1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 4 * 5 * This file is part of the SCTP kernel implementation 6 * 7 * Please send any bug reports or fixes you make to the 8 * email address(es): 9 * lksctp developers <linux-sctp@vger.kernel.org> 10 * 11 * Written or modified by: 12 * Vlad Yasevich <vladislav.yasevich@hp.com> 13 */ 14 15 #include <crypto/hash.h> 16 #include <linux/slab.h> 17 #include <linux/types.h> 18 #include <linux/scatterlist.h> 19 #include <net/sctp/sctp.h> 20 #include <net/sctp/auth.h> 21 22 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 23 { 24 /* id 0 is reserved. as all 0 */ 25 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 26 }, 27 { 28 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 29 .hmac_name = "hmac(sha1)", 30 .hmac_len = SCTP_SHA1_SIG_SIZE, 31 }, 32 { 33 /* id 2 is reserved as well */ 34 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 35 }, 36 #if IS_ENABLED(CONFIG_CRYPTO_SHA256) 37 { 38 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 39 .hmac_name = "hmac(sha256)", 40 .hmac_len = SCTP_SHA256_SIG_SIZE, 41 } 42 #endif 43 }; 44 45 46 void sctp_auth_key_put(struct sctp_auth_bytes *key) 47 { 48 if (!key) 49 return; 50 51 if (refcount_dec_and_test(&key->refcnt)) { 52 kfree_sensitive(key); 53 SCTP_DBG_OBJCNT_DEC(keys); 54 } 55 } 56 57 /* Create a new key structure of a given length */ 58 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 59 { 60 struct sctp_auth_bytes *key; 61 62 /* Verify that we are not going to overflow INT_MAX */ 63 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) 64 return NULL; 65 66 /* Allocate the shared key */ 67 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 68 if (!key) 69 return NULL; 70 71 key->len = key_len; 72 refcount_set(&key->refcnt, 1); 73 SCTP_DBG_OBJCNT_INC(keys); 74 75 return key; 76 } 77 78 /* Create a new shared key container with a give key id */ 79 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 80 { 81 struct sctp_shared_key *new; 82 83 /* Allocate the shared key container */ 84 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 85 if (!new) 86 return NULL; 87 88 INIT_LIST_HEAD(&new->key_list); 89 refcount_set(&new->refcnt, 1); 90 new->key_id = key_id; 91 92 return new; 93 } 94 95 /* Free the shared key structure */ 96 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key) 97 { 98 BUG_ON(!list_empty(&sh_key->key_list)); 99 sctp_auth_key_put(sh_key->key); 100 sh_key->key = NULL; 101 kfree(sh_key); 102 } 103 104 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key) 105 { 106 if (refcount_dec_and_test(&sh_key->refcnt)) 107 sctp_auth_shkey_destroy(sh_key); 108 } 109 110 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key) 111 { 112 refcount_inc(&sh_key->refcnt); 113 } 114 115 /* Destroy the entire key list. This is done during the 116 * associon and endpoint free process. 117 */ 118 void sctp_auth_destroy_keys(struct list_head *keys) 119 { 120 struct sctp_shared_key *ep_key; 121 struct sctp_shared_key *tmp; 122 123 if (list_empty(keys)) 124 return; 125 126 key_for_each_safe(ep_key, tmp, keys) { 127 list_del_init(&ep_key->key_list); 128 sctp_auth_shkey_release(ep_key); 129 } 130 } 131 132 /* Compare two byte vectors as numbers. Return values 133 * are: 134 * 0 - vectors are equal 135 * < 0 - vector 1 is smaller than vector2 136 * > 0 - vector 1 is greater than vector2 137 * 138 * Algorithm is: 139 * This is performed by selecting the numerically smaller key vector... 140 * If the key vectors are equal as numbers but differ in length ... 