1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/net/sunrpc/svc.c 4 * 5 * High-level RPC service routines 6 * 7 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 8 * 9 * Multiple threads pools and NUMAisation 10 * Copyright (c) 2006 Silicon Graphics, Inc. 11 * by Greg Banks <gnb@melbourne.sgi.com> 12 */ 13 14 #include <linux/linkage.h> 15 #include <linux/sched/signal.h> 16 #include <linux/errno.h> 17 #include <linux/net.h> 18 #include <linux/in.h> 19 #include <linux/mm.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/kthread.h> 23 #include <linux/slab.h> 24 25 #include <linux/sunrpc/types.h> 26 #include <linux/sunrpc/xdr.h> 27 #include <linux/sunrpc/stats.h> 28 #include <linux/sunrpc/svcsock.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/sunrpc/bc_xprt.h> 31 32 #include <trace/events/sunrpc.h> 33 34 #include "fail.h" 35 36 #define RPCDBG_FACILITY RPCDBG_SVCDSP 37 38 static void svc_unregister(const struct svc_serv *serv, struct net *net); 39 40 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL 41 42 /* 43 * Mode for mapping cpus to pools. 44 */ 45 enum { 46 SVC_POOL_AUTO = -1, /* choose one of the others */ 47 SVC_POOL_GLOBAL, /* no mapping, just a single global pool 48 * (legacy & UP mode) */ 49 SVC_POOL_PERCPU, /* one pool per cpu */ 50 SVC_POOL_PERNODE /* one pool per numa node */ 51 }; 52 53 /* 54 * Structure for mapping cpus to pools and vice versa. 55 * Setup once during sunrpc initialisation. 56 */ 57 58 struct svc_pool_map { 59 int count; /* How many svc_servs use us */ 60 int mode; /* Note: int not enum to avoid 61 * warnings about "enumeration value 62 * not handled in switch" */ 63 unsigned int npools; 64 unsigned int *pool_to; /* maps pool id to cpu or node */ 65 unsigned int *to_pool; /* maps cpu or node to pool id */ 66 }; 67 68 static struct svc_pool_map svc_pool_map = { 69 .mode = SVC_POOL_DEFAULT 70 }; 71 72 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ 73 74 static int 75 __param_set_pool_mode(const char *val, struct svc_pool_map *m) 76 { 77 int err, mode; 78 79 mutex_lock(&svc_pool_map_mutex); 80 81 err = 0; 82 if (!strncmp(val, "auto", 4)) 83 mode = SVC_POOL_AUTO; 84 else if (!strncmp(val, "global", 6)) 85 mode = SVC_POOL_GLOBAL; 86 else if (!strncmp(val, "percpu", 6)) 87 mode = SVC_POOL_PERCPU; 88 else if (!strncmp(val, "pernode", 7)) 89 mode = SVC_POOL_PERNODE; 90 else 91 err = -EINVAL; 92 93 if (err) 94 goto out; 95 96 if (m->count == 0) 97 m->mode = mode; 98 else if (mode != m->mode) 99 err = -EBUSY; 100 out: 101 mutex_unlock(&svc_pool_map_mutex); 102 return err; 103 } 104 105 static int 106 param_set_pool_mode(const char *val, const struct kernel_param *kp) 107 { 108 struct svc_pool_map *m = kp->arg; 109 110 return __param_set_pool_mode(val, m); 111 } 112 113 int sunrpc_set_pool_mode(const char *val) 114 { 115 return __param_set_pool_mode(val, &svc_pool_map); 116 } 117 EXPORT_SYMBOL(sunrpc_set_pool_mode); 118 119 /** 120 * sunrpc_get_pool_mode - get the current pool_mode for the host 121 * @buf: where to write the current pool_mode 122 * @size: size of @buf 123 * 124 * Grab the current pool_mode from the svc_pool_map and write 125 * the resulting string to @buf. Returns the number of characters 126 * written to @buf (a'la snprintf()). 127 */ 128 int 129 sunrpc_get_pool_mode(char *buf, size_t size) 130 { 131 struct svc_pool_map *m = &svc_pool_map; 132 133 switch (m->mode) 134 { 135 case SVC_POOL_AUTO: 136 return snprintf(buf, size, "auto"); 137 case SVC_POOL_GLOBAL: 138 return snprintf(buf, size, "global"); 139 case SVC_POOL_PERCPU: 140 return snprintf(buf, size, "percpu"); 141 case SVC_POOL_PERNODE: 142 return snprintf(buf, size, "pernode"); 143 default: 144 return snprintf(buf, size, "%d", m->mode); 145 } 146 } 147 EXPORT_SYMBOL(sunrpc_get_pool_mode); 148 149 static int 150 param_get_pool_mode(char *buf, const struct kernel_param *kp) 151 { 152 char str[16]; 153 int len; 154 155 len = sunrpc_get_pool_mode(str, ARRAY_SIZE(str)); 156 157 /* Ensure we have room for newline and NUL */ 158 len = min_t(int, len, ARRAY_SIZE(str) - 2); 159 160 /* tack on the newline */ 161 str[len] = '\n'; 162 str[len + 1] = '\0'; 163 164 return sysfs_emit(buf, "%s", str); 165 } 166 167 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, 168 &svc_pool_map, 0644); 169 170 /* 171 * Detect best pool mapping mode heuristically, 172 * according to the machine's topology. 173 */ 174 static int 175 svc_pool_map_choose_mode(void) 176 { 177 unsigned int node; 178 179 if (nr_online_nodes > 1) { 180 /* 181 * Actually have multiple NUMA nodes, 182 * so split pools on NUMA node boundaries 183 */ 184 return SVC_POOL_PERNODE; 185 } 186 187 node = first_online_node; 188 if (nr_cpus_node(node) > 2) { 189 /* 190 * Non-trivial SMP, or CONFIG_NUMA on 191 * non-NUMA hardware, e.g. with a generic 192 * x86_64 kernel on Xeons. In this case we 193 * want to divide the pools on cpu boundaries. 194 */ 195 return SVC_POOL_PERCPU; 196 } 197 198 /* default: one global pool */ 199 return SVC_POOL_GLOBAL; 200 } 201 202 /* 203 * Allocate the to_pool[] and pool_to[] arrays. 204 * Returns 0 on success or an errno. 205 */ 206 static int 207 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) 208 { 209 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 210 if (!m->to_pool) 211 goto fail; 212 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); 213 if (!m->pool_to) 214 goto fail_free; 215 216 return 0; 217 218 fail_free: 219 kfree(m->to_pool); 220 m->to_pool = NULL; 221 fail: 222 return -ENOMEM; 223 } 224 225 /* 226 * Initialise the pool map for SVC_POOL_PERCPU mode. 227 * Returns number of pools or <0 on error. 228 */ 229 static int 230 svc_pool_map_init_percpu(struct svc_pool_map *m) 231 { 232 unsigned int maxpools = nr_cpu_ids; 233 unsigned int pidx = 0; 234 unsigned int cpu; 235 int err; 236 237 err = svc_pool_map_alloc_arrays(m, maxpools); 238 if (err) 239 return err; 240 241 for_each_online_cpu(cpu) { 242 BUG_ON(pidx >= maxpools); 243 m->to_pool[cpu] = pidx; 244 m->pool_to[pidx] = cpu; 245 pidx++; 246 } 247 /* cpus brought online later all get mapped to pool0, sorry */ 248 249 return pidx; 250 }; 251 252 253 /* 254 * Initialise the pool map for SVC_POOL_PERNODE mode. 255 * Returns number of pools or <0 on error. 