1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001-2003 Intel Corp. 7 * Copyright (c) 2001-2002 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions interface with the sockets layer to implement the 13 * SCTP Extensions for the Sockets API. 14 * 15 * Note that the descriptions from the specification are USER level 16 * functions--this file is the functions which populate the struct proto 17 * for SCTP which is the BOTTOM of the sockets interface. 18 * 19 * Please send any bug reports or fixes you make to the 20 * email address(es): 21 * lksctp developers <linux-sctp@vger.kernel.org> 22 * 23 * Written or modified by: 24 * La Monte H.P. Yarroll <piggy@acm.org> 25 * Narasimha Budihal <narsi@refcode.org> 26 * Karl Knutson <karl@athena.chicago.il.us> 27 * Jon Grimm <jgrimm@us.ibm.com> 28 * Xingang Guo <xingang.guo@intel.com> 29 * Daisy Chang <daisyc@us.ibm.com> 30 * Sridhar Samudrala <samudrala@us.ibm.com> 31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 32 * Ardelle Fan <ardelle.fan@intel.com> 33 * Ryan Layer <rmlayer@us.ibm.com> 34 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 35 * Kevin Gao <kevin.gao@intel.com> 36 */ 37 38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 39 40 #include <crypto/hash.h> 41 #include <linux/types.h> 42 #include <linux/kernel.h> 43 #include <linux/wait.h> 44 #include <linux/time.h> 45 #include <linux/sched/signal.h> 46 #include <linux/ip.h> 47 #include <linux/capability.h> 48 #include <linux/fcntl.h> 49 #include <linux/poll.h> 50 #include <linux/init.h> 51 #include <linux/slab.h> 52 #include <linux/file.h> 53 #include <linux/compat.h> 54 #include <linux/rhashtable.h> 55 56 #include <net/ip.h> 57 #include <net/icmp.h> 58 #include <net/route.h> 59 #include <net/ipv6.h> 60 #include <net/inet_common.h> 61 #include <net/busy_poll.h> 62 #include <trace/events/sock.h> 63 64 #include <linux/socket.h> /* for sa_family_t */ 65 #include <linux/export.h> 66 #include <net/sock.h> 67 #include <net/sctp/sctp.h> 68 #include <net/sctp/sm.h> 69 #include <net/sctp/stream_sched.h> 70 #include <net/rps.h> 71 72 /* Forward declarations for internal helper functions. */ 73 static bool sctp_writeable(const struct sock *sk); 74 static void sctp_wfree(struct sk_buff *skb); 75 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 76 size_t msg_len); 77 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 78 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 79 static int sctp_wait_for_accept(struct sock *sk, long timeo); 80 static void sctp_wait_for_close(struct sock *sk, long timeo); 81 static void sctp_destruct_sock(struct sock *sk); 82 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 83 union sctp_addr *addr, int len); 84 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 85 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 86 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 87 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 88 static int sctp_send_asconf(struct sctp_association *asoc, 89 struct sctp_chunk *chunk); 90 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 91 static int sctp_autobind(struct sock *sk); 92 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 93 struct sctp_association *assoc, 94 enum sctp_socket_type type); 95 96 static unsigned long sctp_memory_pressure; 97 static atomic_long_t sctp_memory_allocated; 98 static DEFINE_PER_CPU(int, sctp_memory_per_cpu_fw_alloc); 99 struct percpu_counter sctp_sockets_allocated; 100 101 static void sctp_enter_memory_pressure(struct sock *sk) 102 { 103 WRITE_ONCE(sctp_memory_pressure, 1); 104 } 105 106 107 /* Get the sndbuf space available at the time on the association. */ 108 static inline int sctp_wspace(struct sctp_association *asoc) 109 { 110 struct sock *sk = asoc->base.sk; 111 112 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used 113 : sk_stream_wspace(sk); 114 } 115 116 /* Increment the used sndbuf space count of the corresponding association by 117 * the size of the outgoing data chunk. 118 * Also, set the skb destructor for sndbuf accounting later. 119 * 120 * Since it is always 1-1 between chunk and skb, and also a new skb is always 121 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 122 * destructor in the data chunk skb for the purpose of the sndbuf space 123 * tracking. 124 */ 125 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 126 { 127 struct sctp_association *asoc = chunk->asoc; 128 struct sock *sk = asoc->base.sk; 129 130 /* The sndbuf space is tracked per association. */ 131 sctp_association_hold(asoc); 132 133 if (chunk->shkey) 134 sctp_auth_shkey_hold(chunk->shkey); 135 136 skb_set_owner_w(chunk->skb, sk); 137 138 chunk->skb->destructor = sctp_wfree; 139 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 140 skb_shinfo(chunk->skb)->destructor_arg = chunk; 141 142 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 143 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk); 144 sk_wmem_queued_add(sk, chunk->skb->truesize + sizeof(struct sctp_chunk)); 145 sk_mem_charge(sk, chunk->skb->truesize); 146 } 147 148 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 149 { 150 skb_orphan(chunk->skb); 151 } 152 153 #define traverse_and_process() \ 154 do { \ 155 msg = chunk->msg; \ 156 if (msg == prev_msg) \ 157 continue; \ 158 list_for_each_entry(c, &msg->chunks, frag_list) { \ 159 if ((clear && asoc->base.sk == c->skb->sk) || \ 160 (!clear && asoc->base.sk != c->skb->sk)) \ 161 cb(c); \ 162 } \ 163 prev_msg = msg; \ 164 } while (0) 165 166 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 167 bool clear, 168 void (*cb)(struct sctp_chunk *)) 169 170 { 171 struct sctp_datamsg *msg, *prev_msg = NULL; 172 struct sctp_outq *q = &asoc->outqueue; 173 struct sctp_chunk *chunk, *c; 174 struct sctp_transport *t; 175 176 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 177 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 178 traverse_and_process(); 179 180 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 181 traverse_and_process(); 182 183 list_for_each_entry(chunk, &q->sacked, transmitted_list) 184 traverse_and_process(); 185 186 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 187 traverse_and_process(); 188 189 list_for_each_entry(chunk, &q->out_chunk_list, list) 190 traverse_and_process(); 191 } 192 193 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 194 void (*cb)(struct sk_buff *, struct sock *)) 195 196 { 197 struct sk_buff *skb, *tmp; 198 199 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 200 cb(skb, sk); 201 202 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 203 cb(skb, sk); 204 205 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 206 cb(skb, sk); 207 } 208 209 /* Verify that this is a valid address. */ 210 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 211 int len) 212 { 213 struct sctp_af *af; 214 215 /* Verify basic sockaddr. */ 216 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 217 if (!af) 218 return -EINVAL; 219 220 /* Is this a valid SCTP address? */ 221 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 222 return -EINVAL; 223 224 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 225 return -EINVAL; 226 227 return 0; 228 } 229 230 /* Look up the association by its id. If this is not a UDP-style 231 * socket, the ID field is always ignored. 232 */ 233 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 234 { 235 struct sctp_association *asoc = NULL; 236 237 /* If this is not a UDP-style socket, assoc id should be ignored. */ 238 if (!sctp_style(sk, UDP)) { 239 /* Return NULL if the socket state is not ESTABLISHED. It 240 * could be a TCP-style listening socket or a socket which 241 * hasn't yet called connect() to establish an association. 242 */ 243 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 244 return NULL; 245 246 /* Get the first and the only association from the list. */ 247 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 248 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 249 struct sctp_association, asocs); 250 return asoc; 251 } 252 253 /* Otherwise this is a UDP-style socket. */ 254 if (id <= SCTP_ALL_ASSOC) 255 return NULL; 256 257 spin_lock_bh(&sctp_assocs_id_lock); 258 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 259 if (asoc && (asoc->base.sk != sk || asoc->base.dead)) 260 asoc = NULL; 261 spin_unlock_bh(&sctp_assocs_id_lock); 262 263 return asoc; 264 } 265 266 /* Look up the transport from an address and an assoc id. If both address and 267 * id are specified, the associations matching the address and the id should be 268 * the same. 269 */ 270 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 271 struct sockaddr_storage *addr, 272 sctp_assoc_t id) 273 { 274 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 275 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 276 union sctp_addr *laddr = (union sctp_addr *)addr; 277 struct sctp_transport *transport; 278 279 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 280 return NULL; 281 282 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 283 laddr, 284 &transport); 285 286 if (!addr_asoc) 287 return NULL; 288 289 id_asoc = sctp_id2assoc(sk, id); 290 if (id_asoc && (id_asoc != addr_asoc)) 291 return NULL; 292 293 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 294 (union sctp_addr *)addr); 295 296 return transport; 297 } 298 299 /* API 3.1.2 bind() - UDP Style Syntax 300 * The syntax of bind() is, 301 * 302 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 303 * 304 * sd - the socket descriptor returned by socket(). 305 * addr - the address structure (struct sockaddr_in or struct 306 * sockaddr_in6 [RFC 2553]), 307 * addr_len - the size of the address structure. 308 */ 309 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 310 { 311 int retval = 0; 312 313 lock_sock(sk); 314 315 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 316 addr, addr_len); 317 318 /* Disallow binding twice. */ 319 if (!sctp_sk(sk)->ep->base.bind_addr.port) 320 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 321 addr_len); 322 else 323 retval = -EINVAL; 324 325 release_sock(sk); 326 327 return retval; 328 } 329 330 static int sctp_get_port_local(struct sock *, union sctp_addr *); 331 332 /* Verify this is a valid sockaddr. */ 333 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 334 union sctp_addr *addr, int len) 335 { 336 struct sctp_af *af; 337 338 /* Check minimum size. */ 339 if (len < sizeof (struct sockaddr)) 340 return NULL; 341 342 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 343 return NULL; 344 345 if (addr->sa.sa_family == AF_INET6) { 346 if (len < SIN6_LEN_RFC2133) 347 return NULL; 348 /* V4 mapped address are really of AF_INET family */ 349 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 350 !opt->pf->af_supported(AF_INET, opt)) 351 return NULL; 352 } 353 354 /* If we get this far, af is valid. */ 355 af = sctp_get_af_specific(addr->sa.sa_family); 356 357 if (len < af->sockaddr_len) 358 return NULL; 359 360 return af; 361 } 362 363 static void sctp_auto_asconf_init(struct sctp_sock *sp) 364 { 365 struct net *net = sock_net(&sp->inet.sk); 366 367 if (net->sctp.default_auto_asconf) { 368 spin_lock_bh(&net->sctp.addr_wq_lock); 369 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist); 370 spin_unlock_bh(&net->sctp.addr_wq_lock); 371 sp->do_auto_asconf = 1; 372 } 373 } 374 375 /* Bind a local address either to an endpoint or to an association. */ 376 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 377 { 378 struct net *net = sock_net(sk); 379 struct sctp_sock *sp = sctp_sk(sk); 380 struct sctp_endpoint *ep = sp->ep; 381 struct sctp_bind_addr *bp = &ep->base.bind_addr; 382 struct sctp_af *af; 383 unsigned short snum; 384 int ret = 0; 385 386 /* Common sockaddr verification. */ 387 af = sctp_sockaddr_af(sp, addr, len); 388 if (!af) { 389 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 390 __func__, sk, addr, len); 391 return -EINVAL; 392 } 393 394 snum = ntohs(addr->v4.sin_port); 395 396 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 397 __func__, sk, &addr->sa, bp->port, snum, len); 398 399 /* PF specific bind() address verification. */ 400 if (!sp->pf->bind_verify(sp, addr)) 401 return -EADDRNOTAVAIL; 402 403 /* We must either be unbound, or bind to the same port. 404 * It's OK to allow 0 ports if we are already bound. 405 * We'll just inhert an already bound port in this case 406 */ 407 if (bp->port) { 408 if (!snum) 409 snum = bp->port; 410 else if (snum != bp->port) { 411 pr_debug("%s: new port %d doesn't match existing port " 412 "%d\n", __func__, snum, bp->port); 413 return -EINVAL; 414 } 415 } 416 417 if (snum && inet_port_requires_bind_service(net, snum) && 418 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 419 return -EACCES; 420 421 /* See if the address matches any of the addresses we may have 422 * already bound before checking against other endpoints. 423 */ 424 if (sctp_bind_addr_match(bp, addr, sp)) 425 return -EINVAL; 426 427 /* Make sure we are allowed to bind here. 428 * The function sctp_get_port_local() does duplicate address 429 * detection. 430 */ 431 addr->v4.sin_port = htons(snum); 432 if (sctp_get_port_local(sk, addr)) 433 return -EADDRINUSE; 434 435 /* Refresh ephemeral port. */ 436 if (!bp->port) { 437 bp->port = inet_sk(sk)->inet_num; 438 sctp_auto_asconf_init(sp); 439 } 440 441 /* Add the address to the bind address list. 442 * Use GFP_ATOMIC since BHs will be disabled. 443 */ 444 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 445 SCTP_ADDR_SRC, GFP_ATOMIC); 446 447 if (ret) { 448 sctp_put_port(sk); 449 return ret; 450 } 451 /* Copy back into socket for getsockname() use. */ 452 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 453 sp->pf->to_sk_saddr(addr, sk); 454 455 return ret; 456 } 457 458 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 459 * 460 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 461 * at any one time. If a sender, after sending an ASCONF chunk, decides 462 * it needs to transfer another ASCONF Chunk, it MUST wait until the 463 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 464 * subsequent ASCONF. Note this restriction binds each side, so at any 465 * time two ASCONF may be in-transit on any given association (one sent 466 * from each endpoint). 467 */ 468 static int sctp_send_asconf(struct sctp_association *asoc, 469 struct sctp_chunk *chunk) 470 { 471 int retval = 0; 472 473 /* If there is an outstanding ASCONF chunk, queue it for later 474 * transmission. 475 */ 476 if (asoc->addip_last_asconf) { 477 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 478 goto out; 479 } 480 481 /* Hold the chunk until an ASCONF_ACK is received. */ 482 sctp_chunk_hold(chunk); 483 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk); 484 if (retval) 485 sctp_chunk_free(chunk); 486 else 487 asoc->addip_last_asconf = chunk; 488 489 out: 490 return retval; 491 } 492 493 /* Add a list of addresses as bind addresses to local endpoint or 494 * association. 495 * 496 * Basically run through each address specified in the addrs/addrcnt 497 * array/length pair, determine if it is IPv6 or IPv4 and call 498 * sctp_do_bind() on it. 499 * 500 * If any of them fails, then the operation will be reversed and the 501 * ones that were added will be removed. 502 * 503 * Only sctp_setsockopt_bindx() is supposed to call this function. 504 */ 505 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 506 { 507 int cnt; 508 int retval = 0; 509 void *addr_buf; 510 struct sockaddr *sa_addr; 511 struct sctp_af *af; 512 513 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 514 addrs, addrcnt); 515 516 addr_buf = addrs; 517 for (cnt = 0; cnt < addrcnt; cnt++) { 518 /* The list may contain either IPv4 or IPv6 address; 519 * determine the address length for walking thru the list. 520 */ 521 sa_addr = addr_buf; 522 af = sctp_get_af_specific(sa_addr->sa_family); 523 if (!af) { 524 retval = -EINVAL; 525 goto err_bindx_add; 526 } 527 528 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 529 af->sockaddr_len); 530 531 addr_buf += af->sockaddr_len; 532 533 err_bindx_add: 534 if (retval < 0) { 535 /* Failed. Cleanup the ones that have been added */ 536 if (cnt > 0) 537 sctp_bindx_rem(sk, addrs, cnt); 538 return retval; 539 } 540 } 541 542 return retval; 543 } 544 545 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 546 * associations that are part of the endpoint indicating that a list of local 547 * addresses are added to the endpoint. 548 * 549 * If any of the addresses is already in the bind address list of the 550 * association, we do not send the chunk for that association. But it will not 551 * affect other associations. 552 * 553 * Only sctp_setsockopt_bindx() is supposed to call this function. 554 */ 555 static int sctp_send_asconf_add_ip(struct sock *sk, 556 struct sockaddr *addrs, 557 int addrcnt) 558 { 559 struct sctp_sock *sp; 560 struct sctp_endpoint *ep; 561 struct sctp_association *asoc; 562 struct sctp_bind_addr *bp; 563 struct sctp_chunk *chunk; 564 struct sctp_sockaddr_entry *laddr; 565 union sctp_addr *addr; 566 union sctp_addr saveaddr; 567 void *addr_buf; 568 struct sctp_af *af; 569 struct list_head *p; 570 int i; 571 int retval = 0; 572 573 sp = sctp_sk(sk); 574 ep = sp->ep; 575 576 if (!ep->asconf_enable) 577 return retval; 578 579 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 580 __func__, sk, addrs, addrcnt); 581 582 list_for_each_entry(asoc, &ep->asocs, asocs) { 583 if (!asoc->peer.asconf_capable) 584 continue; 585 586 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 587 continue; 588 589 if (!sctp_state(asoc, ESTABLISHED)) 590 continue; 591 592 /* Check if any address in the packed array of addresses is 593 * in the bind address list of the association. If so, 594 * do not send the asconf chunk to its peer, but continue with 595 * other associations. 596 */ 597 addr_buf = addrs; 598 for (i = 0; i < addrcnt; i++) { 599 addr = addr_buf; 600 af = sctp_get_af_specific(addr->v4.sin_family); 601 if (!af) { 602 retval = -EINVAL; 603 goto out; 604 } 605 606 if (sctp_assoc_lookup_laddr(asoc, addr)) 607 break; 608 609 addr_buf += af->sockaddr_len; 610 } 611 if (i < addrcnt) 612 continue; 613 614 /* Use the first valid address in bind addr list of 615 * association as Address Parameter of ASCONF CHUNK. 616 */ 617 bp = &asoc->base.bind_addr; 618 p = bp->address_list.next; 619 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 620 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 621 addrcnt, SCTP_PARAM_ADD_IP); 622 if (!chunk) { 623 retval = -ENOMEM; 624 goto out; 625 } 626 627 /* Add the new addresses to the bind address list with 628 * use_as_src set to 0. 629 */ 630 addr_buf = addrs; 631 for (i = 0; i < addrcnt; i++) { 632 addr = addr_buf; 633 af = sctp_get_af_specific(addr->v4.sin_family); 634 memcpy(&saveaddr, addr, af->sockaddr_len); 635 retval = sctp_add_bind_addr(bp, &saveaddr, 636 sizeof(saveaddr), 637 SCTP_ADDR_NEW, GFP_ATOMIC); 638 addr_buf += af->sockaddr_len; 639 } 640 if (asoc->src_out_of_asoc_ok) { 641 struct sctp_transport *trans; 642 643 list_for_each_entry(trans, 644 &asoc->peer.transport_addr_list, transports) { 645 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 646 2*asoc->pathmtu, 4380)); 647 trans->ssthresh = asoc->peer.i.a_rwnd; 648 trans->rto = asoc->rto_initial; 649 sctp_max_rto(asoc, trans); 650 trans->rtt = trans->srtt = trans->rttvar = 0; 651 /* Clear the source and route cache */ 652 sctp_transport_route(trans, NULL, 653 sctp_sk(asoc->base.sk)); 654 } 655 } 656 retval = sctp_send_asconf(asoc, chunk); 657 } 658 659 out: 660 return retval; 661 } 662 663 /* Remove a list of addresses from bind addresses list. Do not remove the 664 * last address. 665 * 666 * Basically run through each address specified in the addrs/addrcnt 667 * array/length pair, determine if it is IPv6 or IPv4 and call 668 * sctp_del_bind() on it. 669 * 670 * If any of them fails, then the operation will be reversed and the 671 * ones that were removed will be added back. 672 * 673 * At least one address has to be left; if only one address is 674 * available, the operation will return -EBUSY. 675 * 676 * Only sctp_setsockopt_bindx() is supposed to call this function. 677 */ 678 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 679 { 680 struct sctp_sock *sp = sctp_sk(sk); 681 struct sctp_endpoint *ep = sp->ep; 682 int cnt; 683 struct sctp_bind_addr *bp = &ep->base.bind_addr; 684 int retval = 0; 685 void *addr_buf; 686 union sctp_addr *sa_addr; 687 struct sctp_af *af; 688 689 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 690 __func__, sk, addrs, addrcnt); 691 692 addr_buf = addrs; 693 for (cnt = 0; cnt < addrcnt; cnt++) { 694 /* If the bind address list is empty or if there is only one 695 * bind address, there is nothing more to be removed (we need 696 * at least one address here). 697 */ 698 if (list_empty(&bp->address_list) || 699 (sctp_list_single_entry(&bp->address_list))) { 700 retval = -EBUSY; 701 goto err_bindx_rem; 702 } 703 704 sa_addr = addr_buf; 705 af = sctp_get_af_specific(sa_addr->sa.sa_family); 706 if (!af) { 707 retval = -EINVAL; 708 goto err_bindx_rem; 709 } 710 711 if (!af->addr_valid(sa_addr, sp, NULL)) { 712 retval = -EADDRNOTAVAIL; 713 goto err_bindx_rem; 714 } 715 716 if (sa_addr->v4.sin_port && 717 sa_addr->v4.sin_port != htons(bp->port)) { 718 retval = -EINVAL; 719 goto err_bindx_rem; 720 } 721 722 if (!sa_addr->v4.sin_port) 723 sa_addr->v4.sin_port = htons(bp->port); 724 725 /* FIXME - There is probably a need to check if sk->sk_saddr and 726 * sk->sk_rcv_addr are currently set to one of the addresses to 727 * be removed. This is something which needs to be looked into 728 * when we are fixing the outstanding issues with multi-homing 729 * socket routing and failover schemes. Refer to comments in 730 * sctp_do_bind(). -daisy 731 */ 732 retval = sctp_del_bind_addr(bp, sa_addr); 733 734 addr_buf += af->sockaddr_len; 735 err_bindx_rem: 736 if (retval < 0) { 737 /* Failed. Add the ones that has been removed back */ 738 if (cnt > 0) 739 sctp_bindx_add(sk, addrs, cnt); 740 return retval; 741 } 742 } 743 744 return retval; 745 } 746 747 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 748 * the associations that are part of the endpoint indicating that a list of 749 * local addresses are removed from the endpoint. 750 * 751 * If any of the addresses is already in the bind address list of the 752 * association, we do not send the chunk for that association. But it will not 753 * affect other associations. 754 * 755 * Only sctp_setsockopt_bindx() is supposed to call this function. 756 */ 757 static int sctp_send_asconf_del_ip(struct sock *sk, 758 struct sockaddr *addrs, 759 int addrcnt) 760 { 761 struct sctp_sock *sp; 762 struct sctp_endpoint *ep; 763 struct sctp_association *asoc; 764 struct sctp_transport *transport; 765 struct sctp_bind_addr *bp; 766 struct sctp_chunk *chunk; 767 union sctp_addr *laddr; 768 void *addr_buf; 769 struct sctp_af *af; 770 struct sctp_sockaddr_entry *saddr; 771 int i; 772 int retval = 0; 773 int stored = 0; 774 775 chunk = NULL; 776 sp = sctp_sk(sk); 777 ep = sp->ep; 778 779 if (!ep->asconf_enable) 780 return retval; 781 782 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 783 __func__, sk, addrs, addrcnt); 784 785 list_for_each_entry(asoc, &ep->asocs, asocs) { 786 787 if (!asoc->peer.asconf_capable) 788 continue; 789 790 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 791 continue; 792 793 if (!sctp_state(asoc, ESTABLISHED)) 794 continue; 795 796 /* Check if any address in the packed array of addresses is 797 * not present in the bind address list of the association. 798 * If so, do not send the asconf chunk to its peer, but 799 * continue with other associations. 800 */ 801 addr_buf = addrs; 802 for (i = 0; i < addrcnt; i++) { 803 laddr = addr_buf; 804 af = sctp_get_af_specific(laddr->v4.sin_family); 805 if (!af) { 806 retval = -EINVAL; 807 goto out; 808 } 809 810 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 811 break; 812 813 addr_buf += af->sockaddr_len; 814 } 815 if (i < addrcnt) 816 continue; 817 818 /* Find one address in the association's bind address list 819 * that is not in the packed array of addresses. This is to 820 * make sure that we do not delete all the addresses in the 821 * association. 822 */ 823 bp = &asoc->base.bind_addr; 824 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 825 addrcnt, sp); 826 if ((laddr == NULL) && (addrcnt == 1)) { 827 if (asoc->asconf_addr_del_pending) 828 continue; 829 asoc->asconf_addr_del_pending = 830 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 831 if (asoc->asconf_addr_del_pending == NULL) { 832 retval = -ENOMEM; 833 goto out; 834 } 835 asoc->asconf_addr_del_pending->sa.sa_family = 836 addrs->sa_family; 837 asoc->asconf_addr_del_pending->v4.sin_port = 838 htons(bp->port); 839 if (addrs->sa_family == AF_INET) { 840 struct sockaddr_in *sin; 841 842 sin = (struct sockaddr_in *)addrs; 843 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 844 } else if (addrs->sa_family == AF_INET6) { 845 struct sockaddr_in6 *sin6; 846 847 sin6 = (struct sockaddr_in6 *)addrs; 848 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 849 } 850 851 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 852 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 853 asoc->asconf_addr_del_pending); 854 855 asoc->src_out_of_asoc_ok = 1; 856 stored = 1; 857 goto skip_mkasconf; 858 } 859 860 if (laddr == NULL) 861 return -EINVAL; 862 863 /* We do not need RCU protection throughout this loop 864 * because this is done under a socket lock from the 865 * setsockopt call. 866 */ 867 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 868 SCTP_PARAM_DEL_IP); 869 if (!chunk) { 870 retval = -ENOMEM; 871 goto out; 872 } 873 874 skip_mkasconf: 875 /* Reset use_as_src flag for the addresses in the bind address 876 * list that are to be deleted. 877 */ 878 addr_buf = addrs; 879 for (i = 0; i < addrcnt; i++) { 880 laddr = addr_buf; 881 af = sctp_get_af_specific(laddr->v4.sin_family); 882 list_for_each_entry(saddr, &bp->address_list, list) { 883 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 884 saddr->state = SCTP_ADDR_DEL; 885 } 886 addr_buf += af->sockaddr_len; 887 } 888 889 /* Update the route and saddr entries for all the transports 890 * as some of the addresses in the bind address list are 891 * about to be deleted and cannot be used as source addresses. 892 */ 893 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 894 transports) { 895 sctp_transport_route(transport, NULL, 896 sctp_sk(asoc->base.sk)); 897 } 898 899 if (stored) 900 /* We don't need to transmit ASCONF */ 901 continue; 902 retval = sctp_send_asconf(asoc, chunk); 903 } 904 out: 905 return retval; 906 } 907 908 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 909 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 910 { 911 struct sock *sk = sctp_opt2sk(sp); 912 union sctp_addr *addr; 913 struct sctp_af *af; 914 915 /* It is safe to write port space in caller. */ 916 addr = &addrw->a; 917 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 918 af = sctp_get_af_specific(addr->sa.sa_family); 919 if (!af) 920 return -EINVAL; 921 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 922 return -EINVAL; 923 924 if (addrw->state == SCTP_ADDR_NEW) 925 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 926 else 927 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 928 } 929 930 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 931 * 932 * API 8.1 933 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 934 * int flags); 935 * 936 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 937 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 938 * or IPv6 addresses. 939 * 940 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 941 * Section 3.1.2 for this usage. 942 * 943 * addrs is a pointer to an array of one or more socket addresses. Each 944 * address is contained in its appropriate structure (i.e. struct 945 * sockaddr_in or struct sockaddr_in6) the family of the address type 946 * must be used to distinguish the address length (note that this 947 * representation is termed a "packed array" of addresses). The caller 948 * specifies the number of addresses in the array with addrcnt. 949 * 950 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 951 * -1, and sets errno to the appropriate error code. 952 * 953 * For SCTP, the port given in each socket address must be the same, or 954 * sctp_bindx() will fail, setting errno to EINVAL. 955 * 956 * The flags parameter is formed from the bitwise OR of zero or more of 957 * the following currently defined flags: 958 * 959 * SCTP_BINDX_ADD_ADDR 960 * 961 * SCTP_BINDX_REM_ADDR 962 * 963 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 964 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 965 * addresses from the association. The two flags are mutually exclusive; 966 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 967 * not remove all addresses from an association; sctp_bindx() will 968 * reject such an attempt with EINVAL. 969 * 970 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 971 * additional addresses with an endpoint after calling bind(). Or use 972 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 973 * socket is associated with so that no new association accepted will be 974 * associated with those addresses. If the endpoint supports dynamic 975 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 976 * endpoint to send the appropriate message to the peer to change the 977 * peers address lists. 978 * 979 * Adding and removing addresses from a connected association is 980 * optional functionality. Implementations that do not support this 981 * functionality should return EOPNOTSUPP. 982 * 983 * Basically do nothing but copying the addresses from user to kernel 984 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 985 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 986 * from userspace. 987 * 988 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 989 * it. 990 * 991 * sk The sk of the socket 992 * addrs The pointer to the addresses 993 * addrssize Size of the addrs buffer 994 * op Operation to perform (add or remove, see the flags of 995 * sctp_bindx) 996 * 997 * Returns 0 if ok, <0 errno code on error. 998 */ 999 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs, 1000 int addrs_size, int op) 1001 { 1002 int err; 1003 int addrcnt = 0; 1004 int walk_size = 0; 1005 struct sockaddr *sa_addr; 1006 void *addr_buf = addrs; 1007 struct sctp_af *af; 1008 1009 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1010 __func__, sk, addr_buf, addrs_size, op); 1011 1012 if (unlikely(addrs_size <= 0)) 1013 return -EINVAL; 1014 1015 /* Walk through the addrs buffer and count the number of addresses. */ 1016 while (walk_size < addrs_size) { 1017 if (walk_size + sizeof(sa_family_t) > addrs_size) 1018 return -EINVAL; 1019 1020 sa_addr = addr_buf; 1021 af = sctp_get_af_specific(sa_addr->sa_family); 1022 1023 /* If the address family is not supported or if this address 1024 * causes the address buffer to overflow return EINVAL. 1025 */ 1026 if (!af || (walk_size + af->sockaddr_len) > addrs_size) 1027 return -EINVAL; 1028 addrcnt++; 1029 addr_buf += af->sockaddr_len; 1030 walk_size += af->sockaddr_len; 1031 } 1032 1033 /* Do the work. */ 1034 switch (op) { 1035 case SCTP_BINDX_ADD_ADDR: 1036 /* Allow security module to validate bindx addresses. */ 1037 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD, 1038 addrs, addrs_size); 1039 if (err) 1040 return err; 1041 err = sctp_bindx_add(sk, addrs, addrcnt); 1042 if (err) 1043 return err; 1044 return sctp_send_asconf_add_ip(sk, addrs, addrcnt); 1045 case SCTP_BINDX_REM_ADDR: 1046 err = sctp_bindx_rem(sk, addrs, addrcnt); 1047 if (err) 1048 return err; 1049 return sctp_send_asconf_del_ip(sk, addrs, addrcnt); 1050 1051 default: 1052 return -EINVAL; 1053 } 1054 } 1055 1056 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs, 1057 int addrlen) 1058 { 1059 int err; 1060 1061 lock_sock(sk); 1062 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR); 1063 release_sock(sk); 1064 return err; 1065 } 1066 1067 static int sctp_connect_new_asoc(struct sctp_endpoint *ep, 1068 const union sctp_addr *daddr, 1069 const struct sctp_initmsg *init, 1070 struct sctp_transport **tp) 1071 { 1072 struct sctp_association *asoc; 1073 struct sock *sk = ep->base.sk; 1074 struct net *net = sock_net(sk); 1075 enum sctp_scope scope; 1076 int err; 1077 1078 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1079 return -EADDRNOTAVAIL; 1080 1081 if (!ep->base.bind_addr.port) { 1082 if (sctp_autobind(sk)) 1083 return -EAGAIN; 1084 } else { 1085 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) && 1086 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 1087 return -EACCES; 1088 } 1089 1090 scope = sctp_scope(daddr); 1091 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1092 if (!asoc) 1093 return -ENOMEM; 1094 1095 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1096 if (err < 0) 1097 goto free; 1098 1099 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1100 if (!*tp) { 1101 err = -ENOMEM; 1102 goto free; 1103 } 1104 1105 if (!init) 1106 return 0; 1107 1108 if (init->sinit_num_ostreams) { 1109 __u16 outcnt = init->sinit_num_ostreams; 1110 1111 asoc->c.sinit_num_ostreams = outcnt; 1112 /* outcnt has been changed, need to re-init stream */ 1113 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL); 1114 if (err) 1115 goto free; 1116 } 1117 1118 if (init->sinit_max_instreams) 1119 asoc->c.sinit_max_instreams = init->sinit_max_instreams; 1120 1121 if (init->sinit_max_attempts) 1122 asoc->max_init_attempts = init->sinit_max_attempts; 1123 1124 if (init->sinit_max_init_timeo) 1125 asoc->max_init_timeo = 1126 msecs_to_jiffies(init->sinit_max_init_timeo); 1127 1128 return 0; 1129 free: 1130 sctp_association_free(asoc); 1131 return err; 1132 } 1133 1134 static int sctp_connect_add_peer(struct sctp_association *asoc, 1135 union sctp_addr *daddr, int addr_len) 1136 { 1137 struct sctp_endpoint *ep = asoc->ep; 1138 struct sctp_association *old; 1139 struct sctp_transport *t; 1140 int err; 1141 1142 err = sctp_verify_addr(ep->base.sk, daddr, addr_len); 1143 if (err) 1144 return err; 1145 1146 old = sctp_endpoint_lookup_assoc(ep, daddr, &t); 1147 if (old && old != asoc) 1148 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1149 : -EALREADY; 1150 1151 if (sctp_endpoint_is_peeled_off(ep, daddr)) 1152 return -EADDRNOTAVAIL; 1153 1154 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN); 1155 if (!t) 1156 return -ENOMEM; 1157 1158 return 0; 1159 } 1160 1161 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1162 * 1163 * Common routine for handling connect() and sctp_connectx(). 1164 * Connect will come in with just a single address. 1165 */ 1166 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs, 1167 int addrs_size, int flags, sctp_assoc_t *assoc_id) 1168 { 1169 struct sctp_sock *sp = sctp_sk(sk); 1170 struct sctp_endpoint *ep = sp->ep; 1171 struct sctp_transport *transport; 1172 struct sctp_association *asoc; 1173 void *addr_buf = kaddrs; 1174 union sctp_addr *daddr; 1175 struct sctp_af *af; 1176 int walk_size, err; 1177 long timeo; 1178 1179 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1180 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) 1181 return -EISCONN; 1182 1183 daddr = addr_buf; 1184 af = sctp_get_af_specific(daddr->sa.sa_family); 1185 if (!af || af->sockaddr_len > addrs_size) 1186 return -EINVAL; 1187 1188 err = sctp_verify_addr(sk, daddr, af->sockaddr_len); 1189 if (err) 1190 return err; 1191 1192 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1193 if (asoc) 1194 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN 1195 : -EALREADY; 1196 1197 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport); 1198 if (err) 1199 return err; 1200 asoc = transport->asoc; 1201 1202 addr_buf += af->sockaddr_len; 1203 walk_size = af->sockaddr_len; 1204 while (walk_size < addrs_size) { 1205 err = -EINVAL; 1206 if (walk_size + sizeof(sa_family_t) > addrs_size) 1207 goto out_free; 1208 1209 daddr = addr_buf; 1210 af = sctp_get_af_specific(daddr->sa.sa_family); 1211 if (!af || af->sockaddr_len + walk_size > addrs_size) 1212 goto out_free; 1213 1214 if (asoc->peer.port != ntohs(daddr->v4.sin_port)) 1215 goto out_free; 1216 1217 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len); 1218 if (err) 1219 goto out_free; 1220 1221 addr_buf += af->sockaddr_len; 1222 walk_size += af->sockaddr_len; 1223 } 1224 1225 /* In case the user of sctp_connectx() wants an association 1226 * id back, assign one now. 1227 */ 1228 if (assoc_id) { 1229 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1230 if (err < 0) 1231 goto out_free; 1232 } 1233 1234 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL); 1235 if (err < 0) 1236 goto out_free; 1237 1238 /* Initialize sk's dport and daddr for getpeername() */ 1239 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1240 sp->pf->to_sk_daddr(daddr, sk); 1241 sk->sk_err = 0; 1242 1243 if (assoc_id) 1244 *assoc_id = asoc->assoc_id; 1245 1246 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); 1247 return sctp_wait_for_connect(asoc, &timeo); 1248 1249 out_free: 1250 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1251 __func__, asoc, kaddrs, err); 1252 sctp_association_free(asoc); 1253 return err; 1254 } 1255 1256 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1257 * 1258 * API 8.9 1259 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1260 * sctp_assoc_t *asoc); 1261 * 1262 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1263 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1264 * or IPv6 addresses. 