~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/sunrpc/xprtrdma/rpc_rdma.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
  2 /*
  3  * Copyright (c) 2014-2020, Oracle and/or its affiliates.
  4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
  5  *
  6  * This software is available to you under a choice of one of two
  7  * licenses.  You may choose to be licensed under the terms of the GNU
  8  * General Public License (GPL) Version 2, available from the file
  9  * COPYING in the main directory of this source tree, or the BSD-type
 10  * license below:
 11  *
 12  * Redistribution and use in source and binary forms, with or without
 13  * modification, are permitted provided that the following conditions
 14  * are met:
 15  *
 16  *      Redistributions of source code must retain the above copyright
 17  *      notice, this list of conditions and the following disclaimer.
 18  *
 19  *      Redistributions in binary form must reproduce the above
 20  *      copyright notice, this list of conditions and the following
 21  *      disclaimer in the documentation and/or other materials provided
 22  *      with the distribution.
 23  *
 24  *      Neither the name of the Network Appliance, Inc. nor the names of
 25  *      its contributors may be used to endorse or promote products
 26  *      derived from this software without specific prior written
 27  *      permission.
 28  *
 29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 40  */
 41 
 42 /*
 43  * rpc_rdma.c
 44  *
 45  * This file contains the guts of the RPC RDMA protocol, and
 46  * does marshaling/unmarshaling, etc. It is also where interfacing
 47  * to the Linux RPC framework lives.
 48  */
 49 
 50 #include <linux/highmem.h>
 51 
 52 #include <linux/sunrpc/svc_rdma.h>
 53 
 54 #include "xprt_rdma.h"
 55 #include <trace/events/rpcrdma.h>
 56 
 57 /* Returns size of largest RPC-over-RDMA header in a Call message
 58  *
 59  * The largest Call header contains a full-size Read list and a
 60  * minimal Reply chunk.
 61  */
 62 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
 63 {
 64         unsigned int size;
 65 
 66         /* Fixed header fields and list discriminators */
 67         size = RPCRDMA_HDRLEN_MIN;
 68 
 69         /* Maximum Read list size */
 70         size += maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
 71 
 72         /* Minimal Read chunk size */
 73         size += sizeof(__be32); /* segment count */
 74         size += rpcrdma_segment_maxsz * sizeof(__be32);
 75         size += sizeof(__be32); /* list discriminator */
 76 
 77         return size;
 78 }
 79 
 80 /* Returns size of largest RPC-over-RDMA header in a Reply message
 81  *
 82  * There is only one Write list or one Reply chunk per Reply
 83  * message.  The larger list is the Write list.
 84  */
 85 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
 86 {
 87         unsigned int size;
 88 
 89         /* Fixed header fields and list discriminators */
 90         size = RPCRDMA_HDRLEN_MIN;
 91 
 92         /* Maximum Write list size */
 93         size += sizeof(__be32);         /* segment count */
 94         size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
 95         size += sizeof(__be32); /* list discriminator */
 96 
 97         return size;
 98 }
 99 
100 /**
101  * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
102  * @ep: endpoint to initialize
103  *
104  * The max_inline fields contain the maximum size of an RPC message
105  * so the marshaling code doesn't have to repeat this calculation
106  * for every RPC.
107  */
108 void rpcrdma_set_max_header_sizes(struct rpcrdma_ep *ep)
109 {
110         unsigned int maxsegs = ep->re_max_rdma_segs;
111 
112         ep->re_max_inline_send =
113                 ep->re_inline_send - rpcrdma_max_call_header_size(maxsegs);
114         ep->re_max_inline_recv =
115                 ep->re_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
116 }
117 
118 /* The client can send a request inline as long as the RPCRDMA header
119  * plus the RPC call fit under the transport's inline limit. If the
120  * combined call message size exceeds that limit, the client must use
121  * a Read chunk for this operation.
122  *
123  * A Read chunk is also required if sending the RPC call inline would
124  * exceed this device's max_sge limit.
125  */
126 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
127                                 struct rpc_rqst *rqst)
128 {
129         struct xdr_buf *xdr = &rqst->rq_snd_buf;
130         struct rpcrdma_ep *ep = r_xprt->rx_ep;
131         unsigned int count, remaining, offset;
132 
133         if (xdr->len > ep->re_max_inline_send)
134                 return false;
135 
136         if (xdr->page_len) {
137                 remaining = xdr->page_len;
138                 offset = offset_in_page(xdr->page_base);
139                 count = RPCRDMA_MIN_SEND_SGES;
140                 while (remaining) {
141                         remaining -= min_t(unsigned int,
142                                            PAGE_SIZE - offset, remaining);
143                         offset = 0;
144                         if (++count > ep->re_attr.cap.max_send_sge)
145                                 return false;
146                 }
147         }
148 
149         return true;
150 }
151 
152 /* The client can't know how large the actual reply will be. Thus it
153  * plans for the largest possible reply for that particular ULP
154  * operation. If the maximum combined reply message size exceeds that
155  * limit, the client must provide a write list or a reply chunk for
156  * this request.
157  */
158 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
159                                    struct rpc_rqst *rqst)
160 {
161         return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep->re_max_inline_recv;
162 }
163 
164 /* The client is required to provide a Reply chunk if the maximum
165  * size of the non-payload part of the RPC Reply is larger than
166  * the inline threshold.
167  */
168 static bool
169 rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
170                           const struct rpc_rqst *rqst)
171 {
172         const struct xdr_buf *buf = &rqst->rq_rcv_buf;
173 
174         return (buf->head[0].iov_len + buf->tail[0].iov_len) <
175                 r_xprt->rx_ep->re_max_inline_recv;
176 }
177 
178 /* ACL likes to be lazy in allocating pages. For TCP, these
179  * pages can be allocated during receive processing. Not true
180  * for RDMA, which must always provision receive buffers
181  * up front.
182  */
183 static noinline int
184 rpcrdma_alloc_sparse_pages(struct xdr_buf *buf)
185 {
186         struct page **ppages;
187         int len;
188 
189         len = buf->page_len;
190         ppages = buf->pages + (buf->page_base >> PAGE_SHIFT);
191         while (len > 0) {
192                 if (!*ppages)
193                         *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
194                 if (!*ppages)
195                         return -ENOBUFS;
196                 ppages++;
197                 len -= PAGE_SIZE;
198         }
199 
200         return 0;
201 }
202 
203 /* Convert @vec to a single SGL element.
