~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/net/tls/tls_sw.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
  5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
  6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
  7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
  8  *
  9  * This software is available to you under a choice of one of two
 10  * licenses.  You may choose to be licensed under the terms of the GNU
 11  * General Public License (GPL) Version 2, available from the file
 12  * COPYING in the main directory of this source tree, or the
 13  * OpenIB.org BSD license below:
 14  *
 15  *     Redistribution and use in source and binary forms, with or
 16  *     without modification, are permitted provided that the following
 17  *     conditions are met:
 18  *
 19  *      - Redistributions of source code must retain the above
 20  *        copyright notice, this list of conditions and the following
 21  *        disclaimer.
 22  *
 23  *      - Redistributions in binary form must reproduce the above
 24  *        copyright notice, this list of conditions and the following
 25  *        disclaimer in the documentation and/or other materials
 26  *        provided with the distribution.
 27  *
 28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 35  * SOFTWARE.
 36  */
 37 
 38 #include <linux/bug.h>
 39 #include <linux/sched/signal.h>
 40 #include <linux/module.h>
 41 #include <linux/kernel.h>
 42 #include <linux/splice.h>
 43 #include <crypto/aead.h>
 44 
 45 #include <net/strparser.h>
 46 #include <net/tls.h>
 47 #include <trace/events/sock.h>
 48 
 49 #include "tls.h"
 50 
 51 struct tls_decrypt_arg {
 52         struct_group(inargs,
 53         bool zc;
 54         bool async;
 55         bool async_done;
 56         u8 tail;
 57         );
 58 
 59         struct sk_buff *skb;
 60 };
 61 
 62 struct tls_decrypt_ctx {
 63         struct sock *sk;
 64         u8 iv[TLS_MAX_IV_SIZE];
 65         u8 aad[TLS_MAX_AAD_SIZE];
 66         u8 tail;
 67         bool free_sgout;
 68         struct scatterlist sg[];
 69 };
 70 
 71 noinline void tls_err_abort(struct sock *sk, int err)
 72 {
 73         WARN_ON_ONCE(err >= 0);
 74         /* sk->sk_err should contain a positive error code. */
 75         WRITE_ONCE(sk->sk_err, -err);
 76         /* Paired with smp_rmb() in tcp_poll() */
 77         smp_wmb();
 78         sk_error_report(sk);
 79 }
 80 
 81 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
 82                      unsigned int recursion_level)
 83 {
 84         int start = skb_headlen(skb);
 85         int i, chunk = start - offset;
 86         struct sk_buff *frag_iter;
 87         int elt = 0;
 88 
 89         if (unlikely(recursion_level >= 24))
 90                 return -EMSGSIZE;
 91 
 92         if (chunk > 0) {
 93                 if (chunk > len)
 94                         chunk = len;
 95                 elt++;
 96                 len -= chunk;
 97                 if (len == 0)
 98                         return elt;
 99                 offset += chunk;
100         }
101 
102         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
103                 int end;
104 
105                 WARN_ON(start > offset + len);
106 
107                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
108                 chunk = end - offset;
109                 if (chunk > 0) {
110                         if (chunk > len)
111                                 chunk = len;
112                         elt++;
113                         len -= chunk;
114                         if (len == 0)
115                                 return elt;
116                         offset += chunk;
117                 }
118                 start = end;
119         }
120 
121         if (unlikely(skb_has_frag_list(skb))) {
122                 skb_walk_frags(skb, frag_iter) {
123                         int end, ret;
124 
125                         WARN_ON(start > offset + len);
126 
127                         end = start + frag_iter->len;
128                         chunk = end - offset;
129                         if (chunk > 0) {
130                                 if (chunk > len)
131                                         chunk = len;
132                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
133                                                 recursion_level + 1);
134                                 if (unlikely(ret < 0))
135                                         return ret;
136                                 elt += ret;
137                                 len -= chunk;
138                                 if (len == 0)
139                                         return elt;
140                                 offset += chunk;
141                         }
142                         start = end;
143                 }
144         }
145         BUG_ON(len);
146         return elt;
147 }
148 
149 /* Return the number of scatterlist elements required to completely map the
150  * skb, or -EMSGSIZE if the recursion depth is exceeded.
151  */
152 static int skb_nsg(struct sk_buff *skb, int offset, int len)
153 {
154         return __skb_nsg(skb, offset, len, 0);
155 }
156 
157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
158                               struct tls_decrypt_arg *darg)
159 {
160         struct strp_msg *rxm = strp_msg(skb);
161         struct tls_msg *tlm = tls_msg(skb);
162         int sub = 0;
163 
164         /* Determine zero-padding length */
165         if (prot->version == TLS_1_3_VERSION) {
166                 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
167                 char content_type = darg->zc ? darg->tail : 0;
168                 int err;
169 
170                 while (content_type == 0) {
171                         if (offset < prot->prepend_size)
172                                 return -EBADMSG;
173                         err = skb_copy_bits(skb, rxm->offset + offset,
174                                             &content_type, 1);
175                         if (err)
176                                 return err;
177                         if (content_type)
178                                 break;
179                         sub++;
180                         offset--;
181                 }
182                 tlm->control = content_type;
183         }
184         return sub;
185 }
186 
187 static void tls_decrypt_done(void *data, int err)
188 {
189         struct aead_request *aead_req = data;
190         struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
191         struct scatterlist *sgout = aead_req->dst;
192         struct tls_sw_context_rx *ctx;
193         struct tls_decrypt_ctx *dctx;
194         struct tls_context *tls_ctx;
195         struct scatterlist *sg;
196         unsigned int pages;
197         struct sock *sk;
198         int aead_size;
199 
200         /* If requests get too backlogged crypto API returns -EBUSY and calls
201          * ->complete(-EINPROGRESS) immediately followed by ->complete(0)
202          * to make waiting for backlog to flush with crypto_wait_req() easier.
203          * First wait converts -EBUSY -> -EINPROGRESS, and the second one
204          * -EINPROGRESS -> 0.
205          * We have a single struct crypto_async_request per direction, this
206          * scheme doesn't help us, so just ignore the first ->complete().
207          */
208         if (err == -EINPROGRESS)
209                 return;
210 
211         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
212         aead_size = ALIGN(aead_size, __alignof__(*dctx));
213         dctx = (void *)((u8 *)aead_req + aead_size);
214 
215         sk = dctx->sk;
216         tls_ctx = tls_get_ctx(sk);
217         ctx = tls_sw_ctx_rx(tls_ctx);
218 
219         /* Propagate if there was an err */
220         if (err) {
221                 if (err == -EBADMSG)
222                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
223                 ctx->async_wait.err = err;
224                 tls_err_abort(sk, err);
225         }
226 
227         /* Free the destination pages if skb was not decrypted inplace */
228         if (dctx->free_sgout) {
229                 /* Skip the first S/G entry as it points to AAD */
230                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
231                         if (!sg)
232                                 break;
233                         put_page(sg_page(sg));
234                 }
235         }
236 
237         kfree(aead_req);
238 
239         if (atomic_dec_and_test(&ctx->decrypt_pending))
240                 complete(&ctx->async_wait.completion);
241 }
242 
243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
244 {
245         if (!atomic_dec_and_test(&ctx->decrypt_pending))
246                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
247         atomic_inc(&ctx->decrypt_pending);
248 
249         return ctx->async_wait.err;
250 }
251 
252 static int tls_do_decryption(struct sock *sk,
253                              struct scatterlist *sgin,
254                              struct scatterlist *sgout,
255                              char *iv_recv,
256                              size_t data_len,
257                              struct aead_request *aead_req,
258                              struct tls_decrypt_arg *darg)
259 {
260         struct tls_context *tls_ctx = tls_get_ctx(sk);
261         struct tls_prot_info *prot = &tls_ctx->prot_info;
262         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
263         int ret;
264 
265         aead_request_set_tfm(aead_req, ctx->aead_recv);
266         aead_request_set_ad(aead_req, prot->aad_size);
267         aead_request_set_crypt(aead_req, sgin, sgout,
268                                data_len + prot->tag_size,
269                                (u8 *)iv_recv);
270 
271         if (darg->async) {
272                 aead_request_set_callback(aead_req,
273                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
274                                           tls_decrypt_done, aead_req);
275                 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
276                 atomic_inc(&ctx->decrypt_pending);
277         } else {
278                 DECLARE_CRYPTO_WAIT(wait);
279 
280                 aead_request_set_callback(aead_req,
281                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
282                                           crypto_req_done, &wait);
283                 ret = crypto_aead_decrypt(aead_req);
284                 if (ret == -EINPROGRESS || ret == -EBUSY)
285                         ret = crypto_wait_req(ret, &wait);
286                 return ret;
287         }
288 
289         ret = crypto_aead_decrypt(aead_req);
290         if (ret == -EINPROGRESS)
291                 return 0;
292 
293         if (ret == -EBUSY) {
294                 ret = tls_decrypt_async_wait(ctx);
295                 darg->async_done = true;
296                 /* all completions have run, we're not doing async anymore */
297                 darg->async = false;
298                 return ret;
299         }
300 
301         atomic_dec(&ctx->decrypt_pending);
302         darg->async = false;
303 
304         return ret;
305 }
306 
307 static void tls_trim_both_msgs(struct sock *sk, int target_size)
308 {
309         struct tls_context *tls_ctx = tls_get_ctx(sk);
310         struct tls_prot_info *prot = &tls_ctx->prot_info;
311         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
312         struct tls_rec *rec = ctx->open_rec;
313 
314         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
315         if (target_size > 0)
316                 target_size += prot->overhead_size;
317         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
318 }
319 
320 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
321 {
322         struct tls_context *tls_ctx = tls_get_ctx(sk);
323         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
324         struct tls_rec *rec = ctx->open_rec;
325         struct sk_msg *msg_en = &rec->msg_encrypted;
326 
327         return sk_msg_alloc(sk, msg_en, len, 0);
328 }
329 
330 static int tls_clone_plaintext_msg(struct sock *sk, int required)
331 {
332         struct tls_context *tls_ctx = tls_get_ctx(sk);
333         struct tls_prot_info *prot = &tls_ctx->prot_info;
334         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
335         struct tls_rec *rec = ctx->open_rec;
336         struct sk_msg *msg_pl = &rec->msg_plaintext;
337         struct sk_msg *msg_en = &rec->msg_encrypted;
338         int skip, len;
339 
340         /* We add page references worth len bytes from encrypted sg
341          * at the end of plaintext sg. It is guaranteed that msg_en
342          * has enough required room (ensured by caller).
343          */
344         len = required - msg_pl->sg.size;
345 
346         /* Skip initial bytes in msg_en's data to be able to use
347          * same offset of both plain and encrypted data.
