_sacked = asoc->ctsn_ack_point;
187         asoc->last_cwr_tsn = asoc->ctsn_ack_point;
188 
189         /* ADDIP Section 4.1 Asconf Chunk Procedures
190          *
191          * When an endpoint has an ASCONF signaled change to be sent to the
192          * remote endpoint it should do the following:
193          * ...
194          * A2) a serial number should be assigned to the chunk. The serial
195          * number SHOULD be a monotonically increasing number. The serial
196          * numbers SHOULD be initialized at the start of the
197          * association to the same value as the initial TSN.
198          */
199         asoc->addip_serial = asoc->c.initial_tsn;
200         asoc->strreset_outseq = asoc->c.initial_tsn;
201 
202         INIT_LIST_HEAD(&asoc->addip_chunk_list);
203         INIT_LIST_HEAD(&asoc->asconf_ack_list);
204 
205         /* Make an empty list of remote transport addresses.  */
206         INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
207 
208         /* RFC 2960 5.1 Normal Establishment of an Association
209          *
210          * After the reception of the first data chunk in an
211          * association the endpoint must immediately respond with a
212          * sack to acknowledge the data chunk.  Subsequent
213          * acknowledgements should be done as described in Section
214          * 6.2.
215          *
216          * [We implement this by telling a new association that it
217          * already received one packet.]
218          */
219         asoc->peer.sack_needed = 1;
220         asoc->peer.sack_generation = 1;
221 
222         /* Create an input queue.  */
223         sctp_inq_init(&asoc->base.inqueue);
224         sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
225 
226         /* Create an output queue.  */
227         sctp_outq_init(asoc, &asoc->outqueue);
228 
229         sctp_ulpq_init(&asoc->ulpq, asoc);
230 
231         if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams, 0, gfp))
232                 goto stream_free;
233 
234         /* Initialize default path MTU. */
235         asoc->pathmtu = sp->pathmtu;
236         sctp_assoc_update_frag_point(asoc);
237 
238         /* Assume that peer would support both address types unless we are
239          * told otherwise.
240          */
241         asoc->peer.ipv4_address = 1;
242         if (asoc->base.sk->sk_family == PF_INET6)
243                 asoc->peer.ipv6_address = 1;
244         INIT_LIST_HEAD(&asoc->asocs);
245 
246         asoc->default_stream = sp->default_stream;
247         asoc->default_ppid = sp->default_ppid;
248         asoc->default_flags = sp->default_flags;
249         asoc->default_context = sp->default_context;
250         asoc->default_timetolive = sp->default_timetolive;
251         asoc->default_rcv_context = sp->default_rcv_context;
252 
253         /* AUTH related initializations */
254         INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
255         if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
256                 goto stream_free;
257 
258         asoc->active_key_id = ep->active_key_id;
259         asoc->strreset_enable = ep->strreset_enable;
260 
261         /* Save the hmacs and chunks list into this association */
262         if (ep->auth_hmacs_list)
263                 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
264                         ntohs(ep->auth_hmacs_list->param_hdr.length));
265         if (ep->auth_chunk_list)
266                 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
267                         ntohs(ep->auth_chunk_list->param_hdr.length));
268 
269         /* Get the AUTH random number for this association */
270         p = (struct sctp_paramhdr *)asoc->c.auth_random;
271         p->type = SCTP_PARAM_RANDOM;
272         p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
273         get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
274 
275         return asoc;
276 
277 stream_free:
278         sctp_stream_free(&asoc->stream);
279         sock_put(asoc->base.sk);
280         sctp_endpoint_put(asoc->ep);
281         return NULL;
282 }
283 
284 /* Allocate and initialize a new association */
285 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
286                                               const struct sock *sk,
287                                               enum sctp_scope scope, gfp_t gfp)
288 {
289         struct sctp_association *asoc;
290 
291         asoc = kzalloc(sizeof(*asoc), gfp);
292         if (!asoc)
293                 goto fail;
294 
295         if (!sctp_association_init(asoc, ep, sk, scope, gfp))
296                 goto fail_init;
297 
298         SCTP_DBG_OBJCNT_INC(assoc);
299 
300         pr_debug("Created asoc %p\n", asoc);
301 
302         return asoc;
303 
304 fail_init:
305         kfree(asoc);
306 fail:
307         return NULL;
308 }
309 
310 /* Free this association if possible.  There may still be users, so
311  * the actual deallocation may be delayed.
312  */
313 void sctp_association_free(struct sctp_association *asoc)
314 {
315         struct sock *sk = asoc->base.sk;
316         struct sctp_transport *transport;
317         struct list_head *pos, *temp;
318         int i;
319 
320         /* Only real associations count against the endpoint, so
321          * don't bother for if this is a temporary association.
322          */
323         if (!list_empty(&asoc->asocs)) {
324                 list_del(&asoc->asocs);
325 
326                 /* Decrement the backlog value for a TCP-style listening
327                  * socket.
328                  */
329                 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
330                         sk_acceptq_removed(sk);
331         }
332 
333         /* Mark as dead, so other users can know this structure is
334          * going away.
335          */
336         asoc->base.dead = true;
337 
338         /* Dispose of any data lying around in the outqueue. */
339         sctp_outq_free(&asoc->outqueue);
340 
341         /* Dispose of any pending messages for the upper layer. */
342         sctp_ulpq_free(&asoc->ulpq);
343 
344         /* Dispose of any pending chunks on the inqueue. */
345         sctp_inq_free(&asoc->base.inqueue);
346 
347         sctp_tsnmap_free(&asoc->peer.tsn_map);
348 
349         /* Free stream information. */
350         sctp_stream_free(&asoc->stream);
351 
352         if (asoc->strreset_chunk)
353                 sctp_chunk_free(asoc->strreset_chunk);
354 
355         /* Clean up the bound address list. */
356         sctp_bind_addr_free(&asoc->base.bind_addr);
357 
358         /* Do we need to go through all of our timers and
359          * delete them?   To be safe we will try to delete all, but we
360          * should be able to go through and make a guess based
361          * on our state.
