1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/bitops.h> 53 #include <linux/interrupt.h> 54 #include <linux/slab.h> 55 #include <linux/sunrpc/addr.h> 56 #include <linux/sunrpc/svc_rdma.h> 57 #include <linux/log2.h> 58 59 #include <asm/barrier.h> 60 61 #include <rdma/ib_cm.h> 62 63 #include "xprt_rdma.h" 64 #include <trace/events/rpcrdma.h> 65 66 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt); 67 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt); 68 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt, 69 struct rpcrdma_sendctx *sc); 70 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt); 71 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt); 72 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt); 73 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 74 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt); 75 static void rpcrdma_ep_get(struct rpcrdma_ep *ep); 76 static int rpcrdma_ep_put(struct rpcrdma_ep *ep); 77 static struct rpcrdma_regbuf * 78 rpcrdma_regbuf_alloc_node(size_t size, enum dma_data_direction direction, 79 int node); 80 static struct rpcrdma_regbuf * 81 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction); 82 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb); 83 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb); 84 85 /* Wait for outstanding transport work to finish. ib_drain_qp 86 * handles the drains in the wrong order for us, so open code 87 * them here. 88 */ 89 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) 90 { 91 struct rpcrdma_ep *ep = r_xprt->rx_ep; 92 struct rdma_cm_id *id = ep->re_id; 93 94 /* Wait for rpcrdma_post_recvs() to leave its critical 95 * section. 96 */ 97 if (atomic_inc_return(&ep->re_receiving) > 1) 98 wait_for_completion(&ep->re_done); 99 100 /* Flush Receives, then wait for deferred Reply work 101 * to complete. 102 */ 103 ib_drain_rq(id->qp); 104 105 /* Deferred Reply processing might have scheduled 106 * local invalidations. 107 */ 108 ib_drain_sq(id->qp); 109 110 rpcrdma_ep_put(ep); 111 } 112 113 /* Ensure xprt_force_disconnect() is invoked exactly once when a 114 * connection is closed or lost. (The important thing is it needs 115 * to be invoked "at least" once). 116 */ 117 void rpcrdma_force_disconnect(struct rpcrdma_ep *ep) 118 { 119 if (atomic_add_unless(&ep->re_force_disconnect, 1, 1)) 120 xprt_force_disconnect(ep->re_xprt); 121 } 122 123 /** 124 * rpcrdma_flush_disconnect - Disconnect on flushed completion 125 * @r_xprt: transport to disconnect 126 * @wc: work completion entry 127 * 128 * Must be called in process context. 129 */ 130 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc) 131 { 132 if (wc->status != IB_WC_SUCCESS) 133 rpcrdma_force_disconnect(r_xprt->rx_ep); 134 } 135 136 /** 137 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 138 * @cq: completion queue 139 * @wc: WCE for a completed Send WR 140 * 141 */ 142 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 143 { 144 struct ib_cqe *cqe = wc->wr_cqe; 145 struct rpcrdma_sendctx *sc = 146 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 147 struct rpcrdma_xprt *r_xprt = cq->cq_context; 148 149 /* WARNING: Only wr_cqe and status are reliable at this point */ 150 trace_xprtrdma_wc_send(wc, &sc->sc_cid); 151 rpcrdma_sendctx_put_locked(r_xprt, sc); 152 rpcrdma_flush_disconnect(r_xprt, wc); 153 } 154 155 /** 156 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 157 * @cq: completion queue 158 * @wc: WCE for a completed Receive WR 159 * 160 */ 161 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 162 { 163 struct ib_cqe *cqe = wc->wr_cqe; 164 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 165 rr_cqe); 166 struct rpcrdma_xprt *r_xprt = cq->cq_context; 167 168 /* WARNING: Only wr_cqe and status are reliable at this point */ 169 trace_xprtrdma_wc_receive(wc, &rep->rr_cid); 170 --r_xprt->rx_ep->re_receive_count; 171 if (wc->status != IB_WC_SUCCESS) 172 goto out_flushed; 173 174 /* status == SUCCESS means all fields in wc are trustworthy */ 175 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 176 rep->rr_wc_flags = wc->wc_flags; 177 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 178 179 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 180 rdmab_addr(rep->rr_rdmabuf), 181 wc->byte_len, DMA_FROM_DEVICE); 182 183 rpcrdma_reply_handler(rep); 184 return; 185 186 out_flushed: 187 rpcrdma_flush_disconnect(r_xprt, wc); 188 rpcrdma_rep_put(&r_xprt->rx_buf, rep); 189 } 190 191 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep, 192 struct rdma_conn_param *param) 193 { 194 const struct rpcrdma_connect_private *pmsg = param->private_data; 195 unsigned int rsize, wsize; 196 197 /* Default settings for RPC-over-RDMA Version One */ 198 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 199 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 200 201 if (pmsg && 202 pmsg->cp_magic == rpcrdma_cmp_magic && 203 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 204 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 205 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 206 } 207 208 if (rsize < ep->re_inline_recv) 209 ep->re_inline_recv = rsize; 210 if (wsize < ep->re_inline_send) 211 ep->re_inline_send = wsize; 212 213 rpcrdma_set_max_header_sizes(ep); 214 } 215 216 /** 217 * rpcrdma_cm_event_handler - Handle RDMA CM events 218 * @id: rdma_cm_id on which an event has occurred 219 * @event: details of the event 220 * 221 * Called with @id's mutex held. Returns 1 if caller should 222 * destroy @id, otherwise 0. 