348          */
349         skip = prot->prepend_size + msg_pl->sg.size;
350 
351         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
352 }
353 
354 static struct tls_rec *tls_get_rec(struct sock *sk)
355 {
356         struct tls_context *tls_ctx = tls_get_ctx(sk);
357         struct tls_prot_info *prot = &tls_ctx->prot_info;
358         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359         struct sk_msg *msg_pl, *msg_en;
360         struct tls_rec *rec;
361         int mem_size;
362 
363         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
364 
365         rec = kzalloc(mem_size, sk->sk_allocation);
366         if (!rec)
367                 return NULL;
368 
369         msg_pl = &rec->msg_plaintext;
370         msg_en = &rec->msg_encrypted;
371 
372         sk_msg_init(msg_pl);
373         sk_msg_init(msg_en);
374 
375         sg_init_table(rec->sg_aead_in, 2);
376         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
377         sg_unmark_end(&rec->sg_aead_in[1]);
378 
379         sg_init_table(rec->sg_aead_out, 2);
380         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
381         sg_unmark_end(&rec->sg_aead_out[1]);
382 
383         rec->sk = sk;
384 
385         return rec;
386 }
387 
388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
389 {
390         sk_msg_free(sk, &rec->msg_encrypted);
391         sk_msg_free(sk, &rec->msg_plaintext);
392         kfree(rec);
393 }
394 
395 static void tls_free_open_rec(struct sock *sk)
396 {
397         struct tls_context *tls_ctx = tls_get_ctx(sk);
398         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
399         struct tls_rec *rec = ctx->open_rec;
400 
401         if (rec) {
402                 tls_free_rec(sk, rec);
403                 ctx->open_rec = NULL;
404         }
405 }
406 
407 int tls_tx_records(struct sock *sk, int flags)
408 {
409         struct tls_context *tls_ctx = tls_get_ctx(sk);
410         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
411         struct tls_rec *rec, *tmp;
412         struct sk_msg *msg_en;
413         int tx_flags, rc = 0;
414 
415         if (tls_is_partially_sent_record(tls_ctx)) {
416                 rec = list_first_entry(&ctx->tx_list,
417                                        struct tls_rec, list);
418 
419                 if (flags == -1)
420                         tx_flags = rec->tx_flags;
421                 else
422                         tx_flags = flags;
423 
424                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
425                 if (rc)
426                         goto tx_err;
427 
428                 /* Full record has been transmitted.
429                  * Remove the head of tx_list
430                  */
431                 list_del(&rec->list);
432                 sk_msg_free(sk, &rec->msg_plaintext);
433                 kfree(rec);
434         }
435 
436         /* Tx all ready records */
437         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
438                 if (READ_ONCE(rec->tx_ready)) {
439                         if (flags == -1)
440                                 tx_flags = rec->tx_flags;
441                         else
442                                 tx_flags = flags;
443 
444                         msg_en = &rec->msg_encrypted;
445                         rc = tls_push_sg(sk, tls_ctx,
446                                          &msg_en->sg.data[msg_en->sg.curr],
447                                          0, tx_flags);
448                         if (rc)
449                                 goto tx_err;
450 
451                         list_del(&rec->list);
452                         sk_msg_free(sk, &rec->msg_plaintext);
453                         kfree(rec);
454                 } else {
455                         break;
456                 }
457         }
458 
459 tx_err:
460         if (rc < 0 && rc != -EAGAIN)
461                 tls_err_abort(sk, -EBADMSG);
462 
463         return rc;
464 }
465 
466 static void tls_encrypt_done(void *data, int err)
467 {
468         struct tls_sw_context_tx *ctx;
469         struct tls_context *tls_ctx;
470         struct tls_prot_info *prot;
471         struct tls_rec *rec = data;
472         struct scatterlist *sge;
473         struct sk_msg *msg_en;
474         struct sock *sk;
475 
476         if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */
477                 return;
478 
479         msg_en = &rec->msg_encrypted;
480 
481         sk = rec->sk;
482         tls_ctx = tls_get_ctx(sk);
483         prot = &tls_ctx->prot_info;
484         ctx = tls_sw_ctx_tx(tls_ctx);
485 
486         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
487         sge->offset -= prot->prepend_size;
488         sge->length += prot->prepend_size;
489 
490         /* Check if error is previously set on socket */
491         if (err || sk->sk_err) {
492                 rec = NULL;
493 
494                 /* If err is already set on socket, return the same code */
495                 if (sk->sk_err) {
496                         ctx->async_wait.err = -sk->sk_err;
497                 } else {
498                         ctx->async_wait.err = err;
499                         tls_err_abort(sk, err);
500                 }
501         }
502 
503         if (rec) {
504                 struct tls_rec *first_rec;
505 
506                 /* Mark the record as ready for transmission */
507                 smp_store_mb(rec->tx_ready, true);
508 
509                 /* If received record is at head of tx_list, schedule tx */
510                 first_rec = list_first_entry(&ctx->tx_list,
511                                              struct tls_rec, list);
512                 if (rec == first_rec) {
513                         /* Schedule the transmission */
514                         if (!test_and_set_bit(BIT_TX_SCHEDULED,
515                                               &ctx->tx_bitmask))
516                                 schedule_delayed_work(&ctx->tx_work.work, 1);
517                 }
518         }
519 
520         if (atomic_dec_and_test(&ctx->encrypt_pending))
521                 complete(&ctx->async_wait.completion);
522 }
523 
524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
525 {
526         if (!atomic_dec_and_test(&ctx->encrypt_pending))
527                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
528         atomic_inc(&ctx->encrypt_pending);
529 
530         return ctx->async_wait.err;
531 }
532 
533 static int tls_do_encryption(struct sock *sk,
534                              struct tls_context *tls_ctx,
535                              struct tls_sw_context_tx *ctx,
536                              struct aead_request *aead_req,
537                              size_t data_len, u32 start)
538 {
539         struct tls_prot_info *prot = &tls_ctx->prot_info;
540         struct tls_rec *rec = ctx->open_rec;
541         struct sk_msg *msg_en = &rec->msg_encrypted;
542         struct scatterlist *sge = sk_msg_elem(msg_en, start);
543         int rc, iv_offset = 0;
544 
545         /* For CCM based ciphers, first byte of IV is a constant */
546         switch (prot->cipher_type) {
547         case TLS_CIPHER_AES_CCM_128:
548                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
549                 iv_offset = 1;
550                 break;
551         case TLS_CIPHER_SM4_CCM:
552                 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
553                 iv_offset = 1;
554                 break;
555         }
556 
557         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
558                prot->iv_size + prot->salt_size);
559 
560         tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
561                             tls_ctx->tx.rec_seq);
562 
563         sge->offset += prot->prepend_size;
564         sge->length -= prot->prepend_size;
565 
566         msg_en->sg.curr = start;
567 
568         aead_request_set_tfm(aead_req, ctx->aead_send);
569         aead_request_set_ad(aead_req, prot->aad_size);
570         aead_request_set_crypt(aead_req, rec->sg_aead_in,
571                                rec->sg_aead_out,
572                                data_len, rec->iv_data);
573 
574         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
575                                   tls_encrypt_done, rec);
576 
577         /* Add the record in tx_list */
578         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
579         DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
580         atomic_inc(&ctx->encrypt_pending);
581 
582         rc = crypto_aead_encrypt(aead_req);
583         if (rc == -EBUSY) {
584                 rc = tls_encrypt_async_wait(ctx);
585                 rc = rc ?: -EINPROGRESS;
586         }
587         if (!rc || rc != -EINPROGRESS) {
588                 atomic_dec(&ctx->encrypt_pending);
589                 sge->offset -= prot->prepend_size;
590                 sge->length += prot->prepend_size;
591         }
592 
593         if (!rc) {
594                 WRITE_ONCE(rec->tx_ready, true);
595         } else if (rc != -EINPROGRESS) {
596                 list_del(&rec->list);
597                 return rc;
598         }
599 
600         /* Unhook the record from context if encryption is not failure */
601         ctx->open_rec = NULL;
602         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
603         return rc;
604 }
605 
606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
607                                  struct tls_rec **to, struct sk_msg *msg_opl,
608                                  struct sk_msg *msg_oen, u32 split_point,
609                                  u32 tx_overhead_size, u32 *orig_end)
610 {
611         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
612         struct scatterlist *sge, *osge, *nsge;
613         u32 orig_size = msg_opl->sg.size;
614         struct scatterlist tmp = { };
615         struct sk_msg *msg_npl;
616         struct tls_rec *new;
617         int ret;
618 
619         new = tls_get_rec(sk);
620         if (!new)
621                 return -ENOMEM;
622         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
623                            tx_overhead_size, 0);
624         if (ret < 0) {
625                 tls_free_rec(sk, new);
626                 return ret;
627         }
628 
629         *orig_end = msg_opl->sg.end;
630         i = msg_opl->sg.start;
631         sge = sk_msg_elem(msg_opl, i);
632         while (apply && sge->length) {
633                 if (sge->length > apply) {
634                         u32 len = sge->length - apply;
635 
636                         get_page(sg_page(sge));
637                         sg_set_page(&tmp, sg_page(sge), len,
638                                     sge->offset + apply);
639                         sge->length = apply;
640                         bytes += apply;
641                         apply = 0;
642                 } else {
643                         apply -= sge->length;
644                         bytes += sge->length;
645                 }
646 
647                 sk_msg_iter_var_next(i);
648                 if (i == msg_opl->sg.end)
649                         break;
650                 sge = sk_msg_elem(msg_opl, i);
651         }
652 
653         msg_opl->sg.end = i;
654         msg_opl->sg.curr = i;
655         msg_opl->sg.copybreak = 0;
656         msg_opl->apply_bytes = 0;
657         msg_opl->sg.size = bytes;
658 
659         msg_npl = &new->msg_plaintext;
660         msg_npl->apply_bytes = apply;
661         msg_npl->sg.size = orig_size - bytes;
662 
663         j = msg_npl->sg.start;
664         nsge = sk_msg_elem(msg_npl, j);
665         if (tmp.length) {
666                 memcpy(nsge, &tmp, sizeof(*nsge));
667                 sk_msg_iter_var_next(j);
668                 nsge = sk_msg_elem(msg_npl, j);
669         }
670 
671         osge = sk_msg_elem(msg_opl, i);
672         while (osge->length) {
673                 memcpy(nsge, osge, sizeof(*nsge));
674                 sg_unmark_end(nsge);
675                 sk_msg_iter_var_next(i);
676                 sk_msg_iter_var_next(j);
677                 if (i == *orig_end)
678                         break;
679                 osge = sk_msg_elem(msg_opl, i);
680                 nsge = sk_msg_elem(msg_npl, j);
681         }
682 
683         msg_npl->sg.end = j;
684         msg_npl->sg.curr = j;
685         msg_npl->sg.copybreak = 0;
686 
687         *to = new;
688         return 0;
689 }
690 
691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
692                                   struct tls_rec *from, u32 orig_end)
693 {
694         struct sk_msg *msg_npl = &from->msg_plaintext;
695         struct sk_msg *msg_opl = &to->msg_plaintext;
696         struct scatterlist *osge, *nsge;
697         u32 i, j;
698 
699         i = msg_opl->sg.end;
700         sk_msg_iter_var_prev(i);
701         j = msg_npl->sg.start;
702 
703         osge = sk_msg_elem(msg_opl, i);
704         nsge = sk_msg_elem(msg_npl, j);
705 
706         if (sg_page(osge) == sg_page(nsge) &&
707             osge->offset + osge->length == nsge->offset) {
708                 osge->length += nsge->length;
709                 put_page(sg_page(nsge));
710         }
711 
712         msg_opl->sg.end = orig_end;
713         msg_opl->sg.curr = orig_end;
714         msg_opl->sg.copybreak = 0;
715         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
716         msg_opl->sg.size += msg_npl->sg.size;
717 
718         sk_msg_free(sk, &to->msg_encrypted);
719         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
720 
721         kfree(from);
722 }
723 
724 static int tls_push_record(struct sock *sk, int flags,
725                            unsigned char record_type)
726 {
727         struct tls_context *tls_ctx = tls_get_ctx(sk);
728         struct tls_prot_info *prot = &tls_ctx->prot_info;
729         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
730         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
731         u32 i, split_point, orig_end;
732         struct sk_msg *msg_pl, *msg_en;
733         struct aead_request *req;
734         bool split;
735         int rc;
736 
737         if (!rec)
738                 return 0;
739 
740         msg_pl = &rec->msg_plaintext;
741         msg_en = &rec->msg_encrypted;
742 
743         split_point = msg_pl->apply_bytes;
744         split = split_point && split_point < msg_pl->sg.size;
745         if (unlikely((!split &&
746                       msg_pl->sg.size +
747                       prot->overhead_size > msg_en->sg.size) ||
748                      (split &&
749                       split_point +
750                       prot->overhead_size > msg_en->sg.size))) {
751                 split = true;
752                 split_point = msg_en->sg.size;
753         }
754         if (split) {
755                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
756                                            split_point, prot->overhead_size,
757                                            &orig_end);
758                 if (rc < 0)
759                         return rc;
760                 /* This can happen if above tls_split_open_record allocates
761                  * a single large encryption buffer instead of two smaller
762                  * ones. In this case adjust pointers and continue without
763                  * split.