362          */
363         for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
364                 if (del_timer(&asoc->timers[i]))
365                         sctp_association_put(asoc);
366         }
367 
368         /* Free peer's cached cookie. */
369         kfree(asoc->peer.cookie);
370         kfree(asoc->peer.peer_random);
371         kfree(asoc->peer.peer_chunks);
372         kfree(asoc->peer.peer_hmacs);
373 
374         /* Release the transport structures. */
375         list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
376                 transport = list_entry(pos, struct sctp_transport, transports);
377                 list_del_rcu(pos);
378                 sctp_unhash_transport(transport);
379                 sctp_transport_free(transport);
380         }
381 
382         asoc->peer.transport_count = 0;
383 
384         sctp_asconf_queue_teardown(asoc);
385 
386         /* Free pending address space being deleted */
387         kfree(asoc->asconf_addr_del_pending);
388 
389         /* AUTH - Free the endpoint shared keys */
390         sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
391 
392         /* AUTH - Free the association shared key */
393         sctp_auth_key_put(asoc->asoc_shared_key);
394 
395         sctp_association_put(asoc);
396 }
397 
398 /* Cleanup and free up an association. */
399 static void sctp_association_destroy(struct sctp_association *asoc)
400 {
401         if (unlikely(!asoc->base.dead)) {
402                 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
403                 return;
404         }
405 
406         sctp_endpoint_put(asoc->ep);
407         sock_put(asoc->base.sk);
408 
409         if (asoc->assoc_id != 0) {
410                 spin_lock_bh(&sctp_assocs_id_lock);
411                 idr_remove(&sctp_assocs_id, asoc->assoc_id);
412                 spin_unlock_bh(&sctp_assocs_id_lock);
413         }
414 
415         WARN_ON(atomic_read(&asoc->rmem_alloc));
416 
417         kfree_rcu(asoc, rcu);
418         SCTP_DBG_OBJCNT_DEC(assoc);
419 }
420 
421 /* Change the primary destination address for the peer. */
422 void sctp_assoc_set_primary(struct sctp_association *asoc,
423                             struct sctp_transport *transport)
424 {
425         int changeover = 0;
426 
427         /* it's a changeover only if we already have a primary path
428          * that we are changing
429          */
430         if (asoc->peer.primary_path != NULL &&
431             asoc->peer.primary_path != transport)
432                 changeover = 1 ;
433 
434         asoc->peer.primary_path = transport;
435         sctp_ulpevent_notify_peer_addr_change(transport,
436                                               SCTP_ADDR_MADE_PRIM, 0);
437 
438         /* Set a default msg_name for events. */
439         memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
440                sizeof(union sctp_addr));
441 
442         /* If the primary path is changing, assume that the
443          * user wants to use this new path.
444          */
445         if ((transport->state == SCTP_ACTIVE) ||
446             (transport->state == SCTP_UNKNOWN))
447                 asoc->peer.active_path = transport;
448 
449         /*
450          * SFR-CACC algorithm:
451          * Upon the receipt of a request to change the primary
452          * destination address, on the data structure for the new
453          * primary destination, the sender MUST do the following:
454          *
455          * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
456          * to this destination address earlier. The sender MUST set
457          * CYCLING_CHANGEOVER to indicate that this switch is a
458          * double switch to the same destination address.
459          *
460          * Really, only bother is we have data queued or outstanding on
461          * the association.
462          */
463         if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
464                 return;
465 
466         if (transport->cacc.changeover_active)
467                 transport->cacc.cycling_changeover = changeover;
468 
469         /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
470          * a changeover has occurred.
471          */
472         transport->cacc.changeover_active = changeover;
473 
474         /* 3) The sender MUST store the next TSN to be sent in
475          * next_tsn_at_change.
476          */
477         transport->cacc.next_tsn_at_change = asoc->next_tsn;
478 }
479 
480 /* Remove a transport from an association.  */
481 void sctp_assoc_rm_peer(struct sctp_association *asoc,
482                         struct sctp_transport *peer)
483 {
484         struct sctp_transport *transport;
485         struct list_head *pos;
486         struct sctp_chunk *ch;
487 
488         pr_debug("%s: association:%p addr:%pISpc\n",
489                  __func__, asoc, &peer->ipaddr.sa);
490 
491         /* If we are to remove the current retran_path, update it
492          * to the next peer before removing this peer from the list.
493          */
494         if (asoc->peer.retran_path == peer)
495                 sctp_assoc_update_retran_path(asoc);
496 
497         /* Remove this peer from the list. */
498         list_del_rcu(&peer->transports);
499         /* Remove this peer from the transport hashtable */
500         sctp_unhash_transport(peer);
501 
502         /* Get the first transport of asoc. */
503         pos = asoc->peer.transport_addr_list.next;
504         transport = list_entry(pos, struct sctp_transport, transports);
505 
506         /* Update any entries that match the peer to be deleted. */
507         if (asoc->peer.primary_path == peer)
508                 sctp_assoc_set_primary(asoc, transport);
509         if (asoc->peer.active_path == peer)
510                 asoc->peer.active_path = transport;
511         if (asoc->peer.retran_path == peer)
512                 asoc->peer.retran_path = transport;
513         if (asoc->peer.last_data_from == peer)
514                 asoc->peer.last_data_from = transport;
515 
516         if (asoc->strreset_chunk &&
517             asoc->strreset_chunk->transport == peer) {
518                 asoc->strreset_chunk->transport = transport;
519                 sctp_transport_reset_reconf_timer(transport);
520         }
521 
522         /* If we remove the transport an INIT was last sent to, set it to
523          * NULL. Combined with the update of the retran path above, this
524          * will cause the next INIT to be sent to the next available
525          * transport, maintaining the cycle.
526          */
527         if (asoc->init_last_sent_to == peer)
528                 asoc->init_last_sent_to = NULL;
529 
530         /* If we remove the transport an SHUTDOWN was last sent to, set it
531          * to NULL. Combined with the update of the retran path above, this
532          * will cause the next SHUTDOWN to be sent to the next available
533          * transport, maintaining the cycle.
534          */
535         if (asoc->shutdown_last_sent_to == peer)
536                 asoc->shutdown_last_sent_to = NULL;
537 
538         /* If we remove the transport an ASCONF was last sent to, set it to
539          * NULL.
540          */
541         if (asoc->addip_last_asconf &&
542             asoc->addip_last_asconf->transport == peer)
543                 asoc->addip_last_asconf->transport = NULL;
544 
545         /* If we have something on the transmitted list, we have to
546          * save it off.  The best place is the active path.
