1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * (C) Copyright IBM Corp. 2001, 2004 4 * Copyright (c) 1999-2000 Cisco, Inc. 5 * Copyright (c) 1999-2001 Motorola, Inc. 6 * Copyright (c) 2001 Intel Corp. 7 * Copyright (c) 2001 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This abstraction carries sctp events to the ULP (sockets). 11 * 12 * Please send any bug reports or fixes you make to the 13 * email address(es): 14 * lksctp developers <linux-sctp@vger.kernel.org> 15 * 16 * Written or modified by: 17 * Jon Grimm <jgrimm@us.ibm.com> 18 * La Monte H.P. Yarroll <piggy@acm.org> 19 * Sridhar Samudrala <sri@us.ibm.com> 20 */ 21 22 #include <linux/slab.h> 23 #include <linux/types.h> 24 #include <linux/skbuff.h> 25 #include <net/sock.h> 26 #include <net/busy_poll.h> 27 #include <net/sctp/structs.h> 28 #include <net/sctp/sctp.h> 29 #include <net/sctp/sm.h> 30 31 /* Forward declarations for internal helpers. */ 32 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 33 struct sctp_ulpevent *); 34 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *, 35 struct sctp_ulpevent *); 36 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq); 37 38 /* 1st Level Abstractions */ 39 40 /* Initialize a ULP queue from a block of memory. */ 41 void sctp_ulpq_init(struct sctp_ulpq *ulpq, struct sctp_association *asoc) 42 { 43 memset(ulpq, 0, sizeof(struct sctp_ulpq)); 44 45 ulpq->asoc = asoc; 46 skb_queue_head_init(&ulpq->reasm); 47 skb_queue_head_init(&ulpq->reasm_uo); 48 skb_queue_head_init(&ulpq->lobby); 49 ulpq->pd_mode = 0; 50 } 51 52 53 /* Flush the reassembly and ordering queues. */ 54 void sctp_ulpq_flush(struct sctp_ulpq *ulpq) 55 { 56 struct sk_buff *skb; 57 struct sctp_ulpevent *event; 58 59 while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) { 60 event = sctp_skb2event(skb); 61 sctp_ulpevent_free(event); 62 } 63 64 while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) { 65 event = sctp_skb2event(skb); 66 sctp_ulpevent_free(event); 67 } 68 69 while ((skb = __skb_dequeue(&ulpq->reasm_uo)) != NULL) { 70 event = sctp_skb2event(skb); 71 sctp_ulpevent_free(event); 72 } 73 } 74 75 /* Dispose of a ulpqueue. */ 76 void sctp_ulpq_free(struct sctp_ulpq *ulpq) 77 { 78 sctp_ulpq_flush(ulpq); 79 } 80 81 /* Process an incoming DATA chunk. */ 82 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 83 gfp_t gfp) 84 { 85 struct sk_buff_head temp; 86 struct sctp_ulpevent *event; 87 int event_eor = 0; 88 89 /* Create an event from the incoming chunk. */ 90 event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp); 91 if (!event) 92 return -ENOMEM; 93 94 event->ssn = ntohs(chunk->subh.data_hdr->ssn); 95 event->ppid = chunk->subh.data_hdr->ppid; 96 97 /* Do reassembly if needed. */ 98 event = sctp_ulpq_reasm(ulpq, event); 99 100 /* Do ordering if needed. */ 101 if (event) { 102 /* Create a temporary list to collect chunks on. */ 103 skb_queue_head_init(&temp); 104 __skb_queue_tail(&temp, sctp_event2skb(event)); 105 106 if (event->msg_flags & MSG_EOR) 107 event = sctp_ulpq_order(ulpq, event); 108 } 109 110 /* Send event to the ULP. 'event' is the sctp_ulpevent for 111 * very first SKB on the 'temp' list. 112 */ 113 if (event) { 114 event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0; 115 sctp_ulpq_tail_event(ulpq, &temp); 116 } 117 118 return event_eor; 119 } 120 121 /* Add a new event for propagation to the ULP. */ 122 /* Clear the partial delivery mode for this socket. Note: This 123 * assumes that no association is currently in partial delivery mode. 124 */ 125 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc) 126 { 127 struct sctp_sock *sp = sctp_sk(sk); 128 129 if (atomic_dec_and_test(&sp->pd_mode)) { 130 /* This means there are no other associations in PD, so 131 * we can go ahead and clear out the lobby in one shot 132 */ 133 if (!skb_queue_empty(&sp->pd_lobby)) { 134 skb_queue_splice_tail_init(&sp->pd_lobby, 135 &sk->sk_receive_queue); 136 return 1; 137 } 138 } else { 139 /* There are other associations in PD, so we only need to 140 * pull stuff out of the lobby that belongs to the 141 * associations that is exiting PD (all of its notifications 142 * are posted here). 