~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/sunrpc/auth_gss/gss_krb5_crypto.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  *  linux/net/sunrpc/gss_krb5_crypto.c
  3  *
  4  *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
  5  *  All rights reserved.
  6  *
  7  *  Andy Adamson   <andros@umich.edu>
  8  *  Bruce Fields   <bfields@umich.edu>
  9  */
 10 
 11 /*
 12  * Copyright (C) 1998 by the FundsXpress, INC.
 13  *
 14  * All rights reserved.
 15  *
 16  * Export of this software from the United States of America may require
 17  * a specific license from the United States Government.  It is the
 18  * responsibility of any person or organization contemplating export to
 19  * obtain such a license before exporting.
 20  *
 21  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
 22  * distribute this software and its documentation for any purpose and
 23  * without fee is hereby granted, provided that the above copyright
 24  * notice appear in all copies and that both that copyright notice and
 25  * this permission notice appear in supporting documentation, and that
 26  * the name of FundsXpress. not be used in advertising or publicity pertaining
 27  * to distribution of the software without specific, written prior
 28  * permission.  FundsXpress makes no representations about the suitability of
 29  * this software for any purpose.  It is provided "as is" without express
 30  * or implied warranty.
 31  *
 32  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 33  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 34  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 35  */
 36 
 37 #include <crypto/hash.h>
 38 #include <crypto/skcipher.h>
 39 #include <crypto/utils.h>
 40 #include <linux/err.h>
 41 #include <linux/types.h>
 42 #include <linux/mm.h>
 43 #include <linux/scatterlist.h>
 44 #include <linux/highmem.h>
 45 #include <linux/pagemap.h>
 46 #include <linux/random.h>
 47 #include <linux/sunrpc/gss_krb5.h>
 48 #include <linux/sunrpc/xdr.h>
 49 #include <kunit/visibility.h>
 50 
 51 #include "gss_krb5_internal.h"
 52 
 53 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
 54 # define RPCDBG_FACILITY        RPCDBG_AUTH
 55 #endif
 56 
 57 /**
 58  * krb5_make_confounder - Generate a confounder string
 59  * @p: memory location into which to write the string
 60  * @conflen: string length to write, in octets
 61  *
 62  * RFCs 1964 and 3961 mention only "a random confounder" without going
 63  * into detail about its function or cryptographic requirements. The
 64  * assumed purpose is to prevent repeated encryption of a plaintext with
 65  * the same key from generating the same ciphertext. It is also used to
 66  * pad minimum plaintext length to at least a single cipher block.
 67  *
 68  * However, in situations like the GSS Kerberos 5 mechanism, where the
 69  * encryption IV is always all zeroes, the confounder also effectively
 70  * functions like an IV. Thus, not only must it be unique from message
 71  * to message, but it must also be difficult to predict. Otherwise an
 72  * attacker can correlate the confounder to previous or future values,
 73  * making the encryption easier to break.
 74  *
 75  * Given that the primary consumer of this encryption mechanism is a
 76  * network storage protocol, a type of traffic that often carries
 77  * predictable payloads (eg, all zeroes when reading unallocated blocks
 78  * from a file), our confounder generation has to be cryptographically
 79  * strong.
 80  */
 81 void krb5_make_confounder(u8 *p, int conflen)
 82 {
 83         get_random_bytes(p, conflen);
 84 }
 85 
 86 /**
 87  * krb5_encrypt - simple encryption of an RPCSEC GSS payload
 88  * @tfm: initialized cipher transform
 89  * @iv: pointer to an IV
 90  * @in: plaintext to encrypt
 91  * @out: OUT: ciphertext
 92  * @length: length of input and output buffers, in bytes
 93  *
 94  * @iv may be NULL to force the use of an all-zero IV.
 95  * The buffer containing the IV must be as large as the
 96  * cipher's ivsize.
 97  *
 98  * Return values:
 99  *   %0: @in successfully encrypted into @out
100  *   negative errno: @in not encrypted
101  */
102 u32
103 krb5_encrypt(
104         struct crypto_sync_skcipher *tfm,
105         void * iv,
106         void * in,
107         void * out,
108         int length)
109 {
110         u32 ret = -EINVAL;
111         struct scatterlist sg[1];
112         u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
113         SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
114 
115         if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
116                 goto out;
117 
118         if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
119                 dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
120                         crypto_sync_skcipher_ivsize(tfm));
121                 goto out;
122         }
123 
124         if (iv)
125                 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
126 
127         memcpy(out, in, length);
128         sg_init_one(sg, out, length);
129 
130         skcipher_request_set_sync_tfm(req, tfm);
131         skcipher_request_set_callback(req, 0, NULL, NULL);
132         skcipher_request_set_crypt(req, sg, sg, length, local_iv);
133 
134         ret = crypto_skcipher_encrypt(req);
135         skcipher_request_zero(req);
136 out:
137         dprintk("RPC:       krb5_encrypt returns %d\n", ret);
138         return ret;
139 }
140 
141 /**
142  * krb5_decrypt - simple decryption of an RPCSEC GSS payload
143  * @tfm: initialized cipher transform
144  * @iv: pointer to an IV
145  * @in: ciphertext to decrypt
146  * @out: OUT: plaintext
147  * @length: length of input and output buffers, in bytes
148  *
149  * @iv may be NULL to force the use of an all-zero IV.
