1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved. 5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved. 6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved. 7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io 8 * 9 * This software is available to you under a choice of one of two 10 * licenses. You may choose to be licensed under the terms of the GNU 11 * General Public License (GPL) Version 2, available from the file 12 * COPYING in the main directory of this source tree, or the 13 * OpenIB.org BSD license below: 14 * 15 * Redistribution and use in source and binary forms, with or 16 * without modification, are permitted provided that the following 17 * conditions are met: 18 * 19 * - Redistributions of source code must retain the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer. 22 * 23 * - Redistributions in binary form must reproduce the above 24 * copyright notice, this list of conditions and the following 25 * disclaimer in the documentation and/or other materials 26 * provided with the distribution. 27 * 28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 35 * SOFTWARE. 36 */ 37 38 #include <linux/bug.h> 39 #include <linux/sched/signal.h> 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/splice.h> 43 #include <crypto/aead.h> 44 45 #include <net/strparser.h> 46 #include <net/tls.h> 47 #include <trace/events/sock.h> 48 49 #include "tls.h" 50 51 struct tls_decrypt_arg { 52 struct_group(inargs, 53 bool zc; 54 bool async; 55 bool async_done; 56 u8 tail; 57 ); 58 59 struct sk_buff *skb; 60 }; 61 62 struct tls_decrypt_ctx { 63 struct sock *sk; 64 u8 iv[TLS_MAX_IV_SIZE]; 65 u8 aad[TLS_MAX_AAD_SIZE]; 66 u8 tail; 67 bool free_sgout; 68 struct scatterlist sg[]; 69 }; 70 71 noinline void tls_err_abort(struct sock *sk, int err) 72 { 73 WARN_ON_ONCE(err >= 0); 74 /* sk->sk_err should contain a positive error code. */ 75 WRITE_ONCE(sk->sk_err, -err); 76 /* Paired with smp_rmb() in tcp_poll() */ 77 smp_wmb(); 78 sk_error_report(sk); 79 } 80 81 static int __skb_nsg(struct sk_buff *skb, int offset, int len, 82 unsigned int recursion_level) 83 { 84 int start = skb_headlen(skb); 85 int i, chunk = start - offset; 86 struct sk_buff *frag_iter; 87 int elt = 0; 88 89 if (unlikely(recursion_level >= 24)) 90 return -EMSGSIZE; 91 92 if (chunk > 0) { 93 if (chunk > len) 94 chunk = len; 95 elt++; 96 len -= chunk; 97 if (len == 0) 98 return elt; 99 offset += chunk; 100 } 101 102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 103 int end; 104 105 WARN_ON(start > offset + len); 106 107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 108 chunk = end - offset; 109 if (chunk > 0) { 110 if (chunk > len) 111 chunk = len; 112 elt++; 113 len -= chunk; 114 if (len == 0) 115 return elt; 116 offset += chunk; 117 } 118 start = end; 119 } 120 121 if (unlikely(skb_has_frag_list(skb))) { 122 skb_walk_frags(skb, frag_iter) { 123 int end, ret; 124 125 WARN_ON(start > offset + len); 126 127 end = start + frag_iter->len; 128 chunk = end - offset; 129 if (chunk > 0) { 130 if (chunk > len) 131 chunk = len; 132 ret = __skb_nsg(frag_iter, offset - start, chunk, 133 recursion_level + 1); 134 if (unlikely(ret < 0)) 135 return ret; 136 elt += ret; 137 len -= chunk; 138 if (len == 0) 139 return elt; 140 offset += chunk; 141 } 142 start = end; 143 } 144 } 145 BUG_ON(len); 146 return elt; 147 } 148 149 /* Return the number of scatterlist elements required to completely map the 150 * skb, or -EMSGSIZE if the recursion depth is exceeded. 151 */ 152 static int skb_nsg(struct sk_buff *skb, int offset, int len) 153 { 154 return __skb_nsg(skb, offset, len, 0); 155 } 156 157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb, 158 struct tls_decrypt_arg *darg) 159 { 160 struct strp_msg *rxm = strp_msg(skb); 161 struct tls_msg *tlm = tls_msg(skb); 162 int sub = 0; 163 164 /* Determine zero-padding length */ 165 if (prot->version == TLS_1_3_VERSION) { 166 int offset = rxm->full_len - TLS_TAG_SIZE - 1; 167 char content_type = darg->zc ? darg->tail : 0; 168 int err; 169 170 while (content_type == 0) { 171 if (offset < prot->prepend_size) 172 return -EBADMSG; 173 err = skb_copy_bits(skb, rxm->offset + offset, 174 &content_type, 1); 175 if (err) 176 return err; 177 if (content_type) 178 break; 179 sub++; 180 offset--; 181 } 182 tlm->control = content_type; 183 } 184 return sub; 185 } 186 187 static void tls_decrypt_done(void *data, int err) 188 { 189 struct aead_request *aead_req = data; 190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req); 191 struct scatterlist *sgout = aead_req->dst; 192 struct tls_sw_context_rx *ctx; 193 struct tls_decrypt_ctx *dctx; 194 struct tls_context *tls_ctx; 195 struct scatterlist *sg; 196 unsigned int pages; 197 struct sock *sk; 198 int aead_size; 199 200 /* If requests get too backlogged crypto API returns -EBUSY and calls 201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0) 202 * to make waiting for backlog to flush with crypto_wait_req() easier. 203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one 204 * -EINPROGRESS -> 0. 205 * We have a single struct crypto_async_request per direction, this 206 * scheme doesn't help us, so just ignore the first ->complete(). 207 */ 208 if (err == -EINPROGRESS) 209 return; 210 211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead); 212 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 213 dctx = (void *)((u8 *)aead_req + aead_size); 214 215 sk = dctx->sk; 216 tls_ctx = tls_get_ctx(sk); 217 ctx = tls_sw_ctx_rx(tls_ctx); 218 219 /* Propagate if there was an err */ 220 if (err) { 221 if (err == -EBADMSG) 222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 223 ctx->async_wait.err = err; 224 tls_err_abort(sk, err); 225 } 226 227 /* Free the destination pages if skb was not decrypted inplace */ 228 if (dctx->free_sgout) { 229 /* Skip the first S/G entry as it points to AAD */ 230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) { 231 if (!sg) 232 break; 233 put_page(sg_page(sg)); 234 } 235 } 236 237 kfree(aead_req); 238 239 if (atomic_dec_and_test(&ctx->decrypt_pending)) 240 complete(&ctx->async_wait.completion); 241 } 242 243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx) 244 { 245 if (!atomic_dec_and_test(&ctx->decrypt_pending)) 246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 247 atomic_inc(&ctx->decrypt_pending); 248 249 return ctx->async_wait.err; 250 } 251 252 static int tls_do_decryption(struct sock *sk, 253 struct scatterlist *sgin, 254 struct scatterlist *sgout, 255 char *iv_recv, 256 size_t data_len, 257 struct aead_request *aead_req, 258 struct tls_decrypt_arg *darg) 259 { 260 struct tls_context *tls_ctx = tls_get_ctx(sk); 261 struct tls_prot_info *prot = &tls_ctx->prot_info; 262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 263 int ret; 264 265 aead_request_set_tfm(aead_req, ctx->aead_recv); 266 aead_request_set_ad(aead_req, prot->aad_size); 267 aead_request_set_crypt(aead_req, sgin, sgout, 268 data_len + prot->tag_size, 269 (u8 *)iv_recv); 270 271 if (darg->async) { 272 aead_request_set_callback(aead_req, 273 CRYPTO_TFM_REQ_MAY_BACKLOG, 274 tls_decrypt_done, aead_req); 275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1); 276 atomic_inc(&ctx->decrypt_pending); 277 } else { 278 DECLARE_CRYPTO_WAIT(wait); 279 280 aead_request_set_callback(aead_req, 281 CRYPTO_TFM_REQ_MAY_BACKLOG, 282 crypto_req_done, &wait); 283 ret = crypto_aead_decrypt(aead_req); 284 if (ret == -EINPROGRESS || ret == -EBUSY) 285 ret = crypto_wait_req(ret, &wait); 286 return ret; 287 } 288 289 ret = crypto_aead_decrypt(aead_req); 290 if (ret == -EINPROGRESS) 291 return 0; 292 293 if (ret == -EBUSY) { 294 ret = tls_decrypt_async_wait(ctx); 295 darg->async_done = true; 296 /* all completions have run, we're not doing async anymore */ 297 darg->async = false; 298 return ret; 299 } 300 301 atomic_dec(&ctx->decrypt_pending); 302 darg->async = false; 303 304 return ret; 305 } 306 307 static void tls_trim_both_msgs(struct sock *sk, int target_size) 308 { 309 struct tls_context *tls_ctx = tls_get_ctx(sk); 310 struct tls_prot_info *prot = &tls_ctx->prot_info; 311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 312 struct tls_rec *rec = ctx->open_rec; 313 314 sk_msg_trim(sk, &rec->msg_plaintext, target_size); 315 if (target_size > 0) 316 target_size += prot->overhead_size; 317 sk_msg_trim(sk, &rec->msg_encrypted, target_size); 318 } 319 320 static int tls_alloc_encrypted_msg(struct sock *sk, int len) 321 { 322 struct tls_context *tls_ctx = tls_get_ctx(sk); 323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 324 struct tls_rec *rec = ctx->open_rec; 325 struct sk_msg *msg_en = &rec->msg_encrypted; 326 327 return sk_msg_alloc(sk, msg_en, len, 0); 328 } 329 330 static int tls_clone_plaintext_msg(struct sock *sk, int required) 331 { 332 struct tls_context *tls_ctx = tls_get_ctx(sk); 333 struct tls_prot_info *prot = &tls_ctx->prot_info; 334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 335 struct tls_rec *rec = ctx->open_rec; 336 struct sk_msg *msg_pl = &rec->msg_plaintext; 337 struct sk_msg *msg_en = &rec->msg_encrypted; 338 int skip, len; 339 340 /* We add page references worth len bytes from encrypted sg 341 * at the end of plaintext sg. It is guaranteed that msg_en 342 * has enough required room (ensured by caller). 