143 */ 144 if (!skb_queue_empty(&sp->pd_lobby) && asoc) { 145 struct sk_buff *skb, *tmp; 146 struct sctp_ulpevent *event; 147 148 sctp_skb_for_each(skb, &sp->pd_lobby, tmp) { 149 event = sctp_skb2event(skb); 150 if (event->asoc == asoc) { 151 __skb_unlink(skb, &sp->pd_lobby); 152 __skb_queue_tail(&sk->sk_receive_queue, 153 skb); 154 } 155 } 156 } 157 } 158 159 return 0; 160 } 161 162 /* Set the pd_mode on the socket and ulpq */ 163 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq) 164 { 165 struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk); 166 167 atomic_inc(&sp->pd_mode); 168 ulpq->pd_mode = 1; 169 } 170 171 /* Clear the pd_mode and restart any pending messages waiting for delivery. */ 172 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq) 173 { 174 ulpq->pd_mode = 0; 175 sctp_ulpq_reasm_drain(ulpq); 176 return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc); 177 } 178 179 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sk_buff_head *skb_list) 180 { 181 struct sock *sk = ulpq->asoc->base.sk; 182 struct sctp_sock *sp = sctp_sk(sk); 183 struct sctp_ulpevent *event; 184 struct sk_buff_head *queue; 185 struct sk_buff *skb; 186 int clear_pd = 0; 187 188 skb = __skb_peek(skb_list); 189 event = sctp_skb2event(skb); 190 191 /* If the socket is just going to throw this away, do not 192 * even try to deliver it. 193 */ 194 if (sk->sk_shutdown & RCV_SHUTDOWN && 195 (sk->sk_shutdown & SEND_SHUTDOWN || 196 !sctp_ulpevent_is_notification(event))) 197 goto out_free; 198 199 if (!sctp_ulpevent_is_notification(event)) { 200 sk_mark_napi_id(sk, skb); 201 sk_incoming_cpu_update(sk); 202 } 203 /* Check if the user wishes to receive this event. */ 204 if (!sctp_ulpevent_is_enabled(event, ulpq->asoc->subscribe)) 205 goto out_free; 206 207 /* If we are in partial delivery mode, post to the lobby until 208 * partial delivery is cleared, unless, of course _this_ is 209 * the association the cause of the partial delivery. 210 */ 211 212 if (atomic_read(&sp->pd_mode) == 0) { 213 queue = &sk->sk_receive_queue; 214 } else { 215 if (ulpq->pd_mode) { 216 /* If the association is in partial delivery, we 217 * need to finish delivering the partially processed 218 * packet before passing any other data. This is 219 * because we don't truly support stream interleaving. 220 */ 221 if ((event->msg_flags & MSG_NOTIFICATION) || 222 (SCTP_DATA_NOT_FRAG == 223 (event->msg_flags & SCTP_DATA_FRAG_MASK))) 224 queue = &sp->pd_lobby; 225 else { 226 clear_pd = event->msg_flags & MSG_EOR; 227 queue = &sk->sk_receive_queue; 228 } 229 } else { 230 /* 231 * If fragment interleave is enabled, we 232 * can queue this to the receive queue instead 233 * of the lobby. 234 */ 235 if (sp->frag_interleave) 236 queue = &sk->sk_receive_queue; 237 else 238 queue = &sp->pd_lobby; 239 } 240 } 241 242 skb_queue_splice_tail_init(skb_list, queue); 243 244 /* Did we just complete partial delivery and need to get 245 * rolling again? Move pending data to the receive 246 * queue. 247 */ 248 if (clear_pd) 249 sctp_ulpq_clear_pd(ulpq); 250 251 if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) { 252 if (!sock_owned_by_user(sk)) 253 sp->data_ready_signalled = 1; 254 sk->sk_data_ready(sk); 255 } 256 return 1; 257 258 out_free: 259 sctp_queue_purge_ulpevents(skb_list); 260 261 return 0; 262 } 263 264 /* 2nd Level Abstractions */ 265 266 /* Helper function to store chunks that need to be reassembled. */ 267 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq, 268 struct sctp_ulpevent *event) 269 { 270 struct sk_buff *pos; 271 struct sctp_ulpevent *cevent; 272 __u32 tsn, ctsn; 273 274 tsn = event->tsn; 275 276 /* See if it belongs at the end. */ 277 pos = skb_peek_tail(&ulpq->reasm); 278 