~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/tls/tls_main.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4  *
  5  * This software is available to you under a choice of one of two
  6  * licenses.  You may choose to be licensed under the terms of the GNU
  7  * General Public License (GPL) Version 2, available from the file
  8  * COPYING in the main directory of this source tree, or the
  9  * OpenIB.org BSD license below:
 10  *
 11  *     Redistribution and use in source and binary forms, with or
 12  *     without modification, are permitted provided that the following
 13  *     conditions are met:
 14  *
 15  *      - Redistributions of source code must retain the above
 16  *        copyright notice, this list of conditions and the following
 17  *        disclaimer.
 18  *
 19  *      - Redistributions in binary form must reproduce the above
 20  *        copyright notice, this list of conditions and the following
 21  *        disclaimer in the documentation and/or other materials
 22  *        provided with the distribution.
 23  *
 24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31  * SOFTWARE.
 32  */
 33 
 34 #include <linux/module.h>
 35 
 36 #include <net/tcp.h>
 37 #include <net/inet_common.h>
 38 #include <linux/highmem.h>
 39 #include <linux/netdevice.h>
 40 #include <linux/sched/signal.h>
 41 #include <linux/inetdevice.h>
 42 #include <linux/inet_diag.h>
 43 
 44 #include <net/snmp.h>
 45 #include <net/tls.h>
 46 #include <net/tls_toe.h>
 47 
 48 #include "tls.h"
 49 
 50 MODULE_AUTHOR("Mellanox Technologies");
 51 MODULE_DESCRIPTION("Transport Layer Security Support");
 52 MODULE_LICENSE("Dual BSD/GPL");
 53 MODULE_ALIAS_TCP_ULP("tls");
 54 
 55 enum {
 56         TLSV4,
 57         TLSV6,
 58         TLS_NUM_PROTS,
 59 };
 60 
 61 #define CHECK_CIPHER_DESC(cipher,ci)                            \
 62         static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE);           \
 63         static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE);               \
 64         static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
 65         static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);             \
 66         static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);       \
 67         static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);     \
 68         static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);   \
 69         static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
 70 
 71 #define __CIPHER_DESC(ci) \
 72         .iv_offset = offsetof(struct ci, iv), \
 73         .key_offset = offsetof(struct ci, key), \
 74         .salt_offset = offsetof(struct ci, salt), \
 75         .rec_seq_offset = offsetof(struct ci, rec_seq), \
 76         .crypto_info = sizeof(struct ci)
 77 
 78 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {       \
 79         .nonce = cipher ## _IV_SIZE, \
 80         .iv = cipher ## _IV_SIZE, \
 81         .key = cipher ## _KEY_SIZE, \
 82         .salt = cipher ## _SALT_SIZE, \
 83         .tag = cipher ## _TAG_SIZE, \
 84         .rec_seq = cipher ## _REC_SEQ_SIZE, \
 85         .cipher_name = algname, \
 86         .offloadable = _offloadable, \
 87         __CIPHER_DESC(ci), \
 88 }
 89 
 90 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
 91         .nonce = 0, \
 92         .iv = cipher ## _IV_SIZE, \
 93         .key = cipher ## _KEY_SIZE, \
 94         .salt = cipher ## _SALT_SIZE, \
 95         .tag = cipher ## _TAG_SIZE, \
 96         .rec_seq = cipher ## _REC_SEQ_SIZE, \
 97         .cipher_name = algname, \
 98         .offloadable = _offloadable, \
 99         __CIPHER_DESC(ci), \
100 }
101 
102 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103         CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104         CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105         CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106         CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107         CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108         CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109         CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110         CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111 };
112 
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121 
122 static const struct proto *saved_tcpv6_prot;
123 static DEFINE_MUTEX(tcpv6_prot_mutex);
124 static const struct proto *saved_tcpv4_prot;
125 static DEFINE_MUTEX(tcpv4_prot_mutex);
126 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129                          const struct proto *base);
130 
131 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132 {
133         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134 
135         WRITE_ONCE(sk->sk_prot,
136                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137         WRITE_ONCE(sk->sk_socket->ops,
138                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139 }
140 
141 int wait_on_pending_writer(struct sock *sk, long *timeo)
142 {
143         DEFINE_WAIT_FUNC(wait, woken_wake_function);
144         int ret, rc = 0;
145 
146         add_wait_queue(sk_sleep(sk), &wait);