204  *
205  * Returns pointer to next available SGE, and bumps the total number
206  * of SGEs consumed.
207  */
208 static struct rpcrdma_mr_seg *
209 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
210                      unsigned int *n)
211 {
212         seg->mr_page = virt_to_page(vec->iov_base);
213         seg->mr_offset = offset_in_page(vec->iov_base);
214         seg->mr_len = vec->iov_len;
215         ++seg;
216         ++(*n);
217         return seg;
218 }
219 
220 /* Convert @xdrbuf into SGEs no larger than a page each. As they
221  * are registered, these SGEs are then coalesced into RDMA segments
222  * when the selected memreg mode supports it.
223  *
224  * Returns positive number of SGEs consumed, or a negative errno.
225  */
226 
227 static int
228 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
229                      unsigned int pos, enum rpcrdma_chunktype type,
230                      struct rpcrdma_mr_seg *seg)
231 {
232         unsigned long page_base;
233         unsigned int len, n;
234         struct page **ppages;
235 
236         n = 0;
237         if (pos == 0)
238                 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
239 
240         len = xdrbuf->page_len;
241         ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
242         page_base = offset_in_page(xdrbuf->page_base);
243         while (len) {
244                 seg->mr_page = *ppages;
245                 seg->mr_offset = page_base;
246                 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
247                 len -= seg->mr_len;
248                 ++ppages;
249                 ++seg;
250                 ++n;
251                 page_base = 0;
252         }
253 
254         if (type == rpcrdma_readch || type == rpcrdma_writech)
255                 goto out;
256 
257         if (xdrbuf->tail[0].iov_len)
258                 rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
259 
260 out:
261         if (unlikely(n > RPCRDMA_MAX_SEGS))
262                 return -EIO;
263         return n;
264 }
265 
266 static int
267 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
268 {
269         __be32 *p;
270 
271         p = xdr_reserve_space(xdr, 4 * sizeof(*p));
272         if (unlikely(!p))
273                 return -EMSGSIZE;
274 
275         xdr_encode_rdma_segment(p, mr->mr_handle, mr->mr_length, mr->mr_offset);
276         return 0;
277 }
278 
279 static int
280 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
281                     u32 position)
282 {
283         __be32 *p;
284 
285         p = xdr_reserve_space(xdr, 6 * sizeof(*p));
286         if (unlikely(!p))
287                 return -EMSGSIZE;
288 
289         *p++ = xdr_one;                 /* Item present */
290         xdr_encode_read_segment(p, position, mr->mr_handle, mr->mr_length,
291                                 mr->mr_offset);
292         return 0;
293 }
294 
295 static struct rpcrdma_mr_seg *rpcrdma_mr_prepare(struct rpcrdma_xprt *r_xprt,
296                                                  struct rpcrdma_req *req,
297                                                  struct rpcrdma_mr_seg *seg,
298                                                  int nsegs, bool writing,
299                                                  struct rpcrdma_mr **mr)
300 {
301         *mr = rpcrdma_mr_pop(&req->rl_free_mrs);
302         if (!*mr) {
303                 *mr = rpcrdma_mr_get(r_xprt);
304                 if (!*mr)
305                         goto out_getmr_err;
306                 (*mr)->mr_req = req;
307         }
308 
309         rpcrdma_mr_push(*mr, &req->rl_registered);
310         return frwr_map(r_xprt, seg, nsegs, writing, req->rl_slot.rq_xid, *mr);
311 
312 out_getmr_err:
313         trace_xprtrdma_nomrs_err(r_xprt, req);
314         xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
315         rpcrdma_mrs_refresh(r_xprt);
316         return ERR_PTR(-EAGAIN);
317 }
318 
319 /* Register and XDR encode the Read list. Supports encoding a list of read
320  * segments that belong to a single read chunk.
321  *
322  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
323  *
324  *  Read chunklist (a linked list):
325  *   N elements, position P (same P for all chunks of same arg!):
326  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
327  *
328  * Returns zero on success, or a negative errno if a failure occurred.
329  * @xdr is advanced to the next position in the stream.
330  *
331  * Only a single @pos value is currently supported.
332  */
333 static int rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
334                                     struct rpcrdma_req *req,
335                                     struct rpc_rqst *rqst,
336                                     enum rpcrdma_chunktype rtype)
337 {
338         struct xdr_stream *xdr = &req->rl_stream;
339         struct rpcrdma_mr_seg *seg;
340         struct rpcrdma_mr *mr;
341         unsigned int pos;
342         int nsegs;
343 
344         if (rtype == rpcrdma_noch_pullup || rtype == rpcrdma_noch_mapped)
345                 goto done;
346 
347         pos = rqst->rq_snd_buf.head[0].iov_len;
348         if (rtype == rpcrdma_areadch)
349                 pos = 0;
350         seg = req->rl_segments;
351         nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
352                                      rtype, seg);
353         if (nsegs < 0)
354                 return nsegs;
355 
356         do {
357                 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, false, &mr);
358                 if (IS_ERR(seg))
359                         return PTR_ERR(seg);
360 
361                 if (encode_read_segment(xdr, mr, pos) < 0)
362                         return -EMSGSIZE;
363 
364                 trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
365                 r_xprt->rx_stats.read_chunk_count++;
366                 nsegs -= mr->mr_nents;
367         } while (nsegs);
368 
369 done:
370         if (xdr_stream_encode_item_absent(xdr) < 0)
371                 return -EMSGSIZE;
372         return 0;
373 }
374 
375 /* Register and XDR encode the Write list. Supports encoding a list
376  * containing one array of plain segments that belong to a single
377  * write chunk.
378  *
379  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
380  *
381  *  Write chunklist (a list of (one) counted array):
382  *   N elements:
383  *    1 - N - HLOO - HLOO - ... - HLOO - 0
384  *
385  * Returns zero on success, or a negative errno if a failure occurred.
386  * @xdr is advanced to the next position in the stream.
387  *
388  * Only a single Write chunk is currently supported.