1265 * 1266 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1267 * Section 3.1.2 for this usage. 1268 * 1269 * addrs is a pointer to an array of one or more socket addresses. Each 1270 * address is contained in its appropriate structure (i.e. struct 1271 * sockaddr_in or struct sockaddr_in6) the family of the address type 1272 * must be used to distengish the address length (note that this 1273 * representation is termed a "packed array" of addresses). The caller 1274 * specifies the number of addresses in the array with addrcnt. 1275 * 1276 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1277 * the association id of the new association. On failure, sctp_connectx() 1278 * returns -1, and sets errno to the appropriate error code. The assoc_id 1279 * is not touched by the kernel. 1280 * 1281 * For SCTP, the port given in each socket address must be the same, or 1282 * sctp_connectx() will fail, setting errno to EINVAL. 1283 * 1284 * An application can use sctp_connectx to initiate an association with 1285 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1286 * allows a caller to specify multiple addresses at which a peer can be 1287 * reached. The way the SCTP stack uses the list of addresses to set up 1288 * the association is implementation dependent. This function only 1289 * specifies that the stack will try to make use of all the addresses in 1290 * the list when needed. 1291 * 1292 * Note that the list of addresses passed in is only used for setting up 1293 * the association. It does not necessarily equal the set of addresses 1294 * the peer uses for the resulting association. If the caller wants to 1295 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1296 * retrieve them after the association has been set up. 1297 * 1298 * Basically do nothing but copying the addresses from user to kernel 1299 * land and invoking either sctp_connectx(). This is used for tunneling 1300 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1301 * 1302 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1303 * it. 1304 * 1305 * sk The sk of the socket 1306 * addrs The pointer to the addresses 1307 * addrssize Size of the addrs buffer 1308 * 1309 * Returns >=0 if ok, <0 errno code on error. 1310 */ 1311 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs, 1312 int addrs_size, sctp_assoc_t *assoc_id) 1313 { 1314 int err = 0, flags = 0; 1315 1316 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1317 __func__, sk, kaddrs, addrs_size); 1318 1319 /* make sure the 1st addr's sa_family is accessible later */ 1320 if (unlikely(addrs_size < sizeof(sa_family_t))) 1321 return -EINVAL; 1322 1323 /* Allow security module to validate connectx addresses. */ 1324 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX, 1325 (struct sockaddr *)kaddrs, 1326 addrs_size); 1327 if (err) 1328 return err; 1329 1330 /* in-kernel sockets don't generally have a file allocated to them 1331 * if all they do is call sock_create_kern(). 1332 */ 1333 if (sk->sk_socket->file) 1334 flags = sk->sk_socket->file->f_flags; 1335 1336 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id); 1337 } 1338 1339 /* 1340 * This is an older interface. It's kept for backward compatibility 1341 * to the option that doesn't provide association id. 1342 */ 1343 static int sctp_setsockopt_connectx_old(struct sock *sk, 1344 struct sockaddr *kaddrs, 1345 int addrs_size) 1346 { 1347 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL); 1348 } 1349 1350 /* 1351 * New interface for the API. The since the API is done with a socket 1352 * option, to make it simple we feed back the association id is as a return 1353 * indication to the call. Error is always negative and association id is 1354 * always positive. 1355 */ 1356 static int sctp_setsockopt_connectx(struct sock *sk, 1357 struct sockaddr *kaddrs, 1358 int addrs_size) 1359 { 1360 sctp_assoc_t assoc_id = 0; 1361 int err = 0; 1362 1363 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id); 1364 1365 if (err) 1366 return err; 1367 else 1368 return assoc_id; 1369 } 1370 1371 /* 1372 * New (hopefully final) interface for the API. 1373 * We use the sctp_getaddrs_old structure so that use-space library 1374 * can avoid any unnecessary allocations. The only different part 1375 * is that we store the actual length of the address buffer into the 1376 * addrs_num structure member. That way we can re-use the existing 1377 * code. 1378 */ 1379 #ifdef CONFIG_COMPAT 1380 struct compat_sctp_getaddrs_old { 1381 sctp_assoc_t assoc_id; 1382 s32 addr_num; 1383 compat_uptr_t addrs; /* struct sockaddr * */ 1384 }; 1385 #endif 1386 1387 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1388 char __user *optval, 1389 int __user *optlen) 1390 { 1391 struct sctp_getaddrs_old param; 1392 sctp_assoc_t assoc_id = 0; 1393 struct sockaddr *kaddrs; 1394 int err = 0; 1395 1396 #ifdef CONFIG_COMPAT 1397 if (in_compat_syscall()) { 1398 struct compat_sctp_getaddrs_old param32; 1399 1400 if (len < sizeof(param32)) 1401 return -EINVAL; 1402 if (copy_from_user(¶m32, optval, sizeof(param32))) 1403 return -EFAULT; 1404 1405 param.assoc_id = param32.assoc_id; 1406 param.addr_num = param32.addr_num; 1407 param.addrs = compat_ptr(param32.addrs); 1408 } else 1409 #endif 1410 { 1411 if (len < sizeof(param)) 1412 return -EINVAL; 1413 if (copy_from_user(¶m, optval, sizeof(param))) 1414 return -EFAULT; 1415 } 1416 1417 kaddrs = memdup_user(param.addrs, param.addr_num); 1418 if (IS_ERR(kaddrs)) 1419 return PTR_ERR(kaddrs); 1420 1421 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id); 1422 kfree(kaddrs); 1423 if (err == 0 || err == -EINPROGRESS) { 1424 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1425 return -EFAULT; 1426 if (put_user(sizeof(assoc_id), optlen)) 1427 return -EFAULT; 1428 } 1429 1430 return err; 1431 } 1432 1433 /* API 3.1.4 close() - UDP Style Syntax 1434 * Applications use close() to perform graceful shutdown (as described in 1435 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1436 * by a UDP-style socket. 1437 * 1438 * The syntax is 1439 * 1440 * ret = close(int sd); 1441 * 1442 * sd - the socket descriptor of the associations to be closed. 1443 * 1444 * To gracefully shutdown a specific association represented by the 1445 * UDP-style socket, an application should use the sendmsg() call, 1446 * passing no user data, but including the appropriate flag in the 1447 * ancillary data (see Section xxxx). 1448 * 1449 * If sd in the close() call is a branched-off socket representing only 1450 * one association, the shutdown is performed on that association only. 1451 * 1452 * 4.1.6 close() - TCP Style Syntax 1453 * 1454 * Applications use close() to gracefully close down an association. 1455 * 1456 * The syntax is: 1457 * 1458 * int close(int sd); 1459 * 1460 * sd - the socket descriptor of the association to be closed. 1461 * 1462 * After an application calls close() on a socket descriptor, no further 1463 * socket operations will succeed on that descriptor. 1464 * 1465 * API 7.1.4 SO_LINGER 1466 * 1467 * An application using the TCP-style socket can use this option to 1468 * perform the SCTP ABORT primitive. The linger option structure is: 1469 * 1470 * struct linger { 1471 * int l_onoff; // option on/off 1472 * int l_linger; // linger time 1473 * }; 1474 * 1475 * To enable the option, set l_onoff to 1. If the l_linger value is set 1476 * to 0, calling close() is the same as the ABORT primitive. If the 1477 * value is set to a negative value, the setsockopt() call will return 1478 * an error. If the value is set to a positive value linger_time, the 1479 * close() can be blocked for at most linger_time ms. If the graceful 1480 * shutdown phase does not finish during this period, close() will 1481 * return but the graceful shutdown phase continues in the system. 1482 */ 1483 static void sctp_close(struct sock *sk, long timeout) 1484 { 1485 struct net *net = sock_net(sk); 1486 struct sctp_endpoint *ep; 1487 struct sctp_association *asoc; 1488 struct list_head *pos, *temp; 1489 unsigned int data_was_unread; 1490 1491 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1492 1493 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1494 sk->sk_shutdown = SHUTDOWN_MASK; 1495 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1496 1497 ep = sctp_sk(sk)->ep; 1498 1499 /* Clean up any skbs sitting on the receive queue. */ 1500 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1501 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1502 1503 /* Walk all associations on an endpoint. */ 1504 list_for_each_safe(pos, temp, &ep->asocs) { 1505 asoc = list_entry(pos, struct sctp_association, asocs); 1506 1507 if (sctp_style(sk, TCP)) { 1508 /* A closed association can still be in the list if 1509 * it belongs to a TCP-style listening socket that is 1510 * not yet accepted. If so, free it. If not, send an 1511 * ABORT or SHUTDOWN based on the linger options. 1512 */ 1513 if (sctp_state(asoc, CLOSED)) { 1514 sctp_association_free(asoc); 1515 continue; 1516 } 1517 } 1518 1519 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1520 !skb_queue_empty(&asoc->ulpq.reasm) || 1521 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1522 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1523 struct sctp_chunk *chunk; 1524 1525 chunk = sctp_make_abort_user(asoc, NULL, 0); 1526 sctp_primitive_ABORT(net, asoc, chunk); 1527 } else 1528 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1529 } 1530 1531 /* On a TCP-style socket, block for at most linger_time if set. */ 1532 if (sctp_style(sk, TCP) && timeout) 1533 sctp_wait_for_close(sk, timeout); 1534 1535 /* This will run the backlog queue. */ 1536 release_sock(sk); 1537 1538 /* Supposedly, no process has access to the socket, but 1539 * the net layers still may. 1540 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1541 * held and that should be grabbed before socket lock. 1542 */ 1543 spin_lock_bh(&net->sctp.addr_wq_lock); 1544 bh_lock_sock_nested(sk); 1545 1546 /* Hold the sock, since sk_common_release() will put sock_put() 1547 * and we have just a little more cleanup. 1548 */ 1549 sock_hold(sk); 1550 sk_common_release(sk); 1551 1552 bh_unlock_sock(sk); 1553 spin_unlock_bh(&net->sctp.addr_wq_lock); 1554 1555 sock_put(sk); 1556 1557 SCTP_DBG_OBJCNT_DEC(sock); 1558 } 1559 1560 /* Handle EPIPE error. */ 1561 static int sctp_error(struct sock *sk, int flags, int err) 1562 { 1563 if (err == -EPIPE) 1564 err = sock_error(sk) ? : -EPIPE; 1565 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1566 send_sig(SIGPIPE, current, 0); 1567 return err; 1568 } 1569 1570 /* API 3.1.3 sendmsg() - UDP Style Syntax 1571 * 1572 * An application uses sendmsg() and recvmsg() calls to transmit data to 1573 * and receive data from its peer. 1574 * 1575 * ssize_t sendmsg(int socket, const struct msghdr *message, 1576 * int flags); 1577 * 1578 * socket - the socket descriptor of the endpoint. 1579 * message - pointer to the msghdr structure which contains a single 1580 * user message and possibly some ancillary data. 1581 * 1582 * See Section 5 for complete description of the data 1583 * structures. 1584 * 1585 * flags - flags sent or received with the user message, see Section 1586 * 5 for complete description of the flags. 1587 * 1588 * Note: This function could use a rewrite especially when explicit 1589 * connect support comes in. 1590 */ 1591 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1592 1593 static int sctp_msghdr_parse(const struct msghdr *msg, 1594 struct sctp_cmsgs *cmsgs); 1595 1596 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs, 1597 struct sctp_sndrcvinfo *srinfo, 1598 const struct msghdr *msg, size_t msg_len) 1599 { 1600 __u16 sflags; 1601 int err; 1602 1603 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP)) 1604 return -EPIPE; 1605 1606 if (msg_len > sk->sk_sndbuf) 1607 return -EMSGSIZE; 1608 1609 memset(cmsgs, 0, sizeof(*cmsgs)); 1610 err = sctp_msghdr_parse(msg, cmsgs); 1611 if (err) { 1612 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1613 return err; 1614 } 1615 1616 memset(srinfo, 0, sizeof(*srinfo)); 1617 if (cmsgs->srinfo) { 1618 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream; 1619 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags; 1620 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid; 1621 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context; 1622 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id; 1623 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive; 1624 } 1625 1626 if (cmsgs->sinfo) { 1627 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid; 1628 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags; 1629 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid; 1630 srinfo->sinfo_context = cmsgs->sinfo->snd_context; 1631 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id; 1632 } 1633 1634 if (cmsgs->prinfo) { 1635 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value; 1636 SCTP_PR_SET_POLICY(srinfo->sinfo_flags, 1637 cmsgs->prinfo->pr_policy); 1638 } 1639 1640 sflags = srinfo->sinfo_flags; 1641 if (!sflags && msg_len) 1642 return 0; 1643 1644 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT))) 1645 return -EINVAL; 1646 1647 if (((sflags & SCTP_EOF) && msg_len > 0) || 1648 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0)) 1649 return -EINVAL; 1650 1651 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name) 1652 return -EINVAL; 1653 1654 return 0; 1655 } 1656 1657 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags, 1658 struct sctp_cmsgs *cmsgs, 1659 union sctp_addr *daddr, 1660 struct sctp_transport **tp) 1661 { 1662 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1663 struct sctp_association *asoc; 1664 struct cmsghdr *cmsg; 1665 __be32 flowinfo = 0; 1666 struct sctp_af *af; 1667 int err; 1668 1669 *tp = NULL; 1670 1671 if (sflags & (SCTP_EOF | SCTP_ABORT)) 1672 return -EINVAL; 1673 1674 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) || 1675 sctp_sstate(sk, CLOSING))) 1676 return -EADDRNOTAVAIL; 1677 1678 /* Label connection socket for first association 1-to-many 1679 * style for client sequence socket()->sendmsg(). This 1680 * needs to be done before sctp_assoc_add_peer() as that will 1681 * set up the initial packet that needs to account for any 1682 * security ip options (CIPSO/CALIPSO) added to the packet. 1683 */ 1684 af = sctp_get_af_specific(daddr->sa.sa_family); 1685 if (!af) 1686 return -EINVAL; 1687 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT, 1688 (struct sockaddr *)daddr, 1689 af->sockaddr_len); 1690 if (err < 0) 1691 return err; 1692 1693 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp); 1694 if (err) 1695 return err; 1696 asoc = (*tp)->asoc; 1697 1698 if (!cmsgs->addrs_msg) 1699 return 0; 1700 1701 if (daddr->sa.sa_family == AF_INET6) 1702 flowinfo = daddr->v6.sin6_flowinfo; 1703 1704 /* sendv addr list parse */ 1705 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) { 1706 union sctp_addr _daddr; 1707 int dlen; 1708 1709 if (cmsg->cmsg_level != IPPROTO_SCTP || 1710 (cmsg->cmsg_type != SCTP_DSTADDRV4 && 1711 cmsg->cmsg_type != SCTP_DSTADDRV6)) 1712 continue; 1713 1714 daddr = &_daddr; 1715 memset(daddr, 0, sizeof(*daddr)); 1716 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr); 1717 if (cmsg->cmsg_type == SCTP_DSTADDRV4) { 1718 if (dlen < sizeof(struct in_addr)) { 1719 err = -EINVAL; 1720 goto free; 1721 } 1722 1723 dlen = sizeof(struct in_addr); 1724 daddr->v4.sin_family = AF_INET; 1725 daddr->v4.sin_port = htons(asoc->peer.port); 1726 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen); 1727 } else { 1728 if (dlen < sizeof(struct in6_addr)) { 1729 err = -EINVAL; 1730 goto free; 1731 } 1732 1733 dlen = sizeof(struct in6_addr); 1734 daddr->v6.sin6_flowinfo = flowinfo; 1735 daddr->v6.sin6_family = AF_INET6; 1736 daddr->v6.sin6_port = htons(asoc->peer.port); 1737 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen); 1738 } 1739 1740 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr)); 1741 if (err) 1742 goto free; 1743 } 1744 1745 return 0; 1746 1747 free: 1748 sctp_association_free(asoc); 1749 return err; 1750 } 1751 1752 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc, 1753 __u16 sflags, struct msghdr *msg, 1754 size_t msg_len) 1755 { 1756 struct sock *sk = asoc->base.sk; 1757 struct net *net = sock_net(sk); 1758 1759 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) 1760 return -EPIPE; 1761 1762 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) && 1763 !sctp_state(asoc, ESTABLISHED)) 1764 return 0; 1765 1766 if (sflags & SCTP_EOF) { 1767 pr_debug("%s: shutting down association:%p\n", __func__, asoc); 1768 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1769 1770 return 0; 1771 } 1772 1773 if (sflags & SCTP_ABORT) { 1774 struct sctp_chunk *chunk; 1775 1776 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1777 if (!chunk) 1778 return -ENOMEM; 1779 1780 pr_debug("%s: aborting association:%p\n", __func__, asoc); 1781 sctp_primitive_ABORT(net, asoc, chunk); 1782 iov_iter_revert(&msg->msg_iter, msg_len); 1783 1784 return 0; 1785 } 1786 1787 return 1; 1788 } 1789 1790 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc, 1791 struct msghdr *msg, size_t msg_len, 1792 struct sctp_transport *transport, 1793 struct sctp_sndrcvinfo *sinfo) 1794 { 1795 struct sock *sk = asoc->base.sk; 1796 struct sctp_sock *sp = sctp_sk(sk); 1797 struct net *net = sock_net(sk); 1798 struct sctp_datamsg *datamsg; 1799 bool wait_connect = false; 1800 struct sctp_chunk *chunk; 1801 long timeo; 1802 int err; 1803 1804 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1805 err = -EINVAL; 1806 goto err; 1807 } 1808 1809 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) { 1810 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1811 if (err) 1812 goto err; 1813 } 1814 1815 if (sp->disable_fragments && msg_len > asoc->frag_point) { 1816 err = -EMSGSIZE; 1817 goto err; 1818 } 1819 1820 if (asoc->pmtu_pending) { 1821 if (sp->param_flags & SPP_PMTUD_ENABLE) 1822 sctp_assoc_sync_pmtu(asoc); 1823 asoc->pmtu_pending = 0; 1824 } 1825 1826 if (sctp_wspace(asoc) < (int)msg_len) 1827 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1828 1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) { 1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1832 if (err) 1833 goto err; 1834 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) { 1835 err = -EINVAL; 1836 goto err; 1837 } 1838 } 1839 1840 if (sctp_state(asoc, CLOSED)) { 1841 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1842 if (err) 1843 goto err; 1844 1845 if (asoc->ep->intl_enable) { 1846 timeo = sock_sndtimeo(sk, 0); 1847 err = sctp_wait_for_connect(asoc, &timeo); 1848 if (err) { 1849 err = -ESRCH; 1850 goto err; 1851 } 1852 } else { 1853 wait_connect = true; 1854 } 1855 1856 pr_debug("%s: we associated primitively\n", __func__); 1857 } 1858 1859 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 1860 if (IS_ERR(datamsg)) { 1861 err = PTR_ERR(datamsg); 1862 goto err; 1863 } 1864 1865 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 1866 1867 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 1868 sctp_chunk_hold(chunk); 1869 sctp_set_owner_w(chunk); 1870 chunk->transport = transport; 1871 } 1872 1873 err = sctp_primitive_SEND(net, asoc, datamsg); 1874 if (err) { 1875 sctp_datamsg_free(datamsg); 1876 goto err; 1877 } 1878 1879 pr_debug("%s: we sent primitively\n", __func__); 1880 1881 sctp_datamsg_put(datamsg); 1882 1883 if (unlikely(wait_connect)) { 1884 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1885 sctp_wait_for_connect(asoc, &timeo); 1886 } 1887 1888 err = msg_len; 1889 1890 err: 1891 return err; 1892 } 1893 1894 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk, 1895 const struct msghdr *msg, 1896 struct sctp_cmsgs *cmsgs) 1897 { 1898 union sctp_addr *daddr = NULL; 1899 int err; 1900 1901 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1902 int len = msg->msg_namelen; 1903 1904 if (len > sizeof(*daddr)) 1905 len = sizeof(*daddr); 1906 1907 daddr = (union sctp_addr *)msg->msg_name; 1908 1909 err = sctp_verify_addr(sk, daddr, len); 1910 if (err) 1911 return ERR_PTR(err); 1912 } 1913 1914 return daddr; 1915 } 1916 1917 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc, 1918 struct sctp_sndrcvinfo *sinfo, 1919 struct sctp_cmsgs *cmsgs) 1920 { 1921 if (!cmsgs->srinfo && !cmsgs->sinfo) { 1922 sinfo->sinfo_stream = asoc->default_stream; 1923 sinfo->sinfo_ppid = asoc->default_ppid; 1924 sinfo->sinfo_context = asoc->default_context; 1925 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc); 1926 1927 if (!cmsgs->prinfo) 1928 sinfo->sinfo_flags = asoc->default_flags; 1929 } 1930 1931 if (!cmsgs->srinfo && !cmsgs->prinfo) 1932 sinfo->sinfo_timetolive = asoc->default_timetolive; 1933 1934 if (cmsgs->authinfo) { 1935 /* Reuse sinfo_tsn to indicate that authinfo was set and 1936 * sinfo_ssn to save the keyid on tx path. 1937 */ 1938 sinfo->sinfo_tsn = 1; 1939 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber; 1940 } 1941 } 1942 1943 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1944 { 1945 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 1946 struct sctp_transport *transport = NULL; 1947 struct sctp_sndrcvinfo _sinfo, *sinfo; 1948 struct sctp_association *asoc, *tmp; 1949 struct sctp_cmsgs cmsgs; 1950 union sctp_addr *daddr; 1951 bool new = false; 1952 __u16 sflags; 1953 int err; 1954 1955 /* Parse and get snd_info */ 1956 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len); 1957 if (err) 1958 goto out; 1959 1960 sinfo = &_sinfo; 1961 sflags = sinfo->sinfo_flags; 1962 1963 /* Get daddr from msg */ 1964 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs); 1965 if (IS_ERR(daddr)) { 1966 err = PTR_ERR(daddr); 1967 goto out; 1968 } 1969 1970 lock_sock(sk); 1971 1972 /* SCTP_SENDALL process */ 1973 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) { 1974 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) { 1975 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 1976 msg_len); 1977 if (err == 0) 1978 continue; 1979 if (err < 0) 1980 goto out_unlock; 1981 1982 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 1983 1984 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, 1985 NULL, sinfo); 1986 if (err < 0) 1987 goto out_unlock; 1988 1989 iov_iter_revert(&msg->msg_iter, err); 1990 } 1991 1992 goto out_unlock; 1993 } 1994 1995 /* Get and check or create asoc */ 1996 if (daddr) { 1997 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport); 1998 if (asoc) { 1999 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, 2000 msg_len); 2001 if (err <= 0) 2002 goto out_unlock; 2003 } else { 2004 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr, 2005 &transport); 2006 if (err) 2007 goto out_unlock; 2008 2009 asoc = transport->asoc; 2010 new = true; 2011 } 2012 2013 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER)) 2014 transport = NULL; 2015 } else { 2016 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id); 2017 if (!asoc) { 2018 err = -EPIPE; 2019 goto out_unlock; 2020 } 2021 2022 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len); 2023 if (err <= 0) 2024 goto out_unlock; 2025 } 2026 2027 /* Update snd_info with the asoc */ 2028 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs); 2029 2030 /* Send msg to the asoc */ 2031 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo); 2032 if (err < 0 && err != -ESRCH && new) 2033 sctp_association_free(asoc); 2034 2035 out_unlock: 2036 release_sock(sk); 2037 out: 2038 return sctp_error(sk, msg->msg_flags, err); 2039 } 2040 2041 /* This is an extended version of skb_pull() that removes the data from the 2042 * start of a skb even when data is spread across the list of skb's in the 2043 * frag_list. len specifies the total amount of data that needs to be removed. 2044 * when 'len' bytes could be removed from the skb, it returns 0. 2045 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2046 * could not be removed. 2047 */ 2048 static int sctp_skb_pull(struct sk_buff *skb, int len) 2049 { 2050 struct sk_buff *list; 2051 int skb_len = skb_headlen(skb); 2052 int rlen; 2053 2054 if (len <= skb_len) { 2055 __skb_pull(skb, len); 2056 return 0; 2057 } 2058 len -= skb_len; 2059 __skb_pull(skb, skb_len); 2060 2061 skb_walk_frags(skb, list) { 2062 rlen = sctp_skb_pull(list, len); 2063 skb->len -= (len-rlen); 2064 skb->data_len -= (len-rlen); 2065 2066 if (!rlen) 2067 return 0; 2068 2069 len = rlen; 2070 } 2071 2072 return len; 2073 } 2074 2075 /* API 3.1.3 recvmsg() - UDP Style Syntax 2076 * 2077 * ssize_t recvmsg(int socket, struct msghdr *message, 2078 * int flags); 2079 * 2080 * socket - the socket descriptor of the endpoint. 2081 * message - pointer to the msghdr structure which contains a single 2082 * user message and possibly some ancillary data. 2083 * 2084 * See Section 5 for complete description of the data 2085 * structures. 2086 * 2087 * flags - flags sent or received with the user message, see Section 2088 * 5 for complete description of the flags. 2089 */ 2090 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2091 int flags, int *addr_len) 2092 { 2093 struct sctp_ulpevent *event = NULL; 2094 struct sctp_sock *sp = sctp_sk(sk); 2095 struct sk_buff *skb, *head_skb; 2096 int copied; 2097 int err = 0; 2098 int skb_len; 2099 2100 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, flags:0x%x, addr_len:%p)\n", 2101 __func__, sk, msg, len, flags, addr_len); 2102 2103 if (unlikely(flags & MSG_ERRQUEUE)) 2104 return inet_recv_error(sk, msg, len, addr_len); 2105 2106 if (sk_can_busy_loop(sk) && 2107 skb_queue_empty_lockless(&sk->sk_receive_queue)) 2108 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2109 2110 lock_sock(sk); 2111 2112 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2113 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2114 err = -ENOTCONN; 2115 goto out; 2116 } 2117 2118 skb = sctp_skb_recv_datagram(sk, flags, &err); 2119 if (!skb) 2120 goto out; 2121 2122 /* Get the total length of the skb including any skb's in the 2123 * frag_list. 2124 */ 2125 skb_len = skb->len; 2126 2127 copied = skb_len; 2128 if (copied > len) 2129 copied = len; 2130 2131 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2132 2133 event = sctp_skb2event(skb); 2134 2135 if (err) 2136 goto out_free; 2137 2138 if (event->chunk && event->chunk->head_skb) 2139 head_skb = event->chunk->head_skb; 2140 else 2141 head_skb = skb; 2142 sock_recv_cmsgs(msg, sk, head_skb); 2143 if (sctp_ulpevent_is_notification(event)) { 2144 msg->msg_flags |= MSG_NOTIFICATION; 2145 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2146 } else { 2147 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2148 } 2149 2150 /* Check if we allow SCTP_NXTINFO. */ 2151 if (sp->recvnxtinfo) 2152 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2153 /* Check if we allow SCTP_RCVINFO. */ 2154 if (sp->recvrcvinfo) 2155 sctp_ulpevent_read_rcvinfo(event, msg); 2156 /* Check if we allow SCTP_SNDRCVINFO. */ 2157 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT)) 2158 sctp_ulpevent_read_sndrcvinfo(event, msg); 2159 2160 err = copied; 2161 2162 /* If skb's length exceeds the user's buffer, update the skb and 2163 * push it back to the receive_queue so that the next call to 2164 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2165 */ 2166 if (skb_len > copied) { 2167 msg->msg_flags &= ~MSG_EOR; 2168 if (flags & MSG_PEEK) 2169 goto out_free; 2170 sctp_skb_pull(skb, copied); 2171 skb_queue_head(&sk->sk_receive_queue, skb); 2172 2173 /* When only partial message is copied to the user, increase 2174 * rwnd by that amount. If all the data in the skb is read, 2175 * rwnd is updated when the event is freed. 2176 */ 2177 if (!sctp_ulpevent_is_notification(event)) 2178 sctp_assoc_rwnd_increase(event->asoc, copied); 2179 goto out; 2180 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2181 (event->msg_flags & MSG_EOR)) 2182 msg->msg_flags |= MSG_EOR; 2183 else 2184 msg->msg_flags &= ~MSG_EOR; 2185 2186 out_free: 2187 if (flags & MSG_PEEK) { 2188 /* Release the skb reference acquired after peeking the skb in 2189 * sctp_skb_recv_datagram(). 2190 */ 2191 kfree_skb(skb); 2192 } else { 2193 /* Free the event which includes releasing the reference to 2194 * the owner of the skb, freeing the skb and updating the 2195 * rwnd. 2196 */ 2197 sctp_ulpevent_free(event); 2198 } 2199 out: 2200 release_sock(sk); 2201 return err; 2202 } 2203 2204 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2205 * 2206 * This option is a on/off flag. If enabled no SCTP message 2207 * fragmentation will be performed. Instead if a message being sent 2208 * exceeds the current PMTU size, the message will NOT be sent and 2209 * instead a error will be indicated to the user. 2210 */ 2211 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val, 2212 unsigned int optlen) 2213 { 2214 if (optlen < sizeof(int)) 2215 return -EINVAL; 2216 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1; 2217 return 0; 2218 } 2219 2220 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type, 2221 unsigned int optlen) 2222 { 2223 struct sctp_sock *sp = sctp_sk(sk); 2224 struct sctp_association *asoc; 2225 int i; 2226 2227 if (optlen > sizeof(struct sctp_event_subscribe)) 2228 return -EINVAL; 2229 2230 for (i = 0; i < optlen; i++) 2231 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i, 2232 sn_type[i]); 2233 2234 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2235 asoc->subscribe = sctp_sk(sk)->subscribe; 2236 2237 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2238 * if there is no data to be sent or retransmit, the stack will 2239 * immediately send up this notification. 2240 */ 2241 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) { 2242 struct sctp_ulpevent *event; 2243 2244 asoc = sctp_id2assoc(sk, 0); 2245 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2246 event = sctp_ulpevent_make_sender_dry_event(asoc, 2247 GFP_USER | __GFP_NOWARN); 2248 if (!event) 2249 return -ENOMEM; 2250 2251 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2252 } 2253 } 2254 2255 return 0; 2256 } 2257 2258 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2259 * 2260 * This socket option is applicable to the UDP-style socket only. When 2261 * set it will cause associations that are idle for more than the 2262 * specified number of seconds to automatically close. An association 2263 * being idle is defined an association that has NOT sent or received 2264 * user data. The special value of '' indicates that no automatic 2265 * close of any associations should be performed. The option expects an 2266 * integer defining the number of seconds of idle time before an 2267 * association is closed. 2268 */ 2269 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval, 2270 unsigned int optlen) 2271 { 2272 struct sctp_sock *sp = sctp_sk(sk); 2273 struct net *net = sock_net(sk); 2274 2275 /* Applicable to UDP-style socket only */ 2276 if (sctp_style(sk, TCP)) 2277 return -EOPNOTSUPP; 2278 if (optlen != sizeof(int)) 2279 return -EINVAL; 2280 2281 sp->autoclose = *optval; 2282 if (sp->autoclose > net->sctp.max_autoclose) 2283 sp->autoclose = net->sctp.max_autoclose; 2284 2285 return 0; 2286 } 2287 2288 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2289 * 2290 * Applications can enable or disable heartbeats for any peer address of 2291 * an association, modify an address's heartbeat interval, force a 2292 * heartbeat to be sent immediately, and adjust the address's maximum 2293 * number of retransmissions sent before an address is considered 2294 * unreachable. The following structure is used to access and modify an 2295 * address's parameters: 2296 * 2297 * struct sctp_paddrparams { 2298 * sctp_assoc_t spp_assoc_id; 2299 * struct sockaddr_storage spp_address; 2300 * uint32_t spp_hbinterval; 2301 * uint16_t spp_pathmaxrxt; 2302 * uint32_t spp_pathmtu; 2303 * uint32_t spp_sackdelay; 2304 * uint32_t spp_flags; 2305 * uint32_t spp_ipv6_flowlabel; 2306 * uint8_t spp_dscp; 2307 * }; 2308 * 2309 * spp_assoc_id - (one-to-many style socket) This is filled in the 2310 * application, and identifies the association for 2311 * this query. 2312 * spp_address - This specifies which address is of interest. 2313 * spp_hbinterval - This contains the value of the heartbeat interval, 2314 * in milliseconds. If a value of zero 2315 * is present in this field then no changes are to 2316 * be made to this parameter. 2317 * spp_pathmaxrxt - This contains the maximum number of 2318 * retransmissions before this address shall be 2319 * considered unreachable. If a value of zero 2320 * is present in this field then no changes are to 2321 * be made to this parameter. 2322 * spp_pathmtu - When Path MTU discovery is disabled the value 2323 * specified here will be the "fixed" path mtu. 2324 * Note that if the spp_address field is empty 2325 * then all associations on this address will 2326 * have this fixed path mtu set upon them. 2327 * 2328 * spp_sackdelay - When delayed sack is enabled, this value specifies 2329 * the number of milliseconds that sacks will be delayed 2330 * for. This value will apply to all addresses of an 2331 * association if the spp_address field is empty. Note 2332 * also, that if delayed sack is enabled and this 2333 * value is set to 0, no change is made to the last 2334 * recorded delayed sack timer value. 2335 * 2336 * spp_flags - These flags are used to control various features 2337 * on an association. The flag field may contain 2338 * zero or more of the following options. 2339 * 2340 * SPP_HB_ENABLE - Enable heartbeats on the 2341 * specified address. Note that if the address 2342 * field is empty all addresses for the association 2343 * have heartbeats enabled upon them. 2344 * 2345 * SPP_HB_DISABLE - Disable heartbeats on the 2346 * speicifed address. Note that if the address 2347 * field is empty all addresses for the association 2348 * will have their heartbeats disabled. Note also 2349 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2350 * mutually exclusive, only one of these two should 2351 * be specified. Enabling both fields will have 2352 * undetermined results. 2353 * 2354 * SPP_HB_DEMAND - Request a user initiated heartbeat 2355 * to be made immediately. 2356 * 2357 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2358 * heartbeat delayis to be set to the value of 0 2359 * milliseconds. 2360 * 2361 * SPP_PMTUD_ENABLE - This field will enable PMTU 2362 * discovery upon the specified address. Note that 2363 * if the address feild is empty then all addresses 2364 * on the association are effected. 2365 * 2366 * SPP_PMTUD_DISABLE - This field will disable PMTU 2367 * discovery upon the specified address. Note that 2368 * if the address feild is empty then all addresses 2369 * on the association are effected. Not also that 2370 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2371 * exclusive. Enabling both will have undetermined 2372 * results. 2373 * 2374 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2375 * on delayed sack. The time specified in spp_sackdelay 2376 * is used to specify the sack delay for this address. Note 2377 * that if spp_address is empty then all addresses will 2378 * enable delayed sack and take on the sack delay 2379 * value specified in spp_sackdelay. 2380 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2381 * off delayed sack. If the spp_address field is blank then 2382 * delayed sack is disabled for the entire association. Note 2383 * also that this field is mutually exclusive to 2384 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2385 * results. 