547          */
548         if (!list_empty(&peer->transmitted)) {
549                 struct sctp_transport *active = asoc->peer.active_path;
550 
551                 /* Reset the transport of each chunk on this list */
552                 list_for_each_entry(ch, &peer->transmitted,
553                                         transmitted_list) {
554                         ch->transport = NULL;
555                         ch->rtt_in_progress = 0;
556                 }
557 
558                 list_splice_tail_init(&peer->transmitted,
559                                         &active->transmitted);
560 
561                 /* Start a T3 timer here in case it wasn't running so
562                  * that these migrated packets have a chance to get
563                  * retransmitted.
564                  */
565                 if (!timer_pending(&active->T3_rtx_timer))
566                         if (!mod_timer(&active->T3_rtx_timer,
567                                         jiffies + active->rto))
568                                 sctp_transport_hold(active);
569         }
570 
571         list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
572                 if (ch->transport == peer)
573                         ch->transport = NULL;
574 
575         asoc->peer.transport_count--;
576 
577         sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0);
578         sctp_transport_free(peer);
579 }
580 
581 /* Add a transport address to an association.  */
582 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
583                                            const union sctp_addr *addr,
584                                            const gfp_t gfp,
585                                            const int peer_state)
586 {
587         struct sctp_transport *peer;
588         struct sctp_sock *sp;
589         unsigned short port;
590 
591         sp = sctp_sk(asoc->base.sk);
592 
593         /* AF_INET and AF_INET6 share common port field. */
594         port = ntohs(addr->v4.sin_port);
595 
596         pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
597                  asoc, &addr->sa, peer_state);
598 
599         /* Set the port if it has not been set yet.  */
600         if (0 == asoc->peer.port)
601                 asoc->peer.port = port;
602 
603         /* Check to see if this is a duplicate. */
604         peer = sctp_assoc_lookup_paddr(asoc, addr);
605         if (peer) {
606                 /* An UNKNOWN state is only set on transports added by
607                  * user in sctp_connectx() call.  Such transports should be
608                  * considered CONFIRMED per RFC 4960, Section 5.4.
609                  */
610                 if (peer->state == SCTP_UNKNOWN) {
611                         peer->state = SCTP_ACTIVE;
612                 }
613                 return peer;
614         }
615 
616         peer = sctp_transport_new(asoc->base.net, addr, gfp);
617         if (!peer)
618                 return NULL;
619 
620         sctp_transport_set_owner(peer, asoc);
621 
622         /* Initialize the peer's heartbeat interval based on the
623          * association configured value.
624          */
625         peer->hbinterval = asoc->hbinterval;
626         peer->probe_interval = asoc->probe_interval;
627 
628         peer->encap_port = asoc->encap_port;
629 
630         /* Set the path max_retrans.  */
631         peer->pathmaxrxt = asoc->pathmaxrxt;
632 
633         /* And the partial failure retrans threshold */
634         peer->pf_retrans = asoc->pf_retrans;
635         /* And the primary path switchover retrans threshold */
636         peer->ps_retrans = asoc->ps_retrans;
637 
638         /* Initialize the peer's SACK delay timeout based on the
639          * association configured value.
640          */
641         peer->sackdelay = asoc->sackdelay;
642         peer->sackfreq = asoc->sackfreq;
643 
644         if (addr->sa.sa_family == AF_INET6) {
645                 __be32 info = addr->v6.sin6_flowinfo;
646 
647                 if (info) {
648                         peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
649                         peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
650                 } else {
651                         peer->flowlabel = asoc->flowlabel;
652                 }
653         }
654         peer->dscp = asoc->dscp;
655 
656         /* Enable/disable heartbeat, SACK delay, and path MTU discovery
657          * based on association setting.
658          */
659         peer->param_flags = asoc->param_flags;
660 
661         /* Initialize the pmtu of the transport. */
662         sctp_transport_route(peer, NULL, sp);
663 
664         /* If this is the first transport addr on this association,
665          * initialize the association PMTU to the peer's PMTU.
666          * If not and the current association PMTU is higher than the new
667          * peer's PMTU, reset the association PMTU to the new peer's PMTU.
668          */
669         sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
670                                   min_t(int, peer->pathmtu, asoc->pathmtu) :
671                                   peer->pathmtu);
672 
673         peer->pmtu_pending = 0;
674 
675         /* The asoc->peer.port might not be meaningful yet, but
676          * initialize the packet structure anyway.
677          */
678         sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
679                          asoc->peer.port);
680 
681         /* 7.2.1 Slow-Start
682          *
683          * o The initial cwnd before DATA transmission or after a sufficiently
684          *   long idle period MUST be set to
685          *      min(4*MTU, max(2*MTU, 4380 bytes))
686          *
687          * o The initial value of ssthresh MAY be arbitrarily high
688          *   (for example, implementations MAY use the size of the
689          *   receiver advertised window).
690          */
691         peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
692 
693         /* At this point, we may not have the receiver's advertised window,
694          * so initialize ssthresh to the default value and it will be set
695          * later when we process the INIT.
696          */
697         peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
698 
699         peer->partial_bytes_acked = 0;
700         peer->flight_size = 0;
701         peer->burst_limited = 0;
702 
703         /* Set the transport's RTO.initial value */
704         peer->rto = asoc->rto_initial;
705         sctp_max_rto(asoc, peer);
706 
707         /* Set the peer's active state. */
708         peer->state = peer_state;
709 
710         /* Add this peer into the transport hashtable */
711         if (sctp_hash_transport(peer)) {
712                 sctp_transport_free(peer);
713                 return NULL;
714         }
715 
716         sctp_transport_pl_reset(peer);
717 
718         /* Attach the remote transport to our asoc.  */
719         list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
720         asoc->peer.transport_count++;
721 
722         sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_ADDED, 0);
723 
724         /* If we do not yet have a primary path, set one.  */
725         if (!asoc->peer.primary_path) {
726                 sctp_assoc_set_primary(asoc, peer);
727                 asoc->peer.retran_path = peer;
728         }
729 
730         if (asoc->peer.active_path == asoc->peer.retran_path &&
731             peer->state != SCTP_UNCONFIRMED) {
732                 asoc->peer.retran_path = peer;
733         }
734 
735         return peer;
736 }
737 
738 /* Delete a transport address from an association.  */
739 void sctp_assoc_del_peer(struct sctp_association *asoc,
740                          const union sctp_addr *addr)
741 {
742         struct list_head        *pos;
743         struct list_head        *temp;
744         struct sctp_transport   *transport;
745 
746         list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
747                 transport = list_entry(pos, struct sctp_transport, transports);
748                 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
749                         /* Do book keeping for removing the peer and free it. */
750                         sctp_assoc_rm_peer(asoc, transport);
751                         break;
752                 }
753         }
754 }
755 
756 /* Lookup a transport by address. */
757 struct sctp_transport *sctp_assoc_lookup_paddr(
758                                         const struct sctp_association *asoc,
759                                         const union sctp_addr *address)
760 {
761         struct sctp_transport *t;
762 
763         /* Cycle through all transports searching for a peer address. */
764 
765         list_for_each_entry(t, &asoc->peer.transport_addr_list,
766                         transports) {
767                 if (sctp_cmp_addr_exact(address, &t->ipaddr))
768                         return t;
769         }
770 
771         return NULL;
772 }
773 
774 /* Remove all transports except a give one */
775 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
776                                      struct sctp_transport *primary)
777 {
778         struct sctp_transport   *temp;
779         struct sctp_transport   *t;
780 
781         list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
782                                  transports) {
783                 /* if the current transport is not the primary one, delete it */
784                 if (t != primary)
785                         sctp_assoc_rm_peer(asoc, t);
786         }
787 }
788 
789 /* Engage in transport control operations.
