1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sunrpc/cache.c 4 * 5 * Generic code for various authentication-related caches 6 * used by sunrpc clients and servers. 7 * 8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au> 9 */ 10 11 #include <linux/types.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/signal.h> 16 #include <linux/sched.h> 17 #include <linux/kmod.h> 18 #include <linux/list.h> 19 #include <linux/module.h> 20 #include <linux/ctype.h> 21 #include <linux/string_helpers.h> 22 #include <linux/uaccess.h> 23 #include <linux/poll.h> 24 #include <linux/seq_file.h> 25 #include <linux/proc_fs.h> 26 #include <linux/net.h> 27 #include <linux/workqueue.h> 28 #include <linux/mutex.h> 29 #include <linux/pagemap.h> 30 #include <asm/ioctls.h> 31 #include <linux/sunrpc/types.h> 32 #include <linux/sunrpc/cache.h> 33 #include <linux/sunrpc/stats.h> 34 #include <linux/sunrpc/rpc_pipe_fs.h> 35 #include <trace/events/sunrpc.h> 36 37 #include "netns.h" 38 #include "fail.h" 39 40 #define RPCDBG_FACILITY RPCDBG_CACHE 41 42 static bool cache_defer_req(struct cache_req *req, struct cache_head *item); 43 static void cache_revisit_request(struct cache_head *item); 44 45 static void cache_init(struct cache_head *h, struct cache_detail *detail) 46 { 47 time64_t now = seconds_since_boot(); 48 INIT_HLIST_NODE(&h->cache_list); 49 h->flags = 0; 50 kref_init(&h->ref); 51 h->expiry_time = now + CACHE_NEW_EXPIRY; 52 if (now <= detail->flush_time) 53 /* ensure it isn't already expired */ 54 now = detail->flush_time + 1; 55 h->last_refresh = now; 56 } 57 58 static void cache_fresh_unlocked(struct cache_head *head, 59 struct cache_detail *detail); 60 61 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail, 62 struct cache_head *key, 63 int hash) 64 { 65 struct hlist_head *head = &detail->hash_table[hash]; 66 struct cache_head *tmp; 67 68 rcu_read_lock(); 69 hlist_for_each_entry_rcu(tmp, head, cache_list) { 70 if (!detail->match(tmp, key)) 71 continue; 72 if (test_bit(CACHE_VALID, &tmp->flags) && 73 cache_is_expired(detail, tmp)) 74 continue; 75 tmp = cache_get_rcu(tmp); 76 rcu_read_unlock(); 77 return tmp; 78 } 79 rcu_read_unlock(); 80 return NULL; 81 } 82 83 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch, 84 struct cache_detail *cd) 85 { 86 /* Must be called under cd->hash_lock */ 87 hlist_del_init_rcu(&ch->cache_list); 88 set_bit(CACHE_CLEANED, &ch->flags); 89 cd->entries --; 90 } 91 92 static void sunrpc_end_cache_remove_entry(struct cache_head *ch, 93 struct cache_detail *cd) 94 { 95 cache_fresh_unlocked(ch, cd); 96 cache_put(ch, cd); 97 } 98 99 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail, 100 struct cache_head *key, 101 int hash) 102 { 103 struct cache_head *new, *tmp, *freeme = NULL; 104 struct hlist_head *head = &detail->hash_table[hash]; 105 106 new = detail->alloc(); 107 if (!new) 108 return NULL; 109 /* must fully initialise 'new', else 110 * we might get lose if we need to 111 * cache_put it soon. 112 */ 113 cache_init(new, detail); 114 detail->init(new, key); 115 116 spin_lock(&detail->hash_lock); 117 118 /* check if entry appeared while we slept */ 119 hlist_for_each_entry_rcu(tmp, head, cache_list, 120 lockdep_is_held(&detail->hash_lock)) { 121 if (!detail->match(tmp, key)) 122 continue; 123 if (test_bit(CACHE_VALID, &tmp->flags) && 124 cache_is_expired(detail, tmp)) { 125 sunrpc_begin_cache_remove_entry(tmp, detail); 126 trace_cache_entry_expired(detail, tmp); 127 freeme = tmp; 128 break; 129 } 130 cache_get(tmp); 131 spin_unlock(&detail->hash_lock); 132 cache_put(new, detail); 133 return tmp; 134 } 135 136 hlist_add_head_rcu(&new->cache_list, head); 137 detail->entries++; 138 cache_get(new); 139 spin_unlock(&detail->hash_lock); 140 141 if (freeme) 142 sunrpc_end_cache_remove_entry(freeme, detail); 143 return new; 144 } 145 146 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail, 147 struct cache_head *key, int hash) 148 { 149 struct cache_head *ret; 150 151 ret = sunrpc_cache_find_rcu(detail, key, hash); 152 if (ret) 153 return ret; 154 /* Didn't find anything, insert an empty entry */ 155 return sunrpc_cache_add_entry(detail, key, hash); 156 } 157 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu); 158 159 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch); 160 161 static void cache_fresh_locked(struct cache_head *head, time64_t expiry, 162 struct cache_detail *detail) 163 { 164 time64_t now = seconds_since_boot(); 165 if (now <= detail->flush_time) 166 /* ensure it isn't immediately treated as expired */ 167 now = detail->flush_time + 1; 168 head->expiry_time = expiry; 169 head->last_refresh = now; 170 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */ 171 set_bit(CACHE_VALID, &head->flags); 172 } 173 174 static void cache_fresh_unlocked(struct cache_head *head, 175 struct cache_detail *detail) 176 { 177 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) { 178 cache_revisit_request(head); 179 cache_dequeue(detail, head); 180 } 181 } 182 183 static void cache_make_negative(struct cache_detail *detail, 184 struct cache_head *h) 185 { 186 set_bit(CACHE_NEGATIVE, &h->flags); 187 trace_cache_entry_make_negative(detail, h); 188 } 189 190 static void cache_entry_update(struct cache_detail *detail, 191 struct cache_head *h, 192 struct cache_head *new) 193 { 194 if (!test_bit(CACHE_NEGATIVE, &new->flags)) { 195 detail->update(h, new); 196 trace_cache_entry_update(detail, h); 197 } else { 198 cache_make_negative(detail, h); 199 } 200 } 201 202 struct cache_head *sunrpc_cache_update(struct cache_detail *detail, 203 struct cache_head *new, struct cache_head *old, int hash) 204 { 205 /* The 'old' entry is to be replaced by 'new'. 