256 */ 257 static int 258 svc_pool_map_init_pernode(struct svc_pool_map *m) 259 { 260 unsigned int maxpools = nr_node_ids; 261 unsigned int pidx = 0; 262 unsigned int node; 263 int err; 264 265 err = svc_pool_map_alloc_arrays(m, maxpools); 266 if (err) 267 return err; 268 269 for_each_node_with_cpus(node) { 270 /* some architectures (e.g. SN2) have cpuless nodes */ 271 BUG_ON(pidx > maxpools); 272 m->to_pool[node] = pidx; 273 m->pool_to[pidx] = node; 274 pidx++; 275 } 276 /* nodes brought online later all get mapped to pool0, sorry */ 277 278 return pidx; 279 } 280 281 282 /* 283 * Add a reference to the global map of cpus to pools (and 284 * vice versa) if pools are in use. 285 * Initialise the map if we're the first user. 286 * Returns the number of pools. If this is '1', no reference 287 * was taken. 288 */ 289 static unsigned int 290 svc_pool_map_get(void) 291 { 292 struct svc_pool_map *m = &svc_pool_map; 293 int npools = -1; 294 295 mutex_lock(&svc_pool_map_mutex); 296 if (m->count++) { 297 mutex_unlock(&svc_pool_map_mutex); 298 return m->npools; 299 } 300 301 if (m->mode == SVC_POOL_AUTO) 302 m->mode = svc_pool_map_choose_mode(); 303 304 switch (m->mode) { 305 case SVC_POOL_PERCPU: 306 npools = svc_pool_map_init_percpu(m); 307 break; 308 case SVC_POOL_PERNODE: 309 npools = svc_pool_map_init_pernode(m); 310 break; 311 } 312 313 if (npools <= 0) { 314 /* default, or memory allocation failure */ 315 npools = 1; 316 m->mode = SVC_POOL_GLOBAL; 317 } 318 m->npools = npools; 319 mutex_unlock(&svc_pool_map_mutex); 320 return npools; 321 } 322 323 /* 324 * Drop a reference to the global map of cpus to pools. 325 * When the last reference is dropped, the map data is 326 * freed; this allows the sysadmin to change the pool. 327 */ 328 static void 329 svc_pool_map_put(void) 330 { 331 struct svc_pool_map *m = &svc_pool_map; 332 333 mutex_lock(&svc_pool_map_mutex); 334 if (!--m->count) { 335 kfree(m->to_pool); 336 m->to_pool = NULL; 337 kfree(m->pool_to); 338 m->pool_to = NULL; 339 m->npools = 0; 340 } 341 mutex_unlock(&svc_pool_map_mutex); 342 } 343 344 static int svc_pool_map_get_node(unsigned int pidx) 345 { 346 const struct svc_pool_map *m = &svc_pool_map; 347 348 if (m->count) { 349 if (m->mode == SVC_POOL_PERCPU) 350 return cpu_to_node(m->pool_to[pidx]); 351 if (m->mode == SVC_POOL_PERNODE) 352 return m->pool_to[pidx]; 353 } 354 return NUMA_NO_NODE; 355 } 356 /* 357 * Set the given thread's cpus_allowed mask so that it 358 * will only run on cpus in the given pool. 359 */ 360 static inline void 361 svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) 362 { 363 struct svc_pool_map *m = &svc_pool_map; 364 unsigned int node = m->pool_to[pidx]; 365 366 /* 367 * The caller checks for sv_nrpools > 1, which 368 * implies that we've been initialized. 369 */ 370 WARN_ON_ONCE(m->count == 0); 371 if (m->count == 0) 372 return; 373 374 switch (m->mode) { 375 case SVC_POOL_PERCPU: 376 { 377 set_cpus_allowed_ptr(task, cpumask_of(node)); 378 break; 379 } 380 case SVC_POOL_PERNODE: 381 { 382 set_cpus_allowed_ptr(task, cpumask_of_node(node)); 383 break; 384 } 385 } 386 } 387 388 /** 389 * svc_pool_for_cpu - Select pool to run a thread on this cpu 390 * @serv: An RPC service 391 * 392 * Use the active CPU and the svc_pool_map's mode setting to 393 * select the svc thread pool to use. Once initialized, the 394 * svc_pool_map does not change. 395 * 396 * Return value: 397 * A pointer to an svc_pool 398 */ 399 struct svc_pool *svc_pool_for_cpu(struct svc_serv *serv) 400 { 401 struct svc_pool_map *m = &svc_pool_map; 402 int cpu = raw_smp_processor_id(); 403 unsigned int pidx = 0; 404 405 if (serv->sv_nrpools <= 1) 406 return serv->sv_pools; 407 408 switch (m->mode) { 409 case SVC_POOL_PERCPU: 410 pidx = m->to_pool[cpu]; 411 break; 412 case SVC_POOL_PERNODE: 413 pidx = m->to_pool[cpu_to_node(cpu)]; 414 break; 415 } 416 417 return &serv->sv_pools[pidx % serv->sv_nrpools]; 418 } 419 420 int svc_rpcb_setup(struct svc_serv *serv, struct net *net) 421 { 422 int err; 423 424 err = rpcb_create_local(net); 425 if (err) 426 return err; 427 428 /* Remove any stale portmap registrations */ 429 svc_unregister(serv, net); 430 return 0; 431 } 432 EXPORT_SYMBOL_GPL(svc_rpcb_setup); 433 434 void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) 435 { 436 svc_unregister(serv, net); 437 rpcb_put_local(net); 438 } 439 EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); 440 441 static int svc_uses_rpcbind(struct svc_serv *serv) 442 { 443 struct svc_program *progp; 444 unsigned int i; 445 446 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 447 for (i = 0; i < progp->pg_nvers; i++) { 448 if (progp->pg_vers[i] == NULL) 449 continue; 450 if (!progp->pg_vers[i]->vs_hidden) 451 return 1; 452 } 453 } 454 455 return 0; 456 } 457 458 int svc_bind(struct svc_serv *serv, struct net *net) 459 { 460 if (!svc_uses_rpcbind(serv)) 461 return 0; 462 return svc_rpcb_setup(serv, net); 463 } 464 EXPORT_SYMBOL_GPL(svc_bind); 465 466 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 467 static void 468 __svc_init_bc(struct svc_serv *serv) 469 { 470 lwq_init(&serv->sv_cb_list); 471 } 472 #else 473 static void 474 __svc_init_bc(struct svc_serv *serv) 475 { 476 } 477 #endif 478 479 /* 480 * Create an RPC service 481 */ 482 static struct svc_serv * 483 __svc_create(struct svc_program *prog, struct svc_stat *stats, 484 unsigned int bufsize, int npools, int (*threadfn)(void *data)) 485 { 486 struct svc_serv *serv; 487 unsigned int vers; 488 unsigned int xdrsize; 489 unsigned int i; 490 491 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) 492 return NULL; 493 serv->sv_name = prog->pg_name; 494 serv->sv_program = prog; 495 serv->sv_stats = stats; 496 if (bufsize > RPCSVC_MAXPAYLOAD) 497 bufsize = RPCSVC_MAXPAYLOAD; 498 serv->sv_max_payload = bufsize? bufsize : 4096; 499 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); 500 serv->sv_threadfn = threadfn; 501 xdrsize = 0; 502 while (prog) { 503 prog->pg_lovers = prog->pg_nvers-1; 504 for (vers=0; vers<prog->pg_nvers ; vers++) 505 if (prog->pg_vers[vers]) { 506 prog->pg_hivers = vers; 507 if (prog->pg_lovers > vers) 508 prog->pg_lovers = vers; 509 