~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/sunrpc/auth_gss/gss_krb5_keys.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * COPYRIGHT (c) 2008
  3  * The Regents of the University of Michigan
  4  * ALL RIGHTS RESERVED
  5  *
  6  * Permission is granted to use, copy, create derivative works
  7  * and redistribute this software and such derivative works
  8  * for any purpose, so long as the name of The University of
  9  * Michigan is not used in any advertising or publicity
 10  * pertaining to the use of distribution of this software
 11  * without specific, written prior authorization.  If the
 12  * above copyright notice or any other identification of the
 13  * University of Michigan is included in any copy of any
 14  * portion of this software, then the disclaimer below must
 15  * also be included.
 16  *
 17  * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION
 18  * FROM THE UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY
 19  * PURPOSE, AND WITHOUT WARRANTY BY THE UNIVERSITY OF
 20  * MICHIGAN OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
 21  * WITHOUT LIMITATION THE IMPLIED WARRANTIES OF
 22  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
 23  * REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE LIABLE
 24  * FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR
 25  * CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM ARISING
 26  * OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
 27  * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF
 28  * SUCH DAMAGES.
 29  */
 30 
 31 /*
 32  * Copyright (C) 1998 by the FundsXpress, INC.
 33  *
 34  * All rights reserved.
 35  *
 36  * Export of this software from the United States of America may require
 37  * a specific license from the United States Government.  It is the
 38  * responsibility of any person or organization contemplating export to
 39  * obtain such a license before exporting.
 40  *
 41  * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
 42  * distribute this software and its documentation for any purpose and
 43  * without fee is hereby granted, provided that the above copyright
 44  * notice appear in all copies and that both that copyright notice and
 45  * this permission notice appear in supporting documentation, and that
 46  * the name of FundsXpress. not be used in advertising or publicity pertaining
 47  * to distribution of the software without specific, written prior
 48  * permission.  FundsXpress makes no representations about the suitability of
 49  * this software for any purpose.  It is provided "as is" without express
 50  * or implied warranty.
 51  *
 52  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 53  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 54  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 55  */
 56 
 57 #include <crypto/skcipher.h>
 58 #include <linux/err.h>
 59 #include <linux/types.h>
 60 #include <linux/sunrpc/gss_krb5.h>
 61 #include <linux/sunrpc/xdr.h>
 62 #include <linux/lcm.h>
 63 #include <crypto/hash.h>
 64 #include <kunit/visibility.h>
 65 
 66 #include "gss_krb5_internal.h"
 67 
 68 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
 69 # define RPCDBG_FACILITY        RPCDBG_AUTH
 70 #endif
 71 
 72 /**
 73  * krb5_nfold - n-fold function
 74  * @inbits: number of bits in @in
 75  * @in: buffer containing input to fold
 76  * @outbits: number of bits in the output buffer
 77  * @out: buffer to hold the result
 78  *
 79  * This is the n-fold function as described in rfc3961, sec 5.1
 80  * Taken from MIT Kerberos and modified.