147         while (1) {
148                 if (!*timeo) {
149                         rc = -EAGAIN;
150                         break;
151                 }
152 
153                 if (signal_pending(current)) {
154                         rc = sock_intr_errno(*timeo);
155                         break;
156                 }
157 
158                 ret = sk_wait_event(sk, timeo,
159                                     !READ_ONCE(sk->sk_write_pending), &wait);
160                 if (ret) {
161                         if (ret < 0)
162                                 rc = ret;
163                         break;
164                 }
165         }
166         remove_wait_queue(sk_sleep(sk), &wait);
167         return rc;
168 }
169 
170 int tls_push_sg(struct sock *sk,
171                 struct tls_context *ctx,
172                 struct scatterlist *sg,
173                 u16 first_offset,
174                 int flags)
175 {
176         struct bio_vec bvec;
177         struct msghdr msg = {
178                 .msg_flags = MSG_SPLICE_PAGES | flags,
179         };
180         int ret = 0;
181         struct page *p;
182         size_t size;
183         int offset = first_offset;
184 
185         size = sg->length - offset;
186         offset += sg->offset;
187 
188         ctx->splicing_pages = true;
189         while (1) {
190                 /* is sending application-limited? */
191                 tcp_rate_check_app_limited(sk);
192                 p = sg_page(sg);
193 retry:
194                 bvec_set_page(&bvec, p, size, offset);
195                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
196 
197                 ret = tcp_sendmsg_locked(sk, &msg, size);
198 
199                 if (ret != size) {
200                         if (ret > 0) {
201                                 offset += ret;
202                                 size -= ret;
203                                 goto retry;
204                         }
205 
206                         offset -= sg->offset;
207                         ctx->partially_sent_offset = offset;
208                         ctx->partially_sent_record = (void *)sg;
209                         ctx->splicing_pages = false;
210                         return ret;
211                 }
212 
213                 put_page(p);
214                 sk_mem_uncharge(sk, sg->length);
215                 sg = sg_next(sg);
216                 if (!sg)
217                         break;
218 
219                 offset = sg->offset;
220                 size = sg->length;
221         }
222 
223         ctx->splicing_pages = false;
224 
225         return 0;
226 }
227 
228 static int tls_handle_open_record(struct sock *sk, int flags)
229 {
230         struct tls_context *ctx = tls_get_ctx(sk);
231 
232         if (tls_is_pending_open_record(ctx))
233                 return ctx->push_pending_record(sk, flags);
234 
235         return 0;
236 }
237 
238 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239                      unsigned char *record_type)
240 {
241         struct cmsghdr *cmsg;
242         int rc = -EINVAL;
243 
244         for_each_cmsghdr(cmsg, msg) {
245                 if (!CMSG_OK(msg, cmsg))
246                         return -EINVAL;
247                 if (cmsg->cmsg_level != SOL_TLS)
248                         continue;
249 
250                 switch (cmsg->cmsg_type) {
251                 case TLS_SET_RECORD_TYPE:
252                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
253                                 return -EINVAL;
254 
255                         if (msg->msg_flags & MSG_MORE)
256                                 return -EINVAL;
257 
258                         rc = tls_handle_open_record(sk, msg->msg_flags);
259                         if (rc)
260                                 return rc;
261 
262                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
263                         rc = 0;
264                         break;
265                 default:
266                         return -EINVAL;
267                 }
268         }
269 
270         return rc;
271 }
272 
273 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
274                             int flags)
275 {
276         struct scatterlist *sg;
277         u16 offset;
278 
279         sg = ctx->partially_sent_record;
280         offset = ctx->partially_sent_offset;
281 
282         ctx->partially_sent_record = NULL;
283         return tls_push_sg(sk, ctx, sg, offset, flags);
284 }
285 
286 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
287 {
288         struct scatterlist *sg;
289 
290         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
291                 put_page(sg_page(sg));
292                 sk_mem_uncharge(sk, sg->length);
293         }
294         ctx->partially_sent_record = NULL;
295 }
296 
297 static void tls_write_space(struct sock *sk)
298 {
299         struct tls_context *ctx = tls_get_ctx(sk);
300 
301         /* If splicing_pages call lower protocol write space handler
302          * to ensure we wake up any waiting operations there. For example
303          * if splicing pages where to call sk_wait_event.