764                  */
765                 if (!msg_pl->sg.size) {
766                         tls_merge_open_record(sk, rec, tmp, orig_end);
767                         msg_pl = &rec->msg_plaintext;
768                         msg_en = &rec->msg_encrypted;
769                         split = false;
770                 }
771                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
772                             prot->overhead_size);
773         }
774 
775         rec->tx_flags = flags;
776         req = &rec->aead_req;
777 
778         i = msg_pl->sg.end;
779         sk_msg_iter_var_prev(i);
780 
781         rec->content_type = record_type;
782         if (prot->version == TLS_1_3_VERSION) {
783                 /* Add content type to end of message.  No padding added */
784                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
785                 sg_mark_end(&rec->sg_content_type);
786                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
787                          &rec->sg_content_type);
788         } else {
789                 sg_mark_end(sk_msg_elem(msg_pl, i));
790         }
791 
792         if (msg_pl->sg.end < msg_pl->sg.start) {
793                 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
794                          MAX_SKB_FRAGS - msg_pl->sg.start + 1,
795                          msg_pl->sg.data);
796         }
797 
798         i = msg_pl->sg.start;
799         sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
800 
801         i = msg_en->sg.end;
802         sk_msg_iter_var_prev(i);
803         sg_mark_end(sk_msg_elem(msg_en, i));
804 
805         i = msg_en->sg.start;
806         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
807 
808         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
809                      tls_ctx->tx.rec_seq, record_type, prot);
810 
811         tls_fill_prepend(tls_ctx,
812                          page_address(sg_page(&msg_en->sg.data[i])) +
813                          msg_en->sg.data[i].offset,
814                          msg_pl->sg.size + prot->tail_size,
815                          record_type);
816 
817         tls_ctx->pending_open_record_frags = false;
818 
819         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
820                                msg_pl->sg.size + prot->tail_size, i);
821         if (rc < 0) {
822                 if (rc != -EINPROGRESS) {
823                         tls_err_abort(sk, -EBADMSG);
824                         if (split) {
825                                 tls_ctx->pending_open_record_frags = true;
826                                 tls_merge_open_record(sk, rec, tmp, orig_end);
827                         }
828                 }
829                 ctx->async_capable = 1;
830                 return rc;
831         } else if (split) {
832                 msg_pl = &tmp->msg_plaintext;
833                 msg_en = &tmp->msg_encrypted;
834                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
835                 tls_ctx->pending_open_record_frags = true;
836                 ctx->open_rec = tmp;
837         }
838 
839         return tls_tx_records(sk, flags);
840 }
841 
842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
843                                bool full_record, u8 record_type,
844                                ssize_t *copied, int flags)
845 {
846         struct tls_context *tls_ctx = tls_get_ctx(sk);
847         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
848         struct sk_msg msg_redir = { };
849         struct sk_psock *psock;
850         struct sock *sk_redir;
851         struct tls_rec *rec;
852         bool enospc, policy, redir_ingress;
853         int err = 0, send;
854         u32 delta = 0;
855 
856         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
857         psock = sk_psock_get(sk);
858         if (!psock || !policy) {
859                 err = tls_push_record(sk, flags, record_type);
860                 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
861                         *copied -= sk_msg_free(sk, msg);
862                         tls_free_open_rec(sk);
863                         err = -sk->sk_err;
864                 }
865                 if (psock)
866                         sk_psock_put(sk, psock);
867                 return err;
868         }
869 more_data:
870         enospc = sk_msg_full(msg);
871         if (psock->eval == __SK_NONE) {
872                 delta = msg->sg.size;
873                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
874                 delta -= msg->sg.size;
875         }
876         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
877             !enospc && !full_record) {
878                 err = -ENOSPC;
879                 goto out_err;
880         }
881         msg->cork_bytes = 0;
882         send = msg->sg.size;
883         if (msg->apply_bytes && msg->apply_bytes < send)
884                 send = msg->apply_bytes;
885 
886         switch (psock->eval) {
887         case __SK_PASS:
888                 err = tls_push_record(sk, flags, record_type);
889                 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
890                         *copied -= sk_msg_free(sk, msg);
891                         tls_free_open_rec(sk);
892                         err = -sk->sk_err;
893                         goto out_err;
894                 }
895                 break;
896         case __SK_REDIRECT:
897                 redir_ingress = psock->redir_ingress;
898                 sk_redir = psock->sk_redir;
899                 memcpy(&msg_redir, msg, sizeof(*msg));
900                 if (msg->apply_bytes < send)
901                         msg->apply_bytes = 0;
902                 else
903                         msg->apply_bytes -= send;
904                 sk_msg_return_zero(sk, msg, send);
905                 msg->sg.size -= send;
906                 release_sock(sk);
907                 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
908                                             &msg_redir, send, flags);
909                 lock_sock(sk);
910                 if (err < 0) {
911                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
912                         msg->sg.size = 0;
913                 }
914                 if (msg->sg.size == 0)
915                         tls_free_open_rec(sk);
916                 break;
917         case __SK_DROP:
918         default:
919                 sk_msg_free_partial(sk, msg, send);
920                 if (msg->apply_bytes < send)
921                         msg->apply_bytes = 0;
922                 else
923                         msg->apply_bytes -= send;
924                 if (msg->sg.size == 0)
925                         tls_free_open_rec(sk);
926                 *copied -= (send + delta);
927                 err = -EACCES;
928         }
929 
930         if (likely(!err)) {
931                 bool reset_eval = !ctx->open_rec;
932 
933                 rec = ctx->open_rec;
934                 if (rec) {
935                         msg = &rec->msg_plaintext;
936                         if (!msg->apply_bytes)
937                                 reset_eval = true;
938                 }
939                 if (reset_eval) {
940                         psock->eval = __SK_NONE;
941                         if (psock->sk_redir) {
942                                 sock_put(psock->sk_redir);
943                                 psock->sk_redir = NULL;
944                         }
945                 }
946                 if (rec)
947                         goto more_data;
948         }
949  out_err:
950         sk_psock_put(sk, psock);
951         return err;
952 }
953 
954 static int tls_sw_push_pending_record(struct sock *sk, int flags)
955 {
956         struct tls_context *tls_ctx = tls_get_ctx(sk);
957         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
958         struct tls_rec *rec = ctx->open_rec;
959         struct sk_msg *msg_pl;
960         size_t copied;
961 
962         if (!rec)
963                 return 0;
964 
965         msg_pl = &rec->msg_plaintext;
966         copied = msg_pl->sg.size;
967         if (!copied)
968                 return 0;
969 
970         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
971                                    &copied, flags);
972 }
973 
974 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
975                                  struct sk_msg *msg_pl, size_t try_to_copy,
976                                  ssize_t *copied)
977 {
978         struct page *page = NULL, **pages = &page;
979 
980         do {
981                 ssize_t part;
982                 size_t off;
983 
984                 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
985                                               try_to_copy, 1, 0, &off);
986                 if (part <= 0)
987                         return part ?: -EIO;
988 
989                 if (WARN_ON_ONCE(!sendpage_ok(page))) {
990                         iov_iter_revert(&msg->msg_iter, part);
991                         return -EIO;
992                 }
993 
994                 sk_msg_page_add(msg_pl, page, part, off);
995                 msg_pl->sg.copybreak = 0;
996                 msg_pl->sg.curr = msg_pl->sg.end;
997                 sk_mem_charge(sk, part);
998                 *copied += part;
999                 try_to_copy -= part;
1000         } while (try_to_copy && !sk_msg_full(msg_pl));
1001 
1002         return 0;
1003 }
1004 
1005 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
1006                                  size_t size)
1007 {
1008         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1009         struct tls_context *tls_ctx = tls_get_ctx(sk);
1010         struct tls_prot_info *prot = &tls_ctx->prot_info;
1011         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1012         bool async_capable = ctx->async_capable;
1013         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1014         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1015         bool eor = !(msg->msg_flags & MSG_MORE);
1016         size_t try_to_copy;
1017         ssize_t copied = 0;
1018         struct sk_msg *msg_pl, *msg_en;
1019         struct tls_rec *rec;
1020         int required_size;
1021         int num_async = 0;
1022         bool full_record;
1023         int record_room;
1024         int num_zc = 0;
1025         int orig_size;
1026         int ret = 0;
1027 
1028         if (!eor && (msg->msg_flags & MSG_EOR))
1029                 return -EINVAL;
1030 
1031         if (unlikely(msg->msg_controllen)) {
1032                 ret = tls_process_cmsg(sk, msg, &record_type);
1033                 if (ret) {
1034                         if (ret == -EINPROGRESS)
1035                                 num_async++;
1036                         else if (ret != -EAGAIN)
1037                                 goto send_end;
1038                 }
1039         }
1040 
1041         while (msg_data_left(msg)) {
1042                 if (sk->sk_err) {
1043                         ret = -sk->sk_err;
1044                         goto send_end;
1045                 }
1046 
1047                 if (ctx->open_rec)
1048                         rec = ctx->open_rec;
1049                 else
1050                         rec = ctx->open_rec = tls_get_rec(sk);
1051                 if (!rec) {
1052                         ret = -ENOMEM;
1053                         goto send_end;
1054                 }
1055 
1056                 msg_pl = &rec->msg_plaintext;
1057                 msg_en = &rec->msg_encrypted;
1058 
1059                 orig_size = msg_pl->sg.size;
1060                 full_record = false;
1061                 try_to_copy = msg_data_left(msg);
1062                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1063                 if (try_to_copy >= record_room) {
1064                         try_to_copy = record_room;
1065                         full_record = true;
1066                 }
1067 
1068                 required_size = msg_pl->sg.size + try_to_copy +
1069                                 prot->overhead_size;
1070 
1071                 if (!sk_stream_memory_free(sk))
1072                         goto wait_for_sndbuf;
1073 
1074 alloc_encrypted:
1075                 ret = tls_alloc_encrypted_msg(sk, required_size);
1076                 if (ret) {
1077                         if (ret != -ENOSPC)
1078                                 goto wait_for_memory;
1079 
1080                         /* Adjust try_to_copy according to the amount that was
1081                          * actually allocated. The difference is due
1082                          * to max sg elements limit
1083                          */
1084                         try_to_copy -= required_size - msg_en->sg.size;
1085                         full_record = true;
1086                 }
1087 
1088                 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1089                         ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1090                                                     try_to_copy, &copied);
1091                         if (ret < 0)
1092                                 goto send_end;
1093                         tls_ctx->pending_open_record_frags = true;
1094 
1095                         if (sk_msg_full(msg_pl))
1096                                 full_record = true;
1097 
1098                         if (full_record || eor)
1099                                 goto copied;
1100                         continue;
1101                 }
1102 
1103                 if (!is_kvec && (full_record || eor) && !async_capable) {