 81  */
 82 VISIBLE_IF_KUNIT
 83 void krb5_nfold(u32 inbits, const u8 *in, u32 outbits, u8 *out)
 84 {
 85         unsigned long ulcm;
 86         int byte, i, msbit;
 87 
 88         /* the code below is more readable if I make these bytes
 89            instead of bits */
 90 
 91         inbits >>= 3;
 92         outbits >>= 3;
 93 
 94         /* first compute lcm(n,k) */
 95         ulcm = lcm(inbits, outbits);
 96 
 97         /* now do the real work */
 98 
 99         memset(out, 0, outbits);
100         byte = 0;
101 
102         /* this will end up cycling through k lcm(k,n)/k times, which
103            is correct */
104         for (i = ulcm-1; i >= 0; i--) {
105                 /* compute the msbit in k which gets added into this byte */
106                 msbit = (
107                         /* first, start with the msbit in the first,
108                          * unrotated byte */
109                          ((inbits << 3) - 1)
110                          /* then, for each byte, shift to the right
111                           * for each repetition */
112                          + (((inbits << 3) + 13) * (i/inbits))
113                          /* last, pick out the correct byte within
114                           * that shifted repetition */
115                          + ((inbits - (i % inbits)) << 3)
116                          ) % (inbits << 3);
117 
118                 /* pull out the byte value itself */
119                 byte += (((in[((inbits - 1) - (msbit >> 3)) % inbits] << 8)|
120                                   (in[((inbits) - (msbit >> 3)) % inbits]))
121                                  >> ((msbit & 7) + 1)) & 0xff;
122 
123                 /* do the addition */
124                 byte += out[i % outbits];
125                 out[i % outbits] = byte & 0xff;
126 
127                 /* keep around the carry bit, if any */
128                 byte >>= 8;
129 
130         }
131 
132         /* if there's a carry bit left over, add it back in */
133         if (byte) {
134                 for (i = outbits - 1; i >= 0; i--) {
135                         /* do the addition */
136                         byte += out[i];
137                         out[i] = byte & 0xff;
138 
139                         /* keep around the carry bit, if any */
140                         byte >>= 8;
141                 }
142         }
143 }
144 EXPORT_SYMBOL_IF_KUNIT(krb5_nfold);
145 
146 /*
147  * This is the DK (derive_key) function as described in rfc3961, sec 5.1
148  * Taken from MIT Kerberos and modified.
149  */
150 static int krb5_DK(const struct gss_krb5_enctype *gk5e,
151                    const struct xdr_netobj *inkey, u8 *rawkey,
152                    const struct xdr_netobj *in_constant, gfp_t gfp_mask)
153 {
154         size_t blocksize, keybytes, keylength, n;
155         unsigned char *inblockdata, *outblockdata;
156         struct xdr_netobj inblock, outblock;
157         struct crypto_sync_skcipher *cipher;
158         int ret = -EINVAL;
159 
160         keybytes = gk5e->keybytes;
161         keylength = gk5e->keylength;
162 
163         if (inkey->len != keylength)
164                 goto err_return;
165 
166         cipher = crypto_alloc_sync_skcipher(gk5e->encrypt_name, 0, 0);
167         if (IS_ERR(cipher))
168                 goto err_return;
169         blocksize = crypto_sync_skcipher_blocksize(cipher);
170         if (crypto_sync_skcipher_setkey(cipher, inkey->data, inkey->len))
171                 goto err_free_cipher;
172 
173         ret = -ENOMEM;
174         inblockdata = kmalloc(blocksize, gfp_mask);
175         if (inblockdata == NULL)
176                 goto err_free_cipher;
177 
178         outblockdata = kmalloc(blocksize, gfp_mask);
179         if (outblockdata == NULL)
180                 goto err_free_in;
181 
182         inblock.data = (char *) inblockdata;
183         inblock.len = blocksize;
184 
185         outblock.data = (char *) outblockdata;
186         outblock.len = blocksize;
187 
188         /* initialize the input block */
189 
190         if (in_constant->len == inblock.len) {
191                 memcpy(inblock.data, in_constant->data, inblock.len);
192         } else {
193                 krb5_nfold(in_constant->len * 8, in_constant->data,
194                            inblock.len * 8, inblock.data);
195         }
196 
197         /* loop encrypting the blocks until enough key bytes are generated */
198 
199         n = 0;
200         while (n < keybytes) {
201                 krb5_encrypt(cipher, NULL, inblock.data, outblock.data,
202                              inblock.len);
203 
204                 if ((keybytes - n) <= outblock.len) {
205                         memcpy(rawkey + n, outblock.data, (keybytes - n));
206                         break;
207                 }
208 
209                 memcpy(rawkey + n, outblock.data, outblock.len);
210                 memcpy(inblock.data, outblock.data, outblock.len);
211                 n += outblock.len;
212         }
213 
214         ret = 0;
215 
216         kfree_sensitive(outblockdata);
217 err_free_in:
218         kfree_sensitive(inblockdata);
219 err_free_cipher:
220         crypto_free_sync_skcipher(cipher);
221 err_return:
222         return ret;
223 }
224 
225 /*
226  * This is the identity function, with some sanity checking.