304          */
305         if (ctx->splicing_pages) {
306                 ctx->sk_write_space(sk);
307                 return;
308         }
309 
310 #ifdef CONFIG_TLS_DEVICE
311         if (ctx->tx_conf == TLS_HW)
312                 tls_device_write_space(sk, ctx);
313         else
314 #endif
315                 tls_sw_write_space(sk, ctx);
316 
317         ctx->sk_write_space(sk);
318 }
319 
320 /**
321  * tls_ctx_free() - free TLS ULP context
322  * @sk:  socket to with @ctx is attached
323  * @ctx: TLS context structure
324  *
325  * Free TLS context. If @sk is %NULL caller guarantees that the socket
326  * to which @ctx was attached has no outstanding references.
327  */
328 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
329 {
330         if (!ctx)
331                 return;
332 
333         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
334         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
335         mutex_destroy(&ctx->tx_lock);
336 
337         if (sk)
338                 kfree_rcu(ctx, rcu);
339         else
340                 kfree(ctx);
341 }
342 
343 static void tls_sk_proto_cleanup(struct sock *sk,
344                                  struct tls_context *ctx, long timeo)
345 {
346         if (unlikely(sk->sk_write_pending) &&
347             !wait_on_pending_writer(sk, &timeo))
348                 tls_handle_open_record(sk, 0);
349 
350         /* We need these for tls_sw_fallback handling of other packets */
351         if (ctx->tx_conf == TLS_SW) {
352                 tls_sw_release_resources_tx(sk);
353                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
354         } else if (ctx->tx_conf == TLS_HW) {
355                 tls_device_free_resources_tx(sk);
356                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
357         }
358 
359         if (ctx->rx_conf == TLS_SW) {
360                 tls_sw_release_resources_rx(sk);
361                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
362         } else if (ctx->rx_conf == TLS_HW) {
363                 tls_device_offload_cleanup_rx(sk);
364                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
365         }
366 }
367 
368 static void tls_sk_proto_close(struct sock *sk, long timeout)
369 {
370         struct inet_connection_sock *icsk = inet_csk(sk);
371         struct tls_context *ctx = tls_get_ctx(sk);
372         long timeo = sock_sndtimeo(sk, 0);
373         bool free_ctx;
374 
375         if (ctx->tx_conf == TLS_SW)
376                 tls_sw_cancel_work_tx(ctx);
377 
378         lock_sock(sk);
379         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
380 
381         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
382                 tls_sk_proto_cleanup(sk, ctx, timeo);
383 
384         write_lock_bh(&sk->sk_callback_lock);
385         if (free_ctx)
386                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
387         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
388         if (sk->sk_write_space == tls_write_space)
389                 sk->sk_write_space = ctx->sk_write_space;
390         write_unlock_bh(&sk->sk_callback_lock);
391         release_sock(sk);
392         if (ctx->tx_conf == TLS_SW)
393                 tls_sw_free_ctx_tx(ctx);
394         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
395                 tls_sw_strparser_done(ctx);
396         if (ctx->rx_conf == TLS_SW)
397                 tls_sw_free_ctx_rx(ctx);
398         ctx->sk_proto->close(sk, timeout);
399 
400         if (free_ctx)
401                 tls_ctx_free(sk, ctx);
402 }
403 
404 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
405                             struct poll_table_struct *wait)
406 {
407         struct tls_sw_context_rx *ctx;
408         struct tls_context *tls_ctx;
409         struct sock *sk = sock->sk;
410         struct sk_psock *psock;
411         __poll_t mask = 0;
412         u8 shutdown;
413         int state;
414 
415         mask = tcp_poll(file, sock, wait);
416 
417         state = inet_sk_state_load(sk);
418         shutdown = READ_ONCE(sk->sk_shutdown);
419         if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
420                 return mask;
421 
422         tls_ctx = tls_get_ctx(sk);
423         ctx = tls_sw_ctx_rx(tls_ctx);
424         psock = sk_psock_get(sk);
425 
426         if (skb_queue_empty_lockless(&ctx->rx_list) &&
427             !tls_strp_msg_ready(ctx) &&
428             sk_psock_queue_empty(psock))
429                 mask &= ~(EPOLLIN | EPOLLRDNORM);
430 
431         if (psock)
432                 sk_psock_put(sk, psock);