343 */ 344 len = required - msg_pl->sg.size; 345 346 /* Skip initial bytes in msg_en's data to be able to use 347 * same offset of both plain and encrypted data. 348 */ 349 skip = prot->prepend_size + msg_pl->sg.size; 350 351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len); 352 } 353 354 static struct tls_rec *tls_get_rec(struct sock *sk) 355 { 356 struct tls_context *tls_ctx = tls_get_ctx(sk); 357 struct tls_prot_info *prot = &tls_ctx->prot_info; 358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 359 struct sk_msg *msg_pl, *msg_en; 360 struct tls_rec *rec; 361 int mem_size; 362 363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send); 364 365 rec = kzalloc(mem_size, sk->sk_allocation); 366 if (!rec) 367 return NULL; 368 369 msg_pl = &rec->msg_plaintext; 370 msg_en = &rec->msg_encrypted; 371 372 sk_msg_init(msg_pl); 373 sk_msg_init(msg_en); 374 375 sg_init_table(rec->sg_aead_in, 2); 376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size); 377 sg_unmark_end(&rec->sg_aead_in[1]); 378 379 sg_init_table(rec->sg_aead_out, 2); 380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size); 381 sg_unmark_end(&rec->sg_aead_out[1]); 382 383 rec->sk = sk; 384 385 return rec; 386 } 387 388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec) 389 { 390 sk_msg_free(sk, &rec->msg_encrypted); 391 sk_msg_free(sk, &rec->msg_plaintext); 392 kfree(rec); 393 } 394 395 static void tls_free_open_rec(struct sock *sk) 396 { 397 struct tls_context *tls_ctx = tls_get_ctx(sk); 398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 399 struct tls_rec *rec = ctx->open_rec; 400 401 if (rec) { 402 tls_free_rec(sk, rec); 403 ctx->open_rec = NULL; 404 } 405 } 406 407 int tls_tx_records(struct sock *sk, int flags) 408 { 409 struct tls_context *tls_ctx = tls_get_ctx(sk); 410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 411 struct tls_rec *rec, *tmp; 412 struct sk_msg *msg_en; 413 int tx_flags, rc = 0; 414 415 if (tls_is_partially_sent_record(tls_ctx)) { 416 rec = list_first_entry(&ctx->tx_list, 417 struct tls_rec, list); 418 419 if (flags == -1) 420 tx_flags = rec->tx_flags; 421 else 422 tx_flags = flags; 423 424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags); 425 if (rc) 426 goto tx_err; 427 428 /* Full record has been transmitted. 429 * Remove the head of tx_list 430 */ 431 list_del(&rec->list); 432 sk_msg_free(sk, &rec->msg_plaintext); 433 kfree(rec); 434 } 435 436 /* Tx all ready records */ 437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 438 if (READ_ONCE(rec->tx_ready)) { 439 if (flags == -1) 440 tx_flags = rec->tx_flags; 441 else 442 tx_flags = flags; 443 444 msg_en = &rec->msg_encrypted; 445 rc = tls_push_sg(sk, tls_ctx, 446 &msg_en->sg.data[msg_en->sg.curr], 447 0, tx_flags); 448 if (rc) 449 goto tx_err; 450 451 list_del(&rec->list); 452 sk_msg_free(sk, &rec->msg_plaintext); 453 kfree(rec); 454 } else { 455 break; 456 } 457 } 458 459 tx_err: 460 if (rc < 0 && rc != -EAGAIN) 461 tls_err_abort(sk, -EBADMSG); 462 463 return rc; 464 } 465 466 static void tls_encrypt_done(void *data, int err) 467 { 468 struct tls_sw_context_tx *ctx; 469 struct tls_context *tls_ctx; 470 struct tls_prot_info *prot; 471 struct tls_rec *rec = data; 472 struct scatterlist *sge; 473 struct sk_msg *msg_en; 474 struct sock *sk; 475 476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */ 477 return; 478 479 msg_en = &rec->msg_encrypted; 480 481 sk = rec->sk; 482 tls_ctx = tls_get_ctx(sk); 483 prot = &tls_ctx->prot_info; 484 ctx = tls_sw_ctx_tx(tls_ctx); 485 486 sge = sk_msg_elem(msg_en, msg_en->sg.curr); 487 sge->offset -= prot->prepend_size; 488 sge->length += prot->prepend_size; 489 490 /* Check if error is previously set on socket */ 491 if (err || sk->sk_err) { 492 rec = NULL; 493 494 /* If err is already set on socket, return the same code */ 495 if (sk->sk_err) { 496 ctx->async_wait.err = -sk->sk_err; 497 } else { 498 ctx->async_wait.err = err; 499 tls_err_abort(sk, err); 500 } 501 } 502 503 if (rec) { 504 struct tls_rec *first_rec; 505 506 /* Mark the record as ready for transmission */ 507 smp_store_mb(rec->tx_ready, true); 508 509 /* If received record is at head of tx_list, schedule tx */ 510 first_rec = list_first_entry(&ctx->tx_list, 511 struct tls_rec, list); 512 if (rec == first_rec) { 513 /* Schedule the transmission */ 514 if (!test_and_set_bit(BIT_TX_SCHEDULED, 515 &ctx->tx_bitmask)) 516 schedule_delayed_work(&ctx->tx_work.work, 1); 517 } 518 } 519 520 if (atomic_dec_and_test(&ctx->encrypt_pending)) 521 complete(&ctx->async_wait.completion); 522 } 523 524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx) 525 { 526 if (!atomic_dec_and_test(&ctx->encrypt_pending)) 527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait); 528 atomic_inc(&ctx->encrypt_pending); 529 530 return ctx->async_wait.err; 531 } 532 533 static int tls_do_encryption(struct sock *sk, 534 struct tls_context *tls_ctx, 535 struct tls_sw_context_tx *ctx, 536 struct aead_request *aead_req, 537 size_t data_len, u32 start) 538 { 539 struct tls_prot_info *prot = &tls_ctx->prot_info; 540 struct tls_rec *rec = ctx->open_rec; 541 struct sk_msg *msg_en = &rec->msg_encrypted; 542 struct scatterlist *sge = sk_msg_elem(msg_en, start); 543 int rc, iv_offset = 0; 544 545 /* For CCM based ciphers, first byte of IV is a constant */ 546 switch (prot->cipher_type) { 547 case TLS_CIPHER_AES_CCM_128: 548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE; 549 iv_offset = 1; 550 break; 551 case TLS_CIPHER_SM4_CCM: 552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE; 553 iv_offset = 1; 554 break; 555 } 556 557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv, 558 prot->iv_size + prot->salt_size); 559 560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset, 561 tls_ctx->tx.rec_seq); 562 563 sge->offset += prot->prepend_size; 564 sge->length -= prot->prepend_size; 565 566 msg_en->sg.curr = start; 567 568 aead_request_set_tfm(aead_req, ctx->aead_send); 569 aead_request_set_ad(aead_req, prot->aad_size); 570 aead_request_set_crypt(aead_req, rec->sg_aead_in, 571 rec->sg_aead_out, 572 data_len, rec->iv_data); 573 574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, 575 tls_encrypt_done, rec); 576 577 /* Add the record in tx_list */ 578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list); 579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1); 580 atomic_inc(&ctx->encrypt_pending); 581 582 rc = crypto_aead_encrypt(aead_req); 583 if (rc == -EBUSY) { 584 rc = tls_encrypt_async_wait(ctx); 585 rc = rc ?: -EINPROGRESS; 586 } 587 if (!rc || rc != -EINPROGRESS) { 588 atomic_dec(&ctx->encrypt_pending); 589 sge->offset -= prot->prepend_size; 590 sge->length += prot->prepend_size; 591 } 592 593 if (!rc) { 594 WRITE_ONCE(rec->tx_ready, true); 595 } else if (rc != -EINPROGRESS) { 596 list_del(&rec->list); 597 return rc; 598 } 599 600 /* Unhook the record from context if encryption is not failure */ 601 ctx->open_rec = NULL; 602 tls_advance_record_sn(sk, prot, &tls_ctx->tx); 603 return rc; 604 } 605 606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from, 607 struct tls_rec **to, struct sk_msg *msg_opl, 608 struct sk_msg *msg_oen, u32 split_point, 609 u32 tx_overhead_size, u32 *orig_end) 610 { 611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes; 612 struct scatterlist *sge, *osge, *nsge; 613 u32 orig_size = msg_opl->sg.size; 614 struct scatterlist tmp = { }; 615 struct sk_msg *msg_npl; 616 struct tls_rec *new; 617 int ret; 618 619 new = tls_get_rec(sk); 620 if (!new) 621 return -ENOMEM; 622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size + 623 tx_overhead_size, 0); 624 if (ret < 0) { 625 tls_free_rec(sk, new); 626 return ret; 627 } 628 629 *orig_end = msg_opl->sg.end; 630 i = msg_opl->sg.start; 631 sge = sk_msg_elem(msg_opl, i); 632 while (apply && sge->length) { 633 if (sge->length > apply) { 634 u32 len = sge->length - apply; 635 636 get_page(sg_page(sge)); 637 sg_set_page(&tmp, sg_page(sge), len, 638 sge->offset + apply); 639 sge->length = apply; 640 bytes += apply; 641 apply = 0; 642 } else { 643 apply -= sge->length; 644 bytes += sge->length; 645 } 646 647 sk_msg_iter_var_next(i); 648 if (i == msg_opl->sg.end) 649 break; 650 sge = sk_msg_elem(msg_opl, i); 651 } 652 653 msg_opl->sg.end = i; 654 msg_opl->sg.curr = i; 655 msg_opl->sg.copybreak = 0; 656 msg_opl->apply_bytes = 0; 657 msg_opl->sg.size = bytes; 658 659 msg_npl = &new->msg_plaintext; 660 msg_npl->apply_bytes = apply; 661 msg_npl->sg.size = orig_size - bytes; 662 663 j = msg_npl->sg.start; 664 nsge = sk_msg_elem(msg_npl, j); 665 if (tmp.length) { 666 memcpy(nsge, &tmp, sizeof(*nsge)); 667 sk_msg_iter_var_next(j); 668 nsge = sk_msg_elem(msg_npl, j); 669 } 670 671 osge = sk_msg_elem(msg_opl, i); 672 while (osge->length) { 673 memcpy(nsge, osge, sizeof(*nsge)); 674 sg_unmark_end(nsge); 675 sk_msg_iter_var_next(i); 676 sk_msg_iter_var_next(j); 677 if (i == *orig_end) 678 break; 679 osge = sk_msg_elem(msg_opl, i); 680 nsge = sk_msg_elem(msg_npl, j); 681 } 682 683 msg_npl->sg.end = j; 684 msg_npl->sg.curr = j; 685 msg_npl->sg.copybreak = 0; 686 687 *to = new; 688 return 0; 689 } 690 691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to, 692 struct tls_rec *from, u32 orig_end) 693 { 694 struct sk_msg *msg_npl = &from->msg_plaintext; 695 struct sk_msg *msg_opl = &to->msg_plaintext; 696 struct scatterlist *osge, *nsge; 697 u32 i, j; 698 699 i = msg_opl->sg.end; 700 sk_msg_iter_var_prev(i); 701 j = msg_npl->sg.start; 702 703 osge = sk_msg_elem(msg_opl, i); 704 nsge = sk_msg_elem(msg_npl, j); 705 706 if (sg_page(osge) == sg_page(nsge) && 707 osge->offset + osge->length == nsge->offset) { 708 osge->length += nsge->length; 709 put_page(sg_page(nsge)); 710 } 711 712 msg_opl->sg.end = orig_end; 713 msg_opl->sg.curr = orig_end; 714 msg_opl->sg.copybreak = 0; 715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size; 716 msg_opl->sg.size += msg_npl->sg.size; 717 718 sk_msg_free(sk, &to->msg_encrypted); 719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted); 720 721 kfree(from); 722 } 723 724 static int tls_push_record(struct sock *sk, int flags, 725 unsigned char record_type) 726 { 727 struct tls_context *tls_ctx = tls_get_ctx(sk); 728 struct tls_prot_info *prot = &tls_ctx->prot_info; 729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL; 731 u32 i, split_point, orig_end; 732 struct sk_msg *msg_pl, *msg_en; 733 struct aead_request *req; 734 bool split; 735 int rc; 736 737 if (!rec) 738 return 0; 739 740 msg_pl = &rec->msg_plaintext; 741 msg_en = &rec->msg_encrypted; 742 743 split_point = msg_pl->apply_bytes; 744 split = split_point && split_point < msg_pl->sg.size; 745 if (unlikely((!split && 746 msg_pl->sg.size + 747 prot->overhead_size > msg_en->sg.size) || 748 (split && 749 split_point + 750 prot->overhead_size > msg_en->sg.size))) { 751 split = true; 752 split_point = msg_en->sg.size; 753 } 754 if (split) { 755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en, 756 split_point, prot->overhead_size, 757 &orig_end); 758 if (rc < 0) 759 return rc; 760 /* This can happen if above tls_split_open_record allocates 761 * a single large encryption buffer instead of two smaller 762 * ones. In this case adjust pointers and continue without 763 * split. 764 */ 765 if (!msg_pl->sg.size) { 766 tls_merge_open_record(sk, rec, tmp, orig_end); 767 msg_pl = &rec->msg_plaintext; 768 msg_en = &rec->msg_encrypted; 769 split = false; 770 } 771 sk_msg_trim(sk, msg_en, msg_pl->sg.size + 772 prot->overhead_size); 773 } 774 775 rec->tx_flags = flags; 776 req = &rec->aead_req; 777 778 i = msg_pl->sg.end; 779 sk_msg_iter_var_prev(i); 780 781 rec->content_type = record_type; 782 if (prot->version == TLS_1_3_VERSION) { 783 /* Add content type to end of message. No padding added */ 784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1); 785 sg_mark_end(&rec->sg_content_type); 786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1, 787 &rec->sg_content_type); 788 } else { 789 sg_mark_end(sk_msg_elem(msg_pl, i)); 790 } 791 792 if (msg_pl->sg.end < msg_pl->sg.start) { 793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start], 794 MAX_SKB_FRAGS - msg_pl->sg.start + 1, 795 msg_pl->sg.data); 796 } 797 798 i = msg_pl->sg.start; 799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]); 800 801 i = msg_en->sg.end; 802 sk_msg_iter_var_prev(i); 803 sg_mark_end(sk_msg_elem(msg_en, i)); 804 805 i = msg_en->sg.start; 806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]); 807 808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size, 809 tls_ctx->tx.rec_seq, record_type, prot); 810 811 tls_fill_prepend(tls_ctx, 812 page_address(sg_page(&msg_en->sg.data[i])) + 813 msg_en->sg.data[i].offset, 814 msg_pl->sg.size + prot->tail_size, 815 record_type); 816 817 tls_ctx->pending_open_record_frags = false; 818 819 rc = tls_do_encryption(sk, tls_ctx, ctx, req, 820 msg_pl->sg.size + prot->tail_size, i); 821 if (rc < 0) { 822 if (rc != -EINPROGRESS) { 823 tls_err_abort(sk, -EBADMSG); 824 if (split) { 825 tls_ctx->pending_open_record_frags = true; 826 tls_merge_open_record(sk, rec, tmp, orig_end); 827 } 828 } 829 ctx->async_capable = 1; 830 return rc; 831 } else if (split) { 832 msg_pl = &tmp->msg_plaintext; 833 msg_en = &tmp->msg_encrypted; 834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size); 835 tls_ctx->pending_open_record_frags = true; 836 ctx->open_rec = tmp; 837 } 838 839 return tls_tx_records(sk, flags); 840 } 841 842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk, 843 bool full_record, u8 record_type, 844 ssize_t *copied, int flags) 845 { 846 struct tls_context *tls_ctx = tls_get_ctx(sk); 847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 848 struct sk_msg msg_redir = { }; 849 struct sk_psock *psock; 850 struct sock *sk_redir; 851 struct tls_rec *rec; 852 bool enospc, policy, redir_ingress; 853 int err = 0, send; 854 u32 delta = 0; 855 856 policy = !(flags & MSG_SENDPAGE_NOPOLICY); 857 psock = sk_psock_get(sk); 858 if (!psock || !policy) { 859 err = tls_push_record(sk, flags, record_type); 860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 861 *copied -= sk_msg_free(sk, msg); 862 tls_free_open_rec(sk); 863 err = -sk->sk_err; 864 } 865 if (psock) 866 sk_psock_put(sk, psock); 867 return err; 868 } 869 more_data: 870 enospc = sk_msg_full(msg); 871 if (psock->eval == __SK_NONE) { 872 delta = msg->sg.size; 873 psock->eval = sk_psock_msg_verdict(sk, psock, msg); 874 delta -= msg->sg.size; 875 } 876 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size && 877 !enospc && !full_record) { 878 err = -ENOSPC; 879 goto out_err; 880 } 881 msg->cork_bytes = 0; 882 send = msg->sg.size; 883 if (msg->apply_bytes && msg->apply_bytes < send) 884 send = msg->apply_bytes; 885 886 switch (psock->eval) { 887 case __SK_PASS: 888 err = tls_push_record(sk, flags, record_type); 889 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) { 890 *copied -= sk_msg_free(sk, msg); 891 tls_free_open_rec(sk); 892 err = -sk->sk_err; 893 goto out_err; 894 } 895 break; 896 case __SK_REDIRECT: 897 redir_ingress = psock->redir_ingress; 898 sk_redir = psock->sk_redir; 899 memcpy(&msg_redir, msg, sizeof(*msg)); 900 if (msg->apply_bytes < send) 901 msg->apply_bytes = 0; 902 else 903 msg->apply_bytes -= send; 904 sk_msg_return_zero(sk, msg, send); 905 msg->sg.size -= send; 906 release_sock(sk); 907 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress, 908 &msg_redir, send, flags); 909 lock_sock(sk); 910 if (err < 0) { 911 *copied -= sk_msg_free_nocharge(sk, &msg_redir); 912 msg->sg.size = 0; 913 } 914 if (msg->sg.size == 0) 915 tls_free_open_rec(sk); 916 break; 917 case __SK_DROP: 918 default: 919 sk_msg_free_partial(sk, msg, send); 920 if (msg->apply_bytes < send) 921 msg->apply_bytes = 0; 922 else 923 msg->apply_bytes -= send; 924 if (msg->sg.size == 0) 925 tls_free_open_rec(sk); 926 *copied -= (send + delta); 927 err = -EACCES; 928 } 929 930 if (likely(!err)) { 931 bool reset_eval = !ctx->open_rec; 932 933 rec = ctx->open_rec; 934 if (rec) { 935 msg = &rec->msg_plaintext; 936 if (!msg->apply_bytes) 937 reset_eval = true; 938 } 939 if (reset_eval) { 940 psock->eval = __SK_NONE; 941 if (psock->sk_redir) { 942 sock_put(psock->sk_redir); 943 psock->sk_redir = NULL; 944 } 945 } 946 if (rec) 947 goto more_data; 948 } 949 out_err: 950 sk_psock_put(sk, psock); 951 return err; 952 } 953 954 static int tls_sw_push_pending_record(struct sock *sk, int flags) 955 { 956 struct tls_context *tls_ctx = tls_get_ctx(sk); 957 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 958 struct tls_rec *rec = ctx->open_rec; 959 struct sk_msg *msg_pl; 960 size_t copied; 961 962 if (!rec) 963 return 0; 964 965 msg_pl = &rec->msg_plaintext; 966 copied = msg_pl->sg.size; 967 if (!copied) 968 return 0; 969 970 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA, 971 &copied, flags); 972 } 973 974 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg, 975 struct sk_msg *msg_pl, size_t try_to_copy, 976 ssize_t *copied) 977 { 978 struct page *page = NULL, **pages = &page; 979 980 do { 981 ssize_t part; 982 size_t off; 983 984 part = iov_iter_extract_pages(&msg->msg_iter, &pages, 985 try_to_copy, 1, 0, &off); 986 if (part <= 0) 987 return part ?: -EIO; 988 989 if (WARN_ON_ONCE(!sendpage_ok(page))) { 990 iov_iter_revert(&msg->msg_iter, part); 991 return -EIO; 992 } 993 994 sk_msg_page_add(msg_pl, page, part, off); 995 msg_pl->sg.copybreak = 0; 996 msg_pl->sg.curr = msg_pl->sg.end; 997 sk_mem_charge(sk, part); 998 *copied += part; 999 try_to_copy -= part; 1000 } while (try_to_copy && !sk_msg_full(msg_pl)); 1001 1002 return 0; 1003 } 1004 1005 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg, 1006 size_t size) 1007 { 1008 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1009 struct tls_context *tls_ctx = tls_get_ctx(sk); 1010 struct tls_prot_info *prot = &tls_ctx->prot_info; 1011 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1012 bool async_capable = ctx->async_capable; 1013 unsigned char record_type = TLS_RECORD_TYPE_DATA; 1014 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1015 bool eor = !