if (!pos) { 279 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 280 return; 281 } 282 283 /* Short circuit just dropping it at the end. */ 284 cevent = sctp_skb2event(pos); 285 ctsn = cevent->tsn; 286 if (TSN_lt(ctsn, tsn)) { 287 __skb_queue_tail(&ulpq->reasm, sctp_event2skb(event)); 288 return; 289 } 290 291 /* Find the right place in this list. We store them by TSN. */ 292 skb_queue_walk(&ulpq->reasm, pos) { 293 cevent = sctp_skb2event(pos); 294 ctsn = cevent->tsn; 295 296 if (TSN_lt(tsn, ctsn)) 297 break; 298 } 299 300 /* Insert before pos. */ 301 __skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event)); 302 303 } 304 305 /* Helper function to return an event corresponding to the reassembled 306 * datagram. 307 * This routine creates a re-assembled skb given the first and last skb's 308 * as stored in the reassembly queue. The skb's may be non-linear if the sctp 309 * payload was fragmented on the way and ip had to reassemble them. 310 * We add the rest of skb's to the first skb's fraglist. 311 */ 312 struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net, 313 struct sk_buff_head *queue, 314 struct sk_buff *f_frag, 315 struct sk_buff *l_frag) 316 { 317 struct sk_buff *pos; 318 struct sk_buff *new = NULL; 319 struct sctp_ulpevent *event; 320 struct sk_buff *pnext, *last; 321 struct sk_buff *list = skb_shinfo(f_frag)->frag_list; 322 323 /* Store the pointer to the 2nd skb */ 324 if (f_frag == l_frag) 325 pos = NULL; 326 else 327 pos = f_frag->next; 328 329 /* Get the last skb in the f_frag's frag_list if present. */ 330 for (last = list; list; last = list, list = list->next) 331 ; 332 333 /* Add the list of remaining fragments to the first fragments 334 * frag_list. 335 */ 336 if (last) 337 last->next = pos; 338 else { 339 if (skb_cloned(f_frag)) { 340 /* This is a cloned skb, we can't just modify 341 * the frag_list. We need a new skb to do that. 342 * Instead of calling skb_unshare(), we'll do it 343 * ourselves since we need to delay the free. 344 */ 345 new = skb_copy(f_frag, GFP_ATOMIC); 346 if (!new) 347 return NULL; /* try again later */ 348 349 sctp_skb_set_owner_r(new, f_frag->sk); 350 351 skb_shinfo(new)->frag_list = pos; 352 } else 353 skb_shinfo(f_frag)->frag_list = pos; 354 } 355 356 /* Remove the first fragment from the reassembly queue. */ 357 __skb_unlink(f_frag, queue); 358 359 /* if we did unshare, then free the old skb and re-assign */ 360 if (new) { 361 kfree_skb(f_frag); 362 f_frag = new; 363 } 364 365 while (pos) { 366 367 pnext = pos->next; 368 369 /* Update the len and data_len fields of the first fragment. */ 370 f_frag->len += pos->len; 371 f_frag->data_len += pos->len; 372 373 /* Remove the fragment from the reassembly queue. */ 374 __skb_unlink(pos, queue); 375 376 /* Break if we have reached the last fragment. */ 377 if (pos == l_frag) 378 break; 379 pos->next = pnext; 380 pos = pnext; 381 } 382 383 event = sctp_skb2event(f_frag); 384 SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS); 385 386 return event; 387 } 388 389 390 /* Helper function to check if an incoming chunk has filled up the last 391 * missing fragment in a SCTP datagram and return the corresponding event. 392 */ 393 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq) 394 { 395 struct sk_buff *pos; 396 struct sctp_ulpevent *cevent; 397 struct sk_buff *first_frag = NULL; 398 __u32 ctsn, next_tsn; 399 struct sctp_ulpevent *retval = NULL; 400 struct sk_buff *pd_first = NULL; 401 struct sk_buff *pd_last = NULL; 402 size_t pd_len = 0; 403 struct sctp_association *asoc; 404 u32 pd_point; 405 406 /* Initialized to 0 just to avoid compiler warning message. Will 407 * never be used with this value. It is referenced only after it 408 * is set when we find the first fragment of a message. 409 */ 410 next_tsn = 0; 411 412 /* The chunks are held in the reasm queue sorted by TSN. 413 * Walk through the queue sequentially and look for a sequence of 414 * fragmented chunks that complete a datagram. 