150  * The buffer containing the IV must be as large as the
151  * cipher's ivsize.
152  *
153  * Return values:
154  *   %0: @in successfully decrypted into @out
155  *   negative errno: @in not decrypted
156  */
157 u32
158 krb5_decrypt(
159      struct crypto_sync_skcipher *tfm,
160      void * iv,
161      void * in,
162      void * out,
163      int length)
164 {
165         u32 ret = -EINVAL;
166         struct scatterlist sg[1];
167         u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
168         SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
169 
170         if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
171                 goto out;
172 
173         if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
174                 dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
175                         crypto_sync_skcipher_ivsize(tfm));
176                 goto out;
177         }
178         if (iv)
179                 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
180 
181         memcpy(out, in, length);
182         sg_init_one(sg, out, length);
183 
184         skcipher_request_set_sync_tfm(req, tfm);
185         skcipher_request_set_callback(req, 0, NULL, NULL);
186         skcipher_request_set_crypt(req, sg, sg, length, local_iv);
187 
188         ret = crypto_skcipher_decrypt(req);
189         skcipher_request_zero(req);
190 out:
191         dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
192         return ret;
193 }
194 
195 static int
196 checksummer(struct scatterlist *sg, void *data)
197 {
198         struct ahash_request *req = data;
199 
200         ahash_request_set_crypt(req, sg, NULL, sg->length);
201 
202         return crypto_ahash_update(req);
203 }
204 
205 /*
206  * checksum the plaintext data and hdrlen bytes of the token header
207  * The checksum is performed over the first 8 bytes of the
208  * gss token header and then over the data body
209  */
210 u32
211 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
212               struct xdr_buf *body, int body_offset, u8 *cksumkey,
213               unsigned int usage, struct xdr_netobj *cksumout)
214 {
215         struct crypto_ahash *tfm;
216         struct ahash_request *req;
217         struct scatterlist              sg[1];
218         int err = -1;
219         u8 *checksumdata;
220         unsigned int checksumlen;
221 
222         if (cksumout->len < kctx->gk5e->cksumlength) {
223                 dprintk("%s: checksum buffer length, %u, too small for %s\n",
224                         __func__, cksumout->len, kctx->gk5e->name);
225                 return GSS_S_FAILURE;
226         }
227 
228         checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL);
229         if (checksumdata == NULL)
230                 return GSS_S_FAILURE;
231 
232         tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
233         if (IS_ERR(tfm))
234                 goto out_free_cksum;
235 
236         req = ahash_request_alloc(tfm, GFP_KERNEL);
237         if (!req)
238                 goto out_free_ahash;
239 
240         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
241 
242         checksumlen = crypto_ahash_digestsize(tfm);
243 
244         if (cksumkey != NULL) {
245                 err = crypto_ahash_setkey(tfm, cksumkey,
246                                           kctx->gk5e->keylength);
247                 if (err)
248                         goto out;
249         }
250 
251         err = crypto_ahash_init(req);
252         if (err)
253                 goto out;
254         sg_init_one(sg, header, hdrlen);
255         ahash_request_set_crypt(req, sg, NULL, hdrlen);
256         err = crypto_ahash_update(req);
257         if (err)
258                 goto out;
259         err = xdr_process_buf(body, body_offset, body->len - body_offset,
260                               checksummer, req);
261         if (err)
262                 goto out;
263         ahash_request_set_crypt(req, NULL, checksumdata, 0);
264         err = crypto_ahash_final(req);
265         if (err)
266                 goto out;
267 
268         switch (kctx->gk5e->ctype) {
269         case CKSUMTYPE_RSA_MD5:
270                 err = krb5_encrypt(kctx->seq, NULL, checksumdata,
271                                    checksumdata, checksumlen);
272                 if (err)
273                         goto out;
274                 memcpy(cksumout->data,
275                        checksumdata + checksumlen - kctx->gk5e->cksumlength,
276                        kctx->gk5e->cksumlength);
277                 break;
278         case CKSUMTYPE_HMAC_SHA1_DES3:
279                 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
280                 break;
281         default:
282                 BUG();
283                 break;
284         }
285         cksumout->len = kctx->gk5e->cksumlength;
286 out:
287         ahash_request_free(req);
288 out_free_ahash:
289         crypto_free_ahash(tfm);
290 out_free_cksum:
291         kfree(checksumdata);
292         return err ? GSS_S_FAILURE : 0;
293 }
294 
295 /**
296  * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token
297  * @tfm: an initialized hash transform
298  * @header: pointer to a buffer containing the token header, or NULL
299  * @hdrlen: number of octets in @header
300  * @body: xdr_buf containing an RPC message (body.len is the message length)
301  * @body_offset: byte offset into @body to start checksumming
302  * @cksumout: OUT: a buffer to be filled in with the computed HMAC
303  *
304  * Usually expressed as H = HMAC(K, message)[1..h] .