389  */
390 static int rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt,
391                                      struct rpcrdma_req *req,
392                                      struct rpc_rqst *rqst,
393                                      enum rpcrdma_chunktype wtype)
394 {
395         struct xdr_stream *xdr = &req->rl_stream;
396         struct rpcrdma_ep *ep = r_xprt->rx_ep;
397         struct rpcrdma_mr_seg *seg;
398         struct rpcrdma_mr *mr;
399         int nsegs, nchunks;
400         __be32 *segcount;
401 
402         if (wtype != rpcrdma_writech)
403                 goto done;
404 
405         seg = req->rl_segments;
406         nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
407                                      rqst->rq_rcv_buf.head[0].iov_len,
408                                      wtype, seg);
409         if (nsegs < 0)
410                 return nsegs;
411 
412         if (xdr_stream_encode_item_present(xdr) < 0)
413                 return -EMSGSIZE;
414         segcount = xdr_reserve_space(xdr, sizeof(*segcount));
415         if (unlikely(!segcount))
416                 return -EMSGSIZE;
417         /* Actual value encoded below */
418 
419         nchunks = 0;
420         do {
421                 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
422                 if (IS_ERR(seg))
423                         return PTR_ERR(seg);
424 
425                 if (encode_rdma_segment(xdr, mr) < 0)
426                         return -EMSGSIZE;
427 
428                 trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
429                 r_xprt->rx_stats.write_chunk_count++;
430                 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
431                 nchunks++;
432                 nsegs -= mr->mr_nents;
433         } while (nsegs);
434 
435         if (xdr_pad_size(rqst->rq_rcv_buf.page_len)) {
436                 if (encode_rdma_segment(xdr, ep->re_write_pad_mr) < 0)
437                         return -EMSGSIZE;
438 
439                 trace_xprtrdma_chunk_wp(rqst->rq_task, ep->re_write_pad_mr,
440                                         nsegs);
441                 r_xprt->rx_stats.write_chunk_count++;
442                 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
443                 nchunks++;
444                 nsegs -= mr->mr_nents;
445         }
446 
447         /* Update count of segments in this Write chunk */
448         *segcount = cpu_to_be32(nchunks);
449 
450 done:
451         if (xdr_stream_encode_item_absent(xdr) < 0)
452                 return -EMSGSIZE;
453         return 0;
454 }
455 
456 /* Register and XDR encode the Reply chunk. Supports encoding an array
457  * of plain segments that belong to a single write (reply) chunk.
458  *
459  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
460  *
461  *  Reply chunk (a counted array):
462  *   N elements:
463  *    1 - N - HLOO - HLOO - ... - HLOO
464  *
465  * Returns zero on success, or a negative errno if a failure occurred.
466  * @xdr is advanced to the next position in the stream.
467  */
468 static int rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
469                                       struct rpcrdma_req *req,
470                                       struct rpc_rqst *rqst,
471                                       enum rpcrdma_chunktype wtype)
472 {
473         struct xdr_stream *xdr = &req->rl_stream;
474         struct rpcrdma_mr_seg *seg;
475         struct rpcrdma_mr *mr;
476         int nsegs, nchunks;
477         __be32 *segcount;
478 
479         if (wtype != rpcrdma_replych) {
480                 if (xdr_stream_encode_item_absent(xdr) < 0)
481                         return -EMSGSIZE;
482                 return 0;
483         }
484 
485         seg = req->rl_segments;
486         nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
487         if (nsegs < 0)
488                 return nsegs;
489 
490         if (xdr_stream_encode_item_present(xdr) < 0)
491                 return -EMSGSIZE;
492         segcount = xdr_reserve_space(xdr, sizeof(*segcount));
493         if (unlikely(!segcount))
494                 return -EMSGSIZE;
495         /* Actual value encoded below */
496 
497         nchunks = 0;
498         do {
499                 seg = rpcrdma_mr_prepare(r_xprt, req, seg, nsegs, true, &mr);
500                 if (IS_ERR(seg))
501                         return PTR_ERR(seg);
502 
503                 if (encode_rdma_segment(xdr, mr) < 0)
504                         return -EMSGSIZE;
505 
506                 trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
507                 r_xprt->rx_stats.reply_chunk_count++;
508                 r_xprt->rx_stats.total_rdma_request += mr->mr_length;
509                 nchunks++;
510                 nsegs -= mr->mr_nents;
511         } while (nsegs);
512 
513         /* Update count of segments in the Reply chunk */
514         *segcount = cpu_to_be32(nchunks);
515 
516         return 0;
517 }
518 
519 static void rpcrdma_sendctx_done(struct kref *kref)
520 {
521         struct rpcrdma_req *req =
522                 container_of(kref, struct rpcrdma_req, rl_kref);
523         struct rpcrdma_rep *rep = req->rl_reply;
524 
525         rpcrdma_complete_rqst(rep);
526         rep->rr_rxprt->rx_stats.reply_waits_for_send++;
527 }
528 
529 /**
530  * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
531  * @sc: sendctx containing SGEs to unmap
532  *
533  */
534 void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
535 {
536         struct rpcrdma_regbuf *rb = sc->sc_req->rl_sendbuf;
537         struct ib_sge *sge;
538 
539         if (!sc->sc_unmap_count)
540                 return;
541 
542         /* The first two SGEs contain the transport header and
543          * the inline buffer. These are always left mapped so
544          * they can be cheaply re-used.
545          */
546         for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
547              ++sge, --sc->sc_unmap_count)
548                 ib_dma_unmap_page(rdmab_device(rb), sge->addr, sge->length,
549                                   DMA_TO_DEVICE);
550 
551         kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
552 }
553 
554 /* Prepare an SGE for the RPC-over-RDMA transport header.
555  */
556 static void rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
557                                     struct rpcrdma_req *req, u32 len)
558 {
559         struct rpcrdma_sendctx *sc = req->rl_sendctx;
560         struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
561         struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
562 
563         sge->addr = rdmab_addr(rb);
564         sge->length = len;
565         sge->lkey = rdmab_lkey(rb);
566 
567         ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
568                                       DMA_TO_DEVICE);
569 }
570 
571 /* The head iovec is straightforward, as it is usually already
572  * DMA-mapped. Sync the content that has changed.
573  */
574 static bool rpcrdma_prepare_head_iov(struct rpcrdma_xprt *r_xprt,
575                                      struct rpcrdma_req *req, unsigned int len)
576 {
577         struct rpcrdma_sendctx *sc = req->rl_sendctx;
578         struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
579         struct rpcrdma_regbuf *rb = req->rl_sendbuf;
580 
581         if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
582                 return false;
583 
584         sge->addr = rdmab_addr(rb);
585         sge->length = len;
586         sge->lkey = rdmab_lkey(rb);
587 
588         ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
589                                       DMA_TO_DEVICE);
590         return true;
591 }
592 
593 /* If there is a page list present, DMA map and prepare an
594  * SGE for each page to be sent.