206 * If 'old' is not VALID, we update it directly, 207 * otherwise we need to replace it 208 */ 209 struct cache_head *tmp; 210 211 if (!test_bit(CACHE_VALID, &old->flags)) { 212 spin_lock(&detail->hash_lock); 213 if (!test_bit(CACHE_VALID, &old->flags)) { 214 cache_entry_update(detail, old, new); 215 cache_fresh_locked(old, new->expiry_time, detail); 216 spin_unlock(&detail->hash_lock); 217 cache_fresh_unlocked(old, detail); 218 return old; 219 } 220 spin_unlock(&detail->hash_lock); 221 } 222 /* We need to insert a new entry */ 223 tmp = detail->alloc(); 224 if (!tmp) { 225 cache_put(old, detail); 226 return NULL; 227 } 228 cache_init(tmp, detail); 229 detail->init(tmp, old); 230 231 spin_lock(&detail->hash_lock); 232 cache_entry_update(detail, tmp, new); 233 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]); 234 detail->entries++; 235 cache_get(tmp); 236 cache_fresh_locked(tmp, new->expiry_time, detail); 237 cache_fresh_locked(old, 0, detail); 238 spin_unlock(&detail->hash_lock); 239 cache_fresh_unlocked(tmp, detail); 240 cache_fresh_unlocked(old, detail); 241 cache_put(old, detail); 242 return tmp; 243 } 244 EXPORT_SYMBOL_GPL(sunrpc_cache_update); 245 246 static inline int cache_is_valid(struct cache_head *h) 247 { 248 if (!test_bit(CACHE_VALID, &h->flags)) 249 return -EAGAIN; 250 else { 251 /* entry is valid */ 252 if (test_bit(CACHE_NEGATIVE, &h->flags)) 253 return -ENOENT; 254 else { 255 /* 256 * In combination with write barrier in 257 * sunrpc_cache_update, ensures that anyone 258 * using the cache entry after this sees the 259 * updated contents: 260 */ 261 smp_rmb(); 262 return 0; 263 } 264 } 265 } 266 267 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h) 268 { 269 int rv; 270 271 spin_lock(&detail->hash_lock); 272 rv = cache_is_valid(h); 273 if (rv == -EAGAIN) { 274 cache_make_negative(detail, h); 275 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY, 276 detail); 277 rv = -ENOENT; 278 } 279 spin_unlock(&detail->hash_lock); 280 cache_fresh_unlocked(h, detail); 281 return rv; 282 } 283 284 /* 285 * This is the generic cache management routine for all 286 * the authentication caches. 287 * It checks the currency of a cache item and will (later) 288 * initiate an upcall to fill it if needed. 289 * 290 * 291 * Returns 0 if the cache_head can be used, or cache_puts it and returns 292 * -EAGAIN if upcall is pending and request has been queued 293 * -ETIMEDOUT if upcall failed or request could not be queue or 294 * upcall completed but item is still invalid (implying that 295 * the cache item has been replaced with a newer one). 296 * -ENOENT if cache entry was negative 297 */ 298 int cache_check(struct cache_detail *detail, 299 struct cache_head *h, struct cache_req *rqstp) 300 { 301 int rv; 302 time64_t refresh_age, age; 303 304 /* First decide return status as best we can */ 305 rv = cache_is_valid(h); 306 307 /* now see if we want to start an upcall */ 308 refresh_age = (h->expiry_time - h->last_refresh); 309 age = seconds_since_boot() - h->last_refresh; 310 311 if (rqstp == NULL) { 312 if (rv == -EAGAIN) 313 rv = -ENOENT; 314 } else if (rv == -EAGAIN || 315 (h->expiry_time != 0 && age > refresh_age/2)) { 316 dprintk("RPC: Want update, refage=%lld, age=%lld\n", 317 refresh_age, age); 318 switch (detail->cache_upcall(detail, h)) { 319 case -EINVAL: 320 rv = try_to_negate_entry(detail, h); 321 break; 322 case -EAGAIN: 323 cache_fresh_unlocked(h, detail); 324 break; 325 } 326 } 327 328 if (rv == -EAGAIN) { 329 if (!cache_defer_req(rqstp, h)) { 330 /* 331 * Request was not deferred; handle it as best 332 * we can ourselves: 333 */ 334 rv = cache_is_valid(h); 335 if (rv == -EAGAIN) 336 rv = -ETIMEDOUT; 337 } 338 } 339 if (rv) 340 cache_put(h, detail); 341 return rv; 342 } 343 EXPORT_SYMBOL_GPL(cache_check); 344 345 /* 346 * caches need to be periodically cleaned. 347 * For this we maintain a list of cache_detail and 348 * a current pointer into that list and into the table 349 * for that entry. 350 * 351 * Each time cache_clean is called it finds the next non-empty entry 352 * in the current table and walks the list in that entry 353 * looking for entries that can be removed. 354 * 355 * An entry gets removed if: 356 * - The expiry is before current time 357 * - The last_refresh time is before the flush_time for that cache 358 * 359 * later we might drop old entries with non-NEVER expiry if that table 360 * is getting 'full' for some definition of 'full' 361 * 362 * The question of "how often to scan a table" is an interesting one 363 * and is answered in part by the use of the "nextcheck" field in the 364 * cache_detail. 365 * When a scan of a table begins, the nextcheck field is set to a time 366 * that is well into the future. 367 * While scanning, if an expiry time is found that is earlier than the 368 * current nextcheck time, nextcheck is set to that expiry time. 369 * If the flush_time is ever set to a time earlier than the nextcheck 370 * time, the nextcheck time is then set to that flush_time. 371 * 372 * A table is then only scanned if the current time is at least 373 * the nextcheck time. 374 * 375 */ 376 377 static LIST_HEAD(cache_list); 378 static DEFINE_SPINLOCK(cache_list_lock); 379 static struct cache_detail *current_detail; 380 static int current_index; 381 382 static void do_cache_clean(struct work_struct *work); 383 static struct delayed_work cache_cleaner; 384 385 void sunrpc_init_cache_detail(struct cache_detail *cd) 386 { 387 spin_lock_init(&cd->hash_lock); 388 INIT_LIST_HEAD(&cd->queue); 389 spin_lock(&cache_list_lock); 390 cd->nextcheck = 0; 391 cd->entries = 0; 392 atomic_set(&cd->writers, 0); 393 cd->last_close = 0; 394 cd->last_warn = -1; 395 list_add(&cd->others, &cache_list); 396 spin_unlock(&cache_list_lock); 397 398 /* start the cleaning process */ 399 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0); 400 } 401 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail); 402 403 void sunrpc_destroy_cache_detail(struct cache_detail *cd) 404 { 405 cache_purge(cd); 406 spin_lock(&cache_list_lock); 407 spin_lock(&cd->hash_lock); 408 if (current_detail == cd) 409 current_detail = NULL; 410 list_del_init(&cd->others); 411 spin_unlock(&cd->hash_lock); 412 spin_unlock(&cache_list_lock); 413 if (list_empty(&cache_list)) { 414 /* module must be being unloaded so its safe to kill the worker */ 415 cancel_delayed_work_sync(&cache_cleaner); 416 } 417 } 418 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail); 419 420 /* clean cache tries to find something to clean 421 * and cleans it. 422 * It returns 1 if it cleaned something, 423 * 0 if it didn't find anything this time 424 * -1 if it fell off the end of the list. 425 */ 426 static int cache_clean(void) 427 { 428 int rv = 0; 429 struct list_head *next; 430 431 spin_lock(&cache_list_lock); 432 433 /* find a suitable table if we don't already have one */ 434 while (current_detail == NULL || 435 current_index >= current_detail->hash_size) { 436 if (current_detail) 437 next = current_detail->others.next; 438 else 439 next = cache_list.next; 440 if (next == &cache_list) { 441 current_detail = NULL; 442 spin_unlock(&cache_list_lock); 443 return -1; 444 } 445 current_detail = list_entry(next, struct cache_detail, others); 446 if (current_detail->nextcheck > seconds_since_boot()) 447 current_index = current_detail->hash_size; 