433 
434         return mask;
435 }
436 
437 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
438                                   int __user *optlen, int tx)
439 {
440         int rc = 0;
441         const struct tls_cipher_desc *cipher_desc;
442         struct tls_context *ctx = tls_get_ctx(sk);
443         struct tls_crypto_info *crypto_info;
444         struct cipher_context *cctx;
445         int len;
446 
447         if (get_user(len, optlen))
448                 return -EFAULT;
449 
450         if (!optval || (len < sizeof(*crypto_info))) {
451                 rc = -EINVAL;
452                 goto out;
453         }
454 
455         if (!ctx) {
456                 rc = -EBUSY;
457                 goto out;
458         }
459 
460         /* get user crypto info */
461         if (tx) {
462                 crypto_info = &ctx->crypto_send.info;
463                 cctx = &ctx->tx;
464         } else {
465                 crypto_info = &ctx->crypto_recv.info;
466                 cctx = &ctx->rx;
467         }
468 
469         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
470                 rc = -EBUSY;
471                 goto out;
472         }
473 
474         if (len == sizeof(*crypto_info)) {
475                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
476                         rc = -EFAULT;
477                 goto out;
478         }
479 
480         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
481         if (!cipher_desc || len != cipher_desc->crypto_info) {
482                 rc = -EINVAL;
483                 goto out;
484         }
485 
486         memcpy(crypto_info_iv(crypto_info, cipher_desc),
487                cctx->iv + cipher_desc->salt, cipher_desc->iv);
488         memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
489                cctx->rec_seq, cipher_desc->rec_seq);
490 
491         if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
492                 rc = -EFAULT;
493 
494 out:
495         return rc;
496 }
497 
498 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
499                                    int __user *optlen)
500 {
501         struct tls_context *ctx = tls_get_ctx(sk);
502         unsigned int value;
503         int len;
504 
505         if (get_user(len, optlen))
506                 return -EFAULT;
507 
508         if (len != sizeof(value))
509                 return -EINVAL;
510 
511         value = ctx->zerocopy_sendfile;
512         if (copy_to_user(optval, &value, sizeof(value)))
513                 return -EFAULT;
514 
515         return 0;
516 }
517 
518 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
519                                     int __user *optlen)
520 {
521         struct tls_context *ctx = tls_get_ctx(sk);
522         int value, len;
523 
524         if (ctx->prot_info.version != TLS_1_3_VERSION)
525                 return -EINVAL;
526 
527         if (get_user(len, optlen))
528                 return -EFAULT;
529         if (len < sizeof(value))
530                 return -EINVAL;
531 
532         value = -EINVAL;
533         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
534                 value = ctx->rx_no_pad;
535         if (value < 0)
536                 return value;
537 
538         if (put_user(sizeof(value), optlen))
539                 return -EFAULT;
540         if (copy_to_user(optval, &value, sizeof(value)))
541                 return -EFAULT;
542 
543         return 0;
544 }
545 
546 static int do_tls_getsockopt(struct sock *sk, int optname,
547                              char __user *optval, int __user *optlen)
548 {
549         int rc = 0;
550 
551         lock_sock(sk);
552 
553         switch (optname) {
554         case TLS_TX:
555         case TLS_RX:
556                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
557                                             optname == TLS_TX);
558                 break;
559         case TLS_TX_ZEROCOPY_RO:
560                 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
561                 break;
562         case TLS_RX_EXPECT_NO_PAD:
563                 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
564                 break;
565         default:
566                 rc = -ENOPROTOOPT;
567                 break;
568         }
569 
570         release_sock(sk);
571 
572         return rc;
573 }
574 
575 static int tls_getsockopt(struct sock *sk, int level, int optname,
576                           char __user *optval, int __user *optlen)
577 {
578         struct tls_context *ctx = tls_get_ctx(sk);
579 