595  */
596 static bool rpcrdma_prepare_pagelist(struct rpcrdma_req *req,
597                                      struct xdr_buf *xdr)
598 {
599         struct rpcrdma_sendctx *sc = req->rl_sendctx;
600         struct rpcrdma_regbuf *rb = req->rl_sendbuf;
601         unsigned int page_base, len, remaining;
602         struct page **ppages;
603         struct ib_sge *sge;
604 
605         ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
606         page_base = offset_in_page(xdr->page_base);
607         remaining = xdr->page_len;
608         while (remaining) {
609                 sge = &sc->sc_sges[req->rl_wr.num_sge++];
610                 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
611                 sge->addr = ib_dma_map_page(rdmab_device(rb), *ppages,
612                                             page_base, len, DMA_TO_DEVICE);
613                 if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
614                         goto out_mapping_err;
615 
616                 sge->length = len;
617                 sge->lkey = rdmab_lkey(rb);
618 
619                 sc->sc_unmap_count++;
620                 ppages++;
621                 remaining -= len;
622                 page_base = 0;
623         }
624 
625         return true;
626 
627 out_mapping_err:
628         trace_xprtrdma_dma_maperr(sge->addr);
629         return false;
630 }
631 
632 /* The tail iovec may include an XDR pad for the page list,
633  * as well as additional content, and may not reside in the
634  * same page as the head iovec.
635  */
636 static bool rpcrdma_prepare_tail_iov(struct rpcrdma_req *req,
637                                      struct xdr_buf *xdr,
638                                      unsigned int page_base, unsigned int len)
639 {
640         struct rpcrdma_sendctx *sc = req->rl_sendctx;
641         struct ib_sge *sge = &sc->sc_sges[req->rl_wr.num_sge++];
642         struct rpcrdma_regbuf *rb = req->rl_sendbuf;
643         struct page *page = virt_to_page(xdr->tail[0].iov_base);
644 
645         sge->addr = ib_dma_map_page(rdmab_device(rb), page, page_base, len,
646                                     DMA_TO_DEVICE);
647         if (ib_dma_mapping_error(rdmab_device(rb), sge->addr))
648                 goto out_mapping_err;
649 
650         sge->length = len;
651         sge->lkey = rdmab_lkey(rb);
652         ++sc->sc_unmap_count;
653         return true;
654 
655 out_mapping_err:
656         trace_xprtrdma_dma_maperr(sge->addr);
657         return false;
658 }
659 
660 /* Copy the tail to the end of the head buffer.
661  */
662 static void rpcrdma_pullup_tail_iov(struct rpcrdma_xprt *r_xprt,
663                                     struct rpcrdma_req *req,
664                                     struct xdr_buf *xdr)
665 {
666         unsigned char *dst;
667 
668         dst = (unsigned char *)xdr->head[0].iov_base;
669         dst += xdr->head[0].iov_len + xdr->page_len;
670         memmove(dst, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
671         r_xprt->rx_stats.pullup_copy_count += xdr->tail[0].iov_len;
672 }
673 
674 /* Copy pagelist content into the head buffer.
675  */
676 static void rpcrdma_pullup_pagelist(struct rpcrdma_xprt *r_xprt,
677                                     struct rpcrdma_req *req,
678                                     struct xdr_buf *xdr)
679 {
680         unsigned int len, page_base, remaining;
681         struct page **ppages;
682         unsigned char *src, *dst;
683 
684         dst = (unsigned char *)xdr->head[0].iov_base;
685         dst += xdr->head[0].iov_len;
686         ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
687         page_base = offset_in_page(xdr->page_base);
688         remaining = xdr->page_len;
689         while (remaining) {
690                 src = page_address(*ppages);
691                 src += page_base;
692                 len = min_t(unsigned int, PAGE_SIZE - page_base, remaining);
693                 memcpy(dst, src, len);
694                 r_xprt->rx_stats.pullup_copy_count += len;
695 
696                 ppages++;
697                 dst += len;
698                 remaining -= len;
699                 page_base = 0;
700         }
701 }
702 
703 /* Copy the contents of @xdr into @rl_sendbuf and DMA sync it.
704  * When the head, pagelist, and tail are small, a pull-up copy
705  * is considerably less costly than DMA mapping the components
706  * of @xdr.
707  *
708  * Assumptions:
709  *  - the caller has already verified that the total length
710  *    of the RPC Call body will fit into @rl_sendbuf.
711  */
712 static bool rpcrdma_prepare_noch_pullup(struct rpcrdma_xprt *r_xprt,
713                                         struct rpcrdma_req *req,
714                                         struct xdr_buf *xdr)
715 {
716         if (unlikely(xdr->tail[0].iov_len))
717                 rpcrdma_pullup_tail_iov(r_xprt, req, xdr);
718 
719         if (unlikely(xdr->page_len))
720                 rpcrdma_pullup_pagelist(r_xprt, req, xdr);
721 
722         /* The whole RPC message resides in the head iovec now */
723         return rpcrdma_prepare_head_iov(r_xprt, req, xdr->len);
724 }
725 
726 static bool rpcrdma_prepare_noch_mapped(struct rpcrdma_xprt *r_xprt,
727                                         struct rpcrdma_req *req,
728                                         struct xdr_buf *xdr)
729 {
730         struct kvec *tail = &xdr->tail[0];
731 
732         if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
733                 return false;
734         if (xdr->page_len)
735                 if (!rpcrdma_prepare_pagelist(req, xdr))
736                         return false;
737         if (tail->iov_len)
738                 if (!rpcrdma_prepare_tail_iov(req, xdr,
739                                               offset_in_page(tail->iov_base),
740                                               tail->iov_len))
741                         return false;
742 
743         if (req->rl_sendctx->sc_unmap_count)
744                 kref_get(&req->rl_kref);
745         return true;
746 }
747 
748 static bool rpcrdma_prepare_readch(struct rpcrdma_xprt *r_xprt,
749                                    struct rpcrdma_req *req,
750                                    struct xdr_buf *xdr)
751 {
752         if (!rpcrdma_prepare_head_iov(r_xprt, req, xdr->head[0].iov_len))
753                 return false;
754 
755         /* If there is a Read chunk, the page list is being handled
756          * via explicit RDMA, and thus is skipped here.