2386 * 2387 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 2388 * setting of the IPV6 flow label value. The value is 2389 * contained in the spp_ipv6_flowlabel field. 2390 * Upon retrieval, this flag will be set to indicate that 2391 * the spp_ipv6_flowlabel field has a valid value returned. 2392 * If a specific destination address is set (in the 2393 * spp_address field), then the value returned is that of 2394 * the address. If just an association is specified (and 2395 * no address), then the association's default flow label 2396 * is returned. If neither an association nor a destination 2397 * is specified, then the socket's default flow label is 2398 * returned. For non-IPv6 sockets, this flag will be left 2399 * cleared. 2400 * 2401 * SPP_DSCP: Setting this flag enables the setting of the 2402 * Differentiated Services Code Point (DSCP) value 2403 * associated with either the association or a specific 2404 * address. The value is obtained in the spp_dscp field. 2405 * Upon retrieval, this flag will be set to indicate that 2406 * the spp_dscp field has a valid value returned. If a 2407 * specific destination address is set when called (in the 2408 * spp_address field), then that specific destination 2409 * address's DSCP value is returned. If just an association 2410 * is specified, then the association's default DSCP is 2411 * returned. If neither an association nor a destination is 2412 * specified, then the socket's default DSCP is returned. 2413 * 2414 * spp_ipv6_flowlabel 2415 * - This field is used in conjunction with the 2416 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 2417 * The 20 least significant bits are used for the flow 2418 * label. This setting has precedence over any IPv6-layer 2419 * setting. 2420 * 2421 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 2422 * and contains the DSCP. The 6 most significant bits are 2423 * used for the DSCP. This setting has precedence over any 2424 * IPv4- or IPv6- layer setting. 2425 */ 2426 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2427 struct sctp_transport *trans, 2428 struct sctp_association *asoc, 2429 struct sctp_sock *sp, 2430 int hb_change, 2431 int pmtud_change, 2432 int sackdelay_change) 2433 { 2434 int error; 2435 2436 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2437 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net, 2438 trans->asoc, trans); 2439 if (error) 2440 return error; 2441 } 2442 2443 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2444 * this field is ignored. Note also that a value of zero indicates 2445 * the current setting should be left unchanged. 2446 */ 2447 if (params->spp_flags & SPP_HB_ENABLE) { 2448 2449 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2450 * set. This lets us use 0 value when this flag 2451 * is set. 2452 */ 2453 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2454 params->spp_hbinterval = 0; 2455 2456 if (params->spp_hbinterval || 2457 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2458 if (trans) { 2459 trans->hbinterval = 2460 msecs_to_jiffies(params->spp_hbinterval); 2461 sctp_transport_reset_hb_timer(trans); 2462 } else if (asoc) { 2463 asoc->hbinterval = 2464 msecs_to_jiffies(params->spp_hbinterval); 2465 } else { 2466 sp->hbinterval = params->spp_hbinterval; 2467 } 2468 } 2469 } 2470 2471 if (hb_change) { 2472 if (trans) { 2473 trans->param_flags = 2474 (trans->param_flags & ~SPP_HB) | hb_change; 2475 } else if (asoc) { 2476 asoc->param_flags = 2477 (asoc->param_flags & ~SPP_HB) | hb_change; 2478 } else { 2479 sp->param_flags = 2480 (sp->param_flags & ~SPP_HB) | hb_change; 2481 } 2482 } 2483 2484 /* When Path MTU discovery is disabled the value specified here will 2485 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2486 * include the flag SPP_PMTUD_DISABLE for this field to have any 2487 * effect). 2488 */ 2489 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2490 if (trans) { 2491 trans->pathmtu = params->spp_pathmtu; 2492 sctp_assoc_sync_pmtu(asoc); 2493 } else if (asoc) { 2494 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu); 2495 } else { 2496 sp->pathmtu = params->spp_pathmtu; 2497 } 2498 } 2499 2500 if (pmtud_change) { 2501 if (trans) { 2502 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2503 (params->spp_flags & SPP_PMTUD_ENABLE); 2504 trans->param_flags = 2505 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2506 if (update) { 2507 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2508 sctp_assoc_sync_pmtu(asoc); 2509 } 2510 sctp_transport_pl_reset(trans); 2511 } else if (asoc) { 2512 asoc->param_flags = 2513 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2514 } else { 2515 sp->param_flags = 2516 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2517 } 2518 } 2519 2520 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2521 * value of this field is ignored. Note also that a value of zero 2522 * indicates the current setting should be left unchanged. 2523 */ 2524 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2525 if (trans) { 2526 trans->sackdelay = 2527 msecs_to_jiffies(params->spp_sackdelay); 2528 } else if (asoc) { 2529 asoc->sackdelay = 2530 msecs_to_jiffies(params->spp_sackdelay); 2531 } else { 2532 sp->sackdelay = params->spp_sackdelay; 2533 } 2534 } 2535 2536 if (sackdelay_change) { 2537 if (trans) { 2538 trans->param_flags = 2539 (trans->param_flags & ~SPP_SACKDELAY) | 2540 sackdelay_change; 2541 } else if (asoc) { 2542 asoc->param_flags = 2543 (asoc->param_flags & ~SPP_SACKDELAY) | 2544 sackdelay_change; 2545 } else { 2546 sp->param_flags = 2547 (sp->param_flags & ~SPP_SACKDELAY) | 2548 sackdelay_change; 2549 } 2550 } 2551 2552 /* Note that a value of zero indicates the current setting should be 2553 left unchanged. 2554 */ 2555 if (params->spp_pathmaxrxt) { 2556 if (trans) { 2557 trans->pathmaxrxt = params->spp_pathmaxrxt; 2558 } else if (asoc) { 2559 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2560 } else { 2561 sp->pathmaxrxt = params->spp_pathmaxrxt; 2562 } 2563 } 2564 2565 if (params->spp_flags & SPP_IPV6_FLOWLABEL) { 2566 if (trans) { 2567 if (trans->ipaddr.sa.sa_family == AF_INET6) { 2568 trans->flowlabel = params->spp_ipv6_flowlabel & 2569 SCTP_FLOWLABEL_VAL_MASK; 2570 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2571 } 2572 } else if (asoc) { 2573 struct sctp_transport *t; 2574 2575 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2576 transports) { 2577 if (t->ipaddr.sa.sa_family != AF_INET6) 2578 continue; 2579 t->flowlabel = params->spp_ipv6_flowlabel & 2580 SCTP_FLOWLABEL_VAL_MASK; 2581 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2582 } 2583 asoc->flowlabel = params->spp_ipv6_flowlabel & 2584 SCTP_FLOWLABEL_VAL_MASK; 2585 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2586 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) { 2587 sp->flowlabel = params->spp_ipv6_flowlabel & 2588 SCTP_FLOWLABEL_VAL_MASK; 2589 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK; 2590 } 2591 } 2592 2593 if (params->spp_flags & SPP_DSCP) { 2594 if (trans) { 2595 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2596 trans->dscp |= SCTP_DSCP_SET_MASK; 2597 } else if (asoc) { 2598 struct sctp_transport *t; 2599 2600 list_for_each_entry(t, &asoc->peer.transport_addr_list, 2601 transports) { 2602 t->dscp = params->spp_dscp & 2603 SCTP_DSCP_VAL_MASK; 2604 t->dscp |= SCTP_DSCP_SET_MASK; 2605 } 2606 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2607 asoc->dscp |= SCTP_DSCP_SET_MASK; 2608 } else { 2609 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK; 2610 sp->dscp |= SCTP_DSCP_SET_MASK; 2611 } 2612 } 2613 2614 return 0; 2615 } 2616 2617 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2618 struct sctp_paddrparams *params, 2619 unsigned int optlen) 2620 { 2621 struct sctp_transport *trans = NULL; 2622 struct sctp_association *asoc = NULL; 2623 struct sctp_sock *sp = sctp_sk(sk); 2624 int error; 2625 int hb_change, pmtud_change, sackdelay_change; 2626 2627 if (optlen == ALIGN(offsetof(struct sctp_paddrparams, 2628 spp_ipv6_flowlabel), 4)) { 2629 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL)) 2630 return -EINVAL; 2631 } else if (optlen != sizeof(*params)) { 2632 return -EINVAL; 2633 } 2634 2635 /* Validate flags and value parameters. */ 2636 hb_change = params->spp_flags & SPP_HB; 2637 pmtud_change = params->spp_flags & SPP_PMTUD; 2638 sackdelay_change = params->spp_flags & SPP_SACKDELAY; 2639 2640 if (hb_change == SPP_HB || 2641 pmtud_change == SPP_PMTUD || 2642 sackdelay_change == SPP_SACKDELAY || 2643 params->spp_sackdelay > 500 || 2644 (params->spp_pathmtu && 2645 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2646 return -EINVAL; 2647 2648 /* If an address other than INADDR_ANY is specified, and 2649 * no transport is found, then the request is invalid. 2650 */ 2651 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) { 2652 trans = sctp_addr_id2transport(sk, ¶ms->spp_address, 2653 params->spp_assoc_id); 2654 if (!trans) 2655 return -EINVAL; 2656 } 2657 2658 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 2659 * socket is a one to many style socket, and an association 2660 * was not found, then the id was invalid. 2661 */ 2662 asoc = sctp_id2assoc(sk, params->spp_assoc_id); 2663 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC && 2664 sctp_style(sk, UDP)) 2665 return -EINVAL; 2666 2667 /* Heartbeat demand can only be sent on a transport or 2668 * association, but not a socket. 2669 */ 2670 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2671 return -EINVAL; 2672 2673 /* Process parameters. */ 2674 error = sctp_apply_peer_addr_params(params, trans, asoc, sp, 2675 hb_change, pmtud_change, 2676 sackdelay_change); 2677 2678 if (error) 2679 return error; 2680 2681 /* If changes are for association, also apply parameters to each 2682 * transport. 2683 */ 2684 if (!trans && asoc) { 2685 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2686 transports) { 2687 sctp_apply_peer_addr_params(params, trans, asoc, sp, 2688 hb_change, pmtud_change, 2689 sackdelay_change); 2690 } 2691 } 2692 2693 return 0; 2694 } 2695 2696 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2697 { 2698 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2699 } 2700 2701 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2702 { 2703 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2704 } 2705 2706 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params, 2707 struct sctp_association *asoc) 2708 { 2709 struct sctp_transport *trans; 2710 2711 if (params->sack_delay) { 2712 asoc->sackdelay = msecs_to_jiffies(params->sack_delay); 2713 asoc->param_flags = 2714 sctp_spp_sackdelay_enable(asoc->param_flags); 2715 } 2716 if (params->sack_freq == 1) { 2717 asoc->param_flags = 2718 sctp_spp_sackdelay_disable(asoc->param_flags); 2719 } else if (params->sack_freq > 1) { 2720 asoc->sackfreq = params->sack_freq; 2721 asoc->param_flags = 2722 sctp_spp_sackdelay_enable(asoc->param_flags); 2723 } 2724 2725 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2726 transports) { 2727 if (params->sack_delay) { 2728 trans->sackdelay = msecs_to_jiffies(params->sack_delay); 2729 trans->param_flags = 2730 sctp_spp_sackdelay_enable(trans->param_flags); 2731 } 2732 if (params->sack_freq == 1) { 2733 trans->param_flags = 2734 sctp_spp_sackdelay_disable(trans->param_flags); 2735 } else if (params->sack_freq > 1) { 2736 trans->sackfreq = params->sack_freq; 2737 trans->param_flags = 2738 sctp_spp_sackdelay_enable(trans->param_flags); 2739 } 2740 } 2741 } 2742 2743 /* 2744 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2745 * 2746 * This option will effect the way delayed acks are performed. This 2747 * option allows you to get or set the delayed ack time, in 2748 * milliseconds. It also allows changing the delayed ack frequency. 2749 * Changing the frequency to 1 disables the delayed sack algorithm. If 2750 * the assoc_id is 0, then this sets or gets the endpoints default 2751 * values. If the assoc_id field is non-zero, then the set or get 2752 * effects the specified association for the one to many model (the 2753 * assoc_id field is ignored by the one to one model). Note that if 2754 * sack_delay or sack_freq are 0 when setting this option, then the 2755 * current values will remain unchanged. 2756 * 2757 * struct sctp_sack_info { 2758 * sctp_assoc_t sack_assoc_id; 2759 * uint32_t sack_delay; 2760 * uint32_t sack_freq; 2761 * }; 2762 * 2763 * sack_assoc_id - This parameter, indicates which association the user 2764 * is performing an action upon. Note that if this field's value is 2765 * zero then the endpoints default value is changed (effecting future 2766 * associations only). 2767 * 2768 * sack_delay - This parameter contains the number of milliseconds that 2769 * the user is requesting the delayed ACK timer be set to. Note that 2770 * this value is defined in the standard to be between 200 and 500 2771 * milliseconds. 2772 * 2773 * sack_freq - This parameter contains the number of packets that must 2774 * be received before a sack is sent without waiting for the delay 2775 * timer to expire. The default value for this is 2, setting this 2776 * value to 1 will disable the delayed sack algorithm. 2777 */ 2778 static int __sctp_setsockopt_delayed_ack(struct sock *sk, 2779 struct sctp_sack_info *params) 2780 { 2781 struct sctp_sock *sp = sctp_sk(sk); 2782 struct sctp_association *asoc; 2783 2784 /* Validate value parameter. */ 2785 if (params->sack_delay > 500) 2786 return -EINVAL; 2787 2788 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 2789 * socket is a one to many style socket, and an association 2790 * was not found, then the id was invalid. 2791 */ 2792 asoc = sctp_id2assoc(sk, params->sack_assoc_id); 2793 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC && 2794 sctp_style(sk, UDP)) 2795 return -EINVAL; 2796 2797 if (asoc) { 2798 sctp_apply_asoc_delayed_ack(params, asoc); 2799 2800 return 0; 2801 } 2802 2803 if (sctp_style(sk, TCP)) 2804 params->sack_assoc_id = SCTP_FUTURE_ASSOC; 2805 2806 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC || 2807 params->sack_assoc_id == SCTP_ALL_ASSOC) { 2808 if (params->sack_delay) { 2809 sp->sackdelay = params->sack_delay; 2810 sp->param_flags = 2811 sctp_spp_sackdelay_enable(sp->param_flags); 2812 } 2813 if (params->sack_freq == 1) { 2814 sp->param_flags = 2815 sctp_spp_sackdelay_disable(sp->param_flags); 2816 } else if (params->sack_freq > 1) { 2817 sp->sackfreq = params->sack_freq; 2818 sp->param_flags = 2819 sctp_spp_sackdelay_enable(sp->param_flags); 2820 } 2821 } 2822 2823 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC || 2824 params->sack_assoc_id == SCTP_ALL_ASSOC) 2825 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 2826 sctp_apply_asoc_delayed_ack(params, asoc); 2827 2828 return 0; 2829 } 2830 2831 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2832 struct sctp_sack_info *params, 2833 unsigned int optlen) 2834 { 2835 if (optlen == sizeof(struct sctp_assoc_value)) { 2836 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params; 2837 struct sctp_sack_info p; 2838 2839 pr_warn_ratelimited(DEPRECATED 2840 "%s (pid %d) " 2841 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2842 "Use struct sctp_sack_info instead\n", 2843 current->comm, task_pid_nr(current)); 2844 2845 p.sack_assoc_id = v->assoc_id; 2846 p.sack_delay = v->assoc_value; 2847 p.sack_freq = v->assoc_value ? 0 : 1; 2848 return __sctp_setsockopt_delayed_ack(sk, &p); 2849 } 2850 2851 if (optlen != sizeof(struct sctp_sack_info)) 2852 return -EINVAL; 2853 if (params->sack_delay == 0 && params->sack_freq == 0) 2854 return 0; 2855 return __sctp_setsockopt_delayed_ack(sk, params); 2856 } 2857 2858 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2859 * 2860 * Applications can specify protocol parameters for the default association 2861 * initialization. The option name argument to setsockopt() and getsockopt() 2862 * is SCTP_INITMSG. 2863 * 2864 * Setting initialization parameters is effective only on an unconnected 2865 * socket (for UDP-style sockets only future associations are effected 2866 * by the change). With TCP-style sockets, this option is inherited by 2867 * sockets derived from a listener socket. 2868 */ 2869 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit, 2870 unsigned int optlen) 2871 { 2872 struct sctp_sock *sp = sctp_sk(sk); 2873 2874 if (optlen != sizeof(struct sctp_initmsg)) 2875 return -EINVAL; 2876 2877 if (sinit->sinit_num_ostreams) 2878 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams; 2879 if (sinit->sinit_max_instreams) 2880 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams; 2881 if (sinit->sinit_max_attempts) 2882 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts; 2883 if (sinit->sinit_max_init_timeo) 2884 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo; 2885 2886 return 0; 2887 } 2888 2889 /* 2890 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2891 * 2892 * Applications that wish to use the sendto() system call may wish to 2893 * specify a default set of parameters that would normally be supplied 2894 * through the inclusion of ancillary data. This socket option allows 2895 * such an application to set the default sctp_sndrcvinfo structure. 2896 * The application that wishes to use this socket option simply passes 2897 * in to this call the sctp_sndrcvinfo structure defined in Section 2898 * 5.2.2) The input parameters accepted by this call include 2899 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2900 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2901 * to this call if the caller is using the UDP model. 2902 */ 2903 static int sctp_setsockopt_default_send_param(struct sock *sk, 2904 struct sctp_sndrcvinfo *info, 2905 unsigned int optlen) 2906 { 2907 struct sctp_sock *sp = sctp_sk(sk); 2908 struct sctp_association *asoc; 2909 2910 if (optlen != sizeof(*info)) 2911 return -EINVAL; 2912 if (info->sinfo_flags & 2913 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2914 SCTP_ABORT | SCTP_EOF)) 2915 return -EINVAL; 2916 2917 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id); 2918 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC && 2919 sctp_style(sk, UDP)) 2920 return -EINVAL; 2921 2922 if (asoc) { 2923 asoc->default_stream = info->sinfo_stream; 2924 asoc->default_flags = info->sinfo_flags; 2925 asoc->default_ppid = info->sinfo_ppid; 2926 asoc->default_context = info->sinfo_context; 2927 asoc->default_timetolive = info->sinfo_timetolive; 2928 2929 return 0; 2930 } 2931 2932 if (sctp_style(sk, TCP)) 2933 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC; 2934 2935 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC || 2936 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2937 sp->default_stream = info->sinfo_stream; 2938 sp->default_flags = info->sinfo_flags; 2939 sp->default_ppid = info->sinfo_ppid; 2940 sp->default_context = info->sinfo_context; 2941 sp->default_timetolive = info->sinfo_timetolive; 2942 } 2943 2944 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC || 2945 info->sinfo_assoc_id == SCTP_ALL_ASSOC) { 2946 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 2947 asoc->default_stream = info->sinfo_stream; 2948 asoc->default_flags = info->sinfo_flags; 2949 asoc->default_ppid = info->sinfo_ppid; 2950 asoc->default_context = info->sinfo_context; 2951 asoc->default_timetolive = info->sinfo_timetolive; 2952 } 2953 } 2954 2955 return 0; 2956 } 2957 2958 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2959 * (SCTP_DEFAULT_SNDINFO) 2960 */ 2961 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2962 struct sctp_sndinfo *info, 2963 unsigned int optlen) 2964 { 2965 struct sctp_sock *sp = sctp_sk(sk); 2966 struct sctp_association *asoc; 2967 2968 if (optlen != sizeof(*info)) 2969 return -EINVAL; 2970 if (info->snd_flags & 2971 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2972 SCTP_ABORT | SCTP_EOF)) 2973 return -EINVAL; 2974 2975 asoc = sctp_id2assoc(sk, info->snd_assoc_id); 2976 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC && 2977 sctp_style(sk, UDP)) 2978 return -EINVAL; 2979 2980 if (asoc) { 2981 asoc->default_stream = info->snd_sid; 2982 asoc->default_flags = info->snd_flags; 2983 asoc->default_ppid = info->snd_ppid; 2984 asoc->default_context = info->snd_context; 2985 2986 return 0; 2987 } 2988 2989 if (sctp_style(sk, TCP)) 2990 info->snd_assoc_id = SCTP_FUTURE_ASSOC; 2991 2992 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC || 2993 info->snd_assoc_id == SCTP_ALL_ASSOC) { 2994 sp->default_stream = info->snd_sid; 2995 sp->default_flags = info->snd_flags; 2996 sp->default_ppid = info->snd_ppid; 2997 sp->default_context = info->snd_context; 2998 } 2999 3000 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC || 3001 info->snd_assoc_id == SCTP_ALL_ASSOC) { 3002 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 3003 asoc->default_stream = info->snd_sid; 3004 asoc->default_flags = info->snd_flags; 3005 asoc->default_ppid = info->snd_ppid; 3006 asoc->default_context = info->snd_context; 3007 } 3008 } 3009 3010 return 0; 3011 } 3012 3013 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3014 * 3015 * Requests that the local SCTP stack use the enclosed peer address as 3016 * the association primary. The enclosed address must be one of the 3017 * association peer's addresses. 3018 */ 3019 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim, 3020 unsigned int optlen) 3021 { 3022 struct sctp_transport *trans; 3023 struct sctp_af *af; 3024 int err; 3025 3026 if (optlen != sizeof(struct sctp_prim)) 3027 return -EINVAL; 3028 3029 /* Allow security module to validate address but need address len. */ 3030 af = sctp_get_af_specific(prim->ssp_addr.ss_family); 3031 if (!af) 3032 return -EINVAL; 3033 3034 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR, 3035 (struct sockaddr *)&prim->ssp_addr, 3036 af->sockaddr_len); 3037 if (err) 3038 return err; 3039 3040 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id); 3041 if (!trans) 3042 return -EINVAL; 3043 3044 sctp_assoc_set_primary(trans->asoc, trans); 3045 3046 return 0; 3047 } 3048 3049 /* 3050 * 7.1.5 SCTP_NODELAY 3051 * 3052 * Turn on/off any Nagle-like algorithm. This means that packets are 3053 * generally sent as soon as possible and no unnecessary delays are 3054 * introduced, at the cost of more packets in the network. Expects an 3055 * integer boolean flag. 3056 */ 3057 static int sctp_setsockopt_nodelay(struct sock *sk, int *val, 3058 unsigned int optlen) 3059 { 3060 if (optlen < sizeof(int)) 3061 return -EINVAL; 3062 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1; 3063 return 0; 3064 } 3065 3066 /* 3067 * 3068 * 7.1.1 SCTP_RTOINFO 3069 * 3070 * The protocol parameters used to initialize and bound retransmission 3071 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3072 * and modify these parameters. 3073 * All parameters are time values, in milliseconds. A value of 0, when 3074 * modifying the parameters, indicates that the current value should not 3075 * be changed. 3076 * 3077 */ 3078 static int sctp_setsockopt_rtoinfo(struct sock *sk, 3079 struct sctp_rtoinfo *rtoinfo, 3080 unsigned int optlen) 3081 { 3082 struct sctp_association *asoc; 3083 unsigned long rto_min, rto_max; 3084 struct sctp_sock *sp = sctp_sk(sk); 3085 3086 if (optlen != sizeof (struct sctp_rtoinfo)) 3087 return -EINVAL; 3088 3089 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id); 3090 3091 /* Set the values to the specific association */ 3092 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC && 3093 sctp_style(sk, UDP)) 3094 return -EINVAL; 3095 3096 rto_max = rtoinfo->srto_max; 3097 rto_min = rtoinfo->srto_min; 3098 3099 if (rto_max) 3100 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 3101 else 3102 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 3103 3104 if (rto_min) 3105 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 3106 else 3107 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 3108 3109 if (rto_min > rto_max) 3110 return -EINVAL; 3111 3112 if (asoc) { 3113 if (rtoinfo->srto_initial != 0) 3114 asoc->rto_initial = 3115 msecs_to_jiffies(rtoinfo->srto_initial); 3116 asoc->rto_max = rto_max; 3117 asoc->rto_min = rto_min; 3118 } else { 3119 /* If there is no association or the association-id = 0 3120 * set the values to the endpoint. 3121 */ 3122 if (rtoinfo->srto_initial != 0) 3123 sp->rtoinfo.srto_initial = rtoinfo->srto_initial; 3124 sp->rtoinfo.srto_max = rto_max; 3125 sp->rtoinfo.srto_min = rto_min; 3126 } 3127 3128 return 0; 3129 } 3130 3131 /* 3132 * 3133 * 7.1.2 SCTP_ASSOCINFO 3134 * 3135 * This option is used to tune the maximum retransmission attempts 3136 * of the association. 3137 * Returns an error if the new association retransmission value is 3138 * greater than the sum of the retransmission value of the peer. 3139 * See [SCTP] for more information. 3140 * 3141 */ 3142 static int sctp_setsockopt_associnfo(struct sock *sk, 3143 struct sctp_assocparams *assocparams, 3144 unsigned int optlen) 3145 { 3146 3147 struct sctp_association *asoc; 3148 3149 if (optlen != sizeof(struct sctp_assocparams)) 3150 return -EINVAL; 3151 3152 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id); 3153 3154 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC && 3155 sctp_style(sk, UDP)) 3156 return -EINVAL; 3157 3158 /* Set the values to the specific association */ 3159 if (asoc) { 3160 if (assocparams->sasoc_asocmaxrxt != 0) { 3161 __u32 path_sum = 0; 3162 int paths = 0; 3163 struct sctp_transport *peer_addr; 3164 3165 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3166 transports) { 3167 path_sum += peer_addr->pathmaxrxt; 3168 paths++; 3169 } 3170 3171 /* Only validate asocmaxrxt if we have more than 3172 * one path/transport. We do this because path 3173 * retransmissions are only counted when we have more 3174 * then one path. 3175 */ 3176 if (paths > 1 && 3177 assocparams->sasoc_asocmaxrxt > path_sum) 3178 return -EINVAL; 3179 3180 asoc->max_retrans = assocparams->sasoc_asocmaxrxt; 3181 } 3182 3183 if (assocparams->sasoc_cookie_life != 0) 3184 asoc->cookie_life = 3185 ms_to_ktime(assocparams->sasoc_cookie_life); 3186 } else { 3187 /* Set the values to the endpoint */ 3188 struct sctp_sock *sp = sctp_sk(sk); 3189 3190 if (assocparams->sasoc_asocmaxrxt != 0) 3191 sp->assocparams.sasoc_asocmaxrxt = 3192 assocparams->sasoc_asocmaxrxt; 3193 if (assocparams->sasoc_cookie_life != 0) 3194 sp->assocparams.sasoc_cookie_life = 3195 assocparams->sasoc_cookie_life; 3196 } 3197 return 0; 3198 } 3199 3200 /* 3201 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3202 * 3203 * This socket option is a boolean flag which turns on or off mapped V4 3204 * addresses. If this option is turned on and the socket is type 3205 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3206 * If this option is turned off, then no mapping will be done of V4 3207 * addresses and a user will receive both PF_INET6 and PF_INET type 3208 * addresses on the socket. 3209 */ 3210 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val, 3211 unsigned int optlen) 3212 { 3213 struct sctp_sock *sp = sctp_sk(sk); 3214 3215 if (optlen < sizeof(int)) 3216 return -EINVAL; 3217 if (*val) 3218 sp->v4mapped = 1; 3219 else 3220 sp->v4mapped = 0; 3221 3222 return 0; 3223 } 3224 3225 /* 3226 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3227 * This option will get or set the maximum size to put in any outgoing 3228 * SCTP DATA chunk. If a message is larger than this size it will be 3229 * fragmented by SCTP into the specified size. Note that the underlying 3230 * SCTP implementation may fragment into smaller sized chunks when the 3231 * PMTU of the underlying association is smaller than the value set by 3232 * the user. The default value for this option is '' which indicates 3233 * the user is NOT limiting fragmentation and only the PMTU will effect 3234 * SCTP's choice of DATA chunk size. Note also that values set larger 3235 * than the maximum size of an IP datagram will effectively let SCTP 3236 * control fragmentation (i.e. the same as setting this option to 0). 3237 * 3238 * The following structure is used to access and modify this parameter: 3239 * 3240 * struct sctp_assoc_value { 3241 * sctp_assoc_t assoc_id; 3242 * uint32_t assoc_value; 3243 * }; 3244 * 3245 * assoc_id: This parameter is ignored for one-to-one style sockets. 3246 * For one-to-many style sockets this parameter indicates which 3247 * association the user is performing an action upon. Note that if 3248 * this field's value is zero then the endpoints default value is 3249 * changed (effecting future associations only). 3250 * assoc_value: This parameter specifies the maximum size in bytes. 3251 */ 3252 static int sctp_setsockopt_maxseg(struct sock *sk, 3253 struct sctp_assoc_value *params, 3254 unsigned int optlen) 3255 { 3256 struct sctp_sock *sp = sctp_sk(sk); 3257 struct sctp_association *asoc; 3258 sctp_assoc_t assoc_id; 3259 int val; 3260 3261 if (optlen == sizeof(int)) { 3262 pr_warn_ratelimited(DEPRECATED 3263 "%s (pid %d) " 3264 "Use of int in maxseg socket option.\n" 3265 "Use struct sctp_assoc_value instead\n", 3266 current->comm, task_pid_nr(current)); 3267 assoc_id = SCTP_FUTURE_ASSOC; 3268 val = *(int *)params; 3269 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3270 assoc_id = params->assoc_id; 3271 val = params->assoc_value; 3272 } else { 3273 return -EINVAL; 3274 } 3275 3276 asoc = sctp_id2assoc(sk, assoc_id); 3277 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC && 3278 sctp_style(sk, UDP)) 3279 return -EINVAL; 3280 3281 if (val) { 3282 int min_len, max_len; 3283 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) : 3284 sizeof(struct sctp_data_chunk); 3285 3286 min_len = sctp_min_frag_point(sp, datasize); 3287 max_len = SCTP_MAX_CHUNK_LEN - datasize; 3288 3289 if (val < min_len || val > max_len) 3290 return -EINVAL; 3291 } 3292 3293 if (asoc) { 3294 asoc->user_frag = val; 3295 sctp_assoc_update_frag_point(asoc); 3296 } else { 3297 sp->user_frag = val; 3298 } 3299 3300 return 0; 3301 } 3302 3303 3304 /* 3305 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3306 * 3307 * Requests that the peer mark the enclosed address as the association 3308 * primary. The enclosed address must be one of the association's 3309 * locally bound addresses. The following structure is used to make a 3310 * set primary request: 3311 */ 3312 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, 3313 struct sctp_setpeerprim *prim, 3314 unsigned int optlen) 3315 { 3316 struct sctp_sock *sp; 3317 struct sctp_association *asoc = NULL; 3318 struct sctp_chunk *chunk; 3319 struct sctp_af *af; 3320 int err; 3321 3322 sp = sctp_sk(sk); 3323 3324 if (!sp->ep->asconf_enable) 3325 return -EPERM; 3326 3327 if (optlen != sizeof(struct sctp_setpeerprim)) 3328 return -EINVAL; 3329 3330 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id); 3331 if (!asoc) 3332 return -EINVAL; 3333 3334 if (!asoc->peer.asconf_capable) 3335 return -EPERM; 3336 3337 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3338 return -EPERM; 3339 3340 if (!sctp_state(asoc, ESTABLISHED)) 3341 return -ENOTCONN; 3342 3343 af = sctp_get_af_specific(prim->sspp_addr.ss_family); 3344 if (!af) 3345 return -EINVAL; 3346 3347 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL)) 3348 return -EADDRNOTAVAIL; 3349 3350 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr)) 3351 return -EADDRNOTAVAIL; 3352 3353 /* Allow security module to validate address. */ 3354 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR, 3355 (struct sockaddr *)&prim->sspp_addr, 3356 af->sockaddr_len); 3357 if (err) 3358 return err; 3359 3360 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3361 chunk = sctp_make_asconf_set_prim(asoc, 3362 (union sctp_addr *)&prim->sspp_addr); 3363 if (!chunk) 3364 return -ENOMEM; 3365 3366 err = sctp_send_asconf(asoc, chunk); 3367 3368 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3369 3370 return err; 3371 } 3372 3373 static int sctp_setsockopt_adaptation_layer(struct sock *sk, 3374 struct sctp_setadaptation *adapt, 3375 unsigned int optlen) 3376 { 3377 if (optlen != sizeof(struct sctp_setadaptation)) 3378 return -EINVAL; 3379 3380 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind; 3381 3382 return 0; 3383 } 3384 3385 /* 3386 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3387 * 3388 * The context field in the sctp_sndrcvinfo structure is normally only 3389 * used when a failed message is retrieved holding the value that was 3390 * sent down on the actual send call. This option allows the setting of 3391 * a default context on an association basis that will be received on 3392 * reading messages from the peer. This is especially helpful in the 3393 * one-2-many model for an application to keep some reference to an 3394 * internal state machine that is processing messages on the 3395 * association. Note that the setting of this value only effects 3396 * received messages from the peer and does not effect the value that is 3397 * saved with outbound messages. 3398 */ 3399 static int sctp_setsockopt_context(struct sock *sk, 3400 struct sctp_assoc_value *params, 3401 unsigned int optlen) 3402 { 3403 struct sctp_sock *sp = sctp_sk(sk); 3404 struct sctp_association *asoc; 3405 3406 if (optlen != sizeof(struct sctp_assoc_value)) 3407 return -EINVAL; 3408 3409 asoc = sctp_id2assoc(sk, params->assoc_id); 3410 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 3411 sctp_style(sk, UDP)) 3412 return -EINVAL; 3413 3414 if (asoc) { 3415 asoc->default_rcv_context = params->assoc_value; 3416 3417 return 0; 3418 } 3419 3420 if (sctp_style(sk, TCP)) 3421 params->assoc_id = SCTP_FUTURE_ASSOC; 3422 3423 if (params->assoc_id == SCTP_FUTURE_ASSOC || 3424 params->assoc_id == SCTP_ALL_ASSOC) 3425 sp->default_rcv_context = params->assoc_value; 3426 3427 if (params->assoc_id == SCTP_CURRENT_ASSOC || 3428 params->assoc_id == SCTP_ALL_ASSOC) 3429 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3430 asoc->default_rcv_context = params->assoc_value; 3431 3432 return 0; 3433 } 3434 3435 /* 3436 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3437 * 3438 * This options will at a minimum specify if the implementation is doing 3439 * fragmented interleave. Fragmented interleave, for a one to many 3440 * socket, is when subsequent calls to receive a message may return 3441 * parts of messages from different associations. Some implementations 3442 * may allow you to turn this value on or off. If so, when turned off, 3443 * no fragment interleave will occur (which will cause a head of line 3444 * blocking amongst multiple associations sharing the same one to many 3445 * socket). When this option is turned on, then each receive call may 3446 * come from a different association (thus the user must receive data 3447 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3448 * association each receive belongs to. 3449 * 3450 * This option takes a boolean value. A non-zero value indicates that 3451 * fragmented interleave is on. A value of zero indicates that 3452 * fragmented interleave is off. 3453 * 3454 * Note that it is important that an implementation that allows this 3455 * option to be turned on, have it off by default. Otherwise an unaware 3456 * application using the one to many model may become confused and act 3457 * incorrectly. 3458 */ 3459 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val, 3460 unsigned int optlen) 3461 { 3462 if (optlen != sizeof(int)) 3463 return -EINVAL; 3464 3465 sctp_sk(sk)->frag_interleave = !!*val; 3466 3467 if (!sctp_sk(sk)->frag_interleave) 3468 sctp_sk(sk)->ep->intl_enable = 0; 3469 3470 return 0; 3471 } 3472 3473 /* 3474 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3475 * (SCTP_PARTIAL_DELIVERY_POINT) 3476 * 3477 * This option will set or get the SCTP partial delivery point. This 3478 * point is the size of a message where the partial delivery API will be 3479 * invoked to help free up rwnd space for the peer. Setting this to a 3480 * lower value will cause partial deliveries to happen more often. The 3481 * calls argument is an integer that sets or gets the partial delivery 3482 * point. Note also that the call will fail if the user attempts to set 3483 * this value larger than the socket receive buffer size. 3484 * 3485 * Note that any single message having a length smaller than or equal to 3486 * the SCTP partial delivery point will be delivered in one single read 3487 * call as long as the user provided buffer is large enough to hold the 3488 * message. 3489 */ 3490 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val, 3491 unsigned int optlen) 3492 { 3493 if (optlen != sizeof(u32)) 3494 return -EINVAL; 3495 3496 /* Note: We double the receive buffer from what the user sets 3497 * it to be, also initial rwnd is based on rcvbuf/2. 