415 * 'first_frag' and next_tsn are reset when we find a chunk which 416 * is the first fragment of a datagram. Once these 2 fields are set 417 * we expect to find the remaining middle fragments and the last 418 * fragment in order. If not, first_frag is reset to NULL and we 419 * start the next pass when we find another first fragment. 420 * 421 * There is a potential to do partial delivery if user sets 422 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here 423 * to see if can do PD. 424 */ 425 skb_queue_walk(&ulpq->reasm, pos) { 426 cevent = sctp_skb2event(pos); 427 ctsn = cevent->tsn; 428 429 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 430 case SCTP_DATA_FIRST_FRAG: 431 /* If this "FIRST_FRAG" is the first 432 * element in the queue, then count it towards 433 * possible PD. 434 */ 435 if (skb_queue_is_first(&ulpq->reasm, pos)) { 436 pd_first = pos; 437 pd_last = pos; 438 pd_len = pos->len; 439 } else { 440 pd_first = NULL; 441 pd_last = NULL; 442 pd_len = 0; 443 } 444 445 first_frag = pos; 446 next_tsn = ctsn + 1; 447 break; 448 449 case SCTP_DATA_MIDDLE_FRAG: 450 if ((first_frag) && (ctsn == next_tsn)) { 451 next_tsn++; 452 if (pd_first) { 453 pd_last = pos; 454 pd_len += pos->len; 455 } 456 } else 457 first_frag = NULL; 458 break; 459 460 case SCTP_DATA_LAST_FRAG: 461 if (first_frag && (ctsn == next_tsn)) 462 goto found; 463 else 464 first_frag = NULL; 465 break; 466 } 467 } 468 469 asoc = ulpq->asoc; 470 if (pd_first) { 471 /* Make sure we can enter partial deliver. 472 * We can trigger partial delivery only if framgent 473 * interleave is set, or the socket is not already 474 * in partial delivery. 475 */ 476 if (!sctp_sk(asoc->base.sk)->frag_interleave && 477 atomic_read(&sctp_sk(asoc->base.sk)->pd_mode)) 478 goto done; 479 480 cevent = sctp_skb2event(pd_first); 481 pd_point = sctp_sk(asoc->base.sk)->pd_point; 482 if (pd_point && pd_point <= pd_len) { 483 retval = sctp_make_reassembled_event(asoc->base.net, 484 &ulpq->reasm, 485 pd_first, pd_last); 486 if (retval) 487 sctp_ulpq_set_pd(ulpq); 488 } 489 } 490 done: 491 return retval; 492 found: 493 retval = sctp_make_reassembled_event(ulpq->asoc->base.net, 494 &ulpq->reasm, first_frag, pos); 495 if (retval) 496 retval->msg_flags |= MSG_EOR; 497 goto done; 498 } 499 500 /* Retrieve the next set of fragments of a partial message. */ 501 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq) 502 { 503 struct sk_buff *pos, *last_frag, *first_frag; 504 struct sctp_ulpevent *cevent; 505 __u32 ctsn, next_tsn; 506 int is_last; 507 struct sctp_ulpevent *retval; 508 509 /* The chunks are held in the reasm queue sorted by TSN. 510 * Walk through the queue sequentially and look for the first 511 * sequence of fragmented chunks. 512 */ 513 514 if (skb_queue_empty(&ulpq->reasm)) 515 return NULL; 516 517 last_frag = first_frag = NULL; 518 retval = NULL; 519 next_tsn = 0; 520 is_last = 0; 521 522 skb_queue_walk(&ulpq->reasm, pos) { 523 cevent = sctp_skb2event(pos); 524 ctsn = cevent->tsn; 525 526 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 527 case SCTP_DATA_FIRST_FRAG: 528 if (!first_frag) 529 return NULL; 530 goto done; 531 case SCTP_DATA_MIDDLE_FRAG: 532 if (!first_frag) { 533 first_frag = pos; 534 next_tsn = ctsn + 1; 535 last_frag = pos; 536 } else if (next_tsn == ctsn) { 537 next_tsn++; 538 last_frag = pos; 539 } else 540 goto done; 541 break; 542 case SCTP_DATA_LAST_FRAG: 543 if (!first_frag) 544 first_frag = pos; 545 else if (ctsn != next_tsn) 546 goto done; 547 last_frag = pos; 548 is_last = 1; 549 goto done; 550 default: 551 return NULL; 552 } 553 } 554 555 /* We have the reassembled event. There is no need to look 556 * further. 557 */ 558 done: 559 retval = sctp_make_reassembled_event(ulpq->asoc->base.net, &ulpq->reasm, 560 first_frag, last_frag); 561 if (retval && is_last) 562 retval->msg_flags |= MSG_EOR; 563 564 return retval; 565 } 566 567 568 /* Helper function to reassemble chunks. Hold chunks on the reasm queue that 569 * need reassembling. 