757          */
758 
759         /* Do not include the tail if it is only an XDR pad */
760         if (xdr->tail[0].iov_len > 3) {
761                 unsigned int page_base, len;
762 
763                 /* If the content in the page list is an odd length,
764                  * xdr_write_pages() adds a pad at the beginning of
765                  * the tail iovec. Force the tail's non-pad content to
766                  * land at the next XDR position in the Send message.
767                  */
768                 page_base = offset_in_page(xdr->tail[0].iov_base);
769                 len = xdr->tail[0].iov_len;
770                 page_base += len & 3;
771                 len -= len & 3;
772                 if (!rpcrdma_prepare_tail_iov(req, xdr, page_base, len))
773                         return false;
774                 kref_get(&req->rl_kref);
775         }
776 
777         return true;
778 }
779 
780 /**
781  * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
782  * @r_xprt: controlling transport
783  * @req: context of RPC Call being marshalled
784  * @hdrlen: size of transport header, in bytes
785  * @xdr: xdr_buf containing RPC Call
786  * @rtype: chunk type being encoded
787  *
788  * Returns 0 on success; otherwise a negative errno is returned.
789  */
790 inline int rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
791                                      struct rpcrdma_req *req, u32 hdrlen,
792                                      struct xdr_buf *xdr,
793                                      enum rpcrdma_chunktype rtype)
794 {
795         int ret;
796 
797         ret = -EAGAIN;
798         req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
799         if (!req->rl_sendctx)
800                 goto out_nosc;
801         req->rl_sendctx->sc_unmap_count = 0;
802         req->rl_sendctx->sc_req = req;
803         kref_init(&req->rl_kref);
804         req->rl_wr.wr_cqe = &req->rl_sendctx->sc_cqe;
805         req->rl_wr.sg_list = req->rl_sendctx->sc_sges;
806         req->rl_wr.num_sge = 0;
807         req->rl_wr.opcode = IB_WR_SEND;
808 
809         rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen);
810 
811         ret = -EIO;
812         switch (rtype) {
813         case rpcrdma_noch_pullup:
814                 if (!rpcrdma_prepare_noch_pullup(r_xprt, req, xdr))
815                         goto out_unmap;
816                 break;
817         case rpcrdma_noch_mapped:
818                 if (!rpcrdma_prepare_noch_mapped(r_xprt, req, xdr))
819                         goto out_unmap;
820                 break;
821         case rpcrdma_readch:
822                 if (!rpcrdma_prepare_readch(r_xprt, req, xdr))
823                         goto out_unmap;
824                 break;
825         case rpcrdma_areadch:
826                 break;
827         default:
828                 goto out_unmap;
829         }
830 
831         return 0;
832 
833 out_unmap:
834         rpcrdma_sendctx_unmap(req->rl_sendctx);
835 out_nosc:
836         trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
837         return ret;
838 }
839 
840 /**
841  * rpcrdma_marshal_req - Marshal and send one RPC request
842  * @r_xprt: controlling transport
843  * @rqst: RPC request to be marshaled
844  *
845  * For the RPC in "rqst", this function:
846  *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
847  *  - Registers Read, Write, and Reply chunks
848  *  - Constructs the transport header
849  *  - Posts a Send WR to send the transport header and request
850  *
851  * Returns:
852  *      %0 if the RPC was sent successfully,
853  *      %-ENOTCONN if the connection was lost,
854  *      %-EAGAIN if the caller should call again with the same arguments,
855  *      %-ENOBUFS if the caller should call again after a delay,
856  *      %-EMSGSIZE if the transport header is too small,
857  *      %-EIO if a permanent problem occurred while marshaling.
858  */
859 int
860 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
861 {
862         struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
863         struct xdr_stream *xdr = &req->rl_stream;
864         enum rpcrdma_chunktype rtype, wtype;
865         struct xdr_buf *buf = &rqst->rq_snd_buf;
866         bool ddp_allowed;
867         __be32 *p;
868         int ret;
869 
870         if (unlikely(rqst->rq_rcv_buf.flags & XDRBUF_SPARSE_PAGES)) {
871                 ret = rpcrdma_alloc_sparse_pages(&rqst->rq_rcv_buf);
872                 if (ret)
873                         return ret;
874         }
875 
876         rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
877         xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
878                         rqst);
879 
880         /* Fixed header fields */
881         ret = -EMSGSIZE;
882         p = xdr_reserve_space(xdr, 4 * sizeof(*p));
883         if (!p)
884                 goto out_err;
885         *p++ = rqst->rq_xid;
886         *p++ = rpcrdma_version;
887         *p++ = r_xprt->rx_buf.rb_max_requests;
888 
889         /* When the ULP employs a GSS flavor that guarantees integrity
890          * or privacy, direct data placement of individual data items
891          * is not allowed.
892          */
893         ddp_allowed = !test_bit(RPCAUTH_AUTH_DATATOUCH,
894                                 &rqst->rq_cred->cr_auth->au_flags);
895 
896         /*
897          * Chunks needed for results?
898          *
899          * o If the expected result is under the inline threshold, all ops
900          *   return as inline.
901          * o Large read ops return data as write chunk(s), header as
902          *   inline.
903          * o Large non-read ops return as a single reply chunk.
904          */
905         if (rpcrdma_results_inline(r_xprt, rqst))
906                 wtype = rpcrdma_noch;
907         else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
908                  rpcrdma_nonpayload_inline(r_xprt, rqst))
909                 wtype = rpcrdma_writech;
910         else
911                 wtype = rpcrdma_replych;
912 
913         /*
914          * Chunks needed for arguments?
915          *
916          * o If the total request is under the inline threshold, all ops
917          *   are sent as inline.
918          * o Large write ops transmit data as read chunk(s), header as
919          *   inline.
920          * o Large non-write ops are sent with the entire message as a
921          *   single read chunk (protocol 0-position special case).
922          *
923          * This assumes that the upper layer does not present a request
924          * that both has a data payload, and whose non-data arguments
925          * by themselves are larger than the inline threshold.
926          */
927         if (rpcrdma_args_inline(r_xprt, rqst)) {
928                 *p++ = rdma_msg;
929                 rtype = buf->len < rdmab_length(req->rl_sendbuf) ?