223 */ 224 static int 225 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) 226 { 227 struct rpcrdma_ep *ep = id->context; 228 229 might_sleep(); 230 231 switch (event->event) { 232 case RDMA_CM_EVENT_ADDR_RESOLVED: 233 case RDMA_CM_EVENT_ROUTE_RESOLVED: 234 ep->re_async_rc = 0; 235 complete(&ep->re_done); 236 return 0; 237 case RDMA_CM_EVENT_ADDR_ERROR: 238 ep->re_async_rc = -EPROTO; 239 complete(&ep->re_done); 240 return 0; 241 case RDMA_CM_EVENT_ROUTE_ERROR: 242 ep->re_async_rc = -ENETUNREACH; 243 complete(&ep->re_done); 244 return 0; 245 case RDMA_CM_EVENT_ADDR_CHANGE: 246 ep->re_connect_status = -ENODEV; 247 goto disconnected; 248 case RDMA_CM_EVENT_ESTABLISHED: 249 rpcrdma_ep_get(ep); 250 ep->re_connect_status = 1; 251 rpcrdma_update_cm_private(ep, &event->param.conn); 252 trace_xprtrdma_inline_thresh(ep); 253 wake_up_all(&ep->re_connect_wait); 254 break; 255 case RDMA_CM_EVENT_CONNECT_ERROR: 256 ep->re_connect_status = -ENOTCONN; 257 goto wake_connect_worker; 258 case RDMA_CM_EVENT_UNREACHABLE: 259 ep->re_connect_status = -ENETUNREACH; 260 goto wake_connect_worker; 261 case RDMA_CM_EVENT_REJECTED: 262 ep->re_connect_status = -ECONNREFUSED; 263 if (event->status == IB_CM_REJ_STALE_CONN) 264 ep->re_connect_status = -ENOTCONN; 265 wake_connect_worker: 266 wake_up_all(&ep->re_connect_wait); 267 return 0; 268 case RDMA_CM_EVENT_DISCONNECTED: 269 ep->re_connect_status = -ECONNABORTED; 270 disconnected: 271 rpcrdma_force_disconnect(ep); 272 return rpcrdma_ep_put(ep); 273 default: 274 break; 275 } 276 277 return 0; 278 } 279 280 static void rpcrdma_ep_removal_done(struct rpcrdma_notification *rn) 281 { 282 struct rpcrdma_ep *ep = container_of(rn, struct rpcrdma_ep, re_rn); 283 284 trace_xprtrdma_device_removal(ep->re_id); 285 xprt_force_disconnect(ep->re_xprt); 286 } 287 288 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt, 289 struct rpcrdma_ep *ep) 290 { 291 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 292 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 293 struct rdma_cm_id *id; 294 int rc; 295 296 init_completion(&ep->re_done); 297 298 id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep, 299 RDMA_PS_TCP, IB_QPT_RC); 300 if (IS_ERR(id)) 301 return id; 302 303 ep->re_async_rc = -ETIMEDOUT; 304 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr, 305 RDMA_RESOLVE_TIMEOUT); 306 if (rc) 307 goto out; 308 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout); 309 if (rc < 0) 310 goto out; 311 312 rc = ep->re_async_rc; 313 if (rc) 314 goto out; 315 316 ep->re_async_rc = -ETIMEDOUT; 317 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 318 if (rc) 319 goto out; 320 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout); 321 if (rc < 0) 322 goto out; 323 rc = ep->re_async_rc; 324 if (rc) 325 goto out; 326 327 rc = rpcrdma_rn_register(id->device, &ep->re_rn, rpcrdma_ep_removal_done); 328 if (rc) 329 goto out; 330 331 return id; 332 333 out: 334 rdma_destroy_id(id); 335 return ERR_PTR(rc); 336 } 337 338 static void rpcrdma_ep_destroy(struct kref *kref) 339 { 340 struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref); 341 342 if (ep->re_id->qp) { 343 rdma_destroy_qp(ep->re_id); 344 ep->re_id->qp = NULL; 345 } 346 347 if (ep->re_attr.recv_cq) 348 ib_free_cq(ep->re_attr.recv_cq); 349 ep->re_attr.recv_cq = NULL; 350 if (ep->re_attr.send_cq) 351 ib_free_cq(ep->re_attr.send_cq); 352 ep->re_attr.send_cq = NULL; 353 354 if (ep->re_pd) 355 ib_dealloc_pd(ep->re_pd); 356 ep->re_pd = NULL; 357 358 rpcrdma_rn_unregister(ep->re_id->device, &ep->re_rn); 359 360 kfree(ep); 361 module_put(THIS_MODULE); 362 } 363 364 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep) 365 { 366 kref_get(&ep->re_kref); 367 } 368 369 /* Returns: 370 * %0 if @ep still has a positive kref count, or 371 * %1 if @ep was destroyed successfully. 