448 else { 449 current_index = 0; 450 current_detail->nextcheck = seconds_since_boot()+30*60; 451 } 452 } 453 454 /* find a non-empty bucket in the table */ 455 while (current_detail && 456 current_index < current_detail->hash_size && 457 hlist_empty(¤t_detail->hash_table[current_index])) 458 current_index++; 459 460 /* find a cleanable entry in the bucket and clean it, or set to next bucket */ 461 462 if (current_detail && current_index < current_detail->hash_size) { 463 struct cache_head *ch = NULL; 464 struct cache_detail *d; 465 struct hlist_head *head; 466 struct hlist_node *tmp; 467 468 spin_lock(¤t_detail->hash_lock); 469 470 /* Ok, now to clean this strand */ 471 472 head = ¤t_detail->hash_table[current_index]; 473 hlist_for_each_entry_safe(ch, tmp, head, cache_list) { 474 if (current_detail->nextcheck > ch->expiry_time) 475 current_detail->nextcheck = ch->expiry_time+1; 476 if (!cache_is_expired(current_detail, ch)) 477 continue; 478 479 sunrpc_begin_cache_remove_entry(ch, current_detail); 480 trace_cache_entry_expired(current_detail, ch); 481 rv = 1; 482 break; 483 } 484 485 spin_unlock(¤t_detail->hash_lock); 486 d = current_detail; 487 if (!ch) 488 current_index ++; 489 spin_unlock(&cache_list_lock); 490 if (ch) 491 sunrpc_end_cache_remove_entry(ch, d); 492 } else 493 spin_unlock(&cache_list_lock); 494 495 return rv; 496 } 497 498 /* 499 * We want to regularly clean the cache, so we need to schedule some work ... 500 */ 501 static void do_cache_clean(struct work_struct *work) 502 { 503 int delay; 504 505 if (list_empty(&cache_list)) 506 return; 507 508 if (cache_clean() == -1) 509 delay = round_jiffies_relative(30*HZ); 510 else 511 delay = 5; 512 513 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay); 514 } 515 516 517 /* 518 * Clean all caches promptly. This just calls cache_clean 519 * repeatedly until we are sure that every cache has had a chance to 520 * be fully cleaned 521 */ 522 void cache_flush(void) 523 { 524 while (cache_clean() != -1) 525 cond_resched(); 526 while (cache_clean() != -1) 527 cond_resched(); 528 } 529 EXPORT_SYMBOL_GPL(cache_flush); 530 531 void cache_purge(struct cache_detail *detail) 532 { 533 struct cache_head *ch = NULL; 534 struct hlist_head *head = NULL; 535 int i = 0; 536 537 spin_lock(&detail->hash_lock); 538 if (!detail->entries) { 539 spin_unlock(&detail->hash_lock); 540 return; 541 } 542 543 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name); 544 for (i = 0; i < detail->hash_size; i++) { 545 head = &detail->hash_table[i]; 546 while (!hlist_empty(head)) { 547 ch = hlist_entry(head->first, struct cache_head, 548 cache_list); 549 sunrpc_begin_cache_remove_entry(ch, detail); 550 spin_unlock(&detail->hash_lock); 551 sunrpc_end_cache_remove_entry(ch, detail); 552 spin_lock(&detail->hash_lock); 553 } 554 } 555 spin_unlock(&detail->hash_lock); 556 } 557 EXPORT_SYMBOL_GPL(cache_purge); 558 559 560 /* 561 * Deferral and Revisiting of Requests. 562 * 563 * If a cache lookup finds a pending entry, we 564 * need to defer the request and revisit it later. 565 * All deferred requests are stored in a hash table, 566 * indexed by "struct cache_head *". 567 * As it may be wasteful to store a whole request 568 * structure, we allow the request to provide a 569 * deferred form, which must contain a 570 * 'struct cache_deferred_req' 571 * This cache_deferred_req contains a method to allow 572 * it to be revisited when cache info is available 573 */ 574 575 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head)) 576 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE) 577 578 #define DFR_MAX 300 /* ??? */ 579 580 static DEFINE_SPINLOCK(cache_defer_lock); 581 static LIST_HEAD(cache_defer_list); 582 static struct hlist_head cache_defer_hash[DFR_HASHSIZE]; 583 static int cache_defer_cnt; 584 585 static void __unhash_deferred_req(struct cache_deferred_req *dreq) 586 { 587 hlist_del_init(&dreq->hash); 588 if (!list_empty(&dreq->recent)) { 589 list_del_init(&dreq->recent); 590 cache_defer_cnt--; 591 } 592 } 593 594 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item) 595 { 596 int hash = DFR_HASH(item); 597 598 INIT_LIST_HEAD(&dreq->recent); 599 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]); 600 } 601 602 static void setup_deferral(struct cache_deferred_req *dreq, 603 struct cache_head *item, 604 int count_me) 605 { 606 607 dreq->item = item; 608 609 spin_lock(&cache_defer_lock); 610 611 __hash_deferred_req(dreq, item); 612 613 if (count_me) { 614 cache_defer_cnt++; 615 list_add(&dreq->recent, &cache_defer_list); 616 } 617 618 spin_unlock(&cache_defer_lock); 619 620 } 621 622 struct thread_deferred_req { 623 struct cache_deferred_req handle; 624 struct completion completion; 625 }; 626 627 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many) 628 { 629 struct thread_deferred_req *dr = 630 container_of(dreq, struct thread_deferred_req, handle); 631 complete(&dr->completion); 632 } 633 634 static void cache_wait_req(struct cache_req *req, struct cache_head *item) 635 { 636 struct thread_deferred_req sleeper; 637 struct cache_deferred_req *dreq = &sleeper.handle; 638 639 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion); 640 dreq->revisit = cache_restart_thread; 641 642 setup_deferral(dreq, item, 0); 643 644 if (!test_bit(CACHE_PENDING, &item->flags) || 645 wait_for_completion_interruptible_timeout( 646 &sleeper.completion, req->thread_wait) <= 0) { 647 /* The completion wasn't completed, so we need 648 * to clean up 649 */ 650 spin_lock(&cache_defer_lock); 651 if (!hlist_unhashed(&sleeper.handle.hash)) { 652 __unhash_deferred_req(&sleeper.handle); 653 spin_unlock(&cache_defer_lock); 654 } else { 655 /* cache_revisit_request already removed 656 * this from the hash table, but hasn't 657 * called ->revisit yet. It will very soon 658 * and we need to wait for it. 659 */ 660 spin_unlock(&cache_defer_lock); 661 wait_for_completion(&sleeper.completion); 662 } 663 } 664 } 665 666 static void cache_limit_defers(void) 667 { 668 /* Make sure we haven't exceed the limit of allowed deferred 669 * requests. 