3498 */ 3499 if (*val > (sk->sk_rcvbuf >> 1)) 3500 return -EINVAL; 3501 3502 sctp_sk(sk)->pd_point = *val; 3503 3504 return 0; /* is this the right error code? */ 3505 } 3506 3507 /* 3508 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3509 * 3510 * This option will allow a user to change the maximum burst of packets 3511 * that can be emitted by this association. Note that the default value 3512 * is 4, and some implementations may restrict this setting so that it 3513 * can only be lowered. 3514 * 3515 * NOTE: This text doesn't seem right. Do this on a socket basis with 3516 * future associations inheriting the socket value. 3517 */ 3518 static int sctp_setsockopt_maxburst(struct sock *sk, 3519 struct sctp_assoc_value *params, 3520 unsigned int optlen) 3521 { 3522 struct sctp_sock *sp = sctp_sk(sk); 3523 struct sctp_association *asoc; 3524 sctp_assoc_t assoc_id; 3525 u32 assoc_value; 3526 3527 if (optlen == sizeof(int)) { 3528 pr_warn_ratelimited(DEPRECATED 3529 "%s (pid %d) " 3530 "Use of int in max_burst socket option deprecated.\n" 3531 "Use struct sctp_assoc_value instead\n", 3532 current->comm, task_pid_nr(current)); 3533 assoc_id = SCTP_FUTURE_ASSOC; 3534 assoc_value = *((int *)params); 3535 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3536 assoc_id = params->assoc_id; 3537 assoc_value = params->assoc_value; 3538 } else 3539 return -EINVAL; 3540 3541 asoc = sctp_id2assoc(sk, assoc_id); 3542 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP)) 3543 return -EINVAL; 3544 3545 if (asoc) { 3546 asoc->max_burst = assoc_value; 3547 3548 return 0; 3549 } 3550 3551 if (sctp_style(sk, TCP)) 3552 assoc_id = SCTP_FUTURE_ASSOC; 3553 3554 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3555 sp->max_burst = assoc_value; 3556 3557 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC) 3558 list_for_each_entry(asoc, &sp->ep->asocs, asocs) 3559 asoc->max_burst = assoc_value; 3560 3561 return 0; 3562 } 3563 3564 /* 3565 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3566 * 3567 * This set option adds a chunk type that the user is requesting to be 3568 * received only in an authenticated way. Changes to the list of chunks 3569 * will only effect future associations on the socket. 3570 */ 3571 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3572 struct sctp_authchunk *val, 3573 unsigned int optlen) 3574 { 3575 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3576 3577 if (!ep->auth_enable) 3578 return -EACCES; 3579 3580 if (optlen != sizeof(struct sctp_authchunk)) 3581 return -EINVAL; 3582 3583 switch (val->sauth_chunk) { 3584 case SCTP_CID_INIT: 3585 case SCTP_CID_INIT_ACK: 3586 case SCTP_CID_SHUTDOWN_COMPLETE: 3587 case SCTP_CID_AUTH: 3588 return -EINVAL; 3589 } 3590 3591 /* add this chunk id to the endpoint */ 3592 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk); 3593 } 3594 3595 /* 3596 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3597 * 3598 * This option gets or sets the list of HMAC algorithms that the local 3599 * endpoint requires the peer to use. 3600 */ 3601 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3602 struct sctp_hmacalgo *hmacs, 3603 unsigned int optlen) 3604 { 3605 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3606 u32 idents; 3607 3608 if (!ep->auth_enable) 3609 return -EACCES; 3610 3611 if (optlen < sizeof(struct sctp_hmacalgo)) 3612 return -EINVAL; 3613 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3614 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3615 3616 idents = hmacs->shmac_num_idents; 3617 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3618 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) 3619 return -EINVAL; 3620 3621 return sctp_auth_ep_set_hmacs(ep, hmacs); 3622 } 3623 3624 /* 3625 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3626 * 3627 * This option will set a shared secret key which is used to build an 3628 * association shared key. 3629 */ 3630 static int sctp_setsockopt_auth_key(struct sock *sk, 3631 struct sctp_authkey *authkey, 3632 unsigned int optlen) 3633 { 3634 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3635 struct sctp_association *asoc; 3636 int ret = -EINVAL; 3637 3638 if (optlen <= sizeof(struct sctp_authkey)) 3639 return -EINVAL; 3640 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3641 * this. 3642 */ 3643 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey)); 3644 3645 if (authkey->sca_keylength > optlen - sizeof(*authkey)) 3646 goto out; 3647 3648 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3649 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC && 3650 sctp_style(sk, UDP)) 3651 goto out; 3652 3653 if (asoc) { 3654 ret = sctp_auth_set_key(ep, asoc, authkey); 3655 goto out; 3656 } 3657 3658 if (sctp_style(sk, TCP)) 3659 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC; 3660 3661 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC || 3662 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3663 ret = sctp_auth_set_key(ep, asoc, authkey); 3664 if (ret) 3665 goto out; 3666 } 3667 3668 ret = 0; 3669 3670 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC || 3671 authkey->sca_assoc_id == SCTP_ALL_ASSOC) { 3672 list_for_each_entry(asoc, &ep->asocs, asocs) { 3673 int res = sctp_auth_set_key(ep, asoc, authkey); 3674 3675 if (res && !ret) 3676 ret = res; 3677 } 3678 } 3679 3680 out: 3681 memzero_explicit(authkey, optlen); 3682 return ret; 3683 } 3684 3685 /* 3686 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3687 * 3688 * This option will get or set the active shared key to be used to build 3689 * the association shared key. 3690 */ 3691 static int sctp_setsockopt_active_key(struct sock *sk, 3692 struct sctp_authkeyid *val, 3693 unsigned int optlen) 3694 { 3695 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3696 struct sctp_association *asoc; 3697 int ret = 0; 3698 3699 if (optlen != sizeof(struct sctp_authkeyid)) 3700 return -EINVAL; 3701 3702 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3703 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3704 sctp_style(sk, UDP)) 3705 return -EINVAL; 3706 3707 if (asoc) 3708 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3709 3710 if (sctp_style(sk, TCP)) 3711 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3712 3713 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3714 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3715 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber); 3716 if (ret) 3717 return ret; 3718 } 3719 3720 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3721 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3722 list_for_each_entry(asoc, &ep->asocs, asocs) { 3723 int res = sctp_auth_set_active_key(ep, asoc, 3724 val->scact_keynumber); 3725 3726 if (res && !ret) 3727 ret = res; 3728 } 3729 } 3730 3731 return ret; 3732 } 3733 3734 /* 3735 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3736 * 3737 * This set option will delete a shared secret key from use. 3738 */ 3739 static int sctp_setsockopt_del_key(struct sock *sk, 3740 struct sctp_authkeyid *val, 3741 unsigned int optlen) 3742 { 3743 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3744 struct sctp_association *asoc; 3745 int ret = 0; 3746 3747 if (optlen != sizeof(struct sctp_authkeyid)) 3748 return -EINVAL; 3749 3750 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3751 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3752 sctp_style(sk, UDP)) 3753 return -EINVAL; 3754 3755 if (asoc) 3756 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3757 3758 if (sctp_style(sk, TCP)) 3759 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3760 3761 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3762 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3763 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber); 3764 if (ret) 3765 return ret; 3766 } 3767 3768 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3769 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3770 list_for_each_entry(asoc, &ep->asocs, asocs) { 3771 int res = sctp_auth_del_key_id(ep, asoc, 3772 val->scact_keynumber); 3773 3774 if (res && !ret) 3775 ret = res; 3776 } 3777 } 3778 3779 return ret; 3780 } 3781 3782 /* 3783 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) 3784 * 3785 * This set option will deactivate a shared secret key. 3786 */ 3787 static int sctp_setsockopt_deactivate_key(struct sock *sk, 3788 struct sctp_authkeyid *val, 3789 unsigned int optlen) 3790 { 3791 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3792 struct sctp_association *asoc; 3793 int ret = 0; 3794 3795 if (optlen != sizeof(struct sctp_authkeyid)) 3796 return -EINVAL; 3797 3798 asoc = sctp_id2assoc(sk, val->scact_assoc_id); 3799 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC && 3800 sctp_style(sk, UDP)) 3801 return -EINVAL; 3802 3803 if (asoc) 3804 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3805 3806 if (sctp_style(sk, TCP)) 3807 val->scact_assoc_id = SCTP_FUTURE_ASSOC; 3808 3809 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC || 3810 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3811 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber); 3812 if (ret) 3813 return ret; 3814 } 3815 3816 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC || 3817 val->scact_assoc_id == SCTP_ALL_ASSOC) { 3818 list_for_each_entry(asoc, &ep->asocs, asocs) { 3819 int res = sctp_auth_deact_key_id(ep, asoc, 3820 val->scact_keynumber); 3821 3822 if (res && !ret) 3823 ret = res; 3824 } 3825 } 3826 3827 return ret; 3828 } 3829 3830 /* 3831 * 8.1.23 SCTP_AUTO_ASCONF 3832 * 3833 * This option will enable or disable the use of the automatic generation of 3834 * ASCONF chunks to add and delete addresses to an existing association. Note 3835 * that this option has two caveats namely: a) it only affects sockets that 3836 * are bound to all addresses available to the SCTP stack, and b) the system 3837 * administrator may have an overriding control that turns the ASCONF feature 3838 * off no matter what setting the socket option may have. 3839 * This option expects an integer boolean flag, where a non-zero value turns on 3840 * the option, and a zero value turns off the option. 3841 * Note. In this implementation, socket operation overrides default parameter 3842 * being set by sysctl as well as FreeBSD implementation 3843 */ 3844 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val, 3845 unsigned int optlen) 3846 { 3847 struct sctp_sock *sp = sctp_sk(sk); 3848 3849 if (optlen < sizeof(int)) 3850 return -EINVAL; 3851 if (!sctp_is_ep_boundall(sk) && *val) 3852 return -EINVAL; 3853 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf)) 3854 return 0; 3855 3856 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3857 if (*val == 0 && sp->do_auto_asconf) { 3858 list_del(&sp->auto_asconf_list); 3859 sp->do_auto_asconf = 0; 3860 } else if (*val && !sp->do_auto_asconf) { 3861 list_add_tail(&sp->auto_asconf_list, 3862 &sock_net(sk)->sctp.auto_asconf_splist); 3863 sp->do_auto_asconf = 1; 3864 } 3865 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3866 return 0; 3867 } 3868 3869 /* 3870 * SCTP_PEER_ADDR_THLDS 3871 * 3872 * This option allows us to alter the partially failed threshold for one or all 3873 * transports in an association. See Section 6.1 of: 3874 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3875 */ 3876 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3877 struct sctp_paddrthlds_v2 *val, 3878 unsigned int optlen, bool v2) 3879 { 3880 struct sctp_transport *trans; 3881 struct sctp_association *asoc; 3882 int len; 3883 3884 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds); 3885 if (optlen < len) 3886 return -EINVAL; 3887 3888 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld) 3889 return -EINVAL; 3890 3891 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) { 3892 trans = sctp_addr_id2transport(sk, &val->spt_address, 3893 val->spt_assoc_id); 3894 if (!trans) 3895 return -ENOENT; 3896 3897 if (val->spt_pathmaxrxt) 3898 trans->pathmaxrxt = val->spt_pathmaxrxt; 3899 if (v2) 3900 trans->ps_retrans = val->spt_pathcpthld; 3901 trans->pf_retrans = val->spt_pathpfthld; 3902 3903 return 0; 3904 } 3905 3906 asoc = sctp_id2assoc(sk, val->spt_assoc_id); 3907 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC && 3908 sctp_style(sk, UDP)) 3909 return -EINVAL; 3910 3911 if (asoc) { 3912 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3913 transports) { 3914 if (val->spt_pathmaxrxt) 3915 trans->pathmaxrxt = val->spt_pathmaxrxt; 3916 if (v2) 3917 trans->ps_retrans = val->spt_pathcpthld; 3918 trans->pf_retrans = val->spt_pathpfthld; 3919 } 3920 3921 if (val->spt_pathmaxrxt) 3922 asoc->pathmaxrxt = val->spt_pathmaxrxt; 3923 if (v2) 3924 asoc->ps_retrans = val->spt_pathcpthld; 3925 asoc->pf_retrans = val->spt_pathpfthld; 3926 } else { 3927 struct sctp_sock *sp = sctp_sk(sk); 3928 3929 if (val->spt_pathmaxrxt) 3930 sp->pathmaxrxt = val->spt_pathmaxrxt; 3931 if (v2) 3932 sp->ps_retrans = val->spt_pathcpthld; 3933 sp->pf_retrans = val->spt_pathpfthld; 3934 } 3935 3936 return 0; 3937 } 3938 3939 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val, 3940 unsigned int optlen) 3941 { 3942 if (optlen < sizeof(int)) 3943 return -EINVAL; 3944 3945 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1; 3946 3947 return 0; 3948 } 3949 3950 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val, 3951 unsigned int optlen) 3952 { 3953 if (optlen < sizeof(int)) 3954 return -EINVAL; 3955 3956 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1; 3957 3958 return 0; 3959 } 3960 3961 static int sctp_setsockopt_pr_supported(struct sock *sk, 3962 struct sctp_assoc_value *params, 3963 unsigned int optlen) 3964 { 3965 struct sctp_association *asoc; 3966 3967 if (optlen != sizeof(*params)) 3968 return -EINVAL; 3969 3970 asoc = sctp_id2assoc(sk, params->assoc_id); 3971 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 3972 sctp_style(sk, UDP)) 3973 return -EINVAL; 3974 3975 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value; 3976 3977 return 0; 3978 } 3979 3980 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3981 struct sctp_default_prinfo *info, 3982 unsigned int optlen) 3983 { 3984 struct sctp_sock *sp = sctp_sk(sk); 3985 struct sctp_association *asoc; 3986 int retval = -EINVAL; 3987 3988 if (optlen != sizeof(*info)) 3989 goto out; 3990 3991 if (info->pr_policy & ~SCTP_PR_SCTP_MASK) 3992 goto out; 3993 3994 if (info->pr_policy == SCTP_PR_SCTP_NONE) 3995 info->pr_value = 0; 3996 3997 asoc = sctp_id2assoc(sk, info->pr_assoc_id); 3998 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC && 3999 sctp_style(sk, UDP)) 4000 goto out; 4001 4002 retval = 0; 4003 4004 if (asoc) { 4005 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy); 4006 asoc->default_timetolive = info->pr_value; 4007 goto out; 4008 } 4009 4010 if (sctp_style(sk, TCP)) 4011 info->pr_assoc_id = SCTP_FUTURE_ASSOC; 4012 4013 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC || 4014 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4015 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy); 4016 sp->default_timetolive = info->pr_value; 4017 } 4018 4019 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC || 4020 info->pr_assoc_id == SCTP_ALL_ASSOC) { 4021 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4022 SCTP_PR_SET_POLICY(asoc->default_flags, 4023 info->pr_policy); 4024 asoc->default_timetolive = info->pr_value; 4025 } 4026 } 4027 4028 out: 4029 return retval; 4030 } 4031 4032 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 4033 struct sctp_assoc_value *params, 4034 unsigned int optlen) 4035 { 4036 struct sctp_association *asoc; 4037 int retval = -EINVAL; 4038 4039 if (optlen != sizeof(*params)) 4040 goto out; 4041 4042 asoc = sctp_id2assoc(sk, params->assoc_id); 4043 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4044 sctp_style(sk, UDP)) 4045 goto out; 4046 4047 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value; 4048 4049 retval = 0; 4050 4051 out: 4052 return retval; 4053 } 4054 4055 static int sctp_setsockopt_enable_strreset(struct sock *sk, 4056 struct sctp_assoc_value *params, 4057 unsigned int optlen) 4058 { 4059 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 4060 struct sctp_association *asoc; 4061 int retval = -EINVAL; 4062 4063 if (optlen != sizeof(*params)) 4064 goto out; 4065 4066 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 4067 goto out; 4068 4069 asoc = sctp_id2assoc(sk, params->assoc_id); 4070 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4071 sctp_style(sk, UDP)) 4072 goto out; 4073 4074 retval = 0; 4075 4076 if (asoc) { 4077 asoc->strreset_enable = params->assoc_value; 4078 goto out; 4079 } 4080 4081 if (sctp_style(sk, TCP)) 4082 params->assoc_id = SCTP_FUTURE_ASSOC; 4083 4084 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4085 params->assoc_id == SCTP_ALL_ASSOC) 4086 ep->strreset_enable = params->assoc_value; 4087 4088 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4089 params->assoc_id == SCTP_ALL_ASSOC) 4090 list_for_each_entry(asoc, &ep->asocs, asocs) 4091 asoc->strreset_enable = params->assoc_value; 4092 4093 out: 4094 return retval; 4095 } 4096 4097 static int sctp_setsockopt_reset_streams(struct sock *sk, 4098 struct sctp_reset_streams *params, 4099 unsigned int optlen) 4100 { 4101 struct sctp_association *asoc; 4102 4103 if (optlen < sizeof(*params)) 4104 return -EINVAL; 4105 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 4106 optlen = min_t(unsigned int, optlen, USHRT_MAX + 4107 sizeof(__u16) * sizeof(*params)); 4108 4109 if (params->srs_number_streams * sizeof(__u16) > 4110 optlen - sizeof(*params)) 4111 return -EINVAL; 4112 4113 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 4114 if (!asoc) 4115 return -EINVAL; 4116 4117 return sctp_send_reset_streams(asoc, params); 4118 } 4119 4120 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd, 4121 unsigned int optlen) 4122 { 4123 struct sctp_association *asoc; 4124 4125 if (optlen != sizeof(*associd)) 4126 return -EINVAL; 4127 4128 asoc = sctp_id2assoc(sk, *associd); 4129 if (!asoc) 4130 return -EINVAL; 4131 4132 return sctp_send_reset_assoc(asoc); 4133 } 4134 4135 static int sctp_setsockopt_add_streams(struct sock *sk, 4136 struct sctp_add_streams *params, 4137 unsigned int optlen) 4138 { 4139 struct sctp_association *asoc; 4140 4141 if (optlen != sizeof(*params)) 4142 return -EINVAL; 4143 4144 asoc = sctp_id2assoc(sk, params->sas_assoc_id); 4145 if (!asoc) 4146 return -EINVAL; 4147 4148 return sctp_send_add_streams(asoc, params); 4149 } 4150 4151 static int sctp_setsockopt_scheduler(struct sock *sk, 4152 struct sctp_assoc_value *params, 4153 unsigned int optlen) 4154 { 4155 struct sctp_sock *sp = sctp_sk(sk); 4156 struct sctp_association *asoc; 4157 int retval = 0; 4158 4159 if (optlen < sizeof(*params)) 4160 return -EINVAL; 4161 4162 if (params->assoc_value > SCTP_SS_MAX) 4163 return -EINVAL; 4164 4165 asoc = sctp_id2assoc(sk, params->assoc_id); 4166 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC && 4167 sctp_style(sk, UDP)) 4168 return -EINVAL; 4169 4170 if (asoc) 4171 return sctp_sched_set_sched(asoc, params->assoc_value); 4172 4173 if (sctp_style(sk, TCP)) 4174 params->assoc_id = SCTP_FUTURE_ASSOC; 4175 4176 if (params->assoc_id == SCTP_FUTURE_ASSOC || 4177 params->assoc_id == SCTP_ALL_ASSOC) 4178 sp->default_ss = params->assoc_value; 4179 4180 if (params->assoc_id == SCTP_CURRENT_ASSOC || 4181 params->assoc_id == SCTP_ALL_ASSOC) { 4182 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4183 int ret = sctp_sched_set_sched(asoc, 4184 params->assoc_value); 4185 4186 if (ret && !retval) 4187 retval = ret; 4188 } 4189 } 4190 4191 return retval; 4192 } 4193 4194 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4195 struct sctp_stream_value *params, 4196 unsigned int optlen) 4197 { 4198 struct sctp_association *asoc; 4199 int retval = -EINVAL; 4200 4201 if (optlen < sizeof(*params)) 4202 goto out; 4203 4204 asoc = sctp_id2assoc(sk, params->assoc_id); 4205 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC && 4206 sctp_style(sk, UDP)) 4207 goto out; 4208 4209 if (asoc) { 4210 retval = sctp_sched_set_value(asoc, params->stream_id, 4211 params->stream_value, GFP_KERNEL); 4212 goto out; 4213 } 4214 4215 retval = 0; 4216 4217 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) { 4218 int ret = sctp_sched_set_value(asoc, params->stream_id, 4219 params->stream_value, 4220 GFP_KERNEL); 4221 if (ret && !retval) /* try to return the 1st error. */ 4222 retval = ret; 4223 } 4224 4225 out: 4226 return retval; 4227 } 4228 4229 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4230 struct sctp_assoc_value *p, 4231 unsigned int optlen) 4232 { 4233 struct sctp_sock *sp = sctp_sk(sk); 4234 struct sctp_association *asoc; 4235 4236 if (optlen < sizeof(*p)) 4237 return -EINVAL; 4238 4239 asoc = sctp_id2assoc(sk, p->assoc_id); 4240 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP)) 4241 return -EINVAL; 4242 4243 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) { 4244 return -EPERM; 4245 } 4246 4247 sp->ep->intl_enable = !!p->assoc_value; 4248 return 0; 4249 } 4250 4251 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val, 4252 unsigned int optlen) 4253 { 4254 if (!sctp_style(sk, TCP)) 4255 return -EOPNOTSUPP; 4256 4257 if (sctp_sk(sk)->ep->base.bind_addr.port) 4258 return -EFAULT; 4259 4260 if (optlen < sizeof(int)) 4261 return -EINVAL; 4262 4263 sctp_sk(sk)->reuse = !!*val; 4264 4265 return 0; 4266 } 4267 4268 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param, 4269 struct sctp_association *asoc) 4270 { 4271 struct sctp_ulpevent *event; 4272 4273 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on); 4274 4275 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) { 4276 if (sctp_outq_is_empty(&asoc->outqueue)) { 4277 event = sctp_ulpevent_make_sender_dry_event(asoc, 4278 GFP_USER | __GFP_NOWARN); 4279 if (!event) 4280 return -ENOMEM; 4281 4282 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 4283 } 4284 } 4285 4286 return 0; 4287 } 4288 4289 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param, 4290 unsigned int optlen) 4291 { 4292 struct sctp_sock *sp = sctp_sk(sk); 4293 struct sctp_association *asoc; 4294 int retval = 0; 4295 4296 if (optlen < sizeof(*param)) 4297 return -EINVAL; 4298 4299 if (param->se_type < SCTP_SN_TYPE_BASE || 4300 param->se_type > SCTP_SN_TYPE_MAX) 4301 return -EINVAL; 4302 4303 asoc = sctp_id2assoc(sk, param->se_assoc_id); 4304 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC && 4305 sctp_style(sk, UDP)) 4306 return -EINVAL; 4307 4308 if (asoc) 4309 return sctp_assoc_ulpevent_type_set(param, asoc); 4310 4311 if (sctp_style(sk, TCP)) 4312 param->se_assoc_id = SCTP_FUTURE_ASSOC; 4313 4314 if (param->se_assoc_id == SCTP_FUTURE_ASSOC || 4315 param->se_assoc_id == SCTP_ALL_ASSOC) 4316 sctp_ulpevent_type_set(&sp->subscribe, 4317 param->se_type, param->se_on); 4318 4319 if (param->se_assoc_id == SCTP_CURRENT_ASSOC || 4320 param->se_assoc_id == SCTP_ALL_ASSOC) { 4321 list_for_each_entry(asoc, &sp->ep->asocs, asocs) { 4322 int ret = sctp_assoc_ulpevent_type_set(param, asoc); 4323 4324 if (ret && !retval) 4325 retval = ret; 4326 } 4327 } 4328 4329 return retval; 4330 } 4331 4332 static int sctp_setsockopt_asconf_supported(struct sock *sk, 4333 struct sctp_assoc_value *params, 4334 unsigned int optlen) 4335 { 4336 struct sctp_association *asoc; 4337 struct sctp_endpoint *ep; 4338 int retval = -EINVAL; 4339 4340 if (optlen != sizeof(*params)) 4341 goto out; 4342 4343 asoc = sctp_id2assoc(sk, params->assoc_id); 4344 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4345 sctp_style(sk, UDP)) 4346 goto out; 4347 4348 ep = sctp_sk(sk)->ep; 4349 ep->asconf_enable = !!params->assoc_value; 4350 4351 if (ep->asconf_enable && ep->auth_enable) { 4352 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4353 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4354 } 4355 4356 retval = 0; 4357 4358 out: 4359 return retval; 4360 } 4361 4362 static int sctp_setsockopt_auth_supported(struct sock *sk, 4363 struct sctp_assoc_value *params, 4364 unsigned int optlen) 4365 { 4366 struct sctp_association *asoc; 4367 struct sctp_endpoint *ep; 4368 int retval = -EINVAL; 4369 4370 if (optlen != sizeof(*params)) 4371 goto out; 4372 4373 asoc = sctp_id2assoc(sk, params->assoc_id); 4374 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4375 sctp_style(sk, UDP)) 4376 goto out; 4377 4378 ep = sctp_sk(sk)->ep; 4379 if (params->assoc_value) { 4380 retval = sctp_auth_init(ep, GFP_KERNEL); 4381 if (retval) 4382 goto out; 4383 if (ep->asconf_enable) { 4384 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF); 4385 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK); 4386 } 4387 } 4388 4389 ep->auth_enable = !!params->assoc_value; 4390 retval = 0; 4391 4392 out: 4393 return retval; 4394 } 4395 4396 static int sctp_setsockopt_ecn_supported(struct sock *sk, 4397 struct sctp_assoc_value *params, 4398 unsigned int optlen) 4399 { 4400 struct sctp_association *asoc; 4401 int retval = -EINVAL; 4402 4403 if (optlen != sizeof(*params)) 4404 goto out; 4405 4406 asoc = sctp_id2assoc(sk, params->assoc_id); 4407 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4408 sctp_style(sk, UDP)) 4409 goto out; 4410 4411 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value; 4412 retval = 0; 4413 4414 out: 4415 return retval; 4416 } 4417 4418 static int sctp_setsockopt_pf_expose(struct sock *sk, 4419 struct sctp_assoc_value *params, 4420 unsigned int optlen) 4421 { 4422 struct sctp_association *asoc; 4423 int retval = -EINVAL; 4424 4425 if (optlen != sizeof(*params)) 4426 goto out; 4427 4428 if (params->assoc_value > SCTP_PF_EXPOSE_MAX) 4429 goto out; 4430 4431 asoc = sctp_id2assoc(sk, params->assoc_id); 4432 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC && 4433 sctp_style(sk, UDP)) 4434 goto out; 4435 4436 if (asoc) 4437 asoc->pf_expose = params->assoc_value; 4438 else 4439 sctp_sk(sk)->pf_expose = params->assoc_value; 4440 retval = 0; 4441 4442 out: 4443 return retval; 4444 } 4445 4446 static int sctp_setsockopt_encap_port(struct sock *sk, 4447 struct sctp_udpencaps *encap, 4448 unsigned int optlen) 4449 { 4450 struct sctp_association *asoc; 4451 struct sctp_transport *t; 4452 __be16 encap_port; 4453 4454 if (optlen != sizeof(*encap)) 4455 return -EINVAL; 4456 4457 /* If an address other than INADDR_ANY is specified, and 4458 * no transport is found, then the request is invalid. 4459 */ 4460 encap_port = (__force __be16)encap->sue_port; 4461 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) { 4462 t = sctp_addr_id2transport(sk, &encap->sue_address, 4463 encap->sue_assoc_id); 4464 if (!t) 4465 return -EINVAL; 4466 4467 t->encap_port = encap_port; 4468 return 0; 4469 } 4470 4471 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4472 * socket is a one to many style socket, and an association 4473 * was not found, then the id was invalid. 4474 */ 4475 asoc = sctp_id2assoc(sk, encap->sue_assoc_id); 4476 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC && 4477 sctp_style(sk, UDP)) 4478 return -EINVAL; 4479 4480 /* If changes are for association, also apply encap_port to 4481 * each transport. 4482 */ 4483 if (asoc) { 4484 list_for_each_entry(t, &asoc->peer.transport_addr_list, 4485 transports) 4486 t->encap_port = encap_port; 4487 4488 asoc->encap_port = encap_port; 4489 return 0; 4490 } 4491 4492 sctp_sk(sk)->encap_port = encap_port; 4493 return 0; 4494 } 4495 4496 static int sctp_setsockopt_probe_interval(struct sock *sk, 4497 struct sctp_probeinterval *params, 4498 unsigned int optlen) 4499 { 4500 struct sctp_association *asoc; 4501 struct sctp_transport *t; 4502 __u32 probe_interval; 4503 4504 if (optlen != sizeof(*params)) 4505 return -EINVAL; 4506 4507 probe_interval = params->spi_interval; 4508 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN) 4509 return -EINVAL; 4510 4511 /* If an address other than INADDR_ANY is specified, and 4512 * no transport is found, then the request is invalid. 4513 */ 4514 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) { 4515 t = sctp_addr_id2transport(sk, ¶ms->spi_address, 4516 params->spi_assoc_id); 4517 if (!t) 4518 return -EINVAL; 4519 4520 t->probe_interval = msecs_to_jiffies(probe_interval); 4521 sctp_transport_pl_reset(t); 4522 return 0; 4523 } 4524 4525 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 4526 * socket is a one to many style socket, and an association 4527 * was not found, then the id was invalid. 4528 */ 4529 asoc = sctp_id2assoc(sk, params->spi_assoc_id); 4530 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC && 4531 sctp_style(sk, UDP)) 4532 return -EINVAL; 4533 4534 /* If changes are for association, also apply probe_interval to 4535 * each transport. 4536 */ 4537 if (asoc) { 4538 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 4539 t->probe_interval = msecs_to_jiffies(probe_interval); 4540 sctp_transport_pl_reset(t); 4541 } 4542 4543 asoc->probe_interval = msecs_to_jiffies(probe_interval); 4544 return 0; 4545 } 4546 4547 sctp_sk(sk)->probe_interval = probe_interval; 4548 return 0; 4549 } 4550 4551 /* API 6.2 setsockopt(), getsockopt() 4552 * 4553 * Applications use setsockopt() and getsockopt() to set or retrieve 4554 * socket options. Socket options are used to change the default 4555 * behavior of sockets calls. They are described in Section 7. 4556 * 4557 * The syntax is: 4558 * 4559 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4560 * int __user *optlen); 4561 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4562 * int optlen); 4563 * 4564 * sd - the socket descript. 4565 * level - set to IPPROTO_SCTP for all SCTP options. 4566 * optname - the option name. 4567 * optval - the buffer to store the value of the option. 4568 * optlen - the size of the buffer. 4569 */ 4570 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4571 sockptr_t optval, unsigned int optlen) 4572 { 4573 void *kopt = NULL; 4574 int retval = 0; 4575 4576 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4577 4578 /* I can hardly begin to describe how wrong this is. This is 4579 * so broken as to be worse than useless. The API draft 4580 * REALLY is NOT helpful here... I am not convinced that the 4581 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4582 * are at all well-founded. 4583 */ 4584 if (level != SOL_SCTP) { 4585 struct sctp_af *af = sctp_sk(sk)->pf->af; 4586 4587 return af->setsockopt(sk, level, optname, optval, optlen); 4588 } 4589 4590 if (optlen > 0) { 4591 /* Trim it to the biggest size sctp sockopt may need if necessary */ 4592 optlen = min_t(unsigned int, optlen, 4593 PAGE_ALIGN(USHRT_MAX + 4594 sizeof(__u16) * sizeof(struct sctp_reset_streams))); 4595 kopt = memdup_sockptr(optval, optlen); 4596 if (IS_ERR(kopt)) 4597 return PTR_ERR(kopt); 4598 } 4599 4600 lock_sock(sk); 4601 4602 switch (optname) { 4603 case SCTP_SOCKOPT_BINDX_ADD: 4604 /* 'optlen' is the size of the addresses buffer. */ 4605 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4606 SCTP_BINDX_ADD_ADDR); 4607 break; 4608 4609 case SCTP_SOCKOPT_BINDX_REM: 4610 /* 'optlen' is the size of the addresses buffer. */ 4611 retval = sctp_setsockopt_bindx(sk, kopt, optlen, 4612 SCTP_BINDX_REM_ADDR); 4613 break; 4614 4615 case SCTP_SOCKOPT_CONNECTX_OLD: 4616 /* 'optlen' is the size of the addresses buffer. */ 4617 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen); 4618 break; 4619 4620 case SCTP_SOCKOPT_CONNECTX: 4621 /* 'optlen' is the size of the addresses buffer. */ 4622 retval = sctp_setsockopt_connectx(sk, kopt, optlen); 4623 break; 4624 4625 case SCTP_DISABLE_FRAGMENTS: 4626 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen); 4627 break; 4628 4629 case SCTP_EVENTS: 4630 retval = sctp_setsockopt_events(sk, kopt, optlen); 4631 break; 4632 4633 case SCTP_AUTOCLOSE: 4634 retval = sctp_setsockopt_autoclose(sk, kopt, optlen); 4635 break; 4636 4637 case SCTP_PEER_ADDR_PARAMS: 4638 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen); 4639 break; 4640 4641 case SCTP_DELAYED_SACK: 4642 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen); 4643 break; 4644 case SCTP_PARTIAL_DELIVERY_POINT: 4645 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen); 4646 break; 4647 4648 case SCTP_INITMSG: 4649 retval = sctp_setsockopt_initmsg(sk, kopt, optlen); 4650 break; 4651 case SCTP_DEFAULT_SEND_PARAM: 4652 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen); 4653 break; 4654 case SCTP_DEFAULT_SNDINFO: 4655 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen); 4656 break; 4657 case SCTP_PRIMARY_ADDR: 4658 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen); 4659 break; 4660 case SCTP_SET_PEER_PRIMARY_ADDR: 4661 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen); 4662 break; 4663 case SCTP_NODELAY: 4664 retval = sctp_setsockopt_nodelay(sk, kopt, optlen); 4665 break; 4666 case SCTP_RTOINFO: 4667 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen); 4668 break; 4669 case SCTP_ASSOCINFO: 4670 retval = sctp_setsockopt_associnfo(sk, kopt, optlen); 4671 break; 4672 case SCTP_I_WANT_MAPPED_V4_ADDR: 4673 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen); 4674 break; 4675 case SCTP_MAXSEG: 4676 retval = sctp_setsockopt_maxseg(sk, kopt, optlen); 4677 break; 4678 case SCTP_ADAPTATION_LAYER: 4679 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen); 4680 break; 4681 case SCTP_CONTEXT: 4682 retval = sctp_setsockopt_context(sk, kopt, optlen); 4683 break; 4684 case SCTP_FRAGMENT_INTERLEAVE: 4685 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen); 4686 break; 4687 case SCTP_MAX_BURST: 4688 retval = sctp_setsockopt_maxburst(sk, kopt, optlen); 4689 break; 4690 case SCTP_AUTH_CHUNK: 4691 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen); 4692 break; 4693 case SCTP_HMAC_IDENT: 4694 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen); 4695 break; 4696 case SCTP_AUTH_KEY: 4697 retval = sctp_setsockopt_auth_key(sk, kopt, optlen); 4698 break; 4699 case SCTP_AUTH_ACTIVE_KEY: 4700 retval = sctp_setsockopt_active_key(sk, kopt, optlen); 4701 break; 4702 case SCTP_AUTH_DELETE_KEY: 4703 retval = sctp_setsockopt_del_key(sk, kopt, optlen); 4704 break; 4705 case SCTP_AUTH_DEACTIVATE_KEY: 4706 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen); 4707 break; 4708 case SCTP_AUTO_ASCONF: 4709 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen); 4710 break; 4711 case SCTP_PEER_ADDR_THLDS: 4712 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4713 false); 4714 break; 4715 case SCTP_PEER_ADDR_THLDS_V2: 4716 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen, 4717 true); 4718 break; 4719 case SCTP_RECVRCVINFO: 4720 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen); 4721 break; 4722 case SCTP_RECVNXTINFO: 4723 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen); 4724 break; 4725 case SCTP_PR_SUPPORTED: 4726 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen); 4727 break; 4728 case SCTP_DEFAULT_PRINFO: 4729 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen); 4730 break; 4731 case SCTP_RECONFIG_SUPPORTED: 4732 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen); 4733 break; 4734 case SCTP_ENABLE_STREAM_RESET: 4735 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen); 4736 break; 4737 case SCTP_RESET_STREAMS: 4738 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen); 4739 break; 4740 case SCTP_RESET_ASSOC: 4741 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen); 4742 break; 4743 case SCTP_ADD_STREAMS: 4744 retval = sctp_setsockopt_add_streams(sk, kopt, optlen); 4745 break; 4746 case SCTP_STREAM_SCHEDULER: 4747 retval = sctp_setsockopt_scheduler(sk, kopt, optlen); 4748 break; 4749 case SCTP_STREAM_SCHEDULER_VALUE: 4750 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen); 4751 break; 4752 case SCTP_INTERLEAVING_SUPPORTED: 4753 retval = sctp_setsockopt_interleaving_supported(sk, kopt, 4754 optlen); 4755 break; 4756 case SCTP_REUSE_PORT: 4757 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen); 4758 break; 4759 case SCTP_EVENT: 4760 retval = sctp_setsockopt_event(sk, kopt, optlen); 4761 break; 4762 case SCTP_ASCONF_SUPPORTED: 4763 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen); 4764 break; 4765 case SCTP_AUTH_SUPPORTED: 4766 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen); 4767 break; 4768 case SCTP_ECN_SUPPORTED: 4769 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen); 4770 break; 4771 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 4772 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen); 4773 break; 4774 case SCTP_REMOTE_UDP_ENCAPS_PORT: 4775 retval = sctp_setsockopt_encap_port(sk, kopt, optlen); 4776 break; 4777 case SCTP_PLPMTUD_PROBE_INTERVAL: 4778 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen); 4779 break; 4780 default: 4781 retval = -ENOPROTOOPT; 4782 break; 4783 } 4784 4785 release_sock(sk); 4786 kfree(kopt); 4787 return retval; 4788 } 4789 4790 /* API 3.1.6 connect() - UDP Style Syntax 4791 * 4792 * An application may use the connect() call in the UDP model to initiate an 4793 * association without sending data. 4794 * 4795 * The syntax is: 4796 * 4797 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4798 * 4799 * sd: the socket descriptor to have a new association added to. 4800 * 4801 * nam: the address structure (either struct sockaddr_in or struct 4802 * sockaddr_in6 defined in RFC2553 [7]). 