790  * Mark the transport up or down and send a notification to the user.
791  * Select and update the new active and retran paths.
792  */
793 void sctp_assoc_control_transport(struct sctp_association *asoc,
794                                   struct sctp_transport *transport,
795                                   enum sctp_transport_cmd command,
796                                   sctp_sn_error_t error)
797 {
798         int spc_state = SCTP_ADDR_AVAILABLE;
799         bool ulp_notify = true;
800 
801         /* Record the transition on the transport.  */
802         switch (command) {
803         case SCTP_TRANSPORT_UP:
804                 /* If we are moving from UNCONFIRMED state due
805                  * to heartbeat success, report the SCTP_ADDR_CONFIRMED
806                  * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
807                  */
808                 if (transport->state == SCTP_PF &&
809                     asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
810                         ulp_notify = false;
811                 else if (transport->state == SCTP_UNCONFIRMED &&
812                          error == SCTP_HEARTBEAT_SUCCESS)
813                         spc_state = SCTP_ADDR_CONFIRMED;
814 
815                 transport->state = SCTP_ACTIVE;
816                 sctp_transport_pl_reset(transport);
817                 break;
818 
819         case SCTP_TRANSPORT_DOWN:
820                 /* If the transport was never confirmed, do not transition it
821                  * to inactive state.  Also, release the cached route since
822                  * there may be a better route next time.
823                  */
824                 if (transport->state != SCTP_UNCONFIRMED) {
825                         transport->state = SCTP_INACTIVE;
826                         sctp_transport_pl_reset(transport);
827                         spc_state = SCTP_ADDR_UNREACHABLE;
828                 } else {
829                         sctp_transport_dst_release(transport);
830                         ulp_notify = false;
831                 }
832                 break;
833 
834         case SCTP_TRANSPORT_PF:
835                 transport->state = SCTP_PF;
836                 if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
837                         ulp_notify = false;
838                 else
839                         spc_state = SCTP_ADDR_POTENTIALLY_FAILED;
840                 break;
841 
842         default:
843                 return;
844         }
845 
846         /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
847          * to the user.
848          */
849         if (ulp_notify)
850                 sctp_ulpevent_notify_peer_addr_change(transport,
851                                                       spc_state, error);
852 
853         /* Select new active and retran paths. */
854         sctp_select_active_and_retran_path(asoc);
855 }
856 
857 /* Hold a reference to an association. */
858 void sctp_association_hold(struct sctp_association *asoc)
859 {
860         refcount_inc(&asoc->base.refcnt);
861 }
862 
863 /* Release a reference to an association and cleanup
864  * if there are no more references.
865  */
866 void sctp_association_put(struct sctp_association *asoc)
867 {
868         if (refcount_dec_and_test(&asoc->base.refcnt))
869                 sctp_association_destroy(asoc);
870 }
871 
872 /* Allocate the next TSN, Transmission Sequence Number, for the given
873  * association.
874  */
875 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
876 {
877         /* From Section 1.6 Serial Number Arithmetic:
878          * Transmission Sequence Numbers wrap around when they reach
879          * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
880          * after transmitting TSN = 2*32 - 1 is TSN = 0.
881          */
882         __u32 retval = asoc->next_tsn;
883         asoc->next_tsn++;
884         asoc->unack_data++;
885 
886         return retval;
887 }
888 
889 /* Compare two addresses to see if they match.  Wildcard addresses
890  * only match themselves.
891  */
892 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
893                         const union sctp_addr *ss2)
894 {
895         struct sctp_af *af;
896 
897         af = sctp_get_af_specific(ss1->sa.sa_family);
898         if (unlikely(!af))
899                 return 0;
900 
901         return af->cmp_addr(ss1, ss2);
902 }
903 
904 /* Return an ecne chunk to get prepended to a packet.
905  * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
906  * No we don't, but we could/should.
907  */
908 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
909 {
910         if (!asoc->need_ecne)
911                 return NULL;
912 
913         /* Send ECNE if needed.
914          * Not being able to allocate a chunk here is not deadly.
915          */
916         return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
917 }
918 
919 /*
920  * Find which transport this TSN was sent on.
921  */
922 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
923                                              __u32 tsn)
924 {
925         struct sctp_transport *active;
926         struct sctp_transport *match;
927         struct sctp_transport *transport;
928         struct sctp_chunk *chunk;
929         __be32 key = htonl(tsn);
930 
931         match = NULL;
932 
933         /*
934          * FIXME: In general, find a more efficient data structure for
935          * searching.
936          */
937 
938         /*
939          * The general strategy is to search each transport's transmitted
940          * list.   Return which transport this TSN lives on.
941          *
942          * Let's be hopeful and check the active_path first.
943          * Another optimization would be to know if there is only one
944          * outbound path and not have to look for the TSN at all.