305  *
306  * Caller provides the truncation length of the output token (h) in
307  * cksumout.len.
308  *
309  * Return values:
310  *   %GSS_S_COMPLETE: Digest computed, @cksumout filled in
311  *   %GSS_S_FAILURE: Call failed
312  */
313 u32
314 gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen,
315                   const struct xdr_buf *body, int body_offset,
316                   struct xdr_netobj *cksumout)
317 {
318         struct ahash_request *req;
319         int err = -ENOMEM;
320         u8 *checksumdata;
321 
322         checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
323         if (!checksumdata)
324                 return GSS_S_FAILURE;
325 
326         req = ahash_request_alloc(tfm, GFP_KERNEL);
327         if (!req)
328                 goto out_free_cksum;
329         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
330         err = crypto_ahash_init(req);
331         if (err)
332                 goto out_free_ahash;
333 
334         /*
335          * Per RFC 4121 Section 4.2.4, the checksum is performed over the
336          * data body first, then over the octets in "header".
337          */
338         err = xdr_process_buf(body, body_offset, body->len - body_offset,
339                               checksummer, req);
340         if (err)
341                 goto out_free_ahash;
342         if (header) {
343                 struct scatterlist sg[1];
344 
345                 sg_init_one(sg, header, hdrlen);
346                 ahash_request_set_crypt(req, sg, NULL, hdrlen);
347                 err = crypto_ahash_update(req);
348                 if (err)
349                         goto out_free_ahash;
350         }
351 
352         ahash_request_set_crypt(req, NULL, checksumdata, 0);
353         err = crypto_ahash_final(req);
354         if (err)
355                 goto out_free_ahash;
356 
357         memcpy(cksumout->data, checksumdata,
358                min_t(int, cksumout->len, crypto_ahash_digestsize(tfm)));
359 
360 out_free_ahash:
361         ahash_request_free(req);
362 out_free_cksum:
363         kfree_sensitive(checksumdata);
364         return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
365 }
366 EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum);
367 
368 struct encryptor_desc {
369         u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
370         struct skcipher_request *req;
371         int pos;
372         struct xdr_buf *outbuf;
373         struct page **pages;
374         struct scatterlist infrags[4];
375         struct scatterlist outfrags[4];
376         int fragno;
377         int fraglen;
378 };
379 
380 static int
381 encryptor(struct scatterlist *sg, void *data)
382 {
383         struct encryptor_desc *desc = data;
384         struct xdr_buf *outbuf = desc->outbuf;
385         struct crypto_sync_skcipher *tfm =
386                 crypto_sync_skcipher_reqtfm(desc->req);
387         struct page *in_page;
388         int thislen = desc->fraglen + sg->length;
389         int fraglen, ret;
390         int page_pos;
391 
392         /* Worst case is 4 fragments: head, end of page 1, start
393          * of page 2, tail.  Anything more is a bug. */
394         BUG_ON(desc->fragno > 3);
395 
396         page_pos = desc->pos - outbuf->head[0].iov_len;
397         if (page_pos >= 0 && page_pos < outbuf->page_len) {
398                 /* pages are not in place: */
399                 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
400                 in_page = desc->pages[i];
401         } else {
402                 in_page = sg_page(sg);
403         }
404         sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
405                     sg->offset);
406         sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
407                     sg->offset);
408         desc->fragno++;
409         desc->fraglen += sg->length;
410         desc->pos += sg->length;
411 
412         fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
413         thislen -= fraglen;
414 
415         if (thislen == 0)
416                 return 0;
417 
418         sg_mark_end(&desc->infrags[desc->fragno - 1]);
419         sg_mark_end(&desc->outfrags[desc->fragno - 1]);
420 
421         skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
422                                    thislen, desc->iv);
423 
424         ret = crypto_skcipher_encrypt(desc->req);
425         if (ret)
426                 return ret;
427 
428         sg_init_table(desc->infrags, 4);
429         sg_init_table(desc->outfrags, 4);
430 
431         if (fraglen) {
432                 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
433                                 sg->offset + sg->length - fraglen);
434                 desc->infrags[0] = desc->outfrags[0];
435                 sg_assign_page(&desc->infrags[0], in_page);
436                 desc->fragno = 1;
437                 desc->fraglen = fraglen;
438         } else {
439                 desc->fragno = 0;
440                 desc->fraglen = 0;
441         }
442         return 0;
443 }
444 
445 int
446 gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
447                     int offset, struct page **pages)
448 {
449         int ret;
450         struct encryptor_desc desc;
451         SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
452 