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) 510 xdrsize = prog->pg_vers[vers]->vs_xdrsize; 511 } 512 prog = prog->pg_next; 513 } 514 serv->sv_xdrsize = xdrsize; 515 INIT_LIST_HEAD(&serv->sv_tempsocks); 516 INIT_LIST_HEAD(&serv->sv_permsocks); 517 timer_setup(&serv->sv_temptimer, NULL, 0); 518 spin_lock_init(&serv->sv_lock); 519 520 __svc_init_bc(serv); 521 522 serv->sv_nrpools = npools; 523 serv->sv_pools = 524 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), 525 GFP_KERNEL); 526 if (!serv->sv_pools) { 527 kfree(serv); 528 return NULL; 529 } 530 531 for (i = 0; i < serv->sv_nrpools; i++) { 532 struct svc_pool *pool = &serv->sv_pools[i]; 533 534 dprintk("svc: initialising pool %u for %s\n", 535 i, serv->sv_name); 536 537 pool->sp_id = i; 538 lwq_init(&pool->sp_xprts); 539 INIT_LIST_HEAD(&pool->sp_all_threads); 540 init_llist_head(&pool->sp_idle_threads); 541 542 percpu_counter_init(&pool->sp_messages_arrived, 0, GFP_KERNEL); 543 percpu_counter_init(&pool->sp_sockets_queued, 0, GFP_KERNEL); 544 percpu_counter_init(&pool->sp_threads_woken, 0, GFP_KERNEL); 545 } 546 547 return serv; 548 } 549 550 /** 551 * svc_create - Create an RPC service 552 * @prog: the RPC program the new service will handle 553 * @bufsize: maximum message size for @prog 554 * @threadfn: a function to service RPC requests for @prog 555 * 556 * Returns an instantiated struct svc_serv object or NULL. 557 */ 558 struct svc_serv *svc_create(struct svc_program *prog, unsigned int bufsize, 559 int (*threadfn)(void *data)) 560 { 561 return __svc_create(prog, NULL, bufsize, 1, threadfn); 562 } 563 EXPORT_SYMBOL_GPL(svc_create); 564 565 /** 566 * svc_create_pooled - Create an RPC service with pooled threads 567 * @prog: the RPC program the new service will handle 568 * @stats: the stats struct if desired 569 * @bufsize: maximum message size for @prog 570 * @threadfn: a function to service RPC requests for @prog 571 * 572 * Returns an instantiated struct svc_serv object or NULL. 573 */ 574 struct svc_serv *svc_create_pooled(struct svc_program *prog, 575 struct svc_stat *stats, 576 unsigned int bufsize, 577 int (*threadfn)(void *data)) 578 { 579 struct svc_serv *serv; 580 unsigned int npools = svc_pool_map_get(); 581 582 serv = __svc_create(prog, stats, bufsize, npools, threadfn); 583 if (!serv) 584 goto out_err; 585 serv->sv_is_pooled = true; 586 return serv; 587 out_err: 588 svc_pool_map_put(); 589 return NULL; 590 } 591 EXPORT_SYMBOL_GPL(svc_create_pooled); 592 593 /* 594 * Destroy an RPC service. Should be called with appropriate locking to 595 * protect sv_permsocks and sv_tempsocks. 596 */ 597 void 598 svc_destroy(struct svc_serv **servp) 599 { 600 struct svc_serv *serv = *servp; 601 unsigned int i; 602 603 *servp = NULL; 604 605 dprintk("svc: svc_destroy(%s)\n", serv->sv_program->pg_name); 606 timer_shutdown_sync(&serv->sv_temptimer); 607 608 /* 609 * Remaining transports at this point are not expected. 610 */ 611 WARN_ONCE(!list_empty(&serv->sv_permsocks), 612 "SVC: permsocks remain for %s\n", serv->sv_program->pg_name); 613 WARN_ONCE(!list_empty(&serv->sv_tempsocks), 614 "SVC: tempsocks remain for %s\n", serv->sv_program->pg_name); 615 616 cache_clean_deferred(serv); 617 618 if (serv->sv_is_pooled) 619 svc_pool_map_put(); 620 621 for (i = 0; i < serv->sv_nrpools; i++) { 622 struct svc_pool *pool = &serv->sv_pools[i]; 623 624 percpu_counter_destroy(&pool->sp_messages_arrived); 625 percpu_counter_destroy(&pool->sp_sockets_queued); 626 percpu_counter_destroy(&pool->sp_threads_woken); 627 } 628 kfree(serv->sv_pools); 629 kfree(serv); 630 } 631 EXPORT_SYMBOL_GPL(svc_destroy); 632 633 static bool 634 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) 635 { 636 unsigned long pages, ret; 637 638 /* bc_xprt uses fore channel allocated buffers */ 639 if (svc_is_backchannel(rqstp)) 640 return true; 641 642 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. 643 * We assume one is at most one page 644 */ 645 WARN_ON_ONCE(pages > RPCSVC_MAXPAGES); 646 if (pages > RPCSVC_MAXPAGES) 647 pages = RPCSVC_MAXPAGES; 648 649 ret = alloc_pages_bulk_array_node(GFP_KERNEL, node, pages, 650 rqstp->rq_pages); 651 return ret == pages; 652 } 653 654 /* 655 * Release an RPC server buffer 656 */ 657 static void 658 svc_release_buffer(struct svc_rqst *rqstp) 659 { 660 unsigned int i; 661 662 for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) 663 if (rqstp->rq_pages[i]) 664 put_page(rqstp->rq_pages[i]); 665 } 666 667 struct svc_rqst * 668 svc_rqst_alloc(struct svc_serv *serv, struct svc_pool *pool, int node) 669 { 670 struct svc_rqst *rqstp; 671 672 rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); 673 if (!rqstp) 674 return rqstp; 675 676 folio_batch_init(&rqstp->rq_fbatch); 677 678 rqstp->rq_server = serv; 679 rqstp->rq_pool = pool; 680 681 rqstp->rq_scratch_page = alloc_pages_node(node, GFP_KERNEL, 0); 682 if (!rqstp->rq_scratch_page) 683 goto out_enomem; 684 685 rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 686 if (!rqstp->rq_argp) 687 goto out_enomem; 688 689 rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); 690 if (!rqstp->rq_resp) 691 goto out_enomem; 692 693 if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) 694 goto out_enomem; 695 696 return rqstp; 697 out_enomem: 698 svc_rqst_free(rqstp); 699 return NULL; 700 } 701 EXPORT_SYMBOL_GPL(svc_rqst_alloc); 702 703 static struct svc_rqst * 704 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) 705 { 706 struct svc_rqst *rqstp; 707 708 rqstp = svc_rqst_alloc(serv, pool, node); 709 if (!rqstp) 710 return ERR_PTR(-ENOMEM); 711 712 spin_lock_bh(&serv->sv_lock); 713 serv->sv_nrthreads += 1; 714 spin_unlock_bh(&serv->sv_lock); 715 716 pool->sp_nrthreads += 1; 717 718 /* Protected by whatever lock the service uses when calling 719 * svc_set_num_threads() 720 */ 721 list_add_rcu(&rqstp->rq_all, &pool->sp_all_threads); 722 723 return rqstp; 724 } 725 726 /** 727 * svc_pool_wake_idle_thread - Awaken an idle thread in @pool 728 * @pool: service thread pool 729 * 730 * Can be called from soft IRQ or process context. Finding an idle 731 * service thread and marking it BUSY is atomic with respect to 732 * other calls to svc_pool_wake_idle_thread(). 