372 */ 373 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep) 374 { 375 return kref_put(&ep->re_kref, rpcrdma_ep_destroy); 376 } 377 378 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt) 379 { 380 struct rpcrdma_connect_private *pmsg; 381 struct ib_device *device; 382 struct rdma_cm_id *id; 383 struct rpcrdma_ep *ep; 384 int rc; 385 386 ep = kzalloc(sizeof(*ep), XPRTRDMA_GFP_FLAGS); 387 if (!ep) 388 return -ENOTCONN; 389 ep->re_xprt = &r_xprt->rx_xprt; 390 kref_init(&ep->re_kref); 391 392 id = rpcrdma_create_id(r_xprt, ep); 393 if (IS_ERR(id)) { 394 kfree(ep); 395 return PTR_ERR(id); 396 } 397 __module_get(THIS_MODULE); 398 device = id->device; 399 ep->re_id = id; 400 reinit_completion(&ep->re_done); 401 402 ep->re_max_requests = r_xprt->rx_xprt.max_reqs; 403 ep->re_inline_send = xprt_rdma_max_inline_write; 404 ep->re_inline_recv = xprt_rdma_max_inline_read; 405 rc = frwr_query_device(ep, device); 406 if (rc) 407 goto out_destroy; 408 409 r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests); 410 411 ep->re_attr.srq = NULL; 412 ep->re_attr.cap.max_inline_data = 0; 413 ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 414 ep->re_attr.qp_type = IB_QPT_RC; 415 ep->re_attr.port_num = ~0; 416 417 ep->re_send_batch = ep->re_max_requests >> 3; 418 ep->re_send_count = ep->re_send_batch; 419 init_waitqueue_head(&ep->re_connect_wait); 420 421 ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt, 422 ep->re_attr.cap.max_send_wr, 423 IB_POLL_WORKQUEUE); 424 if (IS_ERR(ep->re_attr.send_cq)) { 425 rc = PTR_ERR(ep->re_attr.send_cq); 426 ep->re_attr.send_cq = NULL; 427 goto out_destroy; 428 } 429 430 ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt, 431 ep->re_attr.cap.max_recv_wr, 432 IB_POLL_WORKQUEUE); 433 if (IS_ERR(ep->re_attr.recv_cq)) { 434 rc = PTR_ERR(ep->re_attr.recv_cq); 435 ep->re_attr.recv_cq = NULL; 436 goto out_destroy; 437 } 438 ep->re_receive_count = 0; 439 440 /* Initialize cma parameters */ 441 memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma)); 442 443 /* Prepare RDMA-CM private message */ 444 pmsg = &ep->re_cm_private; 445 pmsg->cp_magic = rpcrdma_cmp_magic; 446 pmsg->cp_version = RPCRDMA_CMP_VERSION; 447 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; 448 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send); 449 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv); 450 ep->re_remote_cma.private_data = pmsg; 451 ep->re_remote_cma.private_data_len = sizeof(*pmsg); 452 453 /* Client offers RDMA Read but does not initiate */ 454 ep->re_remote_cma.initiator_depth = 0; 455 ep->re_remote_cma.responder_resources = 456 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom); 457 458 /* Limit transport retries so client can detect server 459 * GID changes quickly. RPC layer handles re-establishing 460 * transport connection and retransmission. 461 */ 462 ep->re_remote_cma.retry_count = 6; 463 464 /* RPC-over-RDMA handles its own flow control. In addition, 465 * make all RNR NAKs visible so we know that RPC-over-RDMA 466 * flow control is working correctly (no NAKs should be seen). 467 */ 468 ep->re_remote_cma.flow_control = 0; 469 ep->re_remote_cma.rnr_retry_count = 0; 470 471 ep->re_pd = ib_alloc_pd(device, 0); 472 if (IS_ERR(ep->re_pd)) { 473 rc = PTR_ERR(ep->re_pd); 474 ep->re_pd = NULL; 475 goto out_destroy; 476 } 477 478 rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr); 479 if (rc) 480 goto out_destroy; 481 482 r_xprt->rx_ep = ep; 483 return 0; 484 485 out_destroy: 486 rpcrdma_ep_put(ep); 487 rdma_destroy_id(id); 488 return rc; 489 } 490 491 /** 492 * rpcrdma_xprt_connect - Connect an unconnected transport 493 * @r_xprt: controlling transport instance 494 * 495 * Returns 0 on success or a negative errno. 496 */ 497 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt) 498 { 499 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 500 struct rpcrdma_ep *ep; 501 int rc; 502 503 rc = rpcrdma_ep_create(r_xprt); 504 if (rc) 505 return rc; 506 ep = r_xprt->rx_ep; 507 508 xprt_clear_connected(xprt); 509 rpcrdma_reset_cwnd(r_xprt); 510 511 /* Bump the ep's reference count while there are 512 * outstanding Receives. 513 */ 514 rpcrdma_ep_get(ep); 515 rpcrdma_post_recvs(r_xprt, 1); 516 517 rc = rdma_connect(ep->re_id, &ep->re_remote_cma); 518 if (rc) 519 goto out; 520 521 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) 522 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 523 wait_event_interruptible(ep->re_connect_wait, 524 ep->re_connect_status != 0); 525 if (ep->re_connect_status <= 0) { 526 rc = ep->re_connect_status; 527 goto out; 528 } 529 530 rc = rpcrdma_sendctxs_create(r_xprt); 531 if (rc) { 532 rc = -ENOTCONN; 533 goto out; 534 } 535 536 rc = rpcrdma_reqs_setup(r_xprt); 537 if (rc) { 538 rc = -ENOTCONN; 539 goto out; 540 } 541 rpcrdma_mrs_create(r_xprt); 542 frwr_wp_create(r_xprt); 543 544 out: 545 trace_xprtrdma_connect(r_xprt, rc); 546 return rc; 547 } 548 549 /** 550 * rpcrdma_xprt_disconnect - Disconnect underlying transport 551 * @r_xprt: controlling transport instance 552 * 553 * Caller serializes. Either the transport send lock is held, 554 * or we're being called to destroy the transport. 