570 */ 571 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq, 572 struct sctp_ulpevent *event) 573 { 574 struct sctp_ulpevent *retval = NULL; 575 576 /* Check if this is part of a fragmented message. */ 577 if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) { 578 event->msg_flags |= MSG_EOR; 579 return event; 580 } 581 582 sctp_ulpq_store_reasm(ulpq, event); 583 if (!ulpq->pd_mode) 584 retval = sctp_ulpq_retrieve_reassembled(ulpq); 585 else { 586 __u32 ctsn, ctsnap; 587 588 /* Do not even bother unless this is the next tsn to 589 * be delivered. 590 */ 591 ctsn = event->tsn; 592 ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map); 593 if (TSN_lte(ctsn, ctsnap)) 594 retval = sctp_ulpq_retrieve_partial(ulpq); 595 } 596 597 return retval; 598 } 599 600 /* Retrieve the first part (sequential fragments) for partial delivery. */ 601 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq) 602 { 603 struct sk_buff *pos, *last_frag, *first_frag; 604 struct sctp_ulpevent *cevent; 605 __u32 ctsn, next_tsn; 606 struct sctp_ulpevent *retval; 607 608 /* The chunks are held in the reasm queue sorted by TSN. 609 * Walk through the queue sequentially and look for a sequence of 610 * fragmented chunks that start a datagram. 611 */ 612 613 if (skb_queue_empty(&ulpq->reasm)) 614 return NULL; 615 616 last_frag = first_frag = NULL; 617 retval = NULL; 618 next_tsn = 0; 619 620 skb_queue_walk(&ulpq->reasm, pos) { 621 cevent = sctp_skb2event(pos); 622 ctsn = cevent->tsn; 623 624 switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) { 625 case SCTP_DATA_FIRST_FRAG: 626 if (!first_frag) { 627 first_frag = pos; 628 next_tsn = ctsn + 1; 629 last_frag = pos; 630 } else 631 goto done; 632 break; 633 634 case SCTP_DATA_MIDDLE_FRAG: 635 if (!first_frag) 636 return NULL; 637 if (ctsn == next_tsn) { 638 next_tsn++; 639 last_frag = pos; 640 } else 641 goto done; 642 break; 643 644 case SCTP_DATA_LAST_FRAG: 645 if (!first_frag) 646 return NULL; 647 else 648 goto done; 649 break; 650 651 default: 652 return NULL; 653 } 654 } 655 656 /* We have the reassembled event. There is no need to look 657 * further. 658 */ 659 done: 660 retval = sctp_make_reassembled_event(ulpq->asoc->base.net, &ulpq->reasm, 661 first_frag, last_frag); 662 return retval; 663 } 664 665 /* 666 * Flush out stale fragments from the reassembly queue when processing 667 * a Forward TSN. 668 * 669 * RFC 3758, Section 3.6 670 * 671 * After receiving and processing a FORWARD TSN, the data receiver MUST 672 * take cautions in updating its re-assembly queue. The receiver MUST 673 * remove any partially reassembled message, which is still missing one 674 * or more TSNs earlier than or equal to the new cumulative TSN point. 675 * In the event that the receiver has invoked the partial delivery API, 676 * a notification SHOULD also be generated to inform the upper layer API 677 * that the message being partially delivered will NOT be completed. 678 */ 679 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn) 680 { 681 struct sk_buff *pos, *tmp; 682 struct sctp_ulpevent *event; 683 __u32 tsn; 684 685 if (skb_queue_empty(&ulpq->reasm)) 686 return; 687 688 skb_queue_walk_safe(&ulpq->reasm, pos, tmp) { 689 event = sctp_skb2event(pos); 690 tsn = event->tsn; 691 692 /* Since the entire message must be abandoned by the 693 * sender (item A3 in Section 3.5, RFC 3758), we can 694 * free all fragments on the list that are less then 695 * or equal to ctsn_point 696 */ 697 if (TSN_lte(tsn, fwd_tsn)) { 698 __skb_unlink(pos, &ulpq->reasm); 699 sctp_ulpevent_free(event); 700 } else 701 break; 702 } 703 } 704 705 /* 706 * Drain the reassembly queue. If we just cleared parted delivery, it 707 * is possible that the reassembly queue will contain already reassembled 708 * messages. Retrieve any such messages and give them to the user. 709 */ 710 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq) 711 { 712 struct sctp_ulpevent *event = NULL; 713 714 if (skb_queue_empty(&ulpq->reasm)) 715 return; 716 717 while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) { 718 struct sk_buff_head temp; 719 720 skb_queue_head_init(&temp); 721 __skb_queue_tail(&temp, sctp_event2skb(event)); 722 723 /* Do ordering if needed. */ 724 if (event->msg_flags & MSG_EOR) 725 event = sctp_ulpq_order(ulpq, event); 726 727 /* Send event to the ULP. 