670 */ 671 struct cache_deferred_req *discard = NULL; 672 673 if (cache_defer_cnt <= DFR_MAX) 674 return; 675 676 spin_lock(&cache_defer_lock); 677 678 /* Consider removing either the first or the last */ 679 if (cache_defer_cnt > DFR_MAX) { 680 if (get_random_u32_below(2)) 681 discard = list_entry(cache_defer_list.next, 682 struct cache_deferred_req, recent); 683 else 684 discard = list_entry(cache_defer_list.prev, 685 struct cache_deferred_req, recent); 686 __unhash_deferred_req(discard); 687 } 688 spin_unlock(&cache_defer_lock); 689 if (discard) 690 discard->revisit(discard, 1); 691 } 692 693 #if IS_ENABLED(CONFIG_FAIL_SUNRPC) 694 static inline bool cache_defer_immediately(void) 695 { 696 return !fail_sunrpc.ignore_cache_wait && 697 should_fail(&fail_sunrpc.attr, 1); 698 } 699 #else 700 static inline bool cache_defer_immediately(void) 701 { 702 return false; 703 } 704 #endif 705 706 /* Return true if and only if a deferred request is queued. */ 707 static bool cache_defer_req(struct cache_req *req, struct cache_head *item) 708 { 709 struct cache_deferred_req *dreq; 710 711 if (!cache_defer_immediately()) { 712 cache_wait_req(req, item); 713 if (!test_bit(CACHE_PENDING, &item->flags)) 714 return false; 715 } 716 717 dreq = req->defer(req); 718 if (dreq == NULL) 719 return false; 720 setup_deferral(dreq, item, 1); 721 if (!test_bit(CACHE_PENDING, &item->flags)) 722 /* Bit could have been cleared before we managed to 723 * set up the deferral, so need to revisit just in case 724 */ 725 cache_revisit_request(item); 726 727 cache_limit_defers(); 728 return true; 729 } 730 731 static void cache_revisit_request(struct cache_head *item) 732 { 733 struct cache_deferred_req *dreq; 734 struct list_head pending; 735 struct hlist_node *tmp; 736 int hash = DFR_HASH(item); 737 738 INIT_LIST_HEAD(&pending); 739 spin_lock(&cache_defer_lock); 740 741 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash) 742 if (dreq->item == item) { 743 __unhash_deferred_req(dreq); 744 list_add(&dreq->recent, &pending); 745 } 746 747 spin_unlock(&cache_defer_lock); 748 749 while (!list_empty(&pending)) { 750 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 751 list_del_init(&dreq->recent); 752 dreq->revisit(dreq, 0); 753 } 754 } 755 756 void cache_clean_deferred(void *owner) 757 { 758 struct cache_deferred_req *dreq, *tmp; 759 struct list_head pending; 760 761 762 INIT_LIST_HEAD(&pending); 763 spin_lock(&cache_defer_lock); 764 765 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) { 766 if (dreq->owner == owner) { 767 __unhash_deferred_req(dreq); 768 list_add(&dreq->recent, &pending); 769 } 770 } 771 spin_unlock(&cache_defer_lock); 772 773 while (!list_empty(&pending)) { 774 dreq = list_entry(pending.next, struct cache_deferred_req, recent); 775 list_del_init(&dreq->recent); 776 dreq->revisit(dreq, 1); 777 } 778 } 779 780 /* 781 * communicate with user-space 782 * 783 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel. 784 * On read, you get a full request, or block. 785 * On write, an update request is processed. 786 * Poll works if anything to read, and always allows write. 787 * 788 * Implemented by linked list of requests. Each open file has 789 * a ->private that also exists in this list. New requests are added 790 * to the end and may wakeup and preceding readers. 791 * New readers are added to the head. If, on read, an item is found with 792 * CACHE_UPCALLING clear, we free it from the list. 793 * 794 */ 795 796 static DEFINE_SPINLOCK(queue_lock); 797 798 struct cache_queue { 799 struct list_head list; 800 int reader; /* if 0, then request */ 801 }; 802 struct cache_request { 803 struct cache_queue q; 804 struct cache_head *item; 805 char * buf; 806 int len; 807 int readers; 808 }; 809 struct cache_reader { 810 struct cache_queue q; 811 int offset; /* if non-0, we have a refcnt on next request */ 812 }; 813 814 static int cache_request(struct cache_detail *detail, 815 struct cache_request *crq) 816 { 817 char *bp = crq->buf; 818 int len = PAGE_SIZE; 819 820 detail->cache_request(detail, crq->item, &bp, &len); 821 if (len < 0) 822 return -E2BIG; 823 return PAGE_SIZE - len; 824 } 825 826 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count, 827 loff_t *ppos, struct cache_detail *cd) 828 { 829 struct cache_reader *rp = filp->private_data; 830 struct cache_request *rq; 831 struct inode *inode = file_inode(filp); 832 int err; 833 834 if (count == 0) 835 return 0; 836 837 inode_lock(inode); /* protect against multiple concurrent 838 * readers on this file */ 839 again: 840 spin_lock(&queue_lock); 841 /* need to find next request */ 842 while (rp->q.list.next != &cd->queue && 843 list_entry(rp->q.list.next, struct cache_queue, list) 844 ->reader) { 845 struct list_head *next = rp->q.list.next; 846 list_move(&rp->q.list, next); 847 } 848 if (rp->q.list.next == &cd->queue) { 849 spin_unlock(&queue_lock); 850 inode_unlock(inode); 851 WARN_ON_ONCE(rp->offset); 852 return 0; 853 } 854 rq = container_of(rp->q.list.next, struct cache_request, q.list); 855 WARN_ON_ONCE(rq->q.reader); 856 if (rp->offset == 0) 857 rq->readers++; 858 spin_unlock(&queue_lock); 859 860 if (rq->len == 0) { 861 err = cache_request(cd, rq); 862 if (err < 0) 863 goto out; 864 rq->len = err; 865 } 866 867 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) { 868 err = -EAGAIN; 869 spin_lock(&queue_lock); 870 list_move(&rp->q.list, &rq->q.list); 871 spin_unlock(&queue_lock); 872 } else { 873 if (rp->offset + count > rq->len) 874 count = rq->len - rp->offset; 875 err = -EFAULT; 876 if (copy_to_user(buf, rq->buf + rp->offset, count)) 877 goto out; 878 rp->offset += count; 879 if (rp->offset >= rq->len) { 880 rp->offset = 0; 881 spin_lock(&queue_lock); 882 list_move(&rp->q.list, &rq->q.list); 883 spin_unlock(&queue_lock); 884 } 885 err = 0; 886 } 887 out: 888 if (rp->offset == 0) { 889 /* need to release rq */ 890 spin_lock(&queue_lock); 891 rq->readers--; 892 if (rq->readers == 0 && 893 !test_bit(CACHE_PENDING, &rq->item->flags)) { 894 list_del(&rq->q.list); 895 spin_unlock(&queue_lock); 896 cache_put(rq->item, cd); 897 kfree(rq->buf); 898 kfree(rq); 899 } else 900 spin_unlock(&queue_lock); 901 } 902 if (err == -EAGAIN) 903 goto again; 904 inode_unlock(inode); 905 return err ? err : count; 906 } 907 908 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf, 909 size_t count, struct cache_detail *cd) 910 { 911 ssize_t ret; 912 913 if (count == 0) 914 return -EINVAL; 915 if (copy_from_user(kaddr, buf, count)) 916 return -EFAULT; 917 kaddr[count] = '\0'; 918 ret = cd->cache_parse(cd, kaddr, count); 919 if (!ret) 920 ret = count; 921 return ret; 922 } 923 924 static ssize_t cache_downcall(struct address_space *mapping, 925 const char __user *buf, 926 size_t count, struct cache_detail *cd) 927 { 928 char *write_buf; 929 ssize_t ret = -ENOMEM; 930 931 if (count >= 32768) { /* 32k is max userland buffer, lets check anyway */ 932 ret = -EINVAL; 933 goto out; 934 } 935 936 