1104                         u32 first = msg_pl->sg.end;
1105 
1106                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1107                                                         msg_pl, try_to_copy);
1108                         if (ret)
1109                                 goto fallback_to_reg_send;
1110 
1111                         num_zc++;
1112                         copied += try_to_copy;
1113 
1114                         sk_msg_sg_copy_set(msg_pl, first);
1115                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1116                                                   record_type, &copied,
1117                                                   msg->msg_flags);
1118                         if (ret) {
1119                                 if (ret == -EINPROGRESS)
1120                                         num_async++;
1121                                 else if (ret == -ENOMEM)
1122                                         goto wait_for_memory;
1123                                 else if (ctx->open_rec && ret == -ENOSPC)
1124                                         goto rollback_iter;
1125                                 else if (ret != -EAGAIN)
1126                                         goto send_end;
1127                         }
1128                         continue;
1129 rollback_iter:
1130                         copied -= try_to_copy;
1131                         sk_msg_sg_copy_clear(msg_pl, first);
1132                         iov_iter_revert(&msg->msg_iter,
1133                                         msg_pl->sg.size - orig_size);
1134 fallback_to_reg_send:
1135                         sk_msg_trim(sk, msg_pl, orig_size);
1136                 }
1137 
1138                 required_size = msg_pl->sg.size + try_to_copy;
1139 
1140                 ret = tls_clone_plaintext_msg(sk, required_size);
1141                 if (ret) {
1142                         if (ret != -ENOSPC)
1143                                 goto send_end;
1144 
1145                         /* Adjust try_to_copy according to the amount that was
1146                          * actually allocated. The difference is due
1147                          * to max sg elements limit
1148                          */
1149                         try_to_copy -= required_size - msg_pl->sg.size;
1150                         full_record = true;
1151                         sk_msg_trim(sk, msg_en,
1152                                     msg_pl->sg.size + prot->overhead_size);
1153                 }
1154 
1155                 if (try_to_copy) {
1156                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1157                                                        msg_pl, try_to_copy);
1158                         if (ret < 0)
1159                                 goto trim_sgl;
1160                 }
1161 
1162                 /* Open records defined only if successfully copied, otherwise
1163                  * we would trim the sg but not reset the open record frags.
1164                  */
1165                 tls_ctx->pending_open_record_frags = true;
1166                 copied += try_to_copy;
1167 copied:
1168                 if (full_record || eor) {
1169                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1170                                                   record_type, &copied,
1171                                                   msg->msg_flags);
1172                         if (ret) {
1173                                 if (ret == -EINPROGRESS)
1174                                         num_async++;
1175                                 else if (ret == -ENOMEM)
1176                                         goto wait_for_memory;
1177                                 else if (ret != -EAGAIN) {
1178                                         if (ret == -ENOSPC)
1179                                                 ret = 0;
1180                                         goto send_end;
1181                                 }
1182                         }
1183                 }
1184 
1185                 continue;
1186 
1187 wait_for_sndbuf:
1188                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1189 wait_for_memory:
1190                 ret = sk_stream_wait_memory(sk, &timeo);
1191                 if (ret) {
1192 trim_sgl:
1193                         if (ctx->open_rec)
1194                                 tls_trim_both_msgs(sk, orig_size);
1195                         goto send_end;
1196                 }
1197 
1198                 if (ctx->open_rec && msg_en->sg.size < required_size)
1199                         goto alloc_encrypted;
1200         }
1201 
1202         if (!num_async) {
1203                 goto send_end;
1204         } else if (num_zc) {
1205                 int err;
1206 
1207                 /* Wait for pending encryptions to get completed */
1208                 err = tls_encrypt_async_wait(ctx);
1209                 if (err) {
1210                         ret = err;
1211                         copied = 0;
1212                 }
1213         }
1214 
1215         /* Transmit if any encryptions have completed */
1216         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1217                 cancel_delayed_work(&ctx->tx_work.work);
1218                 tls_tx_records(sk, msg->msg_flags);
1219         }
1220 
1221 send_end:
1222         ret = sk_stream_error(sk, msg->msg_flags, ret);
1223         return copied > 0 ? copied : ret;
1224 }
1225 
1226 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1227 {
1228         struct tls_context *tls_ctx = tls_get_ctx(sk);
1229         int ret;
1230 
1231         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1232                                MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1233                                MSG_SENDPAGE_NOPOLICY))
1234                 return -EOPNOTSUPP;
1235 
1236         ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1237         if (ret)
1238                 return ret;
1239         lock_sock(sk);
1240         ret = tls_sw_sendmsg_locked(sk, msg, size);
1241         release_sock(sk);
1242         mutex_unlock(&tls_ctx->tx_lock);
1243         return ret;
1244 }
1245 
1246 /*
1247  * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1248  */
1249 void tls_sw_splice_eof(struct socket *sock)
1250 {
1251         struct sock *sk = sock->sk;
1252         struct tls_context *tls_ctx = tls_get_ctx(sk);
1253         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1254         struct tls_rec *rec;
1255         struct sk_msg *msg_pl;
1256         ssize_t copied = 0;
1257         bool retrying = false;
1258         int ret = 0;
1259 
1260         if (!ctx->open_rec)
1261                 return;
1262 
1263         mutex_lock(&tls_ctx->tx_lock);
1264         lock_sock(sk);
1265 
1266 retry:
1267         /* same checks as in tls_sw_push_pending_record() */
1268         rec = ctx->open_rec;
1269         if (!rec)
1270                 goto unlock;
1271 
1272         msg_pl = &rec->msg_plaintext;
1273         if (msg_pl->sg.size == 0)
1274                 goto unlock;
1275 
1276         /* Check the BPF advisor and perform transmission. */
1277         ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1278                                   &copied, 0);
1279         switch (ret) {
1280         case 0:
1281         case -EAGAIN:
1282                 if (retrying)
1283                         goto unlock;
1284                 retrying = true;
1285                 goto retry;
1286         case -EINPROGRESS:
1287                 break;
1288         default:
1289                 goto unlock;
1290         }
1291 
1292         /* Wait for pending encryptions to get completed */
1293         if (tls_encrypt_async_wait(ctx))
1294                 goto unlock;
1295 
1296         /* Transmit if any encryptions have completed */
1297         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1298                 cancel_delayed_work(&ctx->tx_work.work);
1299                 tls_tx_records(sk, 0);
1300         }
1301 
1302 unlock:
1303         release_sock(sk);
1304         mutex_unlock(&tls_ctx->tx_lock);
1305 }
1306 
1307 static int
1308 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1309                 bool released)
1310 {
1311         struct tls_context *tls_ctx = tls_get_ctx(sk);
1312         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1313         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1314         int ret = 0;
1315         long timeo;
1316 
1317         timeo = sock_rcvtimeo(sk, nonblock);
1318 
1319         while (!tls_strp_msg_ready(ctx)) {
1320                 if (!sk_psock_queue_empty(psock))
1321                         return 0;
1322 
1323                 if (sk->sk_err)
1324                         return sock_error(sk);
1325 
1326                 if (ret < 0)
1327                         return ret;
1328 
1329                 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1330                         tls_strp_check_rcv(&ctx->strp);
1331                         if (tls_strp_msg_ready(ctx))
1332                                 break;
1333                 }
1334 
1335                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1336                         return 0;
1337 
1338                 if (sock_flag(sk, SOCK_DONE))
1339                         return 0;
1340 
1341                 if (!timeo)
1342                         return -EAGAIN;
1343 
1344                 released = true;
1345                 add_wait_queue(sk_sleep(sk), &wait);
1346                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1347                 ret = sk_wait_event(sk, &timeo,
1348                                     tls_strp_msg_ready(ctx) ||
1349                                     !sk_psock_queue_empty(psock),
1350                                     &wait);
1351                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1352                 remove_wait_queue(sk_sleep(sk), &wait);
1353 
1354                 /* Handle signals */
1355                 if (signal_pending(current))
1356                         return sock_intr_errno(timeo);
1357         }
1358 
1359         tls_strp_msg_load(&ctx->strp, released);
1360 
1361         return 1;
1362 }
1363 
1364 static int tls_setup_from_iter(struct iov_iter *from,
1365                                int length, int *pages_used,
1366                                struct scatterlist *to,
1367                                int to_max_pages)
1368 {
1369         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1370         struct page *pages[MAX_SKB_FRAGS];
1371         unsigned int size = 0;
1372         ssize_t copied, use;
1373         size_t offset;
1374 
1375         while (length > 0) {
1376                 i = 0;
1377                 maxpages = to_max_pages - num_elem;
1378                 if (maxpages == 0) {
1379                         rc = -EFAULT;
1380                         goto out;
1381                 }
1382                 copied = iov_iter_get_pages2(from, pages,
1383                                             length,
1384                                             maxpages, &offset);
1385                 if (copied <= 0) {
1386                         rc = -EFAULT;
1387                         goto out;
1388                 }
1389 
1390                 length -= copied;
1391                 size += copied;
1392                 while (copied) {
1393                         use = min_t(int, copied, PAGE_SIZE - offset);
1394 
1395                         sg_set_page(&to[num_elem],
1396                                     pages[i], use, offset);
1397                         sg_unmark_end(&to[num_elem]);
1398                         /* We do not uncharge memory from this API */
1399 
1400                         offset = 0;
1401                         copied -= use;
1402 
1403                         i++;
1404                         num_elem++;
1405                 }
1406         }
1407         /* Mark the end in the last sg entry if newly added */
1408         if (num_elem > *pages_used)
1409                 sg_mark_end(&to[num_elem - 1]);
1410 out:
1411         if (rc)
1412                 iov_iter_revert(from, size);
1413         *pages_used = num_elem;
1414 
1415         return rc;
1416 }
1417 
1418 static struct sk_buff *
1419 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1420                      unsigned int full_len)
1421 {
1422         struct strp_msg *clr_rxm;
1423         struct sk_buff *clr_skb;
1424         int err;
1425 
1426         clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1427                                        &err, sk->sk_allocation);
1428         if (!clr_skb)
1429                 return NULL;
1430 
1431         skb_copy_header(clr_skb, skb);
1432         clr_skb->len = full_len;
1433         clr_skb->data_len = full_len;
1434 
1435         clr_rxm = strp_msg(clr_skb);
1436         clr_rxm->offset = 0;
1437 
1438         return clr_skb;
1439 }
1440 
1441 /* Decrypt handlers
1442  *
1443  * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1444  * They must transform the darg in/out argument are as follows:
1445  *       |          Input            |         Output
1446  * -------------------------------------------------------------------
1447  *    zc | Zero-copy decrypt allowed | Zero-copy performed
1448  * async | Async decrypt allowed     | Async crypto used / in progress
1449  *   skb |            *              | Output skb
1450  *
1451  * If ZC decryption was performed darg.skb will point to the input skb.