930                         rpcrdma_noch_pullup : rpcrdma_noch_mapped;
931         } else if (ddp_allowed && buf->flags & XDRBUF_WRITE) {
932                 *p++ = rdma_msg;
933                 rtype = rpcrdma_readch;
934         } else {
935                 r_xprt->rx_stats.nomsg_call_count++;
936                 *p++ = rdma_nomsg;
937                 rtype = rpcrdma_areadch;
938         }
939 
940         /* This implementation supports the following combinations
941          * of chunk lists in one RPC-over-RDMA Call message:
942          *
943          *   - Read list
944          *   - Write list
945          *   - Reply chunk
946          *   - Read list + Reply chunk
947          *
948          * It might not yet support the following combinations:
949          *
950          *   - Read list + Write list
951          *
952          * It does not support the following combinations:
953          *
954          *   - Write list + Reply chunk
955          *   - Read list + Write list + Reply chunk
956          *
957          * This implementation supports only a single chunk in each
958          * Read or Write list. Thus for example the client cannot
959          * send a Call message with a Position Zero Read chunk and a
960          * regular Read chunk at the same time.
961          */
962         ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
963         if (ret)
964                 goto out_err;
965         ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
966         if (ret)
967                 goto out_err;
968         ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
969         if (ret)
970                 goto out_err;
971 
972         ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
973                                         buf, rtype);
974         if (ret)
975                 goto out_err;
976 
977         trace_xprtrdma_marshal(req, rtype, wtype);
978         return 0;
979 
980 out_err:
981         trace_xprtrdma_marshal_failed(rqst, ret);
982         r_xprt->rx_stats.failed_marshal_count++;
983         frwr_reset(req);
984         return ret;
985 }
986 
987 static void __rpcrdma_update_cwnd_locked(struct rpc_xprt *xprt,
988                                          struct rpcrdma_buffer *buf,
989                                          u32 grant)
990 {
991         buf->rb_credits = grant;
992         xprt->cwnd = grant << RPC_CWNDSHIFT;
993 }
994 
995 static void rpcrdma_update_cwnd(struct rpcrdma_xprt *r_xprt, u32 grant)
996 {
997         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
998 
999         spin_lock(&xprt->transport_lock);
1000         __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, grant);
1001         spin_unlock(&xprt->transport_lock);
1002 }
1003 
1004 /**
1005  * rpcrdma_reset_cwnd - Reset the xprt's congestion window
1006  * @r_xprt: controlling transport instance
1007  *
1008  * Prepare @r_xprt for the next connection by reinitializing
1009  * its credit grant to one (see RFC 8166, Section 3.3.3).
1010  */
1011 void rpcrdma_reset_cwnd(struct rpcrdma_xprt *r_xprt)
1012 {
1013         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1014 
1015         spin_lock(&xprt->transport_lock);
1016         xprt->cong = 0;
1017         __rpcrdma_update_cwnd_locked(xprt, &r_xprt->rx_buf, 1);
1018         spin_unlock(&xprt->transport_lock);
1019 }
1020 
1021 /**
1022  * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
1023  * @rqst: controlling RPC request
1024  * @srcp: points to RPC message payload in receive buffer
1025  * @copy_len: remaining length of receive buffer content
1026  * @pad: Write chunk pad bytes needed (zero for pure inline)
1027  *
1028  * The upper layer has set the maximum number of bytes it can
1029  * receive in each component of rq_rcv_buf. These values are set in
1030  * the head.iov_len, page_len, tail.iov_len, and buflen fields.
1031  *
1032  * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
1033  * many cases this function simply updates iov_base pointers in
1034  * rq_rcv_buf to point directly to the received reply data, to
1035  * avoid copying reply data.
1036  *
1037  * Returns the count of bytes which had to be memcopied.
1038  */
1039 static unsigned long
1040 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
1041 {
1042         unsigned long fixup_copy_count;
1043         int i, npages, curlen;
1044         char *destp;
1045         struct page **ppages;
1046         int page_base;
1047 
1048         /* The head iovec is redirected to the RPC reply message
1049          * in the receive buffer, to avoid a memcopy.
1050          */
1051         rqst->rq_rcv_buf.head[0].iov_base = srcp;
1052         rqst->rq_private_buf.head[0].iov_base = srcp;
1053 
1054         /* The contents of the receive buffer that follow
1055          * head.iov_len bytes are copied into the page list.
1056          */
1057         curlen = rqst->rq_rcv_buf.head[0].iov_len;
1058         if (curlen > copy_len)
1059                 curlen = copy_len;
1060         srcp += curlen;
1061         copy_len -= curlen;
1062 
1063         ppages = rqst->rq_rcv_buf.pages +
1064                 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
1065         page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
1066         fixup_copy_count = 0;
1067         if (copy_len && rqst->rq_rcv_buf.page_len) {
1068                 int pagelist_len;
1069 
1070                 pagelist_len = rqst->rq_rcv_buf.page_len;
1071                 if (pagelist_len > copy_len)
1072                         pagelist_len = copy_len;
1073                 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
1074                 for (i = 0; i < npages; i++) {
1075                         curlen = PAGE_SIZE - page_base;
1076                         if (curlen > pagelist_len)
1077                                 curlen = pagelist_len;
1078 
1079                         destp = kmap_atomic(ppages[i]);
1080                         memcpy(destp + page_base, srcp, curlen);
1081                         flush_dcache_page(ppages[i]);
1082                         kunmap_atomic(destp);
1083                         srcp += curlen;
1084                         copy_len -= curlen;
1085                         fixup_copy_count += curlen;
1086                         pagelist_len -= curlen;
1087                         if (!pagelist_len)
1088                                 break;
1089                         page_base = 0;
1090                 }
1091 
1092                 /* Implicit padding for the last segment in a Write
1093                  * chunk is inserted inline at the front of the tail
1094                  * iovec. The upper layer ignores the content of
1095                  * the pad. Simply ensure inline content in the tail
1096                  * that follows the Write chunk is properly aligned.
1097                  */
1098                 if (pad)
1099                         srcp -= pad;
1100         }
1101 
1102         /* The tail iovec is redirected to the remaining data
1103          * in the receive buffer, to avoid a memcopy.
1104          */
1105         if (copy_len || pad) {
1106                 rqst->rq_rcv_buf.tail[0].iov_base = srcp;
1107                 rqst->rq_private_buf.tail[0].iov_base = srcp;
1108         }
1109 
1110         if (fixup_copy_count)
1111                 trace_xprtrdma_fixup(rqst, fixup_copy_count);
1112         return fixup_copy_count;
1113 }
1114 
1115 /* By convention, backchannel calls arrive via rdma_msg type
1116  * messages, and never populate the chunk lists. This makes
1117  * the RPC/RDMA header small and fixed in size, so it is
1118  * straightforward to check the RPC header's direction field.