write_buf = kvmalloc(count + 1, GFP_KERNEL); 937 if (!write_buf) 938 goto out; 939 940 ret = cache_do_downcall(write_buf, buf, count, cd); 941 kvfree(write_buf); 942 out: 943 return ret; 944 } 945 946 static ssize_t cache_write(struct file *filp, const char __user *buf, 947 size_t count, loff_t *ppos, 948 struct cache_detail *cd) 949 { 950 struct address_space *mapping = filp->f_mapping; 951 struct inode *inode = file_inode(filp); 952 ssize_t ret = -EINVAL; 953 954 if (!cd->cache_parse) 955 goto out; 956 957 inode_lock(inode); 958 ret = cache_downcall(mapping, buf, count, cd); 959 inode_unlock(inode); 960 out: 961 return ret; 962 } 963 964 static DECLARE_WAIT_QUEUE_HEAD(queue_wait); 965 966 static __poll_t cache_poll(struct file *filp, poll_table *wait, 967 struct cache_detail *cd) 968 { 969 __poll_t mask; 970 struct cache_reader *rp = filp->private_data; 971 struct cache_queue *cq; 972 973 poll_wait(filp, &queue_wait, wait); 974 975 /* alway allow write */ 976 mask = EPOLLOUT | EPOLLWRNORM; 977 978 if (!rp) 979 return mask; 980 981 spin_lock(&queue_lock); 982 983 for (cq= &rp->q; &cq->list != &cd->queue; 984 cq = list_entry(cq->list.next, struct cache_queue, list)) 985 if (!cq->reader) { 986 mask |= EPOLLIN | EPOLLRDNORM; 987 break; 988 } 989 spin_unlock(&queue_lock); 990 return mask; 991 } 992 993 static int cache_ioctl(struct inode *ino, struct file *filp, 994 unsigned int cmd, unsigned long arg, 995 struct cache_detail *cd) 996 { 997 int len = 0; 998 struct cache_reader *rp = filp->private_data; 999 struct cache_queue *cq; 1000 1001 if (cmd != FIONREAD || !rp) 1002 return -EINVAL; 1003 1004 spin_lock(&queue_lock); 1005 1006 /* only find the length remaining in current request, 1007 * or the length of the next request 1008 */ 1009 for (cq= &rp->q; &cq->list != &cd->queue; 1010 cq = list_entry(cq->list.next, struct cache_queue, list)) 1011 if (!cq->reader) { 1012 struct cache_request *cr = 1013 container_of(cq, struct cache_request, q); 1014 len = cr->len - rp->offset; 1015 break; 1016 } 1017 spin_unlock(&queue_lock); 1018 1019 return put_user(len, (int __user *)arg); 1020 } 1021 1022 static int cache_open(struct inode *inode, struct file *filp, 1023 struct cache_detail *cd) 1024 { 1025 struct cache_reader *rp = NULL; 1026 1027 if (!cd || !try_module_get(cd->owner)) 1028 return -EACCES; 1029 nonseekable_open(inode, filp); 1030 if (filp->f_mode & FMODE_READ) { 1031 rp = kmalloc(sizeof(*rp), GFP_KERNEL); 1032 if (!rp) { 1033 module_put(cd->owner); 1034 return -ENOMEM; 1035 } 1036 rp->offset = 0; 1037 rp->q.reader = 1; 1038 1039 spin_lock(&queue_lock); 1040 list_add(&rp->q.list, &cd->queue); 1041 spin_unlock(&queue_lock); 1042 } 1043 if (filp->f_mode & FMODE_WRITE) 1044 atomic_inc(&cd->writers); 1045 filp->private_data = rp; 1046 return 0; 1047 } 1048 1049 static int cache_release(struct inode *inode, struct file *filp, 1050 struct cache_detail *cd) 1051 { 1052 struct cache_reader *rp = filp->private_data; 1053 1054 if (rp) { 1055 spin_lock(&queue_lock); 1056 if (rp->offset) { 1057 struct cache_queue *cq; 1058 for (cq= &rp->q; &cq->list != &cd->queue; 1059 cq = list_entry(cq->list.next, struct cache_queue, list)) 1060 if (!cq->reader) { 1061 container_of(cq, struct cache_request, q) 1062 ->readers--; 1063 break; 1064 } 1065 rp->offset = 0; 1066 } 1067 list_del(&rp->q.list); 1068 spin_unlock(&queue_lock); 1069 1070 filp->private_data = NULL; 1071 kfree(rp); 1072 1073 } 1074 if (filp->f_mode & FMODE_WRITE) { 1075 atomic_dec(&cd->writers); 1076 cd->last_close = seconds_since_boot(); 1077 } 1078 module_put(cd->owner); 1079 return 0; 1080 } 1081 1082 1083 1084 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch) 1085 { 1086 struct cache_queue *cq, *tmp; 1087 struct cache_request *cr; 1088 struct list_head dequeued; 1089 1090 INIT_LIST_HEAD(&dequeued); 1091 spin_lock(&queue_lock); 1092 list_for_each_entry_safe(cq, tmp, &detail->queue, list) 1093 if (!cq->reader) { 1094 cr = container_of(cq, struct cache_request, q); 1095 if (cr->item != ch) 1096 continue; 1097 if (test_bit(CACHE_PENDING, &ch->flags)) 1098 /* Lost a race and it is pending again */ 1099 break; 1100 if (cr->readers != 0) 1101 continue; 1102 list_move(&cr->q.list, &dequeued); 1103 } 1104 spin_unlock(&queue_lock); 1105 while (!list_empty(&dequeued)) { 1106 cr = list_entry(dequeued.next, struct cache_request, q.list); 1107 list_del(&cr->q.list); 1108 cache_put(cr->item, detail); 1109 kfree(cr->buf); 1110 kfree(cr); 1111 } 1112 } 1113 1114 /* 1115 * Support routines for text-based upcalls. 1116 * Fields are separated by spaces. 1117 * Fields are either mangled to quote space tab newline slosh with slosh 1118 * or a hexified with a leading \x 1119 * Record is terminated with newline. 1120 * 1121 */ 1122 1123 void qword_add(char **bpp, int *lp, char *str) 1124 { 1125 char *bp = *bpp; 1126 int len = *lp; 1127 int ret; 1128 1129 if (len < 0) return; 1130 1131 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t"); 1132 if (ret >= len) { 1133 bp += len; 1134 len = -1; 1135 } else { 1136 bp += ret; 1137 len -= ret; 1138 *bp++ = ' '; 1139 len--; 1140 } 1141 *bpp = bp; 1142 *lp = len; 1143 } 1144 EXPORT_SYMBOL_GPL(qword_add); 1145 1146 void qword_addhex(char **bpp, int *lp, char *buf, int blen) 1147 { 1148 char *bp = *bpp; 1149 int len = *lp; 1150 1151 if (len < 0) return; 1152 1153 if (len > 2) { 1154 *bp++ = '\\'; 1155 *bp++ = 'x'; 1156 len -= 2; 1157 while (blen && len >= 2) { 1158 bp = hex_byte_pack(bp, *buf++); 1159 len -= 2; 1160 blen--; 1161 } 1162 } 1163 if (blen || len<1) len = -1; 1164 else { 1165 *bp++ = ' '; 1166 len--; 1167 } 1168 *bpp = bp; 1169 *lp = len; 1170 } 1171 EXPORT_SYMBOL_GPL(qword_addhex); 1172 1173 static void warn_no_listener(struct cache_detail *detail) 1174 { 1175 if (detail->last_warn != detail->last_close) { 1176 detail->last_warn = detail->last_close; 1177 if (detail->warn_no_listener) 1178 detail->warn_no_listener(detail, detail->last_close != 0); 1179 } 1180 } 1181 1182 static bool cache_listeners_exist(struct cache_detail *detail) 1183 { 1184 if (atomic_read(&detail->writers)) 1185 return true; 1186 if (detail->last_close == 0) 1187 /* This cache was never opened */ 1188 return false; 1189 if (detail->last_close < seconds_since_boot() - 30) 1190 /* 1191 * We allow for the possibility that someone might 1192 * restart a userspace daemon without restarting the 1193 * server; but after 30 seconds, we give up. 1194 */ 1195 return false; 1196 return true; 1197 } 1198 1199 /* 1200 * register an upcall request to user-space and queue it up for read() by the 1201 * upcall daemon. 