'event' is the 728 * sctp_ulpevent for very first SKB on the temp' list. 729 */ 730 if (event) 731 sctp_ulpq_tail_event(ulpq, &temp); 732 } 733 } 734 735 736 /* Helper function to gather skbs that have possibly become 737 * ordered by an incoming chunk. 738 */ 739 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq, 740 struct sctp_ulpevent *event) 741 { 742 struct sk_buff_head *event_list; 743 struct sk_buff *pos, *tmp; 744 struct sctp_ulpevent *cevent; 745 struct sctp_stream *stream; 746 __u16 sid, csid, cssn; 747 748 sid = event->stream; 749 stream = &ulpq->asoc->stream; 750 751 event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev; 752 753 /* We are holding the chunks by stream, by SSN. */ 754 sctp_skb_for_each(pos, &ulpq->lobby, tmp) { 755 cevent = (struct sctp_ulpevent *) pos->cb; 756 csid = cevent->stream; 757 cssn = cevent->ssn; 758 759 /* Have we gone too far? */ 760 if (csid > sid) 761 break; 762 763 /* Have we not gone far enough? */ 764 if (csid < sid) 765 continue; 766 767 if (cssn != sctp_ssn_peek(stream, in, sid)) 768 break; 769 770 /* Found it, so mark in the stream. */ 771 sctp_ssn_next(stream, in, sid); 772 773 __skb_unlink(pos, &ulpq->lobby); 774 775 /* Attach all gathered skbs to the event. */ 776 __skb_queue_tail(event_list, pos); 777 } 778 } 779 780 /* Helper function to store chunks needing ordering. */ 781 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq, 782 struct sctp_ulpevent *event) 783 { 784 struct sk_buff *pos; 785 struct sctp_ulpevent *cevent; 786 __u16 sid, csid; 787 __u16 ssn, cssn; 788 789 pos = skb_peek_tail(&ulpq->lobby); 790 if (!pos) { 791 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 792 return; 793 } 794 795 sid = event->stream; 796 ssn = event->ssn; 797 798 cevent = (struct sctp_ulpevent *) pos->cb; 799 csid = cevent->stream; 800 cssn = cevent->ssn; 801 if (sid > csid) { 802 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 803 return; 804 } 805 806 if ((sid == csid) && SSN_lt(cssn, ssn)) { 807 __skb_queue_tail(&ulpq->lobby, sctp_event2skb(event)); 808 return; 809 } 810 811 /* Find the right place in this list. We store them by 812 * stream ID and then by SSN. 813 */ 814 skb_queue_walk(&ulpq->lobby, pos) { 815 cevent = (struct sctp_ulpevent *) pos->cb; 816 csid = cevent->stream; 817 cssn = cevent->ssn; 818 819 if (csid > sid) 820 break; 821 if (csid == sid && SSN_lt(ssn, cssn)) 822 break; 823 } 824 825 826 /* Insert before pos. */ 827 __skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event)); 828 } 829 830 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq, 831 struct sctp_ulpevent *event) 832 { 833 __u16 sid, ssn; 834 struct sctp_stream *stream; 835 836 /* Check if this message needs ordering. */ 837 if (event->msg_flags & SCTP_DATA_UNORDERED) 838 return event; 839 840 /* Note: The stream ID must be verified before this routine. */ 841 sid = event->stream; 842 ssn = event->ssn; 843 stream = &ulpq->asoc->stream; 844 845 /* Is this the expected SSN for this stream ID? */ 846 if (ssn != sctp_ssn_peek(stream, in, sid)) { 847 /* We've received something out of order, so find where it 848 * needs to be placed. We order by stream and then by SSN. 849 */ 850 sctp_ulpq_store_ordered(ulpq, event); 851 return NULL; 852 } 853 854 /* Mark that the next chunk has been found. */ 855 sctp_ssn_next(stream, in, sid); 856 857 /* Go find any other chunks that were waiting for 858 * ordering. 