(msg->msg_flags & MSG_MORE); 1016 size_t try_to_copy; 1017 ssize_t copied = 0; 1018 struct sk_msg *msg_pl, *msg_en; 1019 struct tls_rec *rec; 1020 int required_size; 1021 int num_async = 0; 1022 bool full_record; 1023 int record_room; 1024 int num_zc = 0; 1025 int orig_size; 1026 int ret = 0; 1027 1028 if (!eor && (msg->msg_flags & MSG_EOR)) 1029 return -EINVAL; 1030 1031 if (unlikely(msg->msg_controllen)) { 1032 ret = tls_process_cmsg(sk, msg, &record_type); 1033 if (ret) { 1034 if (ret == -EINPROGRESS) 1035 num_async++; 1036 else if (ret != -EAGAIN) 1037 goto send_end; 1038 } 1039 } 1040 1041 while (msg_data_left(msg)) { 1042 if (sk->sk_err) { 1043 ret = -sk->sk_err; 1044 goto send_end; 1045 } 1046 1047 if (ctx->open_rec) 1048 rec = ctx->open_rec; 1049 else 1050 rec = ctx->open_rec = tls_get_rec(sk); 1051 if (!rec) { 1052 ret = -ENOMEM; 1053 goto send_end; 1054 } 1055 1056 msg_pl = &rec->msg_plaintext; 1057 msg_en = &rec->msg_encrypted; 1058 1059 orig_size = msg_pl->sg.size; 1060 full_record = false; 1061 try_to_copy = msg_data_left(msg); 1062 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size; 1063 if (try_to_copy >= record_room) { 1064 try_to_copy = record_room; 1065 full_record = true; 1066 } 1067 1068 required_size = msg_pl->sg.size + try_to_copy + 1069 prot->overhead_size; 1070 1071 if (!sk_stream_memory_free(sk)) 1072 goto wait_for_sndbuf; 1073 1074 alloc_encrypted: 1075 ret = tls_alloc_encrypted_msg(sk, required_size); 1076 if (ret) { 1077 if (ret != -ENOSPC) 1078 goto wait_for_memory; 1079 1080 /* Adjust try_to_copy according to the amount that was 1081 * actually allocated. The difference is due 1082 * to max sg elements limit 1083 */ 1084 try_to_copy -= required_size - msg_en->sg.size; 1085 full_record = true; 1086 } 1087 1088 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) { 1089 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl, 1090 try_to_copy, &copied); 1091 if (ret < 0) 1092 goto send_end; 1093 tls_ctx->pending_open_record_frags = true; 1094 1095 if (sk_msg_full(msg_pl)) 1096 full_record = true; 1097 1098 if (full_record || eor) 1099 goto copied; 1100 continue; 1101 } 1102 1103 if (!is_kvec && (full_record || eor) && !async_capable) { 1104 u32 first = msg_pl->sg.end; 1105 1106 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter, 1107 msg_pl, try_to_copy); 1108 if (ret) 1109 goto fallback_to_reg_send; 1110 1111 num_zc++; 1112 copied += try_to_copy; 1113 1114 sk_msg_sg_copy_set(msg_pl, first); 1115 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1116 record_type, &copied, 1117 msg->msg_flags); 1118 if (ret) { 1119 if (ret == -EINPROGRESS) 1120 num_async++; 1121 else if (ret == -ENOMEM) 1122 goto wait_for_memory; 1123 else if (ctx->open_rec && ret == -ENOSPC) 1124 goto rollback_iter; 1125 else if (ret != -EAGAIN) 1126 goto send_end; 1127 } 1128 continue; 1129 rollback_iter: 1130 copied -= try_to_copy; 1131 sk_msg_sg_copy_clear(msg_pl, first); 1132 iov_iter_revert(&msg->msg_iter, 1133 msg_pl->sg.size - orig_size); 1134 fallback_to_reg_send: 1135 sk_msg_trim(sk, msg_pl, orig_size); 1136 } 1137 1138 required_size = msg_pl->sg.size + try_to_copy; 1139 1140 ret = tls_clone_plaintext_msg(sk, required_size); 1141 if (ret) { 1142 if (ret != -ENOSPC) 1143 goto send_end; 1144 1145 /* Adjust try_to_copy according to the amount that was 1146 * actually allocated. The difference is due 1147 * to max sg elements limit 1148 */ 1149 try_to_copy -= required_size - msg_pl->sg.size; 1150 full_record = true; 1151 sk_msg_trim(sk, msg_en, 1152 msg_pl->sg.size + prot->overhead_size); 1153 } 1154 1155 if (try_to_copy) { 1156 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter, 1157 msg_pl, try_to_copy); 1158 if (ret < 0) 1159 goto trim_sgl; 1160 } 1161 1162 /* Open records defined only if successfully copied, otherwise 1163 * we would trim the sg but not reset the open record frags. 1164 */ 1165 tls_ctx->pending_open_record_frags = true; 1166 copied += try_to_copy; 1167 copied: 1168 if (full_record || eor) { 1169 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record, 1170 record_type, &copied, 1171 msg->msg_flags); 1172 if (ret) { 1173 if (ret == -EINPROGRESS) 1174 num_async++; 1175 else if (ret == -ENOMEM) 1176 goto wait_for_memory; 1177 else if (ret != -EAGAIN) { 1178 if (ret == -ENOSPC) 1179 ret = 0; 1180 goto send_end; 1181 } 1182 } 1183 } 1184 1185 continue; 1186 1187 wait_for_sndbuf: 1188 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1189 wait_for_memory: 1190 ret = sk_stream_wait_memory(sk, &timeo); 1191 if (ret) { 1192 trim_sgl: 1193 if (ctx->open_rec) 1194 tls_trim_both_msgs(sk, orig_size); 1195 goto send_end; 1196 } 1197 1198 if (ctx->open_rec && msg_en->sg.size < required_size) 1199 goto alloc_encrypted; 1200 } 1201 1202 if (!num_async) { 1203 goto send_end; 1204 } else if (num_zc) { 1205 int err; 1206 1207 /* Wait for pending encryptions to get completed */ 1208 err = tls_encrypt_async_wait(ctx); 1209 if (err) { 1210 ret = err; 1211 copied = 0; 1212 } 1213 } 1214 1215 /* Transmit if any encryptions have completed */ 1216 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1217 cancel_delayed_work(&ctx->tx_work.work); 1218 tls_tx_records(sk, msg->msg_flags); 1219 } 1220 1221 send_end: 1222 ret = sk_stream_error(sk, msg->msg_flags, ret); 1223 return copied > 0 ? copied : ret; 1224 } 1225 1226 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1227 { 1228 struct tls_context *tls_ctx = tls_get_ctx(sk); 1229 int ret; 1230 1231 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | 1232 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR | 1233 MSG_SENDPAGE_NOPOLICY)) 1234 return -EOPNOTSUPP; 1235 1236 ret = mutex_lock_interruptible(&tls_ctx->tx_lock); 1237 if (ret) 1238 return ret; 1239 lock_sock(sk); 1240 ret = tls_sw_sendmsg_locked(sk, msg, size); 1241 release_sock(sk); 1242 mutex_unlock(&tls_ctx->tx_lock); 1243 return ret; 1244 } 1245 1246 /* 1247 * Handle unexpected EOF during splice without SPLICE_F_MORE set. 1248 */ 1249 void tls_sw_splice_eof(struct socket *sock) 1250 { 1251 struct sock *sk = sock->sk; 1252 struct tls_context *tls_ctx = tls_get_ctx(sk); 1253 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 1254 struct tls_rec *rec; 1255 struct sk_msg *msg_pl; 1256 ssize_t copied = 0; 1257 bool retrying = false; 1258 int ret = 0; 1259 1260 if (!ctx->open_rec) 1261 return; 1262 1263 mutex_lock(&tls_ctx->tx_lock); 1264 lock_sock(sk); 1265 1266 retry: 1267 /* same checks as in tls_sw_push_pending_record() */ 1268 rec = ctx->open_rec; 1269 if (!rec) 1270 goto unlock; 1271 1272 msg_pl = &rec->msg_plaintext; 1273 if (msg_pl->sg.size == 0) 1274 goto unlock; 1275 1276 /* Check the BPF advisor and perform transmission. */ 1277 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA, 1278 &copied, 0); 1279 switch (ret) { 1280 case 0: 1281 case -EAGAIN: 1282 if (retrying) 1283 goto unlock; 1284 retrying = true; 1285 goto retry; 1286 case -EINPROGRESS: 1287 break; 1288 default: 1289 goto unlock; 1290 } 1291 1292 /* Wait for pending encryptions to get completed */ 1293 if (tls_encrypt_async_wait(ctx)) 1294 goto unlock; 1295 1296 /* Transmit if any encryptions have completed */ 1297 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 1298 cancel_delayed_work(&ctx->tx_work.work); 1299 tls_tx_records(sk, 0); 1300 } 1301 1302 unlock: 1303 release_sock(sk); 1304 mutex_unlock(&tls_ctx->tx_lock); 1305 } 1306 1307 static int 1308 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock, 1309 bool released) 1310 { 1311 struct tls_context *tls_ctx = tls_get_ctx(sk); 1312 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1313 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1314 int ret = 0; 1315 long timeo; 1316 1317 timeo = sock_rcvtimeo(sk, nonblock); 1318 1319 while (!tls_strp_msg_ready(ctx)) { 1320 if (!sk_psock_queue_empty(psock)) 1321 return 0; 1322 1323 if (sk->sk_err) 1324 return sock_error(sk); 1325 1326 if (ret < 0) 1327 return ret; 1328 1329 if (!skb_queue_empty(&sk->sk_receive_queue)) { 1330 tls_strp_check_rcv(&ctx->strp); 1331 if (tls_strp_msg_ready(ctx)) 1332 break; 1333 } 1334 1335 if (sk->sk_shutdown & RCV_SHUTDOWN) 1336 return 0; 1337 1338 if (sock_flag(sk, SOCK_DONE)) 1339 return 0; 1340 1341 if (!timeo) 1342 return -EAGAIN; 1343 1344 released = true; 1345 add_wait_queue(sk_sleep(sk), &wait); 1346 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1347 ret = sk_wait_event(sk, &timeo, 1348 tls_strp_msg_ready(ctx) || 1349 !sk_psock_queue_empty(psock), 1350 &wait); 1351 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1352 remove_wait_queue(sk_sleep(sk), &wait); 1353 1354 /* Handle signals */ 1355 if (signal_pending(current)) 1356 return sock_intr_errno(timeo); 1357 } 1358 1359 tls_strp_msg_load(&ctx->strp, released); 1360 1361 return 1; 1362 } 1363 1364 static int tls_setup_from_iter(struct iov_iter *from, 1365 int length, int *pages_used, 1366 struct scatterlist *to, 1367 int to_max_pages) 1368 { 1369 int rc = 0, i = 0, num_elem = *pages_used, maxpages; 1370 struct page *pages[MAX_SKB_FRAGS]; 1371 unsigned int size = 0; 1372 ssize_t copied, use; 1373 size_t offset; 1374 1375 while (length > 0) { 1376 i = 0; 1377 maxpages = to_max_pages - num_elem; 1378 if (maxpages == 0) { 1379 rc = -EFAULT; 1380 goto out; 1381 } 1382 copied = iov_iter_get_pages2(from, pages, 1383 length, 1384 maxpages, &offset); 1385 if (copied <= 0) { 1386 rc = -EFAULT; 1387 goto out; 1388 } 1389 1390 length -= copied; 1391 size += copied; 1392 while (copied) { 1393 use = min_t(int, copied, PAGE_SIZE - offset); 1394 1395 sg_set_page(&to[num_elem], 1396 pages[i], use, offset); 1397 sg_unmark_end(&to[num_elem]); 1398 /* We do not uncharge memory from this API */ 1399 1400 offset = 0; 1401 copied -= use; 1402 1403 i++; 1404 num_elem++; 1405 } 1406 } 1407 /* Mark the end in the last sg entry if newly added */ 1408 if (num_elem > *pages_used) 1409 sg_mark_end(&to[num_elem - 1]); 1410 out: 1411 if (rc) 1412 iov_iter_revert(from, size); 1413 *pages_used = num_elem; 1414 1415 return rc; 1416 } 1417 1418 static struct sk_buff * 1419 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb, 1420 unsigned int full_len) 1421 { 1422 struct strp_msg *clr_rxm; 1423 struct sk_buff *clr_skb; 1424 int err; 1425 1426 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER, 1427 &err, sk->sk_allocation); 1428 if (!clr_skb) 1429 return NULL; 1430 1431 skb_copy_header(clr_skb, skb); 1432 clr_skb->len = full_len; 1433 clr_skb->data_len = full_len; 1434 1435 clr_rxm = strp_msg(clr_skb); 1436 clr_rxm->offset = 0; 1437 1438 return clr_skb; 1439 } 1440 1441 /* Decrypt handlers 1442 * 1443 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers. 1444 * They must transform the darg in/out argument are as follows: 1445 * | Input | Output 1446 * ------------------------------------------------------------------- 1447 * zc | Zero-copy decrypt allowed | Zero-copy performed 1448 * async | Async decrypt allowed | Async crypto used / in progress 1449 * skb | * | Output skb 1450 * 1451 * If ZC decryption was performed darg.skb will point to the input skb. 1452 */ 1453 1454 /* This function decrypts the input skb into either out_iov or in out_sg 1455 * or in skb buffers itself. The input parameter 'darg->zc' indicates if 1456 * zero-copy mode needs to be tried or not. With zero-copy mode, either 1457 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are 1458 * NULL, then the decryption happens inside skb buffers itself, i.e. 1459 * zero-copy gets disabled and 'darg->zc' is updated. 