1452  */
1453 
1454 /* This function decrypts the input skb into either out_iov or in out_sg
1455  * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1456  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1457  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1458  * NULL, then the decryption happens inside skb buffers itself, i.e.
1459  * zero-copy gets disabled and 'darg->zc' is updated.
1460  */
1461 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1462                           struct scatterlist *out_sg,
1463                           struct tls_decrypt_arg *darg)
1464 {
1465         struct tls_context *tls_ctx = tls_get_ctx(sk);
1466         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1467         struct tls_prot_info *prot = &tls_ctx->prot_info;
1468         int n_sgin, n_sgout, aead_size, err, pages = 0;
1469         struct sk_buff *skb = tls_strp_msg(ctx);
1470         const struct strp_msg *rxm = strp_msg(skb);
1471         const struct tls_msg *tlm = tls_msg(skb);
1472         struct aead_request *aead_req;
1473         struct scatterlist *sgin = NULL;
1474         struct scatterlist *sgout = NULL;
1475         const int data_len = rxm->full_len - prot->overhead_size;
1476         int tail_pages = !!prot->tail_size;
1477         struct tls_decrypt_ctx *dctx;
1478         struct sk_buff *clear_skb;
1479         int iv_offset = 0;
1480         u8 *mem;
1481 
1482         n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1483                          rxm->full_len - prot->prepend_size);
1484         if (n_sgin < 1)
1485                 return n_sgin ?: -EBADMSG;
1486 
1487         if (darg->zc && (out_iov || out_sg)) {
1488                 clear_skb = NULL;
1489 
1490                 if (out_iov)
1491                         n_sgout = 1 + tail_pages +
1492                                 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1493                 else
1494                         n_sgout = sg_nents(out_sg);
1495         } else {
1496                 darg->zc = false;
1497 
1498                 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1499                 if (!clear_skb)
1500                         return -ENOMEM;
1501 
1502                 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1503         }
1504 
1505         /* Increment to accommodate AAD */
1506         n_sgin = n_sgin + 1;
1507 
1508         /* Allocate a single block of memory which contains
1509          *   aead_req || tls_decrypt_ctx.
1510          * Both structs are variable length.
1511          */
1512         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1513         aead_size = ALIGN(aead_size, __alignof__(*dctx));
1514         mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1515                       sk->sk_allocation);
1516         if (!mem) {
1517                 err = -ENOMEM;
1518                 goto exit_free_skb;
1519         }
1520 
1521         /* Segment the allocated memory */
1522         aead_req = (struct aead_request *)mem;
1523         dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1524         dctx->sk = sk;
1525         sgin = &dctx->sg[0];
1526         sgout = &dctx->sg[n_sgin];
1527 
1528         /* For CCM based ciphers, first byte of nonce+iv is a constant */
1529         switch (prot->cipher_type) {
1530         case TLS_CIPHER_AES_CCM_128:
1531                 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1532                 iv_offset = 1;
1533                 break;
1534         case TLS_CIPHER_SM4_CCM:
1535                 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1536                 iv_offset = 1;
1537                 break;
1538         }
1539 
1540         /* Prepare IV */
1541         if (prot->version == TLS_1_3_VERSION ||
1542             prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1543                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1544                        prot->iv_size + prot->salt_size);
1545         } else {
1546                 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1547                                     &dctx->iv[iv_offset] + prot->salt_size,
1548                                     prot->iv_size);
1549                 if (err < 0)
1550                         goto exit_free;
1551                 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1552         }
1553         tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1554 
1555         /* Prepare AAD */
1556         tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1557                      prot->tail_size,
1558                      tls_ctx->rx.rec_seq, tlm->control, prot);
1559 
1560         /* Prepare sgin */
1561         sg_init_table(sgin, n_sgin);
1562         sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1563         err = skb_to_sgvec(skb, &sgin[1],
1564                            rxm->offset + prot->prepend_size,
1565                            rxm->full_len - prot->prepend_size);
1566         if (err < 0)
1567                 goto exit_free;
1568 
1569         if (clear_skb) {
1570                 sg_init_table(sgout, n_sgout);
1571                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1572 
1573                 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1574                                    data_len + prot->tail_size);
1575                 if (err < 0)
1576                         goto exit_free;
1577         } else if (out_iov) {
1578                 sg_init_table(sgout, n_sgout);
1579                 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1580 
1581                 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1582                                           (n_sgout - 1 - tail_pages));
1583                 if (err < 0)
1584                         goto exit_free_pages;
1585 
1586                 if (prot->tail_size) {
1587                         sg_unmark_end(&sgout[pages]);
1588                         sg_set_buf(&sgout[pages + 1], &dctx->tail,
1589                                    prot->tail_size);
1590                         sg_mark_end(&sgout[pages + 1]);
1591                 }
1592         } else if (out_sg) {
1593                 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1594         }
1595         dctx->free_sgout = !!pages;
1596 
1597         /* Prepare and submit AEAD request */
1598         err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1599                                 data_len + prot->tail_size, aead_req, darg);
1600         if (err) {
1601                 if (darg->async_done)
1602                         goto exit_free_skb;
1603                 goto exit_free_pages;
1604         }
1605 
1606         darg->skb = clear_skb ?: tls_strp_msg(ctx);
1607         clear_skb = NULL;
1608 
1609         if (unlikely(darg->async)) {
1610                 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1611                 if (err)
1612                         __skb_queue_tail(&ctx->async_hold, darg->skb);
1613                 return err;
1614         }
1615 
1616         if (unlikely(darg->async_done))
1617                 return 0;
1618 
1619         if (prot->tail_size)
1620                 darg->tail = dctx->tail;
1621 
1622 exit_free_pages:
1623         /* Release the pages in case iov was mapped to pages */
1624         for (; pages > 0; pages--)
1625                 put_page(sg_page(&sgout[pages]));
1626 exit_free:
1627         kfree(mem);
1628 exit_free_skb:
1629         consume_skb(clear_skb);
1630         return err;
1631 }
1632 
1633 static int
1634 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1635                struct msghdr *msg, struct tls_decrypt_arg *darg)
1636 {
1637         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1638         struct tls_prot_info *prot = &tls_ctx->prot_info;
1639         struct strp_msg *rxm;
1640         int pad, err;
1641 
1642         err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1643         if (err < 0) {
1644                 if (err == -EBADMSG)
1645                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1646                 return err;
1647         }
1648         /* keep going even for ->async, the code below is TLS 1.3 */
1649 
1650         /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1651         if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1652                      darg->tail != TLS_RECORD_TYPE_DATA)) {
1653                 darg->zc = false;
1654                 if (!darg->tail)
1655                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1656                 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1657                 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1658         }
1659 
1660         pad = tls_padding_length(prot, darg->skb, darg);
1661         if (pad < 0) {
1662                 if (darg->skb != tls_strp_msg(ctx))
1663                         consume_skb(darg->skb);
1664                 return pad;
1665         }
1666 
1667         rxm = strp_msg(darg->skb);
1668         rxm->full_len -= pad;
1669 
1670         return 0;
1671 }
1672 
1673 static int
1674 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1675                    struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1676 {
1677         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1678         struct tls_prot_info *prot = &tls_ctx->prot_info;
1679         struct strp_msg *rxm;
1680         int pad, err;
1681 
1682         if (tls_ctx->rx_conf != TLS_HW)
1683                 return 0;
1684 
1685         err = tls_device_decrypted(sk, tls_ctx);
1686         if (err <= 0)
1687                 return err;
1688 
1689         pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1690         if (pad < 0)
1691                 return pad;
1692 
1693         darg->async = false;
1694         darg->skb = tls_strp_msg(ctx);
1695         /* ->zc downgrade check, in case TLS 1.3 gets here */
1696         darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1697                       tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1698 
1699         rxm = strp_msg(darg->skb);
1700         rxm->full_len -= pad;
1701 
1702         if (!darg->zc) {
1703                 /* Non-ZC case needs a real skb */
1704                 darg->skb = tls_strp_msg_detach(ctx);
1705                 if (!darg->skb)
1706                         return -ENOMEM;
1707         } else {
1708                 unsigned int off, len;
1709 
1710                 /* In ZC case nobody cares about the output skb.
1711                  * Just copy the data here. Note the skb is not fully trimmed.