1119  */
1120 static bool
1121 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1122 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
1123 {
1124         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1125         struct xdr_stream *xdr = &rep->rr_stream;
1126         __be32 *p;
1127 
1128         if (rep->rr_proc != rdma_msg)
1129                 return false;
1130 
1131         /* Peek at stream contents without advancing. */
1132         p = xdr_inline_decode(xdr, 0);
1133 
1134         /* Chunk lists */
1135         if (xdr_item_is_present(p++))
1136                 return false;
1137         if (xdr_item_is_present(p++))
1138                 return false;
1139         if (xdr_item_is_present(p++))
1140                 return false;
1141 
1142         /* RPC header */
1143         if (*p++ != rep->rr_xid)
1144                 return false;
1145         if (*p != cpu_to_be32(RPC_CALL))
1146                 return false;
1147 
1148         /* No bc service. */
1149         if (xprt->bc_serv == NULL)
1150                 return false;
1151 
1152         /* Now that we are sure this is a backchannel call,
1153          * advance to the RPC header.
1154          */
1155         p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1156         if (unlikely(!p))
1157                 return true;
1158 
1159         rpcrdma_bc_receive_call(r_xprt, rep);
1160         return true;
1161 }
1162 #else   /* CONFIG_SUNRPC_BACKCHANNEL */
1163 {
1164         return false;
1165 }
1166 #endif  /* CONFIG_SUNRPC_BACKCHANNEL */
1167 
1168 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1169 {
1170         u32 handle;
1171         u64 offset;
1172         __be32 *p;
1173 
1174         p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1175         if (unlikely(!p))
1176                 return -EIO;
1177 
1178         xdr_decode_rdma_segment(p, &handle, length, &offset);
1179         trace_xprtrdma_decode_seg(handle, *length, offset);
1180         return 0;
1181 }
1182 
1183 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1184 {
1185         u32 segcount, seglength;
1186         __be32 *p;
1187 
1188         p = xdr_inline_decode(xdr, sizeof(*p));
1189         if (unlikely(!p))
1190                 return -EIO;
1191 
1192         *length = 0;
1193         segcount = be32_to_cpup(p);
1194         while (segcount--) {
1195                 if (decode_rdma_segment(xdr, &seglength))
1196                         return -EIO;
1197                 *length += seglength;
1198         }
1199 
1200         return 0;
1201 }
1202 
1203 /* In RPC-over-RDMA Version One replies, a Read list is never
1204  * expected. This decoder is a stub that returns an error if
1205  * a Read list is present.
1206  */
1207 static int decode_read_list(struct xdr_stream *xdr)
1208 {
1209         __be32 *p;
1210 
1211         p = xdr_inline_decode(xdr, sizeof(*p));
1212         if (unlikely(!p))
1213                 return -EIO;
1214         if (unlikely(xdr_item_is_present(p)))
1215                 return -EIO;
1216         return 0;
1217 }
1218 
1219 /* Supports only one Write chunk in the Write list
1220  */
1221 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1222 {
1223         u32 chunklen;
1224         bool first;
1225         __be32 *p;
1226 
1227         *length = 0;
1228         first = true;
1229         do {
1230                 p = xdr_inline_decode(xdr, sizeof(*p));
1231                 if (unlikely(!p))
1232                         return -EIO;
1233                 if (xdr_item_is_absent(p))
1234                         break;
1235                 if (!first)
1236                         return -EIO;
1237 
1238                 if (decode_write_chunk(xdr, &chunklen))
1239                         return -EIO;
1240                 *length += chunklen;
1241                 first = false;
1242         } while (true);
1243         return 0;
1244 }
1245 
1246 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1247 {
1248         __be32 *p;
1249 
1250         p = xdr_inline_decode(xdr, sizeof(*p));
1251         if (unlikely(!p))
1252                 return -EIO;
1253 
1254         *length = 0;
1255         if (xdr_item_is_present(p))
1256                 if (decode_write_chunk(xdr, length))
1257                         return -EIO;
1258         return 0;
1259 }
1260 
1261 static int
1262 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1263                    struct rpc_rqst *rqst)
1264 {
1265         struct xdr_stream *xdr = &rep->rr_stream;
1266         u32 writelist, replychunk, rpclen;
1267         char *base;
1268 
1269         /* Decode the chunk lists */
1270         if (decode_read_list(xdr))
1271                 return -EIO;
1272         if (decode_write_list(xdr, &writelist))
1273                 return -EIO;
1274         if (decode_reply_chunk(xdr, &replychunk))
1275                 return -EIO;
1276 
1277         /* RDMA_MSG sanity checks */
1278         if (unlikely(replychunk))
1279                 return -EIO;
1280 
1281         /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1282         base = (char *)xdr_inline_decode(xdr, 0);
1283         rpclen = xdr_stream_remaining(xdr);
1284         r_xprt->rx_stats.fixup_copy_count +=
1285                 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1286 
1287         r_xprt->rx_stats.total_rdma_reply += writelist;
1288         return rpclen + xdr_align_size(writelist);
1289 }
1290 
1291 static noinline int
1292 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1293 {
1294         struct xdr_stream *xdr = &rep->rr_stream;
1295         u32 writelist, replychunk;
1296 
1297         /* Decode the chunk lists */
1298         if (decode_read_list(xdr))
1299                 return -EIO;
1300         if (decode_write_list(xdr, &writelist))
1301                 return -EIO;
1302         if (decode_reply_chunk(xdr, &replychunk))
1303                 return -EIO;
1304 
1305         /* RDMA_NOMSG sanity checks */
1306         if (unlikely(writelist))
1307                 return -EIO;
1308         if (unlikely(!replychunk))
1309                 return -EIO;
1310 
1311         /* Reply chunk buffer already is the reply vector */
1312         r_xprt->rx_stats.total_rdma_reply += replychunk;
1313         return replychunk;
1314 }
1315 
1316 static noinline int
1317 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1318                      struct rpc_rqst *rqst)
1319 {
1320         struct xdr_stream *xdr = &rep->rr_stream;
1321         __be32 *p;
1322 
1323         p = xdr_inline_decode(xdr, sizeof(*p));
1324         if (unlikely(!p))
1325                 return -EIO;
1326 
1327         switch (*p) {
1328         case err_vers:
1329                 p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1330                 if (!p)
1331                         break;
1332                 trace_xprtrdma_err_vers(rqst, p, p + 1);
1333                 break;
1334         case err_chunk:
1335                 trace_xprtrdma_err_chunk(rqst);
1336                 break;
1337         default:
1338                 trace_xprtrdma_err_unrecognized(rqst, p);
1339         }
1340 
1341         return -EIO;
1342 }
1343 
1344 /**
1345  * rpcrdma_unpin_rqst - Release rqst without completing it
1346  * @rep: RPC/RDMA Receive context
1347  *
1348  * This is done when a connection is lost so that a Reply
1349  * can be dropped and its matching Call can be subsequently
1350  * retransmitted on a new connection.