945          *
946          */
947 
948         active = asoc->peer.active_path;
949 
950         list_for_each_entry(chunk, &active->transmitted,
951                         transmitted_list) {
952 
953                 if (key == chunk->subh.data_hdr->tsn) {
954                         match = active;
955                         goto out;
956                 }
957         }
958 
959         /* If not found, go search all the other transports. */
960         list_for_each_entry(transport, &asoc->peer.transport_addr_list,
961                         transports) {
962 
963                 if (transport == active)
964                         continue;
965                 list_for_each_entry(chunk, &transport->transmitted,
966                                 transmitted_list) {
967                         if (key == chunk->subh.data_hdr->tsn) {
968                                 match = transport;
969                                 goto out;
970                         }
971                 }
972         }
973 out:
974         return match;
975 }
976 
977 /* Do delayed input processing.  This is scheduled by sctp_rcv(). */
978 static void sctp_assoc_bh_rcv(struct work_struct *work)
979 {
980         struct sctp_association *asoc =
981                 container_of(work, struct sctp_association,
982                              base.inqueue.immediate);
983         struct net *net = asoc->base.net;
984         union sctp_subtype subtype;
985         struct sctp_endpoint *ep;
986         struct sctp_chunk *chunk;
987         struct sctp_inq *inqueue;
988         int first_time = 1;     /* is this the first time through the loop */
989         int error = 0;
990         int state;
991 
992         /* The association should be held so we should be safe. */
993         ep = asoc->ep;
994 
995         inqueue = &asoc->base.inqueue;
996         sctp_association_hold(asoc);
997         while (NULL != (chunk = sctp_inq_pop(inqueue))) {
998                 state = asoc->state;
999                 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1000 
1001                 /* If the first chunk in the packet is AUTH, do special
1002                  * processing specified in Section 6.3 of SCTP-AUTH spec
1003                  */
1004                 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1005                         struct sctp_chunkhdr *next_hdr;
1006 
1007                         next_hdr = sctp_inq_peek(inqueue);
1008                         if (!next_hdr)
1009                                 goto normal;
1010 
1011                         /* If the next chunk is COOKIE-ECHO, skip the AUTH
1012                          * chunk while saving a pointer to it so we can do
1013                          * Authentication later (during cookie-echo
1014                          * processing).
1015                          */
1016                         if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1017                                 chunk->auth_chunk = skb_clone(chunk->skb,
1018                                                               GFP_ATOMIC);
1019                                 chunk->auth = 1;
1020                                 continue;
1021                         }
1022                 }
1023 
1024 normal:
1025                 /* SCTP-AUTH, Section 6.3:
1026                  *    The receiver has a list of chunk types which it expects
1027                  *    to be received only after an AUTH-chunk.  This list has
1028                  *    been sent to the peer during the association setup.  It
1029                  *    MUST silently discard these chunks if they are not placed
1030                  *    after an AUTH chunk in the packet.
1031                  */
1032                 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1033                         continue;
1034 
1035                 /* Remember where the last DATA chunk came from so we
1036                  * know where to send the SACK.
1037                  */
1038                 if (sctp_chunk_is_data(chunk))
1039                         asoc->peer.last_data_from = chunk->transport;
1040                 else {
1041                         SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1042                         asoc->stats.ictrlchunks++;
1043                         if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1044                                 asoc->stats.isacks++;
1045                 }
1046 
1047                 if (chunk->transport)
1048                         chunk->transport->last_time_heard = ktime_get();
1049 
1050                 /* Run through the state machine. */
1051                 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1052                                    state, ep, asoc, chunk, GFP_ATOMIC);
1053 
1054                 /* Check to see if the association is freed in response to
1055                  * the incoming chunk.  If so, get out of the while loop.
1056                  */
1057                 if (asoc->base.dead)
1058                         break;
1059 
1060                 /* If there is an error on chunk, discard this packet. */
1061                 if (error && chunk)
1062                         chunk->pdiscard = 1;
1063 
1064                 if (first_time)
1065                         first_time = 0;
1066         }
1067         sctp_association_put(asoc);
1068 }
1069 
1070 /* This routine moves an association from its old sk to a new sk.  */
1071 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1072 {
1073         struct sctp_sock *newsp = sctp_sk(newsk);
1074         struct sock *oldsk = assoc->base.sk;
1075 
1076         /* Delete the association from the old endpoint's list of
1077          * associations.
1078          */
1079         list_del_init(&assoc->asocs);
1080 
1081         /* Decrement the backlog value for a TCP-style socket. */
1082         if (sctp_style(oldsk, TCP))
1083                 sk_acceptq_removed(oldsk);
1084 
1085         /* Release references to the old endpoint and the sock.  */
1086         sctp_endpoint_put(assoc->ep);
1087         sock_put(assoc->base.sk);
1088 
1089         /* Get a reference to the new endpoint.  */
1090         assoc->ep = newsp->ep;
1091         sctp_endpoint_hold(assoc->ep);
1092 
1093         /* Get a reference to the new sock.  */
1094         assoc->base.sk = newsk;
1095         sock_hold(assoc->base.sk);
1096 
1097         /* Add the association to the new endpoint's list of associations.  */
1098         sctp_endpoint_add_asoc(newsp->ep, assoc);
1099 }
1100 
1101 /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1102 int sctp_assoc_update(struct sctp_association *asoc,
1103                       struct sctp_association *new)
1104 {
1105         struct sctp_transport *trans;
1106         struct list_head *pos, *temp;
1107 
1108         /* Copy in new parameters of peer. */
1109         asoc->c = new->c;
1110         asoc->peer.rwnd = new->peer.rwnd;
1111         asoc->peer.sack_needed = new->peer.sack_needed;
1112         asoc->peer.auth_capable = new->peer.auth_capable;
1113         asoc->peer.i = new->peer.i;
1114 
1115         if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1116                               asoc->peer.i.initial_tsn, GFP_ATOMIC))
1117                 return -ENOMEM;
1118 
1119         /* Remove any peer addresses not present in the new association. */
1120         list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1121                 trans = list_entry(pos, struct sctp_transport, transports);
1122                 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1123                         sctp_assoc_rm_peer(asoc, trans);
1124                         continue;
1125                 }
1126 
1127                 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1128                         sctp_transport_reset(trans);
1129         }
1130 
1131         /* If the case is A (association restart), use
1132          * initial_tsn as next_tsn. If the case is B, use
1133          * current next_tsn in case data sent to peer
1134          * has been discarded and needs retransmission.
1135          */
1136         if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1137                 asoc->next_tsn = new->next_tsn;
1138                 asoc->ctsn_ack_point = new->ctsn_ack_point;
1139                 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1140 
1141                 /* Reinitialize SSN for both local streams
1142                  * and peer's streams.
1143                  */
1144                 sctp_stream_clear(&asoc->stream);
1145 
1146                 /* Flush the ULP reassembly and ordered queue.