733 * 734 */ 735 void svc_pool_wake_idle_thread(struct svc_pool *pool) 736 { 737 struct svc_rqst *rqstp; 738 struct llist_node *ln; 739 740 rcu_read_lock(); 741 ln = READ_ONCE(pool->sp_idle_threads.first); 742 if (ln) { 743 rqstp = llist_entry(ln, struct svc_rqst, rq_idle); 744 WRITE_ONCE(rqstp->rq_qtime, ktime_get()); 745 if (!task_is_running(rqstp->rq_task)) { 746 wake_up_process(rqstp->rq_task); 747 trace_svc_wake_up(rqstp->rq_task->pid); 748 percpu_counter_inc(&pool->sp_threads_woken); 749 } 750 rcu_read_unlock(); 751 return; 752 } 753 rcu_read_unlock(); 754 755 } 756 EXPORT_SYMBOL_GPL(svc_pool_wake_idle_thread); 757 758 static struct svc_pool * 759 svc_pool_next(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) 760 { 761 return pool ? pool : &serv->sv_pools[(*state)++ % serv->sv_nrpools]; 762 } 763 764 static struct svc_pool * 765 svc_pool_victim(struct svc_serv *serv, struct svc_pool *target_pool, 766 unsigned int *state) 767 { 768 struct svc_pool *pool; 769 unsigned int i; 770 771 pool = target_pool; 772 773 if (!pool) { 774 for (i = 0; i < serv->sv_nrpools; i++) { 775 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; 776 if (pool->sp_nrthreads) 777 break; 778 } 779 } 780 781 if (pool && pool->sp_nrthreads) { 782 set_bit(SP_VICTIM_REMAINS, &pool->sp_flags); 783 set_bit(SP_NEED_VICTIM, &pool->sp_flags); 784 return pool; 785 } 786 return NULL; 787 } 788 789 static int 790 svc_start_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 791 { 792 struct svc_rqst *rqstp; 793 struct task_struct *task; 794 struct svc_pool *chosen_pool; 795 unsigned int state = serv->sv_nrthreads-1; 796 int node; 797 798 do { 799 nrservs--; 800 chosen_pool = svc_pool_next(serv, pool, &state); 801 node = svc_pool_map_get_node(chosen_pool->sp_id); 802 803 rqstp = svc_prepare_thread(serv, chosen_pool, node); 804 if (IS_ERR(rqstp)) 805 return PTR_ERR(rqstp); 806 task = kthread_create_on_node(serv->sv_threadfn, rqstp, 807 node, "%s", serv->sv_name); 808 if (IS_ERR(task)) { 809 svc_exit_thread(rqstp); 810 return PTR_ERR(task); 811 } 812 813 rqstp->rq_task = task; 814 if (serv->sv_nrpools > 1) 815 svc_pool_map_set_cpumask(task, chosen_pool->sp_id); 816 817 svc_sock_update_bufs(serv); 818 wake_up_process(task); 819 } while (nrservs > 0); 820 821 return 0; 822 } 823 824 static int 825 svc_stop_kthreads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 826 { 827 unsigned int state = serv->sv_nrthreads-1; 828 struct svc_pool *victim; 829 830 do { 831 victim = svc_pool_victim(serv, pool, &state); 832 if (!victim) 833 break; 834 svc_pool_wake_idle_thread(victim); 835 wait_on_bit(&victim->sp_flags, SP_VICTIM_REMAINS, 836 TASK_IDLE); 837 nrservs++; 838 } while (nrservs < 0); 839 return 0; 840 } 841 842 /** 843 * svc_set_num_threads - adjust number of threads per RPC service 844 * @serv: RPC service to adjust 845 * @pool: Specific pool from which to choose threads, or NULL 846 * @nrservs: New number of threads for @serv (0 or less means kill all threads) 847 * 848 * Create or destroy threads to make the number of threads for @serv the 849 * given number. If @pool is non-NULL, change only threads in that pool; 850 * otherwise, round-robin between all pools for @serv. @serv's 851 * sv_nrthreads is adjusted for each thread created or destroyed. 852 * 853 * Caller must ensure mutual exclusion between this and server startup or 854 * shutdown. 855 * 856 * Returns zero on success or a negative errno if an error occurred while 857 * starting a thread. 858 */ 859 int 860 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) 861 { 862 if (!pool) 863 nrservs -= serv->sv_nrthreads; 864 else 865 nrservs -= pool->sp_nrthreads; 866 867 if (nrservs > 0) 868 return svc_start_kthreads(serv, pool, nrservs); 869 if (nrservs < 0) 870 return svc_stop_kthreads(serv, pool, nrservs); 871 return 0; 872 } 873 EXPORT_SYMBOL_GPL(svc_set_num_threads); 874 875 /** 876 * svc_rqst_replace_page - Replace one page in rq_pages[] 877 * @rqstp: svc_rqst with pages to replace 878 * @page: replacement page 879 * 880 * When replacing a page in rq_pages, batch the release of the 881 * replaced pages to avoid hammering the page allocator. 882 * 883 * Return values: 884 * %true: page replaced 885 * %false: array bounds checking failed 886 */ 887 bool svc_rqst_replace_page(struct svc_rqst *rqstp, struct page *page) 888 { 889 struct page **begin = rqstp->rq_pages; 890 struct page **end = &rqstp->rq_pages[RPCSVC_MAXPAGES]; 891 892 if (unlikely(rqstp->rq_next_page < begin || rqstp->rq_next_page > end)) { 893 trace_svc_replace_page_err(rqstp); 894 return false; 895 } 896 897 if (*rqstp->rq_next_page) { 898 if (!folio_batch_add(&rqstp->rq_fbatch, 899 page_folio(*rqstp->rq_next_page))) 900 __folio_batch_release(&rqstp->rq_fbatch); 901 } 902 903 get_page(page); 904 *(rqstp->rq_next_page++) = page; 905 return true; 906 } 907 EXPORT_SYMBOL_GPL(svc_rqst_replace_page); 908 909 /** 910 * svc_rqst_release_pages - Release Reply buffer pages 911 * @rqstp: RPC transaction context 912 * 913 * Release response pages that might still be in flight after 914 * svc_send, and any spliced filesystem-owned pages. 915 */ 916 void svc_rqst_release_pages(struct svc_rqst *rqstp) 917 { 918 int i, count = rqstp->rq_next_page - rqstp->rq_respages; 919 920 if (count) { 921 release_pages(rqstp->rq_respages, count); 922 for (i = 0; i < count; i++) 923 rqstp->rq_respages[i] = NULL; 924 } 925 } 926 927 /* 928 * Called from a server thread as it's exiting. Caller must hold the "service 929 * mutex" for the service. 930 */ 931 void 932 svc_rqst_free(struct svc_rqst *rqstp) 933 { 934 folio_batch_release(&rqstp->rq_fbatch); 935 svc_release_buffer(rqstp); 936 if (rqstp->rq_scratch_page) 937 put_page(rqstp->rq_scratch_page); 938 kfree(rqstp->rq_resp); 939 kfree(rqstp->rq_argp); 940 kfree(rqstp->rq_auth_data); 941 kfree_rcu(rqstp, rq_rcu_head); 942 } 943 EXPORT_SYMBOL_GPL(svc_rqst_free); 944 945 void 946 svc_exit_thread(struct svc_rqst *rqstp) 947 { 948 struct svc_serv *serv = rqstp->rq_server; 949 struct svc_pool *pool = rqstp->rq_pool; 950 951 list_del_rcu(&rqstp->rq_all); 952 953 pool->sp_nrthreads -= 1; 954 955 spin_lock_bh(&serv->sv_lock); 956 serv->sv_nrthreads -= 1; 957 spin_unlock_bh(&serv->sv_lock); 958 svc_sock_update_bufs(serv); 959 960 svc_rqst_free(rqstp); 961 962 clear_and_wake_up_bit(SP_VICTIM_REMAINS, &pool->sp_flags); 963 } 964 EXPORT_SYMBOL_GPL(svc_exit_thread); 965 966 /* 967 * Register an "inet" protocol family netid with the local 968 * rpcbind daemon via an rpcbind v4 SET request. 