555 * 556 * On return, @r_xprt is completely divested of all hardware 557 * resources and prepared for the next ->connect operation. 558 */ 559 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt) 560 { 561 struct rpcrdma_ep *ep = r_xprt->rx_ep; 562 struct rdma_cm_id *id; 563 int rc; 564 565 if (!ep) 566 return; 567 568 id = ep->re_id; 569 rc = rdma_disconnect(id); 570 trace_xprtrdma_disconnect(r_xprt, rc); 571 572 rpcrdma_xprt_drain(r_xprt); 573 rpcrdma_reps_unmap(r_xprt); 574 rpcrdma_reqs_reset(r_xprt); 575 rpcrdma_mrs_destroy(r_xprt); 576 rpcrdma_sendctxs_destroy(r_xprt); 577 578 if (rpcrdma_ep_put(ep)) 579 rdma_destroy_id(id); 580 581 r_xprt->rx_ep = NULL; 582 } 583 584 /* Fixed-size circular FIFO queue. This implementation is wait-free and 585 * lock-free. 586 * 587 * Consumer is the code path that posts Sends. This path dequeues a 588 * sendctx for use by a Send operation. Multiple consumer threads 589 * are serialized by the RPC transport lock, which allows only one 590 * ->send_request call at a time. 591 * 592 * Producer is the code path that handles Send completions. This path 593 * enqueues a sendctx that has been completed. Multiple producer 594 * threads are serialized by the ib_poll_cq() function. 595 */ 596 597 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 598 * queue activity, and rpcrdma_xprt_drain has flushed all remaining 599 * Send requests. 600 */ 601 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt) 602 { 603 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 604 unsigned long i; 605 606 if (!buf->rb_sc_ctxs) 607 return; 608 for (i = 0; i <= buf->rb_sc_last; i++) 609 kfree(buf->rb_sc_ctxs[i]); 610 kfree(buf->rb_sc_ctxs); 611 buf->rb_sc_ctxs = NULL; 612 } 613 614 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep) 615 { 616 struct rpcrdma_sendctx *sc; 617 618 sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge), 619 XPRTRDMA_GFP_FLAGS); 620 if (!sc) 621 return NULL; 622 623 sc->sc_cqe.done = rpcrdma_wc_send; 624 sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id; 625 sc->sc_cid.ci_completion_id = 626 atomic_inc_return(&ep->re_completion_ids); 627 return sc; 628 } 629 630 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 631 { 632 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 633 struct rpcrdma_sendctx *sc; 634 unsigned long i; 635 636 /* Maximum number of concurrent outstanding Send WRs. Capping 637 * the circular queue size stops Send Queue overflow by causing 638 * the ->send_request call to fail temporarily before too many 639 * Sends are posted. 640 */ 641 i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS; 642 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), XPRTRDMA_GFP_FLAGS); 643 if (!buf->rb_sc_ctxs) 644 return -ENOMEM; 645 646 buf->rb_sc_last = i - 1; 647 for (i = 0; i <= buf->rb_sc_last; i++) { 648 sc = rpcrdma_sendctx_create(r_xprt->rx_ep); 649 if (!sc) 650 return -ENOMEM; 651 652 buf->rb_sc_ctxs[i] = sc; 653 } 654 655 buf->rb_sc_head = 0; 656 buf->rb_sc_tail = 0; 657 return 0; 658 } 659 660 /* The sendctx queue is not guaranteed to have a size that is a 661 * power of two, thus the helpers in circ_buf.h cannot be used. 662 * The other option is to use modulus (%), which can be expensive. 663 */ 664 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 665 unsigned long item) 666 { 667 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 668 } 669 670 /** 671 * rpcrdma_sendctx_get_locked - Acquire a send context 672 * @r_xprt: controlling transport instance 673 * 674 * Returns pointer to a free send completion context; or NULL if 675 * the queue is empty. 676 * 677 * Usage: Called to acquire an SGE array before preparing a Send WR. 678 * 679 * The caller serializes calls to this function (per transport), and 680 * provides an effective memory barrier that flushes the new value 681 * of rb_sc_head. 682 */ 683 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt) 684 { 685 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 686 struct rpcrdma_sendctx *sc; 687 unsigned long next_head; 688 689 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 690 691 if (next_head == READ_ONCE(buf->rb_sc_tail)) 692 goto out_emptyq; 693 694 /* ORDER: item must be accessed _before_ head is updated */ 695 sc = buf->rb_sc_ctxs[next_head]; 696 697 /* Releasing the lock in the caller acts as a memory 698 * barrier that flushes rb_sc_head. 699 */ 700 buf->rb_sc_head = next_head; 701 702 return sc; 703 704 out_emptyq: 705 /* The queue is "empty" if there have not been enough Send 706 * completions recently. This is a sign the Send Queue is 707 * backing up. Cause the caller to pause and try again. 