227  */
228 static int krb5_random_to_key_v2(const struct gss_krb5_enctype *gk5e,
229                                  struct xdr_netobj *randombits,
230                                  struct xdr_netobj *key)
231 {
232         int ret = -EINVAL;
233 
234         if (key->len != 16 && key->len != 32) {
235                 dprintk("%s: key->len is %d\n", __func__, key->len);
236                 goto err_out;
237         }
238         if (randombits->len != 16 && randombits->len != 32) {
239                 dprintk("%s: randombits->len is %d\n",
240                         __func__, randombits->len);
241                 goto err_out;
242         }
243         if (randombits->len != key->len) {
244                 dprintk("%s: randombits->len is %d, key->len is %d\n",
245                         __func__, randombits->len, key->len);
246                 goto err_out;
247         }
248         memcpy(key->data, randombits->data, key->len);
249         ret = 0;
250 err_out:
251         return ret;
252 }
253 
254 /**
255  * krb5_derive_key_v2 - Derive a subkey for an RFC 3962 enctype
256  * @gk5e: Kerberos 5 enctype profile
257  * @inkey: base protocol key
258  * @outkey: OUT: derived key
259  * @label: subkey usage label
260  * @gfp_mask: memory allocation control flags
261  *
262  * Caller sets @outkey->len to the desired length of the derived key.
263  *
264  * On success, returns 0 and fills in @outkey. A negative errno value
265  * is returned on failure.
266  */
267 int krb5_derive_key_v2(const struct gss_krb5_enctype *gk5e,
268                        const struct xdr_netobj *inkey,
269                        struct xdr_netobj *outkey,
270                        const struct xdr_netobj *label,
271                        gfp_t gfp_mask)
272 {
273         struct xdr_netobj inblock;
274         int ret;
275 
276         inblock.len = gk5e->keybytes;
277         inblock.data = kmalloc(inblock.len, gfp_mask);
278         if (!inblock.data)
279                 return -ENOMEM;
280 
281         ret = krb5_DK(gk5e, inkey, inblock.data, label, gfp_mask);
282         if (!ret)
283                 ret = krb5_random_to_key_v2(gk5e, &inblock, outkey);
284 
285         kfree_sensitive(inblock.data);
286         return ret;
287 }
288 
289 /*
290  * K(i) = CMAC(key, K(i-1) | i | constant | 0x00 | k)
291  *
292  *    i: A block counter is used with a length of 4 bytes, represented
293  *       in big-endian order.
294  *
295  *    constant: The label input to the KDF is the usage constant supplied
296  *              to the key derivation function
297  *
298  *    k: The length of the output key in bits, represented as a 4-byte
299  *       string in big-endian order.
300  *
301  * Caller fills in K(i-1) in @step, and receives the result K(i)
302  * in the same buffer.
303  */
304 static int
305 krb5_cmac_Ki(struct crypto_shash *tfm, const struct xdr_netobj *constant,
306              u32 outlen, u32 count, struct xdr_netobj *step)
307 {
308         __be32 k = cpu_to_be32(outlen * 8);
309         SHASH_DESC_ON_STACK(desc, tfm);
310         __be32 i = cpu_to_be32(count);
311         u8 zero = 0;
312         int ret;
313 
314         desc->tfm = tfm;
315         ret = crypto_shash_init(desc);
316         if (ret)
317                 goto out_err;
318 
319         ret = crypto_shash_update(desc, step->data, step->len);
320         if (ret)
321                 goto out_err;
322         ret = crypto_shash_update(desc, (u8 *)&i, sizeof(i));
323         if (ret)
324                 goto out_err;
325         ret = crypto_shash_update(desc, constant->data, constant->len);
326         if (ret)
327                 goto out_err;
328         ret = crypto_shash_update(desc, &zero, sizeof(zero));
329         if (ret)
330                 goto out_err;
331         ret = crypto_shash_update(desc, (u8 *)&k, sizeof(k));
332         if (ret)
333                 goto out_err;
334         ret = crypto_shash_final(desc, step->data);
335         if (ret)
336                 goto out_err;
337 
338 out_err:
339         shash_desc_zero(desc);
340         return ret;
341 }
342 
343 /**
344  * krb5_kdf_feedback_cmac - Derive a subkey for a Camellia/CMAC-based enctype
345  * @gk5e: Kerberos 5 enctype parameters
346  * @inkey: base protocol key
347  * @outkey: OUT: derived key
348  * @constant: subkey usage label
349  * @gfp_mask: memory allocation control flags
350  *
351  * RFC 6803 Section 3:
352  *
353  * "We use a key derivation function from the family specified in
354  *  [SP800-108], Section 5.2, 'KDF in Feedback Mode'."