1202 * 1203 * Each request is at most one page long. 1204 */ 1205 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1206 { 1207 char *buf; 1208 struct cache_request *crq; 1209 int ret = 0; 1210 1211 if (test_bit(CACHE_CLEANED, &h->flags)) 1212 /* Too late to make an upcall */ 1213 return -EAGAIN; 1214 1215 buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 1216 if (!buf) 1217 return -EAGAIN; 1218 1219 crq = kmalloc(sizeof (*crq), GFP_KERNEL); 1220 if (!crq) { 1221 kfree(buf); 1222 return -EAGAIN; 1223 } 1224 1225 crq->q.reader = 0; 1226 crq->buf = buf; 1227 crq->len = 0; 1228 crq->readers = 0; 1229 spin_lock(&queue_lock); 1230 if (test_bit(CACHE_PENDING, &h->flags)) { 1231 crq->item = cache_get(h); 1232 list_add_tail(&crq->q.list, &detail->queue); 1233 trace_cache_entry_upcall(detail, h); 1234 } else 1235 /* Lost a race, no longer PENDING, so don't enqueue */ 1236 ret = -EAGAIN; 1237 spin_unlock(&queue_lock); 1238 wake_up(&queue_wait); 1239 if (ret == -EAGAIN) { 1240 kfree(buf); 1241 kfree(crq); 1242 } 1243 return ret; 1244 } 1245 1246 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h) 1247 { 1248 if (test_and_set_bit(CACHE_PENDING, &h->flags)) 1249 return 0; 1250 return cache_pipe_upcall(detail, h); 1251 } 1252 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall); 1253 1254 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail, 1255 struct cache_head *h) 1256 { 1257 if (!cache_listeners_exist(detail)) { 1258 warn_no_listener(detail); 1259 trace_cache_entry_no_listener(detail, h); 1260 return -EINVAL; 1261 } 1262 return sunrpc_cache_pipe_upcall(detail, h); 1263 } 1264 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout); 1265 1266 /* 1267 * parse a message from user-space and pass it 1268 * to an appropriate cache 1269 * Messages are, like requests, separated into fields by 1270 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal 1271 * 1272 * Message is 1273 * reply cachename expiry key ... content.... 1274 * 1275 * key and content are both parsed by cache 1276 */ 1277 1278 int qword_get(char **bpp, char *dest, int bufsize) 1279 { 1280 /* return bytes copied, or -1 on error */ 1281 char *bp = *bpp; 1282 int len = 0; 1283 1284 while (*bp == ' ') bp++; 1285 1286 if (bp[0] == '\\' && bp[1] == 'x') { 1287 /* HEX STRING */ 1288 bp += 2; 1289 while (len < bufsize - 1) { 1290 int h, l; 1291 1292 h = hex_to_bin(bp[0]); 1293 if (h < 0) 1294 break; 1295 1296 l = hex_to_bin(bp[1]); 1297 if (l < 0) 1298 break; 1299 1300 *dest++ = (h << 4) | l; 1301 bp += 2; 1302 len++; 1303 } 1304 } else { 1305 /* text with \nnn octal quoting */ 1306 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) { 1307 if (*bp == '\\' && 1308 isodigit(bp[1]) && (bp[1] <= '3') && 1309 isodigit(bp[2]) && 1310 isodigit(bp[3])) { 1311 int byte = (*++bp -''); 1312 bp++; 1313 byte = (byte << 3) | (*bp++ - ''); 1314 byte = (byte << 3) | (*bp++ - ''); 1315 *dest++ = byte; 1316 len++; 1317 } else { 1318 *dest++ = *bp++; 1319 len++; 1320 } 1321 } 1322 } 1323 1324 if (*bp != ' ' && *bp != '\n' && *bp != '\0') 1325 return -1; 1326 while (*bp == ' ') bp++; 1327 *bpp = bp; 1328 *dest = '\0'; 1329 return len; 1330 } 1331 EXPORT_SYMBOL_GPL(qword_get); 1332 1333 1334 /* 1335 * support /proc/net/rpc/$CACHENAME/content 1336 * as a seqfile. 1337 * We call ->cache_show passing NULL for the item to 1338 * get a header, then pass each real item in the cache 1339 */ 1340 1341 static void *__cache_seq_start(struct seq_file *m, loff_t *pos) 1342 { 1343 loff_t n = *pos; 1344 unsigned int hash, entry; 1345 struct cache_head *ch; 1346 struct cache_detail *cd = m->private; 1347 1348 if (!n--) 1349 return SEQ_START_TOKEN; 1350 hash = n >> 32; 1351 entry = n & ((1LL<<32) - 1); 1352 1353 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list) 1354 if (!entry--) 1355 return ch; 1356 n &= ~((1LL<<32) - 1); 1357 do { 1358 hash++; 1359 n += 1LL<<32; 1360 } while(hash < cd->hash_size && 1361 hlist_empty(&cd->hash_table[hash])); 1362 if (hash >= cd->hash_size) 1363 return NULL; 1364 *pos = n+1; 1365 return hlist_entry_safe(rcu_dereference_raw( 1366 hlist_first_rcu(&cd->hash_table[hash])), 1367 struct cache_head, cache_list); 1368 } 1369 1370 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos) 1371 { 1372 struct cache_head *ch = p; 1373 int hash = (*pos >> 32); 1374 struct cache_detail *cd = m->private; 1375 1376 if (p == SEQ_START_TOKEN) 1377 hash = 0; 1378 else if (ch->cache_list.next == NULL) { 1379 hash++; 1380 *pos += 1LL<<32; 1381 } else { 1382 ++*pos; 1383 return hlist_entry_safe(rcu_dereference_raw( 1384 hlist_next_rcu(&ch->cache_list)), 1385 struct cache_head, cache_list); 1386 } 1387 *pos &= ~((1LL<<32) - 1); 1388 while (hash < cd->hash_size && 1389 hlist_empty(&cd->hash_table[hash])) { 1390 hash++; 1391 *pos += 1LL<<32; 1392 } 1393 if (hash >= cd->hash_size) 1394 return NULL; 1395 ++*pos; 1396 return hlist_entry_safe(rcu_dereference_raw( 1397 hlist_first_rcu(&cd->hash_table[hash])), 1398 struct cache_head, cache_list); 1399 } 1400 1401 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos) 1402 __acquires(RCU) 1403 { 1404 rcu_read_lock(); 1405 return __cache_seq_start(m, pos); 1406 } 1407 EXPORT_SYMBOL_GPL(cache_seq_start_rcu); 1408 1409 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos) 1410 { 1411 return cache_seq_next(file, p, pos); 1412 } 1413 EXPORT_SYMBOL_GPL(cache_seq_next_rcu); 1414 1415 void cache_seq_stop_rcu(struct seq_file *m, void *p) 1416 __releases(RCU) 1417 { 1418 rcu_read_unlock(); 1419 } 1420 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu); 1421 1422 static int c_show(struct seq_file *m, void *p) 1423 { 1424 struct cache_head *cp = p; 1425 struct cache_detail *cd = m->private; 1426 1427 if (p == SEQ_START_TOKEN) 1428 return cd->cache_show(m, cd, NULL); 1429 1430 ifdebug(CACHE) 1431 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n", 1432 convert_to_wallclock(cp->expiry_time), 1433 kref_read(&cp->ref), cp->flags); 1434 cache_get(cp); 1435 if (cache_check(cd, cp, NULL)) 1436 /* cache_check does a cache_put on failure */ 1437 seq_puts(m, "# "); 1438 else { 1439 if (cache_is_expired(cd, cp)) 1440 seq_puts(m, "# "); 1441 cache_put(cp, cd); 1442 } 1443 1444 return cd->cache_show(m, cd, cp); 1445 } 1446 1447 static const struct seq_operations cache_content_op = { 1448 .start = cache_seq_start_rcu, 1449 .next = cache_seq_next_rcu, 1450 .stop = cache_seq_stop_rcu, 1451 .show = c_show, 1452 }; 1453 1454 static int content_open(struct