1147                  * Any data there will now be stale and will
1148                  * cause problems.
1149                  */
1150                 sctp_ulpq_flush(&asoc->ulpq);
1151 
1152                 /* reset the overall association error count so
1153                  * that the restarted association doesn't get torn
1154                  * down on the next retransmission timer.
1155                  */
1156                 asoc->overall_error_count = 0;
1157 
1158         } else {
1159                 /* Add any peer addresses from the new association. */
1160                 list_for_each_entry(trans, &new->peer.transport_addr_list,
1161                                     transports)
1162                         if (!sctp_assoc_add_peer(asoc, &trans->ipaddr,
1163                                                  GFP_ATOMIC, trans->state))
1164                                 return -ENOMEM;
1165 
1166                 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1167                 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1168 
1169                 if (sctp_state(asoc, COOKIE_WAIT))
1170                         sctp_stream_update(&asoc->stream, &new->stream);
1171 
1172                 /* get a new assoc id if we don't have one yet. */
1173                 if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1174                         return -ENOMEM;
1175         }
1176 
1177         /* SCTP-AUTH: Save the peer parameters from the new associations
1178          * and also move the association shared keys over
1179          */
1180         kfree(asoc->peer.peer_random);
1181         asoc->peer.peer_random = new->peer.peer_random;
1182         new->peer.peer_random = NULL;
1183 
1184         kfree(asoc->peer.peer_chunks);
1185         asoc->peer.peer_chunks = new->peer.peer_chunks;
1186         new->peer.peer_chunks = NULL;
1187 
1188         kfree(asoc->peer.peer_hmacs);
1189         asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1190         new->peer.peer_hmacs = NULL;
1191 
1192         return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1193 }
1194 
1195 /* Update the retran path for sending a retransmitted packet.
1196  * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1197  *
1198  *   When there is outbound data to send and the primary path
1199  *   becomes inactive (e.g., due to failures), or where the
1200  *   SCTP user explicitly requests to send data to an
1201  *   inactive destination transport address, before reporting
1202  *   an error to its ULP, the SCTP endpoint should try to send
1203  *   the data to an alternate active destination transport
1204  *   address if one exists.
1205  *
1206  *   When retransmitting data that timed out, if the endpoint
1207  *   is multihomed, it should consider each source-destination
1208  *   address pair in its retransmission selection policy.
1209  *   When retransmitting timed-out data, the endpoint should
1210  *   attempt to pick the most divergent source-destination
1211  *   pair from the original source-destination pair to which
1212  *   the packet was transmitted.
1213  *
1214  *   Note: Rules for picking the most divergent source-destination
1215  *   pair are an implementation decision and are not specified
1216  *   within this document.
1217  *
1218  * Our basic strategy is to round-robin transports in priorities
1219  * according to sctp_trans_score() e.g., if no such
1220  * transport with state SCTP_ACTIVE exists, round-robin through
1221  * SCTP_UNKNOWN, etc. You get the picture.
1222  */
1223 static u8 sctp_trans_score(const struct sctp_transport *trans)
1224 {
1225         switch (trans->state) {
1226         case SCTP_ACTIVE:
1227                 return 3;       /* best case */
1228         case SCTP_UNKNOWN:
1229                 return 2;
1230         case SCTP_PF:
1231                 return 1;
1232         default: /* case SCTP_INACTIVE */
1233                 return 0;       /* worst case */
1234         }
1235 }
1236 
1237 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1238                                                    struct sctp_transport *trans2)
1239 {
1240         if (trans1->error_count > trans2->error_count) {
1241                 return trans2;
1242         } else if (trans1->error_count == trans2->error_count &&
1243                    ktime_after(trans2->last_time_heard,
1244                                trans1->last_time_heard)) {
1245                 return trans2;
1246         } else {
1247                 return trans1;
1248         }
1249 }
1250 
1251 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1252                                                     struct sctp_transport *best)
1253 {
1254         u8 score_curr, score_best;
1255 
1256         if (best == NULL || curr == best)
1257                 return curr;
1258 
1259         score_curr = sctp_trans_score(curr);
1260         score_best = sctp_trans_score(best);
1261 
1262         /* First, try a score-based selection if both transport states
1263          * differ. If we're in a tie, lets try to make a more clever
1264          * decision here based on error counts and last time heard.
1265          */
1266         if (score_curr > score_best)
1267                 return curr;
1268         else if (score_curr == score_best)
1269                 return sctp_trans_elect_tie(best, curr);
1270         else
1271                 return best;
1272 }
1273 
1274 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1275 {
1276         struct sctp_transport *trans = asoc->peer.retran_path;
1277         struct sctp_transport *trans_next = NULL;
1278 
1279         /* We're done as we only have the one and only path. */
1280         if (asoc->peer.transport_count == 1)
1281                 return;
1282         /* If active_path and retran_path are the same and active,
1283          * then this is the only active path. Use it.
1284          */
1285         if (asoc->peer.active_path == asoc->peer.retran_path &&
1286             asoc->peer.active_path->state == SCTP_ACTIVE)
1287                 return;
1288 
1289         /* Iterate from retran_path's successor back to retran_path. */
1290         for (trans = list_next_entry(trans, transports); 1;
1291              trans = list_next_entry(trans, transports)) {
1292                 /* Manually skip the head element. */
1293                 if (&trans->transports == &asoc->peer.transport_addr_list)
1294                         continue;
1295                 if (trans->state == SCTP_UNCONFIRMED)
1296                         continue;
1297                 trans_next = sctp_trans_elect_best(trans, trans_next);
1298                 /* Active is good enough for immediate return. */
1299                 if (trans_next->state == SCTP_ACTIVE)
1300                         break;
1301                 /* We've reached the end, time to update path. */
1302                 if (trans == asoc->peer.retran_path)
1303                         break;
1304         }
1305 
1306         asoc->peer.retran_path = trans_next;
1307 
1308         pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1309                  __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1310 }
1311 
1312 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1313 {
1314         struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1315         struct sctp_transport *trans_pf = NULL;
1316 
1317         /* Look for the two most recently used active transports. */
1318         list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1319                             transports) {
1320                 /* Skip uninteresting transports. */
1321                 if (trans->state == SCTP_INACTIVE ||
1322                     trans->state == SCTP_UNCONFIRMED)
1323                         continue;
1324                 /* Keep track of the best PF transport from our
1325                  * list in case we don't find an active one.