355  *
356  *      n = ceiling(k / 128)
357  *      K(0) = zeros
358  *      K(i) = CMAC(key, K(i-1) | i | constant | 0x00 | k)
359  *      DR(key, constant) = k-truncate(K(1) | K(2) | ... | K(n))
360  *      KDF-FEEDBACK-CMAC(key, constant) = random-to-key(DR(key, constant))
361  *
362  * Caller sets @outkey->len to the desired length of the derived key (k).
363  *
364  * On success, returns 0 and fills in @outkey. A negative errno value
365  * is returned on failure.
366  */
367 int
368 krb5_kdf_feedback_cmac(const struct gss_krb5_enctype *gk5e,
369                        const struct xdr_netobj *inkey,
370                        struct xdr_netobj *outkey,
371                        const struct xdr_netobj *constant,
372                        gfp_t gfp_mask)
373 {
374         struct xdr_netobj step = { .data = NULL };
375         struct xdr_netobj DR = { .data = NULL };
376         unsigned int blocksize, offset;
377         struct crypto_shash *tfm;
378         int n, count, ret;
379 
380         /*
381          * This implementation assumes the CMAC used for an enctype's
382          * key derivation is the same as the CMAC used for its
383          * checksumming. This happens to be true for enctypes that
384          * are currently supported by this implementation.
385          */
386         tfm = crypto_alloc_shash(gk5e->cksum_name, 0, 0);
387         if (IS_ERR(tfm)) {
388                 ret = PTR_ERR(tfm);
389                 goto out;
390         }
391         ret = crypto_shash_setkey(tfm, inkey->data, inkey->len);
392         if (ret)
393                 goto out_free_tfm;
394 
395         blocksize = crypto_shash_digestsize(tfm);
396         n = (outkey->len + blocksize - 1) / blocksize;
397 
398         /* K(0) is all zeroes */
399         ret = -ENOMEM;
400         step.len = blocksize;
401         step.data = kzalloc(step.len, gfp_mask);
402         if (!step.data)
403                 goto out_free_tfm;
404 
405         DR.len = blocksize * n;
406         DR.data = kmalloc(DR.len, gfp_mask);
407         if (!DR.data)
408                 goto out_free_tfm;
409 
410         /* XXX: Does not handle partial-block key sizes */
411         for (offset = 0, count = 1; count <= n; count++) {
412                 ret = krb5_cmac_Ki(tfm, constant, outkey->len, count, &step);
413                 if (ret)
414                         goto out_free_tfm;
415 
416                 memcpy(DR.data + offset, step.data, blocksize);
417                 offset += blocksize;
418         }
419 
420         /* k-truncate and random-to-key */
421         memcpy(outkey->data, DR.data, outkey->len);
422         ret = 0;
423 
424 out_free_tfm:
425         crypto_free_shash(tfm);
426 out:
427         kfree_sensitive(step.data);
428         kfree_sensitive(DR.data);
429         return ret;
430 }
431 
432 /*
433  * K1 = HMAC-SHA(key, 0x00000001 | label | 0x00 | k)
434  *
435  *    key: The source of entropy from which subsequent keys are derived.