4803 * 4804 * len: the size of the address. 4805 */ 4806 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4807 int addr_len, int flags) 4808 { 4809 struct sctp_af *af; 4810 int err = -EINVAL; 4811 4812 lock_sock(sk); 4813 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4814 addr, addr_len); 4815 4816 /* Validate addr_len before calling common connect/connectx routine. */ 4817 af = sctp_get_af_specific(addr->sa_family); 4818 if (af && addr_len >= af->sockaddr_len) 4819 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL); 4820 4821 release_sock(sk); 4822 return err; 4823 } 4824 4825 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr, 4826 int addr_len, int flags) 4827 { 4828 if (addr_len < sizeof(uaddr->sa_family)) 4829 return -EINVAL; 4830 4831 if (uaddr->sa_family == AF_UNSPEC) 4832 return -EOPNOTSUPP; 4833 4834 return sctp_connect(sock->sk, uaddr, addr_len, flags); 4835 } 4836 4837 /* Only called when shutdown a listening SCTP socket. */ 4838 static int sctp_disconnect(struct sock *sk, int flags) 4839 { 4840 if (!sctp_style(sk, TCP)) 4841 return -EOPNOTSUPP; 4842 4843 sk->sk_shutdown |= RCV_SHUTDOWN; 4844 return 0; 4845 } 4846 4847 /* 4.1.4 accept() - TCP Style Syntax 4848 * 4849 * Applications use accept() call to remove an established SCTP 4850 * association from the accept queue of the endpoint. A new socket 4851 * descriptor will be returned from accept() to represent the newly 4852 * formed association. 4853 */ 4854 static struct sock *sctp_accept(struct sock *sk, struct proto_accept_arg *arg) 4855 { 4856 struct sctp_sock *sp; 4857 struct sctp_endpoint *ep; 4858 struct sock *newsk = NULL; 4859 struct sctp_association *asoc; 4860 long timeo; 4861 int error = 0; 4862 4863 lock_sock(sk); 4864 4865 sp = sctp_sk(sk); 4866 ep = sp->ep; 4867 4868 if (!sctp_style(sk, TCP)) { 4869 error = -EOPNOTSUPP; 4870 goto out; 4871 } 4872 4873 if (!sctp_sstate(sk, LISTENING) || 4874 (sk->sk_shutdown & RCV_SHUTDOWN)) { 4875 error = -EINVAL; 4876 goto out; 4877 } 4878 4879 timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); 4880 4881 error = sctp_wait_for_accept(sk, timeo); 4882 if (error) 4883 goto out; 4884 4885 /* We treat the list of associations on the endpoint as the accept 4886 * queue and pick the first association on the list. 4887 */ 4888 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4889 4890 newsk = sp->pf->create_accept_sk(sk, asoc, arg->kern); 4891 if (!newsk) { 4892 error = -ENOMEM; 4893 goto out; 4894 } 4895 4896 /* Populate the fields of the newsk from the oldsk and migrate the 4897 * asoc to the newsk. 4898 */ 4899 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4900 if (error) { 4901 sk_common_release(newsk); 4902 newsk = NULL; 4903 } 4904 4905 out: 4906 release_sock(sk); 4907 arg->err = error; 4908 return newsk; 4909 } 4910 4911 /* The SCTP ioctl handler. */ 4912 static int sctp_ioctl(struct sock *sk, int cmd, int *karg) 4913 { 4914 int rc = -ENOTCONN; 4915 4916 lock_sock(sk); 4917 4918 /* 4919 * SEQPACKET-style sockets in LISTENING state are valid, for 4920 * SCTP, so only discard TCP-style sockets in LISTENING state. 4921 */ 4922 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4923 goto out; 4924 4925 switch (cmd) { 4926 case SIOCINQ: { 4927 struct sk_buff *skb; 4928 *karg = 0; 4929 4930 skb = skb_peek(&sk->sk_receive_queue); 4931 if (skb != NULL) { 4932 /* 4933 * We will only return the amount of this packet since 4934 * that is all that will be read. 4935 */ 4936 *karg = skb->len; 4937 } 4938 rc = 0; 4939 break; 4940 } 4941 default: 4942 rc = -ENOIOCTLCMD; 4943 break; 4944 } 4945 out: 4946 release_sock(sk); 4947 return rc; 4948 } 4949 4950 /* This is the function which gets called during socket creation to 4951 * initialized the SCTP-specific portion of the sock. 4952 * The sock structure should already be zero-filled memory. 4953 */ 4954 static int sctp_init_sock(struct sock *sk) 4955 { 4956 struct net *net = sock_net(sk); 4957 struct sctp_sock *sp; 4958 4959 pr_debug("%s: sk:%p\n", __func__, sk); 4960 4961 sp = sctp_sk(sk); 4962 4963 /* Initialize the SCTP per socket area. */ 4964 switch (sk->sk_type) { 4965 case SOCK_SEQPACKET: 4966 sp->type = SCTP_SOCKET_UDP; 4967 break; 4968 case SOCK_STREAM: 4969 sp->type = SCTP_SOCKET_TCP; 4970 break; 4971 default: 4972 return -ESOCKTNOSUPPORT; 4973 } 4974 4975 sk->sk_gso_type = SKB_GSO_SCTP; 4976 4977 /* Initialize default send parameters. These parameters can be 4978 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4979 */ 4980 sp->default_stream = 0; 4981 sp->default_ppid = 0; 4982 sp->default_flags = 0; 4983 sp->default_context = 0; 4984 sp->default_timetolive = 0; 4985 4986 sp->default_rcv_context = 0; 4987 sp->max_burst = net->sctp.max_burst; 4988 4989 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4990 4991 /* Initialize default setup parameters. These parameters 4992 * can be modified with the SCTP_INITMSG socket option or 4993 * overridden by the SCTP_INIT CMSG. 4994 */ 4995 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4996 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4997 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4998 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4999 5000 /* Initialize default RTO related parameters. These parameters can 5001 * be modified for with the SCTP_RTOINFO socket option. 5002 */ 5003 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 5004 sp->rtoinfo.srto_max = net->sctp.rto_max; 5005 sp->rtoinfo.srto_min = net->sctp.rto_min; 5006 5007 /* Initialize default association related parameters. These parameters 5008 * can be modified with the SCTP_ASSOCINFO socket option. 5009 */ 5010 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 5011 sp->assocparams.sasoc_number_peer_destinations = 0; 5012 sp->assocparams.sasoc_peer_rwnd = 0; 5013 sp->assocparams.sasoc_local_rwnd = 0; 5014 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 5015 5016 /* Initialize default event subscriptions. By default, all the 5017 * options are off. 5018 */ 5019 sp->subscribe = 0; 5020 5021 /* Default Peer Address Parameters. These defaults can 5022 * be modified via SCTP_PEER_ADDR_PARAMS 5023 */ 5024 sp->hbinterval = net->sctp.hb_interval; 5025 sp->udp_port = htons(net->sctp.udp_port); 5026 sp->encap_port = htons(net->sctp.encap_port); 5027 sp->pathmaxrxt = net->sctp.max_retrans_path; 5028 sp->pf_retrans = net->sctp.pf_retrans; 5029 sp->ps_retrans = net->sctp.ps_retrans; 5030 sp->pf_expose = net->sctp.pf_expose; 5031 sp->pathmtu = 0; /* allow default discovery */ 5032 sp->sackdelay = net->sctp.sack_timeout; 5033 sp->sackfreq = 2; 5034 sp->param_flags = SPP_HB_ENABLE | 5035 SPP_PMTUD_ENABLE | 5036 SPP_SACKDELAY_ENABLE; 5037 sp->default_ss = SCTP_SS_DEFAULT; 5038 5039 /* If enabled no SCTP message fragmentation will be performed. 5040 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 5041 */ 5042 sp->disable_fragments = 0; 5043 5044 /* Enable Nagle algorithm by default. */ 5045 sp->nodelay = 0; 5046 5047 sp->recvrcvinfo = 0; 5048 sp->recvnxtinfo = 0; 5049 5050 /* Enable by default. */ 5051 sp->v4mapped = 1; 5052 5053 /* Auto-close idle associations after the configured 5054 * number of seconds. A value of 0 disables this 5055 * feature. Configure through the SCTP_AUTOCLOSE socket option, 5056 * for UDP-style sockets only. 5057 */ 5058 sp->autoclose = 0; 5059 5060 /* User specified fragmentation limit. */ 5061 sp->user_frag = 0; 5062 5063 sp->adaptation_ind = 0; 5064 5065 sp->pf = sctp_get_pf_specific(sk->sk_family); 5066 5067 /* Control variables for partial data delivery. */ 5068 atomic_set(&sp->pd_mode, 0); 5069 skb_queue_head_init(&sp->pd_lobby); 5070 sp->frag_interleave = 0; 5071 sp->probe_interval = net->sctp.probe_interval; 5072 5073 /* Create a per socket endpoint structure. Even if we 5074 * change the data structure relationships, this may still 5075 * be useful for storing pre-connect address information. 5076 */ 5077 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 5078 if (!sp->ep) 5079 return -ENOMEM; 5080 5081 sp->hmac = NULL; 5082 5083 sk->sk_destruct = sctp_destruct_sock; 5084 5085 SCTP_DBG_OBJCNT_INC(sock); 5086 5087 sk_sockets_allocated_inc(sk); 5088 sock_prot_inuse_add(net, sk->sk_prot, 1); 5089 5090 return 0; 5091 } 5092 5093 /* Cleanup any SCTP per socket resources. Must be called with 5094 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 5095 */ 5096 static void sctp_destroy_sock(struct sock *sk) 5097 { 5098 struct sctp_sock *sp; 5099 5100 pr_debug("%s: sk:%p\n", __func__, sk); 5101 5102 /* Release our hold on the endpoint. */ 5103 sp = sctp_sk(sk); 5104 /* This could happen during socket init, thus we bail out 5105 * early, since the rest of the below is not setup either. 5106 */ 5107 if (sp->ep == NULL) 5108 return; 5109 5110 if (sp->do_auto_asconf) { 5111 sp->do_auto_asconf = 0; 5112 list_del(&sp->auto_asconf_list); 5113 } 5114 sctp_endpoint_free(sp->ep); 5115 sk_sockets_allocated_dec(sk); 5116 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 5117 } 5118 5119 /* Triggered when there are no references on the socket anymore */ 5120 static void sctp_destruct_common(struct sock *sk) 5121 { 5122 struct sctp_sock *sp = sctp_sk(sk); 5123 5124 /* Free up the HMAC transform. */ 5125 crypto_free_shash(sp->hmac); 5126 } 5127 5128 static void sctp_destruct_sock(struct sock *sk) 5129 { 5130 sctp_destruct_common(sk); 5131 inet_sock_destruct(sk); 5132 } 5133 5134 /* API 4.1.7 shutdown() - TCP Style Syntax 5135 * int shutdown(int socket, int how); 5136 * 5137 * sd - the socket descriptor of the association to be closed. 5138 * how - Specifies the type of shutdown. The values are 5139 * as follows: 5140 * SHUT_RD 5141 * Disables further receive operations. No SCTP 5142 * protocol action is taken. 5143 * SHUT_WR 5144 * Disables further send operations, and initiates 5145 * the SCTP shutdown sequence. 5146 * SHUT_RDWR 5147 * Disables further send and receive operations 5148 * and initiates the SCTP shutdown sequence. 5149 */ 5150 static void sctp_shutdown(struct sock *sk, int how) 5151 { 5152 struct net *net = sock_net(sk); 5153 struct sctp_endpoint *ep; 5154 5155 if (!sctp_style(sk, TCP)) 5156 return; 5157 5158 ep = sctp_sk(sk)->ep; 5159 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 5160 struct sctp_association *asoc; 5161 5162 inet_sk_set_state(sk, SCTP_SS_CLOSING); 5163 asoc = list_entry(ep->asocs.next, 5164 struct sctp_association, asocs); 5165 sctp_primitive_SHUTDOWN(net, asoc, NULL); 5166 } 5167 } 5168 5169 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 5170 struct sctp_info *info) 5171 { 5172 struct sctp_transport *prim; 5173 struct list_head *pos; 5174 int mask; 5175 5176 memset(info, 0, sizeof(*info)); 5177 if (!asoc) { 5178 struct sctp_sock *sp = sctp_sk(sk); 5179 5180 info->sctpi_s_autoclose = sp->autoclose; 5181 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 5182 info->sctpi_s_pd_point = sp->pd_point; 5183 info->sctpi_s_nodelay = sp->nodelay; 5184 info->sctpi_s_disable_fragments = sp->disable_fragments; 5185 info->sctpi_s_v4mapped = sp->v4mapped; 5186 info->sctpi_s_frag_interleave = sp->frag_interleave; 5187 info->sctpi_s_type = sp->type; 5188 5189 return 0; 5190 } 5191 5192 info->sctpi_tag = asoc->c.my_vtag; 5193 info->sctpi_state = asoc->state; 5194 info->sctpi_rwnd = asoc->a_rwnd; 5195 info->sctpi_unackdata = asoc->unack_data; 5196 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5197 info->sctpi_instrms = asoc->stream.incnt; 5198 info->sctpi_outstrms = asoc->stream.outcnt; 5199 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 5200 info->sctpi_inqueue++; 5201 list_for_each(pos, &asoc->outqueue.out_chunk_list) 5202 info->sctpi_outqueue++; 5203 info->sctpi_overall_error = asoc->overall_error_count; 5204 info->sctpi_max_burst = asoc->max_burst; 5205 info->sctpi_maxseg = asoc->frag_point; 5206 info->sctpi_peer_rwnd = asoc->peer.rwnd; 5207 info->sctpi_peer_tag = asoc->c.peer_vtag; 5208 5209 mask = asoc->peer.intl_capable << 1; 5210 mask = (mask | asoc->peer.ecn_capable) << 1; 5211 mask = (mask | asoc->peer.ipv4_address) << 1; 5212 mask = (mask | asoc->peer.ipv6_address) << 1; 5213 mask = (mask | asoc->peer.reconf_capable) << 1; 5214 mask = (mask | asoc->peer.asconf_capable) << 1; 5215 mask = (mask | asoc->peer.prsctp_capable) << 1; 5216 mask = (mask | asoc->peer.auth_capable); 5217 info->sctpi_peer_capable = mask; 5218 mask = asoc->peer.sack_needed << 1; 5219 mask = (mask | asoc->peer.sack_generation) << 1; 5220 mask = (mask | asoc->peer.zero_window_announced); 5221 info->sctpi_peer_sack = mask; 5222 5223 info->sctpi_isacks = asoc->stats.isacks; 5224 info->sctpi_osacks = asoc->stats.osacks; 5225 info->sctpi_opackets = asoc->stats.opackets; 5226 info->sctpi_ipackets = asoc->stats.ipackets; 5227 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 5228 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 5229 info->sctpi_idupchunks = asoc->stats.idupchunks; 5230 info->sctpi_gapcnt = asoc->stats.gapcnt; 5231 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 5232 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 5233 info->sctpi_oodchunks = asoc->stats.oodchunks; 5234 info->sctpi_iodchunks = asoc->stats.iodchunks; 5235 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 5236 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 5237 5238 prim = asoc->peer.primary_path; 5239 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 5240 info->sctpi_p_state = prim->state; 5241 info->sctpi_p_cwnd = prim->cwnd; 5242 info->sctpi_p_srtt = prim->srtt; 5243 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 5244 info->sctpi_p_hbinterval = prim->hbinterval; 5245 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 5246 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 5247 info->sctpi_p_ssthresh = prim->ssthresh; 5248 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 5249 info->sctpi_p_flight_size = prim->flight_size; 5250 info->sctpi_p_error = prim->error_count; 5251 5252 return 0; 5253 } 5254 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 5255 5256 /* use callback to avoid exporting the core structure */ 5257 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU) 5258 { 5259 rhltable_walk_enter(&sctp_transport_hashtable, iter); 5260 5261 rhashtable_walk_start(iter); 5262 } 5263 5264 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU) 5265 { 5266 rhashtable_walk_stop(iter); 5267 rhashtable_walk_exit(iter); 5268 } 5269 5270 struct sctp_transport *sctp_transport_get_next(struct net *net, 5271 struct rhashtable_iter *iter) 5272 { 5273 struct sctp_transport *t; 5274 5275 t = rhashtable_walk_next(iter); 5276 for (; t; t = rhashtable_walk_next(iter)) { 5277 if (IS_ERR(t)) { 5278 if (PTR_ERR(t) == -EAGAIN) 5279 continue; 5280 break; 5281 } 5282 5283 if (!sctp_transport_hold(t)) 5284 continue; 5285 5286 if (net_eq(t->asoc->base.net, net) && 5287 t->asoc->peer.primary_path == t) 5288 break; 5289 5290 sctp_transport_put(t); 5291 } 5292 5293 return t; 5294 } 5295 5296 struct sctp_transport *sctp_transport_get_idx(struct net *net, 5297 struct rhashtable_iter *iter, 5298 int pos) 5299 { 5300 struct sctp_transport *t; 5301 5302 if (!pos) 5303 return SEQ_START_TOKEN; 5304 5305 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) { 5306 if (!--pos) 5307 break; 5308 sctp_transport_put(t); 5309 } 5310 5311 return t; 5312 } 5313 5314 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 5315 void *p) { 5316 int err = 0; 5317 int hash = 0; 5318 struct sctp_endpoint *ep; 5319 struct sctp_hashbucket *head; 5320 5321 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 5322 hash++, head++) { 5323 read_lock_bh(&head->lock); 5324 sctp_for_each_hentry(ep, &head->chain) { 5325 err = cb(ep, p); 5326 if (err) 5327 break; 5328 } 5329 read_unlock_bh(&head->lock); 5330 } 5331 5332 return err; 5333 } 5334 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 5335 5336 int sctp_transport_lookup_process(sctp_callback_t cb, struct net *net, 5337 const union sctp_addr *laddr, 5338 const union sctp_addr *paddr, void *p, int dif) 5339 { 5340 struct sctp_transport *transport; 5341 struct sctp_endpoint *ep; 5342 int err = -ENOENT; 5343 5344 rcu_read_lock(); 5345 transport = sctp_addrs_lookup_transport(net, laddr, paddr, dif, dif); 5346 if (!transport) { 5347 rcu_read_unlock(); 5348 return err; 5349 } 5350 ep = transport->asoc->ep; 5351 if (!sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5352 sctp_transport_put(transport); 5353 rcu_read_unlock(); 5354 return err; 5355 } 5356 rcu_read_unlock(); 5357 5358 err = cb(ep, transport, p); 5359 sctp_endpoint_put(ep); 5360 sctp_transport_put(transport); 5361 return err; 5362 } 5363 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 5364 5365 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done, 5366 struct net *net, int *pos, void *p) 5367 { 5368 struct rhashtable_iter hti; 5369 struct sctp_transport *tsp; 5370 struct sctp_endpoint *ep; 5371 int ret; 5372 5373 again: 5374 ret = 0; 5375 sctp_transport_walk_start(&hti); 5376 5377 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 5378 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 5379 ep = tsp->asoc->ep; 5380 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */ 5381 ret = cb(ep, tsp, p); 5382 if (ret) 5383 break; 5384 sctp_endpoint_put(ep); 5385 } 5386 (*pos)++; 5387 sctp_transport_put(tsp); 5388 } 5389 sctp_transport_walk_stop(&hti); 5390 5391 if (ret) { 5392 if (cb_done && !cb_done(ep, tsp, p)) { 5393 (*pos)++; 5394 sctp_endpoint_put(ep); 5395 sctp_transport_put(tsp); 5396 goto again; 5397 } 5398 sctp_endpoint_put(ep); 5399 sctp_transport_put(tsp); 5400 } 5401 5402 return ret; 5403 } 5404 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process); 5405 5406 /* 7.2.1 Association Status (SCTP_STATUS) 5407 5408 * Applications can retrieve current status information about an 5409 * association, including association state, peer receiver window size, 5410 * number of unacked data chunks, and number of data chunks pending 5411 * receipt. This information is read-only. 5412 */ 5413 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 5414 char __user *optval, 5415 int __user *optlen) 5416 { 5417 struct sctp_status status; 5418 struct sctp_association *asoc = NULL; 5419 struct sctp_transport *transport; 5420 sctp_assoc_t associd; 5421 int retval = 0; 5422 5423 if (len < sizeof(status)) { 5424 retval = -EINVAL; 5425 goto out; 5426 } 5427 5428 len = sizeof(status); 5429 if (copy_from_user(&status, optval, len)) { 5430 retval = -EFAULT; 5431 goto out; 5432 } 5433 5434 associd = status.sstat_assoc_id; 5435 asoc = sctp_id2assoc(sk, associd); 5436 if (!asoc) { 5437 retval = -EINVAL; 5438 goto out; 5439 } 5440 5441 transport = asoc->peer.primary_path; 5442 5443 status.sstat_assoc_id = sctp_assoc2id(asoc); 5444 status.sstat_state = sctp_assoc_to_state(asoc); 5445 status.sstat_rwnd = asoc->peer.rwnd; 5446 status.sstat_unackdata = asoc->unack_data; 5447 5448 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 5449 status.sstat_instrms = asoc->stream.incnt; 5450 status.sstat_outstrms = asoc->stream.outcnt; 5451 status.sstat_fragmentation_point = asoc->frag_point; 5452 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5453 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 5454 transport->af_specific->sockaddr_len); 5455 /* Map ipv4 address into v4-mapped-on-v6 address. */ 5456 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 5457 (union sctp_addr *)&status.sstat_primary.spinfo_address); 5458 status.sstat_primary.spinfo_state = transport->state; 5459 status.sstat_primary.spinfo_cwnd = transport->cwnd; 5460 status.sstat_primary.spinfo_srtt = transport->srtt; 5461 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 5462 status.sstat_primary.spinfo_mtu = transport->pathmtu; 5463 5464 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 5465 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 5466 5467 if (put_user(len, optlen)) { 5468 retval = -EFAULT; 5469 goto out; 5470 } 5471 5472 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 5473 __func__, len, status.sstat_state, status.sstat_rwnd, 5474 status.sstat_assoc_id); 5475 5476 if (copy_to_user(optval, &status, len)) { 5477 retval = -EFAULT; 5478 goto out; 5479 } 5480 5481 out: 5482 return retval; 5483 } 5484 5485 5486 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 5487 * 5488 * Applications can retrieve information about a specific peer address 5489 * of an association, including its reachability state, congestion 5490 * window, and retransmission timer values. This information is 5491 * read-only. 5492 */ 5493 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 5494 char __user *optval, 5495 int __user *optlen) 5496 { 5497 struct sctp_paddrinfo pinfo; 5498 struct sctp_transport *transport; 5499 int retval = 0; 5500 5501 if (len < sizeof(pinfo)) { 5502 retval = -EINVAL; 5503 goto out; 5504 } 5505 5506 len = sizeof(pinfo); 5507 if (copy_from_user(&pinfo, optval, len)) { 5508 retval = -EFAULT; 5509 goto out; 5510 } 5511 5512 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 5513 pinfo.spinfo_assoc_id); 5514 if (!transport) { 5515 retval = -EINVAL; 5516 goto out; 5517 } 5518 5519 if (transport->state == SCTP_PF && 5520 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) { 5521 retval = -EACCES; 5522 goto out; 5523 } 5524 5525 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 5526 pinfo.spinfo_state = transport->state; 5527 pinfo.spinfo_cwnd = transport->cwnd; 5528 pinfo.spinfo_srtt = transport->srtt; 5529 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 5530 pinfo.spinfo_mtu = transport->pathmtu; 5531 5532 if (pinfo.spinfo_state == SCTP_UNKNOWN) 5533 pinfo.spinfo_state = SCTP_ACTIVE; 5534 5535 if (put_user(len, optlen)) { 5536 retval = -EFAULT; 5537 goto out; 5538 } 5539 5540 if (copy_to_user(optval, &pinfo, len)) { 5541 retval = -EFAULT; 5542 goto out; 5543 } 5544 5545 out: 5546 return retval; 5547 } 5548 5549 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 5550 * 5551 * This option is a on/off flag. If enabled no SCTP message 5552 * fragmentation will be performed. Instead if a message being sent 5553 * exceeds the current PMTU size, the message will NOT be sent and 5554 * instead a error will be indicated to the user. 5555 */ 5556 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5557 char __user *optval, int __user *optlen) 5558 { 5559 int val; 5560 5561 if (len < sizeof(int)) 5562 return -EINVAL; 5563 5564 len = sizeof(int); 5565 val = (sctp_sk(sk)->disable_fragments == 1); 5566 if (put_user(len, optlen)) 5567 return -EFAULT; 5568 if (copy_to_user(optval, &val, len)) 5569 return -EFAULT; 5570 return 0; 5571 } 5572 5573 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5574 * 5575 * This socket option is used to specify various notifications and 5576 * ancillary data the user wishes to receive. 5577 */ 5578 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5579 int __user *optlen) 5580 { 5581 struct sctp_event_subscribe subscribe; 5582 __u8 *sn_type = (__u8 *)&subscribe; 5583 int i; 5584 5585 if (len == 0) 5586 return -EINVAL; 5587 if (len > sizeof(struct sctp_event_subscribe)) 5588 len = sizeof(struct sctp_event_subscribe); 5589 if (put_user(len, optlen)) 5590 return -EFAULT; 5591 5592 for (i = 0; i < len; i++) 5593 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe, 5594 SCTP_SN_TYPE_BASE + i); 5595 5596 if (copy_to_user(optval, &subscribe, len)) 5597 return -EFAULT; 5598 5599 return 0; 5600 } 5601 5602 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5603 * 5604 * This socket option is applicable to the UDP-style socket only. When 5605 * set it will cause associations that are idle for more than the 5606 * specified number of seconds to automatically close. An association 5607 * being idle is defined an association that has NOT sent or received 5608 * user data. The special value of '' indicates that no automatic 5609 * close of any associations should be performed. The option expects an 5610 * integer defining the number of seconds of idle time before an 5611 * association is closed. 5612 */ 5613 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5614 { 5615 /* Applicable to UDP-style socket only */ 5616 if (sctp_style(sk, TCP)) 5617 return -EOPNOTSUPP; 5618 if (len < sizeof(int)) 5619 return -EINVAL; 5620 len = sizeof(int); 5621 if (put_user(len, optlen)) 5622 return -EFAULT; 5623 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5624 return -EFAULT; 5625 return 0; 5626 } 5627 5628 /* Helper routine to branch off an association to a new socket. */ 5629 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5630 { 5631 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5632 struct sctp_sock *sp = sctp_sk(sk); 5633 struct socket *sock; 5634 int err = 0; 5635 5636 /* Do not peel off from one netns to another one. */ 5637 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5638 return -EINVAL; 5639 5640 if (!asoc) 5641 return -EINVAL; 5642 5643 /* An association cannot be branched off from an already peeled-off 5644 * socket, nor is this supported for tcp style sockets. 5645 */ 5646 if (!sctp_style(sk, UDP)) 5647 return -EINVAL; 5648 5649 /* Create a new socket. */ 5650 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5651 if (err < 0) 5652 return err; 5653 5654 sctp_copy_sock(sock->sk, sk, asoc); 5655 5656 /* Make peeled-off sockets more like 1-1 accepted sockets. 5657 * Set the daddr and initialize id to something more random and also 5658 * copy over any ip options. 5659 */ 5660 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk); 5661 sp->pf->copy_ip_options(sk, sock->sk); 5662 5663 /* Populate the fields of the newsk from the oldsk and migrate the 5664 * asoc to the newsk. 5665 */ 5666 err = sctp_sock_migrate(sk, sock->sk, asoc, 5667 SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5668 if (err) { 5669 sock_release(sock); 5670 sock = NULL; 5671 } 5672 5673 *sockp = sock; 5674 5675 return err; 5676 } 5677 EXPORT_SYMBOL(sctp_do_peeloff); 5678 5679 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5680 struct file **newfile, unsigned flags) 5681 { 5682 struct socket *newsock; 5683 int retval; 5684 5685 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5686 if (retval < 0) 5687 goto out; 5688 5689 /* Map the socket to an unused fd that can be returned to the user. */ 5690 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5691 if (retval < 0) { 5692 sock_release(newsock); 5693 goto out; 5694 } 5695 5696 *newfile = sock_alloc_file(newsock, 0, NULL); 5697 if (IS_ERR(*newfile)) { 5698 put_unused_fd(retval); 5699 retval = PTR_ERR(*newfile); 5700 *newfile = NULL; 5701 return retval; 5702 } 5703 5704 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5705 retval); 5706 5707 peeloff->sd = retval; 5708 5709 if (flags & SOCK_NONBLOCK) 5710 (*newfile)->f_flags |= O_NONBLOCK; 5711 out: 5712 return retval; 5713 } 5714 5715 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5716 { 5717 sctp_peeloff_arg_t peeloff; 5718 struct file *newfile = NULL; 5719 int retval = 0; 5720 5721 if (len < sizeof(sctp_peeloff_arg_t)) 5722 return -EINVAL; 5723 len = sizeof(sctp_peeloff_arg_t); 5724 if (copy_from_user(&peeloff, optval, len)) 5725 return -EFAULT; 5726 5727 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5728 if (retval < 0) 5729 goto out; 5730 5731 /* Return the fd mapped to the new socket. */ 5732 if (put_user(len, optlen)) { 5733 fput(newfile); 5734 put_unused_fd(retval); 5735 return -EFAULT; 5736 } 5737 5738 if (copy_to_user(optval, &peeloff, len)) { 5739 fput(newfile); 5740 put_unused_fd(retval); 5741 return -EFAULT; 5742 } 5743 fd_install(retval, newfile); 5744 out: 5745 return retval; 5746 } 5747 5748 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5749 char __user *optval, int __user *optlen) 5750 { 5751 sctp_peeloff_flags_arg_t peeloff; 5752 struct file *newfile = NULL; 5753 int retval = 0; 5754 5755 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5756 return -EINVAL; 5757 len = sizeof(sctp_peeloff_flags_arg_t); 5758 if (copy_from_user(&peeloff, optval, len)) 5759 return -EFAULT; 5760 5761 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5762 &newfile, peeloff.flags); 5763 if (retval < 0) 5764 goto out; 5765 5766 /* Return the fd mapped to the new socket. */ 5767 if (put_user(len, optlen)) { 5768 fput(newfile); 5769 put_unused_fd(retval); 5770 return -EFAULT; 5771 } 5772 5773 if (copy_to_user(optval, &peeloff, len)) { 5774 fput(newfile); 5775 put_unused_fd(retval); 5776 return -EFAULT; 5777 } 5778 fd_install(retval, newfile); 5779 out: 5780 return retval; 5781 } 5782 5783 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5784 * 5785 * Applications can enable or disable heartbeats for any peer address of 5786 * an association, modify an address's heartbeat interval, force a 5787 * heartbeat to be sent immediately, and adjust the address's maximum 5788 * number of retransmissions sent before an address is considered 5789 * unreachable. The following structure is used to access and modify an 5790 * address's parameters: 5791 * 5792 * struct sctp_paddrparams { 5793 * sctp_assoc_t spp_assoc_id; 5794 * struct sockaddr_storage spp_address; 5795 * uint32_t spp_hbinterval; 5796 * uint16_t spp_pathmaxrxt; 5797 * uint32_t spp_pathmtu; 5798 * uint32_t spp_sackdelay; 5799 * uint32_t spp_flags; 5800 * }; 5801 * 5802 * spp_assoc_id - (one-to-many style socket) This is filled in the 5803 * application, and identifies the association for 5804 * this query. 5805 * spp_address - This specifies which address is of interest. 5806 * spp_hbinterval - This contains the value of the heartbeat interval, 5807 * in milliseconds. If a value of zero 5808 * is present in this field then no changes are to 5809 * be made to this parameter. 5810 * spp_pathmaxrxt - This contains the maximum number of 5811 * retransmissions before this address shall be 5812 * considered unreachable. If a value of zero 5813 * is present in this field then no changes are to 5814 * be made to this parameter. 5815 * spp_pathmtu - When Path MTU discovery is disabled the value 5816 * specified here will be the "fixed" path mtu. 5817 * Note that if the spp_address field is empty 5818 * then all associations on this address will 5819 * have this fixed path mtu set upon them. 5820 * 5821 * spp_sackdelay - When delayed sack is enabled, this value specifies 5822 * the number of milliseconds that sacks will be delayed 5823 * for. This value will apply to all addresses of an 5824 * association if the spp_address field is empty. Note 5825 * also, that if delayed sack is enabled and this 5826 * value is set to 0, no change is made to the last 5827 * recorded delayed sack timer value. 5828 * 5829 * spp_flags - These flags are used to control various features 5830 * on an association. The flag field may contain 5831 * zero or more of the following options. 5832 * 5833 * SPP_HB_ENABLE - Enable heartbeats on the 5834 * specified address. Note that if the address 5835 * field is empty all addresses for the association 5836 * have heartbeats enabled upon them. 5837 * 5838 * SPP_HB_DISABLE - Disable heartbeats on the 5839 * speicifed address. Note that if the address 5840 * field is empty all addresses for the association 5841 * will have their heartbeats disabled. Note also 5842 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5843 * mutually exclusive, only one of these two should 5844 * be specified. Enabling both fields will have 5845 * undetermined results. 5846 * 5847 * SPP_HB_DEMAND - Request a user initiated heartbeat 5848 * to be made immediately. 5849 * 5850 * SPP_PMTUD_ENABLE - This field will enable PMTU 5851 * discovery upon the specified address. Note that 5852 * if the address feild is empty then all addresses 5853 * on the association are effected. 5854 * 5855 * SPP_PMTUD_DISABLE - This field will disable PMTU 5856 * discovery upon the specified address. Note that 5857 * if the address feild is empty then all addresses 5858 * on the association are effected. Not also that 5859 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5860 * exclusive. Enabling both will have undetermined 5861 * results. 5862 * 5863 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5864 * on delayed sack. The time specified in spp_sackdelay 5865 * is used to specify the sack delay for this address. Note 5866 * that if spp_address is empty then all addresses will 5867 * enable delayed sack and take on the sack delay 5868 * value specified in spp_sackdelay. 5869 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5870 * off delayed sack. If the spp_address field is blank then 5871 * delayed sack is disabled for the entire association. Note 5872 * also that this field is mutually exclusive to 5873 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5874 * results. 5875 * 5876 * SPP_IPV6_FLOWLABEL: Setting this flag enables the 5877 * setting of the IPV6 flow label value. The value is 5878 * contained in the spp_ipv6_flowlabel field. 5879 * Upon retrieval, this flag will be set to indicate that 5880 * the spp_ipv6_flowlabel field has a valid value returned. 5881 * If a specific destination address is set (in the 5882 * spp_address field), then the value returned is that of 5883 * the address. If just an association is specified (and 5884 * no address), then the association's default flow label 5885 * is returned. If neither an association nor a destination 5886 * is specified, then the socket's default flow label is 5887 * returned. For non-IPv6 sockets, this flag will be left 5888 * cleared. 5889 * 5890 * SPP_DSCP: Setting this flag enables the setting of the 5891 * Differentiated Services Code Point (DSCP) value 5892 * associated with either the association or a specific 5893 * address. The value is obtained in the spp_dscp field. 5894 * Upon retrieval, this flag will be set to indicate that 5895 * the spp_dscp field has a valid value returned. If a 5896 * specific destination address is set when called (in the 5897 * spp_address field), then that specific destination 5898 * address's DSCP value is returned. If just an association 5899 * is specified, then the association's default DSCP is 5900 * returned. If neither an association nor a destination is 5901 * specified, then the socket's default DSCP is returned. 5902 * 5903 * spp_ipv6_flowlabel 5904 * - This field is used in conjunction with the 5905 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label. 5906 * The 20 least significant bits are used for the flow 5907 * label. This setting has precedence over any IPv6-layer 5908 * setting. 5909 * 5910 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag 5911 * and contains the DSCP. The 6 most significant bits are 5912 * used for the DSCP. This setting has precedence over any 5913 * IPv4- or IPv6- layer setting. 5914 */ 5915 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5916 char __user *optval, int __user *optlen) 5917 { 5918 struct sctp_paddrparams params; 5919 struct sctp_transport *trans = NULL; 5920 struct sctp_association *asoc = NULL; 5921 struct sctp_sock *sp = sctp_sk(sk); 5922 5923 if (len >= sizeof(params)) 5924 len = sizeof(params); 5925 else if (len >= ALIGN(offsetof(struct sctp_paddrparams, 5926 spp_ipv6_flowlabel), 4)) 5927 len = ALIGN(offsetof(struct sctp_paddrparams, 5928 spp_ipv6_flowlabel), 4); 5929 else 5930 return -EINVAL; 5931 5932 if (copy_from_user(¶ms, optval, len)) 5933 return -EFAULT; 5934 5935 /* If an address other than INADDR_ANY is specified, and 5936 * no transport is found, then the request is invalid. 5937 */ 5938 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5939 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5940 params.spp_assoc_id); 5941 if (!trans) { 5942 pr_debug("%s: failed no transport\n", __func__); 5943 return -EINVAL; 5944 } 5945 } 5946 5947 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 5948 * socket is a one to many style socket, and an association 5949 * was not found, then the id was invalid. 