580         if (level != SOL_TLS)
581                 return ctx->sk_proto->getsockopt(sk, level,
582                                                  optname, optval, optlen);
583 
584         return do_tls_getsockopt(sk, optname, optval, optlen);
585 }
586 
587 static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
588                                 const struct tls_crypto_info *alt_crypto_info)
589 {
590         if (crypto_info->version != TLS_1_2_VERSION &&
591             crypto_info->version != TLS_1_3_VERSION)
592                 return -EINVAL;
593 
594         switch (crypto_info->cipher_type) {
595         case TLS_CIPHER_ARIA_GCM_128:
596         case TLS_CIPHER_ARIA_GCM_256:
597                 if (crypto_info->version != TLS_1_2_VERSION)
598                         return -EINVAL;
599                 break;
600         }
601 
602         /* Ensure that TLS version and ciphers are same in both directions */
603         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
604                 if (alt_crypto_info->version != crypto_info->version ||
605                     alt_crypto_info->cipher_type != crypto_info->cipher_type)
606                         return -EINVAL;
607         }
608 
609         return 0;
610 }
611 
612 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
613                                   unsigned int optlen, int tx)
614 {
615         struct tls_crypto_info *crypto_info;
616         struct tls_crypto_info *alt_crypto_info;
617         struct tls_context *ctx = tls_get_ctx(sk);
618         const struct tls_cipher_desc *cipher_desc;
619         union tls_crypto_context *crypto_ctx;
620         int rc = 0;
621         int conf;
622 
623         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
624                 return -EINVAL;
625 
626         if (tx) {
627                 crypto_ctx = &ctx->crypto_send;
628                 alt_crypto_info = &ctx->crypto_recv.info;
629         } else {
630                 crypto_ctx = &ctx->crypto_recv;
631                 alt_crypto_info = &ctx->crypto_send.info;
632         }
633 
634         crypto_info = &crypto_ctx->info;
635 
636         /* Currently we don't support set crypto info more than one time */
637         if (TLS_CRYPTO_INFO_READY(crypto_info))
638                 return -EBUSY;
639 
640         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
641         if (rc) {
642                 rc = -EFAULT;
643                 goto err_crypto_info;
644         }
645 
646         rc = validate_crypto_info(crypto_info, alt_crypto_info);
647         if (rc)
648                 goto err_crypto_info;
649 
650         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
651         if (!cipher_desc) {
652                 rc = -EINVAL;
653                 goto err_crypto_info;
654         }
655 
656         if (optlen != cipher_desc->crypto_info) {
657                 rc = -EINVAL;
658                 goto err_crypto_info;
659         }
660 
661         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
662                                       sizeof(*crypto_info),
663                                       optlen - sizeof(*crypto_info));
664         if (rc) {
665                 rc = -EFAULT;
666                 goto err_crypto_info;
667         }
668 
669         if (tx) {
670                 rc = tls_set_device_offload(sk);
671                 conf = TLS_HW;
672                 if (!rc) {
673                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
674                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
675                 } else {
676                         rc = tls_set_sw_offload(sk, 1);
677                         if (rc)
678                                 goto err_crypto_info;
679                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
680                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
681                         conf = TLS_SW;
682                 }
683         } else {
684                 rc = tls_set_device_offload_rx(sk, ctx);
685                 conf = TLS_HW;
686                 if (!rc) {
687                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
688                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
689                 } else {
690                         rc = tls_set_sw_offload(sk, 0);
691                         if (rc)
692                                 goto err_crypto_info;
693                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
694                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
695                         conf = TLS_SW;