141 * the shorter vector is considered smaller 142 * 143 * Examples (with small values): 144 * 000123456789 > 123456789 (first number is longer) 145 * 000123456789 < 234567891 (second number is larger numerically) 146 * 123456789 > 2345678 (first number is both larger & longer) 147 */ 148 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 149 struct sctp_auth_bytes *vector2) 150 { 151 int diff; 152 int i; 153 const __u8 *longer; 154 155 diff = vector1->len - vector2->len; 156 if (diff) { 157 longer = (diff > 0) ? vector1->data : vector2->data; 158 159 /* Check to see if the longer number is 160 * lead-zero padded. If it is not, it 161 * is automatically larger numerically. 162 */ 163 for (i = 0; i < abs(diff); i++) { 164 if (longer[i] != 0) 165 return diff; 166 } 167 } 168 169 /* lengths are the same, compare numbers */ 170 return memcmp(vector1->data, vector2->data, vector1->len); 171 } 172 173 /* 174 * Create a key vector as described in SCTP-AUTH, Section 6.1 175 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 176 * parameter sent by each endpoint are concatenated as byte vectors. 177 * These parameters include the parameter type, parameter length, and 178 * the parameter value, but padding is omitted; all padding MUST be 179 * removed from this concatenation before proceeding with further 180 * computation of keys. Parameters which were not sent are simply 181 * omitted from the concatenation process. The resulting two vectors 182 * are called the two key vectors. 183 */ 184 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 185 struct sctp_random_param *random, 186 struct sctp_chunks_param *chunks, 187 struct sctp_hmac_algo_param *hmacs, 188 gfp_t gfp) 189 { 190 struct sctp_auth_bytes *new; 191 __u32 len; 192 __u32 offset = 0; 193 __u16 random_len, hmacs_len, chunks_len = 0; 194 195 random_len = ntohs(random->param_hdr.length); 196 hmacs_len = ntohs(hmacs->param_hdr.length); 197 if (chunks) 198 chunks_len = ntohs(chunks->param_hdr.length); 199 200 len = random_len + hmacs_len + chunks_len; 201 202 new = sctp_auth_create_key(len, gfp); 203 if (!new) 204 return NULL; 205 206 memcpy(new->data, random, random_len); 207 offset += random_len; 208 209 if (chunks) { 210 memcpy(new->data + offset, chunks, chunks_len); 211 offset += chunks_len; 212 } 213 214 memcpy(new->data + offset, hmacs, hmacs_len); 215 216 return new; 217 } 218 219 220 /* Make a key vector based on our local parameters */ 221 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 222 const struct sctp_association *asoc, 223 gfp_t gfp) 224 { 225 return sctp_auth_make_key_vector( 226 (struct sctp_random_param *)asoc->c.auth_random, 227 (struct sctp_chunks_param *)asoc->c.auth_chunks, 228 (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp); 229 } 230 231 /* Make a key vector based on peer's parameters */ 232 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 233 const struct sctp_association *asoc, 234 gfp_t gfp) 235 { 236 return sctp_auth_make_key_vector(asoc->peer.peer_random, 237 asoc->peer.peer_chunks, 238 asoc->peer.peer_hmacs, 239 gfp); 240 } 241 242 243 /* Set the value of the association shared key base on the parameters 244 * given. The algorithm is: 245 * From the endpoint pair shared keys and the key vectors the 246 * association shared keys are computed. This is performed by selecting 247 * the numerically smaller key vector and concatenating it to the 248 * endpoint pair shared key, and then concatenating the numerically 249 * larger key vector to that. The result of the concatenation is the 250 * association shared key. 251 */ 252 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 253 struct sctp_shared_key *ep_key, 254 struct sctp_auth_bytes *first_vector, 255 struct sctp_auth_bytes *last_vector, 256 gfp_t gfp) 257 { 258 struct sctp_auth_bytes *secret; 259 __u32 offset = 0; 260 __u32 auth_len; 261 262 