453         BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
454 
455         skcipher_request_set_sync_tfm(req, tfm);
456         skcipher_request_set_callback(req, 0, NULL, NULL);
457 
458         memset(desc.iv, 0, sizeof(desc.iv));
459         desc.req = req;
460         desc.pos = offset;
461         desc.outbuf = buf;
462         desc.pages = pages;
463         desc.fragno = 0;
464         desc.fraglen = 0;
465 
466         sg_init_table(desc.infrags, 4);
467         sg_init_table(desc.outfrags, 4);
468 
469         ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
470         skcipher_request_zero(req);
471         return ret;
472 }
473 
474 struct decryptor_desc {
475         u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
476         struct skcipher_request *req;
477         struct scatterlist frags[4];
478         int fragno;
479         int fraglen;
480 };
481 
482 static int
483 decryptor(struct scatterlist *sg, void *data)
484 {
485         struct decryptor_desc *desc = data;
486         int thislen = desc->fraglen + sg->length;
487         struct crypto_sync_skcipher *tfm =
488                 crypto_sync_skcipher_reqtfm(desc->req);
489         int fraglen, ret;
490 
491         /* Worst case is 4 fragments: head, end of page 1, start
492          * of page 2, tail.  Anything more is a bug. */
493         BUG_ON(desc->fragno > 3);
494         sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
495                     sg->offset);
496         desc->fragno++;
497         desc->fraglen += sg->length;
498 
499         fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
500         thislen -= fraglen;
501 
502         if (thislen == 0)
503                 return 0;
504 
505         sg_mark_end(&desc->frags[desc->fragno - 1]);
506 
507         skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
508                                    thislen, desc->iv);
509 
510         ret = crypto_skcipher_decrypt(desc->req);
511         if (ret)
512                 return ret;
513 
514         sg_init_table(desc->frags, 4);
515 
516         if (fraglen) {
517                 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
518                                 sg->offset + sg->length - fraglen);
519                 desc->fragno = 1;
520                 desc->fraglen = fraglen;
521         } else {
522                 desc->fragno = 0;
523                 desc->fraglen = 0;
524         }
525         return 0;
526 }
527 
528 int
529 gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
530                     int offset)
531 {
532         int ret;
533         struct decryptor_desc desc;
534         SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
535 
536         /* XXXJBF: */
537         BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
538 
539         skcipher_request_set_sync_tfm(req, tfm);
540         skcipher_request_set_callback(req, 0, NULL, NULL);
541 
542         memset(desc.iv, 0, sizeof(desc.iv));
543         desc.req = req;
544         desc.fragno = 0;
545         desc.fraglen = 0;
546 
547         sg_init_table(desc.frags, 4);
548 
549         ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
550         skcipher_request_zero(req);
551         return ret;
552 }
553 
554 /*
555  * This function makes the assumption that it was ultimately called
556  * from gss_wrap().
557  *
558  * The client auth_gss code moves any existing tail data into a
559  * separate page before calling gss_wrap.
560  * The server svcauth_gss code ensures that both the head and the
561  * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
562  *
563  * Even with that guarantee, this function may be called more than
564  * once in the processing of gss_wrap().  The best we can do is
565  * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
566  * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
567  * At run-time we can verify that a single invocation of this
568  * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
569  */
570 
571 int
572 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
573 {
574         u8 *p;
575 
576         if (shiftlen == 0)
577                 return 0;
578 
579         BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
580 
581         p = buf->head[0].iov_base + base;
582 
583         memmove(p + shiftlen, p, buf->head[0].iov_len - base);
584 
585         buf->head[0].iov_len += shiftlen;
586         buf->len += shiftlen;
587 
588         return 0;
589 }
590 
591 static u32
592 gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
593                    u32 offset, u8 *iv, struct page **pages, int encrypt)
594 {
595         u32 ret;
596         struct scatterlist sg[1];
597         SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
598         u8 *data;
599         struct page **save_pages;
600         u32 len = buf->len - offset;
601 
602         if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
603                 WARN_ON(0);
604                 return -ENOMEM;
605         }
606         data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL);
607         if (!data)
608                 return -ENOMEM;
609 
610         /*
611          * For encryption, we want to read from the cleartext
612          * page cache pages, and write the encrypted data to
613          * the supplied xdr_buf pages.