5950 */ 5951 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5952 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC && 5953 sctp_style(sk, UDP)) { 5954 pr_debug("%s: failed no association\n", __func__); 5955 return -EINVAL; 5956 } 5957 5958 if (trans) { 5959 /* Fetch transport values. */ 5960 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5961 params.spp_pathmtu = trans->pathmtu; 5962 params.spp_pathmaxrxt = trans->pathmaxrxt; 5963 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5964 5965 /*draft-11 doesn't say what to return in spp_flags*/ 5966 params.spp_flags = trans->param_flags; 5967 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5968 params.spp_ipv6_flowlabel = trans->flowlabel & 5969 SCTP_FLOWLABEL_VAL_MASK; 5970 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5971 } 5972 if (trans->dscp & SCTP_DSCP_SET_MASK) { 5973 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK; 5974 params.spp_flags |= SPP_DSCP; 5975 } 5976 } else if (asoc) { 5977 /* Fetch association values. */ 5978 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5979 params.spp_pathmtu = asoc->pathmtu; 5980 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5981 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5982 5983 /*draft-11 doesn't say what to return in spp_flags*/ 5984 params.spp_flags = asoc->param_flags; 5985 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 5986 params.spp_ipv6_flowlabel = asoc->flowlabel & 5987 SCTP_FLOWLABEL_VAL_MASK; 5988 params.spp_flags |= SPP_IPV6_FLOWLABEL; 5989 } 5990 if (asoc->dscp & SCTP_DSCP_SET_MASK) { 5991 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK; 5992 params.spp_flags |= SPP_DSCP; 5993 } 5994 } else { 5995 /* Fetch socket values. */ 5996 params.spp_hbinterval = sp->hbinterval; 5997 params.spp_pathmtu = sp->pathmtu; 5998 params.spp_sackdelay = sp->sackdelay; 5999 params.spp_pathmaxrxt = sp->pathmaxrxt; 6000 6001 /*draft-11 doesn't say what to return in spp_flags*/ 6002 params.spp_flags = sp->param_flags; 6003 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) { 6004 params.spp_ipv6_flowlabel = sp->flowlabel & 6005 SCTP_FLOWLABEL_VAL_MASK; 6006 params.spp_flags |= SPP_IPV6_FLOWLABEL; 6007 } 6008 if (sp->dscp & SCTP_DSCP_SET_MASK) { 6009 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK; 6010 params.spp_flags |= SPP_DSCP; 6011 } 6012 } 6013 6014 if (copy_to_user(optval, ¶ms, len)) 6015 return -EFAULT; 6016 6017 if (put_user(len, optlen)) 6018 return -EFAULT; 6019 6020 return 0; 6021 } 6022 6023 /* 6024 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 6025 * 6026 * This option will effect the way delayed acks are performed. This 6027 * option allows you to get or set the delayed ack time, in 6028 * milliseconds. It also allows changing the delayed ack frequency. 6029 * Changing the frequency to 1 disables the delayed sack algorithm. If 6030 * the assoc_id is 0, then this sets or gets the endpoints default 6031 * values. If the assoc_id field is non-zero, then the set or get 6032 * effects the specified association for the one to many model (the 6033 * assoc_id field is ignored by the one to one model). Note that if 6034 * sack_delay or sack_freq are 0 when setting this option, then the 6035 * current values will remain unchanged. 6036 * 6037 * struct sctp_sack_info { 6038 * sctp_assoc_t sack_assoc_id; 6039 * uint32_t sack_delay; 6040 * uint32_t sack_freq; 6041 * }; 6042 * 6043 * sack_assoc_id - This parameter, indicates which association the user 6044 * is performing an action upon. Note that if this field's value is 6045 * zero then the endpoints default value is changed (effecting future 6046 * associations only). 6047 * 6048 * sack_delay - This parameter contains the number of milliseconds that 6049 * the user is requesting the delayed ACK timer be set to. Note that 6050 * this value is defined in the standard to be between 200 and 500 6051 * milliseconds. 6052 * 6053 * sack_freq - This parameter contains the number of packets that must 6054 * be received before a sack is sent without waiting for the delay 6055 * timer to expire. The default value for this is 2, setting this 6056 * value to 1 will disable the delayed sack algorithm. 6057 */ 6058 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 6059 char __user *optval, 6060 int __user *optlen) 6061 { 6062 struct sctp_sack_info params; 6063 struct sctp_association *asoc = NULL; 6064 struct sctp_sock *sp = sctp_sk(sk); 6065 6066 if (len >= sizeof(struct sctp_sack_info)) { 6067 len = sizeof(struct sctp_sack_info); 6068 6069 if (copy_from_user(¶ms, optval, len)) 6070 return -EFAULT; 6071 } else if (len == sizeof(struct sctp_assoc_value)) { 6072 pr_warn_ratelimited(DEPRECATED 6073 "%s (pid %d) " 6074 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 6075 "Use struct sctp_sack_info instead\n", 6076 current->comm, task_pid_nr(current)); 6077 if (copy_from_user(¶ms, optval, len)) 6078 return -EFAULT; 6079 } else 6080 return -EINVAL; 6081 6082 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the 6083 * socket is a one to many style socket, and an association 6084 * was not found, then the id was invalid. 6085 */ 6086 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 6087 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC && 6088 sctp_style(sk, UDP)) 6089 return -EINVAL; 6090 6091 if (asoc) { 6092 /* Fetch association values. */ 6093 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 6094 params.sack_delay = jiffies_to_msecs(asoc->sackdelay); 6095 params.sack_freq = asoc->sackfreq; 6096 6097 } else { 6098 params.sack_delay = 0; 6099 params.sack_freq = 1; 6100 } 6101 } else { 6102 /* Fetch socket values. */ 6103 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 6104 params.sack_delay = sp->sackdelay; 6105 params.sack_freq = sp->sackfreq; 6106 } else { 6107 params.sack_delay = 0; 6108 params.sack_freq = 1; 6109 } 6110 } 6111 6112 if (copy_to_user(optval, ¶ms, len)) 6113 return -EFAULT; 6114 6115 if (put_user(len, optlen)) 6116 return -EFAULT; 6117 6118 return 0; 6119 } 6120 6121 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 6122 * 6123 * Applications can specify protocol parameters for the default association 6124 * initialization. The option name argument to setsockopt() and getsockopt() 6125 * is SCTP_INITMSG. 6126 * 6127 * Setting initialization parameters is effective only on an unconnected 6128 * socket (for UDP-style sockets only future associations are effected 6129 * by the change). With TCP-style sockets, this option is inherited by 6130 * sockets derived from a listener socket. 6131 */ 6132 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 6133 { 6134 if (len < sizeof(struct sctp_initmsg)) 6135 return -EINVAL; 6136 len = sizeof(struct sctp_initmsg); 6137 if (put_user(len, optlen)) 6138 return -EFAULT; 6139 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 6140 return -EFAULT; 6141 return 0; 6142 } 6143 6144 6145 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 6146 char __user *optval, int __user *optlen) 6147 { 6148 struct sctp_association *asoc; 6149 int cnt = 0; 6150 struct sctp_getaddrs getaddrs; 6151 struct sctp_transport *from; 6152 void __user *to; 6153 union sctp_addr temp; 6154 struct sctp_sock *sp = sctp_sk(sk); 6155 int addrlen; 6156 size_t space_left; 6157 int bytes_copied; 6158 6159 if (len < sizeof(struct sctp_getaddrs)) 6160 return -EINVAL; 6161 6162 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6163 return -EFAULT; 6164 6165 /* For UDP-style sockets, id specifies the association to query. */ 6166 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6167 if (!asoc) 6168 return -EINVAL; 6169 6170 to = optval + offsetof(struct sctp_getaddrs, addrs); 6171 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6172 6173 list_for_each_entry(from, &asoc->peer.transport_addr_list, 6174 transports) { 6175 memcpy(&temp, &from->ipaddr, sizeof(temp)); 6176 addrlen = sctp_get_pf_specific(sk->sk_family) 6177 ->addr_to_user(sp, &temp); 6178 if (space_left < addrlen) 6179 return -ENOMEM; 6180 if (copy_to_user(to, &temp, addrlen)) 6181 return -EFAULT; 6182 to += addrlen; 6183 cnt++; 6184 space_left -= addrlen; 6185 } 6186 6187 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 6188 return -EFAULT; 6189 bytes_copied = ((char __user *)to) - optval; 6190 if (put_user(bytes_copied, optlen)) 6191 return -EFAULT; 6192 6193 return 0; 6194 } 6195 6196 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 6197 size_t space_left, int *bytes_copied) 6198 { 6199 struct sctp_sockaddr_entry *addr; 6200 union sctp_addr temp; 6201 int cnt = 0; 6202 int addrlen; 6203 struct net *net = sock_net(sk); 6204 6205 rcu_read_lock(); 6206 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 6207 if (!addr->valid) 6208 continue; 6209 6210 if ((PF_INET == sk->sk_family) && 6211 (AF_INET6 == addr->a.sa.sa_family)) 6212 continue; 6213 if ((PF_INET6 == sk->sk_family) && 6214 inet_v6_ipv6only(sk) && 6215 (AF_INET == addr->a.sa.sa_family)) 6216 continue; 6217 memcpy(&temp, &addr->a, sizeof(temp)); 6218 if (!temp.v4.sin_port) 6219 temp.v4.sin_port = htons(port); 6220 6221 addrlen = sctp_get_pf_specific(sk->sk_family) 6222 ->addr_to_user(sctp_sk(sk), &temp); 6223 6224 if (space_left < addrlen) { 6225 cnt = -ENOMEM; 6226 break; 6227 } 6228 memcpy(to, &temp, addrlen); 6229 6230 to += addrlen; 6231 cnt++; 6232 space_left -= addrlen; 6233 *bytes_copied += addrlen; 6234 } 6235 rcu_read_unlock(); 6236 6237 return cnt; 6238 } 6239 6240 6241 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 6242 char __user *optval, int __user *optlen) 6243 { 6244 struct sctp_bind_addr *bp; 6245 struct sctp_association *asoc; 6246 int cnt = 0; 6247 struct sctp_getaddrs getaddrs; 6248 struct sctp_sockaddr_entry *addr; 6249 void __user *to; 6250 union sctp_addr temp; 6251 struct sctp_sock *sp = sctp_sk(sk); 6252 int addrlen; 6253 int err = 0; 6254 size_t space_left; 6255 int bytes_copied = 0; 6256 void *addrs; 6257 void *buf; 6258 6259 if (len < sizeof(struct sctp_getaddrs)) 6260 return -EINVAL; 6261 6262 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 6263 return -EFAULT; 6264 6265 /* 6266 * For UDP-style sockets, id specifies the association to query. 6267 * If the id field is set to the value '' then the locally bound 6268 * addresses are returned without regard to any particular 6269 * association. 6270 */ 6271 if (0 == getaddrs.assoc_id) { 6272 bp = &sctp_sk(sk)->ep->base.bind_addr; 6273 } else { 6274 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 6275 if (!asoc) 6276 return -EINVAL; 6277 bp = &asoc->base.bind_addr; 6278 } 6279 6280 to = optval + offsetof(struct sctp_getaddrs, addrs); 6281 space_left = len - offsetof(struct sctp_getaddrs, addrs); 6282 6283 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 6284 if (!addrs) 6285 return -ENOMEM; 6286 6287 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 6288 * addresses from the global local address list. 6289 */ 6290 if (sctp_list_single_entry(&bp->address_list)) { 6291 addr = list_entry(bp->address_list.next, 6292 struct sctp_sockaddr_entry, list); 6293 if (sctp_is_any(sk, &addr->a)) { 6294 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 6295 space_left, &bytes_copied); 6296 if (cnt < 0) { 6297 err = cnt; 6298 goto out; 6299 } 6300 goto copy_getaddrs; 6301 } 6302 } 6303 6304 buf = addrs; 6305 /* Protection on the bound address list is not needed since 6306 * in the socket option context we hold a socket lock and 6307 * thus the bound address list can't change. 6308 */ 6309 list_for_each_entry(addr, &bp->address_list, list) { 6310 memcpy(&temp, &addr->a, sizeof(temp)); 6311 addrlen = sctp_get_pf_specific(sk->sk_family) 6312 ->addr_to_user(sp, &temp); 6313 if (space_left < addrlen) { 6314 err = -ENOMEM; /*fixme: right error?*/ 6315 goto out; 6316 } 6317 memcpy(buf, &temp, addrlen); 6318 buf += addrlen; 6319 bytes_copied += addrlen; 6320 cnt++; 6321 space_left -= addrlen; 6322 } 6323 6324 copy_getaddrs: 6325 if (copy_to_user(to, addrs, bytes_copied)) { 6326 err = -EFAULT; 6327 goto out; 6328 } 6329 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 6330 err = -EFAULT; 6331 goto out; 6332 } 6333 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 6334 * but we can't change it anymore. 6335 */ 6336 if (put_user(bytes_copied, optlen)) 6337 err = -EFAULT; 6338 out: 6339 kfree(addrs); 6340 return err; 6341 } 6342 6343 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 6344 * 6345 * Requests that the local SCTP stack use the enclosed peer address as 6346 * the association primary. The enclosed address must be one of the 6347 * association peer's addresses. 6348 */ 6349 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 6350 char __user *optval, int __user *optlen) 6351 { 6352 struct sctp_prim prim; 6353 struct sctp_association *asoc; 6354 struct sctp_sock *sp = sctp_sk(sk); 6355 6356 if (len < sizeof(struct sctp_prim)) 6357 return -EINVAL; 6358 6359 len = sizeof(struct sctp_prim); 6360 6361 if (copy_from_user(&prim, optval, len)) 6362 return -EFAULT; 6363 6364 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 6365 if (!asoc) 6366 return -EINVAL; 6367 6368 if (!asoc->peer.primary_path) 6369 return -ENOTCONN; 6370 6371 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 6372 asoc->peer.primary_path->af_specific->sockaddr_len); 6373 6374 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 6375 (union sctp_addr *)&prim.ssp_addr); 6376 6377 if (put_user(len, optlen)) 6378 return -EFAULT; 6379 if (copy_to_user(optval, &prim, len)) 6380 return -EFAULT; 6381 6382 return 0; 6383 } 6384 6385 /* 6386 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 6387 * 6388 * Requests that the local endpoint set the specified Adaptation Layer 6389 * Indication parameter for all future INIT and INIT-ACK exchanges. 6390 */ 6391 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 6392 char __user *optval, int __user *optlen) 6393 { 6394 struct sctp_setadaptation adaptation; 6395 6396 if (len < sizeof(struct sctp_setadaptation)) 6397 return -EINVAL; 6398 6399 len = sizeof(struct sctp_setadaptation); 6400 6401 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 6402 6403 if (put_user(len, optlen)) 6404 return -EFAULT; 6405 if (copy_to_user(optval, &adaptation, len)) 6406 return -EFAULT; 6407 6408 return 0; 6409 } 6410 6411 /* 6412 * 6413 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 6414 * 6415 * Applications that wish to use the sendto() system call may wish to 6416 * specify a default set of parameters that would normally be supplied 6417 * through the inclusion of ancillary data. This socket option allows 6418 * such an application to set the default sctp_sndrcvinfo structure. 6419 6420 6421 * The application that wishes to use this socket option simply passes 6422 * in to this call the sctp_sndrcvinfo structure defined in Section 6423 * 5.2.2) The input parameters accepted by this call include 6424 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 6425 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 6426 * to this call if the caller is using the UDP model. 6427 * 6428 * For getsockopt, it get the default sctp_sndrcvinfo structure. 6429 */ 6430 static int sctp_getsockopt_default_send_param(struct sock *sk, 6431 int len, char __user *optval, 6432 int __user *optlen) 6433 { 6434 struct sctp_sock *sp = sctp_sk(sk); 6435 struct sctp_association *asoc; 6436 struct sctp_sndrcvinfo info; 6437 6438 if (len < sizeof(info)) 6439 return -EINVAL; 6440 6441 len = sizeof(info); 6442 6443 if (copy_from_user(&info, optval, len)) 6444 return -EFAULT; 6445 6446 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 6447 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC && 6448 sctp_style(sk, UDP)) 6449 return -EINVAL; 6450 6451 if (asoc) { 6452 info.sinfo_stream = asoc->default_stream; 6453 info.sinfo_flags = asoc->default_flags; 6454 info.sinfo_ppid = asoc->default_ppid; 6455 info.sinfo_context = asoc->default_context; 6456 info.sinfo_timetolive = asoc->default_timetolive; 6457 } else { 6458 info.sinfo_stream = sp->default_stream; 6459 info.sinfo_flags = sp->default_flags; 6460 info.sinfo_ppid = sp->default_ppid; 6461 info.sinfo_context = sp->default_context; 6462 info.sinfo_timetolive = sp->default_timetolive; 6463 } 6464 6465 if (put_user(len, optlen)) 6466 return -EFAULT; 6467 if (copy_to_user(optval, &info, len)) 6468 return -EFAULT; 6469 6470 return 0; 6471 } 6472 6473 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 6474 * (SCTP_DEFAULT_SNDINFO) 6475 */ 6476 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 6477 char __user *optval, 6478 int __user *optlen) 6479 { 6480 struct sctp_sock *sp = sctp_sk(sk); 6481 struct sctp_association *asoc; 6482 struct sctp_sndinfo info; 6483 6484 if (len < sizeof(info)) 6485 return -EINVAL; 6486 6487 len = sizeof(info); 6488 6489 if (copy_from_user(&info, optval, len)) 6490 return -EFAULT; 6491 6492 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 6493 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC && 6494 sctp_style(sk, UDP)) 6495 return -EINVAL; 6496 6497 if (asoc) { 6498 info.snd_sid = asoc->default_stream; 6499 info.snd_flags = asoc->default_flags; 6500 info.snd_ppid = asoc->default_ppid; 6501 info.snd_context = asoc->default_context; 6502 } else { 6503 info.snd_sid = sp->default_stream; 6504 info.snd_flags = sp->default_flags; 6505 info.snd_ppid = sp->default_ppid; 6506 info.snd_context = sp->default_context; 6507 } 6508 6509 if (put_user(len, optlen)) 6510 return -EFAULT; 6511 if (copy_to_user(optval, &info, len)) 6512 return -EFAULT; 6513 6514 return 0; 6515 } 6516 6517 /* 6518 * 6519 * 7.1.5 SCTP_NODELAY 6520 * 6521 * Turn on/off any Nagle-like algorithm. This means that packets are 6522 * generally sent as soon as possible and no unnecessary delays are 6523 * introduced, at the cost of more packets in the network. Expects an 6524 * integer boolean flag. 6525 */ 6526 6527 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 6528 char __user *optval, int __user *optlen) 6529 { 6530 int val; 6531 6532 if (len < sizeof(int)) 6533 return -EINVAL; 6534 6535 len = sizeof(int); 6536 val = (sctp_sk(sk)->nodelay == 1); 6537 if (put_user(len, optlen)) 6538 return -EFAULT; 6539 if (copy_to_user(optval, &val, len)) 6540 return -EFAULT; 6541 return 0; 6542 } 6543 6544 /* 6545 * 6546 * 7.1.1 SCTP_RTOINFO 6547 * 6548 * The protocol parameters used to initialize and bound retransmission 6549 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 6550 * and modify these parameters. 6551 * All parameters are time values, in milliseconds. A value of 0, when 6552 * modifying the parameters, indicates that the current value should not 6553 * be changed. 6554 * 6555 */ 6556 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 6557 char __user *optval, 6558 int __user *optlen) { 6559 struct sctp_rtoinfo rtoinfo; 6560 struct sctp_association *asoc; 6561 6562 if (len < sizeof (struct sctp_rtoinfo)) 6563 return -EINVAL; 6564 6565 len = sizeof(struct sctp_rtoinfo); 6566 6567 if (copy_from_user(&rtoinfo, optval, len)) 6568 return -EFAULT; 6569 6570 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 6571 6572 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC && 6573 sctp_style(sk, UDP)) 6574 return -EINVAL; 6575 6576 /* Values corresponding to the specific association. */ 6577 if (asoc) { 6578 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 6579 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 6580 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 6581 } else { 6582 /* Values corresponding to the endpoint. */ 6583 struct sctp_sock *sp = sctp_sk(sk); 6584 6585 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 6586 rtoinfo.srto_max = sp->rtoinfo.srto_max; 6587 rtoinfo.srto_min = sp->rtoinfo.srto_min; 6588 } 6589 6590 if (put_user(len, optlen)) 6591 return -EFAULT; 6592 6593 if (copy_to_user(optval, &rtoinfo, len)) 6594 return -EFAULT; 6595 6596 return 0; 6597 } 6598 6599 /* 6600 * 6601 * 7.1.2 SCTP_ASSOCINFO 6602 * 6603 * This option is used to tune the maximum retransmission attempts 6604 * of the association. 6605 * Returns an error if the new association retransmission value is 6606 * greater than the sum of the retransmission value of the peer. 6607 * See [SCTP] for more information. 6608 * 6609 */ 6610 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 6611 char __user *optval, 6612 int __user *optlen) 6613 { 6614 6615 struct sctp_assocparams assocparams; 6616 struct sctp_association *asoc; 6617 struct list_head *pos; 6618 int cnt = 0; 6619 6620 if (len < sizeof (struct sctp_assocparams)) 6621 return -EINVAL; 6622 6623 len = sizeof(struct sctp_assocparams); 6624 6625 if (copy_from_user(&assocparams, optval, len)) 6626 return -EFAULT; 6627 6628 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 6629 6630 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC && 6631 sctp_style(sk, UDP)) 6632 return -EINVAL; 6633 6634 /* Values correspoinding to the specific association */ 6635 if (asoc) { 6636 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 6637 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 6638 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 6639 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 6640 6641 list_for_each(pos, &asoc->peer.transport_addr_list) { 6642 cnt++; 6643 } 6644 6645 assocparams.sasoc_number_peer_destinations = cnt; 6646 } else { 6647 /* Values corresponding to the endpoint */ 6648 struct sctp_sock *sp = sctp_sk(sk); 6649 6650 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 6651 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 6652 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6653 assocparams.sasoc_cookie_life = 6654 sp->assocparams.sasoc_cookie_life; 6655 assocparams.sasoc_number_peer_destinations = 6656 sp->assocparams. 6657 sasoc_number_peer_destinations; 6658 } 6659 6660 if (put_user(len, optlen)) 6661 return -EFAULT; 6662 6663 if (copy_to_user(optval, &assocparams, len)) 6664 return -EFAULT; 6665 6666 return 0; 6667 } 6668 6669 /* 6670 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6671 * 6672 * This socket option is a boolean flag which turns on or off mapped V4 6673 * addresses. If this option is turned on and the socket is type 6674 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6675 * If this option is turned off, then no mapping will be done of V4 6676 * addresses and a user will receive both PF_INET6 and PF_INET type 6677 * addresses on the socket. 6678 */ 6679 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6680 char __user *optval, int __user *optlen) 6681 { 6682 int val; 6683 struct sctp_sock *sp = sctp_sk(sk); 6684 6685 if (len < sizeof(int)) 6686 return -EINVAL; 6687 6688 len = sizeof(int); 6689 val = sp->v4mapped; 6690 if (put_user(len, optlen)) 6691 return -EFAULT; 6692 if (copy_to_user(optval, &val, len)) 6693 return -EFAULT; 6694 6695 return 0; 6696 } 6697 6698 /* 6699 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6700 * (chapter and verse is quoted at sctp_setsockopt_context()) 6701 */ 6702 static int sctp_getsockopt_context(struct sock *sk, int len, 6703 char __user *optval, int __user *optlen) 6704 { 6705 struct sctp_assoc_value params; 6706 struct sctp_association *asoc; 6707 6708 if (len < sizeof(struct sctp_assoc_value)) 6709 return -EINVAL; 6710 6711 len = sizeof(struct sctp_assoc_value); 6712 6713 if (copy_from_user(¶ms, optval, len)) 6714 return -EFAULT; 6715 6716 asoc = sctp_id2assoc(sk, params.assoc_id); 6717 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6718 sctp_style(sk, UDP)) 6719 return -EINVAL; 6720 6721 params.assoc_value = asoc ? asoc->default_rcv_context 6722 : sctp_sk(sk)->default_rcv_context; 6723 6724 if (put_user(len, optlen)) 6725 return -EFAULT; 6726 if (copy_to_user(optval, ¶ms, len)) 6727 return -EFAULT; 6728 6729 return 0; 6730 } 6731 6732 /* 6733 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6734 * This option will get or set the maximum size to put in any outgoing 6735 * SCTP DATA chunk. If a message is larger than this size it will be 6736 * fragmented by SCTP into the specified size. Note that the underlying 6737 * SCTP implementation may fragment into smaller sized chunks when the 6738 * PMTU of the underlying association is smaller than the value set by 6739 * the user. The default value for this option is '' which indicates 6740 * the user is NOT limiting fragmentation and only the PMTU will effect 6741 * SCTP's choice of DATA chunk size. Note also that values set larger 6742 * than the maximum size of an IP datagram will effectively let SCTP 6743 * control fragmentation (i.e. the same as setting this option to 0). 6744 * 6745 * The following structure is used to access and modify this parameter: 6746 * 6747 * struct sctp_assoc_value { 6748 * sctp_assoc_t assoc_id; 6749 * uint32_t assoc_value; 6750 * }; 6751 * 6752 * assoc_id: This parameter is ignored for one-to-one style sockets. 6753 * For one-to-many style sockets this parameter indicates which 6754 * association the user is performing an action upon. Note that if 6755 * this field's value is zero then the endpoints default value is 6756 * changed (effecting future associations only). 6757 * assoc_value: This parameter specifies the maximum size in bytes. 6758 */ 6759 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6760 char __user *optval, int __user *optlen) 6761 { 6762 struct sctp_assoc_value params; 6763 struct sctp_association *asoc; 6764 6765 if (len == sizeof(int)) { 6766 pr_warn_ratelimited(DEPRECATED 6767 "%s (pid %d) " 6768 "Use of int in maxseg socket option.\n" 6769 "Use struct sctp_assoc_value instead\n", 6770 current->comm, task_pid_nr(current)); 6771 params.assoc_id = SCTP_FUTURE_ASSOC; 6772 } else if (len >= sizeof(struct sctp_assoc_value)) { 6773 len = sizeof(struct sctp_assoc_value); 6774 if (copy_from_user(¶ms, optval, len)) 6775 return -EFAULT; 6776 } else 6777 return -EINVAL; 6778 6779 asoc = sctp_id2assoc(sk, params.assoc_id); 6780 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6781 sctp_style(sk, UDP)) 6782 return -EINVAL; 6783 6784 if (asoc) 6785 params.assoc_value = asoc->frag_point; 6786 else 6787 params.assoc_value = sctp_sk(sk)->user_frag; 6788 6789 if (put_user(len, optlen)) 6790 return -EFAULT; 6791 if (len == sizeof(int)) { 6792 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6793 return -EFAULT; 6794 } else { 6795 if (copy_to_user(optval, ¶ms, len)) 6796 return -EFAULT; 6797 } 6798 6799 return 0; 6800 } 6801 6802 /* 6803 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6804 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6805 */ 6806 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6807 char __user *optval, int __user *optlen) 6808 { 6809 int val; 6810 6811 if (len < sizeof(int)) 6812 return -EINVAL; 6813 6814 len = sizeof(int); 6815 6816 val = sctp_sk(sk)->frag_interleave; 6817 if (put_user(len, optlen)) 6818 return -EFAULT; 6819 if (copy_to_user(optval, &val, len)) 6820 return -EFAULT; 6821 6822 return 0; 6823 } 6824 6825 /* 6826 * 7.1.25. Set or Get the sctp partial delivery point 6827 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6828 */ 6829 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6830 char __user *optval, 6831 int __user *optlen) 6832 { 6833 u32 val; 6834 6835 if (len < sizeof(u32)) 6836 return -EINVAL; 6837 6838 len = sizeof(u32); 6839 6840 val = sctp_sk(sk)->pd_point; 6841 if (put_user(len, optlen)) 6842 return -EFAULT; 6843 if (copy_to_user(optval, &val, len)) 6844 return -EFAULT; 6845 6846 return 0; 6847 } 6848 6849 /* 6850 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6851 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6852 */ 6853 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6854 char __user *optval, 6855 int __user *optlen) 6856 { 6857 struct sctp_assoc_value params; 6858 struct sctp_association *asoc; 6859 6860 if (len == sizeof(int)) { 6861 pr_warn_ratelimited(DEPRECATED 6862 "%s (pid %d) " 6863 "Use of int in max_burst socket option.\n" 6864 "Use struct sctp_assoc_value instead\n", 6865 current->comm, task_pid_nr(current)); 6866 params.assoc_id = SCTP_FUTURE_ASSOC; 6867 } else if (len >= sizeof(struct sctp_assoc_value)) { 6868 len = sizeof(struct sctp_assoc_value); 6869 if (copy_from_user(¶ms, optval, len)) 6870 return -EFAULT; 6871 } else 6872 return -EINVAL; 6873 6874 asoc = sctp_id2assoc(sk, params.assoc_id); 6875 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 6876 sctp_style(sk, UDP)) 6877 return -EINVAL; 6878 6879 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst; 6880 6881 if (len == sizeof(int)) { 6882 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6883 return -EFAULT; 6884 } else { 6885 if (copy_to_user(optval, ¶ms, len)) 6886 return -EFAULT; 6887 } 6888 6889 return 0; 6890 6891 } 6892 6893 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6894 char __user *optval, int __user *optlen) 6895 { 6896 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6897 struct sctp_hmacalgo __user *p = (void __user *)optval; 6898 struct sctp_hmac_algo_param *hmacs; 6899 __u16 data_len = 0; 6900 u32 num_idents; 6901 int i; 6902 6903 if (!ep->auth_enable) 6904 return -EACCES; 6905 6906 hmacs = ep->auth_hmacs_list; 6907 data_len = ntohs(hmacs->param_hdr.length) - 6908 sizeof(struct sctp_paramhdr); 6909 6910 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6911 return -EINVAL; 6912 6913 len = sizeof(struct sctp_hmacalgo) + data_len; 6914 num_idents = data_len / sizeof(u16); 6915 6916 if (put_user(len, optlen)) 6917 return -EFAULT; 6918 if (put_user(num_idents, &p->shmac_num_idents)) 6919 return -EFAULT; 6920 for (i = 0; i < num_idents; i++) { 6921 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6922 6923 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6924 return -EFAULT; 6925 } 6926 return 0; 6927 } 6928 6929 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6930 char __user *optval, int __user *optlen) 6931 { 6932 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6933 struct sctp_authkeyid val; 6934 struct sctp_association *asoc; 6935 6936 if (len < sizeof(struct sctp_authkeyid)) 6937 return -EINVAL; 6938 6939 len = sizeof(struct sctp_authkeyid); 6940 if (copy_from_user(&val, optval, len)) 6941 return -EFAULT; 6942 6943 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6944 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6945 return -EINVAL; 6946 6947 if (asoc) { 6948 if (!asoc->peer.auth_capable) 6949 return -EACCES; 6950 val.scact_keynumber = asoc->active_key_id; 6951 } else { 6952 if (!ep->auth_enable) 6953 return -EACCES; 6954 val.scact_keynumber = ep->active_key_id; 6955 } 6956 6957 if (put_user(len, optlen)) 6958 return -EFAULT; 6959 if (copy_to_user(optval, &val, len)) 6960 return -EFAULT; 6961 6962 return 0; 6963 } 6964 6965 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6966 char __user *optval, int __user *optlen) 6967 { 6968 struct sctp_authchunks __user *p = (void __user *)optval; 6969 struct sctp_authchunks val; 6970 struct sctp_association *asoc; 6971 struct sctp_chunks_param *ch; 6972 u32 num_chunks = 0; 6973 char __user *to; 6974 6975 if (len < sizeof(struct sctp_authchunks)) 6976 return -EINVAL; 6977 6978 if (copy_from_user(&val, optval, sizeof(val))) 6979 return -EFAULT; 6980 6981 to = p->gauth_chunks; 6982 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6983 if (!asoc) 6984 return -EINVAL; 6985 6986 if (!asoc->peer.auth_capable) 6987 return -EACCES; 6988 6989 ch = asoc->peer.peer_chunks; 6990 if (!ch) 6991 goto num; 6992 6993 /* See if the user provided enough room for all the data */ 6994 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6995 if (len < num_chunks) 6996 return -EINVAL; 6997 6998 if (copy_to_user(to, ch->chunks, num_chunks)) 6999 return -EFAULT; 7000 num: 7001 len = sizeof(struct sctp_authchunks) + num_chunks; 7002 if (put_user(len, optlen)) 7003 return -EFAULT; 7004 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7005 return -EFAULT; 7006 return 0; 7007 } 7008 7009 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 7010 char __user *optval, int __user *optlen) 7011 { 7012 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7013 struct sctp_authchunks __user *p = (void __user *)optval; 7014 struct sctp_authchunks val; 7015 struct sctp_association *asoc; 7016 struct sctp_chunks_param *ch; 7017 u32 num_chunks = 0; 7018 char __user *to; 7019 7020 if (len < sizeof(struct sctp_authchunks)) 7021 return -EINVAL; 7022 7023 if (copy_from_user(&val, optval, sizeof(val))) 7024 return -EFAULT; 7025 7026 to = p->gauth_chunks; 7027 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 7028 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC && 7029 sctp_style(sk, UDP)) 7030 return -EINVAL; 7031 7032 if (asoc) { 7033 if (!asoc->peer.auth_capable) 7034 return -EACCES; 7035 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 7036 } else { 7037 if (!ep->auth_enable) 7038 return -EACCES; 7039 ch = ep->auth_chunk_list; 7040 } 7041 if (!ch) 7042 goto num; 7043 7044 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 7045 if (len < sizeof(struct sctp_authchunks) + num_chunks) 7046 return -EINVAL; 7047 7048 if (copy_to_user(to, ch->chunks, num_chunks)) 7049 return -EFAULT; 7050 num: 7051 len = sizeof(struct sctp_authchunks) + num_chunks; 7052 if (put_user(len, optlen)) 7053 return -EFAULT; 7054 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 7055 return -EFAULT; 7056 7057 return 0; 7058 } 7059 7060 /* 7061 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 7062 * This option gets the current number of associations that are attached 7063 * to a one-to-many style socket. The option value is an uint32_t. 7064 */ 7065 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 7066 char __user *optval, int __user *optlen) 7067 { 7068 struct sctp_sock *sp = sctp_sk(sk); 7069 struct sctp_association *asoc; 7070 u32 val = 0; 7071 7072 if (sctp_style(sk, TCP)) 7073 return -EOPNOTSUPP; 7074 7075 if (len < sizeof(u32)) 7076 return -EINVAL; 7077 7078 len = sizeof(u32); 7079 7080 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7081 val++; 7082 } 7083 7084 if (put_user(len, optlen)) 7085 return -EFAULT; 7086 if (copy_to_user(optval, &val, len)) 7087 return -EFAULT; 7088 7089 return 0; 7090 } 7091 7092 /* 7093 * 8.1.23 SCTP_AUTO_ASCONF 7094 * See the corresponding setsockopt entry as description 7095 */ 7096 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 7097 char __user *optval, int __user *optlen) 7098 { 7099 int val = 0; 7100 7101 if (len < sizeof(int)) 7102 return -EINVAL; 7103 7104 len = sizeof(int); 7105 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 7106 val = 1; 7107 if (put_user(len, optlen)) 7108 return -EFAULT; 7109 if (copy_to_user(optval, &val, len)) 7110 return -EFAULT; 7111 return 0; 7112 } 7113 7114 /* 7115 * 8.2.6. Get the Current Identifiers of Associations 7116 * (SCTP_GET_ASSOC_ID_LIST) 7117 * 7118 * This option gets the current list of SCTP association identifiers of 7119 * the SCTP associations handled by a one-to-many style socket. 