auth_len = first_vector->len + last_vector->len; 263 if (ep_key->key) 264 auth_len += ep_key->key->len; 265 266 secret = sctp_auth_create_key(auth_len, gfp); 267 if (!secret) 268 return NULL; 269 270 if (ep_key->key) { 271 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 272 offset += ep_key->key->len; 273 } 274 275 memcpy(secret->data + offset, first_vector->data, first_vector->len); 276 offset += first_vector->len; 277 278 memcpy(secret->data + offset, last_vector->data, last_vector->len); 279 280 return secret; 281 } 282 283 /* Create an association shared key. Follow the algorithm 284 * described in SCTP-AUTH, Section 6.1 285 */ 286 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 287 const struct sctp_association *asoc, 288 struct sctp_shared_key *ep_key, 289 gfp_t gfp) 290 { 291 struct sctp_auth_bytes *local_key_vector; 292 struct sctp_auth_bytes *peer_key_vector; 293 struct sctp_auth_bytes *first_vector, 294 *last_vector; 295 struct sctp_auth_bytes *secret = NULL; 296 int cmp; 297 298 299 /* Now we need to build the key vectors 300 * SCTP-AUTH , Section 6.1 301 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 302 * parameter sent by each endpoint are concatenated as byte vectors. 303 * These parameters include the parameter type, parameter length, and 304 * the parameter value, but padding is omitted; all padding MUST be 305 * removed from this concatenation before proceeding with further 306 * computation of keys. Parameters which were not sent are simply 307 * omitted from the concatenation process. The resulting two vectors 308 * are called the two key vectors. 309 */ 310 311 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 312 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 313 314 if (!peer_key_vector || !local_key_vector) 315 goto out; 316 317 /* Figure out the order in which the key_vectors will be 318 * added to the endpoint shared key. 319 * SCTP-AUTH, Section 6.1: 320 * This is performed by selecting the numerically smaller key 321 * vector and concatenating it to the endpoint pair shared 322 * key, and then concatenating the numerically larger key 323 * vector to that. If the key vectors are equal as numbers 324 * but differ in length, then the concatenation order is the 325 * endpoint shared key, followed by the shorter key vector, 326 * followed by the longer key vector. Otherwise, the key 327 * vectors are identical, and may be concatenated to the 328 * endpoint pair key in any order. 329 */ 330 cmp = sctp_auth_compare_vectors(local_key_vector, 331 peer_key_vector); 332 if (cmp < 0) { 333 first_vector = local_key_vector; 334 last_vector = peer_key_vector; 335 } else { 336 first_vector = peer_key_vector; 337 last_vector = local_key_vector; 338 } 339 340 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 341 gfp); 342 out: 343 sctp_auth_key_put(local_key_vector); 344 sctp_auth_key_put(peer_key_vector); 345 346 return secret; 347 } 348 349 /* 350 * Populate the association overlay list with the list 351 * from the endpoint. 352 */ 353 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 354 struct sctp_association *asoc, 355 gfp_t gfp) 356 { 357 struct sctp_shared_key *sh_key; 358 struct sctp_shared_key *new; 359 360 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 361 362 key_for_each(sh_key, &ep->endpoint_shared_keys) { 363 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 364 if (!new) 365 goto nomem; 366 367 new->key = sh_key->key; 368 sctp_auth_key_hold(new->key); 369 list_add(&new->key_list, &asoc->endpoint_shared_keys); 370 } 371 372 return 0; 373 374 nomem: 375 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 376 return -ENOMEM; 377 } 378 379 380 /* Public interface to create the association shared key. 381 * See code above for the algorithm. 