inode *inode, struct file *file, 1455 struct cache_detail *cd) 1456 { 1457 struct seq_file *seq; 1458 int err; 1459 1460 if (!cd || !try_module_get(cd->owner)) 1461 return -EACCES; 1462 1463 err = seq_open(file, &cache_content_op); 1464 if (err) { 1465 module_put(cd->owner); 1466 return err; 1467 } 1468 1469 seq = file->private_data; 1470 seq->private = cd; 1471 return 0; 1472 } 1473 1474 static int content_release(struct inode *inode, struct file *file, 1475 struct cache_detail *cd) 1476 { 1477 int ret = seq_release(inode, file); 1478 module_put(cd->owner); 1479 return ret; 1480 } 1481 1482 static int open_flush(struct inode *inode, struct file *file, 1483 struct cache_detail *cd) 1484 { 1485 if (!cd || !try_module_get(cd->owner)) 1486 return -EACCES; 1487 return nonseekable_open(inode, file); 1488 } 1489 1490 static int release_flush(struct inode *inode, struct file *file, 1491 struct cache_detail *cd) 1492 { 1493 module_put(cd->owner); 1494 return 0; 1495 } 1496 1497 static ssize_t read_flush(struct file *file, char __user *buf, 1498 size_t count, loff_t *ppos, 1499 struct cache_detail *cd) 1500 { 1501 char tbuf[22]; 1502 size_t len; 1503 1504 len = snprintf(tbuf, sizeof(tbuf), "%llu\n", 1505 convert_to_wallclock(cd->flush_time)); 1506 return simple_read_from_buffer(buf, count, ppos, tbuf, len); 1507 } 1508 1509 static ssize_t write_flush(struct file *file, const char __user *buf, 1510 size_t count, loff_t *ppos, 1511 struct cache_detail *cd) 1512 { 1513 char tbuf[20]; 1514 char *ep; 1515 time64_t now; 1516 1517 if (*ppos || count > sizeof(tbuf)-1) 1518 return -EINVAL; 1519 if (copy_from_user(tbuf, buf, count)) 1520 return -EFAULT; 1521 tbuf[count] = 0; 1522 simple_strtoul(tbuf, &ep, 0); 1523 if (*ep && *ep != '\n') 1524 return -EINVAL; 1525 /* Note that while we check that 'buf' holds a valid number, 1526 * we always ignore the value and just flush everything. 1527 * Making use of the number leads to races. 1528 */ 1529 1530 now = seconds_since_boot(); 1531 /* Always flush everything, so behave like cache_purge() 1532 * Do this by advancing flush_time to the current time, 1533 * or by one second if it has already reached the current time. 1534 * Newly added cache entries will always have ->last_refresh greater 1535 * that ->flush_time, so they don't get flushed prematurely. 1536 */ 1537 1538 if (cd->flush_time >= now) 1539 now = cd->flush_time + 1; 1540 1541 cd->flush_time = now; 1542 cd->nextcheck = now; 1543 cache_flush(); 1544 1545 if (cd->flush) 1546 cd->flush(); 1547 1548 *ppos += count; 1549 return count; 1550 } 1551 1552 static ssize_t cache_read_procfs(struct file *filp, char __user *buf, 1553 size_t count, loff_t *ppos) 1554 { 1555 struct cache_detail *cd = pde_data(file_inode(filp)); 1556 1557 return cache_read(filp, buf, count, ppos, cd); 1558 } 1559 1560 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf, 1561 size_t count, loff_t *ppos) 1562 { 1563 struct cache_detail *cd = pde_data(file_inode(filp)); 1564 1565 return cache_write(filp, buf, count, ppos, cd); 1566 } 1567 1568 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait) 1569 { 1570 struct cache_detail *cd = pde_data(file_inode(filp)); 1571 1572 return cache_poll(filp, wait, cd); 1573 } 1574 1575 static long cache_ioctl_procfs(struct file *filp, 1576 unsigned int cmd, unsigned long arg) 1577 { 1578 struct inode *inode = file_inode(filp); 1579 struct cache_detail *cd = pde_data(inode); 1580 1581 return cache_ioctl(inode, filp, cmd, arg, cd); 1582 } 1583 1584 static int cache_open_procfs(struct inode *inode, struct file *filp) 1585 { 1586 struct cache_detail *cd = pde_data(inode); 1587 1588 return cache_open(inode, filp, cd); 1589 } 1590 1591 static int cache_release_procfs(struct inode *inode, struct file *filp) 1592 { 1593 struct cache_detail *cd = pde_data(inode); 1594 1595 return cache_release(inode, filp, cd); 1596 } 1597 1598 static const struct proc_ops cache_channel_proc_ops = { 1599 .proc_lseek = no_llseek, 1600 .proc_read = cache_read_procfs, 1601 .proc_write = cache_write_procfs, 1602 .proc_poll = cache_poll_procfs, 1603 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */ 1604 .proc_open = cache_open_procfs, 1605 .proc_release = cache_release_procfs, 1606 }; 1607 1608 static int content_open_procfs(struct inode *inode, struct file *filp) 1609 { 1610 struct cache_detail *cd = pde_data(inode); 1611 1612 return content_open(inode, filp, cd); 1613 } 1614 1615 static int content_release_procfs(struct inode *inode, struct file *filp) 1616 { 1617 struct cache_detail *cd = pde_data(inode); 1618 1619 return content_release(inode, filp, cd); 1620 } 1621 1622 static const struct proc_ops content_proc_ops = { 1623 .proc_open = content_open_procfs, 1624 .proc_read = seq_read, 1625 .proc_lseek = seq_lseek, 1626 .proc_release = content_release_procfs, 1627 }; 1628 1629 static int open_flush_procfs(struct inode *inode, struct file *filp) 1630 { 1631 struct cache_detail *cd = pde_data(inode); 1632 1633 return open_flush(inode, filp, cd); 1634 } 1635 1636 static int release_flush_procfs(struct inode *inode, struct file *filp) 1637 { 1638 struct cache_detail *cd = pde_data(inode); 1639 1640 return release_flush(inode, filp, cd); 1641 } 1642 1643 static ssize_t read_flush_procfs(struct file *filp, char __user *buf, 1644 size_t count, loff_t *ppos) 1645 { 1646 struct cache_detail *cd = pde_data(file_inode(filp)); 1647 1648 return read_flush(filp, buf, count, ppos, cd); 1649 } 1650 1651 static ssize_t write_flush_procfs(struct file *filp, 1652 const char __user *buf, 1653 size_t count, loff_t *ppos) 1654 { 1655 struct cache_detail *cd = pde_data(file_inode(filp)); 1656 1657 return write_flush(filp, buf, count, ppos, cd); 1658 } 1659 1660 static const struct proc_ops cache_flush_proc_ops = { 1661 .proc_open = open_flush_procfs, 1662 .proc_read = read_flush_procfs, 1663 .proc_write = write_flush_procfs, 1664 .proc_release = release_flush_procfs, 1665 .proc_lseek = no_llseek, 1666 }; 1667 1668 static void remove_cache_proc_entries(struct cache_detail *cd) 1669 { 1670 if (cd->procfs) { 1671 proc_remove(cd->procfs); 1672 cd->procfs = NULL; 1673 } 1674 } 1675 1676 #ifdef CONFIG_PROC_FS 1677 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1678 { 1679 struct proc_dir_entry *p; 1680 struct sunrpc_net *sn; 1681 1682 sn = net_generic(net, sunrpc_net_id); 1683 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc); 1684 if (cd->procfs == NULL) 1685 goto out_nomem; 1686 1687 p = proc_create_data("flush", S_IFREG | 0600, 