969 * 970 * No netconfig infrastructure is available in the kernel, so 971 * we map IP_ protocol numbers to netids by hand. 972 * 973 * Returns zero on success; a negative errno value is returned 974 * if any error occurs. 975 */ 976 static int __svc_rpcb_register4(struct net *net, const u32 program, 977 const u32 version, 978 const unsigned short protocol, 979 const unsigned short port) 980 { 981 const struct sockaddr_in sin = { 982 .sin_family = AF_INET, 983 .sin_addr.s_addr = htonl(INADDR_ANY), 984 .sin_port = htons(port), 985 }; 986 const char *netid; 987 int error; 988 989 switch (protocol) { 990 case IPPROTO_UDP: 991 netid = RPCBIND_NETID_UDP; 992 break; 993 case IPPROTO_TCP: 994 netid = RPCBIND_NETID_TCP; 995 break; 996 default: 997 return -ENOPROTOOPT; 998 } 999 1000 error = rpcb_v4_register(net, program, version, 1001 (const struct sockaddr *)&sin, netid); 1002 1003 /* 1004 * User space didn't support rpcbind v4, so retry this 1005 * registration request with the legacy rpcbind v2 protocol. 1006 */ 1007 if (error == -EPROTONOSUPPORT) 1008 error = rpcb_register(net, program, version, protocol, port); 1009 1010 return error; 1011 } 1012 1013 #if IS_ENABLED(CONFIG_IPV6) 1014 /* 1015 * Register an "inet6" protocol family netid with the local 1016 * rpcbind daemon via an rpcbind v4 SET request. 1017 * 1018 * No netconfig infrastructure is available in the kernel, so 1019 * we map IP_ protocol numbers to netids by hand. 1020 * 1021 * Returns zero on success; a negative errno value is returned 1022 * if any error occurs. 1023 */ 1024 static int __svc_rpcb_register6(struct net *net, const u32 program, 1025 const u32 version, 1026 const unsigned short protocol, 1027 const unsigned short port) 1028 { 1029 const struct sockaddr_in6 sin6 = { 1030 .sin6_family = AF_INET6, 1031 .sin6_addr = IN6ADDR_ANY_INIT, 1032 .sin6_port = htons(port), 1033 }; 1034 const char *netid; 1035 int error; 1036 1037 switch (protocol) { 1038 case IPPROTO_UDP: 1039 netid = RPCBIND_NETID_UDP6; 1040 break; 1041 case IPPROTO_TCP: 1042 netid = RPCBIND_NETID_TCP6; 1043 break; 1044 default: 1045 return -ENOPROTOOPT; 1046 } 1047 1048 error = rpcb_v4_register(net, program, version, 1049 (const struct sockaddr *)&sin6, netid); 1050 1051 /* 1052 * User space didn't support rpcbind version 4, so we won't 1053 * use a PF_INET6 listener. 1054 */ 1055 if (error == -EPROTONOSUPPORT) 1056 error = -EAFNOSUPPORT; 1057 1058 return error; 1059 } 1060 #endif /* IS_ENABLED(CONFIG_IPV6) */ 1061 1062 /* 1063 * Register a kernel RPC service via rpcbind version 4. 1064 * 1065 * Returns zero on success; a negative errno value is returned 1066 * if any error occurs. 1067 */ 1068 static int __svc_register(struct net *net, const char *progname, 1069 const u32 program, const u32 version, 1070 const int family, 1071 const unsigned short protocol, 1072 const unsigned short port) 1073 { 1074 int error = -EAFNOSUPPORT; 1075 1076 switch (family) { 1077 case PF_INET: 1078 error = __svc_rpcb_register4(net, program, version, 1079 protocol, port); 1080 break; 1081 #if IS_ENABLED(CONFIG_IPV6) 1082 case PF_INET6: 1083 error = __svc_rpcb_register6(net, program, version, 1084 protocol, port); 1085 #endif 1086 } 1087 1088 trace_svc_register(progname, version, family, protocol, port, error); 1089 return error; 1090 } 1091 1092 int svc_rpcbind_set_version(struct net *net, 1093 const struct svc_program *progp, 1094 u32 version, int family, 1095 unsigned short proto, 1096 unsigned short port) 1097 { 1098 return __svc_register(net, progp->pg_name, progp->pg_prog, 1099 version, family, proto, port); 1100 1101 } 1102 EXPORT_SYMBOL_GPL(svc_rpcbind_set_version); 1103 1104 int svc_generic_rpcbind_set(struct net *net, 1105 const struct svc_program *progp, 1106 u32 version, int family, 1107 unsigned short proto, 1108 unsigned short port) 1109 { 1110 const struct svc_version *vers = progp->pg_vers[version]; 1111 int error; 1112 1113 if (vers == NULL) 1114 return 0; 1115 1116 if (vers->vs_hidden) { 1117 trace_svc_noregister(progp->pg_name, version, proto, 1118 port, family, 0); 1119 return 0; 1120 } 1121 1122 /* 1123 * Don't register a UDP port if we need congestion 1124 * control. 1125 */ 1126 if (vers->vs_need_cong_ctrl && proto == IPPROTO_UDP) 1127 return 0; 1128 1129 error = svc_rpcbind_set_version(net, progp, version, 1130 family, proto, port); 1131 1132 return (vers->vs_rpcb_optnl) ? 0 : error; 1133 } 1134 EXPORT_SYMBOL_GPL(svc_generic_rpcbind_set); 1135 1136 /** 1137 * svc_register - register an RPC service with the local portmapper 1138 * @serv: svc_serv struct for the service to register 1139 * @net: net namespace for the service to register 1140 * @family: protocol family of service's listener socket 1141 * @proto: transport protocol number to advertise 1142 * @port: port to advertise 1143 * 1144 * Service is registered for any address in the passed-in protocol family 1145 */ 1146 int svc_register(const struct svc_serv *serv, struct net *net, 1147 const int family, const unsigned short proto, 1148 const unsigned short port) 1149 { 1150 struct svc_program *progp; 1151 unsigned int i; 1152 int error = 0; 1153 1154 WARN_ON_ONCE(proto == 0 && port == 0); 1155 if (proto == 0 && port == 0) 1156 return -EINVAL; 1157 1158 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1159 for (i = 0; i < progp->pg_nvers; i++) { 1160 1161 error = progp->pg_rpcbind_set(net, progp, i, 1162 family, proto, port); 1163 if (error < 0) { 1164 printk(KERN_WARNING "svc: failed to register " 1165 "%sv%u RPC service (errno %d).\n", 1166 progp->pg_name, i, -error); 1167 break; 1168 } 1169 } 1170 } 1171 1172 return error; 1173 } 1174 1175 /* 1176 * If user space is running rpcbind, it should take the v4 UNSET 1177 * and clear everything for this [program, version]. If user space 1178 * is running portmap, it will reject the v4 UNSET, but won't have 1179 * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient 1180 * in this case to clear all existing entries for [program, version]. 