1351  */
1352 void rpcrdma_unpin_rqst(struct rpcrdma_rep *rep)
1353 {
1354         struct rpc_xprt *xprt = &rep->rr_rxprt->rx_xprt;
1355         struct rpc_rqst *rqst = rep->rr_rqst;
1356         struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
1357 
1358         req->rl_reply = NULL;
1359         rep->rr_rqst = NULL;
1360 
1361         spin_lock(&xprt->queue_lock);
1362         xprt_unpin_rqst(rqst);
1363         spin_unlock(&xprt->queue_lock);
1364 }
1365 
1366 /**
1367  * rpcrdma_complete_rqst - Pass completed rqst back to RPC
1368  * @rep: RPC/RDMA Receive context
1369  *
1370  * Reconstruct the RPC reply and complete the transaction
1371  * while @rqst is still pinned to ensure the rep, rqst, and
1372  * rq_task pointers remain stable.
1373  */
1374 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1375 {
1376         struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1377         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1378         struct rpc_rqst *rqst = rep->rr_rqst;
1379         int status;
1380 
1381         switch (rep->rr_proc) {
1382         case rdma_msg:
1383                 status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1384                 break;
1385         case rdma_nomsg:
1386                 status = rpcrdma_decode_nomsg(r_xprt, rep);
1387                 break;
1388         case rdma_error:
1389                 status = rpcrdma_decode_error(r_xprt, rep, rqst);
1390                 break;
1391         default:
1392                 status = -EIO;
1393         }
1394         if (status < 0)
1395                 goto out_badheader;
1396 
1397 out:
1398         spin_lock(&xprt->queue_lock);
1399         xprt_complete_rqst(rqst->rq_task, status);
1400         xprt_unpin_rqst(rqst);
1401         spin_unlock(&xprt->queue_lock);
1402         return;
1403 
1404 out_badheader:
1405         trace_xprtrdma_reply_hdr_err(rep);
1406         r_xprt->rx_stats.bad_reply_count++;
1407         rqst->rq_task->tk_status = status;
1408         status = 0;
1409         goto out;
1410 }
1411 
1412 static void rpcrdma_reply_done(struct kref *kref)
1413 {
1414         struct rpcrdma_req *req =
1415                 container_of(kref, struct rpcrdma_req, rl_kref);
1416 
1417         rpcrdma_complete_rqst(req->rl_reply);
1418 }
1419 
1420 /**
1421  * rpcrdma_reply_handler - Process received RPC/RDMA messages
1422  * @rep: Incoming rpcrdma_rep object to process
1423  *
1424  * Errors must result in the RPC task either being awakened, or
1425  * allowed to timeout, to discover the errors at that time.
1426  */
1427 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1428 {
1429         struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1430         struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1431         struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1432         struct rpcrdma_req *req;
1433         struct rpc_rqst *rqst;
1434         u32 credits;
1435         __be32 *p;
1436 
1437         /* Any data means we had a useful conversation, so
1438          * then we don't need to delay the next reconnect.
1439          */
1440         if (xprt->reestablish_timeout)
1441                 xprt->reestablish_timeout = 0;
1442 
1443         /* Fixed transport header fields */
1444         xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1445                         rep->rr_hdrbuf.head[0].iov_base, NULL);
1446         p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1447         if (unlikely(!p))
1448                 goto out_shortreply;
1449         rep->rr_xid = *p++;
1450         rep->rr_vers = *p++;
1451         credits = be32_to_cpu(*p++);
1452         rep->rr_proc = *p++;
1453 
1454         if (rep->rr_vers != rpcrdma_version)
1455                 goto out_badversion;
1456 
1457         if (rpcrdma_is_bcall(r_xprt, rep))
1458                 return;
1459 
1460         /* Match incoming rpcrdma_rep to an rpcrdma_req to
1461          * get context for handling any incoming chunks.
1462          */
1463         spin_lock(&xprt->queue_lock);
1464         rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1465         if (!rqst)
1466                 goto out_norqst;
1467         xprt_pin_rqst(rqst);
1468         spin_unlock(&xprt->queue_lock);
1469 
1470         if (credits == 0)
1471                 credits = 1;    /* don't deadlock */
1472         else if (credits > r_xprt->rx_ep->re_max_requests)
1473                 credits = r_xprt->rx_ep->re_max_requests;
1474         rpcrdma_post_recvs(r_xprt, credits + (buf->rb_bc_srv_max_requests << 1));
1475         if (buf->rb_credits != credits)
1476                 rpcrdma_update_cwnd(r_xprt, credits);
1477 
1478         req = rpcr_to_rdmar(rqst);
1479         if (unlikely(req->rl_reply))
1480                 rpcrdma_rep_put(buf, req->rl_reply);
1481         req->rl_reply = rep;
1482         rep->rr_rqst = rqst;
1483 
1484         trace_xprtrdma_reply(rqst->rq_task, rep, credits);
1485 
1486         if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1487                 frwr_reminv(rep, &req->rl_registered);
1488         if (!list_empty(&req->rl_registered))
1489                 frwr_unmap_async(r_xprt, req);
1490                 /* LocalInv completion will complete the RPC */
1491         else
1492                 kref_put(&req->rl_kref, rpcrdma_reply_done);
1493         return;
1494 
1495 out_badversion:
1496         trace_xprtrdma_reply_vers_err(rep);
1497         goto out;
1498 
1499 out_norqst:
1500         spin_unlock(&xprt->queue_lock);
1501         trace_xprtrdma_reply_rqst_err(rep);
1502         goto out;
1503 
1504 out_shortreply:
1505         trace_xprtrdma_reply_short_err(rep);
1506 
1507 out:
1508         rpcrdma_rep_put(buf, rep);
1509 }
1510 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php