382 */ 383 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 384 { 385 struct sctp_auth_bytes *secret; 386 struct sctp_shared_key *ep_key; 387 struct sctp_chunk *chunk; 388 389 /* If we don't support AUTH, or peer is not capable 390 * we don't need to do anything. 391 */ 392 if (!asoc->peer.auth_capable) 393 return 0; 394 395 /* If the key_id is non-zero and we couldn't find an 396 * endpoint pair shared key, we can't compute the 397 * secret. 398 * For key_id 0, endpoint pair shared key is a NULL key. 399 */ 400 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 401 BUG_ON(!ep_key); 402 403 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 404 if (!secret) 405 return -ENOMEM; 406 407 sctp_auth_key_put(asoc->asoc_shared_key); 408 asoc->asoc_shared_key = secret; 409 asoc->shkey = ep_key; 410 411 /* Update send queue in case any chunk already in there now 412 * needs authenticating 413 */ 414 list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) { 415 if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) { 416 chunk->auth = 1; 417 if (!chunk->shkey) { 418 chunk->shkey = asoc->shkey; 419 sctp_auth_shkey_hold(chunk->shkey); 420 } 421 } 422 } 423 424 return 0; 425 } 426 427 428 /* Find the endpoint pair shared key based on the key_id */ 429 struct sctp_shared_key *sctp_auth_get_shkey( 430 const struct sctp_association *asoc, 431 __u16 key_id) 432 { 433 struct sctp_shared_key *key; 434 435 /* First search associations set of endpoint pair shared keys */ 436 key_for_each(key, &asoc->endpoint_shared_keys) { 437 if (key->key_id == key_id) { 438 if (!key->deactivated) 439 return key; 440 break; 441 } 442 } 443 444 return NULL; 445 } 446 447 /* 448 * Initialize all the possible digest transforms that we can use. Right 449 * now, the supported digests are SHA1 and SHA256. We do this here once 450 * because of the restrictiong that transforms may only be allocated in 451 * user context. This forces us to pre-allocated all possible transforms 452 * at the endpoint init time. 453 */ 454 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 455 { 456 struct crypto_shash *tfm = NULL; 457 __u16 id; 458 459 /* If the transforms are already allocated, we are done */ 460 if (ep->auth_hmacs) 461 return 0; 462 463 /* Allocated the array of pointers to transorms */ 464 ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS, 465 sizeof(struct crypto_shash *), 466 gfp); 467 if (!ep->auth_hmacs) 468 return -ENOMEM; 469 470 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 471 472 /* See is we support the id. Supported IDs have name and 473 * length fields set, so that we can allocated and use 474 * them. We can safely just check for name, for without the 475 * name, we can't allocate the TFM. 476 */ 477 if (!sctp_hmac_list[id].hmac_name) 478 continue; 479 480 /* If this TFM has been allocated, we are all set */ 481 if (ep->auth_hmacs[id]) 482 continue; 483 484 /* Allocate the ID */ 485 tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0); 486 if (IS_ERR(tfm)) 487 goto out_err; 488 489 ep->auth_hmacs[id] = tfm; 490 } 491 492 return 0; 493 494 out_err: 495 /* Clean up any successful allocations */ 496 sctp_auth_destroy_hmacs(ep->auth_hmacs); 497 ep->auth_hmacs = NULL; 498 return -ENOMEM; 499 } 500 501 /* Destroy the hmac tfm array */ 502 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[]) 503 { 504 int i; 505 506 if (!auth_hmacs) 507 return; 508 509 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) { 510 crypto_free_shash(auth_hmacs[i]); 511 } 512 kfree(auth_hmacs); 513 } 514 515 516 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 517 { 518 return &sctp_hmac_list[hmac_id]; 519 } 520 521 /* Get an hmac description information that we can use to build 522 * the AUTH chunk 523 */ 524 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 525 { 526 struct sctp_hmac_algo_param *hmacs; 527 __u16 n_elt; 528 __u16 id = 0; 529 int i; 530 531 /* If we have a default entry, use it */ 532 if (asoc->default_hmac_id) 533 return &sctp_hmac_list[asoc->default_hmac_id]; 534 535 /* Since we do not have a default entry, find the first entry 536 * we support and return that. Do not cache that id. 537 */ 538 hmacs = asoc->peer.peer_hmacs; 539 if (!hmacs) 540 return NULL; 541 542 n_elt = (ntohs(hmacs->param_hdr.length) - 543 sizeof(struct sctp_paramhdr)) >> 1; 544 for (i = 0; i < n_elt; i++) { 545 id = ntohs(hmacs->hmac_ids[i]); 546 547 /* Check the id is in the supported range. And 548 * see if we support the id. Supported IDs have name and 549 * length fields set, so that we can allocate and use 550 * them. We can safely just check for name, for without the 551 * name, we can't allocate the TFM. 552 */ 553 if (id > SCTP_AUTH_HMAC_ID_MAX || 554 !sctp_hmac_list[id].hmac_name) { 555 id = 0; 556 continue; 557 } 558 559 break; 560 } 561 562 if (id == 0) 563 return NULL; 564 565 return &sctp_hmac_list[id]; 566 } 567 568 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 569 { 570 int found = 0; 571 int i; 572 573 for (i = 0; i < n_elts; i++) { 574 if (hmac_id == hmacs[i]) { 575 found = 1; 576 break; 577 } 578 } 579 580 return found; 581 } 582 583 /* See if the HMAC_ID is one that we claim as supported */ 584 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 585 __be16 hmac_id) 586 { 587 struct sctp_hmac_algo_param *hmacs; 588 __u16 n_elt; 589 590 if (!asoc) 591 return 0; 592 593 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 594 n_elt = (ntohs(hmacs->param_hdr.length) - 595 sizeof(struct sctp_paramhdr)) >> 1; 596 597 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 598 } 599 600 601 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 602 * Section 6.1: 603 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 604 * algorithm it supports. 605 */ 606 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 607 struct sctp_hmac_algo_param *hmacs) 608 { 609 struct sctp_endpoint *ep; 610 __u16 id; 611 int i; 612 int n_params; 613 614 /* if the default id is already set, use it */ 615 if (asoc->default_hmac_id) 616 return; 617 618 n_params = (ntohs(hmacs->param_hdr.length) - 619 sizeof(struct sctp_paramhdr)) >> 1; 620 ep = asoc->ep; 621 for (i = 0; i < n_params; i++) { 622 id = ntohs(hmacs->hmac_ids[i]); 623 624 /* Check the id is in the supported range */ 625 if (id > SCTP_AUTH_HMAC_ID_MAX) 626 continue; 627 628 /* If this TFM has been allocated, use this id */ 629 if (ep->auth_hmacs[id]) { 630 asoc->default_hmac_id = id; 631 break; 632 } 633 } 634 } 635 636 637 /* Check to see if the given chunk is supposed to be authenticated */ 638 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param) 639 { 640 unsigned short len; 641 int found = 0; 642 int i; 643 644 if (!param || param->param_hdr.length == 0) 645 return 0; 646 647 len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr); 648 649 /* SCTP-AUTH, Section 3.2 650 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 651 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 652 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 653 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 654 */ 655 for (i = 0; !found && i < len; i++) { 656 switch (param->chunks[i]) { 657 case SCTP_CID_INIT: 658 case SCTP_CID_INIT_ACK: 659 case SCTP_CID_SHUTDOWN_COMPLETE: 660 case SCTP_CID_AUTH: 661 break; 662 663 default: 664 if (param->chunks[i] == chunk) 665 found = 1; 666 break; 667 } 668 } 669 670 return found; 671 } 672 673 /* Check if peer requested that this chunk is authenticated */ 674 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc) 675 { 676 if (!asoc) 677 return 0; 678 679 if (!asoc->peer.auth_capable) 680 return 0; 681 682 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 683 } 684 685 /* Check if we requested that peer authenticate this chunk. */ 686 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc) 687 { 688 if (!asoc) 689 return 0; 690 691 if (!asoc->peer.auth_capable) 692 return 0; 693 694 return __sctp_auth_cid(chunk, 695 (struct sctp_chunks_param *)asoc->c.auth_chunks); 696 } 697 698 /* SCTP-AUTH: Section 6.2: 699 * The sender MUST calculate the MAC as described in RFC2104 [2] using 700 * the hash function H as described by the MAC Identifier and the shared 701 * association key K based on the endpoint pair shared key described by 702 * the shared key identifier. The 'data' used for the computation of 703 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 704 * zero (as shown in Figure 6) followed by all chunks that are placed 705 * after the AUTH chunk in the SCTP packet. 706 */ 707 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 708 struct sk_buff *skb, struct sctp_auth_chunk *auth, 709 struct sctp_shared_key *ep_key, gfp_t gfp) 710 { 711 struct sctp_auth_bytes *asoc_key; 712 struct crypto_shash *tfm; 713 __u16 key_id, hmac_id; 714 unsigned char *end; 715 int free_key = 0; 716 __u8 *digest; 717 718 /* Extract the info we need: 719 * - hmac id 720 * - key id 721 */ 722 key_id = ntohs(auth->auth_hdr.shkey_id); 723 hmac_id = ntohs(auth->auth_hdr.hmac_id); 724 725 if (key_id == asoc->active_key_id) 726 asoc_key = asoc->asoc_shared_key; 727 else { 728 /* ep_key can't be NULL here */ 729 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 730 if (!asoc_key) 731 return; 732 733 free_key = 1; 734 } 735 736 /* set up scatter list */ 737 end = skb_tail_pointer(skb); 738 739 tfm = asoc->ep->auth_hmacs[hmac_id]; 740 741 digest = (u8 *)(&auth->auth_hdr + 1); 742 if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len)) 743 goto free; 744 745 crypto_shash_tfm_digest(tfm, (u8 *)auth, end - (unsigned char *)auth, 746 digest); 747 748 free: 749 if (free_key) 750 sctp_auth_key_put(asoc_key); 751 } 752 753 /* API Helpers */ 754 755 /* Add a chunk to the endpoint authenticated chunk list */ 756 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 757 { 758 struct sctp_chunks_param *p = ep->auth_chunk_list; 759 __u16 nchunks; 760 __u16 param_len; 761 762 /* If this chunk is already specified, we are done */ 763 if (__sctp_auth_cid(chunk_id, p)) 764 return 0; 765 766 /* Check if we can add this chunk to the array */ 767 param_len = ntohs(p->param_hdr.length); 768 nchunks = param_len - sizeof(struct sctp_paramhdr); 769 if (nchunks == SCTP_NUM_CHUNK_TYPES) 770 return -EINVAL; 771 772 p->chunks[nchunks] = chunk_id; 773 p->param_hdr.length = htons(param_len + 1); 774 return 0; 775 } 776 777 /* Add hmac identifires to the endpoint list of supported hmac ids */ 778 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 779 struct sctp_hmacalgo *hmacs) 780 { 781 int has_sha1 = 0; 782 __u16 id; 783 int i; 784 785 /* Scan the list looking for unsupported id. Also make sure that 786 * SHA1 is specified. 