1712                  */
1713                 off = rxm->offset + prot->prepend_size;
1714                 len = rxm->full_len - prot->overhead_size;
1715 
1716                 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1717                 if (err)
1718                         return err;
1719         }
1720         return 1;
1721 }
1722 
1723 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1724                              struct tls_decrypt_arg *darg)
1725 {
1726         struct tls_context *tls_ctx = tls_get_ctx(sk);
1727         struct tls_prot_info *prot = &tls_ctx->prot_info;
1728         struct strp_msg *rxm;
1729         int err;
1730 
1731         err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1732         if (!err)
1733                 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1734         if (err < 0)
1735                 return err;
1736 
1737         rxm = strp_msg(darg->skb);
1738         rxm->offset += prot->prepend_size;
1739         rxm->full_len -= prot->overhead_size;
1740         tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1741 
1742         return 0;
1743 }
1744 
1745 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1746 {
1747         struct tls_decrypt_arg darg = { .zc = true, };
1748 
1749         return tls_decrypt_sg(sk, NULL, sgout, &darg);
1750 }
1751 
1752 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1753                                    u8 *control)
1754 {
1755         int err;
1756 
1757         if (!*control) {
1758                 *control = tlm->control;
1759                 if (!*control)
1760                         return -EBADMSG;
1761 
1762                 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1763                                sizeof(*control), control);
1764                 if (*control != TLS_RECORD_TYPE_DATA) {
1765                         if (err || msg->msg_flags & MSG_CTRUNC)
1766                                 return -EIO;
1767                 }
1768         } else if (*control != tlm->control) {
1769                 return 0;
1770         }
1771 
1772         return 1;
1773 }
1774 
1775 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1776 {
1777         tls_strp_msg_done(&ctx->strp);
1778 }
1779 
1780 /* This function traverses the rx_list in tls receive context to copies the
1781  * decrypted records into the buffer provided by caller zero copy is not
1782  * true. Further, the records are removed from the rx_list if it is not a peek
1783  * case and the record has been consumed completely.
1784  */
1785 static int process_rx_list(struct tls_sw_context_rx *ctx,
1786                            struct msghdr *msg,
1787                            u8 *control,
1788                            size_t skip,
1789                            size_t len,
1790                            bool is_peek,
1791                            bool *more)
1792 {
1793         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1794         struct tls_msg *tlm;
1795         ssize_t copied = 0;
1796         int err;
1797 
1798         while (skip && skb) {
1799                 struct strp_msg *rxm = strp_msg(skb);
1800                 tlm = tls_msg(skb);
1801 
1802                 err = tls_record_content_type(msg, tlm, control);
1803                 if (err <= 0)
1804                         goto more;
1805 
1806                 if (skip < rxm->full_len)
1807                         break;
1808 
1809                 skip = skip - rxm->full_len;
1810                 skb = skb_peek_next(skb, &ctx->rx_list);
1811         }
1812 
1813         while (len && skb) {
1814                 struct sk_buff *next_skb;
1815                 struct strp_msg *rxm = strp_msg(skb);
1816                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1817 
1818                 tlm = tls_msg(skb);
1819 
1820                 err = tls_record_content_type(msg, tlm, control);
1821                 if (err <= 0)
1822                         goto more;
1823 
1824                 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1825                                             msg, chunk);
1826                 if (err < 0)
1827                         goto more;
1828 
1829                 len = len - chunk;
1830                 copied = copied + chunk;
1831 
1832                 /* Consume the data from record if it is non-peek case*/
1833                 if (!is_peek) {
1834                         rxm->offset = rxm->offset + chunk;
1835                         rxm->full_len = rxm->full_len - chunk;
1836 
1837                         /* Return if there is unconsumed data in the record */
1838                         if (rxm->full_len - skip)
1839                                 break;
1840                 }
1841 
1842                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1843                  * So from the 2nd record, 'skip' should be 0.
1844                  */
1845                 skip = 0;
1846 
1847                 if (msg)
1848                         msg->msg_flags |= MSG_EOR;
1849 
1850                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1851 
1852                 if (!is_peek) {
1853                         __skb_unlink(skb, &ctx->rx_list);
1854                         consume_skb(skb);
1855                 }
1856 
1857                 skb = next_skb;
1858         }
1859         err = 0;
1860 
1861 out:
1862         return copied ? : err;
1863 more:
1864         if (more)
1865                 *more = true;
1866         goto out;
1867 }
1868 
1869 static bool
1870 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1871                        size_t len_left, size_t decrypted, ssize_t done,
1872                        size_t *flushed_at)
1873 {
1874         size_t max_rec;
1875 
1876         if (len_left <= decrypted)
1877                 return false;
1878 
1879         max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1880         if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1881                 return false;
1882 
1883         *flushed_at = done;
1884         return sk_flush_backlog(sk);
1885 }
1886 
1887 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1888                                  bool nonblock)
1889 {
1890         long timeo;
1891         int ret;
1892 
1893         timeo = sock_rcvtimeo(sk, nonblock);
1894 
1895         while (unlikely(ctx->reader_present)) {
1896                 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1897 
1898                 ctx->reader_contended = 1;
1899 
1900                 add_wait_queue(&ctx->wq, &wait);
1901                 ret = sk_wait_event(sk, &timeo,
1902                                     !READ_ONCE(ctx->reader_present), &wait);
1903                 remove_wait_queue(&ctx->wq, &wait);
1904 
1905                 if (timeo <= 0)
1906                         return -EAGAIN;
1907                 if (signal_pending(current))
1908                         return sock_intr_errno(timeo);
1909                 if (ret < 0)
1910                         return ret;
1911         }
1912 
1913         WRITE_ONCE(ctx->reader_present, 1);
1914 
1915         return 0;
1916 }
1917 
1918 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1919                               bool nonblock)
1920 {
1921         int err;
1922 
1923         lock_sock(sk);
1924         err = tls_rx_reader_acquire(sk, ctx, nonblock);
1925         if (err)
1926                 release_sock(sk);
1927         return err;
1928 }
1929 
1930 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1931 {
1932         if (unlikely(ctx->reader_contended)) {
1933                 if (wq_has_sleeper(&ctx->wq))
1934                         wake_up(&ctx->wq);
1935                 else
1936                         ctx->reader_contended = 0;
1937 
1938                 WARN_ON_ONCE(!ctx->reader_present);
1939         }
1940 
1941         WRITE_ONCE(ctx->reader_present, 0);
1942 }
1943 
1944 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1945 {
1946         tls_rx_reader_release(sk, ctx);
1947         release_sock(sk);
1948 }
1949 
1950 int tls_sw_recvmsg(struct sock *sk,
1951                    struct msghdr *msg,
1952                    size_t len,
1953                    int flags,
1954                    int *addr_len)
1955 {
1956         struct tls_context *tls_ctx = tls_get_ctx(sk);
1957         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1958         struct tls_prot_info *prot = &tls_ctx->prot_info;
1959         ssize_t decrypted = 0, async_copy_bytes = 0;
1960         struct sk_psock *psock;
1961         unsigned char control = 0;
1962         size_t flushed_at = 0;
1963         struct strp_msg *rxm;
1964         struct tls_msg *tlm;
1965         ssize_t copied = 0;
1966         ssize_t peeked = 0;
1967         bool async = false;
1968         int target, err;
1969         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1970         bool is_peek = flags & MSG_PEEK;
1971         bool rx_more = false;
1972         bool released = true;
1973         bool bpf_strp_enabled;
1974         bool zc_capable;
1975 
1976         if (unlikely(flags & MSG_ERRQUEUE))
1977                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1978 
1979         err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1980         if (err < 0)
1981                 return err;
1982         psock = sk_psock_get(sk);
1983         bpf_strp_enabled = sk_psock_strp_enabled(psock);
1984 
1985         /* If crypto failed the connection is broken */
1986         err = ctx->async_wait.err;
1987         if (err)
1988                 goto end;
1989 
1990         /* Process pending decrypted records. It must be non-zero-copy */
1991         err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
1992         if (err < 0)
1993                 goto end;
1994 
1995         copied = err;
1996         if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more)
1997                 goto end;
1998 
1999         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2000         len = len - copied;
2001 
2002         zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2003                 ctx->zc_capable;
2004         decrypted = 0;
2005         while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2006                 struct tls_decrypt_arg darg;
2007                 int to_decrypt, chunk;
2008 
2009                 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2010                                       released);
2011                 if (err <= 0) {
2012                         if (psock) {
2013                                 chunk = sk_msg_recvmsg(sk, psock, msg, len,
2014                                                        flags);
2015                                 if (chunk > 0) {
2016                                         decrypted += chunk;
2017                                         len -= chunk;
2018                                         continue;
2019                                 }
2020                         }
2021                         goto recv_end;
2022                 }
2023 
2024                 memset(&darg.inargs, 0, sizeof(darg.inargs));
2025 
2026                 rxm = strp_msg(tls_strp_msg(ctx));
2027                 tlm = tls_msg(tls_strp_msg(ctx));
2028 
2029                 to_decrypt = rxm->full_len - prot->overhead_size;
2030 
2031                 if (zc_capable && to_decrypt <= len &&
2032                     tlm->control == TLS_RECORD_TYPE_DATA)
2033                         darg.zc = true;
2034 
2035                 /* Do not use async mode if record is non-data */
2036                 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2037                         darg.async = ctx->async_capable;
2038                 else
2039                         darg.async = false;
2040 
2041                 err = tls_rx_one_record(sk, msg, &darg);
2042                 if (err < 0) {
2043                         tls_err_abort(sk, -EBADMSG);
2044                         goto recv_end;
2045                 }
2046 
2047                 async |= darg.async;
2048 
2049                 /* If the type of records being processed is not known yet,
2050                  * set it to record type just dequeued. If it is already known,
2051                  * but does not match the record type just dequeued, go to end.
2052                  * We always get record type here since for tls1.2, record type
2053                  * is known just after record is dequeued from stream parser.
2054                  * For tls1.3, we disable async.