708 */ 709 xprt_wait_for_buffer_space(&r_xprt->rx_xprt); 710 r_xprt->rx_stats.empty_sendctx_q++; 711 return NULL; 712 } 713 714 /** 715 * rpcrdma_sendctx_put_locked - Release a send context 716 * @r_xprt: controlling transport instance 717 * @sc: send context to release 718 * 719 * Usage: Called from Send completion to return a sendctxt 720 * to the queue. 721 * 722 * The caller serializes calls to this function (per transport). 723 */ 724 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt, 725 struct rpcrdma_sendctx *sc) 726 { 727 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 728 unsigned long next_tail; 729 730 /* Unmap SGEs of previously completed but unsignaled 731 * Sends by walking up the queue until @sc is found. 732 */ 733 next_tail = buf->rb_sc_tail; 734 do { 735 next_tail = rpcrdma_sendctx_next(buf, next_tail); 736 737 /* ORDER: item must be accessed _before_ tail is updated */ 738 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]); 739 740 } while (buf->rb_sc_ctxs[next_tail] != sc); 741 742 /* Paired with READ_ONCE */ 743 smp_store_release(&buf->rb_sc_tail, next_tail); 744 745 xprt_write_space(&r_xprt->rx_xprt); 746 } 747 748 static void 749 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 750 { 751 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 752 struct rpcrdma_ep *ep = r_xprt->rx_ep; 753 struct ib_device *device = ep->re_id->device; 754 unsigned int count; 755 756 /* Try to allocate enough to perform one full-sized I/O */ 757 for (count = 0; count < ep->re_max_rdma_segs; count++) { 758 struct rpcrdma_mr *mr; 759 int rc; 760 761 mr = kzalloc_node(sizeof(*mr), XPRTRDMA_GFP_FLAGS, 762 ibdev_to_node(device)); 763 if (!mr) 764 break; 765 766 rc = frwr_mr_init(r_xprt, mr); 767 if (rc) { 768 kfree(mr); 769 break; 770 } 771 772 spin_lock(&buf->rb_lock); 773 rpcrdma_mr_push(mr, &buf->rb_mrs); 774 list_add(&mr->mr_all, &buf->rb_all_mrs); 775 spin_unlock(&buf->rb_lock); 776 } 777 778 r_xprt->rx_stats.mrs_allocated += count; 779 trace_xprtrdma_createmrs(r_xprt, count); 780 } 781 782 static void 783 rpcrdma_mr_refresh_worker(struct work_struct *work) 784 { 785 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 786 rb_refresh_worker); 787 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 788 rx_buf); 789 790 rpcrdma_mrs_create(r_xprt); 791 xprt_write_space(&r_xprt->rx_xprt); 792 } 793 794 /** 795 * rpcrdma_mrs_refresh - Wake the MR refresh worker 796 * @r_xprt: controlling transport instance 797 * 798 */ 799 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt) 800 { 801 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 802 struct rpcrdma_ep *ep = r_xprt->rx_ep; 803 804 /* If there is no underlying connection, it's no use 805 * to wake the refresh worker. 806 */ 807 if (ep->re_connect_status != 1) 808 return; 809 queue_work(system_highpri_wq, &buf->rb_refresh_worker); 810 } 811 812 /** 813 * rpcrdma_req_create - Allocate an rpcrdma_req object 814 * @r_xprt: controlling r_xprt 815 * @size: initial size, in bytes, of send and receive buffers 816 * 817 * Returns an allocated and fully initialized rpcrdma_req or NULL. 818 */ 819 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, 820 size_t size) 821 { 822 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 823 struct rpcrdma_req *req; 824 825 req = kzalloc(sizeof(*req), XPRTRDMA_GFP_FLAGS); 826 if (req == NULL) 827 goto out1; 828 829 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE); 830 if (!req->rl_sendbuf) 831 goto out2; 832 833 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE); 834 if (!req->rl_recvbuf) 835 goto out3; 836 837 INIT_LIST_HEAD(&req->rl_free_mrs); 838 INIT_LIST_HEAD(&req->rl_registered); 839 spin_lock(&buffer->rb_lock); 840 list_add(&req->rl_all, &buffer->rb_allreqs); 841 spin_unlock(&buffer->rb_lock); 842 return req; 843 844 out3: 845 rpcrdma_regbuf_free(req->rl_sendbuf); 846 out2: 847 kfree(req); 848 out1: 849 return NULL; 850 } 851 852 /** 853 * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object 854 * @r_xprt: controlling transport instance 855 * @req: rpcrdma_req object to set up 856 * 857 * Returns zero on success, and a negative errno on failure. 858 */ 859 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 860 { 861 struct rpcrdma_regbuf *rb; 862 size_t maxhdrsize; 863 864 /* Compute maximum header buffer size in bytes */ 865 maxhdrsize = rpcrdma_fixed_maxsz + 3 + 866 r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz; 867 maxhdrsize *= sizeof(__be32); 868 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize), 869 DMA_TO_DEVICE); 870 if (!rb) 871 goto out; 872 873 if (!__rpcrdma_regbuf_dma_map(r_xprt, rb)) 874 goto out_free; 875 876 req->rl_rdmabuf = rb; 877 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb)); 878 return 0; 879 880 out_free: 881 rpcrdma_regbuf_free(rb); 882 out: 883 return -ENOMEM; 884 } 885 886 /* ASSUMPTION: the rb_allreqs list is stable for the duration, 887 * and thus can be walked without holding rb_lock. Eg. the 888 * caller is holding the transport send lock to exclude 889 * device removal or disconnection. 