859 */ 860 sctp_ulpq_retrieve_ordered(ulpq, event); 861 862 return event; 863 } 864 865 /* Helper function to gather skbs that have possibly become 866 * ordered by forward tsn skipping their dependencies. 867 */ 868 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid) 869 { 870 struct sk_buff *pos, *tmp; 871 struct sctp_ulpevent *cevent; 872 struct sctp_ulpevent *event; 873 struct sctp_stream *stream; 874 struct sk_buff_head temp; 875 struct sk_buff_head *lobby = &ulpq->lobby; 876 __u16 csid, cssn; 877 878 stream = &ulpq->asoc->stream; 879 880 /* We are holding the chunks by stream, by SSN. */ 881 skb_queue_head_init(&temp); 882 event = NULL; 883 sctp_skb_for_each(pos, lobby, tmp) { 884 cevent = (struct sctp_ulpevent *) pos->cb; 885 csid = cevent->stream; 886 cssn = cevent->ssn; 887 888 /* Have we gone too far? */ 889 if (csid > sid) 890 break; 891 892 /* Have we not gone far enough? */ 893 if (csid < sid) 894 continue; 895 896 /* see if this ssn has been marked by skipping */ 897 if (!SSN_lt(cssn, sctp_ssn_peek(stream, in, csid))) 898 break; 899 900 __skb_unlink(pos, lobby); 901 if (!event) 902 /* Create a temporary list to collect chunks on. */ 903 event = sctp_skb2event(pos); 904 905 /* Attach all gathered skbs to the event. */ 906 __skb_queue_tail(&temp, pos); 907 } 908 909 /* If we didn't reap any data, see if the next expected SSN 910 * is next on the queue and if so, use that. 911 */ 912 if (event == NULL && pos != (struct sk_buff *)lobby) { 913 cevent = (struct sctp_ulpevent *) pos->cb; 914 csid = cevent->stream; 915 cssn = cevent->ssn; 916 917 if (csid == sid && cssn == sctp_ssn_peek(stream, in, csid)) { 918 sctp_ssn_next(stream, in, csid); 919 __skb_unlink(pos, lobby); 920 __skb_queue_tail(&temp, pos); 921 event = sctp_skb2event(pos); 922 } 923 } 924 925 /* Send event to the ULP. 'event' is the sctp_ulpevent for 926 * very first SKB on the 'temp' list. 927 */ 928 if (event) { 929 /* see if we have more ordered that we can deliver */ 930 sctp_ulpq_retrieve_ordered(ulpq, event); 931 sctp_ulpq_tail_event(ulpq, &temp); 932 } 933 } 934 935 /* Skip over an SSN. This is used during the processing of 936 * Forwared TSN chunk to skip over the abandoned ordered data 937 */ 938 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn) 939 { 940 struct sctp_stream *stream; 941 942 /* Note: The stream ID must be verified before this routine. */ 943 stream = &ulpq->asoc->stream; 944 945 /* Is this an old SSN? If so ignore. */ 946 if (SSN_lt(ssn, sctp_ssn_peek(stream, in, sid))) 947 return; 948 949 /* Mark that we are no longer expecting this SSN or lower. */ 950 sctp_ssn_skip(stream, in, sid, ssn); 951 952 /* Go find any other chunks that were waiting for 953 * ordering and deliver them if needed. 954 */ 955 sctp_ulpq_reap_ordered(ulpq, sid); 956 } 957 958 __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, struct sk_buff_head *list, 959 __u16 needed) 960 { 961 __u16 freed = 0; 962 __u32 tsn, last_tsn; 963 struct sk_buff *skb, *flist, *last; 964 struct sctp_ulpevent *event; 965 struct sctp_tsnmap *tsnmap; 966 967 tsnmap = &ulpq->asoc->peer.tsn_map; 968 969 while ((skb = skb_peek_tail(list)) != NULL) { 970 event = sctp_skb2event(skb); 971 tsn = event->tsn; 972 973 /* Don't renege below the Cumulative TSN ACK Point. */ 974 if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap))) 975 break; 976 977 /* Events in ordering queue may have multiple fragments 978 * corresponding to additional TSNs. Sum the total 979 * freed space; find the last TSN. 980 */ 981 freed += skb_headlen(skb); 982 flist = skb_shinfo(skb)->frag_list; 983 for (last = flist; flist; flist = flist->next) { 984 last = flist; 985 freed += skb_headlen(last); 986 } 987 if (last) 988 last_tsn = sctp_skb2event(last)->tsn; 989 else 990 last_tsn = tsn; 991 992 /* Unlink the event, then renege all applicable TSNs. */ 993 __skb_unlink(skb, list); 994 sctp_ulpevent_free(event); 995 while (TSN_lte(tsn, last_tsn)) { 996 sctp_tsnmap_renege(tsnmap, tsn); 997 tsn++; 998 } 999 if (freed >= needed) 1000 return freed; 1001 } 1002 1003 return freed; 1004 } 1005 1006 /* Renege 'needed' bytes from the ordering queue. */ 1007 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed) 1008 { 1009 return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed); 1010 } 1011 1012 /* Renege 'needed' bytes from the reassembly queue. */ 1013 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed) 1014 { 1015 return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed); 1016 } 1017 1018 /* Partial deliver the first message as there is pressure on rwnd. */ 1019 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq, 1020 gfp_t gfp) 1021 { 1022 struct sctp_ulpevent *event; 1023 struct sctp_association *asoc; 1024 struct sctp_sock *sp; 1025 __u32 ctsn; 1026 struct sk_buff *skb; 1027 1028 asoc = ulpq->asoc; 1029 sp = sctp_sk(asoc->base.sk); 1030 1031 /* If the association is already in Partial Delivery mode 1032 * we have nothing to do. 1033 */ 1034 if (ulpq->pd_mode) 1035 return; 1036 1037 /* Data must be at or below the Cumulative TSN ACK Point to 1038 * start partial delivery. 1039 */ 1040 skb = skb_peek(&asoc->ulpq.reasm); 1041 if (skb != NULL) { 1042 ctsn = sctp_skb2event(skb)->tsn; 1043 if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map))) 1044 return; 1045 } 1046 1047 /* If the user enabled fragment interleave socket option, 1048 * multiple associations can enter partial delivery. 1049 * Otherwise, we can only enter partial delivery if the 1050 * socket is not in partial deliver mode. 1051 */ 1052 if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) { 1053 /* Is partial delivery possible? */ 1054 event = sctp_ulpq_retrieve_first(ulpq); 1055 /* Send event to the ULP. */ 1056 if (event) { 1057 struct sk_buff_head temp; 1058 1059 skb_queue_head_init(&temp); 1060 __skb_queue_tail(&temp, sctp_event2skb(event)); 1061 sctp_ulpq_tail_event(ulpq, &temp); 1062 sctp_ulpq_set_pd(ulpq); 1063 return; 1064 } 1065 } 1066 } 1067 1068 /* Renege some packets to make room for an incoming chunk. */ 1069 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk, 1070 gfp_t gfp) 1071 { 1072 struct sctp_association *asoc = ulpq->asoc; 1073 __u32 freed = 0; 1074 __u16 needed; 1075 1076 needed = ntohs(chunk->chunk_hdr->length) - 1077 sizeof(struct sctp_data_chunk); 1078 1079 if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) { 1080 freed = sctp_ulpq_renege_order(ulpq, needed); 1081 if (freed < needed) 1082 freed += sctp_ulpq_renege_frags(ulpq, needed - freed); 1083 } 1084 /* If able to free enough room, accept this chunk. */ 1085 if (sk_rmem_schedule(asoc->base.sk, chunk->skb, needed) && 1086 freed >= needed) { 1087 int retval = sctp_ulpq_tail_data(ulpq, chunk, gfp); 1088 /* 1089 * Enter partial delivery if chunk has not been 1090 * delivered; otherwise, drain the reassembly queue. 1091 */ 1092 if (retval <= 0) 1093 sctp_ulpq_partial_delivery(ulpq, gfp); 1094 else if (retval == 1) 1095 sctp_ulpq_reasm_drain(ulpq); 1096 } 1097 } 1098 1099 /* Notify the application if an association is aborted and in 1100 * partial delivery mode. Send up any pending received messages. 1101 */ 1102 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp) 1103 { 1104 struct sctp_ulpevent *ev = NULL; 1105 struct sctp_sock *sp; 1106 struct sock *sk; 1107 1108 if (!ulpq->pd_mode) 1109 return; 1110 1111 sk = ulpq->asoc->base.sk; 1112 sp = sctp_sk(sk); 1113 if (sctp_ulpevent_type_enabled(ulpq->asoc->subscribe, 1114 SCTP_PARTIAL_DELIVERY_EVENT)) 1115 ev = sctp_ulpevent_make_pdapi(ulpq->asoc, 1116 SCTP_PARTIAL_DELIVERY_ABORTED, 1117 0, 0, 0, gfp); 1118 if (ev) 1119 __skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev)); 1120 1121 /* If there is data waiting, send it up the socket now. */ 1122 if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) { 1123 sp->data_ready_signalled = 1; 1124 sk->sk_data_ready(sk); 1125 } 1126 } 1127
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.