614          */
615         save_pages = buf->pages;
616         if (encrypt)
617                 buf->pages = pages;
618 
619         ret = read_bytes_from_xdr_buf(buf, offset, data, len);
620         buf->pages = save_pages;
621         if (ret)
622                 goto out;
623 
624         sg_init_one(sg, data, len);
625 
626         skcipher_request_set_sync_tfm(req, cipher);
627         skcipher_request_set_callback(req, 0, NULL, NULL);
628         skcipher_request_set_crypt(req, sg, sg, len, iv);
629 
630         if (encrypt)
631                 ret = crypto_skcipher_encrypt(req);
632         else
633                 ret = crypto_skcipher_decrypt(req);
634 
635         skcipher_request_zero(req);
636 
637         if (ret)
638                 goto out;
639 
640         ret = write_bytes_to_xdr_buf(buf, offset, data, len);
641 
642 #if IS_ENABLED(CONFIG_KUNIT)
643         /*
644          * CBC-CTS does not define an output IV but RFC 3962 defines it as the
645          * penultimate block of ciphertext, so copy that into the IV buffer
646          * before returning.
647          */
648         if (encrypt)
649                 memcpy(iv, data, crypto_sync_skcipher_ivsize(cipher));
650 #endif
651 
652 out:
653         kfree(data);
654         return ret;
655 }
656 
657 /**
658  * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS
659  * @cts_tfm: CBC cipher with CTS
660  * @cbc_tfm: base CBC cipher
661  * @offset: starting byte offset for plaintext
662  * @buf: OUT: output buffer
663  * @pages: plaintext
664  * @iv: output CBC initialization vector, or NULL
665  * @ivsize: size of @iv, in octets
666  *
667  * To provide confidentiality, encrypt using cipher block chaining
668  * with ciphertext stealing. Message integrity is handled separately.
669  *
670  * Return values:
671  *   %0: encryption successful
672  *   negative errno: encryption could not be completed
673  */
674 VISIBLE_IF_KUNIT
675 int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm,
676                          struct crypto_sync_skcipher *cbc_tfm,
677                          u32 offset, struct xdr_buf *buf, struct page **pages,
678                          u8 *iv, unsigned int ivsize)
679 {
680         u32 blocksize, nbytes, nblocks, cbcbytes;
681         struct encryptor_desc desc;
682         int err;
683 
684         blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
685         nbytes = buf->len - offset;
686         nblocks = (nbytes + blocksize - 1) / blocksize;
687         cbcbytes = 0;
688         if (nblocks > 2)
689                 cbcbytes = (nblocks - 2) * blocksize;
690 
691         memset(desc.iv, 0, sizeof(desc.iv));
692 
693         /* Handle block-sized chunks of plaintext with CBC. */
694         if (cbcbytes) {
695                 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
696 
697                 desc.pos = offset;
698                 desc.fragno = 0;
699                 desc.fraglen = 0;
700                 desc.pages = pages;
701                 desc.outbuf = buf;
702                 desc.req = req;
703 
704                 skcipher_request_set_sync_tfm(req, cbc_tfm);
705                 skcipher_request_set_callback(req, 0, NULL, NULL);
706 
707                 sg_init_table(desc.infrags, 4);
708                 sg_init_table(desc.outfrags, 4);
709 
710                 err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc);
711                 skcipher_request_zero(req);
712                 if (err)
713                         return err;
714         }
715 
716         /* Remaining plaintext is handled with CBC-CTS. */
717         err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes,
718                                  desc.iv, pages, 1);
719         if (err)
720                 return err;
721 
722         if (unlikely(iv))
723                 memcpy(iv, desc.iv, ivsize);
724         return 0;
725 }
726 EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt);
727 
728 /**
729  * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS
730  * @cts_tfm: CBC cipher with CTS
731  * @cbc_tfm: base CBC cipher
732  * @offset: starting byte offset for plaintext
733  * @buf: OUT: output buffer
734  *
735  * Return values:
736  *   %0: decryption successful
737  *   negative errno: decryption could not be completed
738  */
739 VISIBLE_IF_KUNIT
740 int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm,
741                          struct crypto_sync_skcipher *cbc_tfm,
742                          u32 offset, struct xdr_buf *buf)
743 {
744         u32 blocksize, nblocks, cbcbytes;
745         struct decryptor_desc desc;
746         int err;
747 
748         blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
749         nblocks = (buf->len + blocksize - 1) / blocksize;
750         cbcbytes = 0;
751         if (nblocks > 2)
752                 cbcbytes = (nblocks - 2) * blocksize;
753 
754         memset(desc.iv, 0, sizeof(desc.iv));
755 
756         /* Handle block-sized chunks of plaintext with CBC. */
757         if (cbcbytes) {
758                 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
759 
760                 desc.fragno = 0;
761                 desc.fraglen = 0;
762                 desc.req = req;
763 
764                 skcipher_request_set_sync_tfm(req, cbc_tfm);
765                 skcipher_request_set_callback(req, 0, NULL, NULL);
766 
767                 sg_init_table(desc.frags, 4);
768 
769                 err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc);
770                 skcipher_request_zero(req);
771                 if (err)
772                         return err;
773         }
774 
775         /* Remaining plaintext is handled with CBC-CTS. */
776         return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0);
777 }