890 */ 891 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt) 892 { 893 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 894 struct rpcrdma_req *req; 895 int rc; 896 897 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 898 rc = rpcrdma_req_setup(r_xprt, req); 899 if (rc) 900 return rc; 901 } 902 return 0; 903 } 904 905 static void rpcrdma_req_reset(struct rpcrdma_req *req) 906 { 907 struct rpcrdma_mr *mr; 908 909 /* Credits are valid for only one connection */ 910 req->rl_slot.rq_cong = 0; 911 912 rpcrdma_regbuf_free(req->rl_rdmabuf); 913 req->rl_rdmabuf = NULL; 914 915 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf); 916 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf); 917 918 /* The verbs consumer can't know the state of an MR on the 919 * req->rl_registered list unless a successful completion 920 * has occurred, so they cannot be re-used. 921 */ 922 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) { 923 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf; 924 925 spin_lock(&buf->rb_lock); 926 list_del(&mr->mr_all); 927 spin_unlock(&buf->rb_lock); 928 929 frwr_mr_release(mr); 930 } 931 } 932 933 /* ASSUMPTION: the rb_allreqs list is stable for the duration, 934 * and thus can be walked without holding rb_lock. Eg. the 935 * caller is holding the transport send lock to exclude 936 * device removal or disconnection. 937 */ 938 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt) 939 { 940 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 941 struct rpcrdma_req *req; 942 943 list_for_each_entry(req, &buf->rb_allreqs, rl_all) 944 rpcrdma_req_reset(req); 945 } 946 947 static noinline 948 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt) 949 { 950 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 951 struct rpcrdma_ep *ep = r_xprt->rx_ep; 952 struct ib_device *device = ep->re_id->device; 953 struct rpcrdma_rep *rep; 954 955 rep = kzalloc(sizeof(*rep), XPRTRDMA_GFP_FLAGS); 956 if (rep == NULL) 957 goto out; 958 959 rep->rr_rdmabuf = rpcrdma_regbuf_alloc_node(ep->re_inline_recv, 960 DMA_FROM_DEVICE, 961 ibdev_to_node(device)); 962 if (!rep->rr_rdmabuf) 963 goto out_free; 964 965 rep->rr_cid.ci_completion_id = 966 atomic_inc_return(&r_xprt->rx_ep->re_completion_ids); 967 968 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf), 969 rdmab_length(rep->rr_rdmabuf)); 970 rep->rr_cqe.done = rpcrdma_wc_receive; 971 rep->rr_rxprt = r_xprt; 972 rep->rr_recv_wr.next = NULL; 973 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 974 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 975 rep->rr_recv_wr.num_sge = 1; 976 977 spin_lock(&buf->rb_lock); 978 list_add(&rep->rr_all, &buf->rb_all_reps); 979 spin_unlock(&buf->rb_lock); 980 return rep; 981 982 out_free: 983 kfree(rep); 984 out: 985 return NULL; 986 } 987 988 static void rpcrdma_rep_free(struct rpcrdma_rep *rep) 989 { 990 rpcrdma_regbuf_free(rep->rr_rdmabuf); 991 kfree(rep); 992 } 993 994 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf) 995 { 996 struct llist_node *node; 997 998 /* Calls to llist_del_first are required to be serialized */ 999 node = llist_del_first(&buf->rb_free_reps); 1000 if (!node) 1001 return NULL; 1002 return llist_entry(node, struct rpcrdma_rep, rr_node); 1003 } 1004 1005 /** 1006 * rpcrdma_rep_put - Release rpcrdma_rep back to free list 1007 * @buf: buffer pool 1008 * @rep: rep to release 1009 * 1010 */ 1011 void rpcrdma_rep_put(struct rpcrdma_buffer *buf, struct rpcrdma_rep *rep) 1012 { 1013 llist_add(&rep->rr_node, &buf->rb_free_reps); 1014 } 1015 1016 /* Caller must ensure the QP is quiescent (RQ is drained) before 1017 * invoking this function, to guarantee rb_all_reps is not 1018 * changing. 1019 */ 1020 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt) 1021 { 1022 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1023 struct rpcrdma_rep *rep; 1024 1025 list_for_each_entry(rep, &buf->rb_all_reps, rr_all) 1026 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf); 1027 } 1028 1029 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf) 1030 { 1031 struct rpcrdma_rep *rep; 1032 1033 spin_lock(&buf->rb_lock); 1034 while ((rep = list_first_entry_or_null(&buf->rb_all_reps, 1035 struct rpcrdma_rep, 1036 rr_all)) != NULL) { 1037 list_del(&rep->rr_all); 1038 spin_unlock(&buf->rb_lock); 1039 1040 rpcrdma_rep_free(rep); 1041 1042 spin_lock(&buf->rb_lock); 1043 } 1044 spin_unlock(&buf->rb_lock); 1045 } 1046 1047 /** 1048 * rpcrdma_buffer_create - Create initial set of req/rep objects 1049 * @r_xprt: transport instance to (re)initialize 1050 * 1051 * Returns zero on success, otherwise a negative errno. 