7120 */ 7121 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 7122 char __user *optval, int __user *optlen) 7123 { 7124 struct sctp_sock *sp = sctp_sk(sk); 7125 struct sctp_association *asoc; 7126 struct sctp_assoc_ids *ids; 7127 size_t ids_size; 7128 u32 num = 0; 7129 7130 if (sctp_style(sk, TCP)) 7131 return -EOPNOTSUPP; 7132 7133 if (len < sizeof(struct sctp_assoc_ids)) 7134 return -EINVAL; 7135 7136 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7137 num++; 7138 } 7139 7140 ids_size = struct_size(ids, gaids_assoc_id, num); 7141 if (len < ids_size) 7142 return -EINVAL; 7143 7144 len = ids_size; 7145 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 7146 if (unlikely(!ids)) 7147 return -ENOMEM; 7148 7149 ids->gaids_number_of_ids = num; 7150 num = 0; 7151 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 7152 ids->gaids_assoc_id[num++] = asoc->assoc_id; 7153 } 7154 7155 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 7156 kfree(ids); 7157 return -EFAULT; 7158 } 7159 7160 kfree(ids); 7161 return 0; 7162 } 7163 7164 /* 7165 * SCTP_PEER_ADDR_THLDS 7166 * 7167 * This option allows us to fetch the partially failed threshold for one or all 7168 * transports in an association. See Section 6.1 of: 7169 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 7170 */ 7171 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 7172 char __user *optval, int len, 7173 int __user *optlen, bool v2) 7174 { 7175 struct sctp_paddrthlds_v2 val; 7176 struct sctp_transport *trans; 7177 struct sctp_association *asoc; 7178 int min; 7179 7180 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds); 7181 if (len < min) 7182 return -EINVAL; 7183 len = min; 7184 if (copy_from_user(&val, optval, len)) 7185 return -EFAULT; 7186 7187 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 7188 trans = sctp_addr_id2transport(sk, &val.spt_address, 7189 val.spt_assoc_id); 7190 if (!trans) 7191 return -ENOENT; 7192 7193 val.spt_pathmaxrxt = trans->pathmaxrxt; 7194 val.spt_pathpfthld = trans->pf_retrans; 7195 val.spt_pathcpthld = trans->ps_retrans; 7196 7197 goto out; 7198 } 7199 7200 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 7201 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC && 7202 sctp_style(sk, UDP)) 7203 return -EINVAL; 7204 7205 if (asoc) { 7206 val.spt_pathpfthld = asoc->pf_retrans; 7207 val.spt_pathmaxrxt = asoc->pathmaxrxt; 7208 val.spt_pathcpthld = asoc->ps_retrans; 7209 } else { 7210 struct sctp_sock *sp = sctp_sk(sk); 7211 7212 val.spt_pathpfthld = sp->pf_retrans; 7213 val.spt_pathmaxrxt = sp->pathmaxrxt; 7214 val.spt_pathcpthld = sp->ps_retrans; 7215 } 7216 7217 out: 7218 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 7219 return -EFAULT; 7220 7221 return 0; 7222 } 7223 7224 /* 7225 * SCTP_GET_ASSOC_STATS 7226 * 7227 * This option retrieves local per endpoint statistics. It is modeled 7228 * after OpenSolaris' implementation 7229 */ 7230 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 7231 char __user *optval, 7232 int __user *optlen) 7233 { 7234 struct sctp_assoc_stats sas; 7235 struct sctp_association *asoc = NULL; 7236 7237 /* User must provide at least the assoc id */ 7238 if (len < sizeof(sctp_assoc_t)) 7239 return -EINVAL; 7240 7241 /* Allow the struct to grow and fill in as much as possible */ 7242 len = min_t(size_t, len, sizeof(sas)); 7243 7244 if (copy_from_user(&sas, optval, len)) 7245 return -EFAULT; 7246 7247 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 7248 if (!asoc) 7249 return -EINVAL; 7250 7251 sas.sas_rtxchunks = asoc->stats.rtxchunks; 7252 sas.sas_gapcnt = asoc->stats.gapcnt; 7253 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 7254 sas.sas_osacks = asoc->stats.osacks; 7255 sas.sas_isacks = asoc->stats.isacks; 7256 sas.sas_octrlchunks = asoc->stats.octrlchunks; 7257 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 7258 sas.sas_oodchunks = asoc->stats.oodchunks; 7259 sas.sas_iodchunks = asoc->stats.iodchunks; 7260 sas.sas_ouodchunks = asoc->stats.ouodchunks; 7261 sas.sas_iuodchunks = asoc->stats.iuodchunks; 7262 sas.sas_idupchunks = asoc->stats.idupchunks; 7263 sas.sas_opackets = asoc->stats.opackets; 7264 sas.sas_ipackets = asoc->stats.ipackets; 7265 7266 /* New high max rto observed, will return 0 if not a single 7267 * RTO update took place. obs_rto_ipaddr will be bogus 7268 * in such a case 7269 */ 7270 sas.sas_maxrto = asoc->stats.max_obs_rto; 7271 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 7272 sizeof(struct sockaddr_storage)); 7273 7274 /* Mark beginning of a new observation period */ 7275 asoc->stats.max_obs_rto = asoc->rto_min; 7276 7277 if (put_user(len, optlen)) 7278 return -EFAULT; 7279 7280 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 7281 7282 if (copy_to_user(optval, &sas, len)) 7283 return -EFAULT; 7284 7285 return 0; 7286 } 7287 7288 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 7289 char __user *optval, 7290 int __user *optlen) 7291 { 7292 int val = 0; 7293 7294 if (len < sizeof(int)) 7295 return -EINVAL; 7296 7297 len = sizeof(int); 7298 if (sctp_sk(sk)->recvrcvinfo) 7299 val = 1; 7300 if (put_user(len, optlen)) 7301 return -EFAULT; 7302 if (copy_to_user(optval, &val, len)) 7303 return -EFAULT; 7304 7305 return 0; 7306 } 7307 7308 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 7309 char __user *optval, 7310 int __user *optlen) 7311 { 7312 int val = 0; 7313 7314 if (len < sizeof(int)) 7315 return -EINVAL; 7316 7317 len = sizeof(int); 7318 if (sctp_sk(sk)->recvnxtinfo) 7319 val = 1; 7320 if (put_user(len, optlen)) 7321 return -EFAULT; 7322 if (copy_to_user(optval, &val, len)) 7323 return -EFAULT; 7324 7325 return 0; 7326 } 7327 7328 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 7329 char __user *optval, 7330 int __user *optlen) 7331 { 7332 struct sctp_assoc_value params; 7333 struct sctp_association *asoc; 7334 int retval = -EFAULT; 7335 7336 if (len < sizeof(params)) { 7337 retval = -EINVAL; 7338 goto out; 7339 } 7340 7341 len = sizeof(params); 7342 if (copy_from_user(¶ms, optval, len)) 7343 goto out; 7344 7345 asoc = sctp_id2assoc(sk, params.assoc_id); 7346 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7347 sctp_style(sk, UDP)) { 7348 retval = -EINVAL; 7349 goto out; 7350 } 7351 7352 params.assoc_value = asoc ? asoc->peer.prsctp_capable 7353 : sctp_sk(sk)->ep->prsctp_enable; 7354 7355 if (put_user(len, optlen)) 7356 goto out; 7357 7358 if (copy_to_user(optval, ¶ms, len)) 7359 goto out; 7360 7361 retval = 0; 7362 7363 out: 7364 return retval; 7365 } 7366 7367 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 7368 char __user *optval, 7369 int __user *optlen) 7370 { 7371 struct sctp_default_prinfo info; 7372 struct sctp_association *asoc; 7373 int retval = -EFAULT; 7374 7375 if (len < sizeof(info)) { 7376 retval = -EINVAL; 7377 goto out; 7378 } 7379 7380 len = sizeof(info); 7381 if (copy_from_user(&info, optval, len)) 7382 goto out; 7383 7384 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 7385 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC && 7386 sctp_style(sk, UDP)) { 7387 retval = -EINVAL; 7388 goto out; 7389 } 7390 7391 if (asoc) { 7392 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 7393 info.pr_value = asoc->default_timetolive; 7394 } else { 7395 struct sctp_sock *sp = sctp_sk(sk); 7396 7397 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 7398 info.pr_value = sp->default_timetolive; 7399 } 7400 7401 if (put_user(len, optlen)) 7402 goto out; 7403 7404 if (copy_to_user(optval, &info, len)) 7405 goto out; 7406 7407 retval = 0; 7408 7409 out: 7410 return retval; 7411 } 7412 7413 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 7414 char __user *optval, 7415 int __user *optlen) 7416 { 7417 struct sctp_prstatus params; 7418 struct sctp_association *asoc; 7419 int policy; 7420 int retval = -EINVAL; 7421 7422 if (len < sizeof(params)) 7423 goto out; 7424 7425 len = sizeof(params); 7426 if (copy_from_user(¶ms, optval, len)) { 7427 retval = -EFAULT; 7428 goto out; 7429 } 7430 7431 policy = params.sprstat_policy; 7432 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7433 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7434 goto out; 7435 7436 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7437 if (!asoc) 7438 goto out; 7439 7440 if (policy == SCTP_PR_SCTP_ALL) { 7441 params.sprstat_abandoned_unsent = 0; 7442 params.sprstat_abandoned_sent = 0; 7443 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7444 params.sprstat_abandoned_unsent += 7445 asoc->abandoned_unsent[policy]; 7446 params.sprstat_abandoned_sent += 7447 asoc->abandoned_sent[policy]; 7448 } 7449 } else { 7450 params.sprstat_abandoned_unsent = 7451 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7452 params.sprstat_abandoned_sent = 7453 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7454 } 7455 7456 if (put_user(len, optlen)) { 7457 retval = -EFAULT; 7458 goto out; 7459 } 7460 7461 if (copy_to_user(optval, ¶ms, len)) { 7462 retval = -EFAULT; 7463 goto out; 7464 } 7465 7466 retval = 0; 7467 7468 out: 7469 return retval; 7470 } 7471 7472 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 7473 char __user *optval, 7474 int __user *optlen) 7475 { 7476 struct sctp_stream_out_ext *streamoute; 7477 struct sctp_association *asoc; 7478 struct sctp_prstatus params; 7479 int retval = -EINVAL; 7480 int policy; 7481 7482 if (len < sizeof(params)) 7483 goto out; 7484 7485 len = sizeof(params); 7486 if (copy_from_user(¶ms, optval, len)) { 7487 retval = -EFAULT; 7488 goto out; 7489 } 7490 7491 policy = params.sprstat_policy; 7492 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) || 7493 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK))) 7494 goto out; 7495 7496 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 7497 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 7498 goto out; 7499 7500 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext; 7501 if (!streamoute) { 7502 /* Not allocated yet, means all stats are 0 */ 7503 params.sprstat_abandoned_unsent = 0; 7504 params.sprstat_abandoned_sent = 0; 7505 retval = 0; 7506 goto out; 7507 } 7508 7509 if (policy == SCTP_PR_SCTP_ALL) { 7510 params.sprstat_abandoned_unsent = 0; 7511 params.sprstat_abandoned_sent = 0; 7512 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 7513 params.sprstat_abandoned_unsent += 7514 streamoute->abandoned_unsent[policy]; 7515 params.sprstat_abandoned_sent += 7516 streamoute->abandoned_sent[policy]; 7517 } 7518 } else { 7519 params.sprstat_abandoned_unsent = 7520 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 7521 params.sprstat_abandoned_sent = 7522 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 7523 } 7524 7525 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 7526 retval = -EFAULT; 7527 goto out; 7528 } 7529 7530 retval = 0; 7531 7532 out: 7533 return retval; 7534 } 7535 7536 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 7537 char __user *optval, 7538 int __user *optlen) 7539 { 7540 struct sctp_assoc_value params; 7541 struct sctp_association *asoc; 7542 int retval = -EFAULT; 7543 7544 if (len < sizeof(params)) { 7545 retval = -EINVAL; 7546 goto out; 7547 } 7548 7549 len = sizeof(params); 7550 if (copy_from_user(¶ms, optval, len)) 7551 goto out; 7552 7553 asoc = sctp_id2assoc(sk, params.assoc_id); 7554 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7555 sctp_style(sk, UDP)) { 7556 retval = -EINVAL; 7557 goto out; 7558 } 7559 7560 params.assoc_value = asoc ? asoc->peer.reconf_capable 7561 : sctp_sk(sk)->ep->reconf_enable; 7562 7563 if (put_user(len, optlen)) 7564 goto out; 7565 7566 if (copy_to_user(optval, ¶ms, len)) 7567 goto out; 7568 7569 retval = 0; 7570 7571 out: 7572 return retval; 7573 } 7574 7575 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 7576 char __user *optval, 7577 int __user *optlen) 7578 { 7579 struct sctp_assoc_value params; 7580 struct sctp_association *asoc; 7581 int retval = -EFAULT; 7582 7583 if (len < sizeof(params)) { 7584 retval = -EINVAL; 7585 goto out; 7586 } 7587 7588 len = sizeof(params); 7589 if (copy_from_user(¶ms, optval, len)) 7590 goto out; 7591 7592 asoc = sctp_id2assoc(sk, params.assoc_id); 7593 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7594 sctp_style(sk, UDP)) { 7595 retval = -EINVAL; 7596 goto out; 7597 } 7598 7599 params.assoc_value = asoc ? asoc->strreset_enable 7600 : sctp_sk(sk)->ep->strreset_enable; 7601 7602 if (put_user(len, optlen)) 7603 goto out; 7604 7605 if (copy_to_user(optval, ¶ms, len)) 7606 goto out; 7607 7608 retval = 0; 7609 7610 out: 7611 return retval; 7612 } 7613 7614 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 7615 char __user *optval, 7616 int __user *optlen) 7617 { 7618 struct sctp_assoc_value params; 7619 struct sctp_association *asoc; 7620 int retval = -EFAULT; 7621 7622 if (len < sizeof(params)) { 7623 retval = -EINVAL; 7624 goto out; 7625 } 7626 7627 len = sizeof(params); 7628 if (copy_from_user(¶ms, optval, len)) 7629 goto out; 7630 7631 asoc = sctp_id2assoc(sk, params.assoc_id); 7632 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7633 sctp_style(sk, UDP)) { 7634 retval = -EINVAL; 7635 goto out; 7636 } 7637 7638 params.assoc_value = asoc ? sctp_sched_get_sched(asoc) 7639 : sctp_sk(sk)->default_ss; 7640 7641 if (put_user(len, optlen)) 7642 goto out; 7643 7644 if (copy_to_user(optval, ¶ms, len)) 7645 goto out; 7646 7647 retval = 0; 7648 7649 out: 7650 return retval; 7651 } 7652 7653 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 7654 char __user *optval, 7655 int __user *optlen) 7656 { 7657 struct sctp_stream_value params; 7658 struct sctp_association *asoc; 7659 int retval = -EFAULT; 7660 7661 if (len < sizeof(params)) { 7662 retval = -EINVAL; 7663 goto out; 7664 } 7665 7666 len = sizeof(params); 7667 if (copy_from_user(¶ms, optval, len)) 7668 goto out; 7669 7670 asoc = sctp_id2assoc(sk, params.assoc_id); 7671 if (!asoc) { 7672 retval = -EINVAL; 7673 goto out; 7674 } 7675 7676 retval = sctp_sched_get_value(asoc, params.stream_id, 7677 ¶ms.stream_value); 7678 if (retval) 7679 goto out; 7680 7681 if (put_user(len, optlen)) { 7682 retval = -EFAULT; 7683 goto out; 7684 } 7685 7686 if (copy_to_user(optval, ¶ms, len)) { 7687 retval = -EFAULT; 7688 goto out; 7689 } 7690 7691 out: 7692 return retval; 7693 } 7694 7695 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7696 char __user *optval, 7697 int __user *optlen) 7698 { 7699 struct sctp_assoc_value params; 7700 struct sctp_association *asoc; 7701 int retval = -EFAULT; 7702 7703 if (len < sizeof(params)) { 7704 retval = -EINVAL; 7705 goto out; 7706 } 7707 7708 len = sizeof(params); 7709 if (copy_from_user(¶ms, optval, len)) 7710 goto out; 7711 7712 asoc = sctp_id2assoc(sk, params.assoc_id); 7713 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7714 sctp_style(sk, UDP)) { 7715 retval = -EINVAL; 7716 goto out; 7717 } 7718 7719 params.assoc_value = asoc ? asoc->peer.intl_capable 7720 : sctp_sk(sk)->ep->intl_enable; 7721 7722 if (put_user(len, optlen)) 7723 goto out; 7724 7725 if (copy_to_user(optval, ¶ms, len)) 7726 goto out; 7727 7728 retval = 0; 7729 7730 out: 7731 return retval; 7732 } 7733 7734 static int sctp_getsockopt_reuse_port(struct sock *sk, int len, 7735 char __user *optval, 7736 int __user *optlen) 7737 { 7738 int val; 7739 7740 if (len < sizeof(int)) 7741 return -EINVAL; 7742 7743 len = sizeof(int); 7744 val = sctp_sk(sk)->reuse; 7745 if (put_user(len, optlen)) 7746 return -EFAULT; 7747 7748 if (copy_to_user(optval, &val, len)) 7749 return -EFAULT; 7750 7751 return 0; 7752 } 7753 7754 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval, 7755 int __user *optlen) 7756 { 7757 struct sctp_association *asoc; 7758 struct sctp_event param; 7759 __u16 subscribe; 7760 7761 if (len < sizeof(param)) 7762 return -EINVAL; 7763 7764 len = sizeof(param); 7765 if (copy_from_user(¶m, optval, len)) 7766 return -EFAULT; 7767 7768 if (param.se_type < SCTP_SN_TYPE_BASE || 7769 param.se_type > SCTP_SN_TYPE_MAX) 7770 return -EINVAL; 7771 7772 asoc = sctp_id2assoc(sk, param.se_assoc_id); 7773 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC && 7774 sctp_style(sk, UDP)) 7775 return -EINVAL; 7776 7777 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe; 7778 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type); 7779 7780 if (put_user(len, optlen)) 7781 return -EFAULT; 7782 7783 if (copy_to_user(optval, ¶m, len)) 7784 return -EFAULT; 7785 7786 return 0; 7787 } 7788 7789 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len, 7790 char __user *optval, 7791 int __user *optlen) 7792 { 7793 struct sctp_assoc_value params; 7794 struct sctp_association *asoc; 7795 int retval = -EFAULT; 7796 7797 if (len < sizeof(params)) { 7798 retval = -EINVAL; 7799 goto out; 7800 } 7801 7802 len = sizeof(params); 7803 if (copy_from_user(¶ms, optval, len)) 7804 goto out; 7805 7806 asoc = sctp_id2assoc(sk, params.assoc_id); 7807 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7808 sctp_style(sk, UDP)) { 7809 retval = -EINVAL; 7810 goto out; 7811 } 7812 7813 params.assoc_value = asoc ? asoc->peer.asconf_capable 7814 : sctp_sk(sk)->ep->asconf_enable; 7815 7816 if (put_user(len, optlen)) 7817 goto out; 7818 7819 if (copy_to_user(optval, ¶ms, len)) 7820 goto out; 7821 7822 retval = 0; 7823 7824 out: 7825 return retval; 7826 } 7827 7828 static int sctp_getsockopt_auth_supported(struct sock *sk, int len, 7829 char __user *optval, 7830 int __user *optlen) 7831 { 7832 struct sctp_assoc_value params; 7833 struct sctp_association *asoc; 7834 int retval = -EFAULT; 7835 7836 if (len < sizeof(params)) { 7837 retval = -EINVAL; 7838 goto out; 7839 } 7840 7841 len = sizeof(params); 7842 if (copy_from_user(¶ms, optval, len)) 7843 goto out; 7844 7845 asoc = sctp_id2assoc(sk, params.assoc_id); 7846 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7847 sctp_style(sk, UDP)) { 7848 retval = -EINVAL; 7849 goto out; 7850 } 7851 7852 params.assoc_value = asoc ? asoc->peer.auth_capable 7853 : sctp_sk(sk)->ep->auth_enable; 7854 7855 if (put_user(len, optlen)) 7856 goto out; 7857 7858 if (copy_to_user(optval, ¶ms, len)) 7859 goto out; 7860 7861 retval = 0; 7862 7863 out: 7864 return retval; 7865 } 7866 7867 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len, 7868 char __user *optval, 7869 int __user *optlen) 7870 { 7871 struct sctp_assoc_value params; 7872 struct sctp_association *asoc; 7873 int retval = -EFAULT; 7874 7875 if (len < sizeof(params)) { 7876 retval = -EINVAL; 7877 goto out; 7878 } 7879 7880 len = sizeof(params); 7881 if (copy_from_user(¶ms, optval, len)) 7882 goto out; 7883 7884 asoc = sctp_id2assoc(sk, params.assoc_id); 7885 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7886 sctp_style(sk, UDP)) { 7887 retval = -EINVAL; 7888 goto out; 7889 } 7890 7891 params.assoc_value = asoc ? asoc->peer.ecn_capable 7892 : sctp_sk(sk)->ep->ecn_enable; 7893 7894 if (put_user(len, optlen)) 7895 goto out; 7896 7897 if (copy_to_user(optval, ¶ms, len)) 7898 goto out; 7899 7900 retval = 0; 7901 7902 out: 7903 return retval; 7904 } 7905 7906 static int sctp_getsockopt_pf_expose(struct sock *sk, int len, 7907 char __user *optval, 7908 int __user *optlen) 7909 { 7910 struct sctp_assoc_value params; 7911 struct sctp_association *asoc; 7912 int retval = -EFAULT; 7913 7914 if (len < sizeof(params)) { 7915 retval = -EINVAL; 7916 goto out; 7917 } 7918 7919 len = sizeof(params); 7920 if (copy_from_user(¶ms, optval, len)) 7921 goto out; 7922 7923 asoc = sctp_id2assoc(sk, params.assoc_id); 7924 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC && 7925 sctp_style(sk, UDP)) { 7926 retval = -EINVAL; 7927 goto out; 7928 } 7929 7930 params.assoc_value = asoc ? asoc->pf_expose 7931 : sctp_sk(sk)->pf_expose; 7932 7933 if (put_user(len, optlen)) 7934 goto out; 7935 7936 if (copy_to_user(optval, ¶ms, len)) 7937 goto out; 7938 7939 retval = 0; 7940 7941 out: 7942 return retval; 7943 } 7944 7945 static int sctp_getsockopt_encap_port(struct sock *sk, int len, 7946 char __user *optval, int __user *optlen) 7947 { 7948 struct sctp_association *asoc; 7949 struct sctp_udpencaps encap; 7950 struct sctp_transport *t; 7951 __be16 encap_port; 7952 7953 if (len < sizeof(encap)) 7954 return -EINVAL; 7955 7956 len = sizeof(encap); 7957 if (copy_from_user(&encap, optval, len)) 7958 return -EFAULT; 7959 7960 /* If an address other than INADDR_ANY is specified, and 7961 * no transport is found, then the request is invalid. 7962 */ 7963 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) { 7964 t = sctp_addr_id2transport(sk, &encap.sue_address, 7965 encap.sue_assoc_id); 7966 if (!t) { 7967 pr_debug("%s: failed no transport\n", __func__); 7968 return -EINVAL; 7969 } 7970 7971 encap_port = t->encap_port; 7972 goto out; 7973 } 7974 7975 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 7976 * socket is a one to many style socket, and an association 7977 * was not found, then the id was invalid. 7978 */ 7979 asoc = sctp_id2assoc(sk, encap.sue_assoc_id); 7980 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC && 7981 sctp_style(sk, UDP)) { 7982 pr_debug("%s: failed no association\n", __func__); 7983 return -EINVAL; 7984 } 7985 7986 if (asoc) { 7987 encap_port = asoc->encap_port; 7988 goto out; 7989 } 7990 7991 encap_port = sctp_sk(sk)->encap_port; 7992 7993 out: 7994 encap.sue_port = (__force uint16_t)encap_port; 7995 if (copy_to_user(optval, &encap, len)) 7996 return -EFAULT; 7997 7998 if (put_user(len, optlen)) 7999 return -EFAULT; 8000 8001 return 0; 8002 } 8003 8004 static int sctp_getsockopt_probe_interval(struct sock *sk, int len, 8005 char __user *optval, 8006 int __user *optlen) 8007 { 8008 struct sctp_probeinterval params; 8009 struct sctp_association *asoc; 8010 struct sctp_transport *t; 8011 __u32 probe_interval; 8012 8013 if (len < sizeof(params)) 8014 return -EINVAL; 8015 8016 len = sizeof(params); 8017 if (copy_from_user(¶ms, optval, len)) 8018 return -EFAULT; 8019 8020 /* If an address other than INADDR_ANY is specified, and 8021 * no transport is found, then the request is invalid. 8022 */ 8023 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) { 8024 t = sctp_addr_id2transport(sk, ¶ms.spi_address, 8025 params.spi_assoc_id); 8026 if (!t) { 8027 pr_debug("%s: failed no transport\n", __func__); 8028 return -EINVAL; 8029 } 8030 8031 probe_interval = jiffies_to_msecs(t->probe_interval); 8032 goto out; 8033 } 8034 8035 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the 8036 * socket is a one to many style socket, and an association 8037 * was not found, then the id was invalid. 8038 */ 8039 asoc = sctp_id2assoc(sk, params.spi_assoc_id); 8040 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC && 8041 sctp_style(sk, UDP)) { 8042 pr_debug("%s: failed no association\n", __func__); 8043 return -EINVAL; 8044 } 8045 8046 if (asoc) { 8047 probe_interval = jiffies_to_msecs(asoc->probe_interval); 8048 goto out; 8049 } 8050 8051 probe_interval = sctp_sk(sk)->probe_interval; 8052 8053 out: 8054 params.spi_interval = probe_interval; 8055 if (copy_to_user(optval, ¶ms, len)) 8056 return -EFAULT; 8057 8058 if (put_user(len, optlen)) 8059 return -EFAULT; 8060 8061 return 0; 8062 } 8063 8064 static int sctp_getsockopt(struct sock *sk, int level, int optname, 8065 char __user *optval, int __user *optlen) 8066 { 8067 int retval = 0; 8068 int len; 8069 8070 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 8071 8072 /* I can hardly begin to describe how wrong this is. This is 8073 * so broken as to be worse than useless. The API draft 8074 * REALLY is NOT helpful here... I am not convinced that the 8075 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 8076 * are at all well-founded. 8077 */ 8078 if (level != SOL_SCTP) { 8079 struct sctp_af *af = sctp_sk(sk)->pf->af; 8080 8081 retval = af->getsockopt(sk, level, optname, optval, optlen); 8082 return retval; 8083 } 8084 8085 if (get_user(len, optlen)) 8086 return -EFAULT; 8087 8088 if (len < 0) 8089 return -EINVAL; 8090 8091 lock_sock(sk); 8092 8093 switch (optname) { 8094 case SCTP_STATUS: 8095 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 8096 break; 8097 case SCTP_DISABLE_FRAGMENTS: 8098 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 8099 optlen); 8100 break; 8101 case SCTP_EVENTS: 8102 retval = sctp_getsockopt_events(sk, len, optval, optlen); 8103 break; 8104 case SCTP_AUTOCLOSE: 8105 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 8106 break; 8107 case SCTP_SOCKOPT_PEELOFF: 8108 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 8109 break; 8110 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8111 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 8112 break; 8113 case SCTP_PEER_ADDR_PARAMS: 8114 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 8115 optlen); 8116 break; 8117 case SCTP_DELAYED_SACK: 8118 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 8119 optlen); 8120 break; 8121 case SCTP_INITMSG: 8122 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 8123 break; 8124 case SCTP_GET_PEER_ADDRS: 8125 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 8126 optlen); 8127 break; 8128 case SCTP_GET_LOCAL_ADDRS: 8129 retval = sctp_getsockopt_local_addrs(sk, len, optval, 8130 optlen); 8131 break; 8132 case SCTP_SOCKOPT_CONNECTX3: 8133 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 8134 break; 8135 case SCTP_DEFAULT_SEND_PARAM: 8136 retval = sctp_getsockopt_default_send_param(sk, len, 8137 optval, optlen); 8138 break; 8139 case SCTP_DEFAULT_SNDINFO: 8140 retval = sctp_getsockopt_default_sndinfo(sk, len, 8141 optval, optlen); 8142 break; 8143 case SCTP_PRIMARY_ADDR: 8144 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 8145 break; 8146 case SCTP_NODELAY: 8147 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 8148 break; 8149 case SCTP_RTOINFO: 8150 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 8151 break; 8152 case SCTP_ASSOCINFO: 8153 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 8154 break; 8155 case SCTP_I_WANT_MAPPED_V4_ADDR: 8156 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 8157 break; 8158 case SCTP_MAXSEG: 8159 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 8160 break; 8161 case SCTP_GET_PEER_ADDR_INFO: 8162 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 8163 optlen); 8164 break; 8165 case SCTP_ADAPTATION_LAYER: 8166 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 8167 optlen); 8168 break; 8169 case SCTP_CONTEXT: 8170 retval = sctp_getsockopt_context(sk, len, optval, optlen); 8171 break; 8172 case SCTP_FRAGMENT_INTERLEAVE: 8173 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 8174 optlen); 8175 break; 8176 case SCTP_PARTIAL_DELIVERY_POINT: 8177 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 8178 optlen); 8179 break; 8180 case SCTP_MAX_BURST: 8181 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 8182 break; 8183 case SCTP_AUTH_KEY: 8184 case SCTP_AUTH_CHUNK: 8185 case SCTP_AUTH_DELETE_KEY: 8186 case SCTP_AUTH_DEACTIVATE_KEY: 8187 retval = -EOPNOTSUPP; 8188 break; 8189 case SCTP_HMAC_IDENT: 8190 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 8191 break; 8192 case SCTP_AUTH_ACTIVE_KEY: 8193 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 8194 break; 8195 case SCTP_PEER_AUTH_CHUNKS: 8196 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 8197 optlen); 8198 break; 8199 case SCTP_LOCAL_AUTH_CHUNKS: 8200 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 8201 optlen); 8202 break; 8203 case SCTP_GET_ASSOC_NUMBER: 8204 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 8205 break; 8206 case SCTP_GET_ASSOC_ID_LIST: 8207 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 8208 break; 8209 case SCTP_AUTO_ASCONF: 8210 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 8211 break; 8212 case SCTP_PEER_ADDR_THLDS: 8213 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8214 optlen, false); 8215 break; 8216 case SCTP_PEER_ADDR_THLDS_V2: 8217 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, 8218 optlen, true); 8219 break; 8220 case SCTP_GET_ASSOC_STATS: 8221 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 8222 break; 8223 case SCTP_RECVRCVINFO: 8224 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 8225 break; 8226 case SCTP_RECVNXTINFO: 8227 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 8228 break; 8229 case SCTP_PR_SUPPORTED: 8230 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 8231 break; 8232 case SCTP_DEFAULT_PRINFO: 8233 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 8234 optlen); 8235 break; 8236 case SCTP_PR_ASSOC_STATUS: 8237 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 8238 optlen); 8239 break; 8240 case SCTP_PR_STREAM_STATUS: 8241 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 8242 optlen); 8243 break; 8244 case SCTP_RECONFIG_SUPPORTED: 8245 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 8246 optlen); 8247 break; 8248 case SCTP_ENABLE_STREAM_RESET: 8249 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 8250 optlen); 8251 break; 8252 case SCTP_STREAM_SCHEDULER: 8253 retval = sctp_getsockopt_scheduler(sk, len, optval, 8254 optlen); 8255 break; 8256 case SCTP_STREAM_SCHEDULER_VALUE: 8257 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 8258 optlen); 8259 break; 8260 case SCTP_INTERLEAVING_SUPPORTED: 8261 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 8262 optlen); 8263 break; 8264 case SCTP_REUSE_PORT: 8265 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen); 8266 break; 8267 case SCTP_EVENT: 8268 retval = sctp_getsockopt_event(sk, len, optval, optlen); 8269 break; 8270 case SCTP_ASCONF_SUPPORTED: 8271 retval = sctp_getsockopt_asconf_supported(sk, len, optval, 8272 optlen); 8273 break; 8274 case SCTP_AUTH_SUPPORTED: 8275 retval = sctp_getsockopt_auth_supported(sk, len, optval, 8276 optlen); 8277 break; 8278 case SCTP_ECN_SUPPORTED: 8279 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen); 8280 break; 8281 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE: 8282 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen); 8283 break; 8284 case SCTP_REMOTE_UDP_ENCAPS_PORT: 8285 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen); 8286 break; 8287 case SCTP_PLPMTUD_PROBE_INTERVAL: 8288 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen); 8289 break; 8290 default: 8291 retval = -ENOPROTOOPT; 8292 break; 8293 } 8294 8295 release_sock(sk); 8296 return retval; 8297 } 8298 8299 static bool sctp_bpf_bypass_getsockopt(int level, int optname) 8300 { 8301 if (level == SOL_SCTP) { 8302 switch (optname) { 8303 case SCTP_SOCKOPT_PEELOFF: 8304 case SCTP_SOCKOPT_PEELOFF_FLAGS: 8305 case SCTP_SOCKOPT_CONNECTX3: 8306 return true; 8307 default: 8308 return false; 8309 } 8310 } 8311 8312 return false; 8313 } 8314 8315 static int sctp_hash(struct sock *sk) 8316 { 8317 /* STUB */ 8318 return 0; 8319 } 8320 8321 static void sctp_unhash(struct sock *sk) 8322 { 8323 /* STUB */ 8324 } 8325 8326 /* Check if port is acceptable. Possibly find first available port. 8327 * 8328 * The port hash table (contained in the 'global' SCTP protocol storage 8329 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 8330 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 8331 * list (the list number is the port number hashed out, so as you 8332 * would expect from a hash function, all the ports in a given list have 8333 * such a number that hashes out to the same list number; you were 8334 * expecting that, right?); so each list has a set of ports, with a 8335 * link to the socket (struct sock) that uses it, the port number and 8336 * a fastreuse flag (FIXME: NPI ipg). 8337 */ 8338 static struct sctp_bind_bucket *sctp_bucket_create( 8339 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 8340 8341 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 8342 { 8343 struct sctp_sock *sp = sctp_sk(sk); 8344 bool reuse = (sk->sk_reuse || sp->reuse); 8345 struct sctp_bind_hashbucket *head; /* hash list */ 8346 struct net *net = sock_net(sk); 8347 kuid_t uid = sock_i_uid(sk); 8348 struct sctp_bind_bucket *pp; 8349 unsigned short snum; 8350 int ret; 8351 8352 snum = ntohs(addr->v4.sin_port); 8353 8354 pr_debug("%s: begins, snum:%d\n", __func__, snum); 8355 8356 if (snum == 0) { 8357 /* Search for an available port. */ 8358 int low, high, remaining, index; 8359 unsigned int rover; 8360 8361 inet_sk_get_local_port_range(sk, &low, &high); 8362 remaining = (high - low) + 1; 8363 rover = get_random_u32_below(remaining) + low; 8364 8365 do { 8366 rover++; 8367 if ((rover < low) || (rover > high)) 8368 rover = low; 8369 if (inet_is_local_reserved_port(net, rover)) 8370 continue; 8371 index = sctp_phashfn(net, rover); 8372 head = &sctp_port_hashtable[index]; 8373 spin_lock_bh(&head->lock); 8374 sctp_for_each_hentry(pp, &head->chain) 8375 if ((pp->port == rover) && 8376 net_eq(net, pp->net)) 8377 goto next; 8378 break; 8379 next: 8380 spin_unlock_bh(&head->lock); 8381 cond_resched(); 8382 } while (--remaining > 0); 8383 8384 /* Exhausted local port range during search? */ 8385 ret = 1; 8386 if (remaining <= 0) 8387 return ret; 8388 8389 /* OK, here is the one we will use. HEAD (the port 8390 * hash table list entry) is non-NULL and we hold it's 8391 * mutex. 8392 */ 8393 snum = rover; 8394 } else { 8395 /* We are given an specific port number; we verify 8396 * that it is not being used. If it is used, we will 8397 * exahust the search in the hash list corresponding 8398 * to the port number (snum) - we detect that with the 8399 * port iterator, pp being NULL. 8400 */ 8401 head = &sctp_port_hashtable[sctp_phashfn(net, snum)]; 8402 spin_lock_bh(&head->lock); 8403 sctp_for_each_hentry(pp, &head->chain) { 8404 if ((pp->port == snum) && net_eq(pp->net, net)) 8405 goto pp_found; 8406 } 8407 } 8408 pp = NULL; 8409 goto pp_not_found; 8410 pp_found: 8411 if (!hlist_empty(&pp->owner)) { 8412 /* We had a port hash table hit - there is an 8413 * available port (pp != NULL) and it is being 8414 * used by other socket (pp->owner not empty); that other 8415 * socket is going to be sk2. 8416 */ 8417 struct sock *sk2; 8418 8419 pr_debug("%s: found a possible match\n", __func__); 8420 8421 if ((pp->fastreuse && reuse && 8422 sk->sk_state != SCTP_SS_LISTENING) || 8423 (pp->fastreuseport && sk->sk_reuseport && 8424 uid_eq(pp->fastuid, uid))) 8425 goto success; 8426 8427 /* Run through the list of sockets bound to the port 8428 * (pp->port) [via the pointers bind_next and 8429 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 8430 * we get the endpoint they describe and run through 8431 * the endpoint's list of IP (v4 or v6) addresses, 8432 * comparing each of the addresses with the address of 8433 * the socket sk. If we find a match, then that means 8434 * that this port/socket (sk) combination are already 8435 * in an endpoint. 8436 */ 8437 sk_for_each_bound(sk2, &pp->owner) { 8438 int bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 8439 struct sctp_sock *sp2 = sctp_sk(sk2); 8440 struct sctp_endpoint *ep2 = sp2->ep; 8441 8442 if (sk == sk2 || 8443 (reuse && (sk2->sk_reuse || sp2->reuse) && 8444 sk2->sk_state != SCTP_SS_LISTENING) || 8445 (sk->sk_reuseport && sk2->sk_reuseport && 8446 uid_eq(uid, sock_i_uid(sk2)))) 8447 continue; 8448 8449 if ((!sk->sk_bound_dev_if || !bound_dev_if2 || 8450 sk->sk_bound_dev_if == bound_dev_if2) && 8451 sctp_bind_addr_conflict(&ep2->base.bind_addr, 8452 addr, sp2, sp)) { 8453 ret = 1; 8454 goto fail_unlock; 8455 } 8456 } 8457 8458 pr_debug("%s: found a match\n", __func__); 8459 } 8460 pp_not_found: 8461 /* If there was a hash table miss, create a new port. */ 8462 ret = 1; 8463 if (!pp && !(pp = sctp_bucket_create(head, net, snum))) 8464 goto fail_unlock; 8465 8466 /* In either case (hit or miss), make sure fastreuse is 1 only 8467 * if sk->sk_reuse is too (that is, if the caller requested 8468 * SO_REUSEADDR on this socket -sk-). 8469 */ 8470 if (hlist_empty(&pp->owner)) { 8471 if (reuse && sk->sk_state != SCTP_SS_LISTENING) 8472 pp->fastreuse = 1; 8473 else 8474 pp->fastreuse = 0; 8475 8476 if (sk->sk_reuseport) { 8477 pp->fastreuseport = 1; 8478 pp->fastuid = uid; 8479 } else { 8480 pp->fastreuseport = 0; 8481 } 8482 } else { 8483 if (pp->fastreuse && 8484 (!reuse || sk->sk_state == SCTP_SS_LISTENING)) 8485 pp->fastreuse = 0; 8486 8487 if (pp->fastreuseport && 8488 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid))) 8489 pp->fastreuseport = 0; 8490 } 8491 8492 /* We are set, so fill up all the data in the hash table 8493 * entry, tie the socket list information with the rest of the 8494 * sockets FIXME: Blurry, NPI (ipg). 8495 */ 8496 success: 8497 if (!sp->bind_hash) { 8498 inet_sk(sk)->inet_num = snum; 8499 sk_add_bind_node(sk, &pp->owner); 8500 sp->bind_hash = pp; 8501 } 8502 ret = 0; 8503 8504 fail_unlock: 8505 spin_unlock_bh(&head->lock); 8506 return ret; 8507 } 8508 8509 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 8510 * port is requested. 8511 */ 8512 static int sctp_get_port(struct sock *sk, unsigned short snum) 8513 { 8514 union sctp_addr addr; 8515 struct sctp_af *af = sctp_sk(sk)->pf->af; 8516 8517 /* Set up a dummy address struct from the sk. */ 8518 af->from_sk(&addr, sk); 8519 addr.v4.sin_port = htons(snum); 8520 8521 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 8522 return sctp_get_port_local(sk, &addr); 8523 } 8524 8525 /* 8526 * Move a socket to LISTENING state. 8527 */ 8528 static int sctp_listen_start(struct sock *sk, int backlog) 8529 { 8530 struct sctp_sock *sp = sctp_sk(sk); 8531 struct sctp_endpoint *ep = sp->ep; 8532 struct crypto_shash *tfm = NULL; 8533 char alg[32]; 8534 int err; 8535 8536 /* Allocate HMAC for generating cookie. */ 8537 if (!sp->hmac && sp->sctp_hmac_alg) { 8538 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 8539 tfm = crypto_alloc_shash(alg, 0, 0); 8540 if (IS_ERR(tfm)) { 8541 net_info_ratelimited("failed to load transform for %s: %ld\n", 8542 sp->sctp_hmac_alg, PTR_ERR(tfm)); 8543 return -ENOSYS; 8544 } 8545 sctp_sk(sk)->hmac = tfm; 8546 } 8547 8548 /* 8549 * If a bind() or sctp_bindx() is not called prior to a listen() 8550 * call that allows new associations to be accepted, the system 8551 * picks an ephemeral port and will choose an address set equivalent 8552 * to binding with a wildcard address. 8553 * 8554 * This is not currently spelled out in the SCTP sockets 8555 * extensions draft, but follows the practice as seen in TCP 8556 * sockets. 