778 EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt);
779 
780 u32
781 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
782                      struct xdr_buf *buf, struct page **pages)
783 {
784         u32 err;
785         struct xdr_netobj hmac;
786         u8 *ecptr;
787         struct crypto_sync_skcipher *cipher, *aux_cipher;
788         struct crypto_ahash *ahash;
789         struct page **save_pages;
790         unsigned int conflen;
791 
792         if (kctx->initiate) {
793                 cipher = kctx->initiator_enc;
794                 aux_cipher = kctx->initiator_enc_aux;
795                 ahash = kctx->initiator_integ;
796         } else {
797                 cipher = kctx->acceptor_enc;
798                 aux_cipher = kctx->acceptor_enc_aux;
799                 ahash = kctx->acceptor_integ;
800         }
801         conflen = crypto_sync_skcipher_blocksize(cipher);
802 
803         /* hide the gss token header and insert the confounder */
804         offset += GSS_KRB5_TOK_HDR_LEN;
805         if (xdr_extend_head(buf, offset, conflen))
806                 return GSS_S_FAILURE;
807         krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
808         offset -= GSS_KRB5_TOK_HDR_LEN;
809 
810         if (buf->tail[0].iov_base != NULL) {
811                 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
812         } else {
813                 buf->tail[0].iov_base = buf->head[0].iov_base
814                                                         + buf->head[0].iov_len;
815                 buf->tail[0].iov_len = 0;
816                 ecptr = buf->tail[0].iov_base;
817         }
818 
819         /* copy plaintext gss token header after filler (if any) */
820         memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
821         buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
822         buf->len += GSS_KRB5_TOK_HDR_LEN;
823 
824         hmac.len = kctx->gk5e->cksumlength;
825         hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
826 
827         /*
828          * When we are called, pages points to the real page cache
829          * data -- which we can't go and encrypt!  buf->pages points
830          * to scratch pages which we are going to send off to the
831          * client/server.  Swap in the plaintext pages to calculate
832          * the hmac.
833          */
834         save_pages = buf->pages;
835         buf->pages = pages;
836 
837         err = gss_krb5_checksum(ahash, NULL, 0, buf,
838                                 offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
839         buf->pages = save_pages;
840         if (err)
841                 return GSS_S_FAILURE;
842 
843         err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
844                                    offset + GSS_KRB5_TOK_HDR_LEN,
845                                    buf, pages, NULL, 0);
846         if (err)
847                 return GSS_S_FAILURE;
848 
849         /* Now update buf to account for HMAC */
850         buf->tail[0].iov_len += kctx->gk5e->cksumlength;
851         buf->len += kctx->gk5e->cksumlength;
852 
853         return GSS_S_COMPLETE;
854 }
855 
856 u32
857 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
858                      struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
859 {
860         struct crypto_sync_skcipher *cipher, *aux_cipher;
861         struct crypto_ahash *ahash;
862         struct xdr_netobj our_hmac_obj;
863         u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
864         u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
865         struct xdr_buf subbuf;
866         u32 ret = 0;
867 
868         if (kctx->initiate) {
869                 cipher = kctx->acceptor_enc;
870                 aux_cipher = kctx->acceptor_enc_aux;
871                 ahash = kctx->acceptor_integ;
872         } else {
873                 cipher = kctx->initiator_enc;
874                 aux_cipher = kctx->initiator_enc_aux;
875                 ahash = kctx->initiator_integ;
876         }
877 
878         /* create a segment skipping the header and leaving out the checksum */
879         xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
880                                     (len - offset - GSS_KRB5_TOK_HDR_LEN -
881                                      kctx->gk5e->cksumlength));
882 
883         ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
884         if (ret)
885                 goto out_err;
886 
887         our_hmac_obj.len = kctx->gk5e->cksumlength;
888         our_hmac_obj.data = our_hmac;
889         ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj);
890         if (ret)
891                 goto out_err;
892 
893         /* Get the packet's hmac value */
894         ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
895                                       pkt_hmac, kctx->gk5e->cksumlength);
896         if (ret)
897                 goto out_err;
898 
899         if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
900                 ret = GSS_S_BAD_SIG;
901                 goto out_err;
902         }
903         *headskip = crypto_sync_skcipher_blocksize(cipher);
904         *tailskip = kctx->gk5e->cksumlength;
905 out_err:
906         if (ret && ret != GSS_S_BAD_SIG)
907                 ret = GSS_S_FAILURE;
908         return ret;
909 }
910 
911 /**
912  * krb5_etm_checksum - Compute a MAC for a GSS Wrap token
913  * @cipher: an initialized cipher transform
914  * @tfm: an initialized hash transform
915  * @body: xdr_buf containing an RPC message (body.len is the message length)
916  * @body_offset: byte offset into @body to start checksumming
917  * @cksumout: OUT: a buffer to be filled in with the computed HMAC
918  *
919  * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] .