1052 */ 1053 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1054 { 1055 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1056 int i, rc; 1057 1058 buf->rb_bc_srv_max_requests = 0; 1059 spin_lock_init(&buf->rb_lock); 1060 INIT_LIST_HEAD(&buf->rb_mrs); 1061 INIT_LIST_HEAD(&buf->rb_all_mrs); 1062 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker); 1063 1064 INIT_LIST_HEAD(&buf->rb_send_bufs); 1065 INIT_LIST_HEAD(&buf->rb_allreqs); 1066 INIT_LIST_HEAD(&buf->rb_all_reps); 1067 1068 rc = -ENOMEM; 1069 for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) { 1070 struct rpcrdma_req *req; 1071 1072 req = rpcrdma_req_create(r_xprt, 1073 RPCRDMA_V1_DEF_INLINE_SIZE * 2); 1074 if (!req) 1075 goto out; 1076 list_add(&req->rl_list, &buf->rb_send_bufs); 1077 } 1078 1079 init_llist_head(&buf->rb_free_reps); 1080 1081 return 0; 1082 out: 1083 rpcrdma_buffer_destroy(buf); 1084 return rc; 1085 } 1086 1087 /** 1088 * rpcrdma_req_destroy - Destroy an rpcrdma_req object 1089 * @req: unused object to be destroyed 1090 * 1091 * Relies on caller holding the transport send lock to protect 1092 * removing req->rl_all from buf->rb_all_reqs safely. 1093 */ 1094 void rpcrdma_req_destroy(struct rpcrdma_req *req) 1095 { 1096 struct rpcrdma_mr *mr; 1097 1098 list_del(&req->rl_all); 1099 1100 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) { 1101 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf; 1102 1103 spin_lock(&buf->rb_lock); 1104 list_del(&mr->mr_all); 1105 spin_unlock(&buf->rb_lock); 1106 1107 frwr_mr_release(mr); 1108 } 1109 1110 rpcrdma_regbuf_free(req->rl_recvbuf); 1111 rpcrdma_regbuf_free(req->rl_sendbuf); 1112 rpcrdma_regbuf_free(req->rl_rdmabuf); 1113 kfree(req); 1114 } 1115 1116 /** 1117 * rpcrdma_mrs_destroy - Release all of a transport's MRs 1118 * @r_xprt: controlling transport instance 1119 * 1120 * Relies on caller holding the transport send lock to protect 1121 * removing mr->mr_list from req->rl_free_mrs safely. 1122 */ 1123 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt) 1124 { 1125 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1126 struct rpcrdma_mr *mr; 1127 1128 cancel_work_sync(&buf->rb_refresh_worker); 1129 1130 spin_lock(&buf->rb_lock); 1131 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs, 1132 struct rpcrdma_mr, 1133 mr_all)) != NULL) { 1134 list_del(&mr->mr_list); 1135 list_del(&mr->mr_all); 1136 spin_unlock(&buf->rb_lock); 1137 1138 frwr_mr_release(mr); 1139 1140 spin_lock(&buf->rb_lock); 1141 } 1142 spin_unlock(&buf->rb_lock); 1143 } 1144 1145 /** 1146 * rpcrdma_buffer_destroy - Release all hw resources 1147 * @buf: root control block for resources 1148 * 1149 * ORDERING: relies on a prior rpcrdma_xprt_drain : 1150 * - No more Send or Receive completions can occur 1151 * - All MRs, reps, and reqs are returned to their free lists 1152 */ 1153 void 1154 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1155 { 1156 rpcrdma_reps_destroy(buf); 1157 1158 while (!list_empty(&buf->rb_send_bufs)) { 1159 struct rpcrdma_req *req; 1160 1161 req = list_first_entry(&buf->rb_send_bufs, 1162 struct rpcrdma_req, rl_list); 1163 list_del(&req->rl_list); 1164 rpcrdma_req_destroy(req); 1165 } 1166 } 1167 1168 /** 1169 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1170 * @r_xprt: controlling transport 1171 * 1172 * Returns an initialized rpcrdma_mr or NULL if no free 1173 * rpcrdma_mr objects are available. 1174 */ 1175 struct rpcrdma_mr * 1176 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1177 { 1178 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1179 struct rpcrdma_mr *mr; 1180 1181 spin_lock(&buf->rb_lock); 1182 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1183 spin_unlock(&buf->rb_lock); 1184 return mr; 1185 } 1186 1187 /** 1188 * rpcrdma_reply_put - Put reply buffers back into pool 1189 * @buffers: buffer pool 1190 * @req: object to return 1191 * 1192 */ 1193 void rpcrdma_reply_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req) 1194 { 1195 if (req->rl_reply) { 1196 rpcrdma_rep_put(buffers, req->rl_reply); 1197 req->rl_reply = NULL; 1198 } 1199 } 1200 1201 /** 1202 * rpcrdma_buffer_get - Get a request buffer 1203 * @buffers: Buffer pool from which to obtain a buffer 1204 * 1205 * Returns a fresh rpcrdma_req, or NULL if none are available. 