2055                  */
2056                 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2057                 if (err <= 0) {
2058                         DEBUG_NET_WARN_ON_ONCE(darg.zc);
2059                         tls_rx_rec_done(ctx);
2060 put_on_rx_list_err:
2061                         __skb_queue_tail(&ctx->rx_list, darg.skb);
2062                         goto recv_end;
2063                 }
2064 
2065                 /* periodically flush backlog, and feed strparser */
2066                 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2067                                                   decrypted + copied,
2068                                                   &flushed_at);
2069 
2070                 /* TLS 1.3 may have updated the length by more than overhead */
2071                 rxm = strp_msg(darg.skb);
2072                 chunk = rxm->full_len;
2073                 tls_rx_rec_done(ctx);
2074 
2075                 if (!darg.zc) {
2076                         bool partially_consumed = chunk > len;
2077                         struct sk_buff *skb = darg.skb;
2078 
2079                         DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2080 
2081                         if (async) {
2082                                 /* TLS 1.2-only, to_decrypt must be text len */
2083                                 chunk = min_t(int, to_decrypt, len);
2084                                 async_copy_bytes += chunk;
2085 put_on_rx_list:
2086                                 decrypted += chunk;
2087                                 len -= chunk;
2088                                 __skb_queue_tail(&ctx->rx_list, skb);
2089                                 if (unlikely(control != TLS_RECORD_TYPE_DATA))
2090                                         break;
2091                                 continue;
2092                         }
2093 
2094                         if (bpf_strp_enabled) {
2095                                 released = true;
2096                                 err = sk_psock_tls_strp_read(psock, skb);
2097                                 if (err != __SK_PASS) {
2098                                         rxm->offset = rxm->offset + rxm->full_len;
2099                                         rxm->full_len = 0;
2100                                         if (err == __SK_DROP)
2101                                                 consume_skb(skb);
2102                                         continue;
2103                                 }
2104                         }
2105 
2106                         if (partially_consumed)
2107                                 chunk = len;
2108 
2109                         err = skb_copy_datagram_msg(skb, rxm->offset,
2110                                                     msg, chunk);
2111                         if (err < 0)
2112                                 goto put_on_rx_list_err;
2113 
2114                         if (is_peek) {
2115                                 peeked += chunk;
2116                                 goto put_on_rx_list;
2117                         }
2118 
2119                         if (partially_consumed) {
2120                                 rxm->offset += chunk;
2121                                 rxm->full_len -= chunk;
2122                                 goto put_on_rx_list;
2123                         }
2124 
2125                         consume_skb(skb);
2126                 }
2127 
2128                 decrypted += chunk;
2129                 len -= chunk;
2130 
2131                 /* Return full control message to userspace before trying
2132                  * to parse another message type
2133                  */
2134                 msg->msg_flags |= MSG_EOR;
2135                 if (control != TLS_RECORD_TYPE_DATA)
2136                         break;
2137         }
2138 
2139 recv_end:
2140         if (async) {
2141                 int ret;
2142 
2143                 /* Wait for all previously submitted records to be decrypted */
2144                 ret = tls_decrypt_async_wait(ctx);
2145                 __skb_queue_purge(&ctx->async_hold);
2146 
2147                 if (ret) {
2148                         if (err >= 0 || err == -EINPROGRESS)
2149                                 err = ret;
2150                         goto end;
2151                 }
2152 
2153                 /* Drain records from the rx_list & copy if required */
2154                 if (is_peek)
2155                         err = process_rx_list(ctx, msg, &control, copied + peeked,
2156                                               decrypted - peeked, is_peek, NULL);
2157                 else
2158                         err = process_rx_list(ctx, msg, &control, 0,
2159                                               async_copy_bytes, is_peek, NULL);
2160 
2161                 /* we could have copied less than we wanted, and possibly nothing */
2162                 decrypted += max(err, 0) - async_copy_bytes;
2163         }
2164 
2165         copied += decrypted;
2166 
2167 end:
2168         tls_rx_reader_unlock(sk, ctx);
2169         if (psock)
2170                 sk_psock_put(sk, psock);
2171         return copied ? : err;
2172 }
2173 
2174 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2175                            struct pipe_inode_info *pipe,
2176                            size_t len, unsigned int flags)
2177 {
2178         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2179         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2180         struct strp_msg *rxm = NULL;
2181         struct sock *sk = sock->sk;
2182         struct tls_msg *tlm;
2183         struct sk_buff *skb;
2184         ssize_t copied = 0;
2185         int chunk;
2186         int err;
2187 
2188         err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2189         if (err < 0)
2190                 return err;
2191 
2192         if (!skb_queue_empty(&ctx->rx_list)) {
2193                 skb = __skb_dequeue(&ctx->rx_list);
2194         } else {
2195                 struct tls_decrypt_arg darg;
2196 
2197                 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2198                                       true);
2199                 if (err <= 0)
2200                         goto splice_read_end;
2201 
2202                 memset(&darg.inargs, 0, sizeof(darg.inargs));
2203 
2204                 err = tls_rx_one_record(sk, NULL, &darg);
2205                 if (err < 0) {
2206                         tls_err_abort(sk, -EBADMSG);
2207                         goto splice_read_end;
2208                 }
2209 
2210                 tls_rx_rec_done(ctx);
2211                 skb = darg.skb;
2212         }
2213 
2214         rxm = strp_msg(skb);
2215         tlm = tls_msg(skb);
2216 
2217         /* splice does not support reading control messages */
2218         if (tlm->control != TLS_RECORD_TYPE_DATA) {
2219                 err = -EINVAL;
2220                 goto splice_requeue;
2221         }
2222 
2223         chunk = min_t(unsigned int, rxm->full_len, len);
2224         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2225         if (copied < 0)
2226                 goto splice_requeue;
2227 
2228         if (chunk < rxm->full_len) {
2229                 rxm->offset += len;
2230                 rxm->full_len -= len;
2231                 goto splice_requeue;
2232         }
2233 
2234         consume_skb(skb);
2235 
2236 splice_read_end:
2237         tls_rx_reader_unlock(sk, ctx);
2238         return copied ? : err;
2239 
2240 splice_requeue:
2241         __skb_queue_head(&ctx->rx_list, skb);
2242         goto splice_read_end;
2243 }
2244 
2245 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2246                      sk_read_actor_t read_actor)
2247 {
2248         struct tls_context *tls_ctx = tls_get_ctx(sk);
2249         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2250         struct tls_prot_info *prot = &tls_ctx->prot_info;
2251         struct strp_msg *rxm = NULL;
2252         struct sk_buff *skb = NULL;
2253         struct sk_psock *psock;
2254         size_t flushed_at = 0;
2255         bool released = true;
2256         struct tls_msg *tlm;
2257         ssize_t copied = 0;
2258         ssize_t decrypted;
2259         int err, used;
2260 
2261         psock = sk_psock_get(sk);
2262         if (psock) {
2263                 sk_psock_put(sk, psock);
2264                 return -EINVAL;
2265         }
2266         err = tls_rx_reader_acquire(sk, ctx, true);
2267         if (err < 0)
2268                 return err;
2269 
2270         /* If crypto failed the connection is broken */
2271         err = ctx->async_wait.err;
2272         if (err)
2273                 goto read_sock_end;
2274 
2275         decrypted = 0;
2276         do {
2277                 if (!skb_queue_empty(&ctx->rx_list)) {
2278                         skb = __skb_dequeue(&ctx->rx_list);
2279                         rxm = strp_msg(skb);
2280                         tlm = tls_msg(skb);
2281                 } else {
2282                         struct tls_decrypt_arg darg;
2283 
2284                         err = tls_rx_rec_wait(sk, NULL, true, released);
2285                         if (err <= 0)
2286                                 goto read_sock_end;
2287 
2288                         memset(&darg.inargs, 0, sizeof(darg.inargs));
2289 
2290                         err = tls_rx_one_record(sk, NULL, &darg);
2291                         if (err < 0) {
2292                                 tls_err_abort(sk, -EBADMSG);
2293                                 goto read_sock_end;
2294                         }
2295 
2296                         released = tls_read_flush_backlog(sk, prot, INT_MAX,
2297                                                           0, decrypted,
2298                                                           &flushed_at);
2299                         skb = darg.skb;
2300                         rxm = strp_msg(skb);
2301                         tlm = tls_msg(skb);
2302                         decrypted += rxm->full_len;
2303 
2304                         tls_rx_rec_done(ctx);
2305                 }
2306 
2307                 /* read_sock does not support reading control messages */
2308                 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2309                         err = -EINVAL;
2310                         goto read_sock_requeue;
2311                 }
2312 
2313                 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2314                 if (used <= 0) {
2315                         if (!copied)
2316                                 err = used;
2317                         goto read_sock_requeue;
2318                 }
2319                 copied += used;
2320                 if (used < rxm->full_len) {
2321                         rxm->offset += used;
2322                         rxm->full_len -= used;
2323                         if (!desc->count)
2324                                 goto read_sock_requeue;
2325                 } else {
2326                         consume_skb(skb);
2327                         if (!desc->count)
2328                                 skb = NULL;
2329                 }
2330         } while (skb);
2331 
2332 read_sock_end:
2333         tls_rx_reader_release(sk, ctx);
2334         return copied ? : err;
2335 
2336 read_sock_requeue:
2337         __skb_queue_head(&ctx->rx_list, skb);
2338         goto read_sock_end;
2339 }
2340 
2341 bool tls_sw_sock_is_readable(struct sock *sk)
2342 {
2343         struct tls_context *tls_ctx = tls_get_ctx(sk);
2344         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2345         bool ingress_empty = true;
2346         struct sk_psock *psock;
2347 
2348         rcu_read_lock();
2349         psock = sk_psock(sk);
2350         if (psock)
2351                 ingress_empty = list_empty(&psock->ingress_msg);
2352         rcu_read_unlock();
2353 
2354         return !ingress_empty || tls_strp_msg_ready(ctx) ||
2355                 !skb_queue_empty(&ctx->rx_list);
2356 }
2357 
2358 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2359 {
2360         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2361         struct tls_prot_info *prot = &tls_ctx->prot_info;
2362         char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2363         size_t cipher_overhead;
2364         size_t data_len = 0;
2365         int ret;
2366 
2367         /* Verify that we have a full TLS header, or wait for more data */
2368         if (strp->stm.offset + prot->prepend_size > skb->len)
2369                 return 0;
2370 
2371         /* Sanity-check size of on-stack buffer. */
2372         if (WARN_ON(prot->prepend_size > sizeof(header))) {
2373                 ret = -EINVAL;
2374                 goto read_failure;
2375         }
2376 
2377         /* Linearize header to local buffer */
2378         ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2379         if (ret < 0)
2380                 goto read_failure;
2381 
2382         strp->mark = header[0];
2383 
2384         data_len = ((header[4] & 0xFF) | (header[3] << 8));
2385 
2386         cipher_overhead = prot->tag_size;
2387         if (prot->version != TLS_1_3_VERSION &&
2388             prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2389                 cipher_overhead += prot->iv_size;
2390 
2391         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2392             prot->tail_size) {
2393                 ret = -EMSGSIZE;
2394                 goto read_failure;
2395         }
2396         if (data_len < cipher_overhead) {
2397                 ret = -EBADMSG;
2398                 goto read_failure;
2399         }
2400 
2401         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2402         if (header[1] != TLS_1_2_VERSION_MINOR ||
2403             header[2] != TLS_1_2_VERSION_MAJOR) {
2404                 ret = -EINVAL;
2405                 goto read_failure;
2406         }
2407 
2408         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2409                                      TCP_SKB_CB(skb)->seq + strp->stm.offset);
2410         return data_len + TLS_HEADER_SIZE;
2411 
2412 read_failure:
2413         tls_err_abort(strp->sk, ret);
2414 
2415         return ret;
2416 }
2417 
2418 void tls_rx_msg_ready(struct tls_strparser *strp)
2419 {
2420         struct tls_sw_context_rx *ctx;
2421 
2422         ctx = container_of(strp, struct tls_sw_context_rx, strp);
2423         ctx->saved_data_ready(strp->sk);
2424 }
2425 
2426 static void tls_data_ready(struct sock *sk)
2427 {
2428         struct tls_context *tls_ctx = tls_get_ctx(sk);
2429         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2430         struct sk_psock *psock;
2431         gfp_t alloc_save;
2432 
2433         trace_sk_data_ready(sk);
2434 
2435         alloc_save = sk->sk_allocation;
2436         sk->sk_allocation = GFP_ATOMIC;
2437         tls_strp_data_ready(&ctx->strp);
2438         sk->sk_allocation = alloc_save;
2439 
2440         psock = sk_psock_get(sk);
2441         if (psock) {
2442                 if (!list_empty(&psock->ingress_msg))
2443                         ctx->saved_data_ready(sk);
2444                 sk_psock_put(sk, psock);
2445         }
2446 }
2447 
2448 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2449 {
2450         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2451 
2452         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2453         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2454         cancel_delayed_work_sync(&ctx->tx_work.work);
2455 }
2456 
2457 void tls_sw_release_resources_tx(struct sock *sk)
2458 {
2459         struct tls_context *tls_ctx = tls_get_ctx(sk);
2460         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2461         struct tls_rec *rec, *tmp;
2462 
2463         /* Wait for any pending async encryptions to complete */
2464         tls_encrypt_async_wait(ctx);
2465 
2466         tls_tx_records(sk, -1);
2467 
2468         /* Free up un-sent records in tx_list. First, free
2469          * the partially sent record if any at head of tx_list.