920  *
921  * Caller provides the truncation length of the output token (h) in
922  * cksumout.len.
923  *
924  * Return values:
925  *   %GSS_S_COMPLETE: Digest computed, @cksumout filled in
926  *   %GSS_S_FAILURE: Call failed
927  */
928 VISIBLE_IF_KUNIT
929 u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher,
930                       struct crypto_ahash *tfm, const struct xdr_buf *body,
931                       int body_offset, struct xdr_netobj *cksumout)
932 {
933         unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher);
934         struct ahash_request *req;
935         struct scatterlist sg[1];
936         u8 *iv, *checksumdata;
937         int err = -ENOMEM;
938 
939         checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
940         if (!checksumdata)
941                 return GSS_S_FAILURE;
942         /* For RPCSEC, the "initial cipher state" is always all zeroes. */
943         iv = kzalloc(ivsize, GFP_KERNEL);
944         if (!iv)
945                 goto out_free_mem;
946 
947         req = ahash_request_alloc(tfm, GFP_KERNEL);
948         if (!req)
949                 goto out_free_mem;
950         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
951         err = crypto_ahash_init(req);
952         if (err)
953                 goto out_free_ahash;
954 
955         sg_init_one(sg, iv, ivsize);
956         ahash_request_set_crypt(req, sg, NULL, ivsize);
957         err = crypto_ahash_update(req);
958         if (err)
959                 goto out_free_ahash;
960         err = xdr_process_buf(body, body_offset, body->len - body_offset,
961                               checksummer, req);
962         if (err)
963                 goto out_free_ahash;
964 
965         ahash_request_set_crypt(req, NULL, checksumdata, 0);
966         err = crypto_ahash_final(req);
967         if (err)
968                 goto out_free_ahash;
969         memcpy(cksumout->data, checksumdata, cksumout->len);
970 
971 out_free_ahash:
972         ahash_request_free(req);
973 out_free_mem:
974         kfree(iv);
975         kfree_sensitive(checksumdata);
976         return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
977 }
978 EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum);
979 
980 /**
981  * krb5_etm_encrypt - Encrypt using the RFC 8009 rules
982  * @kctx: Kerberos context
983  * @offset: starting offset of the payload, in bytes
984  * @buf: OUT: send buffer to contain the encrypted payload
985  * @pages: plaintext payload
986  *
987  * The main difference with aes_encrypt is that "The HMAC is
988  * calculated over the cipher state concatenated with the AES
989  * output, instead of being calculated over the confounder and
990  * plaintext.  This allows the message receiver to verify the
991  * integrity of the message before decrypting the message."
992  *
993  * RFC 8009 Section 5:
994  *
995  * encryption function: as follows, where E() is AES encryption in
996  * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or
997  * 192 bits as described above).
998  *
999  *    N = random value of length 128 bits (the AES block size)
1000  *    IV = cipher state
1001  *    C = E(Ke, N | plaintext, IV)
1002  *    H = HMAC(Ki, IV | C)
1003  *    ciphertext = C | H[1..h]
1004  *
1005  * This encryption formula provides AEAD EtM with key separation.