1326                  */
1327                 if (trans->state == SCTP_PF) {
1328                         trans_pf = sctp_trans_elect_best(trans, trans_pf);
1329                         continue;
1330                 }
1331                 /* For active transports, pick the most recent ones. */
1332                 if (trans_pri == NULL ||
1333                     ktime_after(trans->last_time_heard,
1334                                 trans_pri->last_time_heard)) {
1335                         trans_sec = trans_pri;
1336                         trans_pri = trans;
1337                 } else if (trans_sec == NULL ||
1338                            ktime_after(trans->last_time_heard,
1339                                        trans_sec->last_time_heard)) {
1340                         trans_sec = trans;
1341                 }
1342         }
1343 
1344         /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1345          *
1346          * By default, an endpoint should always transmit to the primary
1347          * path, unless the SCTP user explicitly specifies the
1348          * destination transport address (and possibly source transport
1349          * address) to use. [If the primary is active but not most recent,
1350          * bump the most recently used transport.]
1351          */
1352         if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1353              asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1354              asoc->peer.primary_path != trans_pri) {
1355                 trans_sec = trans_pri;
1356                 trans_pri = asoc->peer.primary_path;
1357         }
1358 
1359         /* We did not find anything useful for a possible retransmission
1360          * path; either primary path that we found is the same as
1361          * the current one, or we didn't generally find an active one.
1362          */
1363         if (trans_sec == NULL)
1364                 trans_sec = trans_pri;
1365 
1366         /* If we failed to find a usable transport, just camp on the
1367          * active or pick a PF iff it's the better choice.
1368          */
1369         if (trans_pri == NULL) {
1370                 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1371                 trans_sec = trans_pri;
1372         }
1373 
1374         /* Set the active and retran transports. */
1375         asoc->peer.active_path = trans_pri;
1376         asoc->peer.retran_path = trans_sec;
1377 }
1378 
1379 struct sctp_transport *
1380 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1381                                   struct sctp_transport *last_sent_to)
1382 {
1383         /* If this is the first time packet is sent, use the active path,
1384          * else use the retran path. If the last packet was sent over the
1385          * retran path, update the retran path and use it.
1386          */
1387         if (last_sent_to == NULL) {
1388                 return asoc->peer.active_path;
1389         } else {
1390                 if (last_sent_to == asoc->peer.retran_path)
1391                         sctp_assoc_update_retran_path(asoc);
1392 
1393                 return asoc->peer.retran_path;
1394         }
1395 }
1396 
1397 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1398 {
1399         int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1400                                     sctp_datachk_len(&asoc->stream));
1401 
1402         if (asoc->user_frag)
1403                 frag = min_t(int, frag, asoc->user_frag);
1404 
1405         frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1406                                 sctp_datachk_len(&asoc->stream));
1407 
1408         asoc->frag_point = SCTP_TRUNC4(frag);
1409 }
1410 
1411 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1412 {
1413         if (asoc->pathmtu != pmtu) {
1414                 asoc->pathmtu = pmtu;
1415                 sctp_assoc_update_frag_point(asoc);
1416         }
1417 
1418         pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1419                  asoc->pathmtu, asoc->frag_point);
1420 }
1421 
1422 /* Update the association's pmtu and frag_point by going through all the
1423  * transports. This routine is called when a transport's PMTU has changed.
1424  */
1425 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1426 {
1427         struct sctp_transport *t;
1428         __u32 pmtu = 0;
1429 
1430         if (!asoc)
1431                 return;
1432 
1433         /* Get the lowest pmtu of all the transports. */
1434         list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1435                 if (t->pmtu_pending && t->dst) {
1436                         sctp_transport_update_pmtu(t,
1437                                                    atomic_read(&t->mtu_info));
1438                         t->pmtu_pending = 0;
1439                 }
1440                 if (!pmtu || (t->pathmtu < pmtu))
1441                         pmtu = t->pathmtu;
1442         }
1443 
1444         sctp_assoc_set_pmtu(asoc, pmtu);
1445 }
1446 
1447 /* Should we send a SACK to update our peer? */
1448 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1449 {
1450         struct net *net = asoc->base.net;
1451 
1452         switch (asoc->state) {
1453         case SCTP_STATE_ESTABLISHED:
1454         case SCTP_STATE_SHUTDOWN_PENDING:
1455         case SCTP_STATE_SHUTDOWN_RECEIVED:
1456         case SCTP_STATE_SHUTDOWN_SENT:
1457                 if ((asoc->rwnd > asoc->a_rwnd) &&
1458                     ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1459                            (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1460                            asoc->pathmtu)))
1461                         return true;
1462                 break;
1463         default:
1464                 break;
1465         }
1466         return false;
1467 }
1468 
1469 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1470 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1471 {
1472         struct sctp_chunk *sack;
1473         struct timer_list *timer;
1474 
1475         if (asoc->rwnd_over) {
1476                 if (asoc->rwnd_over >= len) {
1477                         asoc->rwnd_over -= len;
1478                 } else {
1479                         asoc->rwnd += (len - asoc->rwnd_over);
1480                         asoc->rwnd_over = 0;
1481                 }
1482         } else {
1483                 asoc->rwnd += len;
1484         }
1485 
1486         /* If we had window pressure, start recovering it
1487          * once our rwnd had reached the accumulated pressure
1488          * threshold.  The idea is to recover slowly, but up
1489          * to the initial advertised window.
1490          */
1491         if (asoc->rwnd_press) {
1492                 int change = min(asoc->pathmtu, asoc->rwnd_press);
1493                 asoc->rwnd += change;
1494                 asoc->rwnd_press -= change;
1495         }
1496 
1497         pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1498                  __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1499                  asoc->a_rwnd);
1500 
1501         /* Send a window update SACK if the rwnd has increased by at least the
1502          * minimum of the association's PMTU and half of the receive buffer.
1503          * The algorithm used is similar to the one described in
1504          * Section 4.2.3.3 of RFC 1122.