2470          */
2471         if (tls_ctx->partially_sent_record) {
2472                 tls_free_partial_record(sk, tls_ctx);
2473                 rec = list_first_entry(&ctx->tx_list,
2474                                        struct tls_rec, list);
2475                 list_del(&rec->list);
2476                 sk_msg_free(sk, &rec->msg_plaintext);
2477                 kfree(rec);
2478         }
2479 
2480         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2481                 list_del(&rec->list);
2482                 sk_msg_free(sk, &rec->msg_encrypted);
2483                 sk_msg_free(sk, &rec->msg_plaintext);
2484                 kfree(rec);
2485         }
2486 
2487         crypto_free_aead(ctx->aead_send);
2488         tls_free_open_rec(sk);
2489 }
2490 
2491 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2492 {
2493         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2494 
2495         kfree(ctx);
2496 }
2497 
2498 void tls_sw_release_resources_rx(struct sock *sk)
2499 {
2500         struct tls_context *tls_ctx = tls_get_ctx(sk);
2501         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2502 
2503         if (ctx->aead_recv) {
2504                 __skb_queue_purge(&ctx->rx_list);
2505                 crypto_free_aead(ctx->aead_recv);
2506                 tls_strp_stop(&ctx->strp);
2507                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2508                  * we still want to tls_strp_stop(), but sk->sk_data_ready was
2509                  * never swapped.
2510                  */
2511                 if (ctx->saved_data_ready) {
2512                         write_lock_bh(&sk->sk_callback_lock);
2513                         sk->sk_data_ready = ctx->saved_data_ready;
2514                         write_unlock_bh(&sk->sk_callback_lock);
2515                 }
2516         }
2517 }
2518 
2519 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2520 {
2521         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2522 
2523         tls_strp_done(&ctx->strp);
2524 }
2525 
2526 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2527 {
2528         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2529 
2530         kfree(ctx);
2531 }
2532 
2533 void tls_sw_free_resources_rx(struct sock *sk)
2534 {
2535         struct tls_context *tls_ctx = tls_get_ctx(sk);
2536 
2537         tls_sw_release_resources_rx(sk);
2538         tls_sw_free_ctx_rx(tls_ctx);
2539 }
2540 
2541 /* The work handler to transmitt the encrypted records in tx_list */
2542 static void tx_work_handler(struct work_struct *work)
2543 {
2544         struct delayed_work *delayed_work = to_delayed_work(work);
2545         struct tx_work *tx_work = container_of(delayed_work,
2546                                                struct tx_work, work);
2547         struct sock *sk = tx_work->sk;
2548         struct tls_context *tls_ctx = tls_get_ctx(sk);
2549         struct tls_sw_context_tx *ctx;
2550 
2551         if (unlikely(!tls_ctx))
2552                 return;
2553 
2554         ctx = tls_sw_ctx_tx(tls_ctx);
2555         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2556                 return;
2557 
2558         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2559                 return;
2560 
2561         if (mutex_trylock(&tls_ctx->tx_lock)) {
2562                 lock_sock(sk);
2563                 tls_tx_records(sk, -1);
2564                 release_sock(sk);
2565                 mutex_unlock(&tls_ctx->tx_lock);
2566         } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2567                 /* Someone is holding the tx_lock, they will likely run Tx
2568                  * and cancel the work on their way out of the lock section.
2569                  * Schedule a long delay just in case.
2570                  */
2571                 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2572         }
2573 }
2574 
2575 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2576 {
2577         struct tls_rec *rec;
2578 
2579         rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2580         if (!rec)
2581                 return false;
2582 
2583         return READ_ONCE(rec->tx_ready);
2584 }
2585 
2586 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2587 {
2588         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2589 
2590         /* Schedule the transmission if tx list is ready */
2591         if (tls_is_tx_ready(tx_ctx) &&
2592             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2593                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2594 }
2595 
2596 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2597 {
2598         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2599 
2600         write_lock_bh(&sk->sk_callback_lock);
2601         rx_ctx->saved_data_ready = sk->sk_data_ready;
2602         sk->sk_data_ready = tls_data_ready;
2603         write_unlock_bh(&sk->sk_callback_lock);
2604 }
2605 
2606 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2607 {
2608         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2609 
2610         rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2611                 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2612 }
2613 
2614 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2615 {
2616         struct tls_sw_context_tx *sw_ctx_tx;
2617 
2618         if (!ctx->priv_ctx_tx) {
2619                 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2620                 if (!sw_ctx_tx)
2621                         return NULL;
2622         } else {
2623                 sw_ctx_tx = ctx->priv_ctx_tx;
2624         }
2625 
2626         crypto_init_wait(&sw_ctx_tx->async_wait);
2627         atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2628         INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2629         INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2630         sw_ctx_tx->tx_work.sk = sk;
2631 
2632         return sw_ctx_tx;
2633 }
2634 
2635 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2636 {
2637         struct tls_sw_context_rx *sw_ctx_rx;
2638 
2639         if (!ctx->priv_ctx_rx) {
2640                 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2641                 if (!sw_ctx_rx)
2642                         return NULL;
2643         } else {
2644                 sw_ctx_rx = ctx->priv_ctx_rx;
2645         }
2646 
2647         crypto_init_wait(&sw_ctx_rx->async_wait);
2648         atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2649         init_waitqueue_head(&sw_ctx_rx->wq);
2650         skb_queue_head_init(&sw_ctx_rx->rx_list);
2651         skb_queue_head_init(&sw_ctx_rx->async_hold);
2652 
2653         return sw_ctx_rx;
2654 }
2655 
2656 int init_prot_info(struct tls_prot_info *prot,
2657                    const struct tls_crypto_info *crypto_info,
2658                    const struct tls_cipher_desc *cipher_desc)
2659 {
2660         u16 nonce_size = cipher_desc->nonce;
2661 
2662         if (crypto_info->version == TLS_1_3_VERSION) {
2663                 nonce_size = 0;
2664                 prot->aad_size = TLS_HEADER_SIZE;
2665                 prot->tail_size = 1;
2666         } else {
2667                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2668                 prot->tail_size = 0;
2669         }
2670 
2671         /* Sanity-check the sizes for stack allocations. */
2672         if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2673                 return -EINVAL;
2674 
2675         prot->version = crypto_info->version;
2676         prot->cipher_type = crypto_info->cipher_type;
2677         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2678         prot->tag_size = cipher_desc->tag;
2679         prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2680         prot->iv_size = cipher_desc->iv;
2681         prot->salt_size = cipher_desc->salt;
2682         prot->rec_seq_size = cipher_desc->rec_seq;
2683 
2684         return 0;
2685 }
2686 
2687 int tls_set_sw_offload(struct sock *sk, int tx)
2688 {
2689         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2690         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2691         const struct tls_cipher_desc *cipher_desc;
2692         struct tls_crypto_info *crypto_info;
2693         char *iv, *rec_seq, *key, *salt;
2694         struct cipher_context *cctx;
2695         struct tls_prot_info *prot;
2696         struct crypto_aead **aead;
2697         struct tls_context *ctx;
2698         struct crypto_tfm *tfm;
2699         int rc = 0;
2700 
2701         ctx = tls_get_ctx(sk);
2702         prot = &ctx->prot_info;
2703 
2704         if (tx) {
2705                 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2706                 if (!ctx->priv_ctx_tx)
2707                         return -ENOMEM;
2708 
2709                 sw_ctx_tx = ctx->priv_ctx_tx;
2710                 crypto_info = &ctx->crypto_send.info;
2711                 cctx = &ctx->tx;
2712                 aead = &sw_ctx_tx->aead_send;
2713         } else {
2714                 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2715                 if (!ctx->priv_ctx_rx)
2716                         return -ENOMEM;
2717 
2718                 sw_ctx_rx = ctx->priv_ctx_rx;
2719                 crypto_info = &ctx->crypto_recv.info;
2720                 cctx = &ctx->rx;
2721                 aead = &sw_ctx_rx->aead_recv;
2722         }
2723 
2724         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2725         if (!cipher_desc) {
2726                 rc = -EINVAL;
2727                 goto free_priv;
2728         }
2729 
2730         rc = init_prot_info(prot, crypto_info, cipher_desc);
2731         if (rc)
2732                 goto free_priv;
2733 
2734         iv = crypto_info_iv(crypto_info, cipher_desc);
2735         key = crypto_info_key(crypto_info, cipher_desc);
2736         salt = crypto_info_salt(crypto_info, cipher_desc);
2737         rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2738 
2739         memcpy(cctx->iv, salt, cipher_desc->salt);
2740         memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2741         memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2742 
2743         if (!*aead) {
2744                 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2745                 if (IS_ERR(*aead)) {
2746                         rc = PTR_ERR(*aead);
2747                         *aead = NULL;
2748                         goto free_priv;
2749                 }
2750         }
2751 
2752         ctx->push_pending_record = tls_sw_push_pending_record;
2753 
2754         rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2755         if (rc)
2756                 goto free_aead;
2757 
2758         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2759         if (rc)
2760                 goto free_aead;
2761 
2762         if (sw_ctx_rx) {
2763                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2764 
2765                 tls_update_rx_zc_capable(ctx);
2766                 sw_ctx_rx->async_capable =
2767                         crypto_info->version != TLS_1_3_VERSION &&
2768                         !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2769 
2770                 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2771                 if (rc)
2772                         goto free_aead;
2773         }
2774 
2775         goto out;
2776 
2777 free_aead:
2778         crypto_free_aead(*aead);
2779         *aead = NULL;
2780 free_priv:
2781         if (tx) {
2782                 kfree(ctx->priv_ctx_tx);
2783                 ctx->priv_ctx_tx = NULL;
2784         } else {
2785                 kfree(ctx->priv_ctx_rx);
2786                 ctx->priv_ctx_rx = NULL;
2787         }
2788 out:
2789         return rc;
2790 }
2791 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php