1206 */ 1207 struct rpcrdma_req * 1208 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1209 { 1210 struct rpcrdma_req *req; 1211 1212 spin_lock(&buffers->rb_lock); 1213 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1214 struct rpcrdma_req, rl_list); 1215 if (req) 1216 list_del_init(&req->rl_list); 1217 spin_unlock(&buffers->rb_lock); 1218 return req; 1219 } 1220 1221 /** 1222 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1223 * @buffers: buffer pool 1224 * @req: object to return 1225 * 1226 */ 1227 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req) 1228 { 1229 rpcrdma_reply_put(buffers, req); 1230 1231 spin_lock(&buffers->rb_lock); 1232 list_add(&req->rl_list, &buffers->rb_send_bufs); 1233 spin_unlock(&buffers->rb_lock); 1234 } 1235 1236 /* Returns a pointer to a rpcrdma_regbuf object, or NULL. 1237 * 1238 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1239 * receiving the payload of RDMA RECV operations. During Long Calls 1240 * or Replies they may be registered externally via frwr_map. 1241 */ 1242 static struct rpcrdma_regbuf * 1243 rpcrdma_regbuf_alloc_node(size_t size, enum dma_data_direction direction, 1244 int node) 1245 { 1246 struct rpcrdma_regbuf *rb; 1247 1248 rb = kmalloc_node(sizeof(*rb), XPRTRDMA_GFP_FLAGS, node); 1249 if (!rb) 1250 return NULL; 1251 rb->rg_data = kmalloc_node(size, XPRTRDMA_GFP_FLAGS, node); 1252 if (!rb->rg_data) { 1253 kfree(rb); 1254 return NULL; 1255 } 1256 1257 rb->rg_device = NULL; 1258 rb->rg_direction = direction; 1259 rb->rg_iov.length = size; 1260 return rb; 1261 } 1262 1263 static struct rpcrdma_regbuf * 1264 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction) 1265 { 1266 return rpcrdma_regbuf_alloc_node(size, direction, NUMA_NO_NODE); 1267 } 1268 1269 /** 1270 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer 1271 * @rb: regbuf to reallocate 1272 * @size: size of buffer to be allocated, in bytes 1273 * @flags: GFP flags 1274 * 1275 * Returns true if reallocation was successful. If false is 1276 * returned, @rb is left untouched. 1277 */ 1278 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags) 1279 { 1280 void *buf; 1281 1282 buf = kmalloc(size, flags); 1283 if (!buf) 1284 return false; 1285 1286 rpcrdma_regbuf_dma_unmap(rb); 1287 kfree(rb->rg_data); 1288 1289 rb->rg_data = buf; 1290 rb->rg_iov.length = size; 1291 return true; 1292 } 1293 1294 /** 1295 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf 1296 * @r_xprt: controlling transport instance 1297 * @rb: regbuf to be mapped 1298 * 1299 * Returns true if the buffer is now DMA mapped to @r_xprt's device 1300 */ 1301 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt, 1302 struct rpcrdma_regbuf *rb) 1303 { 1304 struct ib_device *device = r_xprt->rx_ep->re_id->device; 1305 1306 if (rb->rg_direction == DMA_NONE) 1307 return false; 1308 1309 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb), 1310 rdmab_length(rb), rb->rg_direction); 1311 if (ib_dma_mapping_error(device, rdmab_addr(rb))) { 1312 trace_xprtrdma_dma_maperr(rdmab_addr(rb)); 1313 return false; 1314 } 1315 1316 rb->rg_device = device; 1317 rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey; 1318 return true; 1319 } 1320 1321 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb) 1322 { 1323 if (!rb) 1324 return; 1325 1326 if (!rpcrdma_regbuf_is_mapped(rb)) 1327 return; 1328 1329 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb), 1330 rb->rg_direction); 1331 rb->rg_device = NULL; 1332 } 1333 1334 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb) 1335 { 1336 rpcrdma_regbuf_dma_unmap(rb); 1337 if (rb) 1338 kfree(rb->rg_data); 1339 kfree(rb); 1340 } 1341 1342 /** 1343 * rpcrdma_post_recvs - Refill the Receive Queue 1344 * @r_xprt: controlling transport instance 1345 * @needed: current credit grant 1346 * 1347 */ 1348 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, int needed) 1349 { 1350 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1351 struct rpcrdma_ep *ep = r_xprt->rx_ep; 1352 struct ib_recv_wr *wr, *bad_wr; 1353 struct rpcrdma_rep *rep; 1354 int count, rc; 1355 1356 rc = 0; 1357 count = 0; 1358 1359 if (likely(ep->re_receive_count > needed)) 1360 goto out; 1361 needed -= ep->re_receive_count; 1362 needed += RPCRDMA_MAX_RECV_BATCH; 1363 1364 if (atomic_inc_return(&ep->re_receiving) > 1) 1365 goto out; 1366 1367 /* fast path: all needed reps can be found on the free list */ 1368 wr = NULL; 1369 while (needed) { 1370 rep = rpcrdma_rep_get_locked(buf); 1371 if (!rep) 1372 rep = rpcrdma_rep_create(r_xprt); 1373 if (!rep) 1374 break; 1375 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf)) { 1376 rpcrdma_rep_put(buf, rep); 1377 break; 1378 } 1379 1380 rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id; 1381 trace_xprtrdma_post_recv(&rep->rr_cid); 1382 rep->rr_recv_wr.next = wr; 1383 wr = &rep->rr_recv_wr; 1384 --needed; 1385 ++count; 1386 } 1387 if (!wr) 1388 goto out; 1389 1390 rc = ib_post_recv(ep->re_id->qp, wr, 1391 (const struct ib_recv_wr **)&bad_wr); 1392 if (rc) { 1393 trace_xprtrdma_post_recvs_err(r_xprt, rc); 1394 for (wr = bad_wr; wr;) { 1395 struct rpcrdma_rep *rep; 1396 1397 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1398 wr = wr->next; 1399 rpcrdma_rep_put(buf, rep); 1400 --count; 1401 } 1402 } 1403 if (atomic_dec_return(&ep->re_receiving) > 0) 1404 complete(&ep->re_done); 1405 1406 out: 1407 trace_xprtrdma_post_recvs(r_xprt, count); 1408 ep->re_receive_count += count; 1409 return; 1410 } 1411
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.