1181 */ 1182 static void __svc_unregister(struct net *net, const u32 program, const u32 version, 1183 const char *progname) 1184 { 1185 int error; 1186 1187 error = rpcb_v4_register(net, program, version, NULL, ""); 1188 1189 /* 1190 * User space didn't support rpcbind v4, so retry this 1191 * request with the legacy rpcbind v2 protocol. 1192 */ 1193 if (error == -EPROTONOSUPPORT) 1194 error = rpcb_register(net, program, version, 0, 0); 1195 1196 trace_svc_unregister(progname, version, error); 1197 } 1198 1199 /* 1200 * All netids, bind addresses and ports registered for [program, version] 1201 * are removed from the local rpcbind database (if the service is not 1202 * hidden) to make way for a new instance of the service. 1203 * 1204 * The result of unregistration is reported via dprintk for those who want 1205 * verification of the result, but is otherwise not important. 1206 */ 1207 static void svc_unregister(const struct svc_serv *serv, struct net *net) 1208 { 1209 struct sighand_struct *sighand; 1210 struct svc_program *progp; 1211 unsigned long flags; 1212 unsigned int i; 1213 1214 clear_thread_flag(TIF_SIGPENDING); 1215 1216 for (progp = serv->sv_program; progp; progp = progp->pg_next) { 1217 for (i = 0; i < progp->pg_nvers; i++) { 1218 if (progp->pg_vers[i] == NULL) 1219 continue; 1220 if (progp->pg_vers[i]->vs_hidden) 1221 continue; 1222 __svc_unregister(net, progp->pg_prog, i, progp->pg_name); 1223 } 1224 } 1225 1226 rcu_read_lock(); 1227 sighand = rcu_dereference(current->sighand); 1228 spin_lock_irqsave(&sighand->siglock, flags); 1229 recalc_sigpending(); 1230 spin_unlock_irqrestore(&sighand->siglock, flags); 1231 rcu_read_unlock(); 1232 } 1233 1234 /* 1235 * dprintk the given error with the address of the client that caused it. 1236 */ 1237 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 1238 static __printf(2, 3) 1239 void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) 1240 { 1241 struct va_format vaf; 1242 va_list args; 1243 char buf[RPC_MAX_ADDRBUFLEN]; 1244 1245 va_start(args, fmt); 1246 1247 vaf.fmt = fmt; 1248 vaf.va = &args; 1249 1250 dprintk("svc: %s: %pV", svc_print_addr(rqstp, buf, sizeof(buf)), &vaf); 1251 1252 va_end(args); 1253 } 1254 #else 1255 static __printf(2,3) void svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) {} 1256 #endif 1257 1258 __be32 1259 svc_generic_init_request(struct svc_rqst *rqstp, 1260 const struct svc_program *progp, 1261 struct svc_process_info *ret) 1262 { 1263 const struct svc_version *versp = NULL; /* compiler food */ 1264 const struct svc_procedure *procp = NULL; 1265 1266 if (rqstp->rq_vers >= progp->pg_nvers ) 1267 goto err_bad_vers; 1268 versp = progp->pg_vers[rqstp->rq_vers]; 1269 if (!versp) 1270 goto err_bad_vers; 1271 1272 /* 1273 * Some protocol versions (namely NFSv4) require some form of 1274 * congestion control. (See RFC 7530 section 3.1 paragraph 2) 1275 * In other words, UDP is not allowed. We mark those when setting 1276 * up the svc_xprt, and verify that here. 1277 * 1278 * The spec is not very clear about what error should be returned 1279 * when someone tries to access a server that is listening on UDP 1280 * for lower versions. RPC_PROG_MISMATCH seems to be the closest 1281 * fit. 1282 */ 1283 if (versp->vs_need_cong_ctrl && rqstp->rq_xprt && 1284 !test_bit(XPT_CONG_CTRL, &rqstp->rq_xprt->xpt_flags)) 1285 goto err_bad_vers; 1286 1287 if (rqstp->rq_proc >= versp->vs_nproc) 1288 goto err_bad_proc; 1289 rqstp->rq_procinfo = procp = &versp->vs_proc[rqstp->rq_proc]; 1290 1291 /* Initialize storage for argp and resp */ 1292 memset(rqstp->rq_argp, 0, procp->pc_argzero); 1293 memset(rqstp->rq_resp, 0, procp->pc_ressize); 1294 1295 /* Bump per-procedure stats counter */ 1296 this_cpu_inc(versp->vs_count[rqstp->rq_proc]); 1297 1298 ret->dispatch = versp->vs_dispatch; 1299 return rpc_success; 1300 err_bad_vers: 1301 ret->mismatch.lovers = progp->pg_lovers; 1302 ret->mismatch.hivers = progp->pg_hivers; 1303 return rpc_prog_mismatch; 1304 err_bad_proc: 1305 return rpc_proc_unavail; 1306 } 1307 EXPORT_SYMBOL_GPL(svc_generic_init_request); 1308 1309 /* 1310 * Common routine for processing the RPC request. 1311 */ 1312 static int 1313 svc_process_common(struct svc_rqst *rqstp) 1314 { 1315 struct xdr_stream *xdr = &rqstp->rq_res_stream; 1316 struct svc_program *progp; 1317 const struct svc_procedure *procp = NULL; 1318 struct svc_serv *serv = rqstp->rq_server; 1319 struct svc_process_info process; 1320 enum svc_auth_status auth_res; 1321 unsigned int aoffset; 1322 int rc; 1323 __be32 *p; 1324 1325 /* Will be turned off only when NFSv4 Sessions are used */ 1326 set_bit(RQ_USEDEFERRAL, &rqstp->rq_flags); 1327 clear_bit(RQ_DROPME, &rqstp->rq_flags); 1328 1329 /* Construct the first words of the reply: */ 1330 svcxdr_init_encode(rqstp); 1331 xdr_stream_encode_be32(xdr, rqstp->rq_xid); 1332 xdr_stream_encode_be32(xdr, rpc_reply); 1333 1334 p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 4); 1335 if (unlikely(!p)) 1336 goto err_short_len; 1337 if (*p++ != cpu_to_be32(RPC_VERSION)) 1338 goto err_bad_rpc; 1339 1340 xdr_stream_encode_be32(xdr, rpc_msg_accepted); 1341 1342 rqstp->rq_prog = be32_to_cpup(p++); 1343 rqstp->rq_vers = be32_to_cpup(p++); 1344 rqstp->rq_proc = be32_to_cpup(p); 1345 1346 for (progp = serv->sv_program; progp; progp = progp->pg_next) 1347 if (rqstp->rq_prog == progp->pg_prog) 1348 break; 1349 1350 /* 1351 * Decode auth data, and add verifier to reply buffer. 1352 * We do this before anything else in order to get a decent 1353 * auth verifier. 