1460 */ 1461 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov, 1462 struct scatterlist *out_sg, 1463 struct tls_decrypt_arg *darg) 1464 { 1465 struct tls_context *tls_ctx = tls_get_ctx(sk); 1466 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1467 struct tls_prot_info *prot = &tls_ctx->prot_info; 1468 int n_sgin, n_sgout, aead_size, err, pages = 0; 1469 struct sk_buff *skb = tls_strp_msg(ctx); 1470 const struct strp_msg *rxm = strp_msg(skb); 1471 const struct tls_msg *tlm = tls_msg(skb); 1472 struct aead_request *aead_req; 1473 struct scatterlist *sgin = NULL; 1474 struct scatterlist *sgout = NULL; 1475 const int data_len = rxm->full_len - prot->overhead_size; 1476 int tail_pages = !!prot->tail_size; 1477 struct tls_decrypt_ctx *dctx; 1478 struct sk_buff *clear_skb; 1479 int iv_offset = 0; 1480 u8 *mem; 1481 1482 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size, 1483 rxm->full_len - prot->prepend_size); 1484 if (n_sgin < 1) 1485 return n_sgin ?: -EBADMSG; 1486 1487 if (darg->zc && (out_iov || out_sg)) { 1488 clear_skb = NULL; 1489 1490 if (out_iov) 1491 n_sgout = 1 + tail_pages + 1492 iov_iter_npages_cap(out_iov, INT_MAX, data_len); 1493 else 1494 n_sgout = sg_nents(out_sg); 1495 } else { 1496 darg->zc = false; 1497 1498 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len); 1499 if (!clear_skb) 1500 return -ENOMEM; 1501 1502 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags; 1503 } 1504 1505 /* Increment to accommodate AAD */ 1506 n_sgin = n_sgin + 1; 1507 1508 /* Allocate a single block of memory which contains 1509 * aead_req || tls_decrypt_ctx. 1510 * Both structs are variable length. 1511 */ 1512 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv); 1513 aead_size = ALIGN(aead_size, __alignof__(*dctx)); 1514 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)), 1515 sk->sk_allocation); 1516 if (!mem) { 1517 err = -ENOMEM; 1518 goto exit_free_skb; 1519 } 1520 1521 /* Segment the allocated memory */ 1522 aead_req = (struct aead_request *)mem; 1523 dctx = (struct tls_decrypt_ctx *)(mem + aead_size); 1524 dctx->sk = sk; 1525 sgin = &dctx->sg[0]; 1526 sgout = &dctx->sg[n_sgin]; 1527 1528 /* For CCM based ciphers, first byte of nonce+iv is a constant */ 1529 switch (prot->cipher_type) { 1530 case TLS_CIPHER_AES_CCM_128: 1531 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE; 1532 iv_offset = 1; 1533 break; 1534 case TLS_CIPHER_SM4_CCM: 1535 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE; 1536 iv_offset = 1; 1537 break; 1538 } 1539 1540 /* Prepare IV */ 1541 if (prot->version == TLS_1_3_VERSION || 1542 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 1543 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, 1544 prot->iv_size + prot->salt_size); 1545 } else { 1546 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, 1547 &dctx->iv[iv_offset] + prot->salt_size, 1548 prot->iv_size); 1549 if (err < 0) 1550 goto exit_free; 1551 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size); 1552 } 1553 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq); 1554 1555 /* Prepare AAD */ 1556 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size + 1557 prot->tail_size, 1558 tls_ctx->rx.rec_seq, tlm->control, prot); 1559 1560 /* Prepare sgin */ 1561 sg_init_table(sgin, n_sgin); 1562 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size); 1563 err = skb_to_sgvec(skb, &sgin[1], 1564 rxm->offset + prot->prepend_size, 1565 rxm->full_len - prot->prepend_size); 1566 if (err < 0) 1567 goto exit_free; 1568 1569 if (clear_skb) { 1570 sg_init_table(sgout, n_sgout); 1571 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1572 1573 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size, 1574 data_len + prot->tail_size); 1575 if (err < 0) 1576 goto exit_free; 1577 } else if (out_iov) { 1578 sg_init_table(sgout, n_sgout); 1579 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size); 1580 1581 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1], 1582 (n_sgout - 1 - tail_pages)); 1583 if (err < 0) 1584 goto exit_free_pages; 1585 1586 if (prot->tail_size) { 1587 sg_unmark_end(&sgout[pages]); 1588 sg_set_buf(&sgout[pages + 1], &dctx->tail, 1589 prot->tail_size); 1590 sg_mark_end(&sgout[pages + 1]); 1591 } 1592 } else if (out_sg) { 1593 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout)); 1594 } 1595 dctx->free_sgout = !!pages; 1596 1597 /* Prepare and submit AEAD request */ 1598 err = tls_do_decryption(sk, sgin, sgout, dctx->iv, 1599 data_len + prot->tail_size, aead_req, darg); 1600 if (err) { 1601 if (darg->async_done) 1602 goto exit_free_skb; 1603 goto exit_free_pages; 1604 } 1605 1606 darg->skb = clear_skb ?: tls_strp_msg(ctx); 1607 clear_skb = NULL; 1608 1609 if (unlikely(darg->async)) { 1610 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold); 1611 if (err) 1612 __skb_queue_tail(&ctx->async_hold, darg->skb); 1613 return err; 1614 } 1615 1616 if (unlikely(darg->async_done)) 1617 return 0; 1618 1619 if (prot->tail_size) 1620 darg->tail = dctx->tail; 1621 1622 exit_free_pages: 1623 /* Release the pages in case iov was mapped to pages */ 1624 for (; pages > 0; pages--) 1625 put_page(sg_page(&sgout[pages])); 1626 exit_free: 1627 kfree(mem); 1628 exit_free_skb: 1629 consume_skb(clear_skb); 1630 return err; 1631 } 1632 1633 static int 1634 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx, 1635 struct msghdr *msg, struct tls_decrypt_arg *darg) 1636 { 1637 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1638 struct tls_prot_info *prot = &tls_ctx->prot_info; 1639 struct strp_msg *rxm; 1640 int pad, err; 1641 1642 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg); 1643 if (err < 0) { 1644 if (err == -EBADMSG) 1645 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR); 1646 return err; 1647 } 1648 /* keep going even for ->async, the code below is TLS 1.3 */ 1649 1650 /* If opportunistic TLS 1.3 ZC failed retry without ZC */ 1651 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION && 1652 darg->tail != TLS_RECORD_TYPE_DATA)) { 1653 darg->zc = false; 1654 if (!darg->tail) 1655 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL); 1656 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY); 1657 return tls_decrypt_sw(sk, tls_ctx, msg, darg); 1658 } 1659 1660 pad = tls_padding_length(prot, darg->skb, darg); 1661 if (pad < 0) { 1662 if (darg->skb != tls_strp_msg(ctx)) 1663 consume_skb(darg->skb); 1664 return pad; 1665 } 1666 1667 rxm = strp_msg(darg->skb); 1668 rxm->full_len -= pad; 1669 1670 return 0; 1671 } 1672 1673 static int 1674 tls_decrypt_device(struct sock *sk, struct msghdr *msg, 1675 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg) 1676 { 1677 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1678 struct tls_prot_info *prot = &tls_ctx->prot_info; 1679 struct strp_msg *rxm; 1680 int pad, err; 1681 1682 if (tls_ctx->rx_conf != TLS_HW) 1683 return 0; 1684 1685 err = tls_device_decrypted(sk, tls_ctx); 1686 if (err <= 0) 1687 return err; 1688 1689 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg); 1690 if (pad < 0) 1691 return pad; 1692 1693 darg->async = false; 1694 darg->skb = tls_strp_msg(ctx); 1695 /* ->zc downgrade check, in case TLS 1.3 gets here */ 1696 darg->zc &= !(prot->version == TLS_1_3_VERSION && 1697 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA); 1698 1699 rxm = strp_msg(darg->skb); 1700 rxm->full_len -= pad; 1701 1702 if (!darg->zc) { 1703 /* Non-ZC case needs a real skb */ 1704 darg->skb = tls_strp_msg_detach(ctx); 1705 if (!darg->skb) 1706 return -ENOMEM; 1707 } else { 1708 unsigned int off, len; 1709 1710 /* In ZC case nobody cares about the output skb. 1711 * Just copy the data here. Note the skb is not fully trimmed. 1712 */ 1713 off = rxm->offset + prot->prepend_size; 1714 len = rxm->full_len - prot->overhead_size; 1715 1716 err = skb_copy_datagram_msg(darg->skb, off, msg, len); 1717 if (err) 1718 return err; 1719 } 1720 return 1; 1721 } 1722 1723 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg, 1724 struct tls_decrypt_arg *darg) 1725 { 1726 struct tls_context *tls_ctx = tls_get_ctx(sk); 1727 struct tls_prot_info *prot = &tls_ctx->prot_info; 1728 struct strp_msg *rxm; 1729 int err; 1730 1731 err = tls_decrypt_device(sk, msg, tls_ctx, darg); 1732 if (!err) 1733 err = tls_decrypt_sw(sk, tls_ctx, msg, darg); 1734 if (err < 0) 1735 return err; 1736 1737 rxm = strp_msg(darg->skb); 1738 rxm->offset += prot->prepend_size; 1739 rxm->full_len -= prot->overhead_size; 1740 tls_advance_record_sn(sk, prot, &tls_ctx->rx); 1741 1742 return 0; 1743 } 1744 1745 int decrypt_skb(struct sock *sk, struct scatterlist *sgout) 1746 { 1747 struct tls_decrypt_arg darg = { .zc = true, }; 1748 1749 return tls_decrypt_sg(sk, NULL, sgout, &darg); 1750 } 1751 1752 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm, 1753 u8 *control) 1754 { 1755 int err; 1756 1757 if (!