1006  *
1007  * Return values:
1008  *   %GSS_S_COMPLETE: Encryption successful
1009  *   %GSS_S_FAILURE: Encryption failed
1010  */
1011 u32
1012 krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset,
1013                  struct xdr_buf *buf, struct page **pages)
1014 {
1015         struct crypto_sync_skcipher *cipher, *aux_cipher;
1016         struct crypto_ahash *ahash;
1017         struct xdr_netobj hmac;
1018         unsigned int conflen;
1019         u8 *ecptr;
1020         u32 err;
1021 
1022         if (kctx->initiate) {
1023                 cipher = kctx->initiator_enc;
1024                 aux_cipher = kctx->initiator_enc_aux;
1025                 ahash = kctx->initiator_integ;
1026         } else {
1027                 cipher = kctx->acceptor_enc;
1028                 aux_cipher = kctx->acceptor_enc_aux;
1029                 ahash = kctx->acceptor_integ;
1030         }
1031         conflen = crypto_sync_skcipher_blocksize(cipher);
1032 
1033         offset += GSS_KRB5_TOK_HDR_LEN;
1034         if (xdr_extend_head(buf, offset, conflen))
1035                 return GSS_S_FAILURE;
1036         krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
1037         offset -= GSS_KRB5_TOK_HDR_LEN;
1038 
1039         if (buf->tail[0].iov_base) {
1040                 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
1041         } else {
1042                 buf->tail[0].iov_base = buf->head[0].iov_base
1043                                                         + buf->head[0].iov_len;
1044                 buf->tail[0].iov_len = 0;
1045                 ecptr = buf->tail[0].iov_base;
1046         }
1047 
1048         memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
1049         buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
1050         buf->len += GSS_KRB5_TOK_HDR_LEN;
1051 
1052         err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
1053                                    offset + GSS_KRB5_TOK_HDR_LEN,
1054                                    buf, pages, NULL, 0);
1055         if (err)
1056                 return GSS_S_FAILURE;
1057 
1058         hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
1059         hmac.len = kctx->gk5e->cksumlength;
1060         err = krb5_etm_checksum(cipher, ahash,
1061                                 buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
1062         if (err)
1063                 goto out_err;
1064         buf->tail[0].iov_len += kctx->gk5e->cksumlength;
1065         buf->len += kctx->gk5e->cksumlength;
1066 
1067         return GSS_S_COMPLETE;
1068 
1069 out_err:
1070         return GSS_S_FAILURE;
1071 }
1072 
1073 /**
1074  * krb5_etm_decrypt - Decrypt using the RFC 8009 rules
1075  * @kctx: Kerberos context
1076  * @offset: starting offset of the ciphertext, in bytes
1077  * @len:
1078  * @buf:
1079  * @headskip: OUT: the enctype's confounder length, in octets
1080  * @tailskip: OUT: the enctype's HMAC length, in octets
1081  *
1082  * RFC 8009 Section 5:
1083  *
1084  * decryption function: as follows, where D() is AES decryption in
1085  * CBC-CS3 mode, and h is the size of truncated HMAC.
1086  *
1087  *    (C, H) = ciphertext
1088  *        (Note: H is the last h bits of the ciphertext.)
1089  *    IV = cipher state
1090  *    if H != HMAC(Ki, IV | C)[1..h]
1091  *        stop, report error
1092  *    (N, P) = D(Ke, C, IV)
1093  *
1094  * Return values:
1095  *   %GSS_S_COMPLETE: Decryption successful
1096  *   %GSS_S_BAD_SIG: computed HMAC != received HMAC
1097  *   %GSS_S_FAILURE: Decryption failed
1098  */
1099 u32
1100 krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
1101                  struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
1102 {
1103         struct crypto_sync_skcipher *cipher, *aux_cipher;
1104         u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1105         u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1106         struct xdr_netobj our_hmac_obj;
1107         struct crypto_ahash *ahash;
1108         struct xdr_buf subbuf;
1109         u32 ret = 0;
1110 
1111         if (kctx->initiate) {
1112                 cipher = kctx->acceptor_enc;
1113                 aux_cipher = kctx->acceptor_enc_aux;
1114                 ahash = kctx->acceptor_integ;
1115         } else {
1116                 cipher = kctx->initiator_enc;
1117                 aux_cipher = kctx->initiator_enc_aux;
1118                 ahash = kctx->initiator_integ;
1119         }
1120 
1121         /* Extract the ciphertext into @subbuf. */
1122         xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
1123                            (len - offset - GSS_KRB5_TOK_HDR_LEN -
1124                             kctx->gk5e->cksumlength));
1125 
1126         our_hmac_obj.data = our_hmac;
1127         our_hmac_obj.len = kctx->gk5e->cksumlength;
1128         ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj);
1129         if (ret)
1130                 goto out_err;
1131         ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
1132                                       pkt_hmac, kctx->gk5e->cksumlength);
1133         if (ret)
1134                 goto out_err;
1135         if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
1136                 ret = GSS_S_BAD_SIG;
1137                 goto out_err;
1138         }
1139 
1140         ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
1141         if (ret) {
1142                 ret = GSS_S_FAILURE;
1143                 goto out_err;
1144         }
1145 
1146         *headskip = crypto_sync_skcipher_blocksize(cipher);
1147         *tailskip = kctx->gk5e->cksumlength;
1148         return GSS_S_COMPLETE;
1149 
1150 out_err:
1151         if (ret != GSS_S_BAD_SIG)
1152                 ret = GSS_S_FAILURE;
1153         return ret;
1154 }
1155 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php