696                 }
697                 tls_sw_strparser_arm(sk, ctx);
698         }
699 
700         if (tx)
701                 ctx->tx_conf = conf;
702         else
703                 ctx->rx_conf = conf;
704         update_sk_prot(sk, ctx);
705         if (tx) {
706                 ctx->sk_write_space = sk->sk_write_space;
707                 sk->sk_write_space = tls_write_space;
708         } else {
709                 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
710 
711                 tls_strp_check_rcv(&rx_ctx->strp);
712         }
713         return 0;
714 
715 err_crypto_info:
716         memzero_explicit(crypto_ctx, sizeof(*crypto_ctx));
717         return rc;
718 }
719 
720 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
721                                    unsigned int optlen)
722 {
723         struct tls_context *ctx = tls_get_ctx(sk);
724         unsigned int value;
725 
726         if (sockptr_is_null(optval) || optlen != sizeof(value))
727                 return -EINVAL;
728 
729         if (copy_from_sockptr(&value, optval, sizeof(value)))
730                 return -EFAULT;
731 
732         if (value > 1)
733                 return -EINVAL;
734 
735         ctx->zerocopy_sendfile = value;
736 
737         return 0;
738 }
739 
740 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
741                                     unsigned int optlen)
742 {
743         struct tls_context *ctx = tls_get_ctx(sk);
744         u32 val;
745         int rc;
746 
747         if (ctx->prot_info.version != TLS_1_3_VERSION ||
748             sockptr_is_null(optval) || optlen < sizeof(val))
749                 return -EINVAL;
750 
751         rc = copy_from_sockptr(&val, optval, sizeof(val));
752         if (rc)
753                 return -EFAULT;
754         if (val > 1)
755                 return -EINVAL;
756         rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
757         if (rc < 1)
758                 return rc == 0 ? -EINVAL : rc;
759 
760         lock_sock(sk);
761         rc = -EINVAL;
762         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
763                 ctx->rx_no_pad = val;
764                 tls_update_rx_zc_capable(ctx);
765                 rc = 0;
766         }
767         release_sock(sk);
768 
769         return rc;
770 }
771 
772 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
773                              unsigned int optlen)
774 {
775         int rc = 0;
776 
777         switch (optname) {
778         case TLS_TX:
779         case TLS_RX:
780                 lock_sock(sk);
781                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
782                                             optname == TLS_TX);
783                 release_sock(sk);
784                 break;
785         case TLS_TX_ZEROCOPY_RO:
786                 lock_sock(sk);
787                 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
788                 release_sock(sk);
789                 break;
790         case TLS_RX_EXPECT_NO_PAD:
791                 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
792                 break;
793         default:
794                 rc = -ENOPROTOOPT;
795                 break;
796         }
797         return rc;
798 }
799 
800 static int tls_setsockopt(struct sock *sk, int level, int optname,
801                           sockptr_t optval, unsigned int optlen)
802 {
803         struct tls_context *ctx = tls_get_ctx(sk);
804 
805         if (level != SOL_TLS)
806                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
807                                                  optlen);
808 
809         return do_tls_setsockopt(sk, optname, optval, optlen);
810 }
811 
812 struct tls_context *tls_ctx_create(struct sock *sk)
813 {
814         struct inet_connection_sock *icsk = inet_csk(sk);
815         struct tls_context *ctx;
816 
817         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
818         if (!ctx)
819                 return NULL;
820 
821         mutex_init(&ctx->tx_lock);
822         ctx->sk_proto = READ_ONCE(sk->sk_prot);
823         ctx->sk = sk;
824         /* Release semantic of rcu_assign_pointer() ensures that
825          * ctx->sk_proto is visible before changing sk->sk_prot in
826          * update_sk_prot(), and prevents reading uninitialized value in
827          * tls_{getsockopt, setsockopt}. Note that we do not need a
828          * read barrier in tls_{getsockopt,setsockopt} as there is an
829          * address dependency between sk->sk_proto->{getsockopt,setsockopt}
830          * and ctx->sk_proto.