1505          */
1506         if (sctp_peer_needs_update(asoc)) {
1507                 asoc->a_rwnd = asoc->rwnd;
1508 
1509                 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1510                          "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1511                          asoc->a_rwnd);
1512 
1513                 sack = sctp_make_sack(asoc);
1514                 if (!sack)
1515                         return;
1516 
1517                 asoc->peer.sack_needed = 0;
1518 
1519                 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1520 
1521                 /* Stop the SACK timer.  */
1522                 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1523                 if (del_timer(timer))
1524                         sctp_association_put(asoc);
1525         }
1526 }
1527 
1528 /* Decrease asoc's rwnd by len. */
1529 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1530 {
1531         int rx_count;
1532         int over = 0;
1533 
1534         if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1535                 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1536                          "asoc->rwnd_over:%u!\n", __func__, asoc,
1537                          asoc->rwnd, asoc->rwnd_over);
1538 
1539         if (asoc->ep->rcvbuf_policy)
1540                 rx_count = atomic_read(&asoc->rmem_alloc);
1541         else
1542                 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1543 
1544         /* If we've reached or overflowed our receive buffer, announce
1545          * a 0 rwnd if rwnd would still be positive.  Store the
1546          * potential pressure overflow so that the window can be restored
1547          * back to original value.
1548          */
1549         if (rx_count >= asoc->base.sk->sk_rcvbuf)
1550                 over = 1;
1551 
1552         if (asoc->rwnd >= len) {
1553                 asoc->rwnd -= len;
1554                 if (over) {
1555                         asoc->rwnd_press += asoc->rwnd;
1556                         asoc->rwnd = 0;
1557                 }
1558         } else {
1559                 asoc->rwnd_over += len - asoc->rwnd;
1560                 asoc->rwnd = 0;
1561         }
1562 
1563         pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1564                  __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1565                  asoc->rwnd_press);
1566 }
1567 
1568 /* Build the bind address list for the association based on info from the
1569  * local endpoint and the remote peer.
1570  */
1571 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1572                                      enum sctp_scope scope, gfp_t gfp)
1573 {
1574         struct sock *sk = asoc->base.sk;
1575         int flags;
1576 
1577         /* Use scoping rules to determine the subset of addresses from
1578          * the endpoint.
1579          */
1580         flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1581         if (!inet_v6_ipv6only(sk))
1582                 flags |= SCTP_ADDR4_ALLOWED;
1583         if (asoc->peer.ipv4_address)
1584                 flags |= SCTP_ADDR4_PEERSUPP;
1585         if (asoc->peer.ipv6_address)
1586                 flags |= SCTP_ADDR6_PEERSUPP;
1587 
1588         return sctp_bind_addr_copy(asoc->base.net,
1589                                    &asoc->base.bind_addr,
1590                                    &asoc->ep->base.bind_addr,
1591                                    scope, gfp, flags);
1592 }
1593 
1594 /* Build the association's bind address list from the cookie.  */
1595 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1596                                          struct sctp_cookie *cookie,
1597                                          gfp_t gfp)
1598 {
1599         struct sctp_init_chunk *peer_init = (struct sctp_init_chunk *)(cookie + 1);
1600         int var_size2 = ntohs(peer_init->chunk_hdr.length);
1601         int var_size3 = cookie->raw_addr_list_len;
1602         __u8 *raw = (__u8 *)peer_init + var_size2;
1603 
1604         return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1605                                       asoc->ep->base.bind_addr.port, gfp);
1606 }
1607 
1608 /* Lookup laddr in the bind address list of an association. */
1609 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1610                             const union sctp_addr *laddr)
1611 {
1612         int found = 0;
1613 
1614         if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1615             sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1616                                  sctp_sk(asoc->base.sk)))
1617                 found = 1;
1618 
1619         return found;
1620 }
1621 
1622 /* Set an association id for a given association */
1623 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1624 {
1625         bool preload = gfpflags_allow_blocking(gfp);
1626         int ret;
1627 
1628         /* If the id is already assigned, keep it. */
1629         if (asoc->assoc_id)
1630                 return 0;
1631 
1632         if (preload)
1633                 idr_preload(gfp);
1634         spin_lock_bh(&sctp_assocs_id_lock);
1635         /* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1636          * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1637          */
1638         ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1639                                GFP_NOWAIT);
1640         spin_unlock_bh(&sctp_assocs_id_lock);
1641         if (preload)
1642                 idr_preload_end();
1643         if (ret < 0)
1644                 return ret;
1645 
1646         asoc->assoc_id = (sctp_assoc_t)ret;
1647         return 0;
1648 }
1649 
1650 /* Free the ASCONF queue */
1651 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1652 {
1653         struct sctp_chunk *asconf;
1654         struct sctp_chunk *tmp;
1655 
1656         list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1657                 list_del_init(&asconf->list);
1658                 sctp_chunk_free(asconf);
1659         }
1660 }
1661 
1662 /* Free asconf_ack cache */
1663 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1664 {
1665         struct sctp_chunk *ack;
1666         struct sctp_chunk *tmp;
1667 
1668         list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1669                                 transmitted_list) {
1670                 list_del_init(&ack->transmitted_list);
1671                 sctp_chunk_free(ack);
1672         }
1673 }
1674 
1675 /* Clean up the ASCONF_ACK queue */
1676 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1677 {
1678         struct sctp_chunk *ack;
1679         struct sctp_chunk *tmp;
1680 
1681         /* We can remove all the entries from the queue up to
1682          * the "Peer-Sequence-Number".
1683          */
1684         list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1685                                 transmitted_list) {
1686                 if (ack->subh.addip_hdr->serial ==
1687                                 htonl(asoc->peer.addip_serial))
1688                         break;
1689 
1690                 list_del_init(&ack->transmitted_list);
1691                 sctp_chunk_free(ack);
1692         }
1693 }
1694 
1695 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1696 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1697                                         const struct sctp_association *asoc,
1698                                         __be32 serial)
1699 {
1700         struct sctp_chunk *ack;
1701 
1702         /* Walk through the list of cached ASCONF-ACKs and find the
1703          * ack chunk whose serial number matches that of the request.
1704          */
1705         list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1706                 if (sctp_chunk_pending(ack))
1707                         continue;
1708                 if (ack->subh.addip_hdr->serial == serial) {
1709                         sctp_chunk_hold(ack);
1710                         return ack;
1711                 }
1712         }
1713 
1714         return NULL;
1715 }
1716 
1717 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1718 {
1719         /* Free any cached ASCONF_ACK chunk. */
1720         sctp_assoc_free_asconf_acks(asoc);
1721 
1722         /* Free the ASCONF queue. */
1723         sctp_assoc_free_asconf_queue(asoc);
1724 
1725         /* Free any cached ASCONF chunk. */
1726         if (asoc->addip_last_asconf)
1727                 sctp_chunk_free(asoc->addip_last_asconf);
1728 }
1729 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php