1354 */ 1355 auth_res = svc_authenticate(rqstp); 1356 /* Also give the program a chance to reject this call: */ 1357 if (auth_res == SVC_OK && progp) 1358 auth_res = progp->pg_authenticate(rqstp); 1359 trace_svc_authenticate(rqstp, auth_res); 1360 switch (auth_res) { 1361 case SVC_OK: 1362 break; 1363 case SVC_GARBAGE: 1364 goto err_garbage_args; 1365 case SVC_SYSERR: 1366 goto err_system_err; 1367 case SVC_DENIED: 1368 goto err_bad_auth; 1369 case SVC_CLOSE: 1370 goto close; 1371 case SVC_DROP: 1372 goto dropit; 1373 case SVC_COMPLETE: 1374 goto sendit; 1375 default: 1376 pr_warn_once("Unexpected svc_auth_status (%d)\n", auth_res); 1377 goto err_system_err; 1378 } 1379 1380 if (progp == NULL) 1381 goto err_bad_prog; 1382 1383 switch (progp->pg_init_request(rqstp, progp, &process)) { 1384 case rpc_success: 1385 break; 1386 case rpc_prog_unavail: 1387 goto err_bad_prog; 1388 case rpc_prog_mismatch: 1389 goto err_bad_vers; 1390 case rpc_proc_unavail: 1391 goto err_bad_proc; 1392 } 1393 1394 procp = rqstp->rq_procinfo; 1395 /* Should this check go into the dispatcher? */ 1396 if (!procp || !procp->pc_func) 1397 goto err_bad_proc; 1398 1399 /* Syntactic check complete */ 1400 if (serv->sv_stats) 1401 serv->sv_stats->rpccnt++; 1402 trace_svc_process(rqstp, progp->pg_name); 1403 1404 aoffset = xdr_stream_pos(xdr); 1405 1406 /* un-reserve some of the out-queue now that we have a 1407 * better idea of reply size 1408 */ 1409 if (procp->pc_xdrressize) 1410 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); 1411 1412 /* Call the function that processes the request. */ 1413 rc = process.dispatch(rqstp); 1414 if (procp->pc_release) 1415 procp->pc_release(rqstp); 1416 xdr_finish_decode(xdr); 1417 1418 if (!rc) 1419 goto dropit; 1420 if (rqstp->rq_auth_stat != rpc_auth_ok) 1421 goto err_bad_auth; 1422 1423 if (*rqstp->rq_accept_statp != rpc_success) 1424 xdr_truncate_encode(xdr, aoffset); 1425 1426 if (procp->pc_encode == NULL) 1427 goto dropit; 1428 1429 sendit: 1430 if (svc_authorise(rqstp)) 1431 goto close_xprt; 1432 return 1; /* Caller can now send it */ 1433 1434 dropit: 1435 svc_authorise(rqstp); /* doesn't hurt to call this twice */ 1436 dprintk("svc: svc_process dropit\n"); 1437 return 0; 1438 1439 close: 1440 svc_authorise(rqstp); 1441 close_xprt: 1442 if (rqstp->rq_xprt && test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) 1443 svc_xprt_close(rqstp->rq_xprt); 1444 dprintk("svc: svc_process close\n"); 1445 return 0; 1446 1447 err_short_len: 1448 svc_printk(rqstp, "short len %u, dropping request\n", 1449 rqstp->rq_arg.len); 1450 goto close_xprt; 1451 1452 err_bad_rpc: 1453 if (serv->sv_stats) 1454 serv->sv_stats->rpcbadfmt++; 1455 xdr_stream_encode_u32(xdr, RPC_MSG_DENIED); 1456 xdr_stream_encode_u32(xdr, RPC_MISMATCH); 1457 /* Only RPCv2 supported */ 1458 xdr_stream_encode_u32(xdr, RPC_VERSION); 1459 xdr_stream_encode_u32(xdr, RPC_VERSION); 1460 return 1; /* don't wrap */ 1461 1462 err_bad_auth: 1463 dprintk("svc: authentication failed (%d)\n", 1464 be32_to_cpu(rqstp->rq_auth_stat)); 1465 if (serv->sv_stats) 1466 serv->sv_stats->rpcbadauth++; 1467 /* Restore write pointer to location of reply status: */ 1468 xdr_truncate_encode(xdr, XDR_UNIT * 2); 1469 xdr_stream_encode_u32(xdr, RPC_MSG_DENIED); 1470 xdr_stream_encode_u32(xdr, RPC_AUTH_ERROR); 1471 xdr_stream_encode_be32(xdr, rqstp->rq_auth_stat); 1472 goto sendit; 1473 1474 err_bad_prog: 1475 dprintk("svc: unknown program %d\n", rqstp->rq_prog); 1476 if (serv->sv_stats) 1477 serv->sv_stats->rpcbadfmt++; 1478 *rqstp->rq_accept_statp = rpc_prog_unavail; 1479 goto sendit; 1480 1481 err_bad_vers: 1482 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", 1483 rqstp->rq_vers, rqstp->rq_prog, progp->pg_name); 1484 1485 if (serv->sv_stats) 1486 serv->sv_stats->rpcbadfmt++; 1487 *rqstp->rq_accept_statp = rpc_prog_mismatch; 1488 1489 /* 1490 * svc_authenticate() has already added the verifier and 1491 * advanced the stream just past rq_accept_statp. 1492 */ 1493 xdr_stream_encode_u32(xdr, process.mismatch.lovers); 1494 xdr_stream_encode_u32(xdr, process.mismatch.hivers); 1495 goto sendit; 1496 1497 err_bad_proc: 1498 svc_printk(rqstp, "unknown procedure (%d)\n", rqstp->rq_proc); 1499 1500 if (serv->sv_stats) 1501 serv->sv_stats->rpcbadfmt++; 1502 *rqstp->rq_accept_statp = rpc_proc_unavail; 1503 goto sendit; 1504 1505 err_garbage_args: 1506 svc_printk(rqstp, "failed to decode RPC header\n"); 1507 1508 if (serv->sv_stats) 1509 serv->sv_stats->rpcbadfmt++; 1510 *rqstp->rq_accept_statp = rpc_garbage_args; 1511 goto sendit; 1512 1513 err_system_err: 1514 if (serv->sv_stats) 1515 serv->sv_stats->rpcbadfmt++; 1516 *rqstp->rq_accept_statp = rpc_system_err; 1517 goto sendit; 1518 } 1519 1520 /** 1521 * svc_process - Execute one RPC transaction 1522 * @rqstp: RPC transaction context 1523 * 1524 */ 1525 void svc_process(struct svc_rqst *rqstp) 1526 { 1527 struct kvec *resv = &rqstp->rq_res.head[0]; 1528 __be32 *p; 1529 1530 #if IS_ENABLED(CONFIG_FAIL_SUNRPC) 1531 if (!fail_sunrpc.ignore_server_disconnect && 1532 should_fail(&fail_sunrpc.attr, 1)) 1533 svc_xprt_deferred_close(rqstp->rq_xprt); 1534 #endif 1535 1536 /* 1537 * Setup response xdr_buf. 1538 * Initially it has just one page 1539 */ 1540 rqstp->rq_next_page = &rqstp->rq_respages[1]; 1541 resv->iov_base = page_address(rqstp->rq_respages[0]); 1542 resv->iov_len = 0; 1543 rqstp->rq_res.pages = rqstp->rq_next_page; 1544 rqstp->rq_res.len = 0; 1545 rqstp->rq_res.page_base = 0; 1546 rqstp->rq_res.page_len = 0; 1547 rqstp->rq_res.buflen = PAGE_SIZE; 1548 rqstp->rq_res.tail[0].iov_base = NULL; 1549 rqstp->rq_res.tail[0].iov_len = 0; 1550 1551 svcxdr_init_decode(rqstp); 1552 p = xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2); 1553 if (unlikely(!p)) 1554 goto out_drop; 1555 rqstp->rq_xid = *p++; 1556 if (unlikely(*p != rpc_call)) 1557 goto out_baddir; 1558 1559 if (!svc_process_common(rqstp)) 1560 goto out_drop; 1561 svc_send(rqstp); 1562 return; 1563 1564 out_baddir: 1565 svc_printk(rqstp, "bad direction 0x%08x, dropping request\n", 1566 be32_to_cpu(*p)); 1567 if (rqstp->rq_server->sv_stats) 1568 rqstp->rq_server->sv_stats->rpcbadfmt++; 1569 out_drop: 1570 svc_drop(rqstp); 1571 } 1572 1573 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1574 /** 1575 * svc_process_bc - process a reverse-direction RPC request 1576 * @req: RPC request to be used for client-side processing 1577 * @rqstp: server-side execution context 1578 * 1579 */ 1580 void svc_process_bc(struct rpc_rqst *req, struct svc_rqst *rqstp) 1581 { 1582 struct rpc_timeout timeout = { 1583 .to_increment = 0, 1584 }; 1585 struct rpc_task *task; 1586 int proc_error; 1587 1588 /* Build the svc_rqst used by the common processing routine */ 1589 rqstp->rq_xid = req->rq_xid; 1590 rqstp->rq_prot = req->rq_xprt->prot; 1591 rqstp->rq_bc_net = req->rq_xprt->xprt_net; 1592 1593 rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); 1594 memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); 1595 memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); 1596 memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); 1597 1598 /* Adjust the argument buffer length */ 1599 rqstp->rq_arg.len = req->rq_private_buf.len; 1600 if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len) { 1601 rqstp->rq_arg.head[0].iov_len = rqstp->rq_arg.len; 1602 rqstp->rq_arg.page_len = 0; 1603 } else if (rqstp->rq_arg.len <= rqstp->rq_arg.head[0].iov_len + 1604 rqstp->rq_arg.page_len) 1605 rqstp->rq_arg.page_len = rqstp->rq_arg.len - 1606 rqstp->rq_arg.head[0].iov_len; 1607 else 1608 rqstp->rq_arg.len = rqstp->rq_arg.head[0].iov_len + 1609 rqstp->rq_arg.page_len; 1610 1611 /* Reset the response buffer */ 1612 rqstp->rq_res.head[0].iov_len = 0; 1613 1614 /* 1615 * Skip the XID and calldir fields because they've already 1616 * been processed by the caller. 1617 */ 1618 svcxdr_init_decode(rqstp); 1619 if (!xdr_inline_decode(&rqstp->rq_arg_stream, XDR_UNIT * 2)) 1620 return; 1621 1622 /* Parse and execute the bc call */ 1623 proc_error = svc_process_common(rqstp); 1624 1625 atomic_dec(&req->rq_xprt->bc_slot_count); 1626 if (!proc_error) { 1627 /* Processing error: drop the request */ 1628 xprt_free_bc_request(req); 1629 return; 1630 } 1631 /* Finally, send the reply synchronously */ 1632 if (rqstp->bc_to_initval > 0) { 1633 timeout.to_initval = rqstp->bc_to_initval; 1634 timeout.to_retries = rqstp->bc_to_retries; 1635 } else { 1636 timeout.to_initval = req->rq_xprt->timeout->to_initval; 1637 timeout.to_retries = req->rq_xprt->timeout->to_retries; 1638 } 1639 timeout.to_maxval = timeout.to_initval; 1640 memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); 1641 task = rpc_run_bc_task(req, &timeout); 1642 1643 if (IS_ERR(task)) 1644 return; 1645 1646 WARN_ON_ONCE(atomic_read(&task->tk_count) != 1); 1647 rpc_put_task(task); 1648 } 1649 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1650 1651 /** 1652 * svc_max_payload - Return transport-specific limit on the RPC payload 1653 * @rqstp: RPC transaction context 1654 * 1655 * Returns the maximum number of payload bytes the current transport 1656 * allows. 1657 */ 1658 u32 svc_max_payload(const struct svc_rqst *rqstp) 1659 { 1660 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; 1661 1662 if (rqstp->rq_server->sv_max_payload < max) 1663 max = rqstp->rq_server->sv_max_payload; 1664 return max; 1665 } 1666 EXPORT_SYMBOL_GPL(svc_max_payload); 1667 1668 /** 1669 * svc_proc_name - Return RPC procedure name in string form 1670 * @rqstp: svc_rqst to operate on 1671 * 1672 * Return value: 1673 * Pointer to a NUL-terminated string 1674 */ 1675 const char *svc_proc_name(const struct svc_rqst *rqstp) 1676 { 1677 if (rqstp && rqstp->rq_procinfo) 1678 return rqstp->rq_procinfo->pc_name; 1679 return "unknown"; 1680 } 1681 1682 1683 /** 1684 * svc_encode_result_payload - mark a range of bytes as a result payload 1685 * @rqstp: svc_rqst to operate on 1686 * @offset: payload's byte offset in rqstp->rq_res 1687 * @length: size of payload, in bytes 1688 * 1689 * Returns zero on success, or a negative errno if a permanent 1690 * error occurred. 1691 */ 1692 int svc_encode_result_payload(struct svc_rqst *rqstp, unsigned int offset, 1693 unsigned int length) 1694 { 1695 return rqstp->rq_xprt->xpt_ops->xpo_result_payload(rqstp, offset, 1696 length); 1697 } 1698 EXPORT_SYMBOL_GPL(svc_encode_result_payload); 1699 1700 /** 1701 * svc_fill_write_vector - Construct data argument for VFS write call 1702 * @rqstp: svc_rqst to operate on 1703 * @payload: xdr_buf containing only the write data payload 1704 * 1705 * Fills in rqstp::rq_vec, and returns the number of elements. 1706 */ 1707 unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, 1708 struct xdr_buf *payload) 1709 { 1710 struct page **pages = payload->pages; 1711 struct kvec *first = payload->head; 1712 struct kvec *vec = rqstp->rq_vec; 1713 size_t total = payload->len; 1714 unsigned int i; 1715 1716 /* Some types of transport can present the write payload 1717 * entirely in rq_arg.pages. In this case, @first is empty. 1718 */ 1719 i = 0; 1720 if (first->iov_len) { 1721 vec[i].iov_base = first->iov_base; 1722 vec[i].iov_len = min_t(size_t, total, first->iov_len); 1723 total -= vec[i].iov_len; 1724 ++i; 1725 } 1726 1727 while (total) { 1728 vec[i].iov_base = page_address(*pages); 1729 vec[i].iov_len = min_t(size_t, total, PAGE_SIZE); 1730 total -= vec[i].iov_len; 1731 ++i; 1732 ++pages; 1733 } 1734 1735 WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec)); 1736 return i; 1737 } 1738 EXPORT_SYMBOL_GPL(svc_fill_write_vector); 1739 1740 /** 1741 * svc_fill_symlink_pathname - Construct pathname argument for VFS symlink call 1742 * @rqstp: svc_rqst to operate on 1743 * @first: buffer containing first section of pathname 1744 * @p: buffer containing remaining section of pathname 1745 * @total: total length of the pathname argument 1746 * 1747 * The VFS symlink API demands a NUL-terminated pathname in mapped memory. 1748 * Returns pointer to a NUL-terminated string, or an ERR_PTR. Caller must free 1749 * the returned string. 1750 */ 1751 char *svc_fill_symlink_pathname(struct svc_rqst *rqstp, struct kvec *first, 1752 void *p, size_t total) 1753 { 1754 size_t len, remaining; 1755 char *result, *dst; 1756 1757 result = kmalloc(total + 1, GFP_KERNEL); 1758 if (!result) 1759 return ERR_PTR(-ESERVERFAULT); 1760 1761 dst = result; 1762 remaining = total; 1763 1764 len = min_t(size_t, total, first->iov_len); 1765 if (len) { 1766 memcpy(dst, first->iov_base, len); 1767 dst += len; 1768 remaining -= len; 1769 } 1770 1771 if (remaining) { 1772 len = min_t(size_t, remaining, PAGE_SIZE); 1773 memcpy(dst, p, len); 1774 dst += len; 1775 } 1776 1777 *dst = '\0'; 1778 1779 /* Sanity check: Linux doesn't allow the pathname argument to 1780 * contain a NUL byte. 1781 */ 1782 if (strlen(result) != total) { 1783 kfree(result); 1784 return ERR_PTR(-EINVAL); 1785 } 1786 return result; 1787 } 1788 EXPORT_SYMBOL_GPL(svc_fill_symlink_pathname); 1789
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.