*control) { 1758 *control = tlm->control; 1759 if (!*control) 1760 return -EBADMSG; 1761 1762 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, 1763 sizeof(*control), control); 1764 if (*control != TLS_RECORD_TYPE_DATA) { 1765 if (err || msg->msg_flags & MSG_CTRUNC) 1766 return -EIO; 1767 } 1768 } else if (*control != tlm->control) { 1769 return 0; 1770 } 1771 1772 return 1; 1773 } 1774 1775 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx) 1776 { 1777 tls_strp_msg_done(&ctx->strp); 1778 } 1779 1780 /* This function traverses the rx_list in tls receive context to copies the 1781 * decrypted records into the buffer provided by caller zero copy is not 1782 * true. Further, the records are removed from the rx_list if it is not a peek 1783 * case and the record has been consumed completely. 1784 */ 1785 static int process_rx_list(struct tls_sw_context_rx *ctx, 1786 struct msghdr *msg, 1787 u8 *control, 1788 size_t skip, 1789 size_t len, 1790 bool is_peek, 1791 bool *more) 1792 { 1793 struct sk_buff *skb = skb_peek(&ctx->rx_list); 1794 struct tls_msg *tlm; 1795 ssize_t copied = 0; 1796 int err; 1797 1798 while (skip && skb) { 1799 struct strp_msg *rxm = strp_msg(skb); 1800 tlm = tls_msg(skb); 1801 1802 err = tls_record_content_type(msg, tlm, control); 1803 if (err <= 0) 1804 goto more; 1805 1806 if (skip < rxm->full_len) 1807 break; 1808 1809 skip = skip - rxm->full_len; 1810 skb = skb_peek_next(skb, &ctx->rx_list); 1811 } 1812 1813 while (len && skb) { 1814 struct sk_buff *next_skb; 1815 struct strp_msg *rxm = strp_msg(skb); 1816 int chunk = min_t(unsigned int, rxm->full_len - skip, len); 1817 1818 tlm = tls_msg(skb); 1819 1820 err = tls_record_content_type(msg, tlm, control); 1821 if (err <= 0) 1822 goto more; 1823 1824 err = skb_copy_datagram_msg(skb, rxm->offset + skip, 1825 msg, chunk); 1826 if (err < 0) 1827 goto more; 1828 1829 len = len - chunk; 1830 copied = copied + chunk; 1831 1832 /* Consume the data from record if it is non-peek case*/ 1833 if (!is_peek) { 1834 rxm->offset = rxm->offset + chunk; 1835 rxm->full_len = rxm->full_len - chunk; 1836 1837 /* Return if there is unconsumed data in the record */ 1838 if (rxm->full_len - skip) 1839 break; 1840 } 1841 1842 /* The remaining skip-bytes must lie in 1st record in rx_list. 1843 * So from the 2nd record, 'skip' should be 0. 1844 */ 1845 skip = 0; 1846 1847 if (msg) 1848 msg->msg_flags |= MSG_EOR; 1849 1850 next_skb = skb_peek_next(skb, &ctx->rx_list); 1851 1852 if (!is_peek) { 1853 __skb_unlink(skb, &ctx->rx_list); 1854 consume_skb(skb); 1855 } 1856 1857 skb = next_skb; 1858 } 1859 err = 0; 1860 1861 out: 1862 return copied ? : err; 1863 more: 1864 if (more) 1865 *more = true; 1866 goto out; 1867 } 1868 1869 static bool 1870 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot, 1871 size_t len_left, size_t decrypted, ssize_t done, 1872 size_t *flushed_at) 1873 { 1874 size_t max_rec; 1875 1876 if (len_left <= decrypted) 1877 return false; 1878 1879 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE; 1880 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec) 1881 return false; 1882 1883 *flushed_at = done; 1884 return sk_flush_backlog(sk); 1885 } 1886 1887 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx, 1888 bool nonblock) 1889 { 1890 long timeo; 1891 int ret; 1892 1893 timeo = sock_rcvtimeo(sk, nonblock); 1894 1895 while (unlikely(ctx->reader_present)) { 1896 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1897 1898 ctx->reader_contended = 1; 1899 1900 add_wait_queue(&ctx->wq, &wait); 1901 ret = sk_wait_event(sk, &timeo, 1902 !READ_ONCE(ctx->reader_present), &wait); 1903 remove_wait_queue(&ctx->wq, &wait); 1904 1905 if (timeo <= 0) 1906 return -EAGAIN; 1907 if (signal_pending(current)) 1908 return sock_intr_errno(timeo); 1909 if (ret < 0) 1910 return ret; 1911 } 1912 1913 WRITE_ONCE(ctx->reader_present, 1); 1914 1915 return 0; 1916 } 1917 1918 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx, 1919 bool nonblock) 1920 { 1921 int err; 1922 1923 lock_sock(sk); 1924 err = tls_rx_reader_acquire(sk, ctx, nonblock); 1925 if (err) 1926 release_sock(sk); 1927 return err; 1928 } 1929 1930 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx) 1931 { 1932 if (unlikely(ctx->reader_contended)) { 1933 if (wq_has_sleeper(&ctx->wq)) 1934 wake_up(&ctx->wq); 1935 else 1936 ctx->reader_contended = 0; 1937 1938 WARN_ON_ONCE(!ctx->reader_present); 1939 } 1940 1941 WRITE_ONCE(ctx->reader_present, 0); 1942 } 1943 1944 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx) 1945 { 1946 tls_rx_reader_release(sk, ctx); 1947 release_sock(sk); 1948 } 1949 1950 int tls_sw_recvmsg(struct sock *sk, 1951 struct msghdr *msg, 1952 size_t len, 1953 int flags, 1954 int *addr_len) 1955 { 1956 struct tls_context *tls_ctx = tls_get_ctx(sk); 1957 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 1958 struct tls_prot_info *prot = &tls_ctx->prot_info; 1959 ssize_t decrypted = 0, async_copy_bytes = 0; 1960 struct sk_psock *psock; 1961 unsigned char control = 0; 1962 size_t flushed_at = 0; 1963 struct strp_msg *rxm; 1964 struct tls_msg *tlm; 1965 ssize_t copied = 0; 1966 ssize_t peeked = 0; 1967 bool async = false; 1968 int target, err; 1969 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter); 1970 bool is_peek = flags & MSG_PEEK; 1971 bool rx_more = false; 1972 bool released = true; 1973 bool bpf_strp_enabled; 1974 bool zc_capable; 1975 1976 if (unlikely(flags & MSG_ERRQUEUE)) 1977 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); 1978 1979 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT); 1980 if (err < 0) 1981 return err; 1982 psock = sk_psock_get(sk); 1983 bpf_strp_enabled = sk_psock_strp_enabled(psock); 1984 1985 /* If crypto failed the connection is broken */ 1986 err = ctx->async_wait.err; 1987 if (err) 1988 goto end; 1989 1990 /* Process pending decrypted records. It must be non-zero-copy */ 1991 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more); 1992 if (err < 0) 1993 goto end; 1994 1995 copied = err; 1996 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more) 1997 goto end; 1998 1999 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2000 len = len - copied; 2001 2002 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek && 2003 ctx->zc_capable; 2004 decrypted = 0; 2005 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) { 2006 struct tls_decrypt_arg darg; 2007 int to_decrypt, chunk; 2008 2009 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT, 2010 released); 2011 if (err <= 0) { 2012 if (psock) { 2013 chunk = sk_msg_recvmsg(sk, psock, msg, len, 2014 flags); 2015 if (chunk > 0) { 2016 decrypted += chunk; 2017 len -= chunk; 2018 continue; 2019 } 2020 } 2021 goto recv_end; 2022 } 2023 2024 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2025 2026 rxm = strp_msg(tls_strp_msg(ctx)); 2027 tlm = tls_msg(tls_strp_msg(ctx)); 2028 2029 to_decrypt = rxm->full_len - prot->overhead_size; 2030 2031 if (zc_capable && to_decrypt <= len && 2032 tlm->control == TLS_RECORD_TYPE_DATA) 2033 darg.zc = true; 2034 2035 /* Do not use async mode if record is non-data */ 2036 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled) 2037 darg.async = ctx->async_capable; 2038 else 2039 darg.async = false; 2040 2041 err = tls_rx_one_record(sk, msg, &darg); 2042 if (err < 0) { 2043 tls_err_abort(sk, -EBADMSG); 2044 goto recv_end; 2045 } 2046 2047 async |= darg.async; 2048 2049 /* If the type of records being processed is not known yet, 2050 * set it to record type just dequeued. If it is already known, 2051 * but does not match the record type just dequeued, go to end. 2052 * We always get record type here since for tls1.2, record type 2053 * is known just after record is dequeued from stream parser. 2054 * For tls1.3, we disable async. 