787 */ 788 for (i = 0; i < hmacs->shmac_num_idents; i++) { 789 id = hmacs->shmac_idents[i]; 790 791 if (id > SCTP_AUTH_HMAC_ID_MAX) 792 return -EOPNOTSUPP; 793 794 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 795 has_sha1 = 1; 796 797 if (!sctp_hmac_list[id].hmac_name) 798 return -EOPNOTSUPP; 799 } 800 801 if (!has_sha1) 802 return -EINVAL; 803 804 for (i = 0; i < hmacs->shmac_num_idents; i++) 805 ep->auth_hmacs_list->hmac_ids[i] = 806 htons(hmacs->shmac_idents[i]); 807 ep->auth_hmacs_list->param_hdr.length = 808 htons(sizeof(struct sctp_paramhdr) + 809 hmacs->shmac_num_idents * sizeof(__u16)); 810 return 0; 811 } 812 813 /* Set a new shared key on either endpoint or association. If the 814 * key with a same ID already exists, replace the key (remove the 815 * old key and add a new one). 816 */ 817 int sctp_auth_set_key(struct sctp_endpoint *ep, 818 struct sctp_association *asoc, 819 struct sctp_authkey *auth_key) 820 { 821 struct sctp_shared_key *cur_key, *shkey; 822 struct sctp_auth_bytes *key; 823 struct list_head *sh_keys; 824 int replace = 0; 825 826 /* Try to find the given key id to see if 827 * we are doing a replace, or adding a new key 828 */ 829 if (asoc) { 830 if (!asoc->peer.auth_capable) 831 return -EACCES; 832 sh_keys = &asoc->endpoint_shared_keys; 833 } else { 834 if (!ep->auth_enable) 835 return -EACCES; 836 sh_keys = &ep->endpoint_shared_keys; 837 } 838 839 key_for_each(shkey, sh_keys) { 840 if (shkey->key_id == auth_key->sca_keynumber) { 841 replace = 1; 842 break; 843 } 844 } 845 846 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL); 847 if (!cur_key) 848 return -ENOMEM; 849 850 /* Create a new key data based on the info passed in */ 851 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 852 if (!key) { 853 kfree(cur_key); 854 return -ENOMEM; 855 } 856 857 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 858 cur_key->key = key; 859 860 if (!replace) { 861 list_add(&cur_key->key_list, sh_keys); 862 return 0; 863 } 864 865 list_del_init(&shkey->key_list); 866 list_add(&cur_key->key_list, sh_keys); 867 868 if (asoc && asoc->active_key_id == auth_key->sca_keynumber && 869 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL)) { 870 list_del_init(&cur_key->key_list); 871 sctp_auth_shkey_release(cur_key); 872 list_add(&shkey->key_list, sh_keys); 873 return -ENOMEM; 874 } 875 876 sctp_auth_shkey_release(shkey); 877 return 0; 878 } 879 880 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 881 struct sctp_association *asoc, 882 __u16 key_id) 883 { 884 struct sctp_shared_key *key; 885 struct list_head *sh_keys; 886 int found = 0; 887 888 /* The key identifier MUST correst to an existing key */ 889 if (asoc) { 890 if (!asoc->peer.auth_capable) 891 return -EACCES; 892 sh_keys = &asoc->endpoint_shared_keys; 893 } else { 894 if (!ep->auth_enable) 895 return -EACCES; 896 sh_keys = &ep->endpoint_shared_keys; 897 } 898 899 key_for_each(key, sh_keys) { 900 if (key->key_id == key_id) { 901 found = 1; 902 break; 903 } 904 } 905 906 if (!found || key->deactivated) 907 return -EINVAL; 908 909 if (asoc) { 910 __u16 active_key_id = asoc->active_key_id; 911 912 asoc->active_key_id = key_id; 913 if (sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL)) { 914 asoc->active_key_id = active_key_id; 915 return -ENOMEM; 916 } 917 } else 918 ep->active_key_id = key_id; 919 920 return 0; 921 } 922 923 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 924 struct sctp_association *asoc, 925 __u16 key_id) 926 { 927 struct sctp_shared_key *key; 928 struct list_head *sh_keys; 929 int found = 0; 930 931 /* The key identifier MUST NOT be the current active key 932 * The key identifier MUST correst to an existing key 933 */ 934 if (asoc) { 935 if (!asoc->peer.auth_capable) 936 return -EACCES; 937 if (asoc->active_key_id == key_id) 938 return -EINVAL; 939 940 sh_keys = &asoc->endpoint_shared_keys; 941 } else { 942 if (!ep->auth_enable) 943 return -EACCES; 944 if (ep->active_key_id == key_id) 945 return -EINVAL; 946 947 sh_keys = &ep->endpoint_shared_keys; 948 } 949 950 key_for_each(key, sh_keys) { 951 if (key->key_id == key_id) { 952 found = 1; 953 break; 954 } 955 } 956 957 if (!found) 958 return -EINVAL; 959 960 /* Delete the shared key */ 961 list_del_init(&key->key_list); 962 sctp_auth_shkey_release(key); 963 964 return 0; 965 } 966 967 int sctp_auth_deact_key_id(struct sctp_endpoint *ep, 968 struct sctp_association *asoc, __u16 key_id) 969 { 970 struct sctp_shared_key *key; 971 struct list_head *sh_keys; 972 int found = 0; 973 974 /* The key identifier MUST NOT be the current active key 975 * The key identifier MUST correst to an existing key 976 */ 977 if (asoc) { 978 if (!asoc->peer.auth_capable) 979 return -EACCES; 980 if (asoc->active_key_id == key_id) 981 return -EINVAL; 982 983 sh_keys = &asoc->endpoint_shared_keys; 984 } else { 985 if (!ep->auth_enable) 986 return -EACCES; 987 if (ep->active_key_id == key_id) 988 return -EINVAL; 989 990 sh_keys = &ep->endpoint_shared_keys; 991 } 992 993 key_for_each(key, sh_keys) { 994 if (key->key_id == key_id) { 995 found = 1; 996 break; 997 } 998 } 999 1000 if (!found) 1001 return -EINVAL; 1002 1003 /* refcnt == 1 and !list_empty mean it's not being used anywhere 1004 * and deactivated will be set, so it's time to notify userland 1005 * that this shkey can be freed. 1006 */ 1007 if (asoc && !list_empty(&key->key_list) && 1008 refcount_read(&key->refcnt) == 1) { 1009 struct sctp_ulpevent *ev; 1010 1011 ev = sctp_ulpevent_make_authkey(asoc, key->key_id, 1012 SCTP_AUTH_FREE_KEY, GFP_KERNEL); 1013 if (ev) 1014 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 1015 } 1016 1017 key->deactivated = 1; 1018 1019 return 0; 1020 } 1021 1022 int sctp_auth_init(struct sctp_endpoint *ep, gfp_t gfp) 1023 { 1024 int err = -ENOMEM; 1025 1026 /* Allocate space for HMACS and CHUNKS authentication 1027 * variables. There are arrays that we encode directly 1028 * into parameters to make the rest of the operations easier. 1029 */ 1030 if (!ep->auth_hmacs_list) { 1031 struct sctp_hmac_algo_param *auth_hmacs; 1032 1033 auth_hmacs = kzalloc(struct_size(auth_hmacs, hmac_ids, 1034 SCTP_AUTH_NUM_HMACS), gfp); 1035 if (!auth_hmacs) 1036 goto nomem; 1037 /* Initialize the HMACS parameter. 1038 * SCTP-AUTH: Section 3.3 1039 * Every endpoint supporting SCTP chunk authentication MUST 1040 * support the HMAC based on the SHA-1 algorithm. 1041 */ 1042 auth_hmacs->param_hdr.type = SCTP_PARAM_HMAC_ALGO; 1043 auth_hmacs->param_hdr.length = 1044 htons(sizeof(struct sctp_paramhdr) + 2); 1045 auth_hmacs->hmac_ids[0] = htons(SCTP_AUTH_HMAC_ID_SHA1); 1046 ep->auth_hmacs_list = auth_hmacs; 1047 } 1048 1049 if (!ep->auth_chunk_list) { 1050 struct sctp_chunks_param *auth_chunks; 1051 1052 auth_chunks = kzalloc(sizeof(*auth_chunks) + 1053 SCTP_NUM_CHUNK_TYPES, gfp); 1054 if (!auth_chunks) 1055 goto nomem; 1056 /* Initialize the CHUNKS parameter */ 1057 auth_chunks->param_hdr.type = SCTP_PARAM_CHUNKS; 1058 auth_chunks->param_hdr.length = 1059 htons(sizeof(struct sctp_paramhdr)); 1060 ep->auth_chunk_list = auth_chunks; 1061 } 1062 1063 /* Allocate and initialize transorms arrays for supported 1064 * HMACs. 1065 */ 1066 err = sctp_auth_init_hmacs(ep, gfp); 1067 if (err) 1068 goto nomem; 1069 1070 return 0; 1071 1072 nomem: 1073 /* Free all allocations */ 1074 kfree(ep->auth_hmacs_list); 1075 kfree(ep->auth_chunk_list); 1076 ep->auth_hmacs_list = NULL; 1077 ep->auth_chunk_list = NULL; 1078 return err; 1079 } 1080 1081 void sctp_auth_free(struct sctp_endpoint *ep) 1082 { 1083 kfree(ep->auth_hmacs_list); 1084 kfree(ep->auth_chunk_list); 1085 ep->auth_hmacs_list = NULL; 1086 ep->auth_chunk_list = NULL; 1087 sctp_auth_destroy_hmacs(ep->auth_hmacs); 1088 ep->auth_hmacs = NULL; 1089 } 1090
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.