1688 cd->procfs, &cache_flush_proc_ops, cd); 1689 if (p == NULL) 1690 goto out_nomem; 1691 1692 if (cd->cache_request || cd->cache_parse) { 1693 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs, 1694 &cache_channel_proc_ops, cd); 1695 if (p == NULL) 1696 goto out_nomem; 1697 } 1698 if (cd->cache_show) { 1699 p = proc_create_data("content", S_IFREG | 0400, cd->procfs, 1700 &content_proc_ops, cd); 1701 if (p == NULL) 1702 goto out_nomem; 1703 } 1704 return 0; 1705 out_nomem: 1706 remove_cache_proc_entries(cd); 1707 return -ENOMEM; 1708 } 1709 #else /* CONFIG_PROC_FS */ 1710 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net) 1711 { 1712 return 0; 1713 } 1714 #endif 1715 1716 void __init cache_initialize(void) 1717 { 1718 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean); 1719 } 1720 1721 int cache_register_net(struct cache_detail *cd, struct net *net) 1722 { 1723 int ret; 1724 1725 sunrpc_init_cache_detail(cd); 1726 ret = create_cache_proc_entries(cd, net); 1727 if (ret) 1728 sunrpc_destroy_cache_detail(cd); 1729 return ret; 1730 } 1731 EXPORT_SYMBOL_GPL(cache_register_net); 1732 1733 void cache_unregister_net(struct cache_detail *cd, struct net *net) 1734 { 1735 remove_cache_proc_entries(cd); 1736 sunrpc_destroy_cache_detail(cd); 1737 } 1738 EXPORT_SYMBOL_GPL(cache_unregister_net); 1739 1740 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net) 1741 { 1742 struct cache_detail *cd; 1743 int i; 1744 1745 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL); 1746 if (cd == NULL) 1747 return ERR_PTR(-ENOMEM); 1748 1749 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head), 1750 GFP_KERNEL); 1751 if (cd->hash_table == NULL) { 1752 kfree(cd); 1753 return ERR_PTR(-ENOMEM); 1754 } 1755 1756 for (i = 0; i < cd->hash_size; i++) 1757 INIT_HLIST_HEAD(&cd->hash_table[i]); 1758 cd->net = net; 1759 return cd; 1760 } 1761 EXPORT_SYMBOL_GPL(cache_create_net); 1762 1763 void cache_destroy_net(struct cache_detail *cd, struct net *net) 1764 { 1765 kfree(cd->hash_table); 1766 kfree(cd); 1767 } 1768 EXPORT_SYMBOL_GPL(cache_destroy_net); 1769 1770 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf, 1771 size_t count, loff_t *ppos) 1772 { 1773 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1774 1775 return cache_read(filp, buf, count, ppos, cd); 1776 } 1777 1778 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf, 1779 size_t count, loff_t *ppos) 1780 { 1781 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1782 1783 return cache_write(filp, buf, count, ppos, cd); 1784 } 1785 1786 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait) 1787 { 1788 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1789 1790 return cache_poll(filp, wait, cd); 1791 } 1792 1793 static long cache_ioctl_pipefs(struct file *filp, 1794 unsigned int cmd, unsigned long arg) 1795 { 1796 struct inode *inode = file_inode(filp); 1797 struct cache_detail *cd = RPC_I(inode)->private; 1798 1799 return cache_ioctl(inode, filp, cmd, arg, cd); 1800 } 1801 1802 static int cache_open_pipefs(struct inode *inode, struct file *filp) 1803 { 1804 struct cache_detail *cd = RPC_I(inode)->private; 1805 1806 return cache_open(inode, filp, cd); 1807 } 1808 1809 static int cache_release_pipefs(struct inode *inode, struct file *filp) 1810 { 1811 struct cache_detail *cd = RPC_I(inode)->private; 1812 1813 return cache_release(inode, filp, cd); 1814 } 1815 1816 const struct file_operations cache_file_operations_pipefs = { 1817 .owner = THIS_MODULE, 1818 .llseek = no_llseek, 1819 .read = cache_read_pipefs, 1820 .write = cache_write_pipefs, 1821 .poll = cache_poll_pipefs, 1822 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */ 1823 .open = cache_open_pipefs, 1824 .release = cache_release_pipefs, 1825 }; 1826 1827 static int content_open_pipefs(struct inode *inode, struct file *filp) 1828 { 1829 struct cache_detail *cd = RPC_I(inode)->private; 1830 1831 return content_open(inode, filp, cd); 1832 } 1833 1834 static int content_release_pipefs(struct inode *inode, struct file *filp) 1835 { 1836 struct cache_detail *cd = RPC_I(inode)->private; 1837 1838 return content_release(inode, filp, cd); 1839 } 1840 1841 const struct file_operations content_file_operations_pipefs = { 1842 .open = content_open_pipefs, 1843 .read = seq_read, 1844 .llseek = seq_lseek, 1845 .release = content_release_pipefs, 1846 }; 1847 1848 static int open_flush_pipefs(struct inode *inode, struct file *filp) 1849 { 1850 struct cache_detail *cd = RPC_I(inode)->private; 1851 1852 return open_flush(inode, filp, cd); 1853 } 1854 1855 static int release_flush_pipefs(struct inode *inode, struct file *filp) 1856 { 1857 struct cache_detail *cd = RPC_I(inode)->private; 1858 1859 return release_flush(inode, filp, cd); 1860 } 1861 1862 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf, 1863 size_t count, loff_t *ppos) 1864 { 1865 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1866 1867 return read_flush(filp, buf, count, ppos, cd); 1868 } 1869 1870 static ssize_t write_flush_pipefs(struct file *filp, 1871 const char __user *buf, 1872 size_t count, loff_t *ppos) 1873 { 1874 struct cache_detail *cd = RPC_I(file_inode(filp))->private; 1875 1876 return write_flush(filp, buf, count, ppos, cd); 1877 } 1878 1879 const struct file_operations cache_flush_operations_pipefs = { 1880 .open = open_flush_pipefs, 1881 .read = read_flush_pipefs, 1882 .write = write_flush_pipefs, 1883 .release = release_flush_pipefs, 1884 .llseek = no_llseek, 1885 }; 1886 1887 int sunrpc_cache_register_pipefs(struct dentry *parent, 1888 const char *name, umode_t umode, 1889 struct cache_detail *cd) 1890 { 1891 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd); 1892 if (IS_ERR(dir)) 1893 return PTR_ERR(dir); 1894 cd->pipefs = dir; 1895 return 0; 1896 } 1897 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs); 1898 1899 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd) 1900 { 1901 if (cd->pipefs) { 1902 rpc_remove_cache_dir(cd->pipefs); 1903 cd->pipefs = NULL; 1904 } 1905 } 1906 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs); 1907 1908 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h) 1909 { 1910 spin_lock(&cd->hash_lock); 1911 if (!hlist_unhashed(&h->cache_list)){ 1912 sunrpc_begin_cache_remove_entry(h, cd); 1913 spin_unlock(&cd->hash_lock); 1914 sunrpc_end_cache_remove_entry(h, cd); 1915 } else 1916 spin_unlock(&cd->hash_lock); 1917 } 1918 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash); 1919
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.