8557 * 8558 */ 8559 inet_sk_set_state(sk, SCTP_SS_LISTENING); 8560 if (!ep->base.bind_addr.port) { 8561 if (sctp_autobind(sk)) { 8562 err = -EAGAIN; 8563 goto err; 8564 } 8565 } else { 8566 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 8567 err = -EADDRINUSE; 8568 goto err; 8569 } 8570 } 8571 8572 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8573 err = sctp_hash_endpoint(ep); 8574 if (err) 8575 goto err; 8576 8577 return 0; 8578 err: 8579 inet_sk_set_state(sk, SCTP_SS_CLOSED); 8580 return err; 8581 } 8582 8583 /* 8584 * 4.1.3 / 5.1.3 listen() 8585 * 8586 * By default, new associations are not accepted for UDP style sockets. 8587 * An application uses listen() to mark a socket as being able to 8588 * accept new associations. 8589 * 8590 * On TCP style sockets, applications use listen() to ready the SCTP 8591 * endpoint for accepting inbound associations. 8592 * 8593 * On both types of endpoints a backlog of '' disables listening. 8594 * 8595 * Move a socket to LISTENING state. 8596 */ 8597 int sctp_inet_listen(struct socket *sock, int backlog) 8598 { 8599 struct sock *sk = sock->sk; 8600 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 8601 int err = -EINVAL; 8602 8603 if (unlikely(backlog < 0)) 8604 return err; 8605 8606 lock_sock(sk); 8607 8608 /* Peeled-off sockets are not allowed to listen(). */ 8609 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 8610 goto out; 8611 8612 if (sock->state != SS_UNCONNECTED) 8613 goto out; 8614 8615 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 8616 goto out; 8617 8618 /* If backlog is zero, disable listening. */ 8619 if (!backlog) { 8620 if (sctp_sstate(sk, CLOSED)) 8621 goto out; 8622 8623 err = 0; 8624 sctp_unhash_endpoint(ep); 8625 sk->sk_state = SCTP_SS_CLOSED; 8626 if (sk->sk_reuse || sctp_sk(sk)->reuse) 8627 sctp_sk(sk)->bind_hash->fastreuse = 1; 8628 goto out; 8629 } 8630 8631 /* If we are already listening, just update the backlog */ 8632 if (sctp_sstate(sk, LISTENING)) 8633 WRITE_ONCE(sk->sk_max_ack_backlog, backlog); 8634 else { 8635 err = sctp_listen_start(sk, backlog); 8636 if (err) 8637 goto out; 8638 } 8639 8640 err = 0; 8641 out: 8642 release_sock(sk); 8643 return err; 8644 } 8645 8646 /* 8647 * This function is done by modeling the current datagram_poll() and the 8648 * tcp_poll(). Note that, based on these implementations, we don't 8649 * lock the socket in this function, even though it seems that, 8650 * ideally, locking or some other mechanisms can be used to ensure 8651 * the integrity of the counters (sndbuf and wmem_alloc) used 8652 * in this place. We assume that we don't need locks either until proven 8653 * otherwise. 8654 * 8655 * Another thing to note is that we include the Async I/O support 8656 * here, again, by modeling the current TCP/UDP code. We don't have 8657 * a good way to test with it yet. 8658 */ 8659 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 8660 { 8661 struct sock *sk = sock->sk; 8662 struct sctp_sock *sp = sctp_sk(sk); 8663 __poll_t mask; 8664 8665 poll_wait(file, sk_sleep(sk), wait); 8666 8667 sock_rps_record_flow(sk); 8668 8669 /* A TCP-style listening socket becomes readable when the accept queue 8670 * is not empty. 8671 */ 8672 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 8673 return (!list_empty(&sp->ep->asocs)) ? 8674 (EPOLLIN | EPOLLRDNORM) : 0; 8675 8676 mask = 0; 8677 8678 /* Is there any exceptional events? */ 8679 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue)) 8680 mask |= EPOLLERR | 8681 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 8682 if (sk->sk_shutdown & RCV_SHUTDOWN) 8683 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 8684 if (sk->sk_shutdown == SHUTDOWN_MASK) 8685 mask |= EPOLLHUP; 8686 8687 /* Is it readable? Reconsider this code with TCP-style support. */ 8688 if (!skb_queue_empty_lockless(&sk->sk_receive_queue)) 8689 mask |= EPOLLIN | EPOLLRDNORM; 8690 8691 /* The association is either gone or not ready. */ 8692 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 8693 return mask; 8694 8695 /* Is it writable? */ 8696 if (sctp_writeable(sk)) { 8697 mask |= EPOLLOUT | EPOLLWRNORM; 8698 } else { 8699 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 8700 /* 8701 * Since the socket is not locked, the buffer 8702 * might be made available after the writeable check and 8703 * before the bit is set. This could cause a lost I/O 8704 * signal. tcp_poll() has a race breaker for this race 8705 * condition. Based on their implementation, we put 8706 * in the following code to cover it as well. 8707 */ 8708 if (sctp_writeable(sk)) 8709 mask |= EPOLLOUT | EPOLLWRNORM; 8710 } 8711 return mask; 8712 } 8713 8714 /******************************************************************** 8715 * 2nd Level Abstractions 8716 ********************************************************************/ 8717 8718 static struct sctp_bind_bucket *sctp_bucket_create( 8719 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 8720 { 8721 struct sctp_bind_bucket *pp; 8722 8723 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 8724 if (pp) { 8725 SCTP_DBG_OBJCNT_INC(bind_bucket); 8726 pp->port = snum; 8727 pp->fastreuse = 0; 8728 INIT_HLIST_HEAD(&pp->owner); 8729 pp->net = net; 8730 hlist_add_head(&pp->node, &head->chain); 8731 } 8732 return pp; 8733 } 8734 8735 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 8736 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 8737 { 8738 if (pp && hlist_empty(&pp->owner)) { 8739 __hlist_del(&pp->node); 8740 kmem_cache_free(sctp_bucket_cachep, pp); 8741 SCTP_DBG_OBJCNT_DEC(bind_bucket); 8742 } 8743 } 8744 8745 /* Release this socket's reference to a local port. */ 8746 static inline void __sctp_put_port(struct sock *sk) 8747 { 8748 struct sctp_bind_hashbucket *head = 8749 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 8750 inet_sk(sk)->inet_num)]; 8751 struct sctp_bind_bucket *pp; 8752 8753 spin_lock(&head->lock); 8754 pp = sctp_sk(sk)->bind_hash; 8755 __sk_del_bind_node(sk); 8756 sctp_sk(sk)->bind_hash = NULL; 8757 inet_sk(sk)->inet_num = 0; 8758 sctp_bucket_destroy(pp); 8759 spin_unlock(&head->lock); 8760 } 8761 8762 void sctp_put_port(struct sock *sk) 8763 { 8764 local_bh_disable(); 8765 __sctp_put_port(sk); 8766 local_bh_enable(); 8767 } 8768 8769 /* 8770 * The system picks an ephemeral port and choose an address set equivalent 8771 * to binding with a wildcard address. 8772 * One of those addresses will be the primary address for the association. 8773 * This automatically enables the multihoming capability of SCTP. 8774 */ 8775 static int sctp_autobind(struct sock *sk) 8776 { 8777 union sctp_addr autoaddr; 8778 struct sctp_af *af; 8779 __be16 port; 8780 8781 /* Initialize a local sockaddr structure to INADDR_ANY. */ 8782 af = sctp_sk(sk)->pf->af; 8783 8784 port = htons(inet_sk(sk)->inet_num); 8785 af->inaddr_any(&autoaddr, port); 8786 8787 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 8788 } 8789 8790 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 8791 * 8792 * From RFC 2292 8793 * 4.2 The cmsghdr Structure * 8794 * 8795 * When ancillary data is sent or received, any number of ancillary data 8796 * objects can be specified by the msg_control and msg_controllen members of 8797 * the msghdr structure, because each object is preceded by 8798 * a cmsghdr structure defining the object's length (the cmsg_len member). 8799 * Historically Berkeley-derived implementations have passed only one object 8800 * at a time, but this API allows multiple objects to be 8801 * passed in a single call to sendmsg() or recvmsg(). The following example 8802 * shows two ancillary data objects in a control buffer. 8803 * 8804 * |<--------------------------- msg_controllen -------------------------->| 8805 * | | 8806 * 8807 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 8808 * 8809 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 8810 * | | | 8811 * 8812 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 8813 * 8814 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 8815 * | | | | | 8816 * 8817 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8818 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 8819 * 8820 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 8821 * 8822 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 8823 * ^ 8824 * | 8825 * 8826 * msg_control 8827 * points here 8828 */ 8829 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 8830 { 8831 struct msghdr *my_msg = (struct msghdr *)msg; 8832 struct cmsghdr *cmsg; 8833 8834 for_each_cmsghdr(cmsg, my_msg) { 8835 if (!CMSG_OK(my_msg, cmsg)) 8836 return -EINVAL; 8837 8838 /* Should we parse this header or ignore? */ 8839 if (cmsg->cmsg_level != IPPROTO_SCTP) 8840 continue; 8841 8842 /* Strictly check lengths following example in SCM code. */ 8843 switch (cmsg->cmsg_type) { 8844 case SCTP_INIT: 8845 /* SCTP Socket API Extension 8846 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 8847 * 8848 * This cmsghdr structure provides information for 8849 * initializing new SCTP associations with sendmsg(). 8850 * The SCTP_INITMSG socket option uses this same data 8851 * structure. This structure is not used for 8852 * recvmsg(). 8853 * 8854 * cmsg_level cmsg_type cmsg_data[] 8855 * ------------ ------------ ---------------------- 8856 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 8857 */ 8858 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 8859 return -EINVAL; 8860 8861 cmsgs->init = CMSG_DATA(cmsg); 8862 break; 8863 8864 case SCTP_SNDRCV: 8865 /* SCTP Socket API Extension 8866 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 8867 * 8868 * This cmsghdr structure specifies SCTP options for 8869 * sendmsg() and describes SCTP header information 8870 * about a received message through recvmsg(). 8871 * 8872 * cmsg_level cmsg_type cmsg_data[] 8873 * ------------ ------------ ---------------------- 8874 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 8875 */ 8876 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 8877 return -EINVAL; 8878 8879 cmsgs->srinfo = CMSG_DATA(cmsg); 8880 8881 if (cmsgs->srinfo->sinfo_flags & 8882 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8883 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8884 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8885 return -EINVAL; 8886 break; 8887 8888 case SCTP_SNDINFO: 8889 /* SCTP Socket API Extension 8890 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 8891 * 8892 * This cmsghdr structure specifies SCTP options for 8893 * sendmsg(). This structure and SCTP_RCVINFO replaces 8894 * SCTP_SNDRCV which has been deprecated. 8895 * 8896 * cmsg_level cmsg_type cmsg_data[] 8897 * ------------ ------------ --------------------- 8898 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 8899 */ 8900 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 8901 return -EINVAL; 8902 8903 cmsgs->sinfo = CMSG_DATA(cmsg); 8904 8905 if (cmsgs->sinfo->snd_flags & 8906 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 8907 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL | 8908 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF)) 8909 return -EINVAL; 8910 break; 8911 case SCTP_PRINFO: 8912 /* SCTP Socket API Extension 8913 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO) 8914 * 8915 * This cmsghdr structure specifies SCTP options for sendmsg(). 8916 * 8917 * cmsg_level cmsg_type cmsg_data[] 8918 * ------------ ------------ --------------------- 8919 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo 8920 */ 8921 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo))) 8922 return -EINVAL; 8923 8924 cmsgs->prinfo = CMSG_DATA(cmsg); 8925 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK) 8926 return -EINVAL; 8927 8928 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE) 8929 cmsgs->prinfo->pr_value = 0; 8930 break; 8931 case SCTP_AUTHINFO: 8932 /* SCTP Socket API Extension 8933 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO) 8934 * 8935 * This cmsghdr structure specifies SCTP options for sendmsg(). 8936 * 8937 * cmsg_level cmsg_type cmsg_data[] 8938 * ------------ ------------ --------------------- 8939 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo 8940 */ 8941 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo))) 8942 return -EINVAL; 8943 8944 cmsgs->authinfo = CMSG_DATA(cmsg); 8945 break; 8946 case SCTP_DSTADDRV4: 8947 case SCTP_DSTADDRV6: 8948 /* SCTP Socket API Extension 8949 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6) 8950 * 8951 * This cmsghdr structure specifies SCTP options for sendmsg(). 8952 * 8953 * cmsg_level cmsg_type cmsg_data[] 8954 * ------------ ------------ --------------------- 8955 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr 8956 * ------------ ------------ --------------------- 8957 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr 8958 */ 8959 cmsgs->addrs_msg = my_msg; 8960 break; 8961 default: 8962 return -EINVAL; 8963 } 8964 } 8965 8966 return 0; 8967 } 8968 8969 /* 8970 * Wait for a packet.. 8971 * Note: This function is the same function as in core/datagram.c 8972 * with a few modifications to make lksctp work. 8973 */ 8974 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 8975 { 8976 int error; 8977 DEFINE_WAIT(wait); 8978 8979 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8980 8981 /* Socket errors? */ 8982 error = sock_error(sk); 8983 if (error) 8984 goto out; 8985 8986 if (!skb_queue_empty(&sk->sk_receive_queue)) 8987 goto ready; 8988 8989 /* Socket shut down? */ 8990 if (sk->sk_shutdown & RCV_SHUTDOWN) 8991 goto out; 8992 8993 /* Sequenced packets can come disconnected. If so we report the 8994 * problem. 8995 */ 8996 error = -ENOTCONN; 8997 8998 /* Is there a good reason to think that we may receive some data? */ 8999 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 9000 goto out; 9001 9002 /* Handle signals. */ 9003 if (signal_pending(current)) 9004 goto interrupted; 9005 9006 /* Let another process have a go. Since we are going to sleep 9007 * anyway. Note: This may cause odd behaviors if the message 9008 * does not fit in the user's buffer, but this seems to be the 9009 * only way to honor MSG_DONTWAIT realistically. 9010 */ 9011 release_sock(sk); 9012 *timeo_p = schedule_timeout(*timeo_p); 9013 lock_sock(sk); 9014 9015 ready: 9016 finish_wait(sk_sleep(sk), &wait); 9017 return 0; 9018 9019 interrupted: 9020 error = sock_intr_errno(*timeo_p); 9021 9022 out: 9023 finish_wait(sk_sleep(sk), &wait); 9024 *err = error; 9025 return error; 9026 } 9027 9028 /* Receive a datagram. 9029 * Note: This is pretty much the same routine as in core/datagram.c 9030 * with a few changes to make lksctp work. 9031 */ 9032 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int *err) 9033 { 9034 int error; 9035 struct sk_buff *skb; 9036 long timeo; 9037 9038 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 9039 9040 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 9041 MAX_SCHEDULE_TIMEOUT); 9042 9043 do { 9044 /* Again only user level code calls this function, 9045 * so nothing interrupt level 9046 * will suddenly eat the receive_queue. 9047 * 9048 * Look at current nfs client by the way... 9049 * However, this function was correct in any case. 8) 9050 */ 9051 if (flags & MSG_PEEK) { 9052 skb = skb_peek(&sk->sk_receive_queue); 9053 if (skb) 9054 refcount_inc(&skb->users); 9055 } else { 9056 skb = __skb_dequeue(&sk->sk_receive_queue); 9057 } 9058 9059 if (skb) 9060 return skb; 9061 9062 /* Caller is allowed not to check sk->sk_err before calling. */ 9063 error = sock_error(sk); 9064 if (error) 9065 goto no_packet; 9066 9067 if (sk->sk_shutdown & RCV_SHUTDOWN) 9068 break; 9069 9070 9071 /* User doesn't want to wait. */ 9072 error = -EAGAIN; 9073 if (!timeo) 9074 goto no_packet; 9075 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 9076 9077 return NULL; 9078 9079 no_packet: 9080 *err = error; 9081 return NULL; 9082 } 9083 9084 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 9085 static void __sctp_write_space(struct sctp_association *asoc) 9086 { 9087 struct sock *sk = asoc->base.sk; 9088 9089 if (sctp_wspace(asoc) <= 0) 9090 return; 9091 9092 if (waitqueue_active(&asoc->wait)) 9093 wake_up_interruptible(&asoc->wait); 9094 9095 if (sctp_writeable(sk)) { 9096 struct socket_wq *wq; 9097 9098 rcu_read_lock(); 9099 wq = rcu_dereference(sk->sk_wq); 9100 if (wq) { 9101 if (waitqueue_active(&wq->wait)) 9102 wake_up_interruptible(&wq->wait); 9103 9104 /* Note that we try to include the Async I/O support 9105 * here by modeling from the current TCP/UDP code. 9106 * We have not tested with it yet. 9107 */ 9108 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 9109 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 9110 } 9111 rcu_read_unlock(); 9112 } 9113 } 9114 9115 static void sctp_wake_up_waiters(struct sock *sk, 9116 struct sctp_association *asoc) 9117 { 9118 struct sctp_association *tmp = asoc; 9119 9120 /* We do accounting for the sndbuf space per association, 9121 * so we only need to wake our own association. 9122 */ 9123 if (asoc->ep->sndbuf_policy) 9124 return __sctp_write_space(asoc); 9125 9126 /* If association goes down and is just flushing its 9127 * outq, then just normally notify others. 9128 */ 9129 if (asoc->base.dead) 9130 return sctp_write_space(sk); 9131 9132 /* Accounting for the sndbuf space is per socket, so we 9133 * need to wake up others, try to be fair and in case of 9134 * other associations, let them have a go first instead 9135 * of just doing a sctp_write_space() call. 9136 * 9137 * Note that we reach sctp_wake_up_waiters() only when 9138 * associations free up queued chunks, thus we are under 9139 * lock and the list of associations on a socket is 9140 * guaranteed not to change. 9141 */ 9142 for (tmp = list_next_entry(tmp, asocs); 1; 9143 tmp = list_next_entry(tmp, asocs)) { 9144 /* Manually skip the head element. */ 9145 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 9146 continue; 9147 /* Wake up association. */ 9148 __sctp_write_space(tmp); 9149 /* We've reached the end. */ 9150 if (tmp == asoc) 9151 break; 9152 } 9153 } 9154 9155 /* Do accounting for the sndbuf space. 9156 * Decrement the used sndbuf space of the corresponding association by the 9157 * data size which was just transmitted(freed). 9158 */ 9159 static void sctp_wfree(struct sk_buff *skb) 9160 { 9161 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 9162 struct sctp_association *asoc = chunk->asoc; 9163 struct sock *sk = asoc->base.sk; 9164 9165 sk_mem_uncharge(sk, skb->truesize); 9166 sk_wmem_queued_add(sk, -(skb->truesize + sizeof(struct sctp_chunk))); 9167 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk); 9168 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), 9169 &sk->sk_wmem_alloc)); 9170 9171 if (chunk->shkey) { 9172 struct sctp_shared_key *shkey = chunk->shkey; 9173 9174 /* refcnt == 2 and !list_empty mean after this release, it's 9175 * not being used anywhere, and it's time to notify userland 9176 * that this shkey can be freed if it's been deactivated. 9177 */ 9178 if (shkey->deactivated && !list_empty(&shkey->key_list) && 9179 refcount_read(&shkey->refcnt) == 2) { 9180 struct sctp_ulpevent *ev; 9181 9182 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id, 9183 SCTP_AUTH_FREE_KEY, 9184 GFP_KERNEL); 9185 if (ev) 9186 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 9187 } 9188 sctp_auth_shkey_release(chunk->shkey); 9189 } 9190 9191 sock_wfree(skb); 9192 sctp_wake_up_waiters(sk, asoc); 9193 9194 sctp_association_put(asoc); 9195 } 9196 9197 /* Do accounting for the receive space on the socket. 9198 * Accounting for the association is done in ulpevent.c 9199 * We set this as a destructor for the cloned data skbs so that 9200 * accounting is done at the correct time. 9201 */ 9202 void sctp_sock_rfree(struct sk_buff *skb) 9203 { 9204 struct sock *sk = skb->sk; 9205 struct sctp_ulpevent *event = sctp_skb2event(skb); 9206 9207 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 9208 9209 /* 9210 * Mimic the behavior of sock_rfree 9211 */ 9212 sk_mem_uncharge(sk, event->rmem_len); 9213 } 9214 9215 9216 /* Helper function to wait for space in the sndbuf. */ 9217 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 9218 size_t msg_len) 9219 { 9220 struct sock *sk = asoc->base.sk; 9221 long current_timeo = *timeo_p; 9222 DEFINE_WAIT(wait); 9223 int err = 0; 9224 9225 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 9226 *timeo_p, msg_len); 9227 9228 /* Increment the association's refcnt. */ 9229 sctp_association_hold(asoc); 9230 9231 /* Wait on the association specific sndbuf space. */ 9232 for (;;) { 9233 prepare_to_wait_exclusive(&asoc->wait, &wait, 9234 TASK_INTERRUPTIBLE); 9235 if (asoc->base.dead) 9236 goto do_dead; 9237 if (!*timeo_p) 9238 goto do_nonblock; 9239 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 9240 goto do_error; 9241 if (signal_pending(current)) 9242 goto do_interrupted; 9243 if ((int)msg_len <= sctp_wspace(asoc) && 9244 sk_wmem_schedule(sk, msg_len)) 9245 break; 9246 9247 /* Let another process have a go. Since we are going 9248 * to sleep anyway. 9249 */ 9250 release_sock(sk); 9251 current_timeo = schedule_timeout(current_timeo); 9252 lock_sock(sk); 9253 if (sk != asoc->base.sk) 9254 goto do_error; 9255 9256 *timeo_p = current_timeo; 9257 } 9258 9259 out: 9260 finish_wait(&asoc->wait, &wait); 9261 9262 /* Release the association's refcnt. */ 9263 sctp_association_put(asoc); 9264 9265 return err; 9266 9267 do_dead: 9268 err = -ESRCH; 9269 goto out; 9270 9271 do_error: 9272 err = -EPIPE; 9273 goto out; 9274 9275 do_interrupted: 9276 err = sock_intr_errno(*timeo_p); 9277 goto out; 9278 9279 do_nonblock: 9280 err = -EAGAIN; 9281 goto out; 9282 } 9283 9284 void sctp_data_ready(struct sock *sk) 9285 { 9286 struct socket_wq *wq; 9287 9288 trace_sk_data_ready(sk); 9289 9290 rcu_read_lock(); 9291 wq = rcu_dereference(sk->sk_wq); 9292 if (skwq_has_sleeper(wq)) 9293 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 9294 EPOLLRDNORM | EPOLLRDBAND); 9295 sk_wake_async_rcu(sk, SOCK_WAKE_WAITD, POLL_IN); 9296 rcu_read_unlock(); 9297 } 9298 9299 /* If socket sndbuf has changed, wake up all per association waiters. */ 9300 void sctp_write_space(struct sock *sk) 9301 { 9302 struct sctp_association *asoc; 9303 9304 /* Wake up the tasks in each wait queue. */ 9305 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 9306 __sctp_write_space(asoc); 9307 } 9308 } 9309 9310 /* Is there any sndbuf space available on the socket? 9311 * 9312 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 9313 * associations on the same socket. For a UDP-style socket with 9314 * multiple associations, it is possible for it to be "unwriteable" 9315 * prematurely. I assume that this is acceptable because 9316 * a premature "unwriteable" is better than an accidental "writeable" which 9317 * would cause an unwanted block under certain circumstances. For the 1-1 9318 * UDP-style sockets or TCP-style sockets, this code should work. 9319 * - Daisy 9320 */ 9321 static bool sctp_writeable(const struct sock *sk) 9322 { 9323 return READ_ONCE(sk->sk_sndbuf) > READ_ONCE(sk->sk_wmem_queued); 9324 } 9325 9326 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 9327 * returns immediately with EINPROGRESS. 9328 */ 9329 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 9330 { 9331 struct sock *sk = asoc->base.sk; 9332 int err = 0; 9333 long current_timeo = *timeo_p; 9334 DEFINE_WAIT(wait); 9335 9336 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 9337 9338 /* Increment the association's refcnt. */ 9339 sctp_association_hold(asoc); 9340 9341 for (;;) { 9342 prepare_to_wait_exclusive(&asoc->wait, &wait, 9343 TASK_INTERRUPTIBLE); 9344 if (!*timeo_p) 9345 goto do_nonblock; 9346 if (sk->sk_shutdown & RCV_SHUTDOWN) 9347 break; 9348 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 9349 asoc->base.dead) 9350 goto do_error; 9351 if (signal_pending(current)) 9352 goto do_interrupted; 9353 9354 if (sctp_state(asoc, ESTABLISHED)) 9355 break; 9356 9357 /* Let another process have a go. Since we are going 9358 * to sleep anyway. 9359 */ 9360 release_sock(sk); 9361 current_timeo = schedule_timeout(current_timeo); 9362 lock_sock(sk); 9363 9364 *timeo_p = current_timeo; 9365 } 9366 9367 out: 9368 finish_wait(&asoc->wait, &wait); 9369 9370 /* Release the association's refcnt. */ 9371 sctp_association_put(asoc); 9372 9373 return err; 9374 9375 do_error: 9376 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 9377 err = -ETIMEDOUT; 9378 else 9379 err = -ECONNREFUSED; 9380 goto out; 9381 9382 do_interrupted: 9383 err = sock_intr_errno(*timeo_p); 9384 goto out; 9385 9386 do_nonblock: 9387 err = -EINPROGRESS; 9388 goto out; 9389 } 9390 9391 static int sctp_wait_for_accept(struct sock *sk, long timeo) 9392 { 9393 struct sctp_endpoint *ep; 9394 int err = 0; 9395 DEFINE_WAIT(wait); 9396 9397 ep = sctp_sk(sk)->ep; 9398 9399 9400 for (;;) { 9401 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 9402 TASK_INTERRUPTIBLE); 9403 9404 if (list_empty(&ep->asocs)) { 9405 release_sock(sk); 9406 timeo = schedule_timeout(timeo); 9407 lock_sock(sk); 9408 } 9409 9410 err = -EINVAL; 9411 if (!sctp_sstate(sk, LISTENING) || 9412 (sk->sk_shutdown & RCV_SHUTDOWN)) 9413 break; 9414 9415 err = 0; 9416 if (!list_empty(&ep->asocs)) 9417 break; 9418 9419 err = sock_intr_errno(timeo); 9420 if (signal_pending(current)) 9421 break; 9422 9423 err = -EAGAIN; 9424 if (!timeo) 9425 break; 9426 } 9427 9428 finish_wait(sk_sleep(sk), &wait); 9429 9430 return err; 9431 } 9432 9433 static void sctp_wait_for_close(struct sock *sk, long timeout) 9434 { 9435 DEFINE_WAIT(wait); 9436 9437 do { 9438 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 9439 if (list_empty(&sctp_sk(sk)->ep->asocs)) 9440 break; 9441 release_sock(sk); 9442 timeout = schedule_timeout(timeout); 9443 lock_sock(sk); 9444 } while (!signal_pending(current) && timeout); 9445 9446 finish_wait(sk_sleep(sk), &wait); 9447 } 9448 9449 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 9450 { 9451 struct sk_buff *frag; 9452 9453 if (!skb->data_len) 9454 goto done; 9455 9456 /* Don't forget the fragments. */ 9457 skb_walk_frags(skb, frag) 9458 sctp_skb_set_owner_r_frag(frag, sk); 9459 9460 done: 9461 sctp_skb_set_owner_r(skb, sk); 9462 } 9463 9464 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 9465 struct sctp_association *asoc) 9466 { 9467 struct inet_sock *inet = inet_sk(sk); 9468 struct inet_sock *newinet; 9469 struct sctp_sock *sp = sctp_sk(sk); 9470 9471 newsk->sk_type = sk->sk_type; 9472 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 9473 newsk->sk_flags = sk->sk_flags; 9474 newsk->sk_tsflags = sk->sk_tsflags; 9475 newsk->sk_no_check_tx = sk->sk_no_check_tx; 9476 newsk->sk_no_check_rx = sk->sk_no_check_rx; 9477 newsk->sk_reuse = sk->sk_reuse; 9478 sctp_sk(newsk)->reuse = sp->reuse; 9479 9480 newsk->sk_shutdown = sk->sk_shutdown; 9481 newsk->sk_destruct = sk->sk_destruct; 9482 newsk->sk_family = sk->sk_family; 9483 newsk->sk_protocol = IPPROTO_SCTP; 9484 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 9485 newsk->sk_sndbuf = sk->sk_sndbuf; 9486 newsk->sk_rcvbuf = sk->sk_rcvbuf; 9487 newsk->sk_lingertime = sk->sk_lingertime; 9488 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 9489 newsk->sk_sndtimeo = sk->sk_sndtimeo; 9490 newsk->sk_rxhash = sk->sk_rxhash; 9491 9492 newinet = inet_sk(newsk); 9493 9494 /* Initialize sk's sport, dport, rcv_saddr and daddr for 9495 * getsockname() and getpeername() 9496 */ 9497 newinet->inet_sport = inet->inet_sport; 9498 newinet->inet_saddr = inet->inet_saddr; 9499 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 9500 newinet->inet_dport = htons(asoc->peer.port); 9501 newinet->pmtudisc = inet->pmtudisc; 9502 atomic_set(&newinet->inet_id, get_random_u16()); 9503 9504 newinet->uc_ttl = inet->uc_ttl; 9505 inet_set_bit(MC_LOOP, newsk); 9506 newinet->mc_ttl = 1; 9507 newinet->mc_index = 0; 9508 newinet->mc_list = NULL; 9509 9510 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 9511 net_enable_timestamp(); 9512 9513 /* Set newsk security attributes from original sk and connection 9514 * security attribute from asoc. 9515 */ 9516 security_sctp_sk_clone(asoc, sk, newsk); 9517 } 9518 9519 static inline void sctp_copy_descendant(struct sock *sk_to, 9520 const struct sock *sk_from) 9521 { 9522 size_t ancestor_size = sizeof(struct inet_sock); 9523 9524 ancestor_size += sk_from->sk_prot->obj_size; 9525 ancestor_size -= offsetof(struct sctp_sock, pd_lobby); 9526 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 9527 } 9528 9529 /* Populate the fields of the newsk from the oldsk and migrate the assoc 9530 * and its messages to the newsk. 9531 */ 9532 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 9533 struct sctp_association *assoc, 9534 enum sctp_socket_type type) 9535 { 9536 struct sctp_sock *oldsp = sctp_sk(oldsk); 9537 struct sctp_sock *newsp = sctp_sk(newsk); 9538 struct sctp_bind_bucket *pp; /* hash list port iterator */ 9539 struct sctp_endpoint *newep = newsp->ep; 9540 struct sk_buff *skb, *tmp; 9541 struct sctp_ulpevent *event; 9542 struct sctp_bind_hashbucket *head; 9543 int err; 9544 9545 /* Migrate socket buffer sizes and all the socket level options to the 9546 * new socket. 9547 */ 9548 newsk->sk_sndbuf = oldsk->sk_sndbuf; 9549 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 9550 /* Brute force copy old sctp opt. */ 9551 sctp_copy_descendant(newsk, oldsk); 9552 9553 /* Restore the ep value that was overwritten with the above structure 9554 * copy. 9555 */ 9556 newsp->ep = newep; 9557 newsp->hmac = NULL; 9558 9559 /* Hook this new socket in to the bind_hash list. */ 9560 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 9561 inet_sk(oldsk)->inet_num)]; 9562 spin_lock_bh(&head->lock); 9563 pp = sctp_sk(oldsk)->bind_hash; 9564 sk_add_bind_node(newsk, &pp->owner); 9565 sctp_sk(newsk)->bind_hash = pp; 9566 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 9567 spin_unlock_bh(&head->lock); 9568 9569 /* Copy the bind_addr list from the original endpoint to the new 9570 * endpoint so that we can handle restarts properly 9571 */ 9572 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 9573 &oldsp->ep->base.bind_addr, GFP_KERNEL); 9574 if (err) 9575 return err; 9576 9577 /* New ep's auth_hmacs should be set if old ep's is set, in case 9578 * that net->sctp.auth_enable has been changed to 0 by users and 9579 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init(). 9580 */ 9581 if (oldsp->ep->auth_hmacs) { 9582 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL); 9583 if (err) 9584 return err; 9585 } 9586 9587 sctp_auto_asconf_init(newsp); 9588 9589 /* Move any messages in the old socket's receive queue that are for the 9590 * peeled off association to the new socket's receive queue. 9591 */ 9592 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 9593 event = sctp_skb2event(skb); 9594 if (event->asoc == assoc) { 9595 __skb_unlink(skb, &oldsk->sk_receive_queue); 9596 __skb_queue_tail(&newsk->sk_receive_queue, skb); 9597 sctp_skb_set_owner_r_frag(skb, newsk); 9598 } 9599 } 9600 9601 /* Clean up any messages pending delivery due to partial 9602 * delivery. Three cases: 9603 * 1) No partial deliver; no work. 9604 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 9605 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 9606 */ 9607 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 9608 9609 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 9610 struct sk_buff_head *queue; 9611 9612 /* Decide which queue to move pd_lobby skbs to. */ 9613 if (assoc->ulpq.pd_mode) { 9614 queue = &newsp->pd_lobby; 9615 } else 9616 queue = &newsk->sk_receive_queue; 9617 9618 /* Walk through the pd_lobby, looking for skbs that 9619 * need moved to the new socket. 9620 */ 9621 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 9622 event = sctp_skb2event(skb); 9623 if (event->asoc == assoc) { 9624 __skb_unlink(skb, &oldsp->pd_lobby); 9625 __skb_queue_tail(queue, skb); 9626 sctp_skb_set_owner_r_frag(skb, newsk); 9627 } 9628 } 9629 9630 /* Clear up any skbs waiting for the partial 9631 * delivery to finish. 9632 */ 9633 if (assoc->ulpq.pd_mode) 9634 sctp_clear_pd(oldsk, NULL); 9635 9636 } 9637 9638 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 9639 9640 /* Set the type of socket to indicate that it is peeled off from the 9641 * original UDP-style socket or created with the accept() call on a 9642 * TCP-style socket.. 9643 */ 9644 newsp->type = type; 9645 9646 /* Mark the new socket "in-use" by the user so that any packets 9647 * that may arrive on the association after we've moved it are 9648 * queued to the backlog. This prevents a potential race between 9649 * backlog processing on the old socket and new-packet processing 9650 * on the new socket. 9651 * 9652 * The caller has just allocated newsk so we can guarantee that other 9653 * paths won't try to lock it and then oldsk. 9654 */ 9655 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 9656 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w); 9657 sctp_assoc_migrate(assoc, newsk); 9658 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w); 9659 9660 /* If the association on the newsk is already closed before accept() 9661 * is called, set RCV_SHUTDOWN flag. 9662 */ 9663 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 9664 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 9665 newsk->sk_shutdown |= RCV_SHUTDOWN; 9666 } else { 9667 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 9668 } 9669 9670 release_sock(newsk); 9671 9672 return 0; 9673 } 9674 9675 9676 /* This proto struct describes the ULP interface for SCTP. */ 9677 struct proto sctp_prot = { 9678 .name = "SCTP", 9679 .owner = THIS_MODULE, 9680 .close = sctp_close, 9681 .disconnect = sctp_disconnect, 9682 .accept = sctp_accept, 9683 .ioctl = sctp_ioctl, 9684 .init = sctp_init_sock, 9685 .destroy = sctp_destroy_sock, 9686 .shutdown = sctp_shutdown, 9687 .setsockopt = sctp_setsockopt, 9688 .getsockopt = sctp_getsockopt, 9689 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9690 .sendmsg = sctp_sendmsg, 9691 .recvmsg = sctp_recvmsg, 9692 .bind = sctp_bind, 9693 .bind_add = sctp_bind_add, 9694 .backlog_rcv = sctp_backlog_rcv, 9695 .hash = sctp_hash, 9696 .unhash = sctp_unhash, 9697 .no_autobind = true, 9698 .obj_size = sizeof(struct sctp_sock), 9699 .useroffset = offsetof(struct sctp_sock, subscribe), 9700 .usersize = offsetof(struct sctp_sock, initmsg) - 9701 offsetof(struct sctp_sock, subscribe) + 9702 sizeof_field(struct sctp_sock, initmsg), 9703 .sysctl_mem = sysctl_sctp_mem, 9704 .sysctl_rmem = sysctl_sctp_rmem, 9705 .sysctl_wmem = sysctl_sctp_wmem, 9706 .memory_pressure = &sctp_memory_pressure, 9707 .enter_memory_pressure = sctp_enter_memory_pressure, 9708 9709 .memory_allocated = &sctp_memory_allocated, 9710 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9711 9712 .sockets_allocated = &sctp_sockets_allocated, 9713 }; 9714 9715 #if IS_ENABLED(CONFIG_IPV6) 9716 9717 static void sctp_v6_destruct_sock(struct sock *sk) 9718 { 9719 sctp_destruct_common(sk); 9720 inet6_sock_destruct(sk); 9721 } 9722 9723 static int sctp_v6_init_sock(struct sock *sk) 9724 { 9725 int ret = sctp_init_sock(sk); 9726 9727 if (!ret) 9728 sk->sk_destruct = sctp_v6_destruct_sock; 9729 9730 return ret; 9731 } 9732 9733 struct proto sctpv6_prot = { 9734 .name = "SCTPv6", 9735 .owner = THIS_MODULE, 9736 .close = sctp_close, 9737 .disconnect = sctp_disconnect, 9738 .accept = sctp_accept, 9739 .ioctl = sctp_ioctl, 9740 .init = sctp_v6_init_sock, 9741 .destroy = sctp_destroy_sock, 9742 .shutdown = sctp_shutdown, 9743 .setsockopt = sctp_setsockopt, 9744 .getsockopt = sctp_getsockopt, 9745 .bpf_bypass_getsockopt = sctp_bpf_bypass_getsockopt, 9746 .sendmsg = sctp_sendmsg, 9747 .recvmsg = sctp_recvmsg, 9748 .bind = sctp_bind, 9749 .bind_add = sctp_bind_add, 9750 .backlog_rcv = sctp_backlog_rcv, 9751 .hash = sctp_hash, 9752 .unhash = sctp_unhash, 9753 .no_autobind = true, 9754 .obj_size = sizeof(struct sctp6_sock), 9755 .ipv6_pinfo_offset = offsetof(struct sctp6_sock, inet6), 9756 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 9757 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 9758 offsetof(struct sctp6_sock, sctp.subscribe) + 9759 sizeof_field(struct sctp6_sock, sctp.initmsg), 9760 .sysctl_mem = sysctl_sctp_mem, 9761 .sysctl_rmem = sysctl_sctp_rmem, 9762 .sysctl_wmem = sysctl_sctp_wmem, 9763 .memory_pressure = &sctp_memory_pressure, 9764 .enter_memory_pressure = sctp_enter_memory_pressure, 9765 9766 .memory_allocated = &sctp_memory_allocated, 9767 .per_cpu_fw_alloc = &sctp_memory_per_cpu_fw_alloc, 9768 9769 .sockets_allocated = &sctp_sockets_allocated, 9770 }; 9771 #endif /* IS_ENABLED(CONFIG_IPV6) */ 9772
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.