831          */
832         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
833         return ctx;
834 }
835 
836 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
837                             const struct proto_ops *base)
838 {
839         ops[TLS_BASE][TLS_BASE] = *base;
840 
841         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
842         ops[TLS_SW  ][TLS_BASE].splice_eof      = tls_sw_splice_eof;
843 
844         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
845         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
846         ops[TLS_BASE][TLS_SW  ].poll            = tls_sk_poll;
847         ops[TLS_BASE][TLS_SW  ].read_sock       = tls_sw_read_sock;
848 
849         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
850         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
851         ops[TLS_SW  ][TLS_SW  ].poll            = tls_sk_poll;
852         ops[TLS_SW  ][TLS_SW  ].read_sock       = tls_sw_read_sock;
853 
854 #ifdef CONFIG_TLS_DEVICE
855         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
856 
857         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
858 
859         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
860 
861         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
862 
863         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
864 #endif
865 #ifdef CONFIG_TLS_TOE
866         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
867 #endif
868 }
869 
870 static void tls_build_proto(struct sock *sk)
871 {
872         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
873         struct proto *prot = READ_ONCE(sk->sk_prot);
874 
875         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
876         if (ip_ver == TLSV6 &&
877             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
878                 mutex_lock(&tcpv6_prot_mutex);
879                 if (likely(prot != saved_tcpv6_prot)) {
880                         build_protos(tls_prots[TLSV6], prot);
881                         build_proto_ops(tls_proto_ops[TLSV6],
882                                         sk->sk_socket->ops);
883                         smp_store_release(&saved_tcpv6_prot, prot);
884                 }
885                 mutex_unlock(&tcpv6_prot_mutex);
886         }
887 
888         if (ip_ver == TLSV4 &&
889             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
890                 mutex_lock(&tcpv4_prot_mutex);
891                 if (likely(prot != saved_tcpv4_prot)) {
892                         build_protos(tls_prots[TLSV4], prot);
893                         build_proto_ops(tls_proto_ops[TLSV4],
894                                         sk->sk_socket->ops);
895                         smp_store_release(&saved_tcpv4_prot, prot);
896                 }
897                 mutex_unlock(&tcpv4_prot_mutex);
898         }
899 }
900 
901 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
902                          const struct proto *base)
903 {
904         prot[TLS_BASE][TLS_BASE] = *base;
905         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
906         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
907         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
908 
909         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
910         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
911         prot[TLS_SW][TLS_BASE].splice_eof       = tls_sw_splice_eof;
912 
913         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
914         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
915         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
916         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
917 
918         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
919         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
920         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
921         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
922 
923 #ifdef CONFIG_TLS_DEVICE
924         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
925         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
926         prot[TLS_HW][TLS_BASE].splice_eof       = tls_device_splice_eof;
927 
928         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
929         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
930         prot[TLS_HW][TLS_SW].splice_eof         = tls_device_splice_eof;
931 
932         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
933 
934         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
935 
936         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
937 #endif
938 #ifdef CONFIG_TLS_TOE
939         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
940         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
941         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
942 #endif
943 }
944 
945 static int tls_init(struct sock *sk)
946 {
947         struct tls_context *ctx;
948         int rc = 0;
949 
950         tls_build_proto(sk);
951 
952 #ifdef CONFIG_TLS_TOE
953         if (tls_toe_bypass(sk))
954                 return 0;
955 #endif
956 
957         /* The TLS ulp is currently supported only for TCP sockets
958          * in ESTABLISHED state.
959          * Supporting sockets in LISTEN state will require us
960          * to modify the accept implementation to clone rather then
961          * share the ulp context.
962          */
963         if (sk->sk_state != TCP_ESTABLISHED)
964                 return -ENOTCONN;
965 
966         /* allocate tls context */
967         write_lock_bh(&sk->sk_callback_lock);
968         ctx = tls_ctx_create(sk);
969         if (!ctx) {
970                 rc = -ENOMEM;
971                 goto out;
972         }
973 
974         ctx->tx_conf = TLS_BASE;
975         ctx->rx_conf = TLS_BASE;
976         update_sk_prot(sk, ctx);
977 out:
978         write_unlock_bh(&sk->sk_callback_lock);