436  *
437  *    label: An octet string describing the intended usage of the
438  *    derived key.
439  *
440  *    k: Length in bits of the key to be outputted, expressed in
441  *    big-endian binary representation in 4 bytes.
442  */
443 static int
444 krb5_hmac_K1(struct crypto_shash *tfm, const struct xdr_netobj *label,
445              u32 outlen, struct xdr_netobj *K1)
446 {
447         __be32 k = cpu_to_be32(outlen * 8);
448         SHASH_DESC_ON_STACK(desc, tfm);
449         __be32 one = cpu_to_be32(1);
450         u8 zero = 0;
451         int ret;
452 
453         desc->tfm = tfm;
454         ret = crypto_shash_init(desc);
455         if (ret)
456                 goto out_err;
457         ret = crypto_shash_update(desc, (u8 *)&one, sizeof(one));
458         if (ret)
459                 goto out_err;
460         ret = crypto_shash_update(desc, label->data, label->len);
461         if (ret)
462                 goto out_err;
463         ret = crypto_shash_update(desc, &zero, sizeof(zero));
464         if (ret)
465                 goto out_err;
466         ret = crypto_shash_update(desc, (u8 *)&k, sizeof(k));
467         if (ret)
468                 goto out_err;
469         ret = crypto_shash_final(desc, K1->data);
470         if (ret)
471                 goto out_err;
472 
473 out_err:
474         shash_desc_zero(desc);
475         return ret;
476 }
477 
478 /**
479  * krb5_kdf_hmac_sha2 - Derive a subkey for an AES/SHA2-based enctype
480  * @gk5e: Kerberos 5 enctype policy parameters
481  * @inkey: base protocol key
482  * @outkey: OUT: derived key
483  * @label: subkey usage label
484  * @gfp_mask: memory allocation control flags
485  *
486  * RFC 8009 Section 3:
487  *
488  *  "We use a key derivation function from Section 5.1 of [SP800-108],
489  *   which uses the HMAC algorithm as the PRF."
490  *
491  *      function KDF-HMAC-SHA2(key, label, [context,] k):
492  *              k-truncate(K1)
493  *
494  * Caller sets @outkey->len to the desired length of the derived key.
495  *
496  * On success, returns 0 and fills in @outkey. A negative errno value
497  * is returned on failure.
498  */
499 int
500 krb5_kdf_hmac_sha2(const struct gss_krb5_enctype *gk5e,
501                    const struct xdr_netobj *inkey,
502                    struct xdr_netobj *outkey,
503                    const struct xdr_netobj *label,
504                    gfp_t gfp_mask)
505 {
506         struct crypto_shash *tfm;
507         struct xdr_netobj K1 = {
508                 .data = NULL,
509         };
510         int ret;
511 
512         /*
513          * This implementation assumes the HMAC used for an enctype's
514          * key derivation is the same as the HMAC used for its
515          * checksumming. This happens to be true for enctypes that
516          * are currently supported by this implementation.
517          */
518         tfm = crypto_alloc_shash(gk5e->cksum_name, 0, 0);
519         if (IS_ERR(tfm)) {
520                 ret = PTR_ERR(tfm);
521                 goto out;
522         }
523         ret = crypto_shash_setkey(tfm, inkey->data, inkey->len);
524         if (ret)
525                 goto out_free_tfm;
526 
527         K1.len = crypto_shash_digestsize(tfm);
528         K1.data = kmalloc(K1.len, gfp_mask);
529         if (!K1.data) {
530                 ret = -ENOMEM;
531                 goto out_free_tfm;
532         }
533 
534         ret = krb5_hmac_K1(tfm, label, outkey->len, &K1);
535         if (ret)
536                 goto out_free_tfm;
537 
538         /* k-truncate and random-to-key */
539         memcpy(outkey->data, K1.data, outkey->len);
540 
541 out_free_tfm:
542         kfree_sensitive(K1.data);
543         crypto_free_shash(tfm);
544 out:
545         return ret;
546 }
547 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php