2055 */ 2056 err = tls_record_content_type(msg, tls_msg(darg.skb), &control); 2057 if (err <= 0) { 2058 DEBUG_NET_WARN_ON_ONCE(darg.zc); 2059 tls_rx_rec_done(ctx); 2060 put_on_rx_list_err: 2061 __skb_queue_tail(&ctx->rx_list, darg.skb); 2062 goto recv_end; 2063 } 2064 2065 /* periodically flush backlog, and feed strparser */ 2066 released = tls_read_flush_backlog(sk, prot, len, to_decrypt, 2067 decrypted + copied, 2068 &flushed_at); 2069 2070 /* TLS 1.3 may have updated the length by more than overhead */ 2071 rxm = strp_msg(darg.skb); 2072 chunk = rxm->full_len; 2073 tls_rx_rec_done(ctx); 2074 2075 if (!darg.zc) { 2076 bool partially_consumed = chunk > len; 2077 struct sk_buff *skb = darg.skb; 2078 2079 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor); 2080 2081 if (async) { 2082 /* TLS 1.2-only, to_decrypt must be text len */ 2083 chunk = min_t(int, to_decrypt, len); 2084 async_copy_bytes += chunk; 2085 put_on_rx_list: 2086 decrypted += chunk; 2087 len -= chunk; 2088 __skb_queue_tail(&ctx->rx_list, skb); 2089 if (unlikely(control != TLS_RECORD_TYPE_DATA)) 2090 break; 2091 continue; 2092 } 2093 2094 if (bpf_strp_enabled) { 2095 released = true; 2096 err = sk_psock_tls_strp_read(psock, skb); 2097 if (err != __SK_PASS) { 2098 rxm->offset = rxm->offset + rxm->full_len; 2099 rxm->full_len = 0; 2100 if (err == __SK_DROP) 2101 consume_skb(skb); 2102 continue; 2103 } 2104 } 2105 2106 if (partially_consumed) 2107 chunk = len; 2108 2109 err = skb_copy_datagram_msg(skb, rxm->offset, 2110 msg, chunk); 2111 if (err < 0) 2112 goto put_on_rx_list_err; 2113 2114 if (is_peek) { 2115 peeked += chunk; 2116 goto put_on_rx_list; 2117 } 2118 2119 if (partially_consumed) { 2120 rxm->offset += chunk; 2121 rxm->full_len -= chunk; 2122 goto put_on_rx_list; 2123 } 2124 2125 consume_skb(skb); 2126 } 2127 2128 decrypted += chunk; 2129 len -= chunk; 2130 2131 /* Return full control message to userspace before trying 2132 * to parse another message type 2133 */ 2134 msg->msg_flags |= MSG_EOR; 2135 if (control != TLS_RECORD_TYPE_DATA) 2136 break; 2137 } 2138 2139 recv_end: 2140 if (async) { 2141 int ret; 2142 2143 /* Wait for all previously submitted records to be decrypted */ 2144 ret = tls_decrypt_async_wait(ctx); 2145 __skb_queue_purge(&ctx->async_hold); 2146 2147 if (ret) { 2148 if (err >= 0 || err == -EINPROGRESS) 2149 err = ret; 2150 goto end; 2151 } 2152 2153 /* Drain records from the rx_list & copy if required */ 2154 if (is_peek) 2155 err = process_rx_list(ctx, msg, &control, copied + peeked, 2156 decrypted - peeked, is_peek, NULL); 2157 else 2158 err = process_rx_list(ctx, msg, &control, 0, 2159 async_copy_bytes, is_peek, NULL); 2160 2161 /* we could have copied less than we wanted, and possibly nothing */ 2162 decrypted += max(err, 0) - async_copy_bytes; 2163 } 2164 2165 copied += decrypted; 2166 2167 end: 2168 tls_rx_reader_unlock(sk, ctx); 2169 if (psock) 2170 sk_psock_put(sk, psock); 2171 return copied ? : err; 2172 } 2173 2174 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 2175 struct pipe_inode_info *pipe, 2176 size_t len, unsigned int flags) 2177 { 2178 struct tls_context *tls_ctx = tls_get_ctx(sock->sk); 2179 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2180 struct strp_msg *rxm = NULL; 2181 struct sock *sk = sock->sk; 2182 struct tls_msg *tlm; 2183 struct sk_buff *skb; 2184 ssize_t copied = 0; 2185 int chunk; 2186 int err; 2187 2188 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK); 2189 if (err < 0) 2190 return err; 2191 2192 if (!skb_queue_empty(&ctx->rx_list)) { 2193 skb = __skb_dequeue(&ctx->rx_list); 2194 } else { 2195 struct tls_decrypt_arg darg; 2196 2197 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK, 2198 true); 2199 if (err <= 0) 2200 goto splice_read_end; 2201 2202 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2203 2204 err = tls_rx_one_record(sk, NULL, &darg); 2205 if (err < 0) { 2206 tls_err_abort(sk, -EBADMSG); 2207 goto splice_read_end; 2208 } 2209 2210 tls_rx_rec_done(ctx); 2211 skb = darg.skb; 2212 } 2213 2214 rxm = strp_msg(skb); 2215 tlm = tls_msg(skb); 2216 2217 /* splice does not support reading control messages */ 2218 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2219 err = -EINVAL; 2220 goto splice_requeue; 2221 } 2222 2223 chunk = min_t(unsigned int, rxm->full_len, len); 2224 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); 2225 if (copied < 0) 2226 goto splice_requeue; 2227 2228 if (chunk < rxm->full_len) { 2229 rxm->offset += len; 2230 rxm->full_len -= len; 2231 goto splice_requeue; 2232 } 2233 2234 consume_skb(skb); 2235 2236 splice_read_end: 2237 tls_rx_reader_unlock(sk, ctx); 2238 return copied ? : err; 2239 2240 splice_requeue: 2241 __skb_queue_head(&ctx->rx_list, skb); 2242 goto splice_read_end; 2243 } 2244 2245 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 2246 sk_read_actor_t read_actor) 2247 { 2248 struct tls_context *tls_ctx = tls_get_ctx(sk); 2249 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2250 struct tls_prot_info *prot = &tls_ctx->prot_info; 2251 struct strp_msg *rxm = NULL; 2252 struct sk_buff *skb = NULL; 2253 struct sk_psock *psock; 2254 size_t flushed_at = 0; 2255 bool released = true; 2256 struct tls_msg *tlm; 2257 ssize_t copied = 0; 2258 ssize_t decrypted; 2259 int err, used; 2260 2261 psock = sk_psock_get(sk); 2262 if (psock) { 2263 sk_psock_put(sk, psock); 2264 return -EINVAL; 2265 } 2266 err = tls_rx_reader_acquire(sk, ctx, true); 2267 if (err < 0) 2268 return err; 2269 2270 /* If crypto failed the connection is broken */ 2271 err = ctx->async_wait.err; 2272 if (err) 2273 goto read_sock_end; 2274 2275 decrypted = 0; 2276 do { 2277 if (!skb_queue_empty(&ctx->rx_list)) { 2278 skb = __skb_dequeue(&ctx->rx_list); 2279 rxm = strp_msg(skb); 2280 tlm = tls_msg(skb); 2281 } else { 2282 struct tls_decrypt_arg darg; 2283 2284 err = tls_rx_rec_wait(sk, NULL, true, released); 2285 if (err <= 0) 2286 goto read_sock_end; 2287 2288 memset(&darg.inargs, 0, sizeof(darg.inargs)); 2289 2290 err = tls_rx_one_record(sk, NULL, &darg); 2291 if (err < 0) { 2292 tls_err_abort(sk, -EBADMSG); 2293 goto read_sock_end; 2294 } 2295 2296 released = tls_read_flush_backlog(sk, prot, INT_MAX, 2297 0, decrypted, 2298 &flushed_at); 2299 skb = darg.skb; 2300 rxm = strp_msg(skb); 2301 tlm = tls_msg(skb); 2302 decrypted += rxm->full_len; 2303 2304 tls_rx_rec_done(ctx); 2305 } 2306 2307 /* read_sock does not support reading control messages */ 2308 if (tlm->control != TLS_RECORD_TYPE_DATA) { 2309 err = -EINVAL; 2310 goto read_sock_requeue; 2311 } 2312 2313 used = read_actor(desc, skb, rxm->offset, rxm->full_len); 2314 if (used <= 0) { 2315 if (!copied) 2316 err = used; 2317 goto read_sock_requeue; 2318 } 2319 copied += used; 2320 if (used < rxm->full_len) { 2321 rxm->offset += used; 2322 rxm->full_len -= used; 2323 if (!desc->count) 2324 goto read_sock_requeue; 2325 } else { 2326 consume_skb(skb); 2327 if (!desc->count) 2328 skb = NULL; 2329 } 2330 } while (skb); 2331 2332 read_sock_end: 2333 tls_rx_reader_release(sk, ctx); 2334 return copied ? : err; 2335 2336 read_sock_requeue: 2337 __skb_queue_head(&ctx->rx_list, skb); 2338 goto read_sock_end; 2339 } 2340 2341 bool tls_sw_sock_is_readable(struct sock *sk) 2342 { 2343 struct tls_context *tls_ctx = tls_get_ctx(sk); 2344 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2345 bool ingress_empty = true; 2346 struct sk_psock *psock; 2347 2348 rcu_read_lock(); 2349 psock = sk_psock(sk); 2350 if (psock) 2351 ingress_empty = list_empty(&psock->ingress_msg); 2352 rcu_read_unlock(); 2353 2354 return !ingress_empty || tls_strp_msg_ready(ctx) || 2355 !skb_queue_empty(&ctx->rx_list); 2356 } 2357 2358 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb) 2359 { 2360 struct tls_context *tls_ctx = tls_get_ctx(strp->sk); 2361 struct tls_prot_info *prot = &tls_ctx->prot_info; 2362 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE]; 2363 size_t cipher_overhead; 2364 size_t data_len = 0; 2365 int ret; 2366 2367 /* Verify that we have a full TLS header, or wait for more data */ 2368 if (strp->stm.offset + prot->prepend_size > skb->len) 2369 return 0; 2370 2371 /* Sanity-check size of on-stack buffer. */ 2372 if (WARN_ON(prot->prepend_size > sizeof(header))) { 2373 ret = -EINVAL; 2374 goto read_failure; 2375 } 2376 2377 /* Linearize header to local buffer */ 2378 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size); 2379 if (ret < 0) 2380 goto read_failure; 2381 2382 strp->mark = header[0]; 2383 2384 data_len = ((header[4] & 0xFF) | (header[3] << 8)); 2385 2386 cipher_overhead = prot->tag_size; 2387 if (prot->version != TLS_1_3_VERSION && 2388 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 2389 cipher_overhead += prot->iv_size; 2390 2391 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead + 2392 prot->tail_size) { 2393 ret = -EMSGSIZE; 2394 goto read_failure; 2395 } 2396 if (data_len < cipher_overhead) { 2397 ret = -EBADMSG; 2398 goto read_failure; 2399 } 2400 2401 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */ 2402 if (header[1] != TLS_1_2_VERSION_MINOR || 2403 header[2] != TLS_1_2_VERSION_MAJOR) { 2404 ret = -EINVAL; 2405 goto read_failure; 2406 } 2407 2408 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE, 2409 TCP_SKB_CB(skb)->seq + strp->stm.offset); 2410 return data_len + TLS_HEADER_SIZE; 2411 2412 read_failure: 2413 tls_err_abort(strp->sk, ret); 2414 2415 return ret; 2416 } 2417 2418 void tls_rx_msg_ready(struct tls_strparser *strp) 2419 { 2420 struct tls_sw_context_rx *ctx; 2421 2422 ctx = container_of(strp, struct tls_sw_context_rx, strp); 2423 ctx->saved_data_ready(strp->sk); 2424 } 2425 2426 static void tls_data_ready(struct sock *sk) 2427 { 2428 struct tls_context *tls_ctx = tls_get_ctx(sk); 2429 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2430 struct sk_psock *psock; 2431 gfp_t alloc_save; 2432 2433 trace_sk_data_ready(sk); 2434 2435 alloc_save = sk->sk_allocation; 2436 sk->sk_allocation = GFP_ATOMIC; 2437 tls_strp_data_ready(&ctx->strp); 2438 sk->sk_allocation = alloc_save; 2439 2440 psock = sk_psock_get(sk); 2441 if (psock) { 2442 if (!list_empty(&psock->ingress_msg)) 2443 ctx->saved_data_ready(sk); 2444 sk_psock_put(sk, psock); 2445 } 2446 } 2447 2448 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx) 2449 { 2450 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2451 2452 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask); 2453 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask); 2454 cancel_delayed_work_sync(&ctx->tx_work.work); 2455 } 2456 2457 void tls_sw_release_resources_tx(struct sock *sk) 2458 { 2459 struct tls_context *tls_ctx = tls_get_ctx(sk); 2460 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2461 struct tls_rec *rec, *tmp; 2462 2463 /* Wait for any pending async encryptions to complete */ 2464 tls_encrypt_async_wait(ctx); 2465 2466 tls_tx_records(sk, -1); 2467 2468 /* Free up un-sent records in tx_list. First, free 2469 * the partially sent record if any at head of tx_list. 2470 */ 2471 if (tls_ctx->partially_sent_record) { 2472 tls_free_partial_record(sk, tls_ctx); 2473 rec = list_first_entry(&ctx->tx_list, 2474 struct tls_rec, list); 2475 list_del(&rec->list); 2476 sk_msg_free(sk, &rec->msg_plaintext); 2477 kfree(rec); 2478 } 2479 2480 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) { 2481 list_del(&rec->list); 2482 sk_msg_free(sk, &rec->msg_encrypted); 2483 sk_msg_free(sk, &rec->msg_plaintext); 2484 kfree(rec); 2485 } 2486 2487 crypto_free_aead(ctx->aead_send); 2488 tls_free_open_rec(sk); 2489 } 2490 2491 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx) 2492 { 2493 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); 2494 2495 kfree(ctx); 2496 } 2497 2498 void tls_sw_release_resources_rx(struct sock *sk) 2499 { 2500 struct tls_context *tls_ctx = tls_get_ctx(sk); 2501 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2502 2503 if (ctx->aead_recv) { 2504 __skb_queue_purge(&ctx->rx_list); 2505 crypto_free_aead(ctx->aead_recv); 2506 tls_strp_stop(&ctx->strp); 2507 /* If tls_sw_strparser_arm() was not called (cleanup paths) 2508 * we still want to tls_strp_stop(), but sk->sk_data_ready was 2509 * never swapped. 