979         return rc;
980 }
981 
982 static void tls_update(struct sock *sk, struct proto *p,
983                        void (*write_space)(struct sock *sk))
984 {
985         struct tls_context *ctx;
986 
987         WARN_ON_ONCE(sk->sk_prot == p);
988 
989         ctx = tls_get_ctx(sk);
990         if (likely(ctx)) {
991                 ctx->sk_write_space = write_space;
992                 ctx->sk_proto = p;
993         } else {
994                 /* Pairs with lockless read in sk_clone_lock(). */
995                 WRITE_ONCE(sk->sk_prot, p);
996                 sk->sk_write_space = write_space;
997         }
998 }
999 
1000 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1001 {
1002         u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1003 
1004         switch (config) {
1005         case TLS_BASE:
1006                 return TLS_CONF_BASE;
1007         case TLS_SW:
1008                 return TLS_CONF_SW;
1009         case TLS_HW:
1010                 return TLS_CONF_HW;
1011         case TLS_HW_RECORD:
1012                 return TLS_CONF_HW_RECORD;
1013         }
1014         return 0;
1015 }
1016 
1017 static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1018 {
1019         u16 version, cipher_type;
1020         struct tls_context *ctx;
1021         struct nlattr *start;
1022         int err;
1023 
1024         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1025         if (!start)
1026                 return -EMSGSIZE;
1027 
1028         rcu_read_lock();
1029         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1030         if (!ctx) {
1031                 err = 0;
1032                 goto nla_failure;
1033         }
1034         version = ctx->prot_info.version;
1035         if (version) {
1036                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1037                 if (err)
1038                         goto nla_failure;
1039         }
1040         cipher_type = ctx->prot_info.cipher_type;
1041         if (cipher_type) {
1042                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1043                 if (err)
1044                         goto nla_failure;
1045         }
1046         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1047         if (err)
1048                 goto nla_failure;
1049 
1050         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1051         if (err)
1052                 goto nla_failure;
1053 
1054         if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1055                 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1056                 if (err)
1057                         goto nla_failure;
1058         }
1059         if (ctx->rx_no_pad) {
1060                 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1061                 if (err)
1062                         goto nla_failure;
1063         }
1064 
1065         rcu_read_unlock();
1066         nla_nest_end(skb, start);
1067         return 0;
1068 
1069 nla_failure:
1070         rcu_read_unlock();
1071         nla_nest_cancel(skb, start);
1072         return err;
1073 }
1074 
1075 static size_t tls_get_info_size(const struct sock *sk)
1076 {
1077         size_t size = 0;
1078 
1079         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
1080                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
1081                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
1082                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
1083                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
1084                 nla_total_size(0) +             /* TLS_INFO_ZC_RO_TX */
1085                 nla_total_size(0) +             /* TLS_INFO_RX_NO_PAD */
1086                 0;
1087 
1088         return size;
1089 }
1090 
1091 static int __net_init tls_init_net(struct net *net)
1092 {
1093         int err;
1094 
1095         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1096         if (!net->mib.tls_statistics)
1097                 return -ENOMEM;
1098 
1099         err = tls_proc_init(net);
1100         if (err)
1101                 goto err_free_stats;
1102 
1103         return 0;
1104 err_free_stats:
1105         free_percpu(net->mib.tls_statistics);
1106         return err;
1107 }
1108 
1109 static void __net_exit tls_exit_net(struct net *net)
1110 {
1111         tls_proc_fini(net);
1112         free_percpu(net->mib.tls_statistics);
1113 }
1114 
1115 static struct pernet_operations tls_proc_ops = {
1116         .init = tls_init_net,
1117         .exit = tls_exit_net,
1118 };
1119 
1120 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1121         .name                   = "tls",
1122         .owner                  = THIS_MODULE,
1123         .init                   = tls_init,
1124         .update                 = tls_update,
1125         .get_info               = tls_get_info,
1126         .get_info_size          = tls_get_info_size,
1127 };
1128 
1129 static int __init tls_register(void)
1130 {
1131         int err;
1132 
1133         err = register_pernet_subsys(&tls_proc_ops);
1134         if (err)
1135                 return err;
1136 
1137         err = tls_strp_dev_init();
1138         if (err)
1139                 goto err_pernet;
1140 
1141         err = tls_device_init();
1142         if (err)
1143                 goto err_strp;
1144 
1145         tcp_register_ulp(&tcp_tls_ulp_ops);
1146 
1147         return 0;
1148 err_strp:
1149         tls_strp_dev_exit();
1150 err_pernet:
1151         unregister_pernet_subsys(&tls_proc_ops);
1152         return err;
1153 }
1154 
1155 static void __exit tls_unregister(void)
1156 {
1157         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1158         tls_strp_dev_exit();
1159         tls_device_cleanup();
1160         unregister_pernet_subsys(&tls_proc_ops);
1161 }
1162 
1163 module_init(tls_register);
1164 module_exit(tls_unregister);
1165 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php