2510 */ 2511 if (ctx->saved_data_ready) { 2512 write_lock_bh(&sk->sk_callback_lock); 2513 sk->sk_data_ready = ctx->saved_data_ready; 2514 write_unlock_bh(&sk->sk_callback_lock); 2515 } 2516 } 2517 } 2518 2519 void tls_sw_strparser_done(struct tls_context *tls_ctx) 2520 { 2521 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2522 2523 tls_strp_done(&ctx->strp); 2524 } 2525 2526 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx) 2527 { 2528 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); 2529 2530 kfree(ctx); 2531 } 2532 2533 void tls_sw_free_resources_rx(struct sock *sk) 2534 { 2535 struct tls_context *tls_ctx = tls_get_ctx(sk); 2536 2537 tls_sw_release_resources_rx(sk); 2538 tls_sw_free_ctx_rx(tls_ctx); 2539 } 2540 2541 /* The work handler to transmitt the encrypted records in tx_list */ 2542 static void tx_work_handler(struct work_struct *work) 2543 { 2544 struct delayed_work *delayed_work = to_delayed_work(work); 2545 struct tx_work *tx_work = container_of(delayed_work, 2546 struct tx_work, work); 2547 struct sock *sk = tx_work->sk; 2548 struct tls_context *tls_ctx = tls_get_ctx(sk); 2549 struct tls_sw_context_tx *ctx; 2550 2551 if (unlikely(!tls_ctx)) 2552 return; 2553 2554 ctx = tls_sw_ctx_tx(tls_ctx); 2555 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask)) 2556 return; 2557 2558 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) 2559 return; 2560 2561 if (mutex_trylock(&tls_ctx->tx_lock)) { 2562 lock_sock(sk); 2563 tls_tx_records(sk, -1); 2564 release_sock(sk); 2565 mutex_unlock(&tls_ctx->tx_lock); 2566 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) { 2567 /* Someone is holding the tx_lock, they will likely run Tx 2568 * and cancel the work on their way out of the lock section. 2569 * Schedule a long delay just in case. 2570 */ 2571 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10)); 2572 } 2573 } 2574 2575 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx) 2576 { 2577 struct tls_rec *rec; 2578 2579 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list); 2580 if (!rec) 2581 return false; 2582 2583 return READ_ONCE(rec->tx_ready); 2584 } 2585 2586 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx) 2587 { 2588 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx); 2589 2590 /* Schedule the transmission if tx list is ready */ 2591 if (tls_is_tx_ready(tx_ctx) && 2592 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask)) 2593 schedule_delayed_work(&tx_ctx->tx_work.work, 0); 2594 } 2595 2596 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx) 2597 { 2598 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2599 2600 write_lock_bh(&sk->sk_callback_lock); 2601 rx_ctx->saved_data_ready = sk->sk_data_ready; 2602 sk->sk_data_ready = tls_data_ready; 2603 write_unlock_bh(&sk->sk_callback_lock); 2604 } 2605 2606 void tls_update_rx_zc_capable(struct tls_context *tls_ctx) 2607 { 2608 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx); 2609 2610 rx_ctx->zc_capable = tls_ctx->rx_no_pad || 2611 tls_ctx->prot_info.version != TLS_1_3_VERSION; 2612 } 2613 2614 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk) 2615 { 2616 struct tls_sw_context_tx *sw_ctx_tx; 2617 2618 if (!ctx->priv_ctx_tx) { 2619 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); 2620 if (!sw_ctx_tx) 2621 return NULL; 2622 } else { 2623 sw_ctx_tx = ctx->priv_ctx_tx; 2624 } 2625 2626 crypto_init_wait(&sw_ctx_tx->async_wait); 2627 atomic_set(&sw_ctx_tx->encrypt_pending, 1); 2628 INIT_LIST_HEAD(&sw_ctx_tx->tx_list); 2629 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler); 2630 sw_ctx_tx->tx_work.sk = sk; 2631 2632 return sw_ctx_tx; 2633 } 2634 2635 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx) 2636 { 2637 struct tls_sw_context_rx *sw_ctx_rx; 2638 2639 if (!ctx->priv_ctx_rx) { 2640 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); 2641 if (!sw_ctx_rx) 2642 return NULL; 2643 } else { 2644 sw_ctx_rx = ctx->priv_ctx_rx; 2645 } 2646 2647 crypto_init_wait(&sw_ctx_rx->async_wait); 2648 atomic_set(&sw_ctx_rx->decrypt_pending, 1); 2649 init_waitqueue_head(&sw_ctx_rx->wq); 2650 skb_queue_head_init(&sw_ctx_rx->rx_list); 2651 skb_queue_head_init(&sw_ctx_rx->async_hold); 2652 2653 return sw_ctx_rx; 2654 } 2655 2656 int init_prot_info(struct tls_prot_info *prot, 2657 const struct tls_crypto_info *crypto_info, 2658 const struct tls_cipher_desc *cipher_desc) 2659 { 2660 u16 nonce_size = cipher_desc->nonce; 2661 2662 if (crypto_info->version == TLS_1_3_VERSION) { 2663 nonce_size = 0; 2664 prot->aad_size = TLS_HEADER_SIZE; 2665 prot->tail_size = 1; 2666 } else { 2667 prot->aad_size = TLS_AAD_SPACE_SIZE; 2668 prot->tail_size = 0; 2669 } 2670 2671 /* Sanity-check the sizes for stack allocations. */ 2672 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE) 2673 return -EINVAL; 2674 2675 prot->version = crypto_info->version; 2676 prot->cipher_type = crypto_info->cipher_type; 2677 prot->prepend_size = TLS_HEADER_SIZE + nonce_size; 2678 prot->tag_size = cipher_desc->tag; 2679 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size; 2680 prot->iv_size = cipher_desc->iv; 2681 prot->salt_size = cipher_desc->salt; 2682 prot->rec_seq_size = cipher_desc->rec_seq; 2683 2684 return 0; 2685 } 2686 2687 int tls_set_sw_offload(struct sock *sk, int tx) 2688 { 2689 struct tls_sw_context_tx *sw_ctx_tx = NULL; 2690 struct tls_sw_context_rx *sw_ctx_rx = NULL; 2691 const struct tls_cipher_desc *cipher_desc; 2692 struct tls_crypto_info *crypto_info; 2693 char *iv, *rec_seq, *key, *salt; 2694 struct cipher_context *cctx; 2695 struct tls_prot_info *prot; 2696 struct crypto_aead **aead; 2697 struct tls_context *ctx; 2698 struct crypto_tfm *tfm; 2699 int rc = 0; 2700 2701 ctx = tls_get_ctx(sk); 2702 prot = &ctx->prot_info; 2703 2704 if (tx) { 2705 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk); 2706 if (!ctx->priv_ctx_tx) 2707 return -ENOMEM; 2708 2709 sw_ctx_tx = ctx->priv_ctx_tx; 2710 crypto_info = &ctx->crypto_send.info; 2711 cctx = &ctx->tx; 2712 aead = &sw_ctx_tx->aead_send; 2713 } else { 2714 ctx->priv_ctx_rx = init_ctx_rx(ctx); 2715 if (!ctx->priv_ctx_rx) 2716 return -ENOMEM; 2717 2718 sw_ctx_rx = ctx->priv_ctx_rx; 2719 crypto_info = &ctx->crypto_recv.info; 2720 cctx = &ctx->rx; 2721 aead = &sw_ctx_rx->aead_recv; 2722 } 2723 2724 cipher_desc = get_cipher_desc(crypto_info->cipher_type); 2725 if (!cipher_desc) { 2726 rc = -EINVAL; 2727 goto free_priv; 2728 } 2729 2730 rc = init_prot_info(prot, crypto_info, cipher_desc); 2731 if (rc) 2732 goto free_priv; 2733 2734 iv = crypto_info_iv(crypto_info, cipher_desc); 2735 key = crypto_info_key(crypto_info, cipher_desc); 2736 salt = crypto_info_salt(crypto_info, cipher_desc); 2737 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc); 2738 2739 memcpy(cctx->iv, salt, cipher_desc->salt); 2740 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv); 2741 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq); 2742 2743 if (!*aead) { 2744 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0); 2745 if (IS_ERR(*aead)) { 2746 rc = PTR_ERR(*aead); 2747 *aead = NULL; 2748 goto free_priv; 2749 } 2750 } 2751 2752 ctx->push_pending_record = tls_sw_push_pending_record; 2753 2754 rc = crypto_aead_setkey(*aead, key, cipher_desc->key); 2755 if (rc) 2756 goto free_aead; 2757 2758 rc = crypto_aead_setauthsize(*aead, prot->tag_size); 2759 if (rc) 2760 goto free_aead; 2761 2762 if (sw_ctx_rx) { 2763 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv); 2764 2765 tls_update_rx_zc_capable(ctx); 2766 sw_ctx_rx->async_capable = 2767 crypto_info->version != TLS_1_3_VERSION && 2768 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC); 2769 2770 rc = tls_strp_init(&sw_ctx_rx->strp, sk); 2771 if (rc) 2772 goto free_aead; 2773 } 2774 2775 goto out; 2776 2777 free_aead: 2778 crypto_free_aead(*aead); 2779 *aead = NULL; 2780 free_priv: 2781 if (tx) { 2782 kfree(ctx->priv_ctx_tx); 2783 ctx->priv_ctx_tx = NULL; 2784 } else { 2785 kfree(ctx->priv_ctx_rx); 2786